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Abstract—Exposure to electromagnetic fields due to cellular
networks in an urban environment is studied using stochastic
geometry. We describe a simple but functional and realistic
semi-empirical model based on the modeling of base station
patterns as Poisson Point Processes and applied to two Brussels
municipalities. Using this model, a study of the impact of base
station densification is performed according to two theoretical
scenarios. From simple assumptions, it is concluded that global
exposure is expected to remain approximately constant in the
case of intelligent network evolution involving the densification
of macro cells and the addition of a network of low-power small
cells.

Index Terms—EMF exposure, stochastic geometry, cellular
networks, small cells

I. INTRODUCTION

Stochastic geometry (SG) has been used for several years

in telecommunications. It provides information on network

performance that other, more classical, deterministic methods

are struggling to obtain. SG enables the modeling of base sta-

tion (BS) distributions in wireless networks as point processes

in order to characterize distance distributions [1], signal-to-

interference-plus-noise-ratio and its related performance met-

rics [2], [3] or localization performance [4]. The statistical

nature of this approach makes it possible, for example, to elab-

orate stochastic models for heterogeneous cellular networks

[5] or to study probabilities of coverage when one model

parameter changes, such as the height of the antennas [6]. In

recent years, stochastic geometry has also been used to model
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unmanned aerial vehicles [7], [8]. In [9] and [10] SG has been

recently applied to the study of exposure to electromagnetic

fields. They are interested in certain frequency bands and not

in the entire cellular spectrum as in this paper.

Exposure due to cellular networks is difficult to assess

deterministically within a reasonable time frame, and is subject

to many uncertainties (due to the number of BSs in operation,

the geometry of the environment, the presence of people and

vehicles causing shadowing). Instead, it is preferable to look

to statistical values over a representative area where the BS

density λ
[

BS/km2
]

can be considered uniform.

In this paper, we investigate the experimental distribution

of the total electric field due to 2G to 4G cellular networks

in two Brussels municipalities. By defining a path loss model

for propagation, and a Poisson point process for the modeling

of macro cell BSs, we show that it is possible to recover this

experimental distribution with the SG approach. We then look

theoretically at the potential evolution of exposure when the

BS network changes according to two scenarios: an increase

in macro cell density and the deployment of low-power small

cells overlaying current networks.

II. METHOD

In this study, we use a model identical to the one we have

already used successfully in [10]. The BS pattern is modeled

as a homogeneous Poisson Point Process (PPP) Φ of density

λ, which is a very good approximation when taking into

account all BSs of all network providers [11] as must be done



for exposure assessment. The inter-site distance (ISD) can be

computed from

ISD =

∫ ∞

0

2πλ r2 e2πλ r2dr =
1

2
√
λ
. (1)

For any BS, the power density S [W/m2] at a horizontal

distance r is then given by a simple path loss model

S(r) =
EIRP

4π (r2 + h2)
α/2

(2)

where EIRP is the Effective Isotropic Radiated Power, h the

height of the BS and α the path loss exponent. Global exposure

is characterized by the total power density SWN obtained by

summing the power densities from the whole network (WN)

of BSs of all network providers, assuming all uncorrelated

signals.

SWN =
∑

i|BSi∈Φ

S(ri) =
∑

i|BSi∈Φ

EIRP

4π (h2 + r2i )
α/2

. (3)

Here we assume a simplified homogeneous model, easily

applicable to any urban environment, but efficient and leading

to reliable results: the BSs are all assumed to be at the same

height, isotropic, with the same EIRP. Power density can be

translated into root-mean-square electric field strength [V/m],

which is often more tractable, using

E =
√

Z0 SWN , (4)

where Z0 =
√

µ0/ǫ0 = 120π ≈ 377Ω is the impedance of

free-space.

SG provides the theoretical framework to study the statis-

tical properties of (3) over network realizations. The mean

of (3), for instance, is given by applying a corollary of

Campbell’s theorem [12]

E [SWN ] =
λEIRP

2 (α− 2)hα−2
(5)

while its cumulative distribution function (CDF) is obtained

numerically by applying the inversion theorem [13]

F (x) =
1

2
− 1

π

∫ ∞

0

ℑ
[

e−itx LSWN
(−it)

]

t
dt (6)

where t is real and LSWN
is the Laplace transform of (3)

LSWN
(s) = E

[

e
−s SWN

]

= exp

[

2πλ

α

∫

∞

hα

(

exp

(

−s
A

x

)

− 1

)

x
2/α−1

dx

]

= exp

[

πλh
2

(

1 −1 F1

(

−2/α; 1 − 2/α;
−sA

hα

))]

≈























exp

[

πλh2
∞
∑

j=1

2 (−sA)j

hα j j! (j α − 2)

]

,

∣

∣

∣

∣

sA

hα

∣

∣

∣

∣

≤ c,

exp

[

πλh2

(

− (sA)2/α

h2
Γ

(

1 −
2

α

)

+ 1

)]

,

∣

∣

∣

∣

sA

hα

∣

∣

∣

∣

> c.

(7)

In this calculation, A = EIRP/(4π) and 1F1 is the Kummer

confluent hypergeometric function. The last expression corre-

sponds to an approximation for numerical calculations inspired

by [14].

When two networks modeled as independent PPPs Φ1 and

Φ2 are superimposed, the Laplace transform of the resulting

network LStot
WN

can be written as

LStot
WN

(s) = E

[

e
−s
(

S
(1)
WN+S

(2)
WN

)
]

= EΦ1,A1,Φ2,A2

[

exp

(

−s
∑

i∈Φ

A1

(r2i + h2
1)

α1/2

)

× exp

(

−s
∑

i∈Φ

A2

(r2i + h2
2)

α2/2

)]

= EΦ1,A1

[

exp

(

−s
∑

i∈Φ

A1

(r2i + h2
1)

α1/2

)]

× EΦ2,A2

[

exp

(

−s
∑

i∈Φ

A2

(r2i + h2
2)

α2/2

)]

= L(1)
SWN

(s)× L(2)
SWN

(s)
(8)

where S
(k)
WN is the total power density due to network k and

L(1)
SWN

(s) its corresponding Laplace transform. The CDF is

then again deduced from (6).

III. EXPERIMENTAL RESULTS

In order to fit the parameters in (3), we focused on a zone of

the Brussels-Capital Region spreading over two municipalities,

Etterbeek and Ixelles. From the knowledge of the exact

location of the BSs from all cellular network providers in

this zone, the density of macro cell BSs placed on rooftops

was deduced: λ = 13BS/km2, which corresponds an ISD of

139m.

Drive tests were carried out at the beginning of December

2020, during the daytime, in this zone. A spectrum analyzer

was placed on the roof of a car riding along the different

streets. The entire cellular spectrum was scanned with a

resolution of 5MHz and the three polarization axes were

measured and summed up. The power density was obtained

for each position of the car, by summing the contribution at

each frequency according to

Sexp =
1

Z0

∑

f

E2
f (9)

where Ef is the electric field strength measured at frequency

f belonging to the cellular spectrum detailed in table I. A

GPS device gave a position to each measurement, which made

it possible to average the measurements over local areas of

2m×2m to avoid over-representation of some positions. This

size was chosen neither too small to smooth out fading, nor

too large to keep the spatial sampling relevant. Measurements

out of the region under study were removed and statistics of

Sexp were derived from the data set.



TABLE I
Services and frequency bands allocated to all cellular network providers in

Brussels.

Services and frequency bands Allocated frequencies

LTE 800 791 - 821MHz
GSM 900 - UMTS 900 925.1 - 959.9MHz
GSM 1800 - LTE 1800 1805 - 1 880MHz

UMTS 2100
2 110.3 - 2 140.1MHz
2 154.9 - 2 169.7MHz

LTE 2600
2 620 - 2 640MHz
2 655 - 2 690MHz

Parameters EIRP, h and α of (3) were then fitted by

minimizing

K(θ) =

(

µ(θ)

µexp

− 1

)

2

+

(

Q10(θ)

Q10,exp

− 1

)

2

+

(

Q25(θ)

Q25,exp

− 1

)

2

+

(

Q50(θ)

Q50,exp

− 1

)

2

+

(

Q75(θ)

Q75,exp

− 1

)

2

+

(

Q90(θ)

Q90,exp

− 1

)

2

+

(

Q95(θ)

Q95,exp

− 1

)

2

(10)

where θ = (h, α,EIRP) is the 3-tuple of parameters. Qx is

the x%-quantile and µ the mean (5) of the distribution of

SWN using θ, calculated by (6). The notation ”xexp” refers

to statistics obtained from the experimental distribution Sexp.

The minimization of K(θ) is an exhaustive search onto a

regular grid G = Ih × Iα × IEIRP with Ih = [10; 60]m
with a step of 1m, Iα = [2; 5] with a step of 0.02 and

IEIRP = [60.0; 85.0]dBm with a step of 0.05 dBm.

Statistical parameters of the SG and experimental distri-

butions are listed in table II. The optimal set of parameters

for the propagation model (3) is also shown. As seen, fitted

parameters are realistic on physical ground. Fig. 1 clearly

shows that the experimental and the SG CDFs are very close,

which is also evidenced by the Kolmogorov-Smirnov (KS)

distance of 0.02. It can be concluded that SG in combination

with (3) provides a realistic statistical model of the total

exposure.

IV. IMPACT OF BS DENSITY

Using parameter values of Table II, the impact of an increase

of the number of BSs in the network can be theoretically

studied. First, we considered that macro cells (mc) identical

to those being already part of the network are introduced.

We increased the density of macro cells of the PPP from

λmc,0 = 13BS/km2 to λmc = 25BS/km2 and 50BS/km2.

In this scenario, two extreme cases were considered: keeping

the EIRP constant and having an EIRP evolving as

EIRPmc =
EIRPmc,0

(λmc/λmc,0)
α/2

, (11)

where EIRPmc,0 = 83.65 dBm, to ensure same power density

at cell edge for all λmc. Secondly, we considered that a new

network of small cells (sc), independent of the network of

TABLE II
PARAMETERS OF THE STATISTICAL DISTRIBUTIONS OF THE POWER

DENSITY FOR THE WHOLE CELLULAR SPECTRUM, IN THE

BRUSSELS-CAPITAL REGION (IXELLES AND ETTERBEEK). EXP:
EXPERIMENTAL RESULTS. SG: CDF OBTAINED BY A NUMERIC

GIL-PELAEZ INVERSION. Qx’S ARE THE QUANTILES, µ THE MEAN.

Exp SG

h (m) 54
α 3.62
EIRP (dBm) 83.65

Q05 (W/m2) 1.02 · 10−4 1.12 · 10−4

Q10 (W/m2) 1.31 · 10−4 1.48 · 10−4

Q25 (W/m2) 2.53 · 10−4 2.59 · 10−4

Q50 (W/m2) 6.33 · 10−4 5.72 · 10−4

Q75 (W/m2) 1.66 · 10−3 1.55 · 10−3

Q90 (W/m2) 3.79 · 10−3 3.97 · 10−3

Q95 (W/m2) 5.90 · 10−3 6.32 · 10−2

µ (W/m2) 1.51 · 10−3 1.40 · 10−3

KS distance 0.03
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Fig. 1. CDF of E =
√

Z0 Sexp for the network made of BSs from all
network providers in Brussels for the whole cellular spectrum.

macro cells, is being introduced. We assumed that the small

cell network is also modeled by (3). Under these hypotheses,

the Laplace transform of the total power density due to the

resulting network can be calculated by (8) and the CDF can

be obtained by (6). The expected value of the total power

density is given by the sum of the expected values of the power

density of both networks. Small cells are considered as low-

power transmitters placed on street furniture and belonging

to category E2 [15], what does not require a permit to be

placed especially in Brussels, Belgium and in France [16]. We

therefore set hsc = 3m, αsc = 2.1 and EIRPsc = 33dBm.

The mean, the median and the probabilities to reach 1V/m,

3V/m and 6V/m thresholds are listed in Table III, Table

IV and Table V for the case of a densification of macro cell

network, keeping the EIRP constant and not, and then for the

case of the addition of a network of small cells, respectively.

The CDFs are shown in Fig. 2, Fig. 3 and Fig. 4, respectively.

As can be clearly seen, assuming new macro cell deploy-

ments with the same EIRP, exposure increases significantly,

while assuming a decrease in EIRP, global exposure decreases.
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Fig. 2. Impact of the densification of the network of macro cells, keeping
the EIRP constant.
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Fig. 3. Impact of the densification of the network of macro cells, reducing
the EIRP.
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Fig. 4. Impact of the densification of the addition of a new network of small
cells.

TABLE III
EVOLUTION OF THE MEDIAN OF THE DISTRIBUTION AND PROBABILITIES

TO REACH EXPOSURE THRESHOLDS WHEN THE MACRO CELL DENSITY

INCREASES, KEEPING THE EIRP CONSTANT.

λmc (BS/km2) 13 25 50

Q50 (V/m) 0.46 0.79 1.28

µ
(

mW/m2
)

1.40 2.79 5.58

P[E > 1V/m] (%) 15.27 34.34 71.98

P[E > 3V/m] (%) < 10−2 < 10−2 0.05

P[E > 6V/m] (%) < 10−2 < 10−2 < 10−2

TABLE IV
EVOLUTION OF THE MEDIAN OF THE DISTRIBUTION AND PROBABILITIES

TO REACH EXPOSURE THRESHOLDS WHEN THE MACRO CELL DENSITY

INCREASES, KEEPING THE EIRP CONSTANT.

λmc (BS/km2) 13 25 50

Q50 (V/m) 0.46 0.43 0.37

µ
(

mW/m2
)

1.40 0.82 0.47

P[E > 1V/m] (%) 15.27 5.33 0.35

P[E > 3V/m] (%) < 10−2 < 10−2 < 10−2

P[E > 6V/m] (%) < 10−2 < 10−2 < 10−2

TABLE V
EVOLUTION OF THE MEDIAN OF THE DISTRIBUTION AND PROBABILITIES

TO REACH EXPOSURE THRESHOLDS WHEN A SMALL CELL NETWORK IS

SUPERIMPOSED ON THE CURRENT NETWORK.

λsc (BS/km2) 0 25 50 100

Q50 (V/m) 0.46 0.54 0.61 0.73

µ
(

mW/m2
)

1.40 1.64 1.86 2.31

P[E > 1V/m] (%) 15.27 16.88 18.71 23.24

P[E > 3V/m] (%) < 10−2 < 10−2 < 10−2 < 10−2

P[E > 6V/m] (%) < 10−2 < 10−2 < 10−2 < 10−2

Interestingly, the addition of a network of small cells causes a

slight change in the head of the distribution but leaves its tail

unchanged. This can also be seen in Fig. 5 where the mean

total power density (5) is shown as a function of the macro cell

density for the first scenario and as a function of the small cell

density for the second scenario. The most realistic evolution

of the network to meet the growing user connection demand

is a combination of increasing the density of macro cells, with

a decreasing EIRP, and adding a new network of small cells

to support it. This simplified study where all small and macro

cells are identical and where beamforming is not taken into

account, leads to believe that global exposure due to cellular

networks does not change significantly in such a scenario.

V. CONCLUSION

Exposure to electromagnetic fields was modeled simply

and reliably for the entire cellular spectrum by using SG with

a simple path loss model. The approach followed was based

on the Gil-Pelaez inversion of the Laplace transform of the

total network power density. The impact of BS densification

was studied according to three cases: the addition of BSs

identical to those of the current network, with constant

EIRP or density-varying EIRP, and the addition of a new

network of small cells. In particular, it can be concluded

that only the macro cell network has an effect on the tail of

the exposure distribution in an urban environment. Global
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Fig. 5. Mean total power density (5) as a function of the cell density. Case
1: Densification of macro cells at constant EIRP. Case 2: Densification of
macro cells with a varying EIRP. Case 3: Densification of small cells with a
macro cell density λmc = 13BS/km2. Cases 1 and 2 vary along the lower
axis and case 3 along the upper axis. The current mean power density used
in Table II corresponds to the intersection between curves 1 and 2.

exposure remains nearly unchanged if the network evolution

implies a smart densification of macro cells in combination

to the deployment of category E2 micro-cells at the street level.
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