
Selenocompounds and Sepsis: Redox Bypass Hypothesis
for Early Diagnosis and Treatment:
Part A—Early Acute Phase of Sepsis: An Extraordinary
Redox Situation (Leukocyte/Endothelium Interaction Leading
to Endothelial Damage)

Xavier Forceville,1,2 Pierre Van Antwerpen,3 and Jean-Charles Preiser4

Abstract

Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection
evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure.
Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the
sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early
stage have been unsuccessful.

Color images are available online.

1Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien—Meaux Site, Hôpital Saint Faron, Meaux, France.
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Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial
cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma
concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox
potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also
induce endothelial mitochondrial and cell damage.
Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released.
Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory
response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the
leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with
the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow
and damaging the endothelial barrier.
Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis,
occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this
event is necessary before irreversible damage occurs. Antioxid. Redox Signal. 00, 000–000.

Keywords: redox state, oxidative stress, leukocyte activation, endothelium, free radicals, selenium

Introduction

Sepsis is a major health problem that requires specific and
early diagnostic and treatment solutions. Sepsis has been

recognized for many thousands of years, with descriptions
dating back to 3000 BC in ancient Egypt (169).

Despite improvements in the understanding of the patho-
genesis of sepsis and in therapeutic management, sepsis re-
mains a silent public health disaster, with 337 cases occurring
per 100,000 inhabitants every year in the United States, as-
sociated with a 30%–50% mortality rate (237). Moreover,
patients who survive sepsis frequently have reduced long-
term quality of life (133, 228). Sepsis accounts for more than
$20 billion (5.2%) of total U.S. hospital costs (133, 276). The
risk of a worldwide major infectious pandemic leading to
multiple patients with sepsis is a persistent threat, as illus-
trated by the recent coronavirus disease 2019 (COVID-19)
pandemic (60). More severe pandemics may occur in the
future, of natural origin or as a result of use of biological
weapons, as has already happened since medieval times, if
not earlier (12, 62, 123, 173).

Severe noninfective events, such as extensive burns or ir-
radiation, multiple trauma, some intoxications, acute pan-
creatitis, and major surgery, induce an acute innate response
that shares similarities with sepsis (35, 185, 316).

Sepsis is not a disease but a complex syndrome resulting
from an overwhelming dysregulated innate host response to
invasive infection (59, 133, 187, 241, 276). According to the
third international consensus definition for sepsis, an infec-
tion with a mild innate response is no longer called sepsis,
and what was previously called ‘‘severe sepsis’’ is now de-
fined as ‘‘sepsis’’ (169, 276). Despite some progress in early
management, sepsis remains a major health problem world-
wide; early detection is crucial to optimize treatment, but can
be difficult (11, 48, 187, 199, 215, 222, 315).

Numerous phase III studies performed over the last few
decades have failed to demonstrate improved outcomes of
patients with sepsis with the interventions studied, most
probably because of the great complexity of the pathophys-
iology of sepsis (14, 90, 208). Most of these interventions,
including antioxidant approaches, were aimed at blocking
one or more pathogenetic cascades (90, 153, 208, 226), and it

has been suggested more recently that early therapeutic in-
terventions should rather target the microcirculation or mi-
tochondrial dysfunction (196).

The objective of this article, written in two parts, is to
provide a clearer understanding of the early events of sepsis
in terms of redox potential and free radical damage, to pro-
pose a new approach for early diagnosis and treatment, which
will be covered in a separate part B article.

Here we focus on the oxidative consequences of the si-
multaneous activation and binding of activated neutrophils to
endothelial cells, which induces the release of reactive oxy-
gen, halogen, and nitrogen species (ROHNS), especially
peroxynitrite, compounds that are effective against patho-
gens but deleterious for the endothelium. As a consequence
of their hyperactivation, the intracellular redox potential of
leukocytes, and especially neutrophils, increases and imma-
ture forms are released by the bone marrow. Excessive re-
lease of ROHNS overwhelms plasma antioxidant defenses,
especially that provided by selenoprotein P, which pro-
tects against peroxynitrite-mediated oxidation, and, to a les-
ser extent, by plasma glutathione peroxidase (GPX3). The
ROHNS damage the inner surface of the endothelial wall,
especially the endothelial surface layer (ESL), and also the
endothelial cells, especially the mitochondria.

These events lead to disseminated shock-induced en-
dotheliopathy (SHINE), the first step to multiple organ fail-
ure (MOF) and ultimately death.

Duality of the Innate Response

Beneficial against infection

The innate response is an ancient mechanism adapted from
plants to mammals to counteract the exponential growth of
pathogens (195). The innate reaction at the site of an infection
must occur rapidly to control the infection locally. Toll-like
receptors (TLRs) are activated by pathogen-associated mo-
lecular patterns (PAMPs) and danger-associated molecular
patterns (DAMPs) (191, 258). Phagocytosis, which involves
phagocytic cells such as neutrophils (also called polymor-
phonuclear cells), is at the crossroad of the innate response
with all the cascades implicated in sepsis (108, 150, 154, 165,
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192, 203). This process releases ROHNS, which contribute to
the killing of microorganisms (113, 160).

In sepsis, the innate response changes from a beneficial
localized response against infection into a dysregulated
and generalized response, leading to organ dysfunction and
failure, especially circulatory, and to death (108, 191, 263,
281). The mortality rates associated with sepsis remain high,
despite improvements in management, in particular more
widespread, adequate early resuscitation, and improved sup-
portive care in the intensive care unit (ICU) (24, 191, 241, 276,
280). The formal 3-h and 6-h bundles have recently been com-
bined into a 1-h bundle, reinforcing the need for an efficient
early intervention at the very early phase of sepsis (170).

Detrimental effects and cascade signaling
in the early phase of sepsis

The availability of improved supportive care enables
patients with sepsis to survive beyond their natural body
functions. In this ‘‘unnatural’’ state, the innate response may
be inadequate and deleterious (241, 314) (Fig. 1). Thus, the
different forms of supportive care in this context could be
likened to survival attractors (320) (Fig. 1). In the absence of
such supportive care, most patients die (148). At this stage of
sepsis, the dysregulated innate and host response is mixed,
with complex pro- and anti-inflammatory reactions (61, 212).

In such a situation, natural coping mechanisms may no
longer be adequate, resulting in a state of chaos (3, 8, 321).
Although the chaos theory is still debated, it is nevertheless
widely acknowledged that the host response involves many
cascades, with positive loops and complex feedback path-
ways and interactions (212).

Numerous unsuccessful attempts, including some large
multicenter randomized phase III studies, have targeted
single-cascade interventions, suggesting that multicascade
interventions may be more effective (90, 133, 208, 318).
Because of lack of an early effective treatment for sepsis and
improved general intensive care management, most of the
associated mortality is currently related to the effects of im-
munodepression (76, 133, 317).

One of the reasons for the numerous failed attempts to
demonstrate the effectiveness of immunomodulatory thera-
pies against sepsis may be the lack of an animal model that
can adequately reflect sepsis and septic shock in critically ill
patients (9, 89, 211). One of the important differences be-
tween animal models and patients may lie in serum proteins
rather than in intrinsic cellular differences (327). Another
reason for the lack of success is the complex cascade of in-
teractions involved in the early phase of sepsis, which varies
over time and with illness severity (90, 133, 237, 318).

At the extracellular level, these processes include activa-
tion of TLRs by PAMPs and DAMPs, cytokine storm (145,
207), coagulation activation (87, 95, 166, 198, 256, 285),
formation of microparticles (236), and activation of the
complement system (325), proteases, heat shock proteins,
neuromediators, and the neuroendocrine axis (13). In addi-
tion, at the macrocirculation level, cross talk is observed
between organs. One example of this cross talk is the effects
of a decrease in perfusion of the small intestine, which in-
duces ischemia/reperfusion injury and leads to a second hit
by bacteria and compounds such as endotoxin, further en-
hancing the inflammatory response (110, 111, 255, 335).

Microcirculatory Dysfunction As an Early
Event and SHINE

Importance of leukocyte binding to the endothelium

In the early phase of sepsis, interactions and binding be-
tween leukocytes, and more specifically neutrophils, and the
endothelium are a major event at the level of the microcir-
culation (6, 11, 79, 94, 129, 133, 137, 140, 142, 150, 154, 165,
168, 192, 203, 209, 225, 236, 256, 268, 279, 338). Initially
limited to the site of infection, this process becomes gener-
alized and dysregulated in sepsis and is involved in many
of the cascades cited earlier (Fig. 2). Before developing this
concept further, we first describe the physiological func-
tioning of the microcirculation (Fig. 2, upper panel).

Physiological functioning of the microcirculation

The endothelium, which should be considered an organ,
plays a pivotal role in the microcirculation (4, 5, 209). It
forms a monocellular layer, the surface area of which is about
4000–7000 m2 (4–6, 304), and acts as a border between a
liquid medium—the plasma—and a solid structure—the basal
membrane (6, 210). Physiologically, the endothelium is coated
by glycoproteins, forming the glycocalyx (translated from the
Greek meaning sugar coat) and, more broadly, the ESL (65,
230, 231). The endothelium has a wide range of physiological
functions and can be viewed as an input/output system (5).

In blood, neutrophils account for 50%–70% of all circu-
lating leukocytes. They are normally produced at a rate of
1011 per day and stored in the bone marrow, with only a small
fraction (1%–2% in mice) released each day (165, 268).
Under physiological conditions, neutrophils have a short
half-life of 7–12 h in the circulation, where they are quies-
cent, and 1–2 days in tissues, because of spontaneous apo-
ptosis (192, 219, 268). During the spontaneous apoptosis of
neutrophils, both mitochondria- and death receptor-mediated
apoptotic signalings are activated (219). This spontaneous
apoptosis is inhibited by neutrophil activation as developed
later. Rolling leukocytes can be observed and red blood cells
(RBCs) are flexible. RBCs and leukocytes, including neu-
trophils, move evenly with platelets that are not activated
(Fig. 2, upper panel).

In health, blood flow within the microcirculation is lami-
nar, applying shear stress evenly on the surface of the
endothelial cells. The ESL, which includes the glycocalyx,
covers all endothelial cells and is highly fragile (56, 100, 229,
232) (Fig. 2, upper panel). It is closely regulated and differs,
especially in thickness, from one organ to another (e.g., in the
brain, the glycocalyx is thicker in hippocampal than in cor-
tical microvessels) (56, 272, 308). With a thickness ranging
from 0.5 to 1 lm, it forms a step between blood cells and the
endothelium (229, 232).

The ESL is divided into a thin, cell-attached glycocalyx
(about 70 nm) that includes proteins, glycolipids, glycopro-
teins, and proteoglycans, and a layer of linked molecules
comprising (i) adsorbed plasma proteins, (ii) a soluble com-
ponent, for example, extracellular superoxide dismutase
(SOD), derived from endothelial cells, (iii) large linear hya-
luronic acid interacting with cell surface glycoprotein CD44,
and (iv) covalently bound glycosaminoglycan side chains
(e.g., heparin sulfate and chondroitin sulfate), which are
negatively charged (56, 100, 272, 308). In equilibrium with
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FIG. 1. Sepsis evolution and supportive care as new survival attractors. As an adaptation to Thom’s Catastrophe
Theory, as made by Viret, supportive care in the emergency room (ER) and later in the ICU are new survival attractors that
prevail over homeostasis life attractors. They enable patients to survive outside a natural living state as illustrated by the
table during their ICU stay. (A) (Upper-left corner) Developing an infection, the body reacts by producing a beneficial
innate immune response illustrated by an orange arrow. If the infection is not treated in time, this innate response may
evolve a few day(s) (hours) later into sepsis, illustrated by a red arrow. Sepsis is often lethal as illustrated by the brown
arrow that falls from the table of life. (B) (Upper-right corner) A septic patient (in the emergency room) has a dysregulated
innate and host response. He/she can survive because of early resuscitation, which thus becomes a new mild survival
attractor. (C) (Middle of the figure) Worsening sepsis (septic shock) increases the complexity of the reaction—even
corresponding to a state of chaos—and finally leads to MOF. In the ICU, different forms of supportive care, illustrated in
green, become new survival attractors enabling patients to survive. (D) (Bottom) Depending, in part, on the initial severity
of the sepsis, evolution may be (1) lethal in a few cases because of an overwhelming reaction; (2) favorable with rapid
withdrawal of supportive care as illustrated by the green arrow returning to the homeostasis attractor; (3) less favorable with
secondary infection(s) or various other complications illustrated by a zig-zag orange arrow; (4) associated with a high risk
of sequelae if recovering or, in the worst cases, supportive cares become futile, and a decision of LOC leads to death. ERR,
extrarenal replacement; ICU, intensive care unit; LOC, limitation of care; MOF, multiple organ failure. Color images are
available online.
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the flowing plasma, the ESL generates an exclusion zone for
cellular blood components, and contains about 700 mL of
adult plasma. The ESL acts to reduce the filtered protein
concentration, reduces the effective oncotic pressure across
the endothelium, and protects the endothelium against

ROHNS (56, 231, 272). It plays an important role in normal
vascular homeostasis, including flow resistance, transmis-
sion of shear stress, regulation of blood flow, oxygen
transport, capillary barrier function including the glomer-
ular filtration barrier, vascular permeability, creation of an

FIG. 2. Leukocyte and endothelial activation leading to major oxidative stress and endothelial barrier dysfunction.
In health (upper panel), blood flows evenly in the microcirculation applying shear stress evenly on ECs. The ESL covering
the ECs is shown in green to illustrate its protective properties. Leukocytes (L) flow evenly, although rolling leukocytes can
be observed. Red blood cells are flexible. Platelets are not activated. In sepsis (lower panel), ROHNS—such as ONOO-

formed by the simultaneous production of O2
�- and NO�—are released by both activated AdL and ECs. The ESL is severely

damaged and finally disappears. ECs evolve into a procoagulant, adherent, and vasoconstrictor phenotype. Flow becomes
turbulent. From left to right, the evolution of the damaged endothelium is illustrated in the light of sepsis evolution (septic
clock). Cell colors, from orange to red, illustrate increased activation. aMT and highly reactive ROHNS are in red. By
contrast, plasma colors change from yellow to off-white, due to fluid and protein extravasation. Damaged ECs and SMT are
illustrated in brown. Ad, adhesins; AdL, adherent leukocytes; aMT, activated mitochondria; aP, activated platelet; B,
bacteria; B clotting, blood clotting; C3a, C5a, complement system activation; cEC, circulating endothelial cells; DL,
diapedesis leukocyte; EC, endothelial cell; ESL, endothelial surface layer; EVL, extravascular leukocyte; FE, fluid ex-
travasation; ICG, intercellular gap; L, leukocytes; MP, microparticle; NET, neutrophil extracellular traps; NO�, nitric oxide;
O2
�-, superoxide anion; ONOO-, peroxynitrite; PC, para-endothelial cells diapedesis; P. plug, platelet plugs; ROHNS,

reactive oxygen, halogen, and nitrogen species; SMT, swelling mitochondria; T, thrombi; TC, trans-endothelial cells
diapedesis; tf & VIIa, tissue factor and VIIa factor activation. Color images are available online.
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anti-inflammatory and anticoagulation phenotype, inhibition
of leukocyte adhesion, and angiogenesis (56, 100, 229, 232,
272). The ESL is thus intrinsically linked to vascular func-
tionality (272). Tight junctions and adherent junctions,
sealing the paracellular space between cells, join the endo-
thelial cells and, with the ESL, form a double barrier
that limits macromolecule transit (56). These components
are linked to the actin-based cytoskeleton. The basal mem-
brane is coated with pericytes, forming a layer. In this healthy
state, mitochondrial activity is normal and the intracellular
redox potential is low.

In endothelial cells, as in all cells, the antioxidant sele-
noenzymes are ubiquitously present, playing an important
role in redox signaling, protection against ROHNS, and sele-
nium (Se) metabolism in tissues and in the plasma (44, 53,
104, 159, 178, 288). Every selenoprotein contains only one
atom of Se per molecule; with the exception of selenoprotein-P
(see later) (104). In all selenoproteins, the Se is always in-
cluded in the 21st amino acid, selenocysteine (50, 53, 104,
223).

By contrast with other essential trace elements, such as
iron (Fe), copper, or zinc, Se is not present in ionic form, or is
present in small molecules in plasma, most probably because
of the oxidant properties linked to the particular electronic
nature of Se (27, 53, 130, 261, 289). Se is required at the ac-
tive site of all the antioxidant selenoenzymes of the 25 known
selenoprotein genes in humans, as a consequence of the
particular electronic properties of Se (70, 158).

Intracellular selenoproteins, which include GPXs, thior-
edoxin reductases (TXNRDs), and iodothyronine deiodi-
nases, (44, 103, 104, 205), have crucial antioxidant functions,
controlling the intracellular redox potential. These proteins
therefore affect, in a complex manner, many intracellular
metabolic processes (44, 104, 282, 284). The ambivalent
electronic properties of Se account for its complex and highly
energy-consuming intracellular metabolism (see separate
part B article) (50, 53, 70, 130). Se can also replace sulfur in
the amino acid selenomethionine, thus forming a storage pool
of Se, which could be released in case of protein catabolism,
but is not considered to have biological properties (53).

Se and Fe are both required for antioxidant defense and
metabolism in eukaryotic cells, but also in almost all patho-
gens (105, 162, 172, 283, 286). Physiologically, plasma Fe,
which is at physiologic pH in ferric state (Fe3+), is mainly
complexed to transferrin. Each protein has two iron binding
sites (218). Nontransferrin-bound iron (NTBI) comprises
Fe3+ citrate, acetate, and Fe loosely bound to albumin (286,
287). Cells use transferrin receptors to acquire Fe.

The biologically active form of Se is transported in the
plasma from the liver to the tissues within the nine seleno-
cysteine aminoacids of the C terminal part of selenoprotein P,
which has bifunctional activity (53, 104, 126, 249, 261).
Selenoprotein P binds to specific receptors (apolipoprotein E
receptor-2—ApoER2) (53, 126, 260) or megalin (53, 157,
260).

During anaerobic exercise, selenoprotein P also binds to
heparin sulfate proteoglycan, favored by the low pH, and has
antioxidant enzymatic activity through the single seleno-
cysteine of the N terminal part of the protein (42, 52, 53, 85,
132, 193, 220).

Selenoprotein P accounts for about 60% of plasma Se with
marked homogeneity between mammals, especially in terms

of the N terminal portion (118, 121, 127, 176, 201). It has a
short half-life of about 4 h in rats (53). It is glycosylated and
belongs to the heparin binding proteins (307). In physiolog-
ical states, selenoprotein P has the crucial function of trans-
porting Se and regulating the delivery of biologically active
Se from the liver to the tissues (53, 261).

The second plasma selenoprotein, GPX3, contains about
30% of plasma Se, and is synthesized in the kidney; it is
dependent on selenoprotein P intake (128, 262). GPX3 does
not seem to participate in Se transport (53). GPX3 antioxidant
function in plasma is unlikely in physiological conditions
because of the low plasma glutathione (GSH) concentration
(31, 115). Its possible antioxidant function during sepsis is
discussed later. The remaining plasma Se is included in
proteins, notably albumin, within the nonbiologically active
aminoacid, selenomethionine (53).

Microcirculatory Dysfunction and Endothelial Damage
During Sepsis

Large increase in neutrophil activity, redox potential,
and release of immature neutrophils

During sepsis, neutrophil production dramatically increa-
ses to 1012 per day, consisting of mature and immature forms,
even very immature forms, to compensate recruitment and
margination as the first line of cellular defense (190, 247, 268,
294). Neutrophil differentiation includes the myeloblast, pro-
myelocyte, myelocyte, meta-myelocyte, band, and segmen-
ted (mature) neutrophil stages (165). This includes band cells
characterized by a curved but not lobular nucleus (77, 165,
185, 247, 273). The immature forms may be more aggressive,
increasing oxidative stress (185, 190, 294, 311). During the
early phase of sepsis, neutrophils also have an increased life
span in the circulation, from less than a day to up to 5 days.
This is related to delayed apoptosis and further enhances the
innate response (76, 192, 219, 268).

In neutrophil cell signaling in sepsis, the recognition of
PAMPs (e.g., lipopolysaccharide [LPS], bacterial deoxyr-
ibonucleic acid [DNA], .) and DAMPs (e.g., heat-shock
proteins, uric acid, .), and other signaling molecules, results
in stimulation of neutrophils and endothelial cells by kinase
activation, inducing the expression of transcriptional factors,
such as nuclear factor-kappa B (NF-jB), and other factors of
the rel family, central to the acute inflammatory response (1).
Secretory neutrophil vesicles can rapidly transport their con-
tents to the cell surface and can kill pathogens by phagocy-
tosis and degranulation of neutrophil extracellular traps
(NETs) (154, 247). The ability of neutrophils to kill patho-
gens is immediate, nonspecific, and does not depend on
previous exposure (247).

It is important to specify that the redox potential modifies
function of all cells, from bacteria to eukaryotic cells (15,
117, 177, 239). The redox potential depends notably on the
redox environment, the intracellular production of reactive
oxygen species (ROS) by the mitochondria (16, 277), and the
peroxide-associated enzymes linked to cellular redox couples
(49). An increase in the degree of oxidation of the intracel-
lular redox potential modifies cell function from starvation
to multiplication or activation (activation of transcription
factors, protective enzymes, increase in Ca2+), to preapop-
tosis, and finally to cell death by apoptosis, necrosis, or fer-
roptosis (49, 106, 112, 114, 143) (Fig. 3).
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However, the response to an increased oxidation state
varies from cell to cell (134). Immune cells, especially lym-
phocytes, have increased apoptosis, whereas apoptosis is de-
layed in monocytes/macrophages and neutrophils, which may
be related to the particular properties of their mitochondria (76,
247, 285, 309, 326). The increase in intracellular superoxide
anion (O2

�-) concentration, due to extra- and intracellular
production, and the increase in redox state are involved in
neutrophil priming before complete activation (74, 180, 247,
293, 298) (Table 1). The increase in redox potential increases
neutrophil activation by membrane perturbation (293), acti-
vating the arachidonic acid cascade (171), Janus kinase ( JAK)
activation as reported by Brigelius-Flohe, especially with ef-
fects on thiol residues (43, 45, 57, 149, 293), redox activation
of NF-jB (293), nitration of protein tyrosine by peroxynitrite
(ONOO-) (57, 293), and mitochondrial one-electron way
blockage (41).

Extracellular formation of ROHNS, such as hydrogen
peroxide (H2O2) and ONOO-, can induce neutrophil priming
(293). Intracellular myeloperoxidase (MPO) activation is
associated with decreased GSH concentration by hypo-
chlorous acid (HOCl), resulting in irreversible protein thiols
and in GSH oxidation (57, 74) (Table 2), whereas H2O2 de-

toxification by GPXs leads to reversible glutathione disulfide
(GSSG) (57). Irreversible GSH oxidation by HOCl decreases
the antioxidant defense and may contribute to increased re-
dox potential (57). Following phagocytosis and MPO lipid
peroxidation, an increase in protein carbonyl is observed in
the neutrophil cytosol (330).

However, additional enhanced redox potential by in-
creased intracellular H2O2 concentration contributes to re-
duce the inflammatory phenotype (337). The initial stage of
neutrophil apoptosis is linked to changes in the expression of
genes encoding for the redox pathway, including GSH-,
thioredoxin- and heme metabolism (247). Nicotinamide ad-
enine dinucleotide phosphate (NADPH) oxidase (NOX2) and
MPO are considered key players in postphagocytotic events,
such as activation of cell death and NETs (Fig. 4). This is in
accordance with the central impact of redox potential on cell
function (49, 106, 112) (Fig. 3).

When comparing the redox status in resting and oxidative
burst conditions of the human leukemia cell line-60 (HL-60),
a cell line from an acute promyeolocytic leukemia patient,
to that of neutrophils, these cells share similarities (74, 97).
However, they also differ. For example, in resting and
oxidative burst states, recycling of peroxiredoxins, thiol

FIG. 3. Transposition of cellular impact of increased redox potential from cancer cells to leukocytes, particularly
neutrophils. Increased redox potential is a central event in cell signaling and transformation in cancer. Similarly, during
sepsis, increased intracellular O2

�- concentration—due to extra- or intracellular production—is involved in activation of
neutrophils and other leukocytes. Cell colors, from orange to red, illustrate increased activation. Damaged ECs and swelling
mitochondria (SMT) are illustrated in brown. During sepsis (Fig. 2), neutrophils (i) have an expanded lifetime; (ii) increase
their secretion of ROHNS, especially O2

�-, leading to ONOO- and HOCl formation (Fig. 4); and (iii) express adhesins.
Band immature neutrophils are released from the bone marrow. MPs are also released. NETs are an alternative pathway
distinct from apoptosis or necrosis, and participate in bactericidal function. The redox potential values of -240 to -150 Ehc/mV
are purely indicative (see Buettner et al. and other related articles). Ehc is the standard cell potential according to the Nernst
reaction adapted to the GSH/GSSG ratio in millivolts at 37�C, pH 7.2. GSH, glutathione; GSSG, glutathione disulfide;
HOCl, hypochlorous acid. Color images are available online.
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FIG. 4. ROHNS production over time in sepsis and their consequences on endothelial damage. In the upper part of
the figure, the illustrated leukocyte is a band neutrophil (immature form produced by activated bone marrow). Cell colors,
from orange to red, illustrate increased activation. Damaged mitochondria (sMT) are in brown. Neutrophils can generate the
whole spectrum of ROHNS required for the innate response (Tables 1 and 2) (334). During sepsis, oxygen consumption of
neutrophils can increase up to 100 times, in about 6 h. NOX-2 and MPO play a crucial role in ROHNS generation. Along
with antimicrobial and hydrolytic proteins, ROHNS are secreted in leukocyte phagosomes—illustrated with a dying bacteria
(B)—but also in the blood with production of ROHNS such as superoxide anion (O2

�-), H2O2 leading to the bactericidal
HOCl by MPO, hydroxyl radical (�OH) in the presence of ferrous (Fe++) or copper (Cu+) cations or H2O according to the
available antioxidant defenses (such as reduced glutathione and functioning GPX). Binding of activated ECs and neutrophils
contributes to the formation of bactericidal ONOO- due to simultaneous nanomolar (nM) NO� concentration and O2

�-.
However, ROHNS are a double-edge sword. MT (lower-left corner) share many features with bacteria. In ECs, activated
MT are particularly targeted by ROHNS (lower-right corner). Within hours, factor I and later factor IV are reversibly
blocked by NO� leading to increased O2

�- production. Finally, ONOO- nonreversibly blocks complex I. This results in
major suffering of mitochondria (sMT) with opening of ionic pores (S-S), loss of pH gradient, and swelling. ATP production
dramatically decreases and cytochrome c is released leading to apoptosis of ECs. In addition (upper part of the figure), ATP
is degraded during ischemia/reperfusion into inosine (I), leading to HPX, X, and U.a and O2

�- release by oxidases, such as
XO. Other mechanisms also contribute to ROHNS production. ATP, adenosine triphosphate; GPX, glutathione peroxidase;
H2O2, hydrogen peroxide; HPX, hypoxanthine; i-NOS (NOS-2), inducible endothelial nitric oxide synthase; MT, mito-
chondria; MPO, myeloperoxidase; NOX, NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase); SOD,
superoxide dismutase; c-NOS (NOS 3), constitutive NOS; TJ, tight junction; X, xanthine; XO, xanthine oxidase; U.a, uric
acid. Color images are available online.
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peroxidases with a key role in antioxidant defense and redox
signaling, may be deficient in neutrophils compared with
HL-60 cells (74).

Neutrophils are also implicated in many of the numerous
extracellular cascades in the early phase of sepsis, such as the
cytokine storm, coagulation activation, microparticle release,
and complement activation, among others (90, 133, 237,
318). Another important cellular cross talk is the interaction
of neutrophils with other immune cells, such as activation of
natural killer (NK) cells, leading to (219) a self-amplifying
loop of inflammation with dendritic cells, while inhibiting
the proliferation of T lymphocytes (154, 192). Neutrophil/
macrophage interactions are important in both the initiation
and the resolution phases of sepsis, especially in the process
of phagocytosis-induced cell death of neutrophils by mac-
rophages as underlined by Kennedy and DeLeo (146, 192,
285). Finally, neutrophils interact with platelets, in particu-
lar, through microparticles displaying the platelet activat-
ing factor (PAF) (192). Generation of NETs, which is an
effective mechanism for bacterial trapping, is an additional
deleterious neutrophil/endothelium interaction (78). Together,
these mechanisms result in activation and binding of neutrophils
and endothelial cells (6, 11, 79, 94, 129, 133, 137, 140, 142, 150,
154, 165, 168, 192, 203, 209, 225, 236, 256, 268, 279, 338).

Hyperactivation and interaction between endothelium
and leukocytes, and ROHNS formation

In sepsis, the endothelium receives information from me-
diators of inflammation, including cytokines, growth factors,
chemokines, complement and coagulation factors, ROHNS
(including oxidized lipid), and circulating cells (leukocytes,
especially neutrophils, but also RBCs and platelets). Endo-
thelial cells in return alter the vasomotor tone, plasticity,
and fluidity (230, 231), and interact with circulating cells,
especially neutrophils. In addition, sepsis-induced microcir-
culatory alterations are characterized by heterogeneous
abnormalities in blood flow and pathological shunt, in which
the different degree of expression of inducible nitric oxide
synthase (iNOS) and nitric oxide (NO�) production in dif-
ferent organ beds plays an important role in the ischemia/
reperfusion process (72, 73, 139, 209, 305).

Dramatic increase in ROHNS production

ROHNS play a major role in the early phase of sepsis
(Tables 1 and 2) (Figs. 2 and 4) (23, 113, 114, 188, 271, 334).
A hyperoxidation redox state in sepsis was first reported as a
major part of the innate response in 1990 by Novelli and
colleagues and confirmed later by others (96, 202, 204). This
hyperoxidation can be related to three main mechanisms
(5, 92, 204, 217, 250): (i) the respiratory burst from hyper-
activated leukocytes and concomitant activation of the en-
dothelium, which is probably the most important early event
(81, 113, 119, 136, 152, 180, 192, 204, 300, 329); (ii) the
onset of ischemia/reperfusion (204, 250); and (iii) blockage
of the mitochondrial respiratory chain (39, 40, 98, 119, 274).

In the early phase of sepsis, neutrophil activation induces
an abrupt increase in oxygen consumption, termed the re-
spiratory burst (247, 264, 334). ROHNS are produced by
activated leukocytes (especially O2

�- and halogen species)
and by endothelial cells (especially NO�). Neutrophils or
macrophages via NOX2 and MPO represent most of the

protein oxidation and lipid-derived free radicals in the very
early 6-h phase following LPS instillation (243, 253). (Figs. 2
and 4) (Tables 1 and 2). ROHNS are ambivalent molecules
that are major antimicrobial agents, and are also toxic to en-
dothelial cells (23, 113, 114, 188, 227, 236, 270, 271, 312, 331,
334). Among the ROHNS, ONOO- should be highlighted as it
can cross membranes, and lead to the formation of extremely
reactive species. ONOO- can be split into hydroxyl (�OH) and
nitrogen dioxide (NO2�) radicals when protonated or to NO2�
and carbonate radical (CO3�) when reacting with carbon di-
oxide (CO2) (40, 80, 113, 141, 235, 297, 334). Superoxide
anion (O2

�-) rapidly dismutates H2O2, activating MPO or
producing �OH via Fe++

- or copper (Cu+)-catalyzed Fenton/
Haber-Weiss reactions (144, 244, 296, 332). In addition,
ONOO- enhances the release of NETs, which further increase
the oxidative stress (183) (Figs. 2 and 3).

Adhesion of activated leukocytes to the endothelium is
important for ROHNS production in plasma at the edge of
the vascular luminal surface in the microcirculation (122).
The simultaneous production of O2

�- and NO� at this location
leads rapidly, in less than 30 min in vitro, to the formation
of ONOO- (46, 141, 297). Oxygen consumption by hyper-
activated leukocytes increases by a factor of 20%–100%,
leading to a marked release of O2

�- in phagosomes and in the
plasma (141, 238, 265, 266, 333).

Release of NO� by endothelial cells increases from a pi-
comolar range by constitutive (or endothelial) NOS (cNOS)
to a nanomolar range from iNOS (151, 296). The gradient of
NO� concentration, decreasing exponentially with distance
from the cell, favors a spatially increased concentration of
ONOO- near the endothelial vascular membrane (46, 245,
290, 297). This process targets the ESL, endothelial cells,
especially their mitochondria, and multiple other targets (46,
138, 186, 196, 272, 278, 297) (Tables 1 and 2) (Figs. 2 and 4).
HOCl, initially synthesized in the phagosome via MPO, can
be released or synthesized in the plasma, despite being
buffered by hypothiocyanite (22, 116, 141, 333) (Table 2 and
Fig. 4). In addition, multiple positive redox loops increase
ROHNS production in the acute phase of sepsis, an unnatural,
dysregulated, or chaotic immune response, made possible by
supportive care (122, 151, 296) (Fig. 1).

In the early phase of sepsis, there is also a complex alter-
ation of the microcirculation, with closing and reopening of
small vessels and opening of shunts leading to ischemia/
reperfusion and NOS activation. Activated macrophages and
ischemia/reperfusion processes through xanthine oxidase (XO)
and cyclooxygenase participate in the plasma increase in O2

�-

and H2O2 concentrations (120, 224, 242, 339) (Table 1), as do
NOX2, mitochondria, and NO� by iNOS (69, 109, 115, 227,
243). These processes are an important part of ROHNS pro-
duction and interact with neutrophil activation (109, 180).

Finally, in the early phase of sepsis, inside the endothelial
cells, and later within tissues, mitochondrial dysfunction—by
reversible blocking by NO� of complex I and IV and later
irreversible blocking of complex I by ONOO-—increases the
production of O2

�- (40, 213, 235). In turn, mitochondrial
isoforms of NOS further increase NO� synthesis within cells
(101, 235). NO� also reacts with heme to form nitrite (NO2

-)
and nitrate (NO3

-) (151) and may react with O2
�- to form

ONOO- within the mitochondria (235) (Tables 1 and 2).
Damage to mitochondria is discussed later as part of endo-
thelial cell dysfunction.
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Other radicals, oxidants, and secondary species are pro-
duced, such as singlet oxygen 1O2, alkyl peroxynitrites
RONOO-, alkyl radicals RO� in reaction with lipids (espe-
cially unsaturated), and many other reactive molecules as
detailed by Halliwell (33, 68, 88, 113, 160, 216, 226, 243,
312) (Tables 1 and 2).

Decrease in Plasma Antioxidant Defense
by Selenoenzymes

In parallel to the increase in ROHNS production, there is
increased nonspecific adhesion of selenoprotein P to the en-
dothelium via its heparin binding domain (7, 18, 52, 124,
157), especially to the ESL, which contains heparin sulfates
(17, 18). This binding is favored by acidic pH (42, 52, 53,
132); it is also sensitive to ionic strength (18).

In addition, multiple mechanisms support a down-
regulation in the synthesis and excretion of selenoprotein P
by the liver during the acute phase of sepsis, including (i)
negative regulation by inflammatory cytokines, especially
interleukin (IL)-1b (83, 201); (ii) hypoxic conditions favor-
ing the synthesis of phospholipid hydroperoxide glutathione
peroxidase (GPX4) instead of selenoprotein P (30); (iii) de-
creased selenoprotein P excretion and selenoprotein P mes-
senger ribonucleic acid (mRNA) in an LPS mouse model
(240); (iv) decreased hepatic transcription and protein con-
tent of factors required for Se insertion into selenoproteins
(269); and finally, (v) liver mitochondrial dysfunction in
sepsis may impair selenoprotein synthesis, which is highly
energy requiring, especially for synthesis of selenoprotein P,
which contains 10 selenocysteine residues (39, 41, 119, 136,
184, 226, 243, 246, 313). This counterregulation of seleno-
protein P synthesis and excretion will be further developed in
a separate part B article.

As a result of increased binding, downregulated liver
excretion, and fluid extravasation, plasma Se and selenopro-
tein P concentrations decrease by up to 75% in a few hours in
mice, rat, and sheep septic models. The more severe the
model, the more rapid is this decrease (182, 240, 252, 291,
324) (Fig. 5). In a resuscitated peritonitis sheep model, a
halving of plasma Se concentration was observed 4 h after the
onset of peritonitis. On admission to the ICU, a profound
decrease in plasma Se and selenoprotein P concentrations is
observed in patients with sepsis and septic shock (32, 91, 93,
131, 251).

In the early phase of sepsis, this marked decrease in plasma
selenoprotein P concentration limits the availability of Se to
pathogens, but also decreases plasma antioxidant defense,
especially at the ESL level; the N-terminal part of seleno-
protein P has high antioxidant enzymatic activity (53, 248,
299), especially against ONOO- (19, 20, 42, 51, 54, 201, 288,
299, 303).

Later, GPX3, whose synthesis depends on selenoprotein P,
may exert its antioxidant action after specific binding to
basement membranes or the extracellular matrix (ECM).
According to the double barrier hypothesis, this effect may
play an important role in limiting macromolecule transit and
fluid extravasation (55, 56, 254) (Fig. 2).

Involvement of Iron in ROHNS Production

A parallel could be made between altered Se and Fe me-
tabolism during sepsis. As previously indicated, bacteria, with

few exceptions, require Fe for growth and proliferation (162,
200, 286). However, in the presence of O2

�- and H2O2, Fe
catalyzes Fenton/Haber-Weiss reactions leading to the pro-
duction of the extremely reactive �OH (Table 1) (144, 332).
Most of the body’s Fe content (4–5 g) is incorporated into he-
moglobin (Hb) (2.5 g) (162, 221); the remainder is in other
hemoproteins (such as myoglobin [Mb]), iron/sulfur (Fe-S),
and Fe binding and storage proteins (218). Within the RBC, Hb
is protected against O2

�- by antioxidant enzymes, such as SOD,
and against H2O2 by catalase (CAT) and intracellular cytosolic
glutathione peroxidase (GPX1) (28, 99). Auto-oxidation of Hb,
or oxidation by plasma nitrite, may release H2O2 or diffusible
protein radicals (28, 147, 175).

Nevertheless, in the acute phase of sepsis, the main impact
of ROHNS, especially ONOO-, on RBCs is oxidation of their
membrane and their cytoplasmic proteins, including the cy-
toskeleton (175, 206) (Table 2). This oxidation decreases
RBC deformability, increases RBC aggregation (Fig. 2) (28,
206, 292), increases blood viscosity, and alters tissue oxy-
genation (28, 292). In addition, oxidized RBCs may induce
ROHNS formation by macrophages and neutrophils as part
of multiple positive loops (206). Macrophages also play a
pivotal role in erythrophagocytosis (162). Inflammatory
anemia occurs at a later stage of sepsis (28, 37, 221, 295), but
anemia resulting from previous Fe deficiency, blood loss,
hemodilution, or frequent blood sampling may alter tissue
oxygenation (37, 221).

In the acute phase of sepsis, the circulating ionic form of
Fe is decreased by hepatocyte expression of hepcidin, which
(i) increases H-ferritin (Fe3+ storage in macrophage); (ii)
downregulates Fe efflux; (iii) increases secretion of cerulo-
plasmin, a copper ferroxidase; and (iv) decreases transferrin
concentration (162, 218). Lactoferrin also chaperones Fe in
neutrophils (162, 218). This occurs in less than 3–6 h in sepsis
models (162, 221), inducing hypoferremia and low NTBI
(306).

In septic patients admitted to the ICU, low serum Fe,
transferrin concentration, and transferrin saturation, and
high ferritin concentrations are observed (37, 221). In sepsis
models, hepcidin agonists have been shown to decrease mor-
tality, and intravenous Fe administration increased mortality
(218, 286, 287, 295). In septic ICU patients, a higher con-
centration of catalytic Fe (similar to NTBI) and a lower
concentration of hepcidin have been associated with higher
mortality rates (163). On the contrary, small quantities of
Fe2+ can serve as a catalyst in the phagolysosome for Fenton/
Haber-Weiss reactions (340). In neutrophils, lactoferrin may
also enhance such a reaction (26). Catalytic Fe may con-
tribute to positive inflammatory loops (197).

Cell-free Hb or Mb is released in the plasma during he-
molysis, hemorrhage, and rhabdomyolysis (cell-free Mb), the
latter being implicated in renal toxicity (267). These com-
pounds induce the expression of (i) acute-phase proteins
hemopexin and haptoglobin, which bind to heme and Hb;
and (ii) heme oxygenase-1 (HO-1), which catabolizes
hemopexin-bound heme by the hepatocytes (84, 161, 162).
However, this clearance mechanism can be overwhelmed
(84). During sepsis, hemolysis has been suspected to be the
main source of catalytic Fe, free heme, and free Hb, which in
turn further increase hemolysis (84, 161, 163). These prod-
ucts increase the severity of sepsis in mice (161, 163, 194,
267) and also have the characteristics of a ‘‘danger signal,’’
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amplifying the innate response. Nevertheless, their impor-
tance in oxidative stress during the acute phase of sepsis is
debated (84). Hemolysis is certainly an important mechanism
in acute malaria and this may also be the case in infections by
pathogens secreting hemolysins, such as Staphylococcus
species (spp.), Stretococcus spp., and Clostridium spp., or in
case of disseminated intravascular coagulation (84, 200).

Damage of the First Barrier, the ESL

Damage of the ESL plays a major role in sepsis pathophys-
iology, modifying hematocrit, flow resistance, permeability,
coagulation, leukocyte adhesion, and the ability to bind a
variety of proteins, including selenoprotein P, to heparin
sulfate (17, 18, 56, 100, 138, 245, 308). The damage induces
positive amplification loops, through (i) destruction of the
glycosaminoglycan chain and unsulfated hyaluronic acid
and release of hyaluronic acid fragments (82, 107, 272); (ii)
cleavage of heparan sulfate from proteoglycans, themselves

cleaved from endothelial cells (308); and (iii) loss of the
heparan sulfate-bound extracellular SOD—directly or through
activation of heparanase—that further increases oxidative
stress (272).

As illustrated in Figure 2 (lower panel) and Figure 4, in the
early phase of sepsis, ROHNS are central players in the de-
struction of the ESL, which is extremely sensitive to free rad-
icals and oxidants (11, 29, 38, 82, 107, 186, 210, 245, 272)
(Tables 1 and 2). ONOO- and HOCl play an important role in
ESL damage and enzyme activation (38, 272) (Fig. 4). These
oxidant molecules activate matrix metalloproteinase, a zinc-
dependent endopeptidase, and heparanase (272). The damage to
the ESL, the first line barrier of the blood/tissue interface, fur-
ther exposes endothelial cells (Fig. 2). Adhesion molecules are
unmasked (272). Following rupture of the tight junctions, ac-
cording to the double barrier hypothesis, this leads to fluid ex-
travasation and protein-rich leakage (Fig. 2) (11, 56, 165, 272).

In animal models and human volunteers, LPS adminis-
tration results in reduction in the depth of the ESL and

FIG. 5. Decrease in plasma Se and selenoprotein-P levels in animal sepsis and burn models and corresponding low
levels on admission to the ICU in patients with sepsis or septic shock. (A) In all animal models, plasma Se levels
decrease rapidly. The values are expressed as a percentage of the initial level (see respective publications below). Although
rats and humans share a similar Se body content (Table 2), reference plasma Se and selenoprotein P (SELENOP) levels are
similar in rats and mice, about six times higher than in humans, and about seven times higher than in sheep. Results are
given as mean – SD. The corresponding studies are as follows: (i) nonlethal LPS rat model ‘‘Rat (LPS 10 mg/kg)’’ (n = 5 at
each time point) (182); (ii) ‘‘Mice (LPS sublethal)’’ (LPS 100 lg/mouse; n = 8 at each time point) with similar decrease in
Se and selenoprotein P—in addition selenoprotein P mRNA decreased from onset to 6 h—(240); (iii) ‘‘Sheep (lethal,
peritonitis)’’ fluid resuscitated and ventilated lethal model (18 h). Significant decrease in plasma Se from 3 h preceding the
onset of septic shock (H10) and the increase in lactate (12 h; n = 21) (291, 324); in a nonexudative burn rat model ‘‘Rat 20%
TBSA’’ and ‘‘Rat 40% TBSA’’ the decrease in plasma Se levels at 24 h was linked to the size of the TBSA (252). (B) On
admission to the ICU, low Se and selenoprotein P levels are observed in septic (*) and septic shock (**) patients expressed
as a percentage of the reference value. Results are given as medians with 25th and 75th percentiles as the top and bottom of
the box and capped lines indicating the 10th to the 90th percentile, or median and interquartile range. The corresponding
studies are (B.a) (93), (B.b) (251), (B.c) (32). For the Bloos et al. study performed in Germany (32), the reference plasma Se
value from the German study by Sakr et al. was chosen (251). For plasma selenoprotein P, the corresponding studies are as
follows: (B.d) Hollenbach et al. (131), (B.e) Forceville et al. (91). LPS, lipopolysaccharide; mRNA, messenger ribonucleic
acid; post-op, postoperative patients; SD, standard deviation; Se, selenium; TBSA, total body surface area. Color images are
available online.
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glycocalyx shedding within hours, with a similar kinetic to
that of the decrease in selenoprotein P concentrations (56, 82,
182, 240, 291, 308, 324). This effect may be initiated within
minutes during the ischemia/reperfusion process (245) and
coincided with vascular dysfunction in a rat LPS study (186).
As a consequence, numerous glycocalyx degradation prod-
ucts are under investigation as early sepsis markers (56, 308).

Damage may vary from one organ’s circulation to another.
As an illustration, the hippocampal region, which physio-
logically has a thicker glycocalyx than the cortex, seems to be
especially susceptible to damage, altering the blood/brain
barrier and making it one of the first organs to suffer in sepsis,
engendering long-term sequelae (56). Similarly, early gly-
cocalyx damage on the thicker glycocalyx present in the
pulmonary vasculature compared with that in the systemic
vasculature may be an important first step toward acute re-
spiratory distress syndrome (56).

Damage to Endothelial Cells with Loss of the Second
Barrier and Mitochondrial Dysfunction

During sepsis, there is a change in endothelial properties
from a noncoagulant, nonadherent, vasodilator phenotype to
a procoagulant, adherent, vasoconstrictor phenotype (6, 137,
139, 164, 167, 209, 301, 329). Under the expression of ad-
hesins (P- and E-selectins; vascular cell adhesion molecule
[VCAM]; intercellular adhesion molecule) (322), slow roll-
ing of leukocytes is observed, leading to leukocyte arrest and
adhesion to the endothelial surface, leukocyte crawling, and
diapedesis. Diapedesis may be of trans-endothelial cells or
para-endothelial cells. Extravascular leukocytes are observed
beyond the ECM. Phagocytosis can be observed with intra-
cellular bacteria. Degranulation by leukocytes can also con-
tribute to killing of bacteria.

Breakdown of the second endothelial barrier, after ESL
degradation, is due to physical endothelial disruption with
breakdown of the actin cytoskeleton, and rupture of the tight
junction and the basal membrane, resulting in opening of in-
tercellular gaps. There is increased microvascular permeability
with fluid extravasation and retraction of endothelial cells.

Flow is reduced, decreasing the shear stress. The endo-
thelial cell membrane becomes unstable with formation of
microparticles, which originate from endothelial cells and
also platelets and leukocytes. These particles are mainly
procoagulant, providing an increased area of tissue factor
exposure and increasing activation of factor VIIa. They in-
duce the expression of enzymes related to inflammation and
ROHNS, increase cytokines and exposure of adhesion mol-
ecules, and participate in the immunosuppression (5, 6, 11,
17, 36, 58, 142, 164, 179, 226, 234).

Abnormal coagulation leads to activated platelet aggre-
gation, fibrin deposition, and thrombus (e.g., exposure of
tissue factor, activation of the complement system C3a, C5a,
and b, and von Willebrand factor.), which induce ischemia/
reperfusion and ROHNS formation (O2

�-) through intermit-
tent flow. There is a formation of platelet plugs, including
microparticles, which trap bacteria. Blood clotting and
thrombi are also observed, favored by impaired anticoagulant
pathways and fibrinolysis. NET—DNA structures released
with adherent bactericidal proteins, such as MPO, partici-
pates in the trapping and killing of bacteria and in endothelial
damage (78).

ROHNS and especially ONOO- have a specific toxicity
toward endothelial cell mitochondria (Fig. 4, lower part).
(41). This disruption of the mitochondrial respiratory chain is
probably due to the structural analogy between mitochondria
and bacteria, as mitochondria evolved from captured bacteria
(75). These damaged mitochondria swell, which increases
ROHNS formation (O2

�-) (2, 25, 39, 41, 67, 119, 136, 233,
246, 274, 275, 323, 336) (Fig. 4, lower part). Together with
the endothelial wall damage, mitochondrial damage in endo-
thelial cells and later in tissues, especially the liver, is rec-
ognized as a key factor in the pathophysiology of the early
phase of sepsis (39, 41, 46, 119, 136, 184, 196, 226, 243, 246,
313). ROHNS damage aerobic and anaerobic microorgan-
isms that are killed by exposure to oxygen, but also eu-
karyotic cells, especially mitochondria (75).

Mitochondria in eukaryotic cells are protected against
oxygen toxicity by a low PO2 tension of around 0.5 mmHg.
This allows eukaryotic cells to use oxygen for energy
production (i.e., the mitochondrial respiratory chain) and
metabolic transformation (i.e., by cytochrome P450). Mi-
tochondria have a key role in energy production, supplying
80%–90% of the adenosine triphosphate (ATP) required by
mammalian cells (115, 243). They are the source of most
cellular free radical production in physiological conditions
(277). However, they are also organelles that are sensitive to
oxidative damage. The mitochondrial damage checkpoint
induces apoptosis, as demonstrated in aging and cancer (277).
In addition, ferroptosis or pyroptotic cell death was recently
proposed as a mechanism in ischemia/reperfusion and sepsis
(143), involving lipoperoxidation membrane damage that
may evolve with oxidation of the inner membrane space of
mitochondria in case of ferroptosis, and caspase 11 activation
for pyroptosis. These effects seem to be related to over-
whelming antioxidant defense by the cell membrane and
mitochondrial membrane selenoenzyme GPX4, requiring
reduced GSH (64, 143, 156). Acute mitochondrial damage
induces a decrease in ATP production, threatening cell via-
bility (46, 243) (Fig. 4, lower part).

Blockage of the mitochondrial respiratory chain induces
an increase in O2

�-, but also in ONOO-, a decrease in energy
production and membrane potential, and mitochondrial
damage inducing apoptosis (39, 243, 246, 313) (Fig. 4, lower
part). Mitochondrial ROS production, especially in the lung,
is particularly enhanced when sepsis appears on a background
of chronic ethanol abuse (47). Mitochondrial impairment is
more likely to participate in functional endoplasmic reticulum
(ER) stress, as shown in the LPS cellular model, inducing a
proapoptotic state (155). The ER is a structure that is highly
sensitive to increased cellular redox state and is involved in
sepsis lung damage (86, 155). Tumor necrosis factor-alpha
(TNF-a) increases ROS production via mitochondria, espe-
cially in tumor cells (67). In human endothelial cells, TNF-a
induced rapid mitochondrial ROS production at the ubisemi-
quinone site; the ceramide-dependent signaling pathway was
implicated (67). H2O2 is involved in NF-jB upregulation of
iNOS, creating a positive loop in endothelial cells (243). NO�

may also activate the ER (86).
The increased redox potential in the endothelium is asso-

ciated with a decrease in reduced GSH. This reduction is
partially related to mitochondrial dysfunction, which in-
creases the oxidative stress and activates cell apoptosis (11,
135, 136, 142, 243, 331). Endothelial cell metabolism is
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markedly modified, with resistance to insulin (302, 310).
Microparticles are released from the damaged and activated
endothelial membrane, as well as from other cells, and play
an important role in vascular redox signaling and endothelial
dysfunction (189, 236, 319). All these phenomena increase
platelet as well as leukocyte adhesion to endothelial cells,
which in turn increases the endothelial dysfunction, as al-
ready discussed (Figs. 2 and 4).

At a later stage, which was achieved in 2–4 h in a murine
cecal ligation and puncture (CLP)-septic model, endothe-
lial cells directly cause apoptosis by a caspase-dependent
mechanism (102), or necrosis with the release of DAMPs,
particularly mitochondrial DAMPs (192, 328). This alteration
of the endothelium is linked to the hyperactivation of
neutrophils (72, 133, 137, 165, 192) (Figs. 2–4).

Sepsis is a time-sensitive condition ideally requiring pre-
vention of irreversible endothelial damage (66, 170). It is also
an unnatural situation, made possible by supportive care,
leading to a dysregulated innate response or a state of chaos
(Fig. 1).

The ubiquitous intracellular antioxidant selenoenzymes,
GPX1, GPX4, and TXNRDs (cytosolic TXNRD1 and mito-
chondrial TXNRD2), play a key role in the antioxidant
defense of endothelial cells. If their antioxidant capacity is
exceeded, there is increased redox potential, complex mod-
ifications of cell functioning, and cell damage (10, 42, 44,
117, 152, 178). In the acute phase of sepsis, intake of a bio-
logically active form of Se by endothelial cells is reduced as a
result of the previously mentioned downregulation of liver
selenoprotein P synthesis. In addition, even if a biologically
active form of Se is available, synthesis of selenoenzymes is
an energy-intense process, and energy production may be
impaired in situations of mitochondrial dysfunction (50, 53,
70, 130). Moreover, excess oxidative stress and hypoxia may
reduce selenoenzyme synthesis (30, 214, 259). Finally,
endothelial apoptosis and necrosis are observed as well as
circulating endothelial cells. All these phenomena contribute
to the dysfunction of the endothelial barrier. This dysfunction
takes hours to occur in CLP models, leading to SHINE (6, 11,
79, 94, 129, 133, 137, 140, 142, 150, 154, 165, 168, 192, 203,
209, 225, 236, 256, 268, 279, 338).

Consequences and Deleterious Effects of ROHNS
in the Early Phase of Sepsis

Endothelial damage (SHINE) is the first step to MOF and
death (63, 72) (Fig. 1) and occurs within hours of the start
of sepsis (5, 69, 71, 94, 125, 154, 165, 181, 192, 219, 256). As
previously highlighted, the marked decrease in plasma Se and
selenoproteins, specifically selenoprotein P, is an indirect
argument in favor of a major deleterious effect of ROHNS
(91, 93, 131) (Fig. 5). SHINE is a first step to sepsis-related
organ dysfunction, characterized by a profound modification
of tissue cell metabolism with a low degree of apoptosis,
despite major organ dysfunction or failure requiring organ
support in the ICU to survive. It is also associated with sec-
ondary immunosuppression that begins simultaneously with
hyperinflammation (dysregulated innate and host response)
(4, 6, 21, 34, 63, 133, 142, 209, 275) (Fig. 1). Organ dys-
function is related to the severity of the early endothelial
damage, coupled with immunosuppression due to immune
cell apoptosis (4, 63, 72, 94, 142, 174, 209, 210, 236, 243),

and, in surviving patients, these two factors are most proba-
bly responsible for the long-term consequences of sepsis
(133, 228).

Considering the importance of the increased redox po-
tential and activity of leukocytes, and especially neutrophils,
to ROHNS production and endothelial damage, a therapeutic
intervention would conceptually need to be very potent and
active at multiple sites to be effective. One target of such an
intervention could be to reduce the hyperactivity of leuko-
cytes, especially neutrophils, while protecting the endothe-
lium. Such an approach could potentially be achieved using a
combination of oxidant and antioxidant selenocompounds
and might enable a major part of the complexity and hetero-
geneity of sepsis to be bypassed. We will develop this pos-
sibility further in a separate part B article.

Conclusion

In summary, endothelial damage occurs rapidly in the first
few hours following the onset of sepsis, largely due to the
extensive interaction between activated leukocytes and the
endothelium. Dysfunction of the ESL, especially as a result
of ONOO- and HOCl toxicity, is the first step of this damage.
The role of mitochondrial dysfunction, especially as a result
of ONOO- toxicity, should also be stressed. Concomitantly,
there is a major decrease in plasma concentrations of sele-
noprotein P, a protein with antioxidant enzymatic func-
tions, especially against ONOO-. In this early phase of sepsis,
which can be considered inducing SHINE, ROHNS play a
major role. Consequently, the hyperactivated leukocytes with
myelemia and release of immature cell forms could be con-
sidered an acute, transient, and benign hematological tumor.

With development of supportive care, patients can sur-
vive in a state of dysregulated and overwhelming host
response. This response involves many overlapping cas-
cades, with positive loops and interaction of pro- and anti-
inflammatory processes (dysregulated innate and host re-
sponse). The result could even be likened to a state of chaos,
an unstable condition falling between a stable situation
controlled by homeostasis and a stable situation provided by
supportive care, including the treatment of opportunistic
infections.

Together, sepsis must be considered a time-sensitive
acute condition requiring early identification and efficient
treatment before endothelial damage becomes established
and immunosuppression occurs. Ideally, such a treatment
would reduce leukocyte hyperactivity and overwhelming
ROHNS production by neutrophils, while protecting the
endothelium.
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aMT¼ activated mitochondria
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B clotting¼ blood clotting
C3a, C5a¼ complement system activation
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CLP¼ cecal ligation and puncture

c-NOS (NOS 3)¼ constitutive NOS
COX¼ cyclooxygenase

DAMPS¼ danger-associated molecular patterns
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ECM¼ extracellular matrix
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GPX1¼ intracellular cytosolic GPX
GPX3¼ plasma glutathione peroxidase
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L¼ leukocytes
LOC¼ limitation of care
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SMT¼ swelling mitochondria
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TNF-a¼ tumor necrosis factor-alpha

TXNRDs¼ thioredoxin reductases (cytosolic
TXNRD1, mitochondrial TXNRD2,
and testis TXNRD3)

RBC¼ red blood cell
ROHNS¼ reactive oxygen, halogen, and nitrogen

species
ROS¼ reactive oxygen species

Se¼ selenium
SOD¼ superoxide dismutase

TC para¼ trans-endothelial cells diapedesis
tf & VIIa¼ tissue factor and VIIa factor activation

TLRs¼ toll-like receptors
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XO¼ xanthine oxidase

U.a¼ uric acid
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