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Abstract

Objectives: Seizures and seizure-like electroencephalography (EEG) patterns, collectively 

referred to as “ictal interictal injury continuum” (IIIC) patterns, are commonly encountered in 

critically ill patients. Automated detection is important for patient care and to enable research. 

However, training accurate detectors requires a large labeled dataset. Active Learning (AL) may 

help select informative examples to label, but the optimal AL approach remains unclear.

Methods: We assembled >200,000 h of EEG from 1,454 hospitalized patients. From these, we 

collected 9,808 labeled and 120,000 unlabeled 10-second EEG segments. Labels included 6 IIIC 

patterns. In each AL iteration, a Dense-Net Convolutional Neural Network (CNN) learned vector 

representations for EEG segments using available labels, which were used to create a 2D 

embedding map. Nearest-neighbor label spreading within the embedding map was used to create 

additional pseudo-labeled data. A second Dense-Net was trained using real- and pseudo-labels. We 

evaluated several strategies for selecting candidate points for experts to label next. Finally, we 

compared two methods for class balancing within queries: standard balanced-based querying 

(SBBQ), and high confidence spread-based balanced querying (HCSBBQ).

Results: Our results show: 1) Label spreading increased convergence speed for AL. 2) All query 

criteria produced similar results to random sampling. 3) HCSBBQ query balancing performed 

best. Using label spreading and HCSBBQ query balancing, we were able to train models 

approaching expert-level performance across all pattern categories after obtaining ~7000 expert 

labels.

Conclusion: Our results provide guidance regarding the use of AL to efficiently label large EEG 

datasets in critically ill patients.
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1. Introduction

EEG monitoring in critical care has grown dramatically over the past 20 years with the 

discovery that a large proportion of ICU patients suffer from potentially harmful subclinical 

seizures and seizure-like electrical events, often collectively called “ictal-interictal-injury 

continuum” (IIIC) patterns, detectable only by electroencephalography (EEG) (Zafar et al., 

2020; Koren et al., 2016). Besides seizures, clinically-important IIIC patterns include 

seizure-like patterns designated Lateralized Periodic Discharges (LPDs), Generalized 

Periodic Discharges (GPDs), Lateralized Rhythmic Delta Activity (LRDA) and Generalized 

Rhythmic Delta Activity (GRDA) (Newey et al., 2017; Rubinos et al., 2018; Sivaraju and 

Gilmore, 2016). The growth in ICU EEG monitoring has created a clinical need for more 

rapid and accurate EEG interpretation. IIIC patterns have the potential to damage the brain 

and contribute to permanent neurologic disability, yet detection by visual review is typically 
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not possible to conduct in real time. Automated identification of these patterns would allow 

targeted treatment (and prevention of iatrogenically harmful treatments where they were not 

warranted). There is a critical unmet need for automated EEG monitoring for IIIC patterns 

(Bajaj and Pachori, 2011; Pohlmann-Eden and Newton, 2008; Temko et al., 2011).

Prior work on seizure and IIIC labeling and classification includes (Jing et al., 2018), in 

which our group applied unsupervised machine learning methods to achieve efficient pre-

clustering of NCS and IIIC patterns in prolonged EEG recordings into a small number of 

clusters; the present work is an outgrowth of this approach. Others have explored deep 

learning approaches for seizure detection or prediction either directly from the raw EEG 

signal (Thodoroff et al., 2016) or from images (Jana et al., 2019). The latter reference used a 

Dense Convolutional Network (Dense-Net), similar to the model architecture we use in the 

present work. However, these prior efforts focused on relatively small data sets.

To develop an automated monitoring system for IIIC patterns, an adequately large set of 

labeled training data for supervised machine learning models must be developed first. For 

this purpose, we have collected over 200,000 h of EEG signals from > 1000 patients, 

comprising over 350 million EEG Segments. Our goal is ultimately to obtain a label every 2-

second segment of EEG data from multiple experts. However, our dataset contains 350 

million 2-second EEG segments corresponding to 200,000 h of EEG. Human experts cannot 

feasibly label all these EEG segments. Thus, we sought to design Active Learning (AL) 

schemes to select which EEG segments are most valuable to ask experts to label (Settles, 

2009; Osugi et al., 2005; Dasgupta and Hsu, 2008).

Many different AL approaches have been proposed for various tasks involving EEG data, 

although none of them completely fits our present task. Among these Wu et al. (2016) used a 

technique called enhanced batch-mode active learning, in which the method improved 

reliability, representativeness, and diversity of the selected samples in driver drowsiness 

estimation based on EEG signals. Lawhern et al. (2015) used AL to improve the reliability 

of existing EEG artifact classifiers with minimal user interaction. Yang et al. (2012) applied 

AL to classify motor imagery from EEG signals in a brain computer interface. Gupta et al. 

(2017) developed methods that use sparse recovery and AL techniques for near real-time 

artifact identification and removal in EEG recordings. Macas et al. (2018) demonstrated that 

for semiautomatic annotation of sleep EEG signals, an AL strategy leads to statistically 

significantly smaller mean class error than a simple random sampling strategy. Joao et al. 

(2018) proposed a heuristic AL process that improves the performance of a previously 

developed epileptic seizure prediction algorithm. Yang et al. (2016) investigated the 

effectiveness of using an active learning algorithm to automatically annotate a large EEG for 

seizure and some of IIIC patterns. Karuppiah Ramachandran et al. (2018) proposed an active 

learning-based prediction framework that aims to improve the accuracy of the seizure 

prediction with a minimum amount of labelled data. Balakrishnan and Syed (2012) 

described an active learning framework for patient-specific seizure onset detection in 

continuous EEG signals.

However, several novel challenges arise for our IIIC pattern labeling and pattern 

classification problem that prior AL studies have not considered:
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• Inter-Rater Agreement (IRA): In our labeling efforts, each EEG segment is 

labeled by multiple human experts. Experts frequently disagree regarding the 

correct label for an EEG segment.

• Imbalance: EEG datasets from hospitalized patients commonly exhibit 

substantial class imbalance, with most segments belonging to an “other” 

category, consisting of neither seizures nor IIIC patterns.

• Learning from raw EEGs: Optimal features for IIIC pattern classification are not 

known, therefore a data-driven method that discovers suitable features is 

desirable.

• Leveraging unlabeled data: As only a small amount of EEG data can be manually 

labeled, it is advantageous to design label spreading schemes to generate high-

quality pseudo-labels to augment the size and diversity of the training data. Label 

spreading means assigning labels samples that have not been labeled by experts, 

to augment the training data. Methods for creating pseudo-labels are described 

below.

In this paper we present several AL methods to address each of these challenges. We 

evaluate how quickly and how well the labels provided by each proposed AL labeling 

scheme enable a deep learning model to learn to classify IIIC patterns in a large and 

representative EEG dataset.

2. Methods

2.1. Data

We selected 10-second EEG segments from 1435 patients from the Massachusetts General 

Hospital (MGH) EEG Archive from 2012 to 2017. All data was collected as part of routine 

clinical care. Retrospective analysis of the data was approved by the local Institutional 

Review Board (IRB), which waived the need for written informed consent. These data were 

labeled as part of an ongoing effort to develop automated seizure and IIIC pattern detectors. 

So far, we have collected 88,341 labels for 9,808 EEG segments from 25 human experts 

from 12 hospitals. The median number of labels gathered from each expert was 4015, and 

the range was 1005–6813.

2.2. Seizure and Interictal Ictal Injury Continuum (IIIC) pattern definitions

In this work, we study Active Learning for efficiently annotating seizures and IIIC patterns 

in continuous EEG recordings from critically ill and acutely hospitalized patients. All EEGs 

were recorded using the 10–20 system, an internationally standardized method for the 

placement of scalp electrodes (Fig. 1a) (Homan et al., 1987). The events of interest, seizures 

and IIIC patterns (LPD, GPD, LRDA, GRDA), are defined according to standardized 

American Clinical Neurophysiology Society (ACNS) nomenclature and the Salzburg 

criteria; (Hirsch et al., 2013; Beniczky et al., 2013; Leitinger et al., 2015) samples that do 

not fall into any of the preceding patterns were labeled as “other”. Definitions of IIIC 

patterns are available at ANON (2021a). Example images of these patterns are shown in Fig. 

1.
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ACNS terminology also defines BIPDs (bilaterally independent periodic discharges), which 

are similar to GPDs except that the discharges on the left and right sides are not 

synchronous. BiPDs is a rare pattern, therefore we did not create a separate category for this 

pattern. Instead, experts were instructed to label any instances of BiPDs as GPDs.

2.3. Seizures and IIIC dataset

The 9,808 labeled EEG segments were obtained in a balanced manner, such that 

approximately half belonged to IIIC categories. Nevertheless, the proportion of the IIIC 

pattern data per unit time is lower in most ICU EEGs. Thus, we add 29,551 samples from 

EEGs reported as containing no IIIC patterns, and assigned these a label of “Other”, to yield 

39359 samples for the AL experiments.

We divided data into a training dataset (70 %), validation dataset (10 %) and test dataset (20 

%). Data was separated at the patient level, such that any given patient’s EEG data appeared 

in only one of the subsets, as summarized in Table 1.

The samples were imbalanced across the six pattern categories, as shown in Table 2.

2.4. Vector representation for EEG segments

EEG signals were recorded with 19 electrodes (FP1, F3, C3, P3, F7, T3, T5, O1, FZ, CZ, 

PZ, FP2, F4, C4, P4, F8, T4, T6, O2; see Fig. 1a). The sampling rate was 256 or 512 Hz; all 

signals were resampled to 200 Hz. EEG signals were arranged into bipolar montage, 

consisting of 16 channels formed by taking differences involving the following pairs of 

spatially adjacent channels: "FP1-F7", "F7-T3", "T3-T5", "T5-O1", "FP2-F8", "F8-T4", 

"T4-T6", "T6-O2", "FP1-F3", "F3-C3", "C3-P3", "P3-O1", "FP2-F4", "F4-C4", "C4-P4", 

"P4-O2". For purposes of annotation, EEG signals were divided into 2-second EEG 

segments. Each 2-second segment was provided with a 4-second context signal on both 

sides. Thus each 2-second segment was represented as a 16 channels x 2000-samples (10 s) 

signal. Here, ‘samples’ refers to digital data points. The sampling rate is 200 Hz, hence the 

number of samples in each 10 s signal segment is 2000.

Dense-Net, a type of Convolutional Neural Network, was used to learn a vector 

representation of each 16 × 2000 EEG segment (Huang et al., 2017). The structure of the 

Dense-Net used is illustrated in Fig. 2. The Dense-Net includes 7 Dense Blocks. Each Dense 

Block includes 4 Dense-Layers. Each Dense Layer includes 2 Convolutional layers and 2 

exponential linear unit (ELU) activations. Additionally, there are 6 transition blocks among 

the 7 Dense Blocks, where each transition block includes ELU activation, a convolutional 

layer, and an average pooling layer. We extracted the vectors (256 dimensions) from the 

second-to-last Fully Connected (FC) layer as the vector representation for EEG segments.

2.5. Embedding map for seizure and IIIC patterns

After mapping EEG segments into a high-dimensional vector representation using the 

Dense-Net model, we used the Uniform Manifold Approximation and Projection (UMAP) 

algorithm to reduce data dimensionality and visualize similarity relationships between 

segments (McInnes et al., 2018). In subsequent sections, we describe how the 2D UMAP 
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visualization, hereafter referred to as a “UMAP”, is used to facilitate active learning. Fig. 3 

shows an example of a UMAP for our data after 10 rounds of AL. The colored points have 

been labeled; the grey points are unlabeled points.

2.6. Active learning

Our AL framework is illustrated in Fig. 4. The steps are as follows:

• Step 0: Randomly select EEG segments for human experts to label as initial seed 

points.

• Step 1: Use labeled data to train a first CNN.

• Step 2: Use the first CNN to process labeled and unlabeled data to obtain 

embeddings.

• Step 3: Use the EEG segment embeddings to create a 2D UMAP.

• Step 4: Use label spreading strategies to assign pseudo-labels to unlabeled data.

• Step 5: Use labeled data and pseudo-labeled data to train a second CNN.

• Step 6: Use query and balance strategies to select the most informative unlabeled 

data in the current iteration as candidate segments for expert labeling.

• Step 7: Ask multiple human experts to label the new candidate segments. Add 

the labeling results to the labeled dataset. Repeat steps 1-7.

In addition to the steps above, the second CNN is used to evaluate performance on a test 

dataset in each iteration.

In the following, we introduce details of the label propagation, query, and balance strategies 

explored in our AL scheme. We denote the number of label categories as M. In each 

iteration, the number of labeled EEG segments is K, and the k-th labeled EEG segment is 

denoted bk, where 1 ≤ k ≤ K. The number of unlabeled EEG segments is N, and the n-th 

unlabeled point is denoted an, where 1 ≤ n ≤ N.

2.6.1. Label spread strategies—The goal of label spreading is to propagate labels 

from labeled EEG segments to similar unlabeled EEG segments. Label spreading generates 

pseudo-labels for unlabeled data to increase the number of training samples. In this work we 

propagate labels using the embedding map (UMAP), as follows. In each iteration of AL, 

unlabeled samples receive pseudo-labels from neighboring labeled points, as follows.

Let us denote segments that have been labeled as bk, and their labels as 

Lk = l1k, ⋯, lmk , ⋯, lMk ; where M = 6, and the 6 patterns are Seizure, LPD, GPD, LRDA, 

GRDA, Other. The numbers lmk  represent the number of votes received from experts for 

sample k belonging to pattern m. We assign a pseudo-label vector for unlabeled EEG 

segment an by spreading labels to it from neighboring labeled samples,
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Ln = l 1
n, ⋯, l m

n , ⋯, l M
n = ∑

bk ∈ D
(wn, k ⋅ Lk), (1)

Where D is a neighborhood surrounding the unlabeled example an, and

wn, k = exp − η ⋅ ‖an − bk‖2
(2)

Where ∥ ·∣ ∣2 is the squared Euclidean distance, and η is a decay coefficient. The normalized 

pseudo-label for the unlabeled example an is Ln = l̄1
n, ⋯, l̄m

n , ⋯, l̄M
n , where

l̄ m
n =

l m
n

∑m’ = 1
M l m’

n (3)

If there is no labeled EEG segment in D, a uniform label distribution is used for the pseudo-

label, representing no prior label knowledge. In this way, each EEG segment is assigned a 

“soft label”, where the percentage of votes assigned to each class serves as an estimate of the 

probability of that class.

2.6.2. Query strategies—The goal of the query strategy is to select the most 

informative unlabeled EEG segment for labeling. We considered six query strategies: three 

are model-based, including confidence sampling, margin sampling and entropy sampling; 

three are model-free, including random sampling, density sampling and diversity sampling. 

These strategies are described as follows:

a) Random sampling:  In each iteration, unlabeled EEG segments are chosen at random 

with equal probability.

b) Confidence sampling:  (Settles, 2011) The feature of the n-th unlabeled EEG segment 

an is denoted xn, where 1 ≤ n ≤ N. The label of an is denoted as yn,m, where 1 ≤ m ≤ M is the 

index of the IIIC pattern. The classifier in the previous iteration is used to calculate the label 

probabilities for an denoted as pn,m = Pr(yn,m∣xn), where ∑m = 1
M pn, m = 1, 1 ≤ n ≤ N. The 

confidence score for an is then represented as the maximum difference between one and any 

of the class probabilities,

sn = max
m

(1 − pn, m) (4)

In each iteration, the normalized probability of sampling the n-th unlabeled EEG segment an 

is
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pn
sample = exp(sn)

∑n = 1
N exp(sn) (5)

c) Margin sampling:  (Settles, 2011) The margin score of the n-th unlabeled EEG 

segment an is represented as

sn = 1
max

m
pn, m − max

m, m ≠ m
pn, m (6)

Where m = argmax
m

pn, m. The normalized probability of sampling the n-th unlabeled EEG 

segment an is calculated via Eq. (5). The denominator represents the difference (margin) 

between the most and second most probable labels, and margin sampling favors data points 

where this margin is small.

d) Entropy sampling:  (Settles, 2011) The entropy of the n-th unlabeled EEG segment an 

is represented as

sn = − ∑
m = 1

M
(pn, m ⋅ logpn, m) (7)

The normalized probability of sampling the n-th unlabeled EEG segment an is calculated via 

Eq. (5).

e) Density sampling:  In the embedding map, the similarity between unlabeled EEG 

segment an and labeled EEG segment bk is represented as

Similarity(an, bk) = 1
‖an − bk‖2 (8)

The density for unlabeled EEG segment an is defined as (Hu et al., 2010)

sn = Density(an) = ∑
bk ∈ Ω

Similarity(an, bk)
(9)

Where

Ω = {bk ∣ Similarity(an, bk) ≥ γ } (10)

Where γ is a threshold that defines the neighborhood of an. The normalized probability to 

sample the n-th unlabeled EEG segment an is calculated via Eq. (5).

Ge et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f) Diversity Sampling:  The diversity for the unlabeled EEG segment an is defined as (Hu 

et al., 2010)

sn = Diversity(an) = 1
max

1 ≤ k ≤ K
Similarity(an, bk) = min

1 ≤ k ≤ K
‖an − bk‖2

(11)

The normalized probability to sample the n-th unlabeled EEG segment an is calculated via 

Eq. (5).

2.6.3. Balance strategies—Class imbalance is a common problem in training machine 

learning models, and leads models to prefer classes with greater numbers of samples. The 

goal of balancing schemes is to balance the selected unlabeled EEG segments queried across 

IIIC patterns. As seizures and IIIC patterns in our data are imbalanced, querying without a 

balancing scheme is likely to select a class-imbalanced collection of unlabeled EEG 

segments, which may be detrimental to classifier training for underrepresented categories 

(e.g. seizures). We explored two balancing strategies: spread-based, and spread-based with 

high confidence.

A) Standard spread-based balanced querying (SSBBQ):  Based on the label 

propagation schemes described above, we assign a pseudo label to each unlabeled EEG 

segment. These pseudo labels can be used to balance queries of new EEG segments. 

Namely, if the number of EEG segments to be queried is Q, we select (based on pseudo-

labels) Q/M EEG segments from each of the M categories to query.

B) High confidence spread-based balanced querying (HCSBBQ):  In the standard 

spread-based balancing scheme (A), pseudo-labels are derived by spreading based on votes 

and distances in the UMAP to balance query points across categories. However, this scheme 

is potentially problematic due to the extreme class imbalance of our dataset, as illustrated in 

Fig. 5. In this example, the blue area represents the majority category (“Other”), and the red 

area represents the minority category (“Seizure”). The yellow crosses are labeled points, 

namely three “Other” points and one “Seizure” point. Based on the label propagation 

scheme, the separation for pseudo-labels “Other” and “Seizure” might be the purple dashed 

line; that is, suppose points to the left of this line are pseudo-labeled “Other” and those to 

the right are pseudo-labeled “Seizure”. In balancing scheme (A), most sampled points in the 

“Seizure” pseudo-label region area are actually “Other” points rather than “Seizure” points. 

Thus, in balancing scheme (B), an area of high confidence is considered for the minority 

categories. If we assume a high confidence threshold of φ, the high confidence area is 

defined as the points xn such that Pr(yn, m ∣ xn) ≥ φ, where m is the target minority category. 

The balancing scheme B samples Q/M points for each category as follows: Q/2M points are 

sampled using balancing scheme (A), and Q/2M are sampled from high confidence areas.

2.6.3.1. Division of data into training, validation, and test sets.: We divided the total 

data (39,359 samples) into a training dataset (26,752, 70 %), validation dataset (3,666, 10 %) 

and test dataset (8,941, 20 %), such that data from any one patient occurred in only one of 

these sets. We analyzed results over 10 iterations of AL. In each iteration we selected 200 
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new query EEG segments from the training dataset, obtained labels for these from the group 

of experts, and added their labels to the training dataset. In each iteration of AL we used the 

updated labeled dataset to train new models, used the validation dataset to tune 

hyperparameters, and tested model performance on the test dataset.

2.7. Evaluation

Labels for EEG segments were obtained as votes from human experts. We denote the 

number of human experts as I, the number of labeled EEG segments as K, and the number of 

label categories as M. We denote the vote of the i -th human expert for the k -th EEG 

segment as vi,k, where vi,k ∈ {NA, 1, 2, ⋯ M}, and NA means that the i -th human expert 

didn’t cast a vote for the k -th EEG segment. Thus, the k -th EEG segment is given a label 

vector, containing the number of votes received for each pattern class across all experts, 

denoted Lk = [lk,1, lk,2, ⋯, lk,M], where

lk, m = ∑
i = 1

I
I(vi, k, m), I(vi, k, m) =

1 if vi, k = m
0 otℎerwise

(12)

We also define the normalized label vector for the k -th EEG segment as 

Lk = l k, 1, l k, 2, ⋯, l k, M , where

l k, m = lk, m
∑i = 1

M lk, i
(13)

The goal in training the deep learning model is that the predicted labels should be close to 

the labels given by human experts. To formalize this goal, we used two evaluation methods: 

KL divergence and pairwise agreement between human experts and model.

2.7.1. KL divergence—KL divergence is used to measure the distance between the label 

distribution from human experts vs the trained CNN (DenseNet) model. We denote the 

predicted normalized score vector from the model as Lk = l k, 1, l k, 2, ⋯, l k, M . The KL 

divergence between the normalized expert label vector Lk and the normalized predicted 

label vector Lk is defined as

KLaverage = 1
K ∑

k = 1

K
KL Lk, Lk = 1

K ∑
k = 1

K
∑

m = 1

M
l k, m ⋅ log l k, m

l k, m
(14)

2.7.2. Pairwise agreement—Pairwise agreement is used to measure agreement 

between human and human (model) for each category. The pairwise agreement between the 

i-th expert and the j-th expert for the m-th category is defined as
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Ai, j = 1
2

∑i = 1
I ∑j = 1

I I(vi, k, m) ⋅ I(vj, k, m)
∑i = 1

I I(vi, k, m)

+
∑i = 1

I ∑j = 1
I I(vi, k, m) ⋅ I(vj, k, m)
∑j = 1

I I(vj, k, m)

(15)

The average agreement between experts, called expert-expert agreement (EEA), is defined as

EEA = 1
I(I − 1) ∑

i = 1

I
∑

j = 1, j ≠ i

I
Ai, j,

The average agreement between the algorithm and experts, called expert-algorithm 

agreement (EAA), is defined as

EAA = 1
I ∑

i = 1

I
Ai, model (16)

2.8. Hyper parameter tuning

Hyper-parameters for CNN training were as follows. Batch size was set to 256. Each EEG 

segment included 16 channels, where each channel consisted of a 10-second EEG signal. As 

the EEG sampling rate was set to 200 Hz, the dimensions of the input tensor for the CNN 

were (256, 16, 2000). The dimensions of the representation vector in the second to last layer 

was set to be (255,1). The objective function was the weighted Kullback-Leibler divergence. 

Adam (an algorithm for first-order gradient-based optimization of stochastic objective 

functions, based on adaptive estimates of lower-order moments) was used as the optimizer 

for the CNN (Kingma and Ba, 2014). The initial learning rate was 0.0001 and weight decay 

was 0.001. Dropout was used as regularization, with a dropout rate of 0.2. The python 

libraries we used included pytorch, sklearn, scipy, numpy.

Hyper-parameters for UMAP were set as follows (ANON, 2021b). The dimensions of the 

output map were set to (2,1), to allow plotting in 2D. The size of the local neighborhood was 

set 15. The minimum distance apart that EEG segments can be in the low dimensional 

representation was set to 0.1. The distance metric was set to be Euclidean Distance. The 

initial embedding positions assignment was set to be random.

3. Results

3.1. Patient characteristics

Demographics and the presenting medical and neurologic problems leading to hospital 

admission for the 1435 patients are summarized in Table 3. Note that some patients had 

more than one presenting problem, resulting in a total greater than 1435.
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3.2. Comparison of AL schemes

We performed two types of experiments. In the first, we used only labeled data (9,808 

labeled EEG segments + 29,551 “Other” EEG segments); this allowed us to compare the 

various AL schemes in detail. In the second, we added 120,000 unlabeled EEG segments to 

the 9,808 examples, to for AL schemes, to allow more intensive use of label spreading to 

improve model performance. These experiments were designed to examine the degree to 

which AL can help make it feasible for models to achieve expert-algorithm agreement that 

approaches expert-expert agreement.

1) Comparison of Query and Label Propagation schemes—Fig. 6 compares the 

KL divergence for the test dataset using different query and label propagation schemes. In 

these experiments, we select 200 new query EEG segments in each AL iteration, and test 

performance of the different AL schemes over ten iterations. Accordingly, the number of 

labeled data points available for training is 200 in iteration 1, 400 in iteration 2, 600 in 

iteration 3, etc, until reaching 2000 in iteration 10. In Fig. 6, the blue lines are for the AL 

scheme without label spread, and the red lines are the KL divergences in the AL scheme 

with label spread. Different marker shapes indicate the different query schemes.

From this figure, we see that schemes with label spread are substantially better than schemes 

without label spread over the first five iterations (up to 1000 labels); results for the schemes 

with vs without spread become close after obtaining 1000 labels. This suggests that the 

pseudo-labels obtained by label spreading do enhance the model training when the number 

of available labels is low.

We also see from the figure that there is no clear difference among the different query 

schemes. In particular, given more than 200 segments, none of the query methods 

appreciably outperforms the simplest method of selecting query points at random.

2) Comparison of Query Balancing Schemes—Fig. 7 compares the KL divergence 

for test data using different balancing schemes. In these experiments, we similarly used 10 

iterations and selected 200 new query EEG segments to have their labels revealed in each 

iteration. Label spreading based on votes and distance were used in all schemes.

In Fig. 7, red lines indicate KL divergences for AL schemes without balancing, green lines 

are for schemes with standard spread-based balancing (SSBBQ), and purple lines are for 

schemes with high confidence spread-based balanced querying (HCSBBQ).

There is no clear difference between AL schemes without balance (red) and AL schemes 

with SSBBQ (green). This is attributable to the problem illustrated in Fig. 5. By contrast, AL 

schemes with HCSBBQ (purple) achieve the best (lowest) KL divergences. This is 

attributable to the highly class-imbalanced nature of the data, and that the confidence-based 

balance scheme better samples the minority class.

KL divergences for the different query schemes were all similar. In particular, no scheme 

was substantially better than selecting queries randomly.
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3) Agreement between Models and Human Experts—We performed experiments 

to compare agreement between Models and Human Experts, as follows. We collected 9,808 

labeled EEG segments and divided them into a training dataset (6974, 70 %), validation 

dataset (967, 10 %) and test dataset (1867, 20 %) at the patient level. 120 K unlabeled EEG 

segments were added to the training data to enhance the ability of label spreading to assist 

model training, as shown in Fig. 4. We performed 7 AL iterations. The numbers of EEG 

segments in these 7 iterations were (100, 200, 400, 800, 1600, 3200, 6974). In each iteration, 

if an unlabeled EEG segment was selected, the closest labeled EEG segment to it in the 

embedding map was utilized to replace it, to approximate being able to obtain a label for 

selected segment from an expert.

Fig. 8 compares pairwise agreements between the algorithm and human experts (EAA) with 

pairwise agreement among experts (EEA) for each of the six pattern categories. In the 

figure, the blue line is the average agreement between the algorithm and experts (EAA) 

using random query to obtain training labels, without label spreading or balancing; the 

orange line is the average agreement between the algorithm and experts (EAA) using the 

best-performing AL scheme (diversity query, label spread based on votes and distance, and 

high confidence spread-based balanced querying, HCSBBQ). The green line is the average 

agreement between pairs of experts (EEA). From this figure, we make the following 

observations.

a) In “Seizure”, “LPD”, “GPD”, “LRDA” and “GRDA” categories, agreement for the 

proposed AL scheme is initially higher than the baseline AL scheme, suggesting that label 

spreading and data balancing are beneficial.

b) For the “Other” category, agreement for the proposed AL scheme is initially lower than 

the baseline AL scheme, which can be ascribed to the fact that the baseline scheme without 

balancing selects more “other” data (the dominant class).

c) The baseline AL scheme eventually approaches the proposed AL scheme, because they 

select the same 6974 labeled EEG segments in our experimental setup. After reaching this 

number of labeled examples, the model is able to label “GPD” patterns as well as human 

experts. A small performance gap remains for “LRDA”, “GRDA” and “Other”. Relatively 

large gaps remain for “Seizure” and “LPD” patterns, suggesting that acquisition of 

additional expert labels is needed to achieve expert-algorithm agreement (EAA) equal to 

expert-expert agreement (EEA).

4. Discussion

In this work, we compared a wide variety of AL schemes for developing algorithms that 

automatically label seizure and IIIC patterns in electroencephalography data from critically 

ill patients. Based on the experimental results, we reached the following conclusions. First, 

AL label spreading is beneficial. Specifically, label spreading based on expert votes and 

distance in an embedding map converged faster, with fewer human labels needed, than AL 

without label spread. Second, in obtaining new labels from experts, balancing the queries 

based on label confidence is beneficial. Specifically, HCSBBQ (high confidence spread 
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based balanced querying) performs substantially better than SSBBQ (standard spread based 

balanced querying). Third, all six query criteria produced similar results. Specifically, after 

choosing a label spreading and query balancing scheme, it did not matter which metric was 

used to select new samples for labeling: random sampling, confidence sampling, margin 

sampling, entropy sampling, density sampling, and diversity sampling all produced similar 

results. We conclude that random sampling, because it is the simplest, is the preferred 

strategy. Thus, in future work, in which we aim to use AL to obtain labels for 200,000 h 

EEG data from 25 human experts, we plan to combine 1) label spreading based on expert 

votes and embedding map distances, 2) high confidence spread based balanced querying 

(HCSBBQ), and 3) random sampling.

We were surprised that random query works approximately as well as any other scheme. In 

our experiments, we compared random query with five other query strategies including three 

model-based strategies (confidence, margin, entropy), and two model-free strategies (density 

and diversity). The model-based strategies prefer to select uncertain examples based on the 

model output which are usually located at category boundaries. The model-free strategies 

prefer to select examples based on data distribution information such as density or diversity. 

We believe two reasons may help explain this finding. The first is the problem of imperfect 

inter-rater agreement among experts regarding seizure and IIIC patterns. The uncertain EEG 

samples at boundaries between these categories may not be the best points to query from the 

standpoint of improving model performance, since these are likely to be labeled in a noisier 

manner by experts. The second reason is dataset imbalance. As most examples are “Other” 

and only a small amount of labeled data is available to estimate category boundaries to 

balance AL sampling, boundary estimation is noisy. Consequently, most queries find 

samples in the “other” category, which largely cancels the advantages of both model based 

and model-free query strategies.

Three prior studies used AL for developing automated methods to detect seizure or IIIC 

EEG patterns, such as (a) (Yang et al., 2016), (b) (Karuppiah Ramachandran et al., 2018), (c) 

(Balakrishnan and Syed, 2012). For the classification category, (b) and (c) only considered 

seizures, (a) considered two IIIC patterns namely LPDs and GPDs, whereas our work 

considers seizure and four IIIC patterns namely LPD, GPD, LRDA and GRDA. Regarding 

features, (a) (b) (c) use handcrafted features to train classifiers, while our work extracts 

features from raw EEG via a CNN. For the AL schemes, (a) used what is essentially a semi-

supervised learning scheme, and (b) used the Bernoulli-Gaussian Mixture model which is 

essentially a model-based query scheme, (c) used a Distance and Diversity combined query 

scheme based on an SVM model. Our work considers a broader range of query strategies 

including three model-based strategies (confidence, margin, entropy), and three model-free 

strategies (random, density and diversity), and combined these with label spreading 

schemes.

Our study has important limitations. First, our data was from a single site. Second, our data 

set is highly imbalanced, which likely influences the experimental results for the AL 

strategies evaluated. Our results may not generalize to other datasets with less extreme data 

imbalance. Second, we assumed a standard CNN architecture, DenseNet, and held this fixed 

throughout all experiments. We believe that this was justified by high degree of flexibility 
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afforded by the DenseNet architecture, and by our desire to focus the work on evaluating 

competing design choices for AL schemes proposed in the literature. Nevertheless, although 

we consider it unlikely, it is possible that other CNN architectures could lead to qualitatively 

different results. Thus optimization of the core deep learning model model architecture for 

use in AL remains an important unexplored topic.

Third, not all EEG segments were labeled by all 25 human experts. Further, we only 

consider 10-second EEG segments to train the classifier, whereas human experts were 

allowed to review larger contextual EEG windows when labeling. In the future work, we 

plan to explore varying levels of context, and to explore using Recurrent Neural Networks to 

learn temporal dependencies in the EEG to improve classification, particularly for seizures. 

Finally, given the imperfect levels of interrater agreement for seizure and IIIC patterns 

among experts, it is possible that these categories could benefit from further refinement. In 

fact, using data-driven approaches such as deep learning to delineate new EEG patterns is an 

exciting area for future research. Possible approaches might include data-driven 

identification of EEG features that facilitate higher levels of inter-rater agreement among 

experts. Alternatively, data-driven pattern discovery seek to identify EEG patterns that are 

highly predictive of neurologic outcomes (e.g. level of disability or death). These approaches 

contrast with the approach we have followed here, which takes expert-defined EEG pattern 

categories as given.

The experimental results and label spreading and query balancing methods presented herein 

provide valuable guidance for active learning involving multiple experts and large EEG 

datasets. By using these methods to obtain labels for over 200,000 h of EEG from critically 

ill patients from over 25 human experts, we expect to soon be able to create deep learning 

algorithms that are able to identify seizures and IIIC patterns with a level of reliability 

equivalent to human experts.
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Fig. 1. 
Bipolar Montage and IIIC EEG patterns.
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Fig. 2. 
Structure of the Dense-Net CNN.
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Fig. 3. 
The UMAP for Seizure and IIIC.
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Fig. 4. 
Our framework for Active Learning.
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Fig. 5. 
Illustration of the balance problem. The blue region represents the majority class (“Other”). 

The red region represents the minority class (“Seizure”). Yellow x’s represent labeled points 

within each region. Labels spreading would correctly assign pseudo-labels as “Other” to 

points left of the purple dashed line, but would incorrectly pseudo-label as “Seizure” most 

points to the right of the line. To the right of the dashed line, only those in the red circle are 

actually seizures.
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Fig. 6. 
Comparison between AL with label spread and AL without label spread.
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Fig. 7. 
Comparison of different balancing schemes.
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Fig. 8. 
Agreement Comparison.
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Table 1

Dataset for Seizures and IIIC.

Number of patients Number of segments Percentage

Training 1003 26752 ~70 %

Validation 144 3666 ~10 %

Test 288 8941 ~20 %

Total 1435 39359 100%
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Table 2

Number of EEG segments in different pattern categories.

Other Seizure LPD GPD LRDA GRDA

Training 23691(89 %) 247 (1 %) 1171 (4 %) 931 (3 %) 273 (1 %) 439 (2 %)

Validation 3051 (83 %) 53 (1 %) 212 (6 %) 229 (6 %) 73 (2 %) 48 (1 %)

Test 7961 (89 %) 57 (1 %) 353 (4 %) 331 (4 %) 66 (1 %) 173 (2 %)
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Table 3

Primary neurologic and medical problems leading to hospital admission.

Diagnosis

Diagnosis Neuro Counts Diagnosis Systemic Counts

Brain tumor/primary or mets 123 Dermatological/Musculoskeletal 9

CNS infection/inflammation 111 Endocrine emergency 23

Hypoxic ischemic encephalopathy/Anoxic brain injury 142 Gastrointestinal non-hemorrhagic 24

Other TBI (including SAH) 18 Genitourinary 43

Other neurosurgical (non tumor/trauma) (eg EVD/VPS etc) 10 Immunological 5

Other structural-degenerative diseases 35 Liver disorders 49

Primary psychiatric disorder 39 Malignancy (solid tumors/hematologic) 84

SAH 160 Non head trauma (including spine) 13

SDH 103 Other post operative (eg CT surgery, transplant) 7

SDH + other TBI (including SAH) 52 Primary hematological disorder 22

Seizures/status epilepticus 387 Renal failure 96

Spells (behavioral events suspicious for seizures) 6 Respiratory disorders 393

Toxic metabolic encephalopathy 161 Systemic hemorrhage 9

hemorrhagic stroke 137 cardiovascular disorders 251

ischemic stroke 91 Total 1028

Epilepsy/suspected Epilepsy (EEG) 252

Total 1827

Abbreviations: mets = metastases; CNS = central nervous system; TBI = traumatic brain injury; EVD = external ventricular drain; VPS = 
ventriculoperitoneal shunt; SAH = subarachnoid hemorrhage; SDH = subdural hematoma; EEG = electroencephalography; EMU = epilepsy 
monitoring unit; CT = cardiothoracic surgery.
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