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Abstract

This thesis is devoted to the study of orientifolds and dynamical super-
symmetry breaking in configurations of D-branes placed at the tip of toric
Calabi-Yau singularities, through the lens of dimer models. It is divided
into three parts, with the last two presenting the original material.

In the first part, we review the basic ingredients that led to the formu-
lation of gauge/gravity dualities in terms of dimer models and relevant toric
geometry tools. Elementary notions of supersymmetric gauge theories, as
well as two models that break supersymmetry dynamically, are first pre-
sented. Secondly, we recall important aspects of string theory and the first
realization of a gauge/gravity duality: the AdS/CFT correspondence. We
discuss geometric notions of Calabi-Yau and toric varieties, and then move
on to introduce important physical features of fractional branes. This part
concludes with the use of dimer models, and related ideas, in string theory.

The second part focuses on orientifolds. After reviewing important
properties of orientifold planes, we study in detail the anomaly cancellation
conditions for non-abelian gauge symmetries in supersymmetric theories
arising on D-branes at orientifold singularities. In particular, with the help
of techniques that are unique to dimer models, we provide geometric nec-
essary criteria to determine whether an orientifold projection can be safely
performed, that is, without introducing uncanceled anomalies. We also find
a new type of orientifold projection, without fixed loci, in dimer models
and expand on its physical features. The latter allows for superconformal
field theories on orientifolds, as well as gauge theories whose renormalization
group flow realizes a cascade of Seiberg dualities. Finally, we argue that we
exhausted the list of possible orientifold projections in dimer models.

In the last part of this thesis, we investigate dynamical supersymmetry
breaking vacua in string theory and their typical instability along N = 2
Coulomb branches. We extend the list of SU(5) models living in dimer
models and find unprecedented cases of 3 − 2 models too. This leads us
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to formulate a no-go theorem against their stability based on geometrical
features of the singularity, and then to establish a precise way to circumvent
it. The latter relies on the elaboration of a variant of the SU(5) model. As a
result, we eventually single out the first instance of stable vacuum in string
theory that realizes dynamical supersymmetry breaking constructed with
D-branes on a particular toric Calabi-Yau singularity, which we refer to as
the Octagon.

Conclusions and perspectives for forthcoming research are presented at
the end of the chapters related to the original contributions.
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Résumé

Cette thèse est vouée à l’étude d’orientifolds et de la brisure dynamique
de supersymétrie dans des configurations de D-branes placées sur des sin-
gularités toriques de type Calabi-Yau, via les modèles de dimères. Elle est
divisée en trois parties, dont les deux dernières présentent mes contributions
originales.

Nous passons d’abord en revue les ingrédients essentiels de théorie des
cordes qui ont amené à la formulation de dualités jauge/gravité en termes de
dimères. Des notions élémentaires de théories de jauge supersymétries, ainsi
que des modèles connus pour briser de manière dynamique la supersymétrie
sont présentés. Ensuite, nous passons en revue des aspects importants de
théorie des cordes et de la première réalisation d’une dualité jauge/gravité
: la correspondance AdS/CFT. Nous discutons de notions de géométries de
Calabi-Yau et torique pour ensuite introduire quelques aspects physiques
importants sur les branes fractionnaires. Cette première partie introductive
se conclut sur l’usage de modèles de dimères en théorie des cordes.

La deuxième partie de la thèse se concentre sur les orientifolds. Après
avoir passé en revue quelques résultats connus sur ces objets, nous étudions
en détail les conditions d’annulation d’anomalies non abéliennes pour les
théories de jauge supersymétriques émergeant sur les D-branes. En par-
ticulier, et à l’aide de techniques propres aux modèles de dimères, nous
établissons des critères nécessaires et géométriques pour déterminer si une
projection de type orientifold peut être réalisée sans générer d’anomalies.
Nous trouvons également un nouveau type de projection par un orien-
tifold, sans points fixes, dans les modèles de dimères et discutons de ses
caractéristiques physiques. Ces derniers permettent d’introduire sur des
orientifolds des théories superconformes, ainsi que des théories de jauge
dont le flot du groupe de renormalisation peut prendre la forme d’une cas-
cade de dualités de Seiberg. Nous montrons également avoir fait le tour des
possibilités de projection de type orientifold dans les modèles de dimères.
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Dans la dernière partie de la thèse, nous nous concentrons sur les vides
qui réalisent une brisure dynamique de supersymétrie et leur instabilité
habituelle sur des branches de Coulomb N = 2. Nous rallongeons la liste
d’exemples de modèles SU(5) trouvés dans les modèles de dimères, et trou-
vons de nouvelles réalisations de modèles 3 − 2. Le constat de leur insta-
bilité nous amène à formuler un théorème d’impossibilité contre leur sta-
bilité basé sur les caractéristiques géométriques de la singularité associée.
Nous trouvons ensuite une manière bien précise de le contourner sur base
de la construction d’une variante du modèle SU(5). Suite à cela, nous trou-
vons finalement un premier exemple de vide stable réalisant une brisure
dynamique de supersymétrie en théorie des cordes sur base de D-branes sur
une singularité torique de type Calabi-Yau, nommée l’Octogone.

Des conclusions et perspectives pour une recherche future sont
présentées en fin de parties ou chapitres de thèse basés sur mes contributions
originales.
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Chapter 1

Introduction

In the past century, a major breakthrough in theoretical physics came
with the advent of quantum field theory (QFT). It has been initiated by
Dirac in the 1920s, with his first attempt of quantizing the electromagnetic
field. Since then, this framework constitutes a real success story, as it is at
the origin of many fundamental discoveries on matter and its interactions
at a microscopic level. Indeed, it describes a variety of quantum phenom-
ena with very high precision compared to experimental observations. For
instance, the Standard Model, as an example of gauge theory in QFT, es-
tablished in the 1970s, and its subsequent extensions are now the reference
tools to understand electro-weak and strong nuclear interactions among the
particles that have been observed at the accelerators, at the smallest length
scales ever probed in science. QFT also plays an important role at larger
scales, in condensed matter, in the effective description of materials, and
phase transitions.

Despite its successes, our understanding of QFT still suffer from two
important and conceptual issues (among other phenomenological aspects
that fall outside the scope of this thesis):

• When it comes to strong coupling, perturbation theory is not reli-
able and non-perturbative techniques are often lacking to understand
complicated dynamics.

• The inclusion of the gravitational interaction is challenging since
we cannot make sense of it at high energy, i.e. it leads to non-
renormalizable interactions.

Roughly speaking, in these two contexts, computations are spoiled by the
appearance of infinities to which we are not able to give a sensible meaning.
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This suggests that QFT has still crucial features to reveal, and possibly that
another framework might play a role in our description of nature. These
are our motivations to study supersymmetry and string theory. They are
not, of course, the only options on the market. Nowadays, theoretical physi-
cists enjoy a rich set of alternative or complementary approaches to these
problems. We limit ourselves to name a few here: effective field theory,
simulations on the lattice, asymptotic safety in quantum gravity, etc.

Supersymmetry is a particular instance of symmetry that relates parti-
cles obeying different statistics, Bose-Einstein and Fermi-Dirac, i.e. bosons
and fermions. It was discovered in the early 1970s by several teams of
physicists, see [7] and references therein. Supersymmetry imposes stringent
constraints on the spectrum and interactions of physical theories. It has
been extensively studied for its interesting phenomenological implications
and because it significantly facilitates the acquisition of non-perturbative
results. Despite its many theoretical advantages, supersymmetry was never
found in particle accelerators and this is why theoretical physicists usually
look for QFTs with reduced or broken (if not simply absent) supersymmetry,
to balance theoretical control and pertinence of the computations.

String theory was originally developed at the end of the 1960s as a
model for hadrons [8]. It was observed that the masses of the lightest
hadrons were related to their spins by a unique constant with units of ten-
sion, and the latter was interpreted as the one of a rotating relativistic
string. But after less than a decade, quantum chromodynamics (QCD)
proved itself to be a more adequate framework to understand the physics
of strong nuclear interactions. In particular, QCD consistently reproduced
what we call asymptotic freedom [9,10], in agreement with the experimental
fact that nuclear fundamental constituents become free at very high energy,
and is now part of the Standard Model. It was later realized that string
theory presents a very interesting feature for a quantum theory: it contains
a graviton [11, 12], the mediator of the gravitational interaction. Examples
of different string theories emerged, but only supersymmetric variants per-
sisted as consistent theories of strings [13]. The first superstring theories
that arose were types I, IIA, and IIB superstring theories [14].

The first superstring revolution came with the discovery of gauge inter-
actions in type I and two new heterotic superstring theories [15, 16]. Then,
physicists started to think about string theory as a candidate for being a
quantum gravity model describing all interactions in a unified framework (a
“theory of everything”, whatever it means).1

1Testing string theory as a phenomenological model of all interactions in actual exper-
iments is still beyond reach nowadays, mostly because the hypothetical size of the strings
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In all these models, superstrings propagate in a ten-dimensional space.
To make contact with our four-dimensional world, and at the same time
gaining control on the constraints of supersymmetry, it was proposed to
compactify six out of the ten dimensions on Calabi-Yau spaces [17]. This
compactification program gave to geometry a new and important role to
play in string theory.

The second superstring revolution was marked by the discovery of Wit-
ten that the five known superstring theories were actually all connected by a
web of dualities and could be seen as limits of an eleven-dimensional theory,
called M-theory [18]. Dualities are more general than symmetries in the
sense that they exchange two complete physical theories, while the latter
only map different states of a physical theory to each other. Whereas two
states related by a symmetry experience the same dynamics, two dual the-
ories should contain the same physics. In practice, and unlike symmetries,
dualities can map the couplings of dual theories.

An essential ingredient in the construction of the aforementioned web of
dualities is T-duality. It permitted the discovery of D-branes in superstring
theories of type IIA and IIB [19, 20]. These are extended hyperplanes in
spacetime that emit closed strings and to which open strings attach. T-
duality thus showed that string theory is in general not only a theory of
strings, but also of higher-dimensional branes, and these will be of crucial
importance in what follows. Moreover, the open string sector on D-branes
has been found to reproduce gauge dynamics at low energy, demonstrating
once for all that gauge theories are an integral part of string theory.

Gauge/gravity dualities

By studying different aspects of D-branes at low energy, Maldacena
came to the proposal in 1997 of a very special kind of duality: the celebrated
AdS/CFT correspondence [21–23]. It is the first instance of a gauge/gravity
duality, i.e. that puts on equal footing a theory of gravitation, in a neg-
atively curved five-dimensional spacetime named Anti-de Sitter (AdS) to-
gether with a five-sphere, AdS5×S5, and a particular QFT symmetric under
the conformal group (CFT). The original setup of branes is supersymmet-
ric, and so are both sides of the correspondence. The QFT is actually the
supersymmetric version of the Yang-Mills theory with SU(N) gauge group
and N = 4 supersymmetry. This duality is important because it relates

is too tiny for the length scales probed by current accelerators. Nevertheless, we hope
to convince the reader in the rest of this introduction that string theory is interesting in
many other respects.
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two naively very different frameworks. Most importantly, the weak cou-
pling regime of one is tied to the strong regime of the other. So, we can for
instance make computations in a gravitational background of small curva-
ture and use the results to explore the otherwise inaccessible strong regime
of the QFT, and vice versa. This duality passed many tests, especially the
original version of the correspondence, and led to variants with a vast set
of applications, from the study of various QFTs, black holes, to strongly
coupled systems in condensed matter.

A remarkable feature of the QFT side of the duality is the absence
of gravitation. This is because, in the Maldacena limit, closed and open
strings decouple, the former and latter being responsible for gravitational
and gauge interactions on the branes respectively. Our understanding of
gauge theories was then given a dramatically new perspective when it was
realized that they are not only part of string theory but define some limit
of it.

In the same spirit as in the compactification program, the duality can
be generalized by placing the D-branes on different singular spaces. In do-
ing so, we can engineer a large set of different gauge theories with N = 1
supersymmetry from D-brane setups, and use our string theory knowledge
to learn about them. On the gravity side, the geometry will be of course
modified too. The area of applications is, again, vast: non-trivial gen-
eralizations of the original AdS/CFT correspondence [24–33], local string
phenomenology [34–38] and new perspectives, often geometric, on gauge
theory dynamics and dualities [39–44].

The correspondence between gravity and gauge theory is now partic-
ularly well understood in the case where a toric Calabi-Yau three-folds is
probed by the D-branes, for which the map is significantly streamlined by
dimer models (equivalently known as brane tilings) [32, 45, 46]. All the in-
formation about the gauge theory is then encoded in a bipartite graph, i.e.
with nodes of two different colors, embedded on a torus. See Figure 1.1 for
an illustrative example of dimer model.

In addition to propagating strings on singular backgrounds, one can
consider a particular gauging of an involutory isometry of the geometry
together with worldsheet parity, that is, the insertion of an orientifold plane
[19,47–51]. They are extremely interesting for a variety of reasons. Among
them, they expand the possible spectrum [52–54] (gauge groups and matter
fields representations), break conformal invariance [55], play an important
role in models with non-perturbative effects due to D-brane instantons [56–
58] and are a key ingredient in certain models of phenomenological interest,
on which we will expand below.
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Figure 1.1: An example of dimer model on the torus, with periodic bound-
aries in blue.

While direct construction of orientifolds in string theory is in practice
only feasible for some orbifold theories, they may be constructed directly
in the dimer model [54] by identifying gauge groups and fields according to
a suitable involution of the graph and possibly assigning some signs to the
fixed loci in the dimer, corresponding to the different choices of orientifold
plane. This makes it possible for toric singularities to be orientifolded.

It is then a question of interest to ask whether all kinds of N = 1
supersymmetric gauge theories can be engineered in this way, or at least
if it is possible to engineer theories that reproduce all kinds of low energy
behavior. While confinement, generation of a mass gap and of a chiral
condensate can be shown to arise in very simple models [27], as well as
N = 2 Coulomb-like branches in others [59–61], the fascinating possibility
that the vacuum of the gauge theory dynamically breaks supersymmetry
requires more work.

Supersymmetry can be broken in different ways. The gauge theory may
have both supersymmetric vacua and meta-stable supersymmetry breaking
vacua, which can be parametrically long-lived. This situation can be engi-
neered with D-branes at singularities, see e.g. [62–65]. Another possibility is
that there is simply no vacuum in the theory, leading to what is called a run-
away. It turns out that such a situation is rather frequent in configurations
of branes at singularities, see [66–69].

The last possibility that remains is that supersymmetry is dynamically
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broken in a fully stable vacuum. This has proven to be a harder problem to
engineer with D-branes at singularities. This is partly due to the scarcity
of known gauge theories that display such a non-supersymmetric vacuum.
After attempts to turn the runaway into a stable vacuum proved unsuccess-
ful [70], it was shown in [54] that by introducing an orientifold projection
it is possible to engineer configurations which at low energies reproduce the
well-known dynamical supersymmetry breaking (DSB) model of [71], hence-
forth referred to as the SU(5) model. The same model was argued to arise
in a wider number of singularities in [72,73].

The DSB configurations of [54, 72, 73] were more closely scrutinized in
[74], where it was found that they are actually not fully stable. Indeed, when
the DSB configuration is probed by N regular D3-branes, an instability
appears where the regular branes split along the Coulomb branch of so-
called N = 2 fractional branes [67], eventually settling the configuration in
a supersymmetric vacuum.

The difficulty in finding such models can suggest that dynamical super-
symmetry breaking into stable vacua might not be a possibility in D-brane
constructions and, more generally, in string theory as well. On the other
hand, finding models of this kind could be of great relevance both in the
context of the gauge/gravity duality and, even more interestingly, in string
compactifications. In this latter setup, they could be used for model build-
ing in GKP-like constructions [75]. Eventually, they might also have an
impact on the swampland program [76–78] and recent related conjectures
such as [74].
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Plan of the thesis

Every chapter starts with several introductory paragraphs and a plan
of the chapter itself. When a chapter presents original results, the first part
of these paragraphs can be thought of as an abstract.

We review in Part I all the important ingredients and tools that con-
stitute the gauge/gravity dualities. This part does not aim at providing
all the details nor proofs of the statements made but rather to collect and
assemble the results that are important for our purpose. We start in Chap-
ter 2 with basic notions of supersymmetric gauge theories and dynamical
supersymmetry breaking. In Chapter 3, we present some elements of string
theory with an emphasis on the type IIB superstring theory and the original
AdS/CFT correspondence. We move on to Chapter 4 for reviewing notions
of Calabi-Yau and toric geometries that are important for the extensions of
gauge/gravity dualities. Chapter 5 covers important aspects of fractional
branes. Finally, Chapter 6 reviews the construction and use of dimer models
in string theory.

Part II introduces orientifold projections in dimer models and is de-
voted to present the original material [5] and [6]. We start in Chapter 7
with a review on the initial constructions of orientifolds in dimer models.
Chapter 8 presents the results of [5], where we analyze in-depth anomaly
cancellation conditions for gauge theories obtained from orientifolds of dimer
models. In particular, we provide necessary geometric criteria to determine
whether a singular toric CY geometry can safely be projected by an ori-
entifold plane. Chapter 9 presents the results of [6], where we find a new
kind of orientifold projection without fixed locus in dimer models, the glide
projection. We expand on its important physical features: the possibility of
admitting superconformal theories and fractional branes that trigger non-
trivial flows of the renormalization group. We also prove the impossibility
of performing an orientifold by projecting the dimer model with respect to
a shift symmetry.

Part III is dedicated to my research on dynamical supersymmetry
breaking in orientifolded dimer models: [2], [3] and [4]. In Chapter 10
we collect the series of results of [2] showing that dynamical supersymme-
try breaking models arise in numerous examples of dimer models, together
with a no-go theorem for their stability. We use dimer techniques to look
for circumventing the later no-go theorem in Chapter 11, following [4], and
eventually single out a candidate. The latter construction is based on a vari-
ant of the well-known SU(5) model. Finally, and following [3,4], we present
in Chapter 12 a first instance of stable DSB vacuum realizing this variant
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of the SU(5) model in a toric CY geometry, the Octagon. We comment on
its stability and complete our analysis with computations in Appendix 12.B
that are not yet published.

Chapters 8, 9 and 12 each have their own conclusions and perspectives
for forthcoming research. They are naturally presented at the end of the
aforementioned chapters.
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Part I

D-Branes at Singularities
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Chapter 2

Supersymmetric Gauge Theories

Supersymmetry provides a natural extension of the Poincaré group of
symmetry for quantum field theories with additional charges of spin 1/2.
These supercharges thus relate bosons to fermions, and vice versa. The
framework of rigid supersymmetry leads then to many simplifications in the
study of quantum field theories and allows to understand precisely many
features of strongly coupled gauge theories. In particular, we will review in
this section the nature of quantum corrections for some important models
that share similar qualitative behaviors with realistic theories like quantum
chromodynamics (QCD). A complete review on this subject where details
can be found is [79].

In spite of its many advantages, supersymmetry is not observed in na-
ture and we are thus looking for non-supersymmetric vacua. Models that
break supersymmetry dynamically (DSB) are interesting phenomenologi-
cally because they are defined as supersymmetric theories in the ultraviolet
regime and stabilize in a non-supersymmetric vacuum in the infrared. In
consequence, they can be linked to UV-completed supersymmetric theories
where all the constraints from supersymmetry apply but still enjoy more
realistic dynamics at low energy. Moreover, the dynamical character of
the breaking implies the latter does not rely on any ad-hoc or external pa-
rameter, like a vacuum expectation value (VEV) for an operator coming
from another sector. They break supersymmetry all by themselves, as a
consequence of their own dynamics. We will recall some features of a non-
exhaustive list of DSB models that will be important in our study of string
vacua. For complete reviews on DSB models, see [80–84].
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2.1 Elements of supersymmetry

2.1.1 Matter, interactions and the moduli space

Gauge theories with N = 1 rigid supersymmetry have four real super-
charges, assembled in Qα and Q̄α̇ with α, α̇ = 1, 2, and transforming as Weyl
spinors of the Lorentz group. In our conventions, Q̄α̇ = Q†α. Moreover, they
satisfy the following anticommutation relation:

{Qα, Q̄α̇} = 2σµαα̇Pµ , (2.1)

where σ0 is the 2 × 2 identity matrix and σi are the three Pauli matrices.
We also have

{Qα, Qβ} = 0 , {Q̄α̇, Q̄β̇} = 0 . (2.2)

These relations constitute together the superalgebra and give rise to different
irreducible representations in which we will define our fields, see below. But
first, it will be convenient to extend the usual four-dimensional spacetime on
which the field theory is defined into a superspace. We consider the Grass-
mann coordinates θα, θ̄β̇ in addition to the usual Minkowski coordinates xµ.
They come together with two covariant derivates on the superspace:

Dα = ∂α + iσµαα̇θ̄
α̇∂µ , D̄α̇ = ∂̄α̇ + iθασµαα̇∂µ . (2.3)

We will mainly work with two kinds of multiplets:

• Chiral superfields Φ: They are defined by

D̄α̇Φ = 0 . (2.4)

They will give us charged matter, and we will occasionally number
them in flavors. Using the superspace coordinate yµ = xµ+ iθσµθ̄, we
can write them as

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y) , (2.5)

where φ is a complex scalar, ψ a Weyl spinor, and F an auxiliary field.
In subsequent sections, we will hardly ever differentiate the notations
of the chiral superfield Φ and its scalar components φ.

• Real superfields V : They are defined by

V = V̄ . (2.6)
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They play the role of gauge vectors in the supersymmetric context.
More specifically, the real multiplet takes value in the Lie algebra of
a gauge symmetry group G:

V = V ATA , (2.7)

where TA is a generator of the algebra and the summation is under-
stood on indices A = 1, · · · , dimG. The gauge transformation is now
given by a chiral superfield Λ:

V → V − i(Λ− Λ̄) . (2.8)

This freedom can be used to partially fix the gauge and express the
vector superfield in a convenient form, the Wess-Zumino gauge:

V (x, θ, θ̄) = θσµθ̄Aµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x) , (2.9)

where Aµ is a real vector (the gauge vector), λ a Weyl fermion (the
gaugino) and D an auxiliary field. We can also build a chiral superfield
in terms of V that will contain the field strength and whose lowest
component is the gaugino:

Wα = D̄2(e−VDαe
V ) = −iλα + θαD + i(σµνθ)αFµν + θ2(σµDµλ̄)α ,

(2.10)
where σµν = (σµσ̄ν − ηµν)/2.

A general gauge-invariant action for such a supersymmetric field theory
with matter given by chiral multiplets Φi is then expressed as follows:

L = Im
(
τ

32π

∫
d2θ trWαWα

)
+
∫

d2θd2θ̄ Φ̄ie2V Φi

+
∫

d2θ W (Φ) +
∫

d2θ̄ W̄ (Φ̄) ,
(2.11)

where we find the complex gauge coupling,

τ = i
4π

g2
+

Θ

2π
. (2.12)

The first term contains the kinetic terms for the gauge vector and the gaug-
ino, in addition to the topological Θ-term for the gauge vector. The second
term is the kinetic term for the matter fields of the chiral multiplets, in-
cluding couplings to the gauge vector through covariant derivatives, and
couplings to the gaugino in trilinear terms. The last two terms involve the
superpotential W (Φ) and contain extra interactions for the chiral matter
fields.
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This action is normalizable provided that the superpotential is at most
cubic. However, we will not always take this statement as a constraint since
we will often be interested in low energy supersymmetric actions, where the
Lagrangian is understood as effective. In the same spirit, the low energy
dynamics will often generate a kinetic term for gauge-invariant chiral mul-
tiplets that is a non-renormalizable function, based on a Kähler potential
K(Φ, Φ̄): ∫

d2θd2θ̄ K(Φ, Φ̄) . (2.13)

The Kähler potential exposed in Equation (2.11) is the canonical one.

Equations of motion impose the following relations:

F̄ i =
∂W

∂Φi
(φ) DA = −g φ̄ TAR φ , (2.14)

where TAR is the generator defined in the representation of the chiral super-
field Φ. These relations allow integrating out the auxiliary fields. They are
important for computing the potential of the scalar sector in the theory:

V (φ, φ̄) = F̄ i(φ)F i(φ̄) +
1

2
DA(φ, φ̄)DA(φ, φ̄) . (2.15)

Note that the first term in the last equation gets modified when the Kähler
potential is non-trivial. In terms of W (Φ) and K(Φ, Φ̄), it becomes

∂W

∂Φi
(φ)

(
∂2K

∂Φi∂Φ̄j̄
(φ, φ̄)

)−1
∂W̄

∂Φ̄i
(φ̄) . (2.16)

When we have U(1) gauge factors in the gauge group, we can also add
a Fayet-Iliopoulos term in the general expression of Equation (2.11):

LFI =

∫
d2θd2θ̄ ξBV B , (2.17)

where ξB is a number and B counts the U(1) factors. For abelian groups,
the general equation for DB becomes

DB = −gφ̄TBR φ− gξB . (2.18)

An important property of supersymmetric vacua, which can be derived
directly from the superalgebra, is that the vacuum energy is always zero.
Looking at the form of the scalar potential in Equation (2.15), we under-
stand that the only other alternative is to find positive vacuum energy,
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in which case supersymmetry is broken. Supersymmetric vacua are thus
parameterized by two sets of equations, the F-term and D-term equations:

F̄ i(φ) = 0 , DA(φ, φ̄) = 0 . (2.19)

These relations between the scalars define the (so far classical) moduli space
of the theory. We will see in some examples below how to parametrize the
latter with gauge-invariant functions of the superfields.

A last but important remark for this section is that we can have a global
symmetry group acting on the supercharges. For N = 1 supersymmetric
theories, one has a U(1)R R-symmetry, satisfying the following commutation
relations:

[R, Qα] = −Qα , [R, Q̄α̇] = +Q̄α̇ . (2.20)

In other words, the different components of a given multiplet will have
different R-charges. For example, we can derive the following relation for
the components of any chiral multiplet:

R [ψ] = R [φ]− 1 . (2.21)

2.1.2 Renormalization and superconformal theories

A key feature of supersymmetry, which simplifies a lot the field the-
ory analysis when it comes to study strongly coupled phases, are the non-
renormalization theorems. They come together as a set of very restrictive
results on the RG-flow for the couplings that appear in the Lagrangian of
Equation (2.11).

For example, the holomorphic couplings in the superpotential W (Φ)
are not renormalized at any order in perturbation theory. The reason is
that loop corrections appear as integrals over the whole superspace, i.e. as
D-terms, and thus cannot affect the superpotential.

Still, this is not the end of the story because the kinetic term for chiral
superfields Φ is subject to renormalization. This is encoded in a change of
the wave function normalization:

Φ̄Φ→ ZΦΦ̄Φ . (2.22)

This normalization will enter the physical values for the couplings (which
should be thought as functions of the holomorphic ones) and the propagators
for the fields. This also introduces an anomalous dimension γΦ for Φ:

γΦ = −∂ lnZΦ

∂ lnµ
. (2.23)
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It is named in this way because we can find that it changes the scaling
dimension of the superfield according to the following identity:

dim Φ = 1 +
1

2
γΦ . (2.24)

On the gauge side, the coupling Θ is topological and does not run with
the energy scale, as usual in quantum field theories since it does not enter
equations of motion. On the contrary, the gauge coupling g runs and its
evolution is prescribed by the NSVZ β function [85,86]. For a gauge theory
with symmetry group G and matter fields in some representation Ri, we
have

β 8π2

g2
=

3T (Adj)−
∑

i T (Ri)(1− γi)
1− g2 T (Adj)/8π2

, (2.25)

where the T (R) are Dynkin indices for the representation R. The latter are
defined by

trTAR T
B
R = T (R) δAB . (2.26)

For G = SU(Nc), we have

T (Adj) = Nc , T ( ) =
1

2
, T ( ) =

Nc − 2

2
, T ( ) =

Nc + 2

2
. (2.27)

It is common to get rid of the denominator in Equation (2.25) by making
a choice of normalization for the vector superfield which differs from the
canonical one [87]. In the following, we will often do so.

When the numerator of Equation (2.25) vanishes, we reach a conformal
fixed point of the theory. Then, the supersymmetric version of the Poincaré
algebra extends to the superconformal algebra, where we also have gener-
ators for dilatation and special conformal transformations. As a matter of
fact, the R-symmetry generator enters it and this results in a constraint
relating the dimension of any chiral operator O to its R-charge when the
theory sits at the fixed point:

dimO =
3

2
R [O] . (2.28)

There is a theorem for four-dimensional gauge theories stating that near a
conformal fixed point any gauge-invariant operator O satisfies

dimO > 1 . (2.29)

The identity saturates for free conformal fixed points.

R-charges and the related values for the anomalous dimensions consti-
tute an important set of information about the fixed point theory and we
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SU(Nf )L SU(Nf )R U(1)B U(1)R

Q 1 1
Nf−Nc
Nf

Q̃ 1 −1
Nf−Nc
Nf

Table 2.1: Global charges in the classical SQCD.

will always want to compute them. We can note already that when two
superfields are related by a global symmetry, their anomalous dimensions
have to be the same. This combined with conformality, i.e. the vanishing of
Equation (2.25), sometimes impose together enough relations to compute
these values but it does not always happen to be the case. Fortunately,
there is a more generic way to achieve this for any superconformal theory,
that is maximizing its central charge a(R) [88]:

a(R) =
3

32

(
3 tr R3 − tr R

)
. (2.30)

2.2 SQCD and Seiberg duality

2.2.1 Setting the stage for SQCD

We study the N = 1 supersymmetric version of QCD, namely SQCD,
with an arbitrary number of colors Nc and flavors Nf . The gauge group
is SU(Nc), with gauge fields and gauginos in the vector multiplet, and we
also have Nf copies of chiral multiplets sitting in the (anti)fundamental
representations of the gauge group:

Qi = , Q̃j = , i, j = 1, · · · , Nf . (2.31)

The charges under the global symmetries of SQCD are shown in Ta-
ble 2.1, where we refrain to exhibit the charges for the usual axial symmetry
that will always be made anomalous by quantum corrections coming from
instantons. The R-charges are selected in order to remain anomaly-free at
the quantum level. This last statement does not apply in the absence of
flavors.

In order to learn about the classical moduli space of SQCD, we will
write Q and Q̃ as Nf ×Nc matrices:

Q i
a , Q̃aj , i, j = 1, · · · , Nf , a = 1, · · · , Nc . (2.32)

17



Their entries will be constraint by D-term equations:

DA = TrQ†TAQ− Q̃†TAQ̃ = 0 , A = 1, · · · , N2
c − 1 , (2.33)

where we introduced TA ≡ TA = −TA.

A mass term could also be added in the superpotential but we will not
consider the latter as it trivially decouples the Q and Q̃’s at low energy and
it would be equivalent to study SQCD with a reduced Nf . As a consequence,
there are no F-term equations.

For Nf < Nc, a generic solution to Equation (2.33) is given by matrices
Q and Q̃ being of maximal rank Nf . Global symmetries can be used to
diagonalize them, and we can find that they share the same non-zero entries.
The gauge group is generically broken down to SU(Nc −Nf ). The moduli
space has complex dimension N2

f and is parameterized by the VEVs for the
mesonic fields:

M i
j = Q i

aQ̃
a
j . (2.34)

At the origin of the moduli space, the full gauge group is recovered. It is
actually singular at this point, which can be seen if you express the Kähler
potential in terms of mesonic fields, and this is linked to the appearance of
extra gluons in the spectrum which are left behind in the present description.

For Nf > Nc, the matrices Q and Q̃ are now of maximal rank Nc.
Their entries have their norm related by the D-term equations. The gauge
group is generically fully broken. We can also define baryonic fields that
parametrize a new branch of the moduli space:

Bk1···kNf−Nc = εk1···kNf−Nc i1···iNc ε
a1···aNcQ i1

a1 · · ·Q
iNc
aNc ,

B̃
l1···lNf−Nc = ε

l1···lNf−Ncj1···jNc εa1···aNc Q̃
a1
j1
· · · Q̃aNcjNc

,
(2.35)

The moduli space has complex dimension 2NfNc − N2
c + 1, which is less

than the number of mesons and baryons for the reason that there are some
relations between them. In the particular example of Nf = Nc, one can
show that

detM −BB̃ = 0 . (2.36)

The number of relations increases with Nf .

2.2.2 The quantum moduli space of SQCD

The phases of the quantum theory are richer than the classical one. We
still have a hierarchy of results depending on Nf and Nc, and it becomes
even more subtle. In this section, we recall the structure of the moduli
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space by gradually increasing Nf , but we will not enter into great details
for the derivation of the results. We just mention now that the main needed
ingredients are holomorphy [89], R-symmetry considerations and ’t Hooft
anomaly matching [90]. We will also recall what important role plays Seiberg
duality in this description.

Nf = 0. We recover the vacuum of the supersymmetric version of Yang-
Mills theory (SYM). This is the only case where U(1)R is anomalous. In-
deed, usual one-loop computations involving the gauginos, which have an
R-charge equal to one, show that instantons are present and spoil the sym-
metry at the quantum level. However, the shift symmetry of Θ allows
preserving a subgroup Z2Nc .

Confinement and the mass gap together imply the generation of a non-
perturbative superpotential:

WSYM = NcΛ
3ei

2πk
Nc . (2.37)

This results in a condensation of the gaugino bilinear:

〈λλ〉 = Λ3ei
2πk
Nc , k = 1, · · · , Nc . (2.38)

We thus find Nc isolated vacua, separated by domain walls, each one expe-
riencing chiral symmetry breaking of Z2Nc down to Z2.

Nf < Nc. The classical moduli space is lifted because of the non-
perturbative and runaway Affleck-Dine-Seiberg (ADS) contribution to the
superpotential:

WADS = (Nc −Nf )

(
Λ3Nc−Nf

detM

) 1
Nc−Nf

. (2.39)

Note that this correction to the superpotential is permitted only due to its
non-perturbative nature. The corresponding potential VADS is minimized
at zero energy for infinite values of the VEVs of the fields, meaning that
there is no stable vacuum in the theory.

Nf = Nc. The moduli space is a deformed version of the classical one:

detM −BB̃ − Λ2N = 0 , (2.40)
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to be compared with Equation (2.36). The whole moduli space is smooth
and SU(Nc) is fully broken everywhere. We also experience different kinds
of chiral symmetry breaking. Along the mesonic branch,

M j
i = Λ2δ ji and B = B̃ = 0 , (2.41)

one finds that the non-abelian part of the global symmetry group breaks
down to its diagonal part SU(Nf )L × SU(Nf )R → SU(Nf )V . While along
the baryonic branch,

M j
i = 0 and B = −B̃ = ΛNc , (2.42)

U(1)B is broken. For large VEVs, perturbative computations are reliable
and we are in a Higgs phase, while near their smallest values we rather talk
about confinement (and charge screening).

Nf = Nc + 1. The moduli space is classically exact, in the sense that they
are no quantum corrections to it. The theory confines but does not display
chiral symmetry breaking at the origin of the moduli space (s-confinement).
The origin is singular, but instead of gluons, the arising massless degrees of
freedom are now baryons and mesons.

Seiberg duality

For Nf > Nc + 1, our SQCD model is known to be dual in the infrared
to an alternative supersymmetric theory called mSQCD, also said to be its
magnetic dual [91]. It is a slightly modified version of SQCD, with gauge
group SU(Ñc) with a number of colors given by Ñc = Nf −Nc in terms of
the original theory. It has also Ñf = Nf flavors q and q̃,

qi = , q̃j = , i, j = 1, · · · , Nf , (2.43)

in addition to an extra gauge singlet chiral superfield Φi
j ,

Φi
j = 1 , i, j = 1, · · · , Nf . (2.44)

It is also supplemented by a superpotential term:

WmSQCD = h qiΦ
i
j q̃
j , (2.45)

where h is a complex coupling. It is an electro-magnetic duality in the sense
that

g2
SQCD ∼ g−2

mSQCD . (2.46)

See Table 2.2 for an illustration of the Seiberg duality map.

20



SQCD mSQCD

Gauge group SU(Nc) SU(Nf −Nc)

Matter Q i
a, Q̃

a
j qai , q̃

j
a , Φi

j

Superpotential qΦ q̃

Table 2.2: Seiberg duality map.

Nc + 1 < Nf 6 3Nc/2. SQCD is a strongly coupled theory enjoying con-
finement but is better described at low energy in terms of mSQCD, which is
free in the infrared. We thus say that SQCD is in the free magnetic phase.

3Nc/2 < Nf < 3Nc. This range is known as the conformal window of
SQCD. The low energy theory lives on a non-trivial conformal fixed point.
Near the right corner of the conformal window, the following value for the
gauge coupling that can be obtained from a two-loops computation, namely
we find a Banks-Zaks fixed point:

g∗ =
8π2

3

3Nc −Nf

N2
c − 1

. (2.47)

Note that it converges towards zero as we increase the number of flavors up
to 3Nc. Conversely, the gauge coupling of mSQCD would decrease as Nf

converges towards 3Nc/2. Both theories are not confining but are rather in
an interacting Coulomb phase.

3Nc 6 Nf . The numerator of the β function is now negative and hence
the theory is free in the infrared. We call this phase the free electric phase.
mSQCD turns out to be a more convenient description of the ultraviolet
regime of the theory.

The different phases of SQCD are summarized in Figure 2.1.

2.3 Dynamical supersymmetry breaking

2.3.1 The SU(5) model

The SU(5) model is a DSB model [71, 92] that is non-calculable, in
the sense that one cannot perform computations to learn about its infrared
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*

Figure 2.1: Quantum phases of SQCD. For Nf > Nc + 1, we draw a
schematic RG-flow where the arrow links an adequate description of the
ultraviolet regime of the theory to its adequate description in the infrared.

regime. Its matter content makes it look similar to a Grand Unified Theory
model:

Q̃ = , A = . (2.48)

The β function for the gauge coupling is positive,

βSU(5) = 13 , (2.49)

and hence the theory is likely to confine. The theory admits no holomorphic
gauge-invariant quantities and consequently no flat directions. In particular,
it has a unique vacuum. The model has an exact global symmetry group
U(1)q × U(1)R with charges exposed in Table 2.3.

We don’t know how to perform calculations in the infrared regime of
the theory, but we can observe that ’t Hooft anomaly matching impose
weird charges assignments for hypothetical low energy fields. This leads to
thinking that the global group of symmetry is (at least partially) sponta-
neously broken in the infrared. This should lead to the presence of one or
two Goldstone bosons, and the latter cannot sit together in the same super-
multiplet.1 Still, the Goldstone boson is by essence massless and does not
feel a potential at low energy, and thus because of supersymmetry, it should
be found in the same chiral multiplet as an extra real scalar that is subject
to identical dynamics. The presence of the latter implies a flat direction in

1See [71] for a full explanation of this fact.
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U(1)q U(1)R

Q̃ 3 −9
A −1 1

Table 2.3: Global charges in the SU(5) model.

the moduli space, but they were supposed to be absent. So we conclude
that the theory should break supersymmetry.

Another way to argue the breaking of supersymmetry is to couple the
model to an extra pair of massive chiral multiplets [93],

H ⊕ H̃ = ⊕ , (2.50)

with mass m. This model has four flat directions. So far, they are parame-
terized by VEVs for the following gauge-invariants:

AQ̃H̃ , AAH , HH̃ and HQ̃ . (2.51)

We can introduce a tree-level superpotential which, as for SQCD with less
flavors than colors, will receive corrections from a non-perturbative ADS
contribution:

Weff =
2Λ6

(AQ̃H̃)1/2(AAH)1/2
+ h(AQ̃H̃) + f(AAH) +mHH̃ , (2.52)

where h and f can be any coupling. For m = 0, F-term equations can be
satisfied and the gauge group is generically broken down to SU(2). However,
this model cannot satisfy F-term equations for a generic non-zero mass and
hence breaks supersymmetry. Sending the mass to infinity decouples the
extra chiral multiplets and one recovers the initial SU(5) model. The fact
that the Witten index2 is the same for finite and infinite m hints that there
is no phase transition when the mass is taken to infinity. Thus, we are led
to conclude that supersymmetry is broken by non-perturbative effects.

The conclusion for this model is that the potential has to be different
from zero and can only be proportional to the appropriate power of the
strong coupling scale:

V ∝ Λ4
SU(5) . (2.53)

2The Witten index is a topological invariant that counts the difference in number
between bosonic and fermionic states at any energy level. Since a supersymmetric theory
has the same number of bosons and fermions at any positive energy level, this difference
can only receive contributions from the vacuum, i.e. at zero energy.
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Generalizations to higher ranks

Generalizations of the SU(5) model were studied in [94]. They intro-
duced a gauge theory with gauge group SU(Nc), and matter given by Nc−4
antifundamental superfields together the usual antisymmetric:

Q̃i = i = 1, · · · , Nc − 4 , A = . (2.54)

It admits a R-symmetry preserving tree-level superpotential for Nc > 6:

Wtree = λijQ̃
iQ̃jA , (2.55)

with an antisymmetric matrix of couplings, λT = −λ.

For Nc even, starting from Nc = 4, a runaway effective superpotential
is generated. Unfortunately, the tree-level superpotential is not enough to
lift every of these runaway directions, resulting in an unstable theory.

For Nc odd, starting from Nc = 7, there is a balance between a dynam-
ical potential and the tree-level superpotential term of Equation (2.55) that
minimizes the potential at

V ∝ λ4 Nc−5
2Nc+3 Λ4

SU(Nc)
, (2.56)

and hence breaks supersymmetry dynamically in a stable vacuum.

2.3.2 The 3−2 model

The 3 − 2 model is an instance of a calculable model [94]. The gauge
group is SU(3)× SU(2) and the matter content is similar to the one of the
Standard Model:

Q = ( 3, 2) , Ū = 3 , D̄ = 3 , L = 2 , (2.57)

with a superpotential given by

W = λ D̄QL . (2.58)

The theory enjoys an anomaly-free global symmetry group U(1)Y × U(1)R

with charges presented in Table 2.4.

We can define
(Q̄i) ≡ (Ū , D̄) , (2.59)

and construct three gauge-invariants that we will use to parameterize the
moduli space:

X = ŪQL , Y = D̄QL , Z = detQQ̄ . (2.60)
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U(1)Y U(1)R

Q 1/3 1
Ū −4/3 −8
D̄ 2/3 4
L −1 −3

Table 2.4: Global charges in the 3− 2 model.

F-term equations force all of these operators to vanish and the moduli space
is only composed of the origin. In particular, it does not have flat directions
and thus we can run the same argument as for the SU(5) model: if a global
symmetry is broken, supersymmetry has to be broken too.

If SU(3) goes to strong coupling before SU(2), i.e. Λ3 � Λ2, one can
easily verify that an effective superpotential term is generated because of a
SU(3) instanton,

Weff =
Λ7
SU(3)

Z
+ λY . (2.61)

The impossibility to satisfy the F-term equation for Y already shows that
supersymmetry is broken, since λ 6= 0. It can also be seen that the first
term in the effective superpotential is pushing for high values of Z. The
VEV for this gauge-invariant has a non-vanishing R-charge and thus breaks
U(1)R, which confirms again that supersymmetry is broken. One can find
with scaling arguments that

V ∝ λ10/7Λ4
SU(3) . (2.62)

For a very small λ, we can understand the VEVs in terms of UV fields
and see that the non-perturbative term of the superpotential pushes for
high VEVs of Q and Q̄. This means that SU(2) is fully broken and, there,
the Kähler potential can be computed too. This is what makes this model
calculable. This does not remain true in general, when Λ2 � Λ3 and up to
Λ3 ≈ Λ2, but it can be proved that the model still breaks supersymmetry
dynamically.
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Chapter 3

String Theory

There are five different ways to realize a perturbative quantum theory
of propagating strings. The fundamental ingredients are exclusively closed
strings in most instances. Only one starts with both open and closed strings.
The amount of supersymmetry also varies. We list them below.

• Type I is a theory of unoriented closed and open strings with gauge
symmetry SO(32) and N = 1 supersymmetry.

• Type IIA is a theory of closed strings. It has two supercharges with
opposite chirality in spacetime, N = (1, 1). An open string sector
arises on D-branes, which can be thought of as non-perturbative states
of the theory.

• Type IIB differs from the previous one by having two supercharges
with the same chirality in spacetime, N = (2, 0).

• Heterotic SO(32) is a theory of closed strings with only one super-
charge in the left or right-moving sector, N = 1, and a SO(32) gauge
symmetry in the other non-supersymmetric sector.

• Heterotic E8 × E8 is constructed similarly to the previous one but
enjoys a E8 × E8 gauge symmetry instead.

All these theories are linked through a web of dualities, illustrated in
Figure 3.1, meaning that each of them is a valid description of another in an
appropriate regime. Type I can be obtained from type IIB by introducing
orientifolds. Those objects will be studied in Chapter 7. Type IIA and IIB
are related by T-duality, which will be the object of Section 3.1.3. The two
heterotic theories are also T-dual to each other. S-duality links the heterotic
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theory with gauge group SO(32) to type I. It is a non-perturbative duality,
also called the strong-weak duality, because it relates the string coupling gs
of one S-dual to 1/gs in the other. Type IIB is S-dual to itself, meaning
that the duality is realized as symmetry in the latter. Finally, all these the-
ories are connected to the eleven-dimensional M-theory, whose microscopic
definition remains unknown but is described by eleven-dimensional super-
gravity at low energy. As such, the latter provides another description of
string theory, even though it is not by itself a theory of strings.

• Eleven-dimensional supergravity is the low energy limit of M-theory.

M-theory can be compactified on a circle S1 and gives back type IIA when
the corresponding radius vanishes, or compactified on a line interval S1/Z2

and then gives back the heterotic theory with E8×E8 again in the vanishing
length limit.

Figure 3.1: Web of dual string theories and M-theory. S stands for S-duality,
T for T-duality and Ω for the addition of an orientifold plane.

For our purpose of exploring the generalizations of the gauge/gravity
duality, we will mainly be interested in learning about type II superstring
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theories,1 and in particular type IIB. Our discussion follows [95–102], where
more material can be found. For specific reviews on D-branes, one can look
at [103–105].

3.1 Elements of string theory

3.1.1 Perturbative approach to types IIA and IIB

Since we are interested in phenomenological applications of string the-
ory, we hope that it can reproduce a realistic spectrum, like the one of the
Standard Model, at low energy. This cannot stand if string theory does not
reproduce spacetime fermions from the string excitations. Indeed, quarks
and leptons which constitute matter are of this type.

One way to recover spacetime fermions is to allow for worldsheet
fermions, in addition to its bosons, and impose supersymmetry on the world-
sheet. This is the Ramond-Neveu-Schwarz (RNS) formalism [106, 107] for
which we recall some features in this section. Actually, supersymmetry ap-
pears as a necessity if one wants to work with a consistent string theory,
i.e. free of tachyons. The absence of negative norms quantum states and
Lorentz invariance will also fix the dimension of the embedding spacetime
to be exactly d = 10. Another and equivalent way to construct these string
theories with spacetime fermions is to impose supersymmetry in spacetime
and is referred to as the Green-Schwarz formalism [108–110]. We will not
expand on the latter in this work.

Types II superstring are theories of closed strings in the sense that those
populate the perturbative vacuum. Open strings will appear in the spectrum
only when attached to D-branes, which are in fact non-perturbative states.
The latter will play a central role in this work, as they are the fundamental
ingredients that we will use to connect string models to gauge theories,
and will be reviewed in Section 3.1.2. Still, it is interesting to review some
properties of the closed string spectrum, as it opens the door to gravitation
and other types of interactions under which the D-branes are sensitive.
Phrased differently, open strings couple to closed strings and we need the
latter in order to fully appreciate the dynamics of branes.

There are two different string theories of type II, types IIA and IIB, and

1Although we will ultimately be interested in supersymmetry breaking, we will not
comment on non-critical strings and other non-supersymmetric realizations of string the-
ory. We will restrict ourselves to a textbook approach of superstring theory before con-
sidering implementing a supersymmetry breaking scenario.
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we now review what is the content of their massless spectra of closed strings.
We start with a common action for a two-dimensional worldsheet W2 that
admits as many bosonic as fermionic excitations, respectively denoted XM

and ψM where M is an index counting dimensions of the embedding space-
time, and we anticipate M = 0, · · · , 9. Each ψM is a Majorana fermion on
the worldsheet. The action on the worldsheet is given by

S = − 1

4πα′

∫
W2

d2σ
(
∂XM∂X

M + ψ̄M /∂ψM
)
. (3.1)

The worldsheet theory is supersymmetric. XM and ψM are respectively
regarded as scalars and spinors from the worldsheet point of view but are
both vectors in the embedding space. The prefactor in the action is the
tension of the string, where α′ is related to the string scale ls by

α′ = l2s . (3.2)

Closed strings excitations can be decomposed in left and right-moving
sectors. It is useful to do so since they turn out to be decoupled sectors, up
to a level matching condition for the masses. Let be

X(σ0, σ1) = XL(σ0 + σ1) +XR(σ0 − σ1)
ψ(σ0, σ1) = ψL(σ0 + σ1) + ψR(σ0 − σ1)

(3.3)

for each component M , where ψL and ψR are now Majorana-Weyl spinors.

We have to impose a boundary condition for closed strings that trans-
lates into a periodicity on σ1, with a period chosen to be 2π. For the bosonic
excitations, this is uniquely fixed by

XL,R

∣∣
σ1+2π

= XL,R

∣∣
σ1
. (3.4)

For the fermionic partners, we have two choices:

Neveu-Schwarz (NS) : ψL,R
∣∣
σ1+2π

= −ψL,R
∣∣
σ1

Ramond (R) : ψL,R
∣∣
σ1+2π

= +ψL,R
∣∣
σ1

, (3.5)

that can be made independently for both left and right-movers. Hence, it
leads to four different sectors for closed strings: NSNS, NSR, RNS, and RR.

There are different ways to quantize the strings: in the light-cone
gauge or covariantly. The first one is generally exposed in a first course on
string theory. It prescribes to write worldsheet fields in light-cone coordi-
nates: X+, X−, ψ+, ψ− in addition to transverse components X2, · · · , X9,
ψ2, · · · , ψ9, and then use the reparametrizations of the worldsheet to reach
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the so-called light-cone gauge. The latter satisfies automatically the Vira-
soro constraints inherited from the superconformal invariance of the RNS
strings and, together with the equations of motion, fix the values of X+, X−,
ψ+, ψ−. On-shell degrees of freedom are obtained from the eight transverse
components of the worldsheet fields and will transform in representations
of the little group SO(8).

After quantization, Gliozzi-Scherk-Olive (GSO) projections [13] are
performed in order to avoid tachyons in the spectrum. This results in two
alternative massless spectra, corresponding to types IIA and IIB. In short,
the NS sector brings a vector in the representation 8v of SO(8) for each
type II theory. From the R sector, type IIA gets two spinors with opposite
chirality in the 8 and 8′, while those of type IIB have identical chirality in
the 8, all of them from the SO(8) group too. The tensor product of left
and right-movers gives rise to fields in the ten-dimensional spacetime. In
contrast with the worldsheet content of spinors, Type IIA ends up being
non-chiral and IIB chiral in spacetime:

IIA : [8v ⊕ 8] ⊗ [8v ⊕ 8′] = [1⊕ 28⊕ 35]NSNS ⊕ [8⊕ 56′]NSR

⊕ [8′ ⊕ 56]RNS ⊕ [8v ⊕ 56t]RR ,

IIB : [8v ⊕ 8] ⊗ [8v ⊕ 8] = [1⊕ 28⊕ 35]NSNS ⊕ [8⊕ 56]NSR

⊕ [8⊕ 56]RNS ⊕ [1⊕ 28⊕ 35∗]RR .
(3.6)

The fields in components are presented in Table 3.1.

Sectors Type IIA Type IIB

NSNS
dilaton
2-form
graviton

φ
BMN

GMN

φ
BMN

GMN

NSR RNS
dilatinos
gravitinos

λ1
α λ2

α̇

ψ1
Mα̇ ψ2

Mα

λ1
α λ2

α

ψ1
Mα ψ2

Mα

RR p-forms
CM
CMNP

C
CMN

CMNP Q

Table 3.1: Massless closed string spectra of type IIA and IIB superstring
theories.

The NS-NS sector is common to both type II theories. It contains a
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graviton G that mediates the usual gravitational interactions. There is a
2-form field B2 that couples electrically to the fundamental strings through
a topological term that one can add to their action,

1

2πα′

∫
W2

B2 . (3.7)

The theories are consequently invariant under the gauge transformation

B2 → B2 + dΛ1 . (3.8)

Finally, we find a dilaton whose VEV defines the string coupling constant:

gs = eφ . (3.9)

The latter is the parameter for the loop expansion of strings interactions
and thus controls quantum corrections

Other sectors differ from one theory to the other. The RNS and NSR
contain fermions, among which we find two gravitinos, of spin 3/2, which
sit in supersymmetric gravity multiplets together with the graviton. This is
an important consequence of the GSO projections since it implies that both
theories have spacetime supersymmetry. They have 32 real components of
supercharges, which in the ten-dimensional spacetime correspond to two
Majorana-Weyl spinors Q1 and Q2 generating the supersymmetries. More
precisely, gravitinos have opposite/identical chirality in type IIA/IIB, and
so the same can be said for the chirality of Q1 and Q2:

IIA : Q1 = 16, Q2 = 16′ , IIB : Q1, Q2 = 16 . (3.10)

The situation is usually summarized by noting the number of supersymme-
tries for both type II theories as follows:

IIA : N = (1, 1) , IIB : N = (2, 0) . (3.11)

As such, type IIB can be suspected to generate chiral anomalies. However,
as it was shown in [111], all contributions to these anomalies cancel and type
IIB is eventually well-defined. We also note that the presence of gravitinos
comes together with the fact that types II theories at low energy theory are
actually different theories of supergravity.

The RR p-forms Cp (or equivalently, CM1···Mp in components) imply
that the theories are invariant under the following gauge transformations:

Cp → Cp + dΛp−1 , (3.12)
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with p odd/even in type IIA/IIB. They do not appear to be sourced by any
object in the perturbative spectrum, but this silence speaks volumes. Such
objects exist and are the D-branes that we will introduce soon. Note also
that the 4-form field C4 of type IIB can be consistently defined in the 35
only if its flux is self-dual under Hodge duality:

F5 = ∗F5 . (3.13)

The low energy action of IIB, which we do not present here, enjoys
a SL(2,R) symmetry and it is conjectured that a SL(2,Z) subgroup is
maintained at the quantum level. It corresponds to the S-duality mentioned
in the introduction of the present chapter. It acts on the NSNS B2 and RR
C2 fields as a doublet: (

C2

B2

)
→

(
a b
c d

)(
C2

B2

)
, (3.14)

and on the axio-dilaton field, defined by

τIIB = ie−φ +
C0

2π
, (3.15)

in a non-linear fashion:

τIIB →
a τIIB + b

c τIIB + d
, (3.16)

for a, b, c, d ∈ Z satisfying ad− bc = 1. In particular, a bridge from weak to
strong coupling gs is built for a = d = 0 and b = −c = 1:

τIIB → −
1

τIIB
. (3.17)

3.1.2 Branes

D-branes and open strings

Although type II superstring theories are perturbatively defined as the-
ories of closed strings, the discovery of D-branes in the spectrum [112]
opened a path to an open string sector in both of them. These are non-
perturbative objects in nature and this is essentially the reason why open
strings can arise consistently with our initial will to consider closed strings
at the perturbative level.

Starting with the same supersymmetric action as in Equation (3.1),
the open string requires proper boundary conditions at its ends, σ1 = 0 and
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σ1 = π. The left and right-moving fermions can be identified with the same
relative sign on both ends, or with an opposite sign. This introduces two
different sectors:

Neveu-Schwarz (NS) : ψL
∣∣
σ1=0

= +ψR
∣∣
σ1=0

, ψL
∣∣
σ1=π

= −ψR
∣∣
σ1=π

,

Ramond (R) : ψL
∣∣
σ1=0

= +ψR
∣∣
σ1=0

, ψL
∣∣
σ1=π

= +ψR
∣∣
σ1=π

.

(3.18)

From what we said for the closed strings, we can anticipate that a quan-
tization combined with a suitable GSO projection would lead to a vector in
the 8v and a spinor in the 8 from the NS and R sectors respectively. But
now come the branes.

A Dp-brane is a surface extending in p spatial directions on which open
strings can end. This means that our open strings are free to move in the
worldvolume of a D-brane but are fixed at its position in its transverse
directions. Thus, they satisfy Neumann boundary conditions on p spatial
directions and Dirichlet on the remaining 9− p:

Neumann : ∂σ1X
µ
∣∣
σ1=0

= ∂σ1X
µ
∣∣
σ1=π

= 0 , µ = 0, · · · , p ,
Dirichlet : δXi

∣∣
σ1=0

= δXi
∣∣
σ1=π

= 0 , i = p+ 1, · · · , 9 .
(3.19)

Quantizing the open string with such boundary conditions results in
the massless spectrum presented in Table 3.2. The vector of the NS sector
will split into a gauge vector in the worldvolume of the Dp-branes and real
scalars in the transverse directions, one for each 9 − p coordinates. They
originate from a specific Fourier mode of ψM at the quantum level, and it
is common to note them as such:

NS :
(
ψM−1/2 |k〉

)
=
(
Aµ |k〉 , φi |k〉

)
, (3.20)

for a NS quantum state of momentum k. The excitations of the scalars
describe the displacement of the Dp-brane along its transverse coordinates.

Sectors Type IIA and IIB

NS
gauge vector
scalars

Aµ
φi

R fermions λα

Table 3.2: Massless spectra of open strings in type IIA and IIB superstring
theories.
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In addition to removing a tachyon and an excess of fermions from the
spectrum, the GSO projection constrains the dimension of D-branes p to be
even/odd for type IIA/B superstring theories.

D-brane interactions

The only points that can be meaningfully distinguished on an open
string are its endpoints, and so we can introduce degrees of freedom on
them. It turns out that these are non-dynamical and called the Chan-Paton
factors [113]. We can formally introduce N different sorts of endpoints and
decompose a quantum state a with momentum k as follows:

|k; a〉 =
N∑
m,n

λamn |k;mn〉 , (3.21)

where i and j label the endpoints of the open string. Since the open string
gives rise to real vector states, the matrix λ should be diagonalizable to real
values. Hence, the Chan-Paton factors have to satisfy the reality condition
of being hermitian:

λa = λa† . (3.22)

Any interaction of open strings will a product of such matrices. Moreover,
the trivial dynamics of the endpoints implies that such a factor should ap-
pear in the form of a trace in the computation of amplitudes, as in the
example with four open strings:

δmm
′
δnn

′
δpp
′
δqq
′
λaq′mλ

b
m′nλ

c
n′pλ

d
p′q = trλaλbλcλd . (3.23)

Interactions are thus invariant under any global transformation on the
worldsheet given by

λ→ U λU−1 , (3.24)

where U ∈ U(N) in order to preserve the reality condition. Thus, one
endpoint transforms in the fundamental representation of U(N) while the
other transforms in the antifundamental, illustrating the oriented nature
of the open string. It results that both the vector Aµ and the scalars φi

transform in the adjoint of U(N). The symmetry can be promoted to a
gauge symmetry in spacetime since it can be performed at any point in the
latter. In the context of open strings attached to D-branes, these Chan-
Paton factors naturally encode on which D-brane an endpoint is attached.
Thus, we will remember that a stack of N coincident D-branes support a
U(N) gauge theory on their worldvolume.
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The effective action for a Dp-brane is composed by the Dirac-Born-
Infeld action:

SDBI = −Tdp

∫
Wp+1

dp+1σ
√
−det (G+B2 + 2πα′F2) , (3.25)

computed at fixed value for the dilaton, gs = eφ. B2 is present because
it arises from the same sector as G. F2 is the field strength for the gauge
vector Aµ and its presence guarantees gauge invariance of the action when
considering contributions from boundaries of the worldsheet. The tension
can be computed from an exchange of closed string between two D-branes:

Tdp =
1

(2π)pα′(p+1)/2gs
, (3.26)

where the dependence in gs shows the non-perturbative nature of the D-
branes.

Expanding in α′, the action becomes

SDBI = − α′−(p−3)/2

4gs(2π)p−2

∫
dp+1σ

√
−G trFµνFµν + · · · (3.27)

Thus, the gauge coupling g of the Yang-Mills theory on the D-branes is
related to gs by

g2 = 2(2π)p−2α′(p−3)/2gs . (3.28)

The effective action is also made of a Chern-Simons term that includes
the coupling to RR fields Cp+1 at the lowest order in α′:

SCS = TDp

∫
Wp+1

Cp+1 + · · · (3.29)

It implies that Dp-branes couple “electrically” to the RR (p + 1)-forms
exposed in Table 3.1. By considering the Hodge dual of RR fluxes,

F8−p = ∗Fp+2 , (3.30)

we get that Dp-branes also couple “magnetically” to RR (7− p)-forms. We
thus find which are the D-branes that carry RR charges in each type II
superstring theories:2

type IIA : D0,D2,D4,D6,D8
type IIB : D(−1),D1,D3,D5,D7

(3.31)

2Some entries in the list may seem rather exotic. D8-branes are related to 9-form gauge
field and so 10-form field strength. The latter is non-dynamical and thus the 9-form gauge
field didn’t enter our perturbative description. The D(−1)-brane couples electrically to
the 0-form gauge field C and is interpreted as a D-instanton since it is localized both in
time and space.
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An important result for brane dynamics included in Equation (3.29) is the
equality between their tension and their RR charges,

QRR,Dp = TDp . (3.32)

This means that the attraction resulting from the exchange of NSNS fields
is balanced with the repulsive exchange of RR fields. Hence, the D-branes
mentioned in Equation (3.31) are stable. They are actually BPS states3

and as such, they preserve half of the supersymmetries. Indeed, the two
supercharges identified for closed strings excitations can be related to the
left and right-moving sectors of fermions on the worldsheet respectively, and
those end up being identified by the open string boundary condition. If Q1

and Q2 are the two Marojana-Weyl supercharges, a Dp-brane extending
along x0, x1, · · · , xp preserves the linear combination

Q1 + Γ01···pQ2 . (3.33)

The number of supersymmetries is thus reduced by half, leaving only 16
real components of supercharges on the worldvolume of the Dp-brane.

In the weak coupling limit, gs → 0, D-branes become more rigid but
their tension increases slower than a typical soliton, for which the tension
grows like 1/g2

s . As a matter of fact, the gravitational backreaction of the
D-branes is controlled by the product of the Newton constant GN , which
scales like g2

s , with their tension. The latter is thus found to be small in the
weak coupling limit:

GNTDp ∝ gs , (3.34)

so we can treat the D-branes as probes on a given background geometry.

The gauge theory on a stack of D3-branes

We can go into greater details in order to describe the U(N) gauge
theory living on the worldvolume of a stack of N coincident D3-branes. First
of all, it has 16 real components of supercharges, and we have in consequence
a N = 4 supersymmetric theory on the four-dimensional worldvolume. The
massless bosonic matter is composed of a gauge vector Aµ and six real
scalars φi. Moreover, one finds that the massless elements of the R sector
can be arranged as four complex Weyl fermions, λIα with I = 0, · · · , 3. All

3BPS states have a mass that is equal to the norm of a central charge entering the
supersymmetry algebra when N > 1. Here, the tension generalizes the notion of mass.
In general, BPS multiplets have a lower number of states than other multiplets. They are
thus robust against a change of parameters in theory or quantum corrections since the
number of states cannot jump when corrections are taken into account.
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these fields are defined in the adjoint representation of the gauge group and
combine together into a N = 4 real multiplet. In order to see this, it is
convenient to assemble the real scalars into complex ones,

Φ1 = φ4 + iφ5 , Φ2 = φ6 + iφ7 , Φ3 = φ8 + iφ9 , (3.35)

so that they would correspond to the complex scalars of three N = 1 chiral
multiplets. Then, the real multiplet of N = 4 can be decomposed into a
N = 1 real multiplet and three chiral multiplets:

VN=4 = (λ0
α, A

µ)⊕ (Φ1, λ1
α)⊕ (Φ2, λ2

α)⊕ (Φ3, λ3
α) . (3.36)

Written in these terms, the kinetic term in the action for VN=4 decomposes
into kinetic terms for the four N = 1 multiplets and a superpotential given
by

W = tr Φ1[Φ2,Φ3] . (3.37)

More can be said regarding the symmetries of this theory. First of all, it
enjoys a SU(4)R R-symmetry, under which the set of scalars φi transforms
in the 6 and the Weyl fermions λAα in the 4.

One can also remark that the U(N) gauge group can be decomposed
as a product of SU(N) and U(1) (up to some ZN that are only relevant
for global considerations). The U(1) vector multiplet contains six scalars
whose excitations displace of the center of mass of the stack of D-branes. It
decouples at low energy, and we will consider that the gauge theory has a
SU(N) symmetry group. We will thus refer to it as N = 4 SYM.

Finally, it can be checked that N = 4 SYM is also superconformal since
its β function vanishes:

βN=4 = 0 , (3.38)

where the Φi do not have an anomalous dimension, γΦ = 0.

NS5-branes

NS5-branes are other BPS objects present in both type IIA and IIB
superstring theories that carry magnetic charges under the B2 field. They
are present both in type IIA and B theories. Their tension is different from
the one of the D-branes:

TNS5 =
1

(2π)5α′3g2
s

, (3.39)

and are then of pure solitonic nature. Since B2 and C2 sit in a doublet of
the S-duality group, the NS5-brane is the SL(2,Z) partner of the D5-brane.
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3.1.3 T-duality

T-duality is a perturbative duality in the sense that it is manifest at
any order in perturbation theory, i.e. in an expansion in gs. It acts on a
theory compactified on a circle S1, or more generally on any theory whose
embedding space has a S1 fiber, by exchanging the Kaluza-Klein and wind-
ings modes of the closed strings. It also exchanges the boundary conditions
of the open string on the cycle. Consequently, T-duality acting on a coor-
dinate x⊥ transverse to a Dp-brane exchanges the Dirichlet condition for a
Neumann:

Dp-brane
T⊥−→ D(p+ 1)-brane . (3.40)

and vice versa for a T-duality acting on a worldvolume coordinate x‖:

Dp-brane
T‖−→ D(p− 1)-brane . (3.41)

The radius R of the S1 is also modified:

R
T−→ α′

R
, (3.42)

and the string coupling constant gs changes as follows:

gs
T−→
√
α′

R
gs . (3.43)

We call it a duality because the overall spectrum is left unchanged.

We can guess from the change of D-branes that T-duality switches
type IIA and IIB. Indeed, it is possible to check that it interchanges the
two GSO projections, as it is possible to work out the precise action on the
massless bosonic sector. We expose a rough picture of the T-duality map in
Table 3.3. While the NSNS fields mix non-trivially according to the Buscher
rules [114] that we refrain to exhibit, the map presented for the RR fields
can be trusted in a trivial NSNS background.

The exchange of B2 with the graviton suggests that NS5-branes can be
exchanged with a background geometry. Indeed, this geometry is known to
be an asymptotically locally flat geometry with a singularity of type AN−1

if N parallel NS5-branes were present [115, 116], and we find it after a T-
duality on a transverse direction of the NS5-brane. A T-duality on the
geometry sends the configuration back to the NS5-brane:

NS5-brane
T⊥←→ ALF geometry . (3.44)
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Type IIA
T9←→ Type IIB

G9m B9m B9m G9m

C9 Cm C C9m

C9mn Cmnr Cmn C9mnr

Table 3.3: A rough picture of the T-duality map on the bosonic sector of
closed strings. The duality is operated on the coordinate x9. m,n, r span
the values 0, · · · , 8.

Consider again having a NS5-brane in flat space. A T-duality along its
worldvolume simply turns a NS5-brane of type IIA into a NS5-brane of
type IIB, and the other way around:

NS5-brane
T‖←→ NS5-brane . (3.45)

3.2 AdS-CFT correspondence

In his seminal work [21], Maldacena introduced the first realization of
a gauge/gravity duality, also called gauge-string duality or holographic cor-
respondence. It puts on equal footing the four-dimensional conformal gauge
theory N = 4 SYM and a theory of closed strings propagating on the curved
space AdS5×S5, hence the specific name of AdS/CFT correspondence. An
important feature of this correspondence is that it relates the weak coupling
regime of one to the strong of the other, and vice versa. We review some of
its important features in this section but see [117] for more details.

We place a stack of coincident N D3-branes in a flat Minkowski space-
time in 10 dimensions. Consider it first from a string theory point of view.
In the low energy limit, lower than l−1

s , the surviving string modes include
only the massless ones. On the closed strings side, the gravitons propa-
gate on flat space without interacting with the D-branes. The reason is
essentially that gravity becomes free at low energy. Indeed, in superstring
theory the Newton constant is proportional to g2

s l
8
s and tends to vanish for

small ls. On the D-branes however, the massless open strings attached to
them also survive the low energy limit and describe a N = 4 SU(N) gauge
theory. This is basically the SYM theory living on the four-dimensional
worldvolume of the D3-branes that we introduced in the previous section
since a small ls implies a small α′. Remember that the gauge coupling g is

40



expressed in terms of the string coupling gs,

g2 = 4πgs . (3.46)

This gauge dynamics is of course trapped on the worldvolume of the D-
branes, so that the two sectors of closed and open strings do not talk to
each other. The low energy limit of the setup divides itself into two parts:

Free gravitons in flat space ⊕ N=4 SYM gauge theory . (3.47)

This system has an alternative description. From the supergravity
point of view, the tension of the D-branes induces a backreaction on the
geometry, which turns out to become the following supergravity solution
for the metric:

ds2 = f(r)−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f(r)1/2(dr2 + r2dΩ5) , (3.48)

with

f(r) = 1 +
R4

r4
, R4 = 4πgsα

′2N , (3.49)

in the presence of a RR self-dual 5-form flux on the S5,

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ df−1 , (3.50)

that satisfies ∫
S5

F5 = N . (3.51)

This solution depicts a throat centered around r = 0 for r <∼ R, and a flat
space for r � R. In the low energy limit, some gravitons with a wavelength
larger than R survive and do not feel the throat anymore. Moreover, phys-
ical phenomena happening arbitrarily close enough to the horizon r = 0
are not visible for an external observer, since their energy measured from
infinity will be redshifted to an arbitrarily small value:

Emeasured = f(r)−1/4Er . (3.52)

Excitations in this region are thus completely decoupled from the outside
of the throat, no matter how high are their energies as far as they are close
enough to the horizon. We can obtain the metric Equation (3.48) in this
region by considering the near-horizon limit :

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 +R2dΩ5 . (3.53)
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This metric is simply the one of AdS5 × S5 where both elements are of
radius R. AdS is known to be a maximally symmetric solution to the
Einstein equations with negative cosmological constant. We come to the
conclusion that the theory at low energy divides again in two parts:

Free gravitons in flat space ⊕ Type IIB on AdS5 × S5 . (3.54)

Now, anybody (and in particular Maldacena) would be tempted to asso-
ciate the two RHS of Equations (3.47) and (3.54). The resulting equivalence
is the celebrated and first example of a gauge/gravity duality:

N=4 SYM gauge theory ↔ Type IIB on AdS5 × S5 (3.55)

This duality relates the strong coupling of one theory to the weak cou-
pling of the other. First of all, recall that when an arbitrary number of
colors N is introduced for the gauge theory, the actual gauge coupling that
dictates the perturbative theory is the ’t Hooft coupling:

λ = g2N . (3.56)

One can use the definition of R in Equation (3.49) to check that

λ =
R4

l4s
. (3.57)

Hence, when we have a weak curvature and the supergravity approximation
holds, the ’t Hooft coupling is large and the gauge theory is strongly coupled.
Reciprocally, when string corrections are important, we experience a high
curvature and it corresponds to a small ’t Hooft coupling.

The perturbative expansion of N = 4 SYM reveals interesting features
when N is large, and λ is kept fixed. The dominant Feynman diagrams are
planar and this simplifies a lot the computations. This limit is referred to
as the large N limit. In string theory, we find

λ

N
= gs , (3.58)

and so we learn that the expansion in 1/N controls the loop expansion like gs
does. In other words, the large N limit provides better control of quantum
corrections in the string theory.4

4This can also be expressed in terms of the radius R by introducing the Planck length,
lP = g

1/4
s ls, and casting Equation (3.58) as

N =
1

4π

R4

l4P
. (3.59)
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We can also check that the symmetries on both sides of the duality
match. The isometries of AdS5 and S5 are SO(2, 4) and SO(6) respectively.
On the field theory side, these groups are part of the superconformal alge-
bra. The first group corresponds to the four-dimensional conformal group
of symmetry and the second is isomorphic to the SU(4)R R-symmetry. As
we explained before, the presence of D-branes breaks half of the supersym-
metries of type IIB. In other words, 16 supercharges are preserved and the
broken 16 others still realize a supersymmetry but act non-linearly on the
fields. They correspond to the 32 supercharges that we find in the bulk of
AdS5 × S5. The SL(2,Z) S-duality of type IIB corresponds to the electric-
magnetic duality ofN = 4 SYM. In this context, it makes sense to generalize
Equation (3.46) into the following identification:

τ = τIIB , (3.60)

where τ is the complex coupling of N = 4 SYM.
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Chapter 4

String Geometry

So far, we discussed superstring theories whose excitations propagate
in a ten-dimensional spacetime. In this respect, strings seem rather in-
appropriate to reproduce the behavior of usual field theories, where the
number of dimensions typically reduces from ten to four. Compactification
has been the key to make contact between these two realms by declaring
that six out of the nine spatial dimensions were actually compact. Then,
one should send their characteristic scales to very small values, so that we
cannot see these extra dimensions naively. Calabi-Yau manifolds were intro-
duced in physics [17] to provide a rich variety of compact spaces that lead
to different four-dimensional low energy theories. They have the important
advantage of preserving a certain amount, but reduced, of supersymmetry.
Otherwise, we would lose control of the UV completion of our theory.

In the context of the gauge/gravity duality, the compactness of the
extra dimensions is not an issue anymore. Indeed, we saw in the example
of AdS/CFT that the radial coordinate transverse to the D3-branes ex-
tends towards infinity. Still, changing the background on which we place
D-branes is an open door to a vast set of generalizations of the known cor-
respondence. In particular, things get interesting when the transverse space
bears singularities. Of course, we would like to introduce such singular
spaces while keeping the advantages of supersymmetry, so we are interested
in finding non-compact Calabi-Yau cones. For this topic, we follow the
references [100,101,118–122].

Knowing that we will deal with Calabi-Yau cones is not enough to
concretely propose extensions of the gauge/gravity duality. We need details
about the geometry itself. In this respect, toric geometry comes to the rescue
as a robust framework for producing a large amount of different non-compact
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and singular Calabi-Yau geometries. The power of toric geometry resides
in the combinatorial control that one has over the geometrical properties of
each toric variety. It was introduced in brane physics in [123]. We will review
some of the important ingredients to construct Calabi-Yau toric geometries
and illustrate them with examples, following [118,121,124–127].

4.1 Calabi-Yau cones

4.1.1 Preserving supersymmetry

Assume that we compactify a type II superstring theory from the 10-
dimensional flat space R1,9 to a more general R1,3 ×M6, where M6 is any
six-dimensional manifold. Supersymmetry would typically be broken. The
reason is that the supercharges previously defined in the 16 now transform
in the (2L,4) and (2R, 4̄) of the SO(1, 3)× SO(6) group:

16→ (2L,4)⊕ (2R, 4̄) , (4.1)

As such, they might experience a non-trivial rotation after making a tour
around a closed loop in M6. They would then be ill-defined.

Instead of this catastrophic scenario, we would like to find M6 such
that we can define a covariantly constant spinor ξ on the manifold, i.e. a
Killing spinor:

∇M6ξ = 0 , (4.2)

guaranteeing that some supercharges survive. The way out is to consider
particular manifolds for which the holonomy group H(M6) is the subgroup
SU(3) ⊂ SO(6) because it admits a trivial representation as we decompose
the 4 into representations of SU(3):

4→ 1⊕ 3 . (4.3)

From the initial 16 components of the supercharges, only four coming from
(2L,1) and (2R,1) will survive. We would thus have a total of eight su-
percharges giving us an N = 2 four-dimensional theory. If D3-branes also
extend along R1,3, then it would reduce the amount of supersymmetry to
N = 1. For spaces with a smaller holonomy group, an enhancement of su-
persymmetry is also possible. A manifold M6 has SU(3) holonomy if and
only if it is Calabi-Yau (CY, or CY3 in the present context). See Table 4.1
for other kinds of special holonomies.

Originally, a CY is defined to be a compact Kähler manifold with van-
ishing first Chern class c1. It was conjectured by Calabi and proved by Yau
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M2n H(M2n)

Kähler U(n)
Calabi-Yau SU(n)
Hyper-Kähler Sp(n/2)
Quaternionic Kähler Sp(n/2) · Sp(1)

Table 4.1: Varieties M2n with special holonomies H(M2n).

that such a manifold admits a Ricci-flat metric. We now explain briefly the
content of these statements and how they ensure that the holonomy group
will be SU(3).

Being Kähler means several things. The manifoldM2n has to be com-
plex, i.e. a 2n-dimensional space, with a globally defined complex structure1

I that acts linearly on the tangent space TpM2n, and satisfies the following
condition:

IjjI
j
k = −δik . (4.4)

There is a theorem that stipulates that a complex manifold always admits
a Hermitian metric g, i.e. satisfying

g(I•, I•) = g(•, •) . (4.5)

Now, the complex manifold with Hermitian metric g is Kähler if it is en-
dowed with a Kähler form J2 such that

g(•, •) = J2(•, I•) , dJ2 = 0 . (4.6)

A direct implication of being Hermitian for g is that, once written in complex
coordinates, only its components with mixed entries are non-vanishing:

gij = gīj̄ = 0 . (4.7)

Consequently, the Kähler form J2 is actually a 2-form of bidegree (1, 1):

J2 = Jij̄ dzi ∧ dz̄j̄ . (4.8)

Since the Kähler form is closed, we also find extra relations for the metric,

∂igjk̄ = ∂jgik̄ , ∂īgj̄k = ∂j̄gīi , (4.9)

1As presented in the main text, I is an almost complex structure. It is really a
complex structure if the Nijenhuis tensor, N i

jk = Ilj(∂lI
i
k−∂kIil )−Ilk(∂lI

i
j−∂jIil ), vanishes

identically.
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which imply in turn that the Levi-Civita connection does not mix holomor-
phic and antiholomorphic indices:

Γij̄k = Γīj̄k = Γij̄k̄ = Γījk = 0 . (4.10)

In other words, parallel transport does not mix holomorphic and an-
tiholomorphic indices on a Kähler manifold. Since the length of a vector
is also preserved, the holonomy group is at most U(n) if the manifold has
dimension 2n. In order to reduce it to SU(n), one has to verify the absence
of U(1) holonomy. For a simply connected manifold, it can be shown easily
that the U(1) holonomy contributes with a term proportional to the Ricci
curvature 2-form Rij̄ in Equation (4.2). Therefore, a Ricci-flat metric comes
together with a SU(n) holonomy group.

For a Kähler manifold, the first Chern class is given by

c1 =
1

2π
[R] . (4.11)

The vanishing of c1 was proved to ensure the existence of a number h1,1(M6)
of Ricci-flat metrics for the CY manifolds. It counts the Kähler parameters
of the CY. Moreover, c1 vanishes if and only if the manifold has a trivial
canonical bundle. We will exemplify this notion in the context of toric geom-
etry in Section 4.2. This guarantees the existence of a globally-defined and
nowhere vanishing holomorphic n-form Ωn. For our case of interest where
the CY is connected and of complex dimension three, it is uniquely defined
with a choice of Kähler 2-form J2 and holomorphic 3-form Ω3. Moreover,
these can be constructed out of the Killing spinor ξ as follows:

Jij̄ = −iξ†ΓiΓj̄ξ , Ωijk = ξTΓiΓjΓkξ , (4.12)

where the Γi are matrices of Cliff(6, 0).

The non-compact and singular CY that we will deal with in the rest
of this work can be thought as regions, or open neighborhoods, cut from a
compact CY. The definitions for compact CY introduced above thus hold
in non-compact cases up to specific boundary conditions at infinity.

4.1.2 Conical singularities

We now focus on non-compact CY threefolds with cone-type singulari-
ties. The CY is constructed as a cone over a base that is a five-dimensional
Sasaki-Einstein manifold SE5,

CY = C(SE5) , (4.13)
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in the sense of the following construction of the CY metric:

ds2
CY = dr2 + r2ds2

SE5
, (4.14)

where r is a radial coordinate. In general, a (2n − 1)-dimensional Sasaki-
Einstein manifold satisfies the following relation for the Ricci curvature,

Rij = 2(n− 1)gij , (4.15)

and is thus of positive curvature. This moreover guarantees that the full
cone is Ricci-flat and is thus a non-compact CY. Its metric is said to be of
conical-type because there exists a diffeomorphism that rescales the metric,

r → λr ∀λ ∈ R>0 . (4.16)

In the present scenario, we could write

SE5 =
CY \{0}

R+
. (4.17)

Note in passing that we can always find a U(1)R isometry on such a
CY cone generated by the following Killing Reeb vector :

ξ = I

(
r
∂

∂r

)
. (4.18)

In the original version of the gauge/gravity correspondence presented
in Section 3.2, before considering their backreaction, D3-branes are placed
on flat space. More precisely, the stack is localized at a point in R6 ∼= C3,
which is the simplest instance of non-compact CY threefold. The metric for
their transverse coordinates can thus be written as

ds2
R6 = dr2 + r2dΩ2

5 , (4.19)

where dΩ2
5 is the metric for the 5-sphere S5, which is, in turn, the simplest

instance of five-dimensional Sasaki-Einstein manifold. This metric is of the
same form as Equation (4.14), even though the latter is typically singular at
the origin. In the case of the AdS/CFT correspondence, the backreaction
of the branes onto the geometry led to a 10-dimensional space AdS5 × S5

with a F5-flux on the S5. For a conical singularity, we thus expect to
find a correspondence between a gauge theory and a supergravity solution
AdS5 × SE5 with a F5-flux on the Sasaki-Einstein manifold. Naturally, the
non-compact CY has infinite volume and will thus admit any amount of
D3-branes, and in particular, a large N limit, since their RR fluxes can
escape all the way to infinity.
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The number of preserved supercharges on SE5 is given by the dimension
of the space of Killing spinors on the manifold. A theorem [119,128] estab-
lishes an isomorphism between the spaces of covariantly constant spinors on
the cone C(SE5) and SE5 itself. Since the cone is CY, we know that we will
have well-defined supercharges in AdS5 × SE5.

Given a CY cone, it is not easy to find the corresponding and explicit
form of the metric in Equation (4.14). Nevertheless, they were found for
infinite families of singularities denoted by Y p,q and then enlarged to La,b,c

[28, 31]. In the present work, we will be essentially focused on the gauge
theory side of the correspondence and will comment on particular metrics
only in some instances.

4.2 Toric varieties

4.2.1 Fans and cones

To introduce the subject of toric geometry, we start with a familiar
construction of a compact space that is a particular instance of toric vari-
ety, the complex projective plane CP2. It is built from an ambient space
C3\{0} with an equivalence relation on the three homogeneous coordinates
(z1, z2, z3) given by

(z1, z2, z3) ∼ (λz1, λz2, λz3) ∀λ ∈ C∗ . (4.20)

This definition can be summarized by

CP2 =
C3\{0}

C∗
. (4.21)

We can introduce different sets of two local coordinates to describe CP2 on
some patches. Take for instance the patch defined by z3 6= 0, we can use
the following coordinates:

ζ1 =
z1

z3
, ζ2 =

z2

z3
. (4.22)

Similarly, we can define coordinates for the patches z1 6= 0 and z2 6= 0.
Altogether, these three patches cover the whole complex manifold and this
leads us to the observation that CP2 has a dense open subset isomorphic to
the algebraic torus (C∗)2.2 Note also that (C∗)2 acts freely on the manifold

2We call any algebraic group that is a product of C∗ an algebraic torus by analogy
with the abelian “torus” action U(1) in Lie group theory. Indeed, acting with C∗ can be
seen as a complex generalization of acting with a U(1) phase.
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by multiplication on the coordinates, minus some points. This is at the
origin of a U(1)2 isometry in the complex manifold. This fact is important
because it applies to all toric varieties.

In general, a toric variety X∆ is an algebraic variety of complex di-
mension n containing an algebraic torus (C∗)n as a dense open subset, and
such that the torus action on itself extends to an algebraic action on X∆.
This n-dimensional variety is obtained as the quotient of a complex plane
of higher dimension m > n:

X∆ =
Cm\Z∆

(C∗)m−n × Γ
, (4.23)

where Z∆ ⊂ Cm is a suitably chosen set of points and Γ is a finite discrete
group. The name toric variety comes from the presence of the algebraic
torus action. In our case of interest where the toric variety has n = 3
complex dimensions, it will always enjoy a U(1)3 isometry.

One can construct toric varieties by implementing their data combina-
torially into fans and cones. Consider a set of m given integer vectors ni,
i = 1, · · · ,m, in a n-dimensional lattice N ∼= Zn. We introduce a (strictly
convex rational polyhedral) cone σ ⊂ NR, where NR

∼= R⊗N , generated by
the vectors ni:

σ =
{ m∑
i=1

aini ∈ NR | ai ∈ R>0, ni ∈ N
}
, (4.24)

and such that it satisfies the strong convexity condition:

σ ∩ (−σ) = {0} . (4.25)

We define a face of a cone as the intersection of the cone with a supporting
hyperplane. Then, a fan is a collection of cones in NR such that each face
of a cone is a cone, and each intersection of two cones is a face of a cone.
See the fan of CP2 in Figure 4.1 for an illustration.

Given a fan, the toric variety is then constructed as follows:

• For each ni we introduce a new coordinate zi, so that we collect the
set of coordinates of Cm.

• Each of the m − n actions C∗ labelled by A is defined by a set of m
numbers (QA1 , · · · , QAm):

C∗A : Cm → Cm : (z1, · · · , zm) 7→ (λQ
A
1 z1, · · · , λQ

A
mzm) ∀λ ∈ C∗ ,

(4.26)
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Figure 4.1: Fan of CP2 with its three two-dimensional cones (bounded by
the vectors), three one-dimensional cones (along the vectors) and a zero-
dimensional cone (the point at the origin).

and are found to satisfy

m∑
i=1

QAi nki = 0 , ∀A = 1, · · · ,m− n ∀k = 1, · · · , n. (4.27)

• If the vectors ni generate only a sublattice lattice N ′ ⊂ N , then the
discrete group is

Γ = N/N ′ . (4.28)

• For each subset {ni1 , · · · ,nil} that does not generate a cone, we define

Vl = {zi1 = · · · = zil = 0} , (4.29)

such that
Z∆ =

⋃
l

Vl . (4.30)

We will now familiarize ourselves with this procedure by considering two
examples, CP2 and the orbifold C2/Z2.

Example of CP2

In the case of CP2, we have obtained from Figure 4.1 that

n1 = (1, 0) , n2 = (0, 1) , n3 = (−1,−1) . (4.31)

This sets a relation,
n1 + n2 + n3 = 0 , (4.32)
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such that we find one action C∗ with

(Q1, Q2, Q3) = (1, 1, 1) , (4.33)

and hence reproduces Equation (4.20). It is easy to see that 〈n1,n2,n3〉
is not a cone since it does not satisfy the strong convexity condition, see
Equation (4.25). Therefore, one finds

ZCP2 = {z1 = z2 = z3 = 0} = {0} . (4.34)

Example of the orbifold C2/Z2, part I

The fan is generated by

n1 = (1,−1) , n2 = (1, 1) , (4.35)

see Figure 4.2 for an illustration. There is no relation between n1 and n2.
Thus, there is no C∗ action that will quotient C2. However, the lattice N ′

covers only half of N and thus Γ = Z2. One can extract the precise finite
action on homogeneous coordinates in the following way.

Figure 4.2: Fan of C2/Z2.

Start with N ′ the fan of C2, illustrated in Figure 4.3a, which is made of
a single two-dimensional cone together with its faces. Its one-dimensional
cones coincide with the generators of its two-dimensional cones:

n′1 = e′1 = (1, 0) , n′2 = e′2 = (0, 1) . (4.36)

Now, we introduce the following relation to define the lattice N in terms of
N ′:

N = N ′ + (1/2, 1/2)Z . (4.37)
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In terms of the generators of N ′, N is generated by

e1 =
1

2
(e′1 − e′2) , e2 =

1

2
(e′1 + e′2) . (4.38)

In this new base, we find that the vectors n′1 and n′2 have the same coeffi-
cients as the vectors presented in Equation (4.35):

n′1 = e1 − e2 , n′2 = e1 + e2 , (4.39)

so that they are actually the same vectors. We thus understand how to
construct the fan of C2/Z2 out of C2. Notice that Figure 4.2 and Figure 4.3b
are the same fan. Since N ′ and N ′ + (1, 1)Z are the same lattices, we find
that Equation (4.37) indeed implies

N/N ′ = Z2 . (4.40)

(a) (b)

Figure 4.3: (a) Fan of C2, named N ′. (b) Fan N obtained by adding
(1/2, 1/2)Z, in grey in the picture, to N ′.

One can also read how Z2 acts on the homogeneous coordinates. Start
with N ′ the fan of C2 and introduce as usual the coordinates z1 and z2 for
n′1 and for n′2 respectively. The prefactors of Z in Equation (4.37) appear
as powers of ei2π when multiplying the coordinates:

Z2 : (z1, z2)→ (e
1
2
i2πz1, e

1
2
i2πz2) = (−z1,−z2) . (4.41)

Finally, since the union of the two one-dimensional cones is itself a cone,
one finds an empty Z∆. The singular space is thus C2/Z2, as expected.
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4.2.2 The Calabi-Yau and non-compactness conditions

To each ni we associated a homogeneous coordinate zi. It can be un-
derstood that each ni corresponds to a toric divisor

Di = {zi = 0} ∩ X∆ . (4.42)

A divisor is in general a codimension one (in complex dimension) subvariety.
Then, to any formal sum of toric divisors

∑
i aiDi, we can associate a line

bundle O(
∑

i aiDi) whose sections are generated by the monomials of the
form

za11 · · · z
an
n , (4.43)

such that they vanish on Di with a zero to the power of ai, or they have a
pole of order −ai. For this monomial, we have a transformation under the
algebraic torus given by

C∗A : za11 · · · z
am
n 7→ λQ

A
1 a1za11 · · ·λ

QAmamzamm = λ
∑m
i QAi aiza11 · · · z

am
m . (4.44)

The power of λ vanishes if we consider ai = m · ni, for some element of the
dual lattice m ∈M = Hom(N,Z). In this case, the monomial is a globally
defined meromorphic function on the toric variety and O(

∑
i m ·niDi) is a

trivial line bundle, which can be noted as∑
i

m · niDi ∼ 0 . (4.45)

The converse relation holds. If∑
i

aiDi ∼ 0 , (4.46)

then we can find m ∈M such that ai = m · ni for any i.

It can be shown for toric varieties that the canonical bundle K∆ is equal
to O(−

∑
iDi), so that K∆ is trivial if and only if∑

i

Di ∼ 0 , (4.47)

which means in particular that the toric variety is CY if and only if there
exists an m ∈M such that

m · ni = 1 ∀i = 1, · · · ,m . (4.48)

In other words, all ni lie in the same hyperplane of the lattice N . In par-
ticular, since the fan ∆ for a toric variety with three complex dimensions is
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defined in a three-dimensional lattice N , a toric CY threefold can always be
drawn as a convex polygon in a two-dimensional lattice. The latter is the
common hyperplane where the ni end, and the convex polygon is the con-
vex hull of their endpoints. It is usually convenient to perform a SL(3,Z)
transformation to bring all vectors ni to the following form:

ni = (ai, bi, 1) , (4.49)

where the pairs (ai, bi) specify the position of the extremal points of the
convex polygon. We will call this convex polygon the toric diagram and
will occasionally refer to it as ∆. Note that there is a leftover SL(2,Z) that
one can use to redefine the couples (ai, bi).

The CY condition in Equation (4.48) can be rephrased in terms of the
charges for the torus actions:

m∑
i=1

QAi = 0 ∀A . (4.50)

Similarly, the charges of the discrete group Γ sum to zero modulo one since
they appear as arguments in the complex exponential.

Another proposition that we will not develop is that the fan of a com-
pact toric variety spans the whole lattice N . It can be checked in the simple
examples of Figure 4.1 and Figure 4.2.

The example of flat space C3

The fan of C3 is defined by the three vectors

n1 = (1, 0, 0) , n2 = (0, 1, 0) , n3 = (0, 0, 1) , (4.51)

so that we indeed find three coordinates z1, z2 and z3 without any action
on it. We can find m = (1, 1, 1) such that Equation (4.48) is satisfied, as
expected. The latter vector identifies the sublattice of the hyperplane.

A SL(3,Z) transformation sends the vectors of Equation (4.51) into
the new set,

n1 = (1, 0, 1) , n2 = (0, 1, 1) , n3 = (0, 0, 1) , (4.52)

see Figure 4.4a, and so we can draw the toric diagram for C3, illustrated in
Figure 4.4b.
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(a) (b)

Figure 4.4: Flat space C3: (a) Fan. (b) Toric diagram.

The example of the orbifold C2/Z2, part II

If instead of the fan of Figure 4.2, one starts instead with the fan in
Figure 4.5a, with vectors given by

n1 = (1, 1, 0) , n2 = (1,−1, 0) , n3 = (1, 0, 1) , (4.53)

the resulting singularity is C2/Z2×C. This is the actual singular space that
we will use for compactification when mentioning C2/Z2. The complete
action of the discrete group on C3 is

Z2 : (z1, z2, z3)→ (−z1,−z2,+z3) . (4.54)

A SL(3,Z) permutation of the coordinates in Equation (4.53) sends
the vectors into the new set:

n1 = (1, 0, 1) , n2 = (−1, 0, 1) , n3 = (0, 1, 1) , (4.55)

and so we can draw the toric diagram for C3, illustrated in Figure 4.5b.

4.2.3 Dual cones and ring of coordinates

We can define local coordinates as monomials x invariant under the
overall action C∗m−n × Γ. It is not difficult to show that for

x = zp11 · · · z
pm
m (4.56)

to be invariant, we need the pi to satisfy

m∑
i=1

QAi pi = 0 , (4.57)
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(a) (b)

Figure 4.5: Orbifold of flat space C2/Z2 × C: (a) Fan. (b) Toric diagram.

and a similar relation for the charges of the discrete action Γ. It implies in
turn that

pi = m · ni , ∀m ∈M = Hom(N,Z) . (4.58)

The introduction of the lattice M ∼= Zn suggests to define the dual cone:

σ∨ =
{
am ∈MR | a ∈ R>0, m · ni > 0 ∀ni ∈ σ

}
. (4.59)

To find all the possible coordinates as in Equation (4.56), we need to find the
generators of the integer cone σ∨ ∩M which typically has more generators
than σ∨ alone. The ring of coordinate is then defined by

C[σ∨ ∩M ] , (4.60)

in the sense that each generator mi of σ∨∩M is in one-to-one correspondence
with a complex coordinate xi. Finally, the equations defining our singularity
are given by associating the linear relations between the mi to algebraic
equations P for the xi. For example,

m1 + m2 = m3 + m4 → P (x1, x2, x3, x4) ≡ x1x2 − x3x4 = 0 . (4.61)

Assume that we end up with r coordinates xi and a collection of l < r
algebraic equations Pk, this sets a new identity for the ring of coordinates:

C[σ∨ ∩M ] =
C[x1, · · · , xr]
〈P1, · · · , Pl〉

. (4.62)

For toric CY threefolds, we can use these to compute the holomorphic 3-
form Ω3 using the Poincaré residue formula:

Ω3 = Res
dx1 ∧ · · · ∧ dxr
P1 · · ·Pr−3

. (4.63)

We show below how to compute the ring of coordinates and the holomorphic
3-form for specific examples.

58



Example of the orbifold C2/Z2, part III

The dual cone of the fan in Figure 4.5a is generated by

m1 = (−1, 0, 1) , m2 = (1, 0, 1) , m3 = (0,−1, 1) . (4.64)

They will correspond to local coordinates x, y and z. In order to generate
the full integer dual cone σ∨∩M , one needs to introduce an extra generator:

m4 = (0, 0, 1) , (4.65)

which will correspond to the coordinate w. This gives the relation

m1 + m2 = 2 m4 , (4.66)

and so, in terms on local coordinates:

xy = w2 . (4.67)

This is in agreement with the definition of this orbifold space. If one takes
(z1, z2, z3) as coordinates of C3, with the action Z2 action determined before
in Equation (4.41), then one can build invariant coordinates:

x = z2
1 , y = z2

2 , w = z1z2 , z = z3 , (4.68)

and recover Equation (4.67). We can also use its defining equation to check
that the variety is singular at x = y = w = 0 for any z:

f(x, y, w, z) ≡ xy − w2 = 0 , df |x=y=w=0 = 0 . (4.69)

Finally, we can compute the holomorphic 3-form for this space. Let be

Ω3 = Res
dx ∧ dy ∧ dz ∧ dw

xy − w2

=
1

2πi

∮
xy−w2=0

dx ∧ dy ∧ dz ∧ dw

xy − w2

=
dx ∧ dy ∧ dz

2w
, (4.70)

where w is now a function of x and y.

Example of the conifold C

The fan for the conifold C is generated by

n1 = (0, 0, 1) , n2 = (1, 0, 1) , n3 = (1, 1, 1) , n4 = (0, 1, 1) , (4.71)
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see Figure 4.6a. We find the relation

n1 − n2 + n3 − n4 = 0 , (4.72)

such that we have one C∗ action with

Q = (+1,−1,+1,−1) . (4.73)

The full lattice is generated by the ni such that Γ is trivial. Z∆ is not empty
since 〈n1,n3〉 and 〈n2,n4〉 are not cones of the fan. We thus find

C =
C4\{z1 = z3 = 0} ∪ {z2 = z4 = 0}

C∗
. (4.74)

Starting with the toric diagram in Figure 4.6b, we find the defining
equations for the conifold. The dual cone is generated by

m1 = (1, 0, 0) , m2 = (0, 1, 0) , m3 = (−1, 0, 1) , m4 = (0,−1, 1) .
(4.75)

Together, they generate the full integer dual cone σ∨∩M and we do not need
to introduce extra generators. Moreover, they are linked by the relation:

m1 + m3 = m2 + m4 , (4.76)

and so, in terms on four local coordinates:

xy = uv . (4.77)

It can be checked to be singular at the origin. We can also compute the
holomorphic 3-form for this space. Let be

Ω3 = Res
dx ∧ dy ∧ du ∧ dv

xy − uv

=
dx ∧ dy ∧ du

u
. (4.78)

4.2.4 Cycles and (p, q)-web

It will be of particular importance for us to identify the different cy-
cles in the base of the CY cone that shrink at the singularity. We briefly
introduce some tools of toric geometry that are relevant in this context.

The integer dual cone of a toric CY threefold can be projected onto
a two-dimensional plane in order to recover the (p, q)-web. This diagram
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(a) (b)

Figure 4.6: The conifold C: (a) Fan. (b) Toric diagram.

(a) (b)

Figure 4.7: The Hirzebruch surface F0: (a) Triangulated toric diagram. (b)
(p, q)-web.

is found to be dual to the toric diagram once triangulated, see Figure 4.7
for an example. (p, q) labels refer to the directions of external legs in the
web. We will see in Chapter 6 how to connect this new diagram to webs of
fivebranes.

The (p, q)-web delimitates the distinct regions of the dual cone for which
the element m satisfies the strict equality

m · ni = 0 , (4.79)

for exactly one value of i. Now, we use the U(1)3 isometry to think about the
toric variety as a T3-fibration over the dual cone, and hence the (p, q)-web.
Regions bounded by two external legs represent the four-dimensional toric
divisors Di mentioned earlier, where a one-cycle shrinks and T3 degenerates
into a T2. External legs are the intersections of two toric divisors, and there
T3 shrinks into a S1. At the singularity, all external edges would meet,
and the full T3 would degenerate, but this is not shown in the (p, q)-web of
Figure 4.7b precisely because the singularity is resolved in this picture.

The triangulation of the toric diagram has a precise geometrical mean-
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ing. It actually corresponds to a small resolution of the singular locus,
where the latter is excised from the variety to be replaced by a certain num-
ber of smooth two-spheres S2 ∼= CP1. In general, there can be different
ways to triangulate a toric diagram and hence different resolutions. See
for instance that the conifold admits two distinct resolutions in Figure 4.8.
The transition from one to the other is called a flop. The S2 can be seen
in the (p, q)-web as an intermediate segment linking two external legs. It
corresponds to a two-cycle that is normally shrinking at the non-resolved
singularity.

(a) (b)

Figure 4.8: Two small resolutions of the conifold.

Another way to do resolutions consists of blowing up the singularity in
the variety of complex dimension n by inserting one or several CPn−1 at
the singular locus.3 This is done by adding extra divisors to the variety
and hence new points in the toric diagram. In particular, when a toric
diagram has internal points, compact four-cycles CP2 will be present where
we expect to find the singularity. Those are shown in the (p, q)-web as
finite areas surrounded by the intermediate segments, like in the center of
Figure 4.7b.

Example of the orbifold C2/Z2, part IV

We study the blow-up resolution of the singular locus of the orbifold
C2/Z2 in two complex dimensions. As prescribed above, we add an extra
generator in the fan, see Figure 4.9. The fan is now composed of two two-
dimensional cones, together with their respective faces.

Keeping the same conventions as before and introducing an extra
coordinate z4 corresponding to the new one-dimensional cone, it can be

3The terminology blow-up is sometimes used to refer to small resolutions too.
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Figure 4.9: Blow-up of the C2/Z2 orbifold.

checked that this fan defines a variety parameterized by (z1, z2, z4) in
C3\{z1 = z2 = 0} and subject to the equivalence relation:

(z1, z2, z4) ∼ (λz1, λz2, λ
−2z4) , ∀λ ∈ C∗ . (4.80)

At z4 6= 0, this freedom can be used to set z4 = 1 and we find a residual
equivalence relation:

(z1, z2, 1) ∼ (λz1, λz2, 1) , for λ2 = 1 , (4.81)

which reproduces the geometry of the orbifold space away from the singular
locus, since (0, 0, z4) is not part of the toric manifold. At z4 = 0, we find

(z1, z2, 0) ∼ (λz1, λz2, 0) , ∀λ ∈ C∗ . (4.82)

λ is not constrained anymore and the equivalence relation defines a CP1 ∼=
S2 compact manifold.

From the point of view of the C2/Z2×C threefold, the extra generator
corresponds to a point of the toric diagram placed on its perimeter and we
find indeed that the CP1 is an intermediate segment in the (p, q)-web, see
Figure 4.10.

del Pezzo surfaces

Blow-ups can also be used to reach new instances of CY cones. For
example, we can add one-dimensional cones in the fan of CP2 and generate
toric del Pezzo surfaces, noted dPn when n one-dimensional cones are added
in the fan (up to three). See the fan of dP1 in Figure 4.11a. For our purpose
of considering non-compact varieties with three complex dimensions, we will
be interested in complex cones over del Pezzo surfaces which are obtained
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(a) (b)

Figure 4.10: The orbifold of flat space C2/Z2: (a) Triangulated toric dia-
gram. (b) (p, q)-web.

by extending the fan of the surface to a three-dimensional lattice. See the
toric diagram for the complex cone over dP1 in Figure 4.11b. We will also
refer to complex cones over pseudo del Pezzo surfaces for toric varieties with
non-isolated singularities that are obtained from additional blow-ups of CP2

and resemble non-toric del Pezzo surfaces [129].

(a) (b)

Figure 4.11: dP1 surface obtained as a blow-up of CP1 at one point. (a)
Fan of the dP1 surface. (b) Toric diagram of the complex cone over dP1.
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Chapter 5

Quivers and Fractional Branes

Branes at singularities have a rich history of developments in string
theory. See [24–27, 30, 53, 119, 130–136] for some of the first investigations
on the subject. In this section, we shall however focus on the simplest
examples on the market: orbifolds of flat space and the conifold.

The orbifold C2/Z2 will guide us on a path to N = 2 gauge dynamics.
This geometry has the advantage to be easy to construct and we know a sim-
ple prescription to access the D-branes low energy gauge theory via world-
sheet techniques. We present it in the hope of clarifying some ideas about
quivers and fractional branes in general. We will not however present the
dual supergravity solution AdS5 × S5/Z2. See [137] and references therein
for a more detailed description.

We will then move on to the conifold. Although being one of the
simplest examples of toric CY geometry, it leads to a very rich N = 1
dynamics. We will explore the SCFT that one obtains as the dual gauge
theory, the Klebanov-Witten model, and then describe a kind of fractional
branes that trigger a cascading RG-flow: the deformation branes. We will
review both the gauge theory and the supergravity dual in this case. See
[138] for more details on this subject.

Finally, we will discuss some geometrical features of fractional branes
[139] and their intimate relation to anomalies [134, 140, 141] when arising
on toric CY singularities. This will hopefully enlighten some of the general
features of N = 1 gauge theories that one can obtain by applying the
gauge/gravity duality into the context of toric geometry.
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5.1 Orbifolds of flat space

5.1.1 A first encounter with quivers

Consider placing a stack of N D3-branes at a generic point of the
orbifold space C2/Z2 × C. If one thinks about this configuration in the
universal cover of the space, it is like looking at two identical stacks of
branes placed in C3 symmetrically with respect to the origin in C2, where
is the singular locus of the orbifold space. Open strings can link a stack
to itself or its mirror. However, only the first kind of strings will produce
massless modes due to the distance separating the two stacks. The low
energy spectrum for a given stack is thus simply the usual four-dimensional
U(N) gauge theory with three adjoints, as in flat space. Mathematically
speaking, the sets of D3-branes are mapped into each other by the regular
representation R of the discrete group.

Now, we change this situation by moving the stacks towards the origin.
We expect to find new massless modes since the distance between the two
mirror stacks is vanishing. In fact, the whole low energy gauge theory can a
priori be changed and will be constrained by one principle: its spectrum has
to be invariant under the orbifold action since the stack is placed on its fixed
point. We now show how to simply derive it using worldsheet techniques.
Recall first that the massless bosonic states coming from the open strings
sector are given by the following quantum states in the NS sector:

λ⊗ ψM−1/2 |k〉 . (5.1)

We start with a 2N × 2N Chan-Paton matrix λ, for the two stacks of
N D-branes, and ask for the states that are invariant under the orbifold
action. First, we need to define the action on Chan-Paton matrix with a
matrix γg that satisfies the group law of Z2:

Z2 : λ→ γgλγ
−1
g , (5.2)

such that
γ2
g = γg2 = γid = 12N×2N . (5.3)

It will be convenient for a latter purpose to diagonalize the regular action
of Z2:

γg =

(
1N×N 0

0 −1N×N

)
. (5.4)

This action has to accompanied by the orbifold spatial action on ψM−1/2.

This is because the orbifold acts on spatial coordinates xM , and so acts
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equivalently on the worldsheet fields XM . Supersymmetry then imposes
the same action on ψM components. In the present case, the action on the
complex coordinates of C3 ∼= R6 is

Z2 : (z1, z2, z3)→ (−z1,−z2,+z3) . (5.5)

For a general orbifold, always acting on the coordinates transverse to the
D3-branes, we can introduce a general matrix S related to the spatial action:

Orbifold : ψi−1/2 → Sij ψ
j
−1/2 , (5.6)

where i, j = 1, 2, 3. For the specific orbifold C2/Z2 × C, we thus have

S =

−1 0 0
0 −1 0
0 0 1

 . (5.7)

Massless states from the open strings sector living at the tip of the orbifold
will thus be constrained by

Aµ = γgA
µγ−1

g , Φ1 = −γgΦ1γ−1
g , Φ2 = −γgΦ2γ−1

g , Φ3 = γgΦ
3γ−1
g .
(5.8)

The resulting spectrum is then given by

Aµ =

(
Aµ1 0
0 Aµ2

)
, Φ1 =

(
0 X12

X21 0

)
,

Φ2 =

(
0 Y12

Y21 0

)
, Φ3 =

(
Z11 0
0 Z22

)
,

(5.9)

where Aµ1 and Aµ2 are two gauge fields for two different gauge groups SU(N)1

and SU(N)2. The two U(1) parts of the gauge groups are discarded because
one is related to the center of mass of the D-branes and decouples in the
infrared, the other is also infrared-free and becomes a global baryonic sym-
metry U(1)B at low energy. The other fields are defined in a bifundamental
or adjoint representation and imply that the theory is non-chiral:

X12, Y12 ∈ ( 1, 2) , X21, Y21 ∈ ( 2, 1) , Z11 ∈ Adj1 and Z22 ∈ Adj2 .
(5.10)

We can recover the superpotential easily starting with the one for D3-
branes in flat space,

W = Φ1[Φ2,Φ3] , (5.11)
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and simply plugging in the expressions found in Equation (5.9). We thus
find

W = X12Y21Z11 +X21Y12Z22 −X12Z22Y21 −X21Z11Y12 . (5.12)

Each of the gauge group is a SU(N) N = 2 theory with 2N flavors. See
for instance that for SU(N)1 we can group the N = 1 multiplets into one
N = 2 real multiplet and two hypermultiplets (where we refrain to show
the fermions):

VN=2 = Aµ1 ⊕ Z11 , H1
N=2 = X12 ⊕ Y21 , H2

N=2 = Y12 ⊕X21 . (5.13)

The same can be done for SU(N)2. Finally, the β functions vanish and the
model is thus superconformal with N = 2 supersymmetries.

This computation is easy to carry on for any kind of orbifold of flat
space C3/Zn or C3/Zp × Zq.1 See for instance that for an orbifold with a
Zn action defined by

(z1, z2, z3)→ (ei2π
a
n z1, e

i2π b
n z2, e

i2π c
n z3) , (5.14)

with the CY condition:

a+ b+ c = 0 modn , (5.15)

one just has to consider

γg =


1N×N 0 · · · 0

0 ei2π
1
n1N×N · · · 0

0 0 · · · ei2π
n−1
n 1N×N

 ,

S =

ei2π
a
n 0 0

0 ei2π
b
n 0

0 0 ei2π
c
n

 ,

(5.16)

and run the same machinery as before.

Of course, the same construction does not hold so easily for any generic
toric singularity. However, the outcome for the massless spectrum is quite
illustrative of what can happen in general. For instance, the presence of
singularity will always enlarge the number of gauge factors in the whole

1The discrete groups in the orbifold quotients are chosen to be subgroups of SU(3), as
a necessary condition for the orbifold to be CY.

68



gauge symmetry group. And since open strings will always link a stack of
branes to itself or to another one, we can always expect to find fields defined
in an adjoint or bifundamental representation respectively. These limited
possibilities are a good motivation to describe the low energy theories of
these stacks of branes at singularities in terms of quivers.

Quivers are oriented graphs where the nodes are the different SU gauge
groups and arrows represent matter fields: an arrow linking a gauge group i
to the gauge group j is a bifundamental field ( i, j) and an arrow joining a
gauge group k to itself is defined in the adjoint Adjk. We present the quiver
for the orbifold C2/Z2 in Figure 5.1. Similarly, we can obtain the quiver for
any C2/Zn, see Figure 5.2. Since Zn is a subgroup of SU(2), it can be noted
that they are all N = 2 quivers. Take also a moment to contemplate the
correspondence between these quiver gauge theories and the extended An−1

Dynkin diagrams, which is a manifestation of the McKay correspondence
between discrete groups of SU(2) and simple Lie groups falling into the
ADE classification [142].

Figure 5.1: The quiver of the orbifold of flat space C2/Z2.

Unfortunately, the quiver as it is presented here misses a crucial piece
of information: the superpotential of the theory. We will introduce in Chap-
ter 6 a more appropriate tool that encodes the superpotential in addition
to the usual quiver information.

5.1.2 N = 2 fractional branes

If one looks for gauge groups with different rank assignments,2 most
quivers will still admit a certain number of non-anomalous solutions. This
statement is trivial for non-chiral theories but applies for some chiral too.
We will refer to these new solutions in general as fractional D3-branes,

2All over this work, we mention the rank of a gauge group where we should, strictly
speaking, talk about the dimension of its fundamental representation.
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Figure 5.2: The quiver of the orbifold of flat space C2/Zn.

or fractional branes for short. The reason is that, contrarily to regular
branes, which are configurations obtained as above (D3-branes that can be
displaced to any point of the space), fractional branes are obtained by wrap-
ping higher-dimensional D-branes on cycles that shrink at the singularity.
In our orbifold example, C2/Z2×C has one non-trivial two-cycle that shrinks
at the singularity and on which we can wrap D5-branes with two possible
orientations, and hence opposite fluxes. Their tension forbids them to leave
the singularity. The result is that they effectively look like D3-branes with
fractional RR charges.

In the case of C2/Z2, the gauge theory point of view on fractional
branes is that non-abelian anomalies are trivially satisfied for any N1 and
N2 since the theory is non-chiral. We can consider turning off N2 while
keeping N1 = N . The gauge theory of these N fractional branes is thus
SU(N) with an adjoint field Z11. The theory is still N = 2 but with only
one N = 2 vector multiplet:

VN=2 = Aµ1 ⊕ Z11 . (5.17)

For this reason, we call these fractional branes N = 2 fractional brane.
In the present situation, the number of supersymmetries does not change
but we will see later that N = 2 fractional branes can be present in N = 1
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quivers too. Note also that the theory is not conformal anymore. Fractional
branes are indeed an important tool to generalize the gauge/gravity duality
to non-conformal setups.

A peculiarity of these kinds of fractional branes, that will play an im-
portant role in Part III, is the presence of a flat direction in the moduli
space of the gauge theory. For C2/Z2, we can go on the Coulomb branch by
giving a VEV to the adjoint field Z11 since it does not appear in the super-
potential anymore once N2 = 0. This freedom is reflected in the geometry
by the fact that we have a non-isolated singularity (coming from the extra
C in C2/Z2 × C) onto which the stack of fractional branes can freely move.

We said before that regular branes transform in the regular represen-
tation R of the finite group. It appears that fractional branes transform
in irreducible representations. Decompose the reducible R in irreducible
representations of Z2:

R = D0 ⊕D1 . (5.18)

Now, see thatD0 anD1 correspond to the diagonal actions in Equation (5.4).
Comparing it with Equation (5.9), we find that D0 an D1 act on Aµ1 and Aµ2
respectively. Each irreducible representation is thus identified to a fractional
brane, and the combination of two of these fractional branes gives rise to a
regular brane. This one-to-one correspondence can be generalized to other
orbifolds.

5.2 The conifold and cascading gauge theories

5.2.1 The Klebanov-Witten model

The Klebanov-Witten model is a superconformal field theory that one
obtains by placing a stack of D3-branes at the tip of another singular ge-
ometry, the conifold. The latter has its defining equation given by

z2
1 + z2

2 + z2
3 + z2

4 = 0 . (5.19)

Its isometries are SO(4) ∼= SU(2) × SU(2), where zi transform in the 4,
and a U(1) for a common change of phase for the coordinates. There is a
singularity at the origin, zi = 0 for every i = 1, · · · , 4. Alternatively, we can
run the machinery of toric geometry to extract the equation of the conifold
from its toric diagram in Figure 4.6b and find

xy = uv . (5.20)
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The link between the two equations is a simple change of coordinates:

x = z1 + iz2 , y = z1 − iz2 ,
u = z3 + iz4 , v = −z3 + iz4 .

(5.21)

It is possible to define a radial coordinate r to write the metric of this
space3 as a cone over a base T 1,1:

ds2
C = dr2 + r2ds2

T 1,1 , (5.22)

where the base itself is defined as a coset,

T 1,1 =
SU(2)× SU(2)

U(1)
, (5.23)

and has the topology of S2 × S3.

We place a stack of N D3-branes at the tip of the conifold and consider
the limit where supergravity is a good approximation of string theory, i.e.
taking N � 1 and gs � 1 while keeping gsN � 1 fixed. In the near-horizon
limit, we find that the backreaction of the D3-branes onto the metric changes
it into

ds2 =
r2

R2
ηµνdxµdxν +

R2

r2
(dr2 + r2ds2

T 1,1)

= R2(ds2
AdS5

+ ds2
T 1,1) , (5.24)

with

R4 =
27

16
4πgsα

′2N . (5.25)

As expected, the resulting metric is similar to the one of the original AdS/
CFT correspondence where the metric of S5 has been replaced by the metric
for the base T 1,1. The AdS5 part of the metric highlights the fact that the
dual four-dimensional gauge theory will be conformal. The radius of space
R differs by a ratio of the volumes of S5 and T 1,1. The dilaton is constant
and there is still a self-dual F5-flux, but that is now integrated over T 1,1:∫

T 1,1

F5 = N . (5.26)

Klebanov and Witten found the dual gauge theory [24] to be SU(N)1 ×
SU(N)2. Again, one U(1) decouples and the other is IR-free, becoming a

3The metric ds2T1,1 is actually known. You can find it explicitly in [24].
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baryonic global symmetry U(1)B. It is accompanied by four chiral super-
fields, A1, A2 ∈ ( 1, 2) and B1, B2 ∈ ( 2, 1), see the quiver in Figure 5.3.
There is a superpotential given by

W = hdeti,jAiBj = h (A1B1A2B2 −A1B2A2B1) . (5.27)

The latter preserves a global SU(2)L×SU(2)R×U(1)B ×U(1)R symmetry
group with charges depicted in Table 5.1. It is possible to check that the
moduli space that is exactly N copies of the conifold, symmetrized under
the permutation of the N D-branes.

Figure 5.3: The quiver of the conifold C.

SU(2)L SU(2)R U(1)B U(1)R

Ai 1 −1 1/2
Bj 1 1 1/2

Table 5.1: Global charges in the Klebanov-Witten model.

The group of global symmetries is large enough to ensure that all the
chiral superfields have the same anomalous dimension γ0. Conformality
then requires

γ0 = −1

2
, (5.28)

which emphasizes the strong interacting nature of the fixed point. The
superpotential is thus exactly marginal and the theory is self-dual under
Seiberg duality.

τIIB in the string theory should correspond to a parameter on the space
of conformal space for theories and should be symmetric under the exchange
of τ1 and τ2 in the gauge theory. Consequently,

e−φ ∝ 1

g2
1

+
1

g2
2

. (5.29)
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Another parameter, related to the difference τ1−τ2, is linked in string theory
to the presence of a non-trivial two-cycle and thus to the values of 2-form
fields,

e−φ
(∫

S2

B2 −
1

2

)
∝ 1

g2
1

− 1

g2
2

. (5.30)

The baryonic symmetry U(1)B has also a readable interpretation from
the string theory point of view. As always in the gauge/gravity duality,
a global symmetry in the field theory corresponds to a gauge symmetry
in the bulk. The gauge field comes from the reduction of the RR bulk
field C4 on the three-cycle of T 1,1, since it topologically contains a S3. We
correspondingly have charged dibaryons in the field theory:

A(i1···iN ) = (Ai1)α1
β1
· · · (AiN )αNβN εα1···αN ε

β1···βN ,

B(i1···iN ) = (Bi1)β1α1 · · · (BiN )βNαN ε
α1···αN εβ1···βN .

(5.31)

Since π3(T 1,1) = Z, the baryons are interpreted as D3-branes wrapped an
integer number of times on the three-cycles on the string theory side. They
have a mass R4/gs ∝ N and dimension 3N/4.

5.2.2 Deformation branes

The fact that T 1,1 contains topologically a S2 leads us to another kind
of fractional branes, the deformation branes. Indeed, it translates the fact
that π2(T 1,1) = Z and thus branes of that extend in a high enough number
of spatial directions can be wrapped on a non-trivial two-cycle of T 1,1. In
particular, we can modify the dual gauge theory previously found by wrap-
ping D5-branes on the two-cycle [135]. Those are fractional branes, like
D3-branes with fractional charges.

Consider adding M D5-branes to the system. They are a magnetic
source of RR F3-flux, since it is the Hodge-dual of a 7-form, and so introduce
a non-trivial background for C2. This breaks the S-duality of type IIB and
generates a F3-flux over the S3, such that∫

S3

F3 = M . (5.32)

This flux will have a dramatic impact on our setup, notably on the geometry
and the flux F5, to which F3 couples. B2 will have non-trivial value too, and
so will H3 = dB2. The metric will not be AdS5 × T 1,1, which is consistent
with the fact that the gauge theory is not conformal anymore. For instance,
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having placed M deformation branes at the tip of the conifold and probing
it with a single D3-brane leads to the geometry for the deformed conifold:

z2
1 + z2

2 + z2
3 + z2

4 = ε2 . (5.33)

This manifold is smooth. More precisely, as S2 shrinks towards small values
of the radial coordinate, S3 keeps a finite radius, see Figure 5.4. It is still
CY but not toric anymore since ε explicitly breaks one of the C∗ actions.

Figure 5.4: In presence of deformation branes, the conifold geometry is
smoothed out, and we represent the corresponding inflated S3 with a dashed
line in the (p, q)-web.

The cascade

The gauge theory is the one of the conifold with modified ranks in the
gauge group: SU(N + M)1 × SU(N)2, where N and M are the numbers
of regular and deformation branes respectively. For N � M , one tends to
recover the superconformal Klebanov-Witten as a good approximation of
the model. In particular, it is possible to find

γ0 = −1

2
+O

(
M

N

)2

. (5.34)

The beta-functions are given by

β1 = N + 2Nγ0 + 3M = +3M +N O
(
M
N

)2
,

β2 = N + 2Nγ0 − 2(1− γ0)M = −3M +N O
(
M
N

)2
.

(5.35)
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A consequence is that the two gauge groups never reach a simultaneous
fixed point. This will give to the RG-flow the trajectory of a cascade, that
we now describe qualitatively.

Suppose that we start near the fixed point g∗2 , where g1 and the su-
perpotential coupling h are very small. There, γ0 > −1/2 and only g1 is a
relevant operator so that the RG-flow inevitably deviates towards the fixed
point g∗1 for the first gauge factor. Near this point, γ0 < −1/2 and h be-
comes relevant and deviates the flow towards larger values of g∗1 , keeping g2

comparatively small. A Seiberg duality on the first factor is necessary to
understand the theory in the infrared, and thus the gauge theory becomes
better described by SU(N −M)1 × SU(N)2 with a small new coupling g̃1

and h irrelevant. We are in a region similar to the one where we started, but
the rank is decreased by 2M . The RG-flow thus follows a cascade of Seiberg
dualities until we reach small values for k. See Figure 5.5 for an illustration
of the cascading RG-flow. This goes on until we reach SU(M + l)× SU(l)
for 0 < l 6M .4

*

*

*

*

*

*

Figure 5.5: A cascade of Seiberg duality triggered by M fractional branes
on top of N �M regular branes.

4Actually, the steps where M < l 6 3M do not have fixed points for the gauge group
of higher rank but rather enjoy free magnetic phases which do not change the qualitative
behavior of the RG-flow described in the paragraph.
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The mesonic branch of SU(M + l)×SU(l) for 0 < l 6M can be easily
worked out, although we restrict ourselves to describe it qualitatively here.
The U(1)R symmetry being anomalous leaves only a Z2M R-symmetry in
the quantum theory, regardless of the number of regular branes. In the
infrared, the latter breaks down to Z2, which is explicit from the presence
of ε in Equation (5.33), so that the moduli space has to be composed of
M branches. One eventually finds that the mesonic branch corresponds to
the moduli space for l regular branes moving on the deformed geometry. In
other words, each branch is l copies of the deformed conifold, symmetrized
under the permutation of l regular branes, see Figure 5.6.

Figure 5.6: The mesonic branch for M = 6 deformation branes with l = 1
regular brane consists of M = 6 deformed conifolds.

We can see that something particular happens when N = kM for a
given k > 1. We eventually reach SU(2M) × SU(M), i.e. l = M , at the
bottom of the cascade. SU(2M) still runs faster towards the infrared and
the second still can be seen as a global symmetry. Now we have baryons
B̄ = [A]2M and B = [B]2M , and mesons Mij = (Ai)α(Bj)

α where SU(2M)
indices are contracted. This is nothing but SQCD with the same number of
colors than flavors, so that we are in the scenario where SQCD has deformed
moduli space. A new thing to do, with respect to the cases l < M , is then
to go on the baryonic branch:

B = B̄ = iΛ2M
2M , M = 0 . (5.36)

This breaks fully the SU(2M) and leaves SU(M) unbroken since baryons
are singlets under the latter. The mesons get a mass and are integrated out.
We thus recover the M isolated vacua of pure N = 1 SYM in addition to
an extra massless chiral superfield containing the Goldstone boson for the
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breaking of U(1)B. The theory thus enjoys a discrete spectrum of glueballs,
confinement and chiral symmetry breaking due to a gaugino condensate.
The M vacua are separated by domain walls. Even if in principle there is
no mass gap anymore, the massless superfield does not couple relevantly in
the IR to the SU(M) sector and thus we can neglect it (at least at weak ’t
Hooft coupling).

The supergravity flow

Klebanov and Tseytlin [26] proposed a dual supergravity solution where
the breaking of conformal invariance, i.e. the impossibility to simultane-
ously cancel the two expressions in Equation (5.35), is translated into a
radial dependence of the field B2:∫

S2

B2 =
3Meφ

2π
ln
(
r/r0

)
≡ k(r) , (5.37)

where the dilaton φ is kept constant. In addition to the effect on the geom-
etry, the deformation branes have also an effect on the H3 and F5-fluxes. In
particular, one can expect to find new dependences in the radial coordinate
r in the Gauss law: ∫

T 1,1

F5 = N(r) . (5.38)

One thus finds
N(r) = Mk(r) ∝ ln

(
r/r0

)
, (5.39)

which reproduces the effective lowering of regular branes in the geometry
as we move towards the infrared. We also know from geometrical consider-
ations that N should be proportional to R4, which is then also expected to
be a function of r.

Klebanov and Tseytlin thus proposed a warped version of the Klebanov-
Witten metric:

ds2 =
r2

R(r)2
ηµνdxµdxν +

R(r)2

r2
(dr2 + r2ds2

T 1,1)

= R(r)2(ds2
AdS5

+ ds2
T 1,1) , (5.40)

where R(r) can be computed:

R(r)4 = (81/8)(gsM)2α′2 ln(r/r0) . (5.41)

However, this solution is still singular and needs to be corrected if we want
to learn about confinement and chiral symmetry breaking. To solve this
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issue, Klebanov and Strassler [27] proposed instead that the metric should
be

ds2 = h(r)−1/2ηµνdxµdxν + h(r)1/2ds2
def.C , (5.42)

where ds2
def.C is the metric of the deformed conifold and h(r) should asymp-

tote to R(r)4/r4 at large r. They also assume a constant dilaton and h(r)
nonsingular, without horizons, and vanishing at a finite value r = rmin.

The solution that they found successfully displayed a discrete spectrum
for glueballs, as it can be effectively made compact with the limiting value
r = rmin; confinement by attaching Wilson loops to the boundary; chiral
symmetry breaking with the Z2 R-symmetry that follows automatically from
the equation of the deformed conifold, together with a division of the moduli
space in M distinct branches; domain walls constructed with D5-branes
wrapped on S3.

In order to connect these solutions to the cascading gauge theories,
we recall that any supergravity solution is reliable only at large ’t Hooft
coupling. Assuming N = kM in the gauge theory, the solution has to be
placed in a region of the space of couplings where the varying ’t Hooft
coupling λk = gskM is large. This region is somehow distant from the fixed
points that we described above, where the field theory is more adequate
to learn about physics. It is however interesting to note that as you go
backward in the RG-flow, towards the UV regime of the theory, k effectively
increases and you will reach λk � 1. This is true except for flows that travel
extremely close to the fixed points. Conversely, for RG-flows with gsM � 1,
the field theory description starts to be necessary at a step k ∼ 1/gsM and
below. A corollary is that starting with a small λk = g2

kkM keeps you near
the fixed points themselves, see Figure 5.7

A fascinating conclusion is the following: whatever is the flow that you
follow in your journey towards the infrared, you always end up in a vacuum
that shares the same features as N = 1 SYM. This does not mean that
the corresponding low energy theories are the same, for instance they can
have different massive spectra, but rather that they sit in the same infrared
universality class.

5.3 Symmetries and anomalies

The ranks Ni of the gauge groups associated with nodes in the quiver
reflect the configuration of branes at the singularity. These branes include
both regular and fractional D3-branes.

The configuration with a democratic assignment for every node Ni = N
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Figure 5.7: Different RG-flows in the case where gsM � 1. A flow with
λk � 1 is better described as a gauge theory, and λk � 1 as the supergravity
dual.

corresponds to having N regular D3-branes and no fractional branes. This
configuration is always tadpole free since the CY is non-compact and the
RR flux sourced by regular D3-branes can escape all the way to infinity.

Configurations with unequal ranks are obtained by adding fractional
branes. It is a general fact that the latter correspond to D5-branes wrapped
on vanishing compact two-cycles [139]. We already met these cycles when
talking about small resolutions in Chapter 4. When compact four-cycles
are also present at the singularity, i.e. when the toric diagram of the sin-
gularity has internal points, these D-branes source RR tadpoles that must
be canceled. This is the geometric counterpart of being a chiral dual gauge
theory and having non-abelian anomalies to cancel [143], see the familiar
one-loop Feynman diagram in Figure 5.8.

In other words, tadpole cancellation amounts to canceling the flux
sourced by the branes in compact homology. This equivalence of tadpole
and anomaly cancellation holds even formally for gauge groups with zero
rank. In this work, we will use anomaly cancellation conditions (ACC) and
tadpole cancellation interchangeably.

The number of independent, anomaly-free fractional brane configura-
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Figure 5.8: One-loop Feynman diagram with fermions running in the loop
and non-abelian gauge vectors in the external legs.

tions is thus in one-to-one correspondence with the number of compact
two-cycles whose Hodge duals in the CY are non-compact four-cycles. In-
deed, D5 branes wrapped on these (and only these) two-cycles are tadpole
free since the RR flux can again escape to infinity. For toric geometries, we
know how to compute the number of anomaly-free fractional branes based
on the perimeter of the toric diagram n, i.e. the number of external points
of the convex polygon [134,140]:

#Fractional Branes = n− 3 . (5.43)

Pictorially, the quiver is really a convenient object for checking the
absence of local gauge anomalies in the low energy theory. In practice, the
cancellation of anomalies at a given node corresponds to having the same
number of incoming and outgoing arrows (weighted by the ranks of the
nodes at their other endpoints). This is encoded in the (antisymmetric)
matrix A defined as

A = adj(Q)− adj(Q)T , (5.44)

where adj(Q) is the adjacency matrix of the quiver. The latter is a matrix
whose elements adj(Q)ij count the number of bifundamental chiral super-
fields ( i, j) charged under the gauge group i and the gauge group j. With
abuse of language in the following, we will call A the adjacency matrix, for
simplicity. The matrix A is only sensitive to the chiral content of the theo-
ries (e.g. it is zero for C2/Z2 and the conifold). Cancellation of anomalies
amounts to solving the homogeneous system of equations defined by this
matrix,

For each SU(Ni) :
∑
j

AijNj = 0 , (5.45)

that is, finding Ker(A). Vectors in Ker(A) are the ranks associated with
regular and fractional branes.

The quiver of the complex cone over dP1, see Figure 5.9, was found
to yield a chiral gauge theory and to host an additional kind of fractional
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brane. The latter is known to break supersymmetry in an unstable runaway
vacuum [66]. From the quiver, we get

A =


0 2 −1 −1
−2 0 −1 3
1 1 0 −2
1 −3 2 0

 . (5.46)

Ker(A) is generated by

N = (N1, N2, N3, N4) = (1, 1, 1, 1)N + (3, 1, 0, 2)M . (5.47)

N and M parametrize the regular and fractional branes respectively, in
accordance with the fact that the toric diagram of the singularity has a
perimeter equal to four. N = 0 and M = 1 indeed reproduce the incrimi-
nated fractional brane.

(a)

4

3

(b)

Figure 5.9: The complex cone over dP1 (a) Toric diagram. (b) Quiver.

Initially, the gauge theory on the worldvolume of the D-branes is a
product U(N) gauge groups and one can ask why we did neglect the U(1)
factors in the above discussion. First of all, one can identify a U(1) under
which all matter fields are charged, and that decouples in the infrared, sim-
ilarly to what happens for D-branes on flat space. Secondly, in chiral gauge
theories some U(1) factors can be anomalous and become massive through a
generalization of the Green-Schwarz mechanism [144]. Finally, the leftover
and non-anomalous U(1) factors become global symmetries at low energy
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and we will call them baryonic symmetries for the following reason. They
correspond to gauge vectors in the bulk of the dual supergravity solution
obtained by integrating the RR field C4 over non-trivial three-cycles in the
base SE5 of the CY cone. The number of baryonic symmetries was thus
computed to be exactly the number of such independent three-cycles in the
case of a smooth base [32]. In fact, it was also shown earlier that the num-
ber of baryonic symmetries corresponds exactly the number of fractional
branes [134], such that we find in general a global group of baryonic sym-
metries U(1)n−3

B for any gauge theory extracted from a toric singularity with
perimeter n.

Since we are talking about global symmetries, note also that, as usual
in the framework of the gauge/gravity duality, isometries in the bulk are
dual to global symmetries in the gauge theory. Hence, when dealing with
toric singularities, the U(1)3 isometry of the geometry will be associated
with a U(1)2

F ×U(1)R global symmetry group. One of these U(1) isometry
is generated by the Reeb vector in the CY cone and, as such, is recognized
to generate the R-symmetry in the gauge theory. The U(1)2

F will play the
role of flavor symmetries.
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Chapter 6

Branes and Dimers

By the early 2000s, the efforts devoted to the description of super-
symmetric gauge theories obtained from D-branes on singular geometries
resulted in two algorithms: the Forward algorithm that links a quiver to
a toric diagram, and the Inverse algorithm that links a toric diagram to
possibly many quivers [39, 40]. However, these algorithms are somewhat
heavy to run for large quivers and toric diagrams. Moreover, we know that
quivers miss the superpotential of the gauge theory. These facts called for
new tools and methods and led to the discovery that dimer models have an
important role to play in brane physics [45,46].

We introduce dimer models in this chapter first by recalling their phys-
ical origin as a brane system [46,145,146], and then their more conventional
construction as a statistical model of perfect matchings. In particular, we
will explain how to use them to read the supersymmetric gauge theories.
We will also review how to connect it to the toric variety with the Kasteleyn
matrix in one way, and using zig-zag paths in the other, see Figure 6.1. Re-
views on the subject can be found in [147, 148]. For a more exhaustive list
of applications of dimer models in physics and mathematics, see [32,149].

6.1 Brane tiling

In this section, we recall how dimer models arise as a physical picture
of branes after a sequence of two T-dualities on our familiar setup, a stack
of D3-branes placed at the tip of a toric CY threefold singularity.

Start with N coincident D3-branes extending along R1,3, as pictured
in Table 6.1, and perform two T-dualities on the transverse coordinates to
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Figure 6.1: Quiver of algorithms: to go from the geometry to the gauge
theory, and vice versa.

the branes. These T-dualities are performed on cycles that are found in
toric CY threefolds since we know that they have at least a U(1)3 as part
of their isometry group. This sequence of T-dualities will bring us to a
fivebrane system made of D5 and NS5-branes in flat spacetime, illustrated
in Table 6.2.

0 1 2 3 4 5◦ 6 7◦ 8 9◦

CY × × × × × ×
N D3 × × × ×

Table 6.1: D3-branes sitting at the tip of a CY singular geometry. Coordi-
nates parametrizing the cycles have a circle subscript.

0 1 2 3 4 5◦ 6 7′◦ 8 9′◦

NS5 × × × × − − Σ − −
N D5 × × × × × ×

Table 6.2: The brane tiling. Σ is the holomorphic curve in the 67′89′-space
wrapped by the NS5-brane.

In more details, say that the cycles that we T-dualize are parameterized
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by the coordinates 7 and 9. After T-duality, we call them 7′ and 9′ respec-
tively. Since they were transverse to the D3-branes, they are now wrapped
by a stack of D5-branes. The CY geometry, signaled by a non-trivial Gij ,
gave way for a NS5-brane, paired with a non-trivial background for the 2-
form Bij . The NS5-brane now wraps a holomorphic curve Σ, in addition
to extend in the R1,3 part of spacetime. Σ determined by the geometry
of the CY, it can be seen as a “thickened” version of the (p, q)-web,1 see
Figure 6.2. This holomorphic curve Σ is two-dimensional and intersects the
D5-branes in a non-trivial manner on some one or two-dimensional regions.
In real coordinates, it is indeed defined by a set of two equations on four
coordinates, chosen to 6, 7′, 8, and 9′ in Table 6.2. The intersections give
rise to a graph on T2. This is the origin of the brane tiling.

(a) Toric diagram. (b) (c)

Figure 6.2: The Hirzebruch surface F0: (a) Toric diagram. (b) (p, q)-web.
(c) Curve Σ.

The tensions of the fivebranes have different dependence in the string
coupling constant:

TD5 ∝
1

gs
, TNS5 ∝

1

g2
s

. (6.1)

If we look at this system in a strong coupling limit defined by sending
gs → ∞, the D5-branes become flat and are found to form disks attached
to the NS5-brane, which ban be either perpendicular or parallel to them
and makes sharp angles to connect these regions. In the torus T2 of the
7′9′-plane that support the D5-branes, this limit draws a simpler picture
where we find three different kind of regions, all of them being bound states
of (D5,NS5)-branes: (N, 0) and (N,±1)-branes, see the example for the F0

singularity in Figure 6.3a.

In this limit, the NS5-brane can also be seen as a sum of different rigid
NS5-branes that together reproduce the same pattern as the unique and

1The holomorphic curve Σ is defined by P (x, y) = 0 where P is the characteristic poly-
nomial of the toric diagram, and equivalently the determinant of the Kasteleyn matrix,
defined below.
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Figure 6.3: The Hirzebruch surface F0: (a) Fivebrane system on the torus
T2. (b) Dimer model.

curved NS5-brane in the strong coupling limit. In other words, Σ is thinned
by the strong coupling limit such that it can be seen as an intersection
of many semi-cylinders of NS5-branes ending on T2 and whose directions
coincide with the direction of the asymptotic “tubes” of Σ. This is consistent
with Figure 6.3a where in practice the directions of NS5-branes are given
by the external legs of the graph dual to the toric diagram, the (p, q)-web.

We now wish to extract the gauge theory living on this fivebranes sys-
tem. The radii of the torus T2 can be taken to small values in order to get
rid of Kaluza-Klein modes, R → 0. We also set the string length to small
values ls → 0 in order to make sense of the gauge coupling of the low energy
theory at finite and fixed value:

λ =
R4

l4s
fixed. (6.2)

The gauge theory on the worldvolume of the D5-branes is determined in
the following way. On the (N, 0)-branes, the story is just the same as for
D3-branes, we find a U(N) gauge theory where the U(1) factor decouples
to leave a SU(N) gauge theory. Regions with (N,±1)-branes enjoy a U(1)
gauge symmetry but the latter is found to be non-dynamical and related to
anomalous global symmetry of the quiver gauge theory [141,150]. At every
point where two different (N, 0)-branes meet, we find a massless open string
connecting the two regions. It corresponds to a bifundamental field in the
gauge theory, and is oriented because the NS5-brane itself is. The regions
(N,±1) can be spanned by a tree-level disk amplitude connecting several
matter fields and thus correspond to terms in the tree-level superpotential,
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with a sign obtained according to the orientation of the NS5-brane:

W = +XijYjkZki −XijUjkVklWli + · · · . (6.3)

The couplings are taken to be equal to one in order to get a superconformal
theory.

Note in passing that an extra T-duality on the remaining cycle, the
coordinate 5 in Tables 6.1 and 6.2, leads to the mirror picture [145]. NS5-
branes give way back for a geometry known to be the mirror CY of our
original singular space. The mirror is again fully specified by Σ. It is
defined as a double fibration over a complex plane W : there is a punctured
Riemann surface P (x, y) = W , and a circle W = uv degenerating at the
origin. D5-branes are replaced by D6-branes. Gauge fields are associated
with different three-cycles in the mirror CY wrapped by D6-branes, matter
fields to intersections among these cycles and superpotential terms arise
from open string worldsheet instantons supported at disks in this Riemann
surface. We will not need to enter further details now, but more comments
will be made in Chapter 9.

Bipartite graph on the torus

This decomposition of the torus into regions suggests drawing the brane
tiling as a bipartite graph on the torus T2, a dimer model. It consists of
edges linking vertices of different colors, black to white. The faces encircled
by edges will be the gauge groups. The edges together with their natu-
ral orientation will be matter fields. Finally, white and black vertices will
be superpotential terms with a positive or negative sign respectively. The
correspondence is illustrated in Figure 6.3 and the rules are summarized in
Table 6.3, where we also set some conventions.

The bipartite nature of this graph constrains it on some aspects. First,
we note that every face is surrounded by an even number of edges. Secondly,
since every edge connects a black node to a white node, it follows that every
field appears twice in the superpotential, once in a positive term and once in
a negative term, like Xij in the example of Equation (6.3). The latter fact
is called the toric condition on the superpotential since it follows directly
from toric geometry.

In general, the vertices in dimer models will always be of valence strictly
greater than two. The reason is that a one-valent node does not make sense
(both from the point of view of the gauge theory and in the above brane
construction), while a two-valent is a mass term and can be consistently
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Dimer model Quiver gauge theory

Face SU(Ni) gauge factor

Edge between faces i
and j

Chiral superfield in the bifundamental rep-
resentation of groups i and j (adjoint repre-
sentation if i = j). The chirality, i.e. orienta-
tion, of the bifundamental is such that it goes
clockwise around black nodes and counter-
clockwise around white nodes.

k-valent node Superpotential term made of k chiral super-
fields. Its sign is +/− for a white/black node,
respectively.

Table 6.3: Dictionary relating the dimer model to quiver gauge theories.

integrated out. See the following contribution to the superpotential:

W = Y(X3, · · · , Xn)X1 −X1X2 +X2 Z(X3, · · · , Xn) + · · · , (6.4)

where Y and Z are arbitrary products of fields. Using the toric condition,
we know that F-term equations for X1 and X2 read

X2 = Y(X3, · · · , Xn) , X1 = Z(X3, · · · , Xn) . (6.5)

The fields X1 and X2 can be integrated out and the superpotential thus
simplifies into

W = Y(X3, · · · , Xn)Z(X3, · · · , Xn) + · · · . (6.6)

See Figure 6.4 for an illustration on the dimer.

Figure 6.4: A two-valent node in a dimer model corresponds to a mass term
and is integrated out at low energy.

If one limits its interest in finding the gauge groups, matter content,
and superpotential of a field theory, the angles between edges in a dimer
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model do not matter and can be deformed. However, the authors of [146]
showed that when isoradial embeddings are admissible in a dimer model,
angles between edges were directly related to R-charges for the fields. This
fact strengthens the idea that the dimer model is a physical construction
more than an ad-hoc mathematical tool.

The advantage of the dimer model over quivers is to provide the tree-
level superpotential of the gauge theory. We can however link one to the
other by embedding the quiver on T2 and making it periodic, see Figure 6.5.
We see that the periodic quiver is actually the dual graph of the dimer, in
the sense that faces and nodes are exchanged. Closed loops of arrows in the
periodic quiver are thus the superpotential terms. In the rest of the thesis,
we will stick to dimer models.

4
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(a)

1

2

2

3 3

4

3

4

3

3

44

3

33

(b)

Figure 6.5: The Hirzebruch surface F0 (a) Quiver. (b) Periodic quiver on
T2.

Finally, let us comment that the above correspondence between dimer
models and the gauge theory has been proved to hold for any toric singular-
ity in a more precise way [151]. We will not review the proof here, but we
will introduce some of its relevant tools in the subsequent sections for our
purpose of studying orientifolds and dynamical supersymmetry breaking.
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6.2 Dimer models

6.2.1 Conformality on the graph

We now develop some reasons that help to understand why bipartite
graphs on the torus are suited for describing our superconformal gauge
theories.

Let be F faces the number of faces, NW the number of vertices of both
colors and E the number of edges in the bipartite graphs. The Euler formula
links these quantities to the genus g of the embedding surface. In the case
of the torus, g = 1 and we find

F +NW − E = 2g − 2 = 0 . (6.7)

Recall now that F is also the number of SU factors in the gauge symmetry
group, NW is the number of superpotential terms and E is the number fields.
This is an interesting identity from the point of view of gauge theories since
it can be derived exactly from superconformal theories.

Use the identity at the conformal fixed point between the anomalous
dimensions and R-charges for the fields, labeled by i, of each gauge factor
to write its β function.2

For each gauge factor : 2 +
∑
i

(Ri − 1) = 0 . (6.8)

We can sum the LHS of the above equation over each different gauge group
f , remembering that every edge belongs to two faces:

2F +
∑
i,f

Ri − 2E = 0 . (6.9)

All superpotential terms have a R-charge equal to 2, and so we find

2F + 2NW − 2E = 0 . (6.10)

Thus, superconformality of SU gauge theories implies g = 1. This is satisfied
for the torus and the Klein bottle.

We already saw that the torus appeared naturally from toric geome-
tries after the sequence of T-dualities. The authors of [151] then anticipated
that bipartite graphs embedded on Klein bottles could also lead to super-
conformal gauge theories. We will explicitly realize such construction with
orientifolds in Chapter 9.

2The reasoning is presented assuming only the presence of bifundamental fields for
simplicity, although it works with adjoints too.
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6.2.2 From dimers to the geometry

Dimer models were initially introduced as statistical tools in condensed
matter in order to describe bonds in substances made of two monomers,
hence the bipartite nature of the graph. In general, dimer models are the
statistical mechanical models for perfect matchings, a generalization of these
bonds. A perfect matching is a subset of edges in the graph such that every
vertex is an endpoint of only one edge in the set. They play the role of fields
in a gauged linear sigma model (GLSM), the field theory one obtains after
imposing F and D-terms equations on the fields obtained from the quiver of
a given singularity. See how we can extract the different perfect matchings
from the dimer model of the zeroth Hirzebruch surface F0 in Figure 6.6.
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Figure 6.6: The perfect matchings of F0.

As discussed in [45,46,152,153], to any dimer model one can associate
a weighted (with two variables x and y), signed adjacency matrix K, named
the Kasteleyn matrix, whose determinant takes the form of a Laurent poly-
nomial:

P (x, y) = detK(x, y) =
∑
i,j

ci,jx
iyj . (6.11)

It is the characteristic polynomial of the dimer model, and can be under-
stood as its partition function. In fact, the data contained in this Laurent
polynomial allows recovering the geometry on which D3-branes are placed
and that corresponds to this dimer model.3 This procedure is known as the

3The equation P (x, y) = 0 defines the holomorphic curve Σ wrapped by the NS5-brane
in the fivebranes system associated with the dimer model.
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Fast Forward Algorithm [46]. We review it here with the example of the
zeroth Hirzebruch surface F0.

To obtain the Kasteleyn matrix of a dimer model, we assign a plus or
minus sign to every edge in the dimer such that for every face the product
of signs is +1 if its number of edges is 2 mod 4 and −1 if its number of edges
is 0 mod 4. We then draw two closed oriented (gauge-invariant) paths γx, γy
with holonomy (1, 0) and (0, 1) on T2. Every edge crossed by γx is multiplied
by x or 1/x, depending on the relative orientation, and respectively by y or
1/y if the edge is crossed by γy. See the example of these assignments in
Figure 6.7.
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Figure 6.7: Dimer model of the Hirzebruch surface F0 with an assignment
for the Fast Forward Algorithm.

The adjacency matrix of the graph for the nodes, black (b) and white
(w), with such weights, is the Kasteleyn Matrix. For F0, it reads

K =

 b1 b2
w1 1 + y −1− x
w2 x−1 + 1 y−1 + 1

 , (6.12)

where rows and columns correspond to white and black nodes in the dimer
respectively, with the same numbers as in the dimer of Figure 6.7. Its
determinant is

detK = x−1 + y−1 + 4 + x+ y . (6.13)

We may compute the Newton Polygon of the above expression and the latter
corresponds to the toric diagram of the singular toric geometry related to
the dimer model [45]. For every monomial xpxypy one draws a point in a
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two-dimensional lattice with coordinates (px, py). In doing so, we finally
recover the toric diagram of the zeroth Hirzebruch surface F0 depicted in
Figure 6.2a.

Each point (px, py) in the toric diagram corresponds actually to a per-
fect matching with a multiplicity given by the coefficient of xpxypy in the
Laurent polynomial. The perfect matchings are distinguished in different
classes. There are the internal and the external points in the toric diagram.
The external lie on the perimeter and can be further divided in two sets,
the extremal points that are placed on corners of the toric diagram and the
non-extremal. In the GLSM, extremal perfect matchings are the only ones
with a non-zero R-charge.

An intuitive way to see how perfect matchings are related to points
in the toric diagram is to consider formal differences of perfect matchings
p − p0 with respect to a reference perfect matching p0. The corresponding
configurations are closed loops on T2 and have a definite winding number,
corresponding to its position in the toric diagram. See in Figure 6.8 the
different closed loops when p4 is the reference perfect matching for F0 and
in Figure 6.9 the result of this construction.
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Figure 6.8: Closed loops obtained from the difference of perfect matchings
of F0, p− p4, where −p4 is shown in orange.

There is a set of consistency conditions that the dimer model has to
satisfy to correspond appropriately to the toric diagram extracted from the
Fast Inverse Algorithm.
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Figure 6.9: Toric diagram of F0 with perfect matchings, in the case where
p4 is the reference perfect matching.

• The number of faces in the dimer model is equal to twice the area of
the toric diagram, where the smallest square has an area equal to one.

• No face in the dimer model is two-sided. The minimal number of edges
surrounding a face is thus four.

• No extremal perfect matching has multiplicity different than one in
absolute value.

Indeed, it can be checked that the toric diagram of F0 has an area equal
to two from Figure 6.2a, and that its internal point is the only one with a
multiplicity different than one from Equation (6.13).

Toric duality

It has been observed that several gauge theories, and hence dimer mod-
els, correspond to the same toric geometry. See for instance the dimer model
of Figure 6.10b. With similar conventions as before, we reach the following
Kasteleyn matrix:

K =


b1 b2 b3 b4

w1 y −x 1 0
w2 x−1 y−1 0 1
w3 1 0 1 1
w4 0 1 −1 1

 (6.14)

Its determinant reads

detK = −x−1 − y−1 + 5− x− y , (6.15)

and we recover the toric diagram of F0. No consistency condition has been
violated even though the gauge theories look naively different. This is an
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expression of the toric duality, where a single toric diagram knows about
different dimer models.

This toric duality is understood to take its origin in Seiberg duality [41].
We present in Figure 6.10 the dimer models for the two phases of F0 that
are linked by Seiberg duality on face 1. The Kasteleyn matrices are not the
same, but this results in similar characteristic polynomials. Actually, only
the coefficients for the internal points of the toric diagram are different. If
in the two phases, all gauge groups can have an identical rank, we call these
different toric phases.
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(a) Phase I.
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(b) Phase II.

Figure 6.10: Two toric phases of F0. Seiberg duality on face 1 links one to
the other.

6.2.3 Zig-Zag paths

Zig-Zag paths (ZZPs) are oriented paths on the dimer that capture
global properties of the geometry. They can be computed as the oriented
differences of external perfect matchings. They are constructed by following
edges in the graph and turning maximally left (right) at white (black) nodes.
The ZZPs of the conifold dimer are shown in Figure 6.11. These form non-
selfintersecting closed loops on the torus with non-trivial homology around
the two fundamental cycles. These homology numbers can be associated
with charges for two of the three U(1) isometries of the toric CY threefold,
the remaining one being associated with the U(1)R R-symmetry. ZZPs
are also in one-to-one correspondence with legs in the (p, q)-web diagram,
obtained as the dual graph to the toric diagram. The (p, q) labels of the
external legs are exactly the homology charges of the ZZPs.
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Figure 6.11: Zig-Zag paths in the conifold: (a) Toric diagram. (b) Dimer
model.

In the way they are defined, ZZPs constitute a route to go from the
toric diagram to dimers. Given a toric diagram, one has a definite set of
ZZPs at disposal and can try to place them on a blank torus T2 in order to
generate a dimer model. Of course, the ZZPs cannot intersect in a complete
arbitrary way. In addition to the consistency conditions of Section 6.2.2,
a ZZP cannot intersect with any other ZZP that has the same winding
number, including itself [154]. Thurston [155, 156] provided a convenient
algorithm to assemble the ZZPs in a consistent way using triple crossings,
but we will not review it here. For large toric diagrams, one will typically
find different ways to arrange the ZZPs and these can lead to different toric
phases. See Figure 6.12 in the two toric phases of F0.
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Figure 6.12: Zig-Zag paths in F0: (a) Toric diagram. (b) Dimer model of
phase I. (c) Dimer model of phase II.
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6.2.4 Partial resolutions

A partial resolution, or blow-down, consists of removing one or several
external points in a toric diagram. In the dimer model, this corresponds to
performing a higgsing, as we now explain and illustrate.

Removing points from the perimeter of a toric diagram changes its
ZZPs content. See for instance the partial resolution of F0, presented in
Figure 6.13a, and leading to the orbifold C2/Z2. In that case, some ZZPs
that were crossing each other in the dimer model before the resolution will
not be allowed to do so anymore. In general, the number of ZZPs also
changes.

In the dimer model, we have an algorithm [157] that performs the par-
tial resolution based on the ZZPs. It prescribes the “merging” of the ZZPs
that are identified in the toric diagram by the partial resolution. This en-
sures that they will not cross each other anymore. Consistently, the edges
that result from their crossings are deleted from the dimer model, see Fig-
ure 6.13b. From the gauge theory viewpoint, VEVs are assigned to these
edges and they are integrated out. Different faces and hence gauge groups
are identified according to this higgsing pattern. We finally recover the
dimer model of C2/Z2, with its two hexagonal faces.

We note that the partial resolution of Figure 6.13 can be performed sim-
ilarly in the dimer model of the second phase of F0, shown in Figure 6.12c.
This results in the same dimer model than in Figure 6.13b, consistently with
the fact that the orbifold of flat space admits only one toric phase.

6.3 Fractional branes revisited

6.3.1 Anomalies and zig-zag paths

We now review a method for finding anomaly-free rank assignments
of dimers based on ZZPs [140]. We can regard every ZZP as defining an
“anomaly-free wall” on the dimer. This is because due to its definition, every
time a ZZP overlaps with a face in the dimer, it does so over exactly a pair of
consecutive edges.4 These two consecutive edges correspond to an incoming
and an outgoing arrow in the quiver for the gauge group associated with
the face under consideration.5 This implies that if we add some constant to

4By overlapping with a face, we mean sharing an edge with it, not just touching it at
a node.

5More generally, a ZZP might overlap with a given face more than once. Every over-
lap involves a pair of consecutive edges, so the previous discussion still applies. For an
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Figure 6.13: Partial resolution of F0 yielding the orbifold C2/Z2, illustrated
in (a) the toric diagram, (b) the dimer model of phase I.

the ranks of all the faces on one side of the ZZP, the ACC of the faces on
the other side of the ZZP do not change, as illustrated in Figure 6.14.

Figure 6.14: A ZZP as an anomaly wall.

explicit example of this situation, see the yellow ZZP in the dP1 dimer model shown in
Figure 6.15b.
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With this insight, one recovers the algorithm to construct anomaly-free
rank assignments for dimer models outlined in [140]:

1. The set of ZZPs is given by {(pΓ, qΓ) |Γ = 1, . . . , n}, where pΓ and qΓ

are the winding numbers of the ZZP Γ, with respect to a fixed unit
cell. To every (pΓ, qΓ) assign an integer coefficient vΓ.

2. Choose one face and assign rank zero to it.

3. In going from face a to an adjacent face b, the rank of the latter will
be

Nb = Na + vΓ − v∆ , (6.16)

where vΓ is the coefficient of the ZZP moving to the left with respect
to the path from a to b, and v∆ is the one in the opposite direction.
This operation is well defined since we are working on an oriented
surface, which implies that we can consistently speak of “right” and
“left” of a ZPP.

4. Finally, one must impose two constraints that ensure that the rank
assignment is single-valued. Consider, for instance, moving along a
loop along with one of the two cycles of the fundamental cell. When
returning to the initial face, the rank should be unchanged. This is
granted by imposing

Λ =
∑

Γ

vΓpΓ = 0, M =
∑

Γ

vΓqΓ = 0 . (6.17)

We will refer to these two conditions as the Λ and M topological con-
straints.

Every choice of values for the vΓ’s consistent with the topological constraints
Equation (6.17) gives rise to an anomaly-free rank assignment. Moreover,
notice that, by construction, every rank assignment is invariant under a
global shift vΓ → vΓ + k. One may use this freedom to fix one of the vΓ’s
(equivalently, one of the ZZPs is not independent). There are thus two
constraints and one redundancy to be fixed, such that we find

#ZZPs− 3 = #Fractional Branes , (6.18)

which is also the number of non-compact four-cycles. In other words, this
construction can account for the most general anomaly-free rank assign-
ment, up to an overall shift of the ranks (i.e. regular branes). Generically,
this algorithm can produce negative ranks for some faces, which cannot be
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directly interpreted as ranks of gauge groups. Of course, one may always
add regular branes until all ranks are positive.6

Let us illustrate Butti’s algorithm with two examples, to which we will
return when discussing orientifolds.

Example of dP1

Consider the toric phase of the complex cone over dP1, or dP1 for short,
which is shown in Figure 6.15. Let us apply the method described above
for the computation of the fractional branes.

(a) (b)

Figure 6.15: ZZPs of dP1 and the rank assignments coming from them: (a)
Toric diagram. (b) Dimer model.

Let us choose N2 = 0. Applying the algorithm, the other faces are
assigned the following ranks:

N1 ↔ v4 − v1

N2 ↔ 0
N3 ↔ v3 − v4

N4 ↔ v4 − v3

(6.19)

6It is worth noting that this procedure is closely related to the algorithm for construct-
ing fractional brane rank assignments introduced in [134], in which the difference in the
ranks between two nodes in the quiver is proportional to the baryonic U(1)B charge of
the bifundamental field connecting them, with one independent vector for each baryonic
U(1)B . The relation between the two methods is through the correspondence between
baryonic U(1)B symmetries and extremal perfect matchings [158] or, equivalently, ZZPs
(which correspond to differences between consecutive external perfect matchings). Our
procedure is also equivalent to the one for labeling cluster variables associated with plabic
(i.e. planar bicolored) graphs using ZZPs [159], and to the even more similar one in the
context of cluster integrable systems [160] that associates a divisor at infinity on the
spectral curve, to each face of the bipartite fat graph under consideration [161].
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From the toric diagram we read the two topological constraints:{
Λ = −v2 − v3 + 2v4 = 0

M = v1 + v4 − 2v3 = 0
⇔

{
v1 = 2v3 − v4

v2 = −v3 + 2v4

(6.20)

We can further use a global shift of the vi to set v4 = 0 and find the following
rank assignment:

v = (v1, v2, v3, v4) = (2,−1, 1, 0)v3 ,
N = (N1, N2, N3, N4) = (−2, 0, 1,−1)v3 .

(6.21)

Example of PdP4

As a slightly more complicated example, let us study the case of the
PdP4 singularity [129] in the toric phase considered in [2] and given in
Figure 6.16.

(a) (b)

Figure 6.16: ZZPs of PdP4 and the rank assignments coming from them:
(a) Toric diagram. (b) Dimer model.

From the toric diagram we read:{
Λ = v6 + v7 − v3 − v4 = 0

M = v5 + v4 − v1 − v2 = 0
⇔

{
v3 = v6 + v7 − v4

v5 = v1 + v2 − v4

(6.22)
Since a global shift in the vi does not change the rank assignments, we can
impose v4 = 0. We then find the following rank assignment,

v = (v1, v2, v6 + v7, 0, v1 + v2, v6, v7)
→ N = (−v7, v2, v6 − v1,−v1, v6, v2 − v7, 0) .

(6.23)
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6.3.2 Classification of fractional branes

A classification of fractional branes based on the IR dynamics of the
gauge theories living on them was introduced in [67]. According to it, frac-
tional branes fall into three classes: deformation, N = 2 and DSB fractional
branes. We also know how to detect them from the toric diagram. More-
over, we can use Butti’s algorithm in order to the set of definite values vΓ

that allow to turn on the fractional branes.

Deformation branes

These branes correspond to isolated faces in the dimer touching each
other at nodes (so, only gauge groups and no bifundamental fields are in-
volved) or to isolated clusters of faces surrounding a given node (where the
corresponding superpotential term and fields are turned on). The gauge
theory is then either a set of decoupled SYM theories, or SYM theories cou-
pled via a superpotential term, respectively. In both cases, the low energy
effective theory leads to confinement and the geometry undergoes a complex
structure deformation.

Two examples of deformation branes are reported in figure 6.17. Note

(a) (b)

Figure 6.17: The dimer of the dP3 singularity, which admits both classes
of deformation branes. (a) Deformation fractional branes corresponding to
isolated nodes. (b) Deformation fractional branes corresponding to loops in
the quiver.

that single faces are allowed deformation branes only for non-chiral theo-
ries. Chiral theories may admit deformation branes but these correspond to
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clusters, or two or more isolated faces. The dP3 dimer in the figure is one
such chiral example.

The presence of deformation branes can be inferred from the toric di-
agram, or the (p, q)-web [140, 162] and equivalently from the set of ZZPs.
They are present whenever the toric diagram can be decomposed in several
Minkowski summands. In terms of ZZPs, the theory will have a deformation
fractional brane if there is a subset of m ZZPs in equilibrium {vσ} ⊂ {vΓ},
such that

m∑
i=1

(pσi , qσi) = 0 . (6.24)

The deformation brane is turned on whenever all vσ have the same value,
distinguished from the one of all others vτ /∈ {vσ}, see Figure 6.18 for an
example.

(a) Toric diagram.

1

2

2

3 3

4

3

4

3

(b) Dimer model.

Figure 6.18: M deformation branes in a phase of F0 turned on with two
ZZPs having v = M .

N = 2 fractional branes

These fractional branes support a gauge-invariant operator that does
not appear in the superpotential. In dimer language, they correspond to a
collection of faces forming a stripe, which gives rise to the closed path in the
quiver associated with this gauge-invariant operator. The VEV of such an
operator parametrizes a flat direction along which the dynamics reduces to
an N = 2 theory. Geometrically, N = 2 fractional branes arise in the case of
non-isolated singularities, which have complex curves of singularities passing
through the origin. Such fractional branes wrap a two-cycle collapsed at the
singularity, which exists at every point along the curve.

In the case of toric geometries, the singularity on the curve is always
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C2/Zk, k > 2. Such a singularity translates into edges on the boundary of
the toric diagram with k − 1 consecutive external but non-extremal points.
Equivalently, they correspond to k parallel legs in the dual (p, q)-web di-
agram [123, 163, 164]. Indeed, the stripe of faces in the dimer describing
an N = 2 stretches between a pair of ZZP with the same holonomy, say
(pµ, qµ). From Butti’s algorithm, we learn that they are turned on whenever
only some of these vµ, among the whole set of ZZPs {vΓ}, are non-vanishing.
The stripe bounded by consecutive ZZPs µ1 and µ2 is turned on when

vµ1 = −vµ2 6= 0 , and vν = 0 for ν 6= µ1, µ2 . (6.25)

Finally, let us emphasize that the previous discussion implies that the gauge
theories/dimers associated with toric diagrams without external but non-
extremal points, i.e. without non-isolated singularities, do not support N =
2 fractional branes.

Figure 6.19 shows an example, based on the PdP3 geometry [2, 129],
illustrating the ideas presented above. The collection of phases shaded in
blue defines an N = 2 fractional brane (its complement is obviously also an
N = 2 fractional brane). These faces stretch between the parallel red and
green ZZPs.

(a) Toric diagram of
PdP3.

2
1

3
4

5

6

(b) Dimer model of
PdP3b.

Figure 6.19: M copies of a N = 2 fractional brane phase b of PdP3 turned
on with two ZZPs having v = ±M .

Dynamical SUSY breaking branes

Any other kind of anomaly-free rank assignment usually leads to a
dynamically generated superpotential and hence breaks supersymmetry dy-
namically [165] (usually into runaway directions [66–68]). These branes are
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called DSB fractional branes. The ranks found for dP1 in Equation (6.21)
correspond to a well-known DSB fractional brane.

Generically, combinations of several fractional branes may provide
other types of fractional branes. For example, the combination of an N = 2
fractional brane with a deformation fractional brane may correspond to a
DSB one. Similarly, the combination of two deformation fractional branes
can be a DSB brane, when the corresponding complex structure deforma-
tions are incompatible with each other.
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Part II

Orientifolds in Dimer Models
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Chapter 7

Orientifolds

Orientifolds are non-dynamical extended objects in string theory. They
may be thought of as a generalization of orbifolds with an action on the
worldsheet. Hence, they open the door to extra non-oriented sectors of
propagating strings. They share some common features with D-branes,
as they have tension and are charged under RR fields. The two kinds of
extended objects can be placed on top of each other, and this has the effect
to change the low energy gauge theory accordingly. We will mostly think
about orientifolds in these terms, as a way to find new kinds of quivers, with
SO/USp nodes and (anti)symmetric matter. They play an important role
in the construction of dynamical supersymmetry breaking models in string
theory.

We start by reviewing the construction of orientifolds in string theory,
see [52,166–170] for further details. We then move on to their implementa-
tion in dimer models [54].

7.1 Orientifolds from the worldsheet

7.1.1 Orientifolds and supersymmetry

An orientifold projection of a string theory is obtained by gauging an
involution symmetry acting on the worldsheet. It is typically combined with
an action on the embedding spacetime R1,3×M6, where we will imposeM6

to be a CY threefold.

In the present case, we want the elements gΩ of the orientifold group
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GΩ to be composed of a parity action on the worldsheet:

Ω :

{
(σ0, σ1)→ (σ0, 2π − σ1) for closed strings,
(σ0, σ1)→ (σ0, π − σ1) for open strings.

(7.1)

We thus have to find an element R such that gΩ = ΩR is an actual symmetry
of the theory. In type IIB superstring theory, R will generically be a product
of (−1)FL and σ, where FL counts the number of left-moving fermions in
spacetime, and σ is a holomorphic involution and an isometry of the CY.
The orientifold plane will be defined as the fixed loci of σ. We will refer to it
as the Op-plane, where p counts the number of spatial dimensions fixed by
σ. This plane is non-dynamical because it is fixed by the latter geometrical
action.

In type IIB theories, in order for σ to be an involution, it has to satisfy

σ(J2) = +J2 , σ(Ω3) = ±Ω3 . (7.2)

This follows from the fact that σ is holomorphic. The orientifold action will
act on spinors, and in particular the supercharges. In consequence, σ will be
subject to further supersymmetry preserving constraints. As for D-branes,
the dimension of the plane p is fixed to be odd by supersymmetry so that
they preserve a common set of supercharges. We then find

O3/O7 : R = (−1)FLσ , σ(Ω3) = −Ω3 ,
O5/O9 : R = σ , σ(Ω3) = +Ω3 .

(7.3)

As explained in [171], this is valid for any CY space.

Since we will focus on D3-branes at singularities. We will admit only
O3 and O7 planes, thus considering a type IIB superstring theory on

R1,3 × CY

Ω(−1)FLσ
, (7.4)

where σ will distinguish between the two possible dimensions of the Op-
planes, p = 3 and 7. Note in passing that Ω(−1)FL is an element of the
SL(2,Z) of type IIB. In the conventions of Section 3.1.1, we find

Ω(−1)FL =

(
−1 0
0 −1

)
∈ SL(2,Z) . (7.5)

7.1.2 Orientifold charge and tension

Just like D-branes, orientifolds have charge and tension, the main dif-
ference being that they are non-dynamical. A complete review of the clas-
sification of orientifolds according to their charge is provided in [172] and
we summarize it here.
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To compute the charge of an Op-plane, we need to integrate fluxes
over a “sphere” surrounding the plane. The action σ will typically act as
an involution on space transverse to the Op-plane, such that we have to
integrate the flux over S8−p/Z2 ' RP8−p. This allows for twisted forms
to have non-trivial backgrounds1. Since H̃3(RP5) = H̃3(RP1) = Z2 we
find that both O3-planes and O7-planes can have two kind of charges with
respect to the flux H3 = dB2. In general, we will say that Op− and Op+-
planes have trivial and non-trivial charges under this flux respectively. In
general, an Op-plane can also have a charge with respect to the flux of
F6−p = dC5−p. In our case of interest, we note that O3-planes can have
a discrete torsion charge Z2 with respect to the F3 = dC2 flux. We label
O3-planes with non-trivial RR discrete torsion charges Õ3. In units of D-
branes charges, those of the orientifolds and, more importantly for us, the
gauge groups for D-branes placed on Op-planes are recalled in Table 7.1.

Op-planes RR charges Gauge groups

Op− −2p−5 SO(N) with N even
Op+ +2p−5 USp(N) with N even

Õp
−

1/2− 2p−5 SO(N) with N odd

Õp
+

+2p−5 USp(N) with N even

Table 7.1: RR charges (in units of D-branes charge) and gauge groups for
the different kinds of orientifolds.

Orientifolds can sometimes have negative tension. For instance, it can
be computed for O9-planes exchanging unoriented strings that

TO9− = −16TD9 . (7.8)

1It can be checked that the orientifold action sends B2 and C2 to minus themselves,
i.e. they are twisted, while other forms are preserved. We thus need to distinguish usual
cohomologies Hq with twisted cohomologies H̃q. One has

Hq(RP8−p) =


Z2 for q > 0 even
Z for q = 0 or q = 8− p odd
0 otherwise

, (7.6)

and

H̃q(RP8−p) =


Z2 for q odd
Z for q = 8− p even
0 otherwise

. (7.7)

Note that there exists an alternative notation for cohomologies: Hq(•) ≡ Hq(•,Z) and
H̃q(•) ≡ Hq(•, Z̃).
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D-branes can be added on top of this O-plane at the price to balance this
NSNS repulsion. We can thus add 16 D9-branes on top of an O9−-plane,
knowing that there is an attraction between them due to RR fields:

QRR,O9− = −16QRR,D9 . (7.9)

A gauge theory is obtained from the low energy of unoriented open strings
on the worldvolume of the D-branes, and it has gauge group SO(32) (the
strings can attach to the 16 D-branes or to their orientifold mirrors). From
the 32 supersymmetries of type IIB, half are broken by the presence of
extended planes. What we just described is how to get type I superstring
theory from type IIB.

Finally, let us comment that orientifolds placed at the tip of CY singu-
larities will behave similarly as fractional branes and in particular can also
have fractional charges. Hence, we expect to generically lose conformality
in presence of orientifolds.

7.1.3 Orientifolded open string sector

Since we will be interested in the gauge theory living on the world-
volume of D3-branes, we look at the projection on open string states. Let
be

λab ⊗ ψM−1/2 |k〉 (7.10)

an open string state of impulsion k. We saw in Section 3.1.2 that for M =
µ = 0, · · · , 3, the state is a (generically non-abelian) gauge boson. For
M = i = 4, · · · , 9, it is a real scalar. We introduce a non-trivial action on
Chan-Paton factors that has to be consistent with the orientifold projection:

λ→ γΩλ
Tγ−1

Ω with γTΩγ
−1
Ω = 1N×N . (7.11)

The transposition is necessary because the worldsheet parity reverses the
endpoints of the open string. The condition on γΩ comes from the fact that
the orientifold should be an involution. It can be seen from vertex algebra
that the worldsheet parity does not treat gauge vectors and scalars in the
same way. For instance, the gauge vector is sent to minus itself. Knowing
that the scalars are mixed by σ, we can define the following orientifold action
on ψM−1/2:

ψM−1/2 → RMNψ
N
−1/2 with R =

(
−14×4 0

0 σ

)
. (7.12)

The states surviving the orientifold projection are those invariant under the
combination of Equation (7.11) and Equation (7.12).
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Examples of O3-planes on flat space

As usual, start with a stack of N D3-branes on flat space. We can
choose to place the stack on different kind of orientifold planes. These
different choices are hidden in the solutions of the constraint on γΩ shown
in Equation (7.11).

Orthogonal gauge group. A first choice is to take γΩ to be the identity
matrix. Initially, we have gauge bosons defined as

(Aµ)ab = λab ⊗ ψ
µ
−1/2 . (7.13)

The surviving gauge bosons will thus be projected in the adjoint of the
group SO(N):

γΩ = 1N×N : Aµ = −(Aµ)T . (7.14)

One needs to know σ in order to get the action on the three complex matter
fields

(ΦI)ab = λab ⊗ ψI−1/2 . (7.15)

Consider the O3-plane action defined by σ inverting all the (holomorphic)
coordinates of flat space:

γΩ = 1N×N , σ = −13×3 : ΦI = −(ΦI)T = . (7.16)

Symplectic gauge group. For N even, one can consider γΩ to be the
antisymmetric matrix defined by

JN ≡

(
0 1N×N

−1N×N 0

)
. (7.17)

Then, the resulting gauge bosons are elements of the Lie algebra of USp(N),

γΩ = JN : Aµ = −JN (Aµ)TJ−1
N . (7.18)

Consider the same action σ as before,

γΩ = JN , σ = −13×3 : ΦI = −JN (ΦI)TJ−1
N = . (7.19)

In each of these cases, the superpotential is not modified because the
chiral superfields are mapped onto themselves. However, when two different
fields will be mapped onto each other, we can expect to see the number of
superpotential terms reduced.
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7.1.4 Fractional branes and orientifolds

Orientifold projections generically change the number of independent
fractional branes that one can obtain at the tip of a given CY singularity.
This can be understood from the projection of the N = 1 multiplets as
follows.

• When a gauge vector Aµi is mapped onto itself, as in the examples of
the previous section,

Aµi ∼ A
µT
i , (7.20)

it replaces the gauge group SU(Ni) by SO(Ni) or USp(Ni). None of
these new gauge groups have complex fundamental representations.2

Hence, they are not subject to ACC and this reduces the number of
equations to consider.

When a gauge vector Aµi is not mapped onto itself, it is identified to
another vector Aµj :

Aµi ∼ A
µT
j for i 6= j . (7.21)

This results in the identification of SU(Ni) and SU(Nj), and in par-
ticular of Ni and Nj . The number of ACC for these kinds of gauge
groups is thus halved, but also is the number of independent param-
eters Ni.

• When a chiral superfield is self-identified, we saw that it becomes a
symmetric or antisymmetric tensor. If it is defined as a representation
of a gauge group SU(N), it contributes to ACC with coefficients given
by

d = (N + 4)d , d = (N − 4)d , (7.22)

where d is the weight of the fundamental representation. Remember
also that

dR = −dR . (7.23)

The effect of the extra ±4 will be very important because it turns the
ACC into a non-homogeneous problem. In particular, the existence of
solutions is not guaranteed anymore.

This discussion boils down to say that ACC, as we knew them, will
be heavily affected by the orientifold projection. It is difficult to anticipate
naively what kind of singularity may lead to a non-anomalous orientifolded

2The fundamental representations of SO(N) and USp(N) are real and pseudo-real
respectively.

116



theory. Of course, dimer models will come to the rescue, and clarifying this
situation will actually be the subject of Chapter 8. Note in passing that one
way to cure anomalous orientifolds is to modify the initial brane setup by
adding D7-branes that participate to the gauge dynamics as flavor branes.
Those can effectively balance the ±4 and lead to trivially satisfied ACC
after orientifold projection. However, we will limit ourselves to regular and
fractional D3-branes in this work and try to fulfil the non-trivial task of
finding orientifold solutions in the absence of flavor branes.

Orientifolds may change the nature of fractional branes too. Again, no
clear rules are established but examples of different phenomena have been
collected in the past. We will focus on deformation branes to exemplify our
purpose in this section.

An orientifold version of the deformation brane in the conifold was stud-
ied in [173]. The gauge group is projected to SO(N1)× USp(N2) with two
fields in the bifundamental representation ( 1, 2). Using Seiberg duality
for orthogonal and symplectic gauge groups and their NSVZ β functions,
the authors found the following cascading RG-flow:

SO(N +M + 2)1 × USp(N)2 → SO(N −M + 2)1 × USp(N)2

→ SO(N −M + 2)1 × USp(N − 2M)2 ,
(7.24)

that can be continued until confinement is reached. Note that the two steps
together reduce all the effective number of regular branes N by 2M . This
example is a straightforward generalization of the usual cascade, and the
authors argue that it leads to a deformed moduli space in the infrared too.

This is quite different from what has been observed in [55]. There, an
orientifold of F0 is presented and leads to a gauge groups product USp(N1)×
SU(N2)×USp(N3). The latter combination admits a deformation such that
N1 = N3 = N + M and N2 = N . We can compute the following sequence
of Seiberg dualities:

USp(N +M)1 × SU(N)2 × USp(N +M)3

→ USp(N −M − 4)1 × SU(N)2 × USp(N −M − 4)3

→ USp(N −M − 4)1 × SU(N − 2M − 8)2 × USp(N −M − 4)3 ,
(7.25)

A special feature of this cascading RG-flow is thus to change the effective
number of fractional branes, in addition to the regular ones. Indeed, a full
sequence in the cascade decreases N by 2M+8, and increases M by 4.3 This
implies that the cascade is triggered even in the absence of fractional branes

3An instance of quiver with flavors, without orientifold projection, proposed in [174]
led to cascade with a decreasing effective number of fractional branes.
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and generates them on its way towards the infrared. Moreover, climbing the
RG-flow towards the UV, one finds that the cascade stops at a definite value
for the ranks. For suitably chosen M , the gauge theory at the top of the
cascade can be made UV-free.

The difference between these two cascades can be understood techni-
cally from the number of SO and USp factors. The balance of these in the
example of the conifold led Seiberg dualities to generate a cascade similar
to the one experienced on a non-orientifolded conifold, whereas the excess
of USp in the case of F0 drastically changed its behavior. Indeed, the ranks
of the gauge groups were modified by Seiberg dualities such that M had to
be affected. Once again, this conclusion is sensible to the addition of flavor
branes [175].

7.2 Fixed points and lines in dimer models

Orientifold projections on D-branes at singularities and their descrip-
tion on dimers were studied in [54]. Related works include [176–178]. In this
framework, the orientifold projection corresponds to a Z2 involution acting
on the torus that identifies faces, edges and vertices in an appropriate way.
The authors of [54] studied involutions with fixed loci, see Figure 7.1 to
contemplate the three explored possibilities, and resulting in a set of rules
needed to construct the projected theory that we summarize below.

1. Self-identified faces project to SO/USp groups, depending on the fixed
locus charge, + or − respectively.4 All other faces are identified with
their image, merging to one SU group.

2. Every edge on top of a fixed locus becomes a symmetric or antisym-
metric tensor (or their conjugate), depending on the fixed locus charge,
+ or − respectively. The remaining edges are identified with their
images, merging to bifundamental fields. More concretely, bifunda-
mentals are identified as follows:

( i, j) ∼ ( j′ , i′)→ ( i, j) , (7.26)

where i′, j′ are the images of gauge groups i, j.

3. The superpotential is found upon the projection of the fields.

4Charges of fixed loci are related to the charges of the O-planes [54,176], even though
they are not always of the same sign in our conventions.
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Figure 7.1: (a) Orientifold of C2/Z2 with fixed points. (b) Orientifold of
C2/Z2 with two fixed lines. (c) Orientifold of C2/Z3 with a single fixed line.

Before moving on to the next section, we present in detail the three
kind of orientifold involutions studied in [54] with examples.

Fixed points

In an orientifold of this type, there are four fixed points in a unit cell. In
order to preserve SUSY, their signs must satisfy the so-called sign rule [54]:
their product must be (−1)NW /2 where NW is the number of superpotential
terms.

In the example of Figure 7.1a, we choose the signs (−+−+), starting
with the fixed point at the origin of the unit cell and going clockwise. We
have that face 1 is identified with face 2, meaning that the resulting the-
ory will have only one gauge group SU(N). The bifundamental fields are
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identified as follows

Y12 ∼ Y12 → , X21 ∼ X21 → ,

Y21 ∼ Y21 → , X12 ∼ X12 → ,
Z11 ∼ Z22 → Adj .

(7.27)

and the superpotential is given by

W = X12Y21Z11 −X21Y12Z11 , (7.28)

where we implicitly take a trace over gauge indices.

To be sure that this projection preserves some supersymmetry, we need
to check the action of the involution on Ω3. To do so, we need to link the
action on the fields to a spatial action on the coordinate of the CY variety.
We compute the mesonic moduli space of our theory, which correspond to
the singularity D3-branes are probing. Mesonic operators are given by

x = X12X21 , y = Y12Y21 ,
w1 = Y12X21 , w2 = Y21X12 ,
z1 = Z11 , z2 = Z22 .

(7.29)

F-term equations impose
w1 = w2 ≡ w , (7.30)

and
z1 = z2 ≡ z , (7.31)

and the classical relation between the fields gives

xy = w2 . (7.32)

Thus, the mesonic moduli space is the symmetric product of N copies of the
A1 singularity, consistently with what was found in Chapter 4 and where
N is the number of probe D3-branes. The holomorphic 3-form Ω3 can be
easily computed using the Poincaré residue formula:

Ω3 = Res
dx ∧ dy ∧ dw ∧ dz

w2 − xy
=

dx ∧ dy ∧ dz

2w
. (7.33)

Under the involution, the fields are mapped in the following way

x→ x , y → y ,
w → −w , z → z ,

(7.34)

where the sign taken by a meson is given by the product of the fixed point
charges it crosses. The orientifold action on the holomorphic 3-form is
thus odd, Ω3 → −Ω3, meaning that the O-plane is compatible with the
supersymmetry charges preserved by the D3-branes. It is easy to see that
sign configuration not respecting the sign rule is not supersymmetric.
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Horizontal/Vertical fixed lines

In the example of Figure 7.1b, we have two fixed lines, each one coming
with a sign, + or −, which is unconstrained. We chose to assign − to the
bottom line and + to the other. The faces are self-identified, leading to a
gauge group USp(N1)× SO(N2). The identification of fields gives

Y12 ∼ X21 → Q1
12 , X12 ∼ Y21 → Q2

12 ,

Z11 ∼ Z11 → , Z22 ∼ Z22 → .
(7.35)

and the superpotential is given by

W = (Q2
12Q

2T
12 −Q1

12Q
1T
12 )Z11 + (Q2T

12 Q
2
12 −Q1T

12 Q
1
12)Z22 . (7.36)

The mesons are the same as in the previous example since the geometry
is the same, but the action of the orientifold is different and given by

x↔ y , w → −w , z → −z , (7.37)

where the fixed line exchanges two mesons and introduces a sign to the
self-mapped mesons given by the product of the signs of the two fixed lines
crossed. We can again see that the SUSY condition is respected

Ω3 =
dx ∧ dy ∧ dz

2w
→ dy ∧ dx ∧ dz

2w
= −Ω3 . (7.38)

In particular, we see that the signs of the fixed lines play no role in the last
relation.

Diagonal fixed line

Finally, we have a single fixed line in the example of Figure 7.1c. Again,
the choice of sign for the line is unconstrained. We choose a + sign. All
faces are self-identified, and the gauge factors are thus SO(N1)×SO(N2)×
SO(N3). The identification of fields is as follows:

Y12 ∼ X21 → Q12 , X13 ∼ Y31 → Q31 , Y23 ∼ X32 → Q23

Z11 ∼ Z11 → , Z22 ∼ Z22 → , Z33 ∼ Z33 → .
(7.39)

The superpotential is originally given by

W = X21Y12Z22−Y23X32Z22+X13Y31Z11−X21Y12Z11+X32Y23Z33−Y31X13Z11 ,
(7.40)
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and becomes

W = Q2
12Z22 −Q2

23Z22 +Q2
31Z11 −Q2

12Z11 +Q2
23Z33 −Q2

31Z11 . (7.41)

As before, we can find the mesonic invariants:

x = X13X32X21 , y = Y12Y23Y31 ,
w1 = Y12X21 , w2 = Y23X32 ,
w3 = Y31X13 , z1 = Z11 ,
z2 = Z22 , z2 = Z33 .

(7.42)

From F-terms equations, we find

w1 = w2 = w3 ≡ w ,
z1 = z2 = z3 ≡ z ,

(7.43)

and then
xy = w3 . (7.44)

The action of the orientifold on mesons in the dimer model is found to be

x↔ y , w → +w , z → +z . (7.45)

Consistently, the orientifold action on Ω3 is odd:

Ω3 =
dx ∧ dy ∧ dz

3w2
→ dy ∧ dx ∧ dz

3w2
= −Ω3 . (7.46)
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Chapter 8

Anomalies

This chapter is devoted to the study of non-abelian anomalies in gauge
theories coming from D-branes at orientifolds of toric singularities, in the
absence of flavor branes. We will introduce a new geometric algorithm for
constructing anomaly-free theories and identify geometric necessary criteria
for the existence of such solutions for orientifolds realized as “fixed points”
and “fixed line(s)” involutions in dimer models. Remarkably, our results
allow us to determine whether an orientifold singularity can admit anomaly-
free D-brane gauge theories just by analyzing its geometric structure and
avoiding any case-by-case analysis, which has been so far the only known
approach for this class of theories. This geometric criterion is therefore a
new addition to the list of connections between the geometry of singularities
and general properties of the resulting gauge theories, some of which were
mentioned in the previous chapters. Our results were originally presented
in [5].

The presentation is organized as follows. In Section 8.1, we consider
anomalies in orientifolds, for which cancellation conditions generically corre-
spond to non-homogeneous linear systems of equations due to the presence
of tensor matter. In Section 8.2, we generalize the algorithm for solving
anomaly cancellation conditions based on zig-zag paths to the case of orien-
tifolds. This analysis will lead to the main result of the chapter, which we
present in Section 8.3: a purely geometric criterion for anomaly cancella-
tion conditions in orientifold field theories just based on the toric data of the
singularity. Section 8.4 contains a summary of our results and an outlook.
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8.1 Anomaly cancellation conditions in orien-
tifolds

Determining whether an orientifolded theory admits anomaly-free so-
lutions and, if so, finding them is a relatively straightforward task on a
case-by-case basis. Indeed, writing down the set of anomaly equations for
every gauge group and looking for solutions is not more complicated than
for non-orientifolded models. In this section we systematize this calculation,
introducing an algorithm for finding anomaly-free solutions in the presence
of orientifolds. This, in turn, will allow us to relate the calculation to the one
in the unorientifolded theory and, at a later stage, to extend the geometric
determination of solutions in terms of zig-zag paths to orientifolds.

In what follows, we will refer to the original, unorientifolded theory
as the mother theory. Similarly, we will dub the orientifolded theory the
daughter theory. As described in Section 5.3 finding an anomaly-free rank
assignment for the mother theory amounts to finding the kernel of its adja-
cency matrix. More precisely, we are looking for the kernel of

A = adj(Q)− adj(Q)T , (8.1)

with adj(Q) is the proper adjacency matrix of the quiver, see the discussion
in Section 5.3. Tensor matter in the daughter theory modifies the ACC,
dovetailing the contribution of the O-planes to the RR-charges that must
cancel in compact homology. In general, the anomaly/tadpole problem of
orientifolded theories corresponds to a non-homogeneous linear system of
the form:

Ā ·N = f , (8.2)

where Ā is the adjacency matrix of the daughter theory, and f stands for
the additional contribution of tensor matter. The difference between two
solutions of the system Equation (8.2) is a solution of the corresponding
homogeneous one, i.e. it is in the kernel of Ā. If one knows a particular
solution Npart of Equation (8.2), every solution N can be expressed as:

N = Nhom +Npart , (8.3)

where Nhom is a solution of the homogeneous system,

Ā ·Nhom = 0 . (8.4)

Remarkably, we will show that whether Equation (8.2) has solutions
or not can be directly determined from the toric diagram of the singularity
under consideration. In other words, we will establish a geometric criterion
for the satisfiability of the ACC in orientifolded theories.
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8.1.1 The adjacency matrix of orientifolded theories

Consider a toric singularity and a corresponding dimer admitting a Z2

involution. We can divide the ng gauge groups of the mother theory into
two sets: pairs of faces identified under the involution, and self-identified
ones. Therefore, the adjacency matrix of the mother theory, AIJ with I, J =
1, . . . , ng, can be suitably rearranged as follows:

A =



B11 B12 B13

B21 B22 B23

B31 B32 B33

︸ ︷︷ ︸
j

︸ ︷︷ ︸
j + k

︸ ︷︷ ︸
b



}
i

}
i+ k

}
a

. (8.5)

Here faces i, j = 1, . . . , k are the surviving ones out of those in the
pairs of faces that are mapped into each other (for every pair, we are free
to keep any of the two faces). Faces i + k, j + k, with i, j = 1, . . . , k, are
their images. Finally, the remaining faces a, b = 1, . . . , ng − 2k are those
that are self-identified. The B matrices are the adjacency matrices between
these different subsets. For example, B13 is the adjacency matrix between
surviving faces and self-identified faces, while B23 is the adjacency matrix
between the image faces and the self-identified ones. The matrix A is by
definition antisymmetric, which in terms of the submatrices B implies that

B11 = −BT
11 , B22 = −BT

22 , B33 = −BT
33 ,

B12 = −BT
21 , B13 = −BT

31 , B23 = −BT
32 .

(8.6)

The Z2 symmetry of the phase under consideration endows it with
further symmetry properties. The Z2 projection acts on the bifundamental
fields as follows:

Mother theory Daughter theory

( i, j), ( j+k, i+k) → ( i, j)
( i, j+k), ( j , i+k) → ( i, j)
( i+k, j), ( j+k, i) → ( i, j)
( a, i), ( i+k, a) → ( a, i)
( i, a), ( a, i+k) → ( a, i)
( a, b), ( b, a) → ( a, b)

. (8.7)
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These projections imply that:

B11 = BT
22 , B12 = BT

12 , B21 = BT
21 ,

B31 = BT
23 , B13 = BT

32, B33 = BT
33 .

(8.8)

We can apply Equations (8.6) and (8.8) together to find further relations
between the B’s,

B11 = −B22 , B12 = −B21 ,

B13 = −B23 , B31 = −B32 , B33 = 0 ,
(8.9)

so that eventually the adjacency matrix is entirely determined by B11, B12,
and B13:

A =

 B11 B12 B13

−B12 −B11 −B13

−BT
13 BT

13 0

 . (8.10)

In order to illustrate these relations, let us consider the complex cone
over PdP3b, as studied in [2]. The dimer, which is shown in Figure 8.1,
admits a Z2 symmetry with two fixed lines. The numbering of the faces has

Figure 8.1: Dimer diagram for PdP3b with two horizontal fixed lines (in
red).

already been chosen such that the adjacency matrix reads

A =



0 1 −1 0 1 −1
−1 0 0 1 1 −1

1 0 0 −1 −1 1
0 −1 1 0 −1 1

−1 −1 1 1 0 0
1 1 −1 −1 0 0


, (8.11)
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which showcases the general structure in Equations (8.6), (8.8) and (8.9).

Let us now turn our attention to the daughter theory. To compute
the ACC for the orientifolded theory we first note that SO/USp groups are
automatically anomaly-free and play no role.1 Further, for the ACC of the
non-self-identified faces we have to take into account both the contributions
from fields such as ( i, j), that are counted by B11, and fields such as
( i, j) and ( i, j) that are counted by B12, see Equation (8.7). This
leads to the homogeneous ACC for the projected theory given by

A =

 B11 +B12 B13

 . (8.12)

Applying this to the PdP3b example we get

A =

(
−1 1 1 −1
−1 1 1 −1

)
. (8.13)

8.1.2 The homogeneous problem

In the previous section, we have constructed the homogeneous part
of the ACC for an orientifolded theory. We now show how solutions to
the homogeneous problem, namely elements of Ker(A), are obtained from
symmetric rank assignments of the mother theory, which form a subspace of
Ker(A). This will allow us to extend the method explained in Section 6.3.1
to the homogeneous problem of orientifolded theories.

We say that a rank assignment of the mother theory NS
I is symmetric

with respect to the Z2 involution if it satisfies

NS
i = NS

i+k , NS
a free . (8.14)

If this rank assignment is anomaly-free in the mother theory (i.e. if it is in
the kernel of A), we have

AIJN
S
J = 0 , (8.15)

where here and henceforth, summation over repeated indices is understood.

1There could have been, however, Witten anomalies à la SU(2) in SO/USp groups.
Yet, as discussed in [176], cancellation of local anomalies ensures that the number of
fermions is even and the Witten anomaly vanishes.
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Expanding this equation in terms of the B matrices and exploiting the
symmetry properties given in Equation (8.14), it becomes

(B11 +B12)ijN
S
j + (B13)iaN

S
a = 0 ,

(B21 +B22)ijN
S
j + (B23)iaN

S
a = 0 ,

(B31 +B32)ajN
S
j + (B33)abN

S
b = 0 .

(8.16)

From Equation (8.9), we conclude that the first two equations are actually
one and the same, while the third equation is trivially satisfied for any
symmetric rank assignment. From the first two equations we learn that any
symmetric rank assignment NS

I in the mother theory which satisfies the
ACC, defines a solution of the homogenous ACC system of the daughter
theory given in Equation (8.2):

Nhom = (NS
i |NS

a ) . (8.17)

Equation (8.16) indeed implies that such a vector satisfies:

A ·Nhom = 0 . (8.18)

Conversely, if one starts with a vector (NS
i |NS

a ) satisfying Equa-
tion (8.18), the vector (NS

i |NS
i+k|NS

a ) is a symmetric rank assignment of

the mother theory. The definition of A in Equation (8.12) implies that the
equations in Equation (8.16) hold for (NS

i |NS
i+k|NS

a ), i.e. that the latter
satisfies the ACC of the mother theory. Hence, we have proved the following:

Rank assignments in the daughter theory which satisfy the homoge-
neous ACC are in one-to-one correspondence with symmetric rank as-
signments in the mother theory which satisfy the ACC.

In the special case where tensors are absent from the daughter theory,
the ACC are actually a homogeneous problem and the symmetric rank as-
signments in the mother theory provide directly the orientifold solutions.
The regular brane is such a solution that always exists and thus guarantees
that an orientifold without tensors always admits a non-anomalous solution.

8.1.3 The non-homogeneous problem

Finding solutions to the ACC in orientifolded theories with tensors
is not trivial because their very existence is not guaranteed, since the full
system of ACC given in Equation (8.2) has a non-homogeneous part coming
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from the tensor matter. The Rouché-Capelli theorem gives us a criterion
for its solvability: a non-homogeneous system,

Ā ·N = f , (8.19)

admits a solution if and only if

rank(Ā) = rank(Ā|f) , (8.20)

where (Ā|f) is the matrix obtained appending the column f to the matrix
Ā. For us f encodes the contribution to the ACC of the tensor matter,
i.e. of the self-identified chiral fields.

In other words, every set of numbers ri such that

riĀiJ̄ = 0 (8.21)

holds for all J̄ = j, a, must satisfy

rifi = 0 (8.22)

for the system to be solvable. In this section, we show that the coefficients
ri which satisfy Equation (8.21) correspond precisely to the antisymmetric
rank assignments of the mother theory.

Suppose that some coefficients ri satisfying Equation (8.21) exist. Using
Equation (8.9) for J̄ = j, one can show that it implies

ri(B11)ij − ri(B21)ij = 0 . (8.23)

Using Equation (8.9), this is equivalent to

ri(B12)ij − ri(B22)ij = 0 . (8.24)

For J̄ = a, using Equation (8.9), we find that

ri(B13)ia − ri(B23)ia = 0 . (8.25)

We write
NA
I = (ri| − ri|0) , (8.26)

and equations Equation (8.23) to Equation (8.25) can be expressed as

NA
I AIJ = 0 = AJIN

A
I , (8.27)

where the second equality merely uses the antisymmetry property of A.
Hence, we have proved that any set of ri satisfying Equation (8.21) defines
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an antisymmetric rank assignment NA
I of the mother theory, which satisfies

the mother ACC.

Conversely, starting with an antisymmetric rank assignment NA
I in the

mother theory
NA
i = −NA

i+k, NA
a = 0 , (8.28)

which satisfies the ACC, one can use equations Equation (8.23) to Equa-
tion (8.25) backward, and thus obtain a set of ri such that Equation (8.21)
holds for all J̄ = j, a.

Let us emphasize that while symmetric rank assignments in the mother
theory are in one-to-one correspondence with solutions of the homogeneous
system of ACC in the daughter theory (which by definition form the kernel
of A), the antisymmetric rank assignments in the mother theory correspond
rather to the elements of the cokernel of A, that we will see merely as
technical tools. They are useful for determining whether a given daughter
theory admits an anomaly-free rank assignment, since the elements in the
cokernel of A encode the relations between the lines of A, from which one
can row-reduce A.

Coefficients of the trivial linear combination of lines of A are in one-to-
one correspondence with the anomaly-free antisymmetric rank assign-
ments in the mother theory.

To rephrase what we wrote at the beginning of the section, there are
anomaly-free rank assignments in the daughter theory if and only if

NA
i fi = 0 (8.29)

for every antisymmetric solution NA
I of the mother theory, where f is easily

computed from the dimer and its orientifold. We call this the “Rouché-
Capelli condition”.

In general, note that any rank assignment NI can be split into a sym-
metric and an antisymmetric component,

(Ni|Ni+k|Na) =
1

2
(Ni +Ni+k|Ni+k +Ni|2Na) +

1

2
(Ni −Ni+k|Ni+k −Ni|0) .

(8.30)

Both parts are then half-integer valued. Multiplying such a possibly unphys-
ical (in the case it is half integer-valued) rank vector by an even number
yields a physical rank vector with the required (anti)symmetry. All of the
reasoning of the last two subsections is pure linear algebra, and does not
know about the need for integrality for rank assignments, which entirely
comes from physics.
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8.2 A zig-zag algorithm for orientifolds

We will now generalize the procedure discussed in Section 6.3.1 to find
(anti)symmetric rank assignments in orientifolded theories. The precise
details of the algorithm depend on whether the Z2 involution leaves fixed
lines or points. This difference comes from the fact that involutions with
fixed lines map nodes to nodes of the same color, while involutions with
fixed points map nodes to nodes of opposite color.

We illustrate this difference in Figure 8.2. There we can see that ZZPs
around a node make a clockwise or counterclockwise loop. If a node is
mapped to a node of the same color it means that the orientation of the loop
is preserved, while, in the opposite case, it is reversed.2 This observation
will become crucial when we define (anti)symmetric rank assignment in both
the case of fixed lines and points.

(a) (b)

Figure 8.2: The orientifold actions with (a) fixed points and (b) fixed lines.
p is a path from one face to an adjacent one, and p′ its image. In (a) the
orange and blue ZZPs are self-identified, while the green ones are mapped
into each other. In (b), the orange and blue ZZPs are mapped into each
other, and the green ones are self-identified.

For the forthcoming analysis, we find it useful to introduce the notation
{Γ} = {α, α, γ} to describe the set of ZZPs: every pair (α, α) corresponds
to ZZPs mapped into each other under the orientifold projection, while γ
labels self-identified ZZPs.

2We recall that under both involutions, a dimer is sent to a dimer with all ZZPs going in
the opposite direction. The map between ZZPs is understood after additionally reversing
the direction of every ZZP, as in [73].
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8.2.1 Fixed line(s) orientifolds

Due to how they act on ZZPs, orientifolds with fixed lines in the dimer
correspond to toric diagrams with axes of Z2 reflection symmetry.3 Fig-
ure 8.3 illustrates the general structure of such axes and the map between
a ZZP and its image in the cases of orientifolds with diagonal and horizon-
tal O-lines (which is analogous to the case with vertical O-lines). Let us
elaborate on this kind of figure. Naively, the orientation of the reflection
axis in these toric diagrams can be modified by an SL(2,Z) transforma-
tion, potentially eliminating the distinction between the diagonal and verti-
cal/horizontal O-line cases. However, the toric diagram after such SL(2,Z)
transformation would no longer be symmetric with respect to the axis. Al-
ternatively, we can think about the toric diagrams with reflection axes as
coming from specific dimers with fixed lines. In this context, an SL(2,Z)
transformation translates into a change of the unit cell of the dimer. But
the unit cell is fixed by the specific orientifold under consideration: not any
SL(2,Z) transformation is permitted once we have chosen an orientifold
identification. In other words, the orientifold obstructs SL(2,Z) transfor-
mations.

(a) (b)

Figure 8.3: The toric diagrams for fixed line orientifolds have an axis of
reflection symmetry. The corresponding axes for: (a) diagonal and (b)
horizontal O-lines. In both cases we show in blue a generic ZZP and its
image.

3We will refer to such lines of reflection symmetry in the toric diagram as axes in order
to avoid confusion with the fixed lines in the dimer (which we also call O-lines).
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Symmetric rank assignments. For Z2 involutions with fixed lines, sym-
metric rank assignments correspond to symmetric ZZP value assignments:

vα = vα, vγ free (8.31)

First, recall from Section 6.3.1 that the difference between the ranks of
any two faces in the dimer is equal to a sum (with signs) of the values of
the ZZPs one crosses as one goes between the two faces. ACC at each face
of the dimer ensure that the value of this sum is invariant under smooth
(homological) deformations of the path one follows. Furthermore, the topo-
logical constraints guarantee that the value of the sum is independent of the
homology class of the path on the torus.

Consider two faces i and j and a path p connecting them, and i′, j′

and p′ their respective images under the Z2 symmetry. Every time p crosses
a ZZP α, its image p′ crosses α′, and these two crossings have the same
sign since the orientation is preserved. From this, it is clear that, if the
ZZP value assignment is symmetric, the rank assignment generated by the
method in Section 6.3.1 is also symmetric.

In the case of dimer models with involutions fixing lines, symmetric rank
assignments correspond bijectively to symmetric ZZP value assignments
(up to the global shift in the values, and such that the topological
constraints are satisfied).

For symmetric value assignments, the topological constraints read:

• Diagonal line (pᾱ = −qα, qᾱ = −pα):

0 = Λ =
∑
α

vα(pα − qα) +
1

2

∑
γ

vγ(pγ − qγ) = −M = 0 . (8.32)

• Vertical lines (pᾱ = −pα, qᾱ = qα):

M = 2
∑

α vαqα +
∑

γ vγqγ = 0 ,

Λ = 0 ,

The case of horizontal lines follows exchanging pΓ with qΓ and Λ with
M .

We can now compute the total number of symmetric rank assignments.
If the dimer under consideration has n ZZPs, symmetric rank assignments
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correspond to a choice of vΓ, such that vα = vα, and such that topological
constraints hold. We also have the freedom to shift the rank of all gauge
groups, since regular branes respect the required symmetry. Putting all this
together, the number of independent symmetric rank assignments modulo
some (possibly half-integer) number of regular branes is

dim(Ker(A))− 1 =
1

2
(n+ ns)− 2 , (8.33)

where ns is the number of self-identified ZZPs.

Antisymmetric rank assignments. Antisymmetric rank assignments
are found in a similar fashion, by imposing the antisymmetry explicitly on
the ZZP values, i.e. vΓ = −vΓ, or equivalently

vα = −vα, vγ = 0 . (8.34)

This follows from the same reasoning as in the symmetric case: due to the
geometric action of the symmetry, it is clear that antisymmetric ZZP value
assignments lead to antisymmetric rank assignments in the dimer. Further-
more, if the ZZP value assignment is not antisymmetric up to a shift, it is
straightforward to see that the rank assignment cannot be antisymmetric
either.

In this case, there is a subtlety that was not present in the symmetric
case. First, the ZZP value method only knows about differences of ranks
in the dimer. Equivalently, it only describes anomaly-free rank assignments
up to some (half-integer) number of regular branes. The relevant point
here is that regular branes are not antisymmetric. Hence, starting from an
antisymmetric value assignment, it can well be that the rank assignment
one constructs is not antisymmetric per se, but merely antisymmetric after
having added some number of regular branes (we will see examples of this
later). Then, in the method of Section 6.3.1, a global shift of the ZZP
values does not change the resulting rank assignment. The global shift
does not preserve antisymmetry, so among the family of value assignments
corresponding to a given rank assignment (modulo regular branes), there is
a special representative which is an antisymmetric value assignment. Thus
instead of focusing on the bijection between the set of antisymmetric rank
assignments up to a (half-integer) number of regular branes, and the set
of ZZP value assignments which satisfies the topological constraints, and
which can be transformed into antisymmetric value assignments thanks to
the global shift, one can consider the only representative of such a class
of ZZP value assignments, which is antisymmetric. We have proven the
following:
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In the case of dimer models with involutions fixing lines, antisymmetric
rank assignments correspond bijectively to antisymmetric ZZP value
assignments which satisfy the topological constraints.

When combined with Equation (8.34), the topological constraints Λ =
M = 0 again merge into a single constraint, regardless of the type of fixed
line orientifold. The surviving combination however depends on the nature
of the fixed lines:

• Diagonal line:

Λ =
∑
α

vα(pα + qα) = −M = 0 . (8.35)

• Vertical lines:

Λ = 2
∑
α

vαpα = 0 ,

M = 0 . (8.36)

For horizontal lines we merely need to exchange pα with qα, and Λ
with M .

The number of antisymmetric rank assignments is easily computed to
be

dim(coker(A)) =
1

2
(n− ns)− 1 (8.37)

Adding Equation (8.33) and Equation (8.37), we find that the total number
of independent either symmetric or antisymmetric anomaly-free rank assign-
ments is n− 3, as should be the case since it is the number of anomaly-free
rank assignments in the mother theory, up to (half) regular branes.

Below we illustrate these ideas with a few explicit examples, containing
both diagonal and vertical/horizontal fixed lines.

No anomaly-free solution: dP1 with diagonal fixed line

Consider the complex cone over dP1, which we discussed in Section 6.3.1
as an example of the ZZP method for the mother theory. It admits a Z2

involution with a fixed line, as shown in Figure 8.4.

135



(a) (b)

Figure 8.4: (a) The toric diagram with the orientifold symmetry axis. (b)
Dimer diagram for dP1 with a diagonal fixed line (in red). We show the
ZZPs and the rank assignments coming from them.

Adjacency matrices. The adjacency matrix of the mother theory is eas-
ily read from the dimer, and it is given by

A =


0 2 −1 −1
−2 0 −1 3

1 1 0 −2
1 −3 2 0

 (8.38)

For concreteness, let us consider the case of a positive O-line. The adjacency
matrix for the orientifolded theory is found using Equation (8.12). It is
supplemented with the inhomogeneous part and becomes

(Ā|f) =

(
−1 1 +4
−3 3 −4

)
. (8.39)

We will later discuss how to determine systematically the fis. Here it is
sufficient to see that since the O-line has a + sign, both tensors are sym-
metric. The sign of fi = ±4 has to be correlated with the sign of the
diagonal elements of Ā, so that in the ACC we eventually find ±(Ni + 4)
for symmetric tensors and ±(Ni − 4) for antisymmetric ones (recall that f
is on the right-hand side of the ACC equations Equation (8.2)).

One may directly solve the simple system Equation (8.39), but we will
rather use the algorithm we developed. In the dimer in Figure 8.4b we
indicate the linear combination of ZZPs that corresponds to every face (we
have chosen face 2 to have rank 0). In Section 6.3.1 we studied the anomaly-
free rank assignments in the mother theory and found a one-parameter
family (besides the regular brane):

N = (−2, 0, 1,−1)v3 , (8.40)
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which can be decomposed into symmetric and antisymmetric parts,

(−2, 0, 1,−1)v3 = −1

2
(1, 1, 1, 1)v3 +

1

2
(−3, 1, 3,−1)v3 (8.41)

We see that there is one antisymmetric rank vector (−3, 1, 3,−1) and no
symmetric one (except the regular brane). We now show how to find them
directly from the ZZPs.

The antisymmetric rank vector is found by imposing v1 = −v2 and
v3 = −v4. We cannot use the global shift, since it is not antisymmetric.
The periodicity constraints are Λ = M = v1 − 3v3 = 0. We thus find
the antisymmetric rank assignment N = (−3, 1, 3,−1)v3. In the daughter
theory this vector is N = (−3, 1)v3. However, it is not in Ker(A), but in
the cokernel. We can use it to row reduce A and study whether the linear
system (A|f) has solutions. Denote f = (+4,−4)T the inhomogeneous part
of (A|f). If N · f 6= 0, the theory is anomalous. This is indeed the case in
this example, so we conclude that the daughter theory does not admit an
anomaly-free solution.

No anomaly-free solution: PdP4 with diagonal fixed line

Consider now PdP4, which we previously discussed in Section 6.3.1.
Figure 8.5 shows the dimer and toric diagram for the orientifold under
consideration. In Section 6.3.1 we saw that anomaly-free rank assignments
of the mother theory are given by:

N = (−v7, v2, v6 − v1,−v1, v6, v2 − v7, 0) . (8.42)

The topological constraints are:

Λ : v4 + v3 = v6 + v7 , (8.43)

M : v4 + v5 = v1 + v2 . (8.44)
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(a) (b)

Figure 8.5: (a) The toric diagram with the orientifold symmetry axis. (b)
Dimer diagram for PdP4 with a diagonal fixed line (in red). We show the
ZZPs and the rank assignments coming from them.

Adjacency matrices. The adjacency matrices of the mother and daugh-
ter theories are:

A =



0 0 1 −1 −1 0 1
0 0 1 −1 −1 0 1
−1 −1 0 0 0 1 1

1 1 0 0 0 −1 −1
1 1 0 0 0 −1 −1
0 0 −1 1 1 0 −1

−1 −1 −1 1 1 1 0


,

(Ā|f) =

 −1 −1 1 1 −4
−1 −1 1 1 −4
−1 −1 1 1 +4

 ,

(8.45)

where, for concreteness, we have assumed that the sign of the orientifold
line is negative.

Symmetric rank assignments. Impose v3 = v5, v2 = v6, v1 = v7. The
constraints M = 0, Λ = 0 combine into v4 = v1 + v2 − v3. We can use the
global shift freedom to set v4 = 0, which leads to vS = (v1, v2, v1 +v2, 0, v1 +
v2, v2, v1). The resulting symmetric rank assignments in the mother and
daughter theories are

NS = (−v1, v2, v2 − v1,−v1, v2, v2 − v1, 0)

N
S

= (−v1, v2, v2 − v1, 0) .
(8.46)
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Note that N
S

should be understood as the column vector whose first three
elements refer to the faces 1–3 that have an image, while the last refers to
the self-identified face 7. When considered as a row vector, one should drop
the last element.

Antisymmetric rank assignments. Impose v1 = −v7, v2 = −v6, v3 =
−v5 = 0, v4 = 0. We also need to impose the constraint v1 + v2 = −v3 with
no global shift freedom. We then find a two-parameter family of antisym-
metric assignments for the vΓ, vA = (v1, v2,−v1 − v2, 0, v1 + v2,−v2,−v1).
The corresponding antisymmetric rank assignment is

NA = (v1, v2,−v1 − v2,−v1,−v2, v1 + v2, 0) . (8.47)

In the daughter theory, this rank assignment gives rise to the two row vectors

N
A
1 = (1, 0,−1)v1, N

A
2 = (0, 1,−1)v2 (8.48)

Let us denote by f = (−4,−4, 4)T the inhomogeneous part of (A|f). We

find N
A
1 · f = −8 and N

A
2 · f = −8. We conclude that anomalies cannot be

canceled in this theory.

This example and the previous one consist of orientifolds with a diago-
nal fixed line. Both cases turned out to lead to theories in which anomalies
cannot be cancelled. In Section 8.3.1 we will present a more detailed gen-
eral analysis and discuss under which conditions such orientifolds can admit
anomaly-free solutions.

An anomaly-free example: PdP3b with two fixed lines

Figure 8.6 shows the dimer and toric diagram for an orientifold of PdP3b

with two fixed lines. This theory was studied in [2], where it was shown that
the daughter theory admits an anomaly-free rank assignment if the two O-
lines have opposite signs. Note that the horizontal fixed lines in the dimer
correspond to a vertical axis of symmetry in the toric diagram.
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(a) (b)

Figure 8.6: (a) The toric diagram with the orientifold symmetry axis. (b)
Dimer diagram for PdP3b with two horizontal fixed lines (in red). We show
the ZZPs and the rank assignments coming from them.

Adjacency matrices. The adjacency matrices of the mother and daugh-
ter theories are:

A =



0 −1 1 0 −1 1
1 0 0 −1 −1 1

−1 0 0 1 1 −1
0 1 −1 0 1 −1

1 1 −1 −1 0 0
−1 −1 1 1 0 0


,

(Ā|f) =

(
1 −1 −1 1 −4 · sign(B)
1 −1 −1 1 +4 · sign(A)

)
,

(8.49)

where sign(A), sign(B) are the signs of the two O-lines. Let us now turn to
the study of symmetric and antisymmetric rank assignments.

Symmetric rank assignments. Let us impose v2 = v1, v6 = v3. The
constraint Λ = 0 is trivially satisfied, while M = 0 becomes (keeping v1 and
v3):

2v1 − v4 = v5 . (8.50)

Setting v4 = 0, we get

vS = (v1, v1, v3, 0, 2v1, v3) , (8.51)
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giving in turn

NS = (−v3,−v1,−v3,−v1, v1 − v3, 0) . (8.52)

Projecting down this vector, we obtain the solutions to the homogeneous
problem in the daughter theory.

Antisymmetric rank assignments. We now impose v2 = −v1, v3 =
−v6, v4 = v5 = 0. As expected, M is trivially satisfied and one just needs
to impose Λ = 0, which reads v3 = v1. Remember that the global shift has
already been fixed. We then find a one-dimensional family of antisymmetric
assignments for the vΓ:

vA = (v1,−v1, v1, 0, 0,−v1) . (8.53)

The corresponding antisymmetric rank assignment is given by NA =
(v1,−v1,−v1, v1, 0, 0). In the daughter theory this rank assignment gives

N
A

= (1,−1)v1. One may now use it to row reduce A. Denote by f =
(−4 · sign(B),+4 · sign(A))T the inhomogeneous part of (A|f). We find

N
A · f = −4 · sign(B)− 4 · sign(A). If N

A · f 6= 0, the theory is anomalous,
so we need sign(A) = −sign(B), as anticipated.

Anomaly-free rank assignments. As explained in the introduction of
the current section, since we have a parametrization of the symmetric rank
assignments, we merely need a single solution of the tadpole-cancellation
system to write all of them.

Looking at the adjacency matrix of the daughter theory in Equa-
tion (8.49) with sign(A) = + and sign(B) = −, a straightforward solution
to the rank assignment is N1 = 4 and N2 = N5 = N6 = 0 (in the daughter
theory we keep faces 1, 2, 5 and 6). This gives the following three-parameter
family of solutions to the ACC, where we have added N + v1 + v3 regular
branes: 

N1 = N + v1 + 4
N2 = N + v3

N5 = N + 2v1

N6 = N + v1 + v3 .

(8.54)

8.2.2 Fixed points orientifolds

In orientifolds with fixed points, every ZZP is mapped to a ZZP with
the same winding numbers [73]. The image of a ZZP can therefore be either
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itself or another ZZP, if more than one ZZP with the same winding numbers
exist.

Contrarily to the cases with fixed lines, in fixed point orientifolds nodes
in the dimer are mapped to nodes of the opposite color. In analogy with
the case of line orientifolds, let us consider a path p going from a face i to
a face j, and its image p′ going from the image of i to the image of j. If
p crosses a ZZP α, then p′ crosses its image α′, but since the color of the
nodes is inverted in the image, the signs of the crossings are opposite. This
implies that a symmetric, respectively antisymmetric, rank assignment is
associated with an antisymmetric, respectively symmetric, value assignment
for the ZZP. We therefore have:

In dimer models with fixed point involutions, symmetric rank assign-
ments up to (half)-regular branes correspond bijectively to antisymmet-
ric ZZP value assignments which satisfy the topological constraints.
Similarly, antisymmetric rank assignments correspond bijectively to
symmetric ZZP value assignments which satisfy the topological con-
straints and up to a global shift.

We have seen that in the cases of fixed point orientifolds, symmetric
rank assignments correspond to ZZP value assignments such that:

vα = −vα, vγ = 0 . (8.55)

One can easily verify that the topological constraints are always satisfied by
this choice of vΓ, hence the number of symmetric rank assignment is:

dim(Ker(A)) =
1

2
(n− ns) . (8.56)

Antisymmetric rank assignments, conversely, correspond to:

vα = vα, vγ = free . (8.57)

In this case both topological constraints Λ and M are not trivial:
Λ =

∑
α

pαvα +
∑
α

pαvα +
∑
γ

pγvγ = 2
∑
α

pαvα +
∑
γ

pγvγ = 0

M =
∑
α

qαvα +
∑
α

qαvα +
∑
γ

qγvγ = 2
∑
α

qαvα +
∑
γ

qγvγ = 0

(8.58)

This leads to:

dim(coker(A)) =
1

2
(n+ ns)− 3 . (8.59)

142



Upon summing the contributions of symmetric and antisymmetric rank
assignments, we retrieve the total number of fractional branes, n−3, modulo
regular branes.

An example: PdP3b

Let us return to PdP3b, already studied in Section 8.2.1 but now with
fixed points instead of lines. The dimer is shown in Figure 8.7. Note that
we have changed the unit cell and face numbering with respect to Figure 8.6
to make it consistent with fixed point reflections.

Figure 8.7: Dimer diagram for PdP3b with fixed points. We show the ZZPs
and the rank assignments coming from them.

Adjacency matrices. The adjacency matrices of the mother and daugh-
ter theories are:

A =



0 1 −1 −1 0 1
−1 0 1 0 1 −1
1 −1 0 1 −1 0

1 0 −1 0 −1 1
0 −1 1 1 0 −1
−1 1 0 −1 1 0


,

(Ā|f) =

 −1 1 0 +4 · sign(C)
−1 1 0 −4 · sign(B)
2 −2 0 −4 · sign(A) + 4 · sign(D)

 ,

(8.60)

where sign(A) to sign(D) are the signs of the O-points. Note that the
ZZPs 4 and 5 are interchanged by the projection, while all other ZZPs are
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mapped to themselves. Let us now turn to the study of antisymmetric and
symmetric rank assignments.

Symmetric rank assignments. This time we start with antisymmetric
ZZP assignments, since for point orientifolds they provide symmetric rank
assignments. Let us impose v4 = −v5, v1 = v2 = v3 = v6 = 0. As already
said, the topological constraints are both trivially satisfied. Note that there
is no global shift to fix. We obtain a one-parameter family of vΓ assignments:

(0, 0, 0, 1,−1, 0)v4 . (8.61)

The corresponding rank assignment is:

NS = (1, 1, 0, 1, 1, 0)v4 , (8.62)

which is symmetric, as expected. Projecting down this vector, one obtains
the solutions to the homogeneous problem in the daughter theory.

Antisymmetric rank assignments. We now turn to symmetric ZZP
assignments, responsible for the antisymmetric rank assignments. We only
need to impose v4 = v5. We further fix the global shift by choosing v4 = 0.
The topological constraints become:

Λ : v3 = v1 − v2 + v6 ,

M : v2 = −v1 .
(8.63)

We find a two-dimensional family of symmetric assignments for the vΓ:

(1,−1, 2, 0, 0, 0)v1 + (0, 0, 1, 0, 0, 1)v6 . (8.64)

The corresponding antisymmetric rank assignments are:

NA = (0,−2,−1,−1, 1, 0)v1 + (−1,−1,−1, 0, 0, 0)v6 . (8.65)

Which, up to half regular branes is equal to:

NA = (1,−3,−1,−1, 3, 1)
v1

2
+ (−1,−1,−1, 1, 1, 1)

v6

2
, (8.66)

which is antisymmetric, as expected. Let us split it into two vectors and
project them down to the daughter theory to obtain,

N
A
1 = (1,−3,−1)

v1

2
, N

A
2 = (−1,−1,−1)

v6

2
. (8.67)
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Again, let us use these rank assignments to row reduce A by denoting f =
(+4 · sign(C),−4 · sign(B),−4 · sign(A) + 4 · sign(D))T . One finds that, for
the theory to admit non-anomalous solutions, one must satisfy,

N
A
1 · f =

v1

2

(
sign(C) + 3sign(B) + sign(A)− sign(D)

)
= 0 ,

N
A
2 · f =

v6

2

(
−sign(C) + sign(B) + sign(A)− sign(D)

)
= 0 .

(8.68)

Anomaly-free rank assignments. The solution to Equation (8.68) de-
pends on the sign choices for the four fixed points. Consider for example

sign(A) = sign(C) = +, sign(B) = sign(D) = − , (8.69)

which is consistent with the sign rule for fixed point orientifolds. In this case,
we go back to Equation (8.60) to find a two-parameter family of solutions:

N1 = N + v4

N2 = N + v4 + 4
N3 = N .

(8.70)

8.3 General criteria for anomaly-free orientifolds

In this section, we present a general study of the solutions to the non-
homogeneous system of ACC of the daughter theory. Remarkably, we can
exploit the algorithm of the previous section to determine the existence of
such solutions directly from toric data, regardless of the particular phase
of the theory. This gives purely geometric necessary criteria determin-
ing whether an orientifolded theory may admit a toric phase with non-
anomalous rank assignments.

8.3.1 Diagonal line orientifolds

Let us consider orientifolds with a diagonal fixed line. Without loss
of generality, we assume that the fixed line has winding numbers (1, 1) in
the fundamental cell of the dimer. The mapping of ZZPs in this kind of
orientifolds has been studied in [73] and we presented a preliminary discus-
sion in Section 8.2.1. The diagonal fixed line in the dimer translates into
a reflection symmetry axis in the toric diagram with slope −1, as we al-
ready illustrated in Figure 8.3a. This 90◦ rotation of the symmetry axis of
the toric diagram with respect to the fixed line in the dimer was explained
in [148].
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Reflection with respect to the axis of the toric diagram maps a ZZP
with winding (p, q), to a ZZP with winding (−q,−p). Figure 8.8 shows an
example of a generic toric diagram with a diagonal line orientifold.

• Let l be the number of pairs {vα, vα} ,with α = 1, .., l, of ZZPs mapped
one to another, which are not parallel to the symmetry axis of the toric
diagram.

• Let l‖ be the number of self-identified ZZPs {vγ} for γ = 1, ..., l‖,
which are parallel to the symmetry axis of the toric diagram.

Figure 8.8: A generic toric diagram with a diagonal axis symmetry.

From the previous section, we know how to produce the coefficients of
the trivial linear combinations of rows. They are the ranks of the projected
SU groups that result from imposing the following conditions on the vΓ:

vα = −vα ,
vγ = 0 (8.71)

for all α and γ’s. The topological constraints Λ and M are given by:

Λ =
∑
α,α

(vαpα + vαpα) =
∑
α

vα(pα + qα) = −M (8.72)

where we used pα = −qα.

We now recall the Rouché-Capelli theorem: A non-homogeneous linear
system has solution iff the rank of the associated homogeneous matrix is
equal to the rank of the matrix associated with the full system. A trivial
linear combination of rows of the homogenous matrix is still trivial when
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considering the matrix associated with the full system. This can be stated
as: ∑

i

Nifi = 0 (8.73)

where fi is the non-homogeneous contribution to the ACC matrix of the
orientifolded theory, coming from the tensor matter.

We now need to derive an expression for Ni in terms of the vΓ. The
Rouché-Capelli theorem tells us that the ACC system admits a solution iff
Equation (8.73) holds for every value of vΓ consistent with the topological
constraints.

Faces with at most one tensor

Let us first focus on the simpler case where every gauge group has at
most one tensor field. This result will be easily extended later to cases with
more tensors. Consider a face of the mother theory with an edge on top of a
fixed line. The rank assignment providing the coefficients for row reduction
is given by the condition Ni = −Ni+k, vα = −vα, and the difference between
the ranks of two adjacent faces is given by Ni−Ni+k = vα−vα. Combining
these two results, we obtain

2Ni = Ni −Ni+k = vα − vα = 2vα . (8.74)

Let us now determine the fi from the toric data. The method we are
going to discuss below can be regarded as a generalization to orientifolds
of the algorithm for finding the (minimal) matter content of a quiver in
terms of basic knowledge of the (p, q) winding numbers of its ZZPs (equiva-
lently of the external legs of the (p, q) web dual to the toric diagram). The
intersection number between a given ZZP and the fixed line is

det

(
p 1
q 1

)
= p− q . (8.75)

At every such crossing this ZZP, if not self-identified, will intersect its image
on the line. The edge on which they cross will produce a tensor or conjugate
tensor field, depending on the orientation of the crossing. This is depicted
in Figure 8.9.

From the discussion above, it is clear that the non-vanishing compo-
nents of fi are exactly those corresponding to the faces with a tensor, for
which we have just determined the rank in terms of the ZZP values. Taking
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Figure 8.9: Crossing between a ZZP (and its image) over an edge on top
of a diagonal fixed line. We show the corresponding bifundamental field in
the mother theory.

into account that the same ZZP can be related to pα−qα tensors, this allows
us to write Equation (8.73) as∑

i

Nifi = (±4)
∑
α

vα(pα − qα) = 0 , (8.76)

where we have factorized the choice of sign for the diagonal O-line.

It is worth noting that the intersection with sign is a topological quan-
tity that counts the minimal number of intersections of the ZZP with the
fixed line in the dimer. This is, in fact, a homological invariant. In principle,
more intersections are allowed, but they will come in pairs, one with positive
and one with negative intersection, as shown in Figure 8.10. When com-
puting the total contribution they cancel, leaving us with Equation (8.76),
which does not depend on the particular phase we are considering.

Figure 8.10: When ZPPs are deformed, additional intersections are added
in pairs. We show the corresponding bifundamental fields in the mother
theory.
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We use the topological constraint Equation (8.72) to express the value
assigned to v1, as

v1 = − 1

p1 + q1

∑
α 6=1

vα(pα + qα) . (8.77)

Plugging this expression into (8.76) and rearranging the terms, we reach the
following equality: ∑

α 6=1

vα (pαq1 − p1qα) = 0 . (8.78)

Then, the Rouché-Capelli theorem can be satisfied for generic vα iff

pαq1 − p1qα ≡ det

(
pα p1

qα q1

)
= 0 , (8.79)

which implies that pα = p1, qα = q1 for every α. This implies that the
toric diagram has a maximum of 4 edges, 2 of which are orthogonal to
the symmetry axis. We dub the corresponding class of toric diagrams the
trapezoids. An example of such a trapezoid is shown in Figure 8.11. Among
trapezoids, we of course include also triangles.

Figure 8.11: An example of a trapezoid for which you can find a non-
anomalous diagonal line orientifold.

Note also that there is a subset of trapezoids for which (8.76) is triv-
ially satisfied. They have pα = qα for every α so we refer to them as the
rectangles, and describe orbifolds of F0. See Figure 8.12 as an example. We
remark that rectangles are the toric diagrams that give rise to line orien-
tifolds without tensors in the spectrum. Thus, we recover the result that
the latter always admit a non-anomalous solution.
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Figure 8.12: An example of a rectangle toric diagram with its diagonal axis
of symmetry.

Preliminary result for diagonal line orientifolds: Unless the toric
diagram of the singularity under consideration is a trapezoid, any ori-
entifold theory obtained from a dimer symmetric with respect to its
diagonal, and in which every face has at most one edge along this diag-
onal, does not admit anomaly-free solutions.

Faces with multiple tensors

Faces with multiple tensors arise in examples as simple as the conifold
or C2/Z2n+1 orbifolds, upon orientifolding with respect to a diagonal line.
We now discuss how the previous discussion is extended to these cases. We
start by considering how multi-tensor faces may be embedded in the dimer.
We will see that there are restrictions on the number of tensors a face can
have. Moreover, their existence is non-trivial and imposes constraints on
the toric diagrams. The analysis of this case is slightly different from the
one in the previous section but will lead to the same result.

Interestingly, it is possible to find an upper bound on the number of
tensors a face in the dimer can have. Figure 8.13 shows a face with two self-
identified edges on the same side of the O-line. If they were adjacent, they
would be connected at a 2-valent node, which corresponds to a mass term,
and then they could be integrated out. Naively, we might imagine that this
can be avoided by introducing additional structure between the two edges,
which is represented as a blob in Figure 8.13. But the ZZPs generating the
edges on the line are the only ones that participate in the blob. In other
words, the orange and purple ZZPs in Figure 8.13 must be identified with
the blue and green ZZPs, with the precise identification depending on the
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number of intermediate edges. Therefore, the blob can only correspond to
a sequence of edges connected by mass terms. After integrating them out,
we are left with either zero or one tensor for an even or odd number of
edges, respectively. This implies that a given face can only support more
than one tensor in two cases: if they belong to different O-lines or if they
belong to the same O-line but are coming from different copies of the unit
cell as illustrated in Figure 8.14. In both cases, the previous analysis applies
to each instance that the face touches a fixed line, so we conclude that the
maximum possible number of tensors at a given face is two. The total
number of tensors in the full theory is, however, unrestricted.

Figure 8.13: Two edges of a given face on a fixed line, separated by a general
structure.

Figure 8.14: Faces with edges on top of the fixed line at different copies of
the unit cell.

From Figure 8.14, we see that there can be three types of ZZPs: ZZPs
parallel to the fixed line, which are forbidden since they would have to go
through the face with two tensors, spoiling it; ZZPs orthogonal to the fixed
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line, i.e. self-identified ZZPs, which do not give rise to tensors; finally, ZZPs
which intersect in pairs on self-identified edges giving rise to tensors. Thus,
the singularity can only have self-identified ZZPs, those of the γ kind, and
at most two couples of ZZPs of the α kind. Moreover, the (p, q) numbers of
the latter are also subject to constraints. They cannot cross faces i and i′

otherwise than passing by the O-lines, so they can intersect the grey dotted
axis in Figure 8.14 at most twice if only one couple of ZZPs α is involved:

|pα + qα| ≤ 2 for α = 1 , (8.80)

and once in the case of two couples:

|pα + qα| = 1 for α = 1, 2 . (8.81)

Those relations apply both for ZZPs α and ᾱ, for which the sums are re-
spectively negative and positive.

If there is only one couple, the singularity corresponds to a trapezoid as
the ones discussed in the previous section. Indeed, we have only one couple
of ZZPs of the α kind and the topological constraint imposes v1 = 0 for
them, turning the RC condition into a trivial equation.

For two couples, the topological constraints and (8.81) impose

v1 = −v2 . (8.82)

This is the counterpart of the fact that faces i and i′ in Figure 8.14 have to
be of opposite ranks, following (8.74). Now, we can write the RC condition
allowing faces to support one or two tensors in terms of v1 only:∑

i

Nifi = (±4)(v1(p1 − q1)− v1(p2 − q2)) = 0 . (8.83)

Knowing (8.81), the only solution is (p1, q1) = (p2, q2) so that we recover
trapezoids. Let us note that the last equation considered with (8.82) can
be brought to the form of (8.78) for two couples of ZZPs α, hence it is
not surprising that a subset of trapezoids appears again as solutions in
this context. For instance, the conifold does not provide a non-anomalous
diagonal line orientifold while C2/Z2n+1 orbifolds do.

We conclude with a general result for diagonal line orientifolds:

Diagonal line orientifolds: Unless the toric diagram of the singular-
ity is a trapezoid, any orientifold theory obtained from a dimer with a
diagonal O-line is anomalous.

See Figure 8.15 for more examples.
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Figure 8.15: Examples of trapezoids, which admit anomaly-free fixed line
orientifolds.

8.3.2 Horizontal/Vertical lines orientifolds

In this section, we consider horizontal fixed lines. The case of vertical
lines is trivially related by rotation. The reasoning is essentially the same
as the one described previously for the case of diagonal lines. This allows us
to go fast to the main result for this class of orientifolds. In particular, we
will not comment here about rectangles and faces with many tensors since
the previous results are easily generalized.

Horizontal symmetry lines in the dimer correspond to a vertical sym-
metry in the toric diagram. The Z2 action maps a ZZP with winding (p, q)
to a ZZP with winding (−p, q). Again, we distinguish two different types of
ZZPs:

• Pairs of ZZPs {vα, vα} for α = 1, ..., l, where vα and vα are exchanged
under the symmetry, thus not parallel to the axis of symmetry.

• Self-identified ZZPs {vγ} for γ = 1, ..., l‖, with winding numbers (0, 1)
or (0,−1).

A general illustration of this is depicted in Figure 8.16.
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Figure 8.16: A generic singularity with a vertical axis symmetry.

In order to find the antisymmetric solutions to the ACC, we need to
look at the antisymmetric value assignments of the ZZPs and impose the
topological constraint

Λ = 2
∑
α

vαpα = 0 . (8.84)

Let us now consider the Rouché-Capelli condition. A ZZP of type α with
winding numbers (p, q) crosses both fixed lines −q times, counted with sign.
The Rouché-Capelli condition can be expressed as∑

i

Nifi = −
∑
α

vαqα(4 sign(A) + 4 sign(B)) = 0 , (8.85)

where sign(A) and sign(B) indicate the signs of the two fixed lines. Unlike
the case of diagonal lines, the Rouché-Capelli condition in (8.85) becomes
trivial as soon as sign(A) and sign(B) are different. In that case, the orien-
tifold theory is always anomaly-free.

If the two fixed lines have the same sign, (8.84) allows us to express v1

in terms of the remaining vα, as in the case of diagonal lines. Plugging this
expression into Equation (8.85) leads to∑

α 6=1

vα (pαq1 − p1qα) = 0 . (8.86)

With the same analysis of the previous section, we find that singularities
with two horizontal lines of the same sign admit a solution to the ACC only
if they are trapezoids, just as in the case of diagonal lines. See Figure 8.17
for examples.
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Horizontal/vertical lines orientifolds: Toric diagrams symmetric
with respect to a horizontal/vertical axis always lead to anomaly-free
orientifold theories when the two O-lines have opposite signs. When the
signs are the same, instead, in order to yield a non-anomalous orientifold
theory the toric diagram of the singularity must be a trapezoid.

Figure 8.17: Examples of trapezoids, which admit anomaly-free horizontal
fixed line orientifolds.

8.3.3 Fixed points orientifolds

Finally, we address the case of fixed point orientifolds. We should state
right away that the results in this case are less conclusive than for fixed
lines. Indeed, one can easily anticipate that having a larger number of signs
to fix (at the four fixed points), it will be straightforward to satisfy the ACC
just by a wise choice, similarly to the case with horizontal/vertical line. On
the other hand, if one sticks with a ‘wrong’ choice, the restriction on the
allowed geometries is not as nicely characterizable as in the previous case.

As already explained in Section 8.2, the action of the orientifold on
every ZZP is to map it either to itself or to another ZZP with the same
winding numbers. We thus divide the ZZPs into two sets:
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• Pairs of distinct ZZPs {vα, vα} for α = 1, · · · , k that are exchanged.

• Self-identified ZZPs {vγ}, for γ = 1, · · · , l.

The total number of ZZPs is n = 2k + l.

In this kind of orientifolds, tensors arise whenever a pair of self-
identified ZZPs intersect over a fixed point. Moreover, a ZZP going through
a fixed point necessarily goes through a second fixed point [73]. As a re-
sult, it is easy to convince oneself that the number of tensors, if present
at all, must be between 2 and 4, and it coincides with the total number of
self-identified ZZPs that cross a fixed point.

In order to find the antisymmetric solutions to the ACC, we need to
consider symmetric value assignments for the ZZPs, as explained in Sec-
tion 8.2, subject to the topological constraints

Λ = 2
∑

α vαpα +
∑

γ vγpγ = 0 ,

M = 2
∑

α vαqα +
∑

γ vγqγ = 0 .
(8.87)

The RC equation becomes∑
i

Nifi =
∑
γ 6=γ′

(vγ − vγ′)(±4) = 0 . (8.88)

where the sum in the middle runs over the tensors. The signs depend on the
sign of the fixed points and on the orientations of the self-identified edges.
Depending on which of the two faces adjacent to the edge we preserve in the
projection, we get tensors or their conjugates, contributing with opposite
signs to the ACC.

We recall that the signs of the fixed points, in contrast with fixed lines,
are constrained by the sign rule [54]. The rule prescribes that the product
of the four signs is (−1)nW /2, with nW the number of superpotential terms.4

We now consider the different possibilities, i.e. l = 2, 3 and 4 tensors.
Our analysis is general and does not distinguish between faces with single
or multiple tensors.

• l = 2: In this case we have two tensors, meaning that two ZZPs cross
each other on two fixed points. Equation (8.88) reads

(v1 − v2)(±14)± (v1 − v2)(±24) = 0 , (8.89)

4Generically, it is not known whether the parity of nW /2 can be deduced from the
toric diagram.
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where the ±i indicate the signs of the fixed points, while the additional
± signs depends on whether the tensors are conjugated or not.

Since only two fixed points are involved in this case, their signs can
always be chosen such that this equation is trivially satisfied, while
satisfying the sign rule. However, it is interesting to consider whether
there are other ways to satisfy this constraint. We can impose v1 = v2

using the two equations of the topological constraint. Expressing v1

and v2 as function of the other vα’s we get

v1 =
2

p1q2 − p2q1
(p2

∑
α

vαqα − q2

∑
α

vαpα) ,

v2 =
2

p1q2 − p2q1
(q1

∑
α

vαpα − p1

∑
α

vαqα) , (8.90)

where we have assumed p1q2 − p2q1 6= 0. Equating v1 and v2, we
obtain ∑

α

vα(pα(q1 + q2)− qα(p1 + p2)) = 0 . (8.91)

Since this equation must hold for all vα, the only possibility is that
all terms in the summation vanish, thus pα(q1 + q2) = qα(p1 + p2)
for all α. Solutions are of the form p1 = −p2 and pα = 0, up to
SL(2,Z) transformations. Those correspond to trapezoids (not nec-
essarily symmetric with respect to any axis) with an even number of
ZZPs on each base and only one ZZP on each side.

If p1q2 − p2q1 = 0, it means that (p1, q1) = −(p2, q2), since the two
ZZPs are parallel and, in order to intersect in a consistent way, they
must have opposite winding numbers. In this case, the topological
constraint imposes v1 = v2 if pαqα′−qαpα′ = 0 where α 6= α′. It means
that all non-self-identified ZZPs have to be either parallel or anti-
parallel to each other. This condition is satisfied by all toric diagrams
with the shape of a rectangle or a parallelogram where there is an even
number of non self-identified ZZPs. Together with the solutions of the
previous paragraph, they constitute a class of trapezoids for which any
sign assignment for the fixed points leads to an anomaly-free theory
when two tensors are involved.

As an illustration, consider fixed point orientifolds of C3/Z6 with
actions (1,1,4) and (1,2,3), whose toric diagrams are shown in Fig-
ure 8.18. Both of them admit an orientifold with two tensors. Our
analysis implies that only the first one admits tensors with any sign,
as it can easily be checked by explicitly solving the ACC.
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(a) (b)

Figure 8.18: The toric diagrams for the C3/Z6 orbifolds with actions: (a)
(1,1,4) and (b) (1,2,3).

An interesting scenario is when tensors arise from the orientifold pro-
jection of adjoints in the mother theory, namely from edges separating
self-identified faces. In this case, the ACC of the self-identified gauge
group is trivially zero, since it is either SO or USp. In this situation,
the two self-identified ZZPs intersect all other ZZPs only once. This
can be understood as follows. Let us consider a line passing through
the fixed points under consideration. All the non self-identified ZZPs
must be parallel to this line, since otherwise their intersections with
the line would imply that they go through the self-identified face,
which in turn would spoil the fact that it is self-identified. The C2/Z2m

orbifolds are examples in this class, see Figure 8.19.

Figure 8.19: The toric diagram of C2/Z6, as an example of the C2/Z2m

family.

• l = 3: In this case we have three tensors, i.e. three ZZPs intersecting
on three fixed points. Equation (8.88) reads

(v1 − v2)(±14)± (v2 − v3)(±24)± (v3 − v1)(±34) = 0 . (8.92)

Since only three of the fixed points are involved, it is possible to pick
their signs such that this equation is trivially satisfied. These choices
in turn determine the sign of the fourth fixed point due to the sign
rule.

If instead we have a different combination of signs, we end up with an
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equation of the form
vγ − vγ′ = 0 , (8.93)

with γ and γ′ two of the three ZZPs above. The missing vγ′′ in the
previous equation depends on the choice of fixed point signs in Equa-
tion (8.92). Therefore, in order to have a solution for all possible fixed
point sign assignments we need to impose v1 = v2 = v3 with the topo-
logical constraint. This means that the ZZPs have winding numbers
of the form (p1, 0), (−p1, q2) and (0,−q2), up to SL(2,Z) transforma-
tions. The only solution is p1 = q2 = 1, corresponding to C3, i.e. flat
space.

A face with multiple tensors imposes constraint(s) of the form v1−v2 =
±(v2 − v3), leading to an RC constraint of the form

(v1 − v2)(±14)± (v1 − v2)(±24)± (v3 − v1)(±34) = 0 . (8.94)

Again, the existence of solutions depends on the signs of the fixed
points. Solutions for generic signs can be obtained only when v1 =
v2 = v3, i.e. for flat space.

• l = 4: This case, in contrast with the previous ones, does not always
admit a solution to the ACC. The reason for this is that the four fixed
points are used, their signs are constrained by the sign rule and we no
longer have the freedom of unused fixed points.

The RC equation can take two different forms, depending on the ZZP
intersections:

(v1 − v2)(±14)± (v2 − v3)(±24)

± (v3 − v4)(±34)± (v4 − v1)(±44) = 0 , (8.95)

(v1 − v2)(±14)± (v1 − v2)(±24)

± (v3 − v4)(±34)± (v3 − v4)(±44) = 0 . (8.96)

Since the signs of the fixed points are constrained, it is not always
possible to trivially solve the RC equation.

Moreover, it is also impossible to find general non-trivial solutions by
using the topological constraint to force some of the vi to be equal.
For the first equation, we need all the vi to be equal. To do so, we
need at least three equations, but the topological constraint provides
only two. In the second case, we can impose v1 = v2 and v3 = v4 with
the following ZZPs: (1, 0), (−1, 0), (0, 1) and (0,−1), which define the
conifold singularity. Unfortunately, the conifold gives rise to an RC of
the first kind, not of the second one.
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To conclude, this partial analysis retained only one toric diagram that
can accommodate any signs for its fixed points: flat space. We eventually
found some particular trapezoids for which we can freely choose the signs of
the tensors when only two are present, but those singularities also allow in
principle for fixed point orientifolds with four tensors, where our analysis
showed its limits. Thus, we cannot say in general that they provide every
kind of anomaly-free orientifolds. As an illustrative example, one can check
that the orientifold of Figure 8.18a with four tensors does not allow for every
combination of signs satisfying the sign rule, although it does with only two
tensors.

It would be interesting to investigate further whether it is possible to
determine the solvability of the ACC from the toric diagram. We leave
this question for future work. In the meantime, orientifolds with four self-
identified ZZPs need to be studied on a case-by-case basis.

8.4 Conclusions

In this chapter we studied anomalies in gauge theories living on D-
branes probing orientifolds of toric singularities, focusing on pure D3-brane
theories, namely without the addition of extra flavors.

We introduced a new, geometric algorithm for finding anomaly-free
solutions based on zig-zag paths. The main virtue of this procedure is
not so much its practicality over the direct solution of the ACC in explicit
examples, but the fact that it allows us to make general statements regarding
anomalies directly from geometry. Indeed, we managed to derive stringent
no-go theorems that establish the conditions for anomaly-free solutions in
these orientifolds. Such results are extremely useful since until now the
cancellation of anomalies in this class of theories was analyzed on a case-
by-case basis.

We can summarize our findings as follows, from the most stringent case
to the less conclusive one:

• For orientifolds with a fixed diagonal line, for which one has to choose
only one sign, we find that only singularities whose toric diagram is
a trapezoid with respect to the diagonal axis of symmetry allow for a
non-anomalous D-brane gauge theory.

• For orientifolds with fixed horizontal lines, we have two signs to choose.
All singularities can lead to anomaly-free theories if the two signs are
chosen to be opposite to each other. If the singularity has a toric
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diagram which is a trapezoid with respect to the vertical axis of sym-
metry, then the theory can be non-anomalous also for equal signs.

• For orientifolds with fixed points, there are four signs to choose, up
to a constraint on their product. Moreover, the relation between the
fixed points in the dimer and the toric diagram of the singularity is less
direct. Because of these two facts, it is more difficult to summarize the
few instances where a restriction is indeed obtained on the singularities
that lead to non-anomalous theories. The particular cases have been
detailed in Section 8.3.3.

As an illustration of the power of the ideas introduced in this work, we
will exploit them in Part III to guide the search of models of D-branes at
singularities that display dynamical supersymmetry breaking. Such models
necessarily involve orientifolds, but have a potential instability as soon as
the singularity allows for a partial resolution which is non-isolated (in D-
brane jargon, this translates to the presence ofN = 2 fractional branes [74]).
In terms of the toric diagram, this property manifests itself through points
within the external edges of diagram, or in other words, parallel ZZPs.5 It is
straightforward to see that toric diagrams that fall in the class of trapezoids
always include such points on the boundary, except for few very simple
cases (namely F0 and orbifolds with a toric diagram which is an isosceles
triangle with a unit base). As a consequence, if one is to look for fixed
line orientifolds which allow for anomaly-free D-brane configuration, and
with no non-isolated partial resolution, the only option one is left with is
horizontal/vertical fixed lines with opposite signs.

5In [179,180] the existence of such flat directions in moduli space was exploited to add
relevant mass deformations in dimers with and without orientifolds.
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Chapter 9

Dimers in a Bottle

In the pioneer work [54], orientifolds were classified in three groups,
depending on the involution, those that leave four fixed points, a single
fixed line, or two fixed lines in the dimer. Interestingly, these correspond
to three out of the five possible smooth involutions on the torus [181]. The
remaining ones correspond to a shift of the fundamental cell and a glide
reflection, i.e. combining a shift and a reflection.

The main purpose of this chapter is to study the two last cases, that
leave no fixed loci and assess whether they correspond to sensible orientifolds
in string theory. We will argue that only the glide reflection leads to SUSY
preserving orientifolds, while the shift is always breaking it. Moreover, we
will show how the orientifold projection corresponding to a glide reflection
has remarkable properties. Not only, the projected theory always has a
conformal fixed point, but also admits, in some cases, a non-trivial RG-flow
described by a cascade of Seiberg dualities, analogous to the one of the
conifold [27,91]. Our results were originally presented in [6].

The organization of the chapter is as follows. In Section 9.1 we review
the list of torus involutions and connect them to orientifolds in dimer mod-
els to find the missing cases. In Section 9.2 we describe glide orientifolds
starting from orbifolds and describing their general properties. The absence
of fixed loci is tackled in Section 9.3, where we understand it to be dual to a
pair of opposite sign orientifold planes and use T- and mirror duality to give
a global picture. In Section 9.4 we study the action on the toric geometry
through the zig-zag paths, allowing the study of fractional branes in the
orientifolded theory. A proof of the non-existence of SUSY preserving shift
orientifolds is finally provided in Section 9.5. Some string computations and
a cascade analysis are presented in Appendices 9.A and 9.B.
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9.1 Torus involutions

There are five inequivalent non-trivial smooth involutions [181], i.e.
involutory diffeomorphisms, on a torus.1 Three of them have a fixed locus
and the two others do not. To list all of them we consider a square torus,
with a complex structure2 τ = i. We take z as the complex coordinate on
the torus and the periodicity condition is z ∼ z + m + ni, with m,n ∈ Z.
The involutions are given by:

1. Two fixed lines: z → z̄. The fixed loci are two parallel lines located
at Im(z) = 0, 1/2 along the real axis. Under this involution, the torus
is projected to an annulus.

2. Single fixed line: z → iz̄. The fixed line is Re(z) = Im(z), corre-
sponding to a diagonal line of the unit cell. The resulting surface is a
Moebius strip.

3. Fixed points: z → −z. In this case we have four fixed points, z =
0, 1/2, i/2 and (1 + i)/2. The resulting topology is that of a sphere.

4. Glide reflection: z → z̄ + 1/2. There are no fixed loci. The resulting
topology is that of a Klein bottle.

5. Shift: z → z+ 1/2. Again, the involution has no fixed loci. The torus
is projected to another torus.

As already mentioned, 1, 2 and 3 are involutions with fixed loci cor-
respond to orientifold operations already studied in the literature. In this
chapter, we will focus on 4, the glide reflection, studying the consistency
of such projection and its properties. Regarding involution 5, we will show
that the shift is not compatible with the required properties to preserve
supersymmetry.

Let us conclude this section with few comments. First, involutions
with fixed loci teach us that if the involution is holomorphic, z → f(z),
nodes in the dimer are mapped to nodes of the opposite color, while if it is
antiholomorphic, z → f(z̄), nodes are mapped to nodes of the same color.
This is a requirement from the orientifold mapping of chiral superfields.

1They are classified by the topology of their orbit set which is always one of the
parabolic two-orbifolds listed in [182].

2We are interested only in smooth involutions, the complex structure doesn’t play any
role in the analysis, thus we fixed it to a handy value. The use of complex coordinates
will be useful for later observations.
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It gives us a hint for the unexplored involutions. Indeed, we expect 5 to
be consistent with an orientifold identification only if nodes are mapped to
nodes of the opposite color, while 4 would be consistent only if the mapping
is between vertices of the same color. Second, we stress that the involution
should be not only a symmetry for the torus, but also for the embedded
dimer model. In particular, a generic fundamental cell for a dimer model has
the shape of a parallelogram. The symmetry may be present in the abstract
graph, but in order to be shown explicitly, consider the case of say 2, one
has to deform the embedding in such a way that the resulting fundamental
cell is now a rhombus, displaying a symmetry with respect to one of the
diagonals. From this observation, we conclude that in order to display a
glide symmetry, the fundamental cell must be a rectangle. Third, a Z2 glide
reflection with diagonal axis is described by the map z → iz̄ + (1 + i)/2
which has Re(z) = Im(z) + 1/2 as fixed line, hence they are nothing else
than reflections about a diagonal axis. In particular, they do not correspond
to a class of smooth involutions not listed above.

Even if we can deform the embedding to make the involution explicit, it
is possible that the model can be endowed with extra structures, capturing
some physical properties. For example, isoradial embeddings described in
[146] encode the R-charges of the fields. In this work, though, we are not
interested in these particular cases.

9.2 Glide orientifolds

In this section, we investigate glide reflection orientifolds. We start
with orbifold examples, motivating our results in the dimer from the open
string projection on the Chan-Paton indices. We also explicitly check that it
preserves supersymmetry, in particular, it acts on the CY 3-form as Ω3 →
−Ω3. We extend our results to orbifolds of the conifold, considering the
cascade in the presence of deformation fractional branes. Finally, we discuss
anomalies, or rather their absence, and conformality in the presence of these
orientifolds.

9.2.1 Orbifold C2/Z2

We consider the recipe directly applied in the dimer and then check
that it is indeed predicted by open-string computation.
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Projection on the dimer model
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Figure 9.1: (a) Dimer diagram for the orbifold C2/Z2×C. The unit cell and
the reflection axis are depicted in blue and red respectively. (b) The Klein
bottle we obtain with the orientifold projection.

We present in Figure 9.1 the dimer for the orbifold C2/Z2 where the
glide reflection is a combined operation of a horizontal shift by one half of the
length of the unit cell followed by a reflection with respect to the dashed red
horizontal axis. Nodes are mapped to nodes of the same color, as we want
from the analysis in Section 9.1. Note that this operation leaves no fixed
loci in the unit cell. The projected theory is embedded in a Klein Bottle
drawn on one half of the original unit cell, as illustrated in Figure 9.1b.

The edge X12 is identified with Y12, X21 with Y21 and Z11 with Z22. Fol-
lowing the rules summarized in Section 7.2, the resulting theory has gauge
group SU(N)1 with matter content given by two tensors3 and one adjoint
field. Note that the tensor fields are not in an irreducible representation, so
we split them in their symmetric and antisymmetric parts;

XS,A = 1, 1 ,

YS,A = 1, 1 , (9.1)

Z = Adj1 .

The superpotential is obtained by explicitly projecting the original one and
keeping half of the terms,

W = XYZT − YXZ = XAYSZ − XSYAZ . (9.2)

In a SUSY-preserving orientifold in type IIB, the holomorphic 3-form
must map to minus itself. This is easy to check by noting that the orientifold

3The two tensors are of the form ( 1, 1) and ( 1, 1).
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action on the mesons is

x↔ y w → w z → z . (9.3)

The action on the 3-form is then

Ω3 =
dx ∧ dy ∧ dz

2w
→ dy ∧ dx ∧ dz

2w
= −Ω3 . (9.4)

It is also clear from the matter content and the first equality of Equa-
tion (9.2) that the gauge theory preserves N = 2 supersymmetry.4

It is worth noting that the theory, unlike many examples of projections
with fixed loci, is free from any local gauge anomaly, regardless of the gauge
group rank. Although this example is rather trivial, we will see that this
feature is general and related to tensor fields being absent or coming in
pairs, symmetric and antisymmetric, canceling each other’s contribution to
the anomaly cancellation conditions (ACC). We also note that the projected
theory is actually conformal. Indeed, the β-function of the gauge group can
be shown to be zero. The fact that these orientifolds naturally lead to
SCFT’s will be discussed in Section 9.2.4.

Open string projection

We now consider the orientifold projection on the Chan-Paton indices
of the open string spectrum. For D-branes localized on the C2/Z2 × C
singularity the open string spectrum is obtained by promoting the flat space
one to 2N × 2N matrices with a restricted set of non-zero entries:

Aµ =

(
A1µ 0

0 A2µ

)
, Φ1 =

(
0 X12

X21 0

)
,

Φ2 =

(
0 Y12

Y21 0

)
, Φ3 =

(
Z11 0
0 Z22

)
,

(9.5)

where the gauge group is SU(N)1 × SU(N)2 and matther fields transform
in the following representations,

Xij , Yij = ( i, j), Zii = Adji . (9.6)

4The attentive reader might have noticed that this orientifolded theory is identical to
the one obtained with fixed points in Section 7.2, although the involution acts differently
on the coordinates. This is however an artifact of the orbifold C2/Z2 since glide reflections
will not provide tensors in general.
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Decomposing the C3 fields the orbifold superpotential becomes,

W = [Φ1,Φ2] Φ3

= X12Y21Z11 − Y21X12Z22 +X21Y12Z22 − Y12X21Z11 , (9.7)

where an overall trace over gauge indices is understood.

A general orientifold projection on the C3 fields acts as,

Aµ = −γΩA
T
µγ
−1
Ω , (9.8)

Φi = RijγΩΦT
j γ
−1
Ω , (9.9)

where γΩ is a 2N × 2N matrix acting on gauge group (Chan-Paton) indices
and Rij acts on space indices i, j running from 1 to 3. Different choices for
these matrices lead to different orientifold projections. In order to reproduce
the glide reflection orientifold, we specifically choose

γΩ =

(
0 1N

1N 0

)
, and R =

 0 1 0
1 0 0
0 0 1

 , (9.10)

so that Φ1 and Φ2 coordinates are exchanged by the orientifold. Equation
Section 9.2.1 translates into

A1µ = −AT2µ , (9.11)

which tells us that the two gauge groups are now identified as one SU(N)1

in the orientifolded theory. Equation Section 9.2.1 maps the superfields in
the following way:

X12 = Y T
12 ≡ XA,S ,

Y21 = XT
21 ≡ YA,S ,

Z11 = ZT22 ≡ Z .
(9.12)

We recognize the same field content of the theory obtained with the dimer
technique. It is easy then to show that we recover the superpotential ad-
vertised in Equation (9.2) (up to an irrelevant numerical factor). We thus
conclude that the glide reflection on the dimer reproduces the orientifold
projection we just computed in string theory.

In the following, we discuss the dimer construction in more involved
examples. It is clear that not all dimer models have the required symmetry,
and in Section 4.2 we provide a necessary condition for a given toric CY3

to admit a glide reflection directly from its toric diagram.
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9.2.2 More orbifold examples

The previous example has so much symmetry that it could be mis-
leading. Let us start our journey to less symmetric theories by considering
C2/Z4, whose dimer model and relevant involution we present in Figure 9.2.
From the four initial gauge groups, only two of them are kept after the

1

1

3

3

2

2

1

1

4

4

Figure 9.2: Dimer diagram for the orbifold C2/Z4. The unit cell is depicted
in blue and we show in red the Klein bottle obtained from the orientifold
projection.

projection, SU(N1)1 × SU(N2)2. The surviving fields are

X12 = ( 1, 2) , X21 = ( 2, 1) , Y21 = ( 2, 1) ,
Y12 = ( 1, 2) , Z11 = Adj1 , Z22 = Adj2 .

(9.13)

and the resulting superpotential is found to be

W = X12Y21Z11 − Y21X12Z22 + X21Y12Z22 − Y12X21ZT11 . (9.14)

The open string projection computation for this example can be found in
Appendix 9.A. Note that despite its similarities with the orbifold C2/Z2

(without orientifold), this model has a different matter content, which can-
not be obtained from dimer models.

The mapping of the mesons is the same as for C2/Z2 so that the holo-
morphic 3-form transforms as follows:

Ω3 =
dx ∧ dy ∧ dz

4w3
→ dy ∧ dx ∧ dz

4w3
= −Ω3 , (9.15)

and hence suggests that our projection is indeed supersymmetric and the
resulting gauge theory preserves N = 2 supersymmetry. Note that the usual
orientifold techniques in the dimer, fixed points and line(s), are not able to
reproduce it.
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Our observations make it clear that any orbifold C2/Z2n×C will admit
a glide reflection, for any integer n. More general orbifolds, such as C3/Zn
or C3/Zp × Zq, can also enjoy the glide reflections, see an example in Fig-
ure 9.5a. In Section 9.4 we will discuss the general geometric condition a
singularity should meet to admit such orientifold.

N = 2 fractional branes

Let us briefly comment on the fractional branes of the orientifolded
theory [67]. The glide orientifold of C2/Z4 is free of local gauge anomalies
for any rank N1 and N2. Hence, it has a fractional brane. We find that
it is an N = 2 fractional brane corresponding to a subset of the N = 2
fractional branes of the parent theory. In Section 9.4.2 we will discuss this
fact in detail.

9.2.3 Conifold-like singularities

As we will explain in Section 9.4, the conifold C itself does not admit
a glide reflection, but conifold-like singularities like its orbifold C/Z2 or the
zeroth Hirzebruch surface F0 do. We now study those examples in turn.

Non-chiral orbifold of the conifold C/Z2

The dimer model and the glide orientifold of C/Z2 are shown in Fig-
ure 9.3. The resulting gauge theory has gauge group SU(N1) × SU(N2)

2

1

42

4

3

4

4

Figure 9.3: Dimer diagram for the orbifold of the conifold C/Z2. The unit
cell is depicted in blue and we show in red the Klein bottle obtained from
the orientifold projection.
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Figure 9.4: Dimer diagram for the Hirzebruch surface F0. The unit cell
is depicted in blue and we show in red the Klein bottle obtained from the
orientifold projection.

with matter content given by

A = ( 1, 2) , B = ( 1, 2) ,
C = ( 1, 2) , D = ( 1, 2) ,

(9.16)

Note in passing that the ACC do not impose any constraint on the ranks,
so that N1 and N2 may be chosen independently. The superpotential reads

W = ABCD −BACTDT . (9.17)

For details of computations using worldsheet techniques and a proof that
the 3-form is odd under the orientifold action, see Appendix 9.B.1.

Zeroth Hirzebruch surface F0

We show the dimer model and the glide orientifold of F0 in Figure 9.4.
After projection the gauge group becomes SU(N1) × SU(N2), while the
matter content is given by

X = ( 1, 2) , Y = ( 1, 2) ,

US,A = 1, 1 , ZS,A = 2, 2 ,
(9.18)

In this case the ACC impose non-trivial constraints on the gauge group
ranks, in particular they must be the same, N1 = N2. The superpotential
reads

W = XUSY
TZA −XTZSY UA . (9.19)

The Chan-Paton computation and a proof that the 3-form is odd under the
orientifold action are exposed in Section 9.B.2.
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Deformation fractional branes

We have seen that the C/Z2 glide reflection admits fractional brane
since the ranks of the two gauge groups may be chosen freely. It is in fact
a deformation brane [67, 140] of the parent theory that survives the orien-
tifold projection, in the precise sense described in [5]. A natural question
is whether such fractional branes may trigger a non-trivial RG-flow giving
rise to a cascade of Seiberg dualities [27, 91]. We study this process in Sec-
tion 9.B.3 and verify that the cascade steps are: SU(N +M)1×SU(N)2 →
SU(N −M)1×SU(N)2, with the same matter content and superpotential,
as we flow towards the IR. For N being a multiple of M , the deep IR of this
gauge theory is expected to reproduce the same features as for a deformed
conifold. Notably, on the baryonic branch, one finds the vacuum of SYM,
displaying confinement and chiral symmetry breaking.

We will see later that it is a fact that the orbifolds of the conifold
C/Zm × Zn compatible with the glide projection preserve some of their
deformation branes. The compatibility of fractional branes of the parent
theory with the glide reflection is discussed in Section 9.4.

9.2.4 General properties

As we have seen, and since the glide reflection leaves no fixed loci, we
don’t expect any self-identified face (i.e. SO or USp gauge group) to show
up in the dimer projection. This restricts the number of gauge groups of
the parent theory to be even. A further consequence of not having fixed loci
is that there are no self-identified bifundamentals, therefore, tensor matter,
if present, always comes in antisymmetric-symmetric pairs, canceling the
contributions to the chiral anomaly. This is precisely what happens in the
C2/Z2 orbifold, where two edges, charged under two identified groups, are
identified, leading to a reducible two index tensor, which splits into the
sum of a symmetric and an antisymmetric one. We now see how these
facts translates in the absence of non-homogenous terms in the anomaly
cancellation conditions, allowing always a solution to the latter, and how
such projected theories are actually SCFTs.

Borrowing the notation of Chapter 8, we know that the ACC matrix
of the projected theory is deduced from that of the parent theory. Denote
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the latter as,

A =



B11 B12 B13

B21 B22 B23

B31 B32 B33

︸ ︷︷ ︸
j

︸ ︷︷ ︸
j + k

︸ ︷︷ ︸
b



}
i

}
i+ k

}
a

, (9.20)

where indices i, j = 1, . . . , k label the gauge groups surviving the orien-
tifold projection and the corresponding entries represent the anomaly con-
tribution of the field between faces i and j. Indices i+k and j+k represent
gauge groups that are identified with i and j under the orientifold action,
respectively. The a, b indices label the self identified gauge groups. Finally,
the ACC system takes the form

A ·N = 0 , (9.21)

where N is a vector whose entries, N(j|j+k|a) are the ranks of the corre-
sponding gauge group.

From what we said earlier, we know that B?3 = B3? = B33 = 0,
since there are no self-identified gauge groups. Furthermore, we have no
net contributions from tensors to the ACC, meaning that there are no non-
homogeneous terms in the projected theory ACC. From [5], we know that
the projected ACC can be written as

A ·N =
(
B11 +B12

)
·N = 0 . (9.22)

It is then easy to see that the all-equal-rank solution in the parent theory is
still a solution. Indeed, a general solution for the orientifolded theory has a
trivial part, corresponding to a stack of regular branes in the parent theory,
and a non-trivial part, corresponding to “symmetric” fractional branes of
the parent theory.

Fixed loci orientifolds have the remarkable property of producing, in
general, non-conformal theories. However, this is not true for glide orien-
tifolds. The theory they describe is an SCFT when the ranks of the gauge
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groups are all the same. This fact can be seen as follows, consider the
β-function of the parent theory with N probes D-branes,

βSU(N)i = 3N −
n∑
i=1

N

2
(1− γi) = 0 , (9.23)

where γi are the anomalous dimensions of the matter fields.5 From this, we
can read the β-function of the projected theory whose general form is

βSU(N)i = 3N −
n∑
i=1

N + bi
2

(1− γi) , (9.24)

where the coefficients bi vanish for fundamental fields and are ±2 for, respec-
tively, symmetric or antisymmetric fields. If we assume that the anomalous
dimensions of the fields are the same up to 1/N corrections and, since all
tensors come in pairs of opposite parity, we see that the β-function of the
gauge groups of the projected theory vanishes as long as all ranks are equal.
This dovetails the fact that a Klein Bottle has zero Euler characteristic and,
as explained in [151], such surfaces may embed a dimer model describing
an SCFT.6 Franco and Vegh pointed out that the Franklin graph would be
a good candidate to be embedded in a Klein Bottle and host an SCFT not
embedded in a torus. Indeed, it can be readily found via a glide reflection
of C3/Z12, see Figure 9.5. This not only confirms their intuition, but it is,
to the best or our knowledge, the first instance of such construction within
string theory.

9.3 T-duals of the glide orientifold

9.3.1 Type IIA picture and the brane tiling

Fixed loci in the dimer have been related to actual orientifold planes in
the physical realization of the dimer [46,176]. In fact, one may consider the
D3-branes probing a singularity with an orientifold and track the position
of the orientifold in the ambient space to the fixed loci in the dimer through
T-dualities. An immediate puzzle arises in the case of glide orientifolds,
since there are no fixed loci on the torus, i.e. in the brane tiling. In this
section, we look at C2/Z2 and argue that these orientifolds, which have 8-
dimensional fixed loci in the D3 picture (they are O7-planes), don’t have

5We consider Adj fields as a couple of antifundamentals fields charged under the same
gauge group.

6Other kinds of surfaces obtained from orientifolds with fixed loci were found to ac-
commodate SCFTs in [173,183].

174



1

7

1

5

5

9

3

9 1

12

6

4

10

4

8

2

8

11

12

7

1

(a) (b)

Figure 9.5: (a) Dimer diagram for the orbifold C3/Z12 with action (1, 5, 6).
The unit cell and the Klein bottle are depicted in blue and red respectively.
(b) The Franklin graph.

a fixed locus in the tiling in the precise sense of [166, 184]. In the latter
reference, the shift action is deduced to be T-dual to a pair of opposite
charge O-planes on a circle.

Let us again consider N D3-branes at the tip of a singular toric CY3. As
reviewed in the introduction, the dimer presented in Figure 9.1 is physically
realized as a web of D5 and NS5-branes. It is obtained by T-duality along
with two of the three toric cycles of the toric variety. In particular along
those corresponding to mesonic symmetries in the field theory, rather than
R-symmetry. Focusing on the case at hand, C2/Z2 × C, one may take local
coordinates such that x7, x9 correspond to the two toric cycles that are to be
T-dualized. The D-brane configuration is then as in Table 9.1 which, after
two T-duality should become that of Table 9.2. Note that we have avoided
including an orientifold plane in the T-dual, as the dimer shift seems to
suggest.

After T-duality one finds D5-branes wrapping the dual cycles with local
coordinates x′7, x

′
9. These are in turn identified as the coordinates of the

torus T2 where the 5-brane web lives.

0 1 2 3 4 5 6 7 8 9

C2/Z2 × × × ×
D3 × × × ×
O7 × × × × × × × ×

Table 9.1: D3-branes sitting at the tip of C2/Z2 in the presence of O7-
planes.
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0 1 2 3 4 5 6 7′ 8 9′

NS5 × × × × − − Σ − −
D5 × × × × × ×

Table 9.2: The brane tiling. Σ is the holomorphic curve in the 67′89′-space
wrapped by the NS5-brane.

To study the location of the O-plane in the singular geometry, let us
introduce the coordinates z1, z2 and z3 of flat space C3. We define the coordi-
nates of the variety transverse to the D3-branes, C2/Z2×C, by constructing
invariants under the orbifold action:

x = z2
1 , y = z2

2 , w = z1z2, and z = z3 , (9.25)

with the following relation holding,

xy = w2 . (9.26)

As explained in Section 9.2.1, the orientifold action on the dimer implies
that it acts on z1, z2, z3 as z1 ↔ z2,. In terms of the orbifold invariant
coordinates the orientifold action is then,

x↔ y , w and z fixed. (9.27)

Thus, the orientifold plane extends on the surface defined by x = y = t,
t2 = w2. From Equation (9.26) we read two toric U(1) isometries of the
orbifold:

U(1)α : x→ eiαx , y → e−iαy , w → w ,
U(1)β : x→ eiβx , y → eiβy , w → eiβw .

(9.28)

We can think about these two isometries as generators of two one-cycles,
α, β. We can introduce local coordinates parametrizing these cycles, defined
whenever they are non-singular,

θα ≡
1

2

(
Arg(x)−Arg(y)

)
(9.29)

θβ ≡
1

2

(
Arg(x) + Arg(y)

)
(9.30)

We can now identify these two coordinates in terms of the coordinates
in Table 9.1: (θα, θβ) ∼ (x7, x5). The action of the orientifold on these two
cycles, T-dual to the physical torus, are just θα → −θα, θβ → θβ. We thus
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Figure 9.6: Type IIA picture with the orientifold mapping given by a π
rotation along x′7 (in green).

learn that the orientifold plane spans x5 and is located at x7 = 0, π. In
fact, there are two orientifold planes of opposite charge such that the total
flux cancels with no further sources. One may also argue for the signs being
opposite by noting the absence of net RR-charges coming from the O-planes
in the dimer picture. This can be seen in the absence of SO/USp groups and
the corresponding lack of non-homogeneous terms in the ACC, which can be
thought of as Gauss law for compact cycles. Quite remarkably, the T-dual
of such a cycle with opposite-charge O-planes, is known to be precisely an
orientifold acting as a shift on the T-dual cycle. The absence of fixed loci for
this action translates into the absence of O-plane in the dual geometry. This
is described in [184] where T-duality acts as a sort of Fourier transform: the
O-planes of opposite charge are related to delta function whose transforms
are constant and opposite, canceling each other. This interpretation nicely
matches the Gauss law analogy we presented earlier.

After one T-duality along x7, the T-dual Type IIA construction is anal-
ogous to the ones studied in [185–189]. The relevant information is encoded
in a cycle x′7 where D4-branes are suspended between two NS5-branes. As
we explained before, the orientifold action acts now as a shift, rotating
halfway the configuration, see Figure 9.6. This action is consistent with the
mapping of gauge groups and matter fields on the dimer model.

Finally, if we further T-dualize along the direction spanned by NS5-
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branes x9, we get to the tiling picture. After the last T-duality, the ori-
entifold acts on x′9 as a reflection.7 Together with the shift on x′7, these
actions reproduce the glide reflection that we see on the tiling.

9.3.2 The mirror picture

One further T-duality on the remaining toric cycle brings us to the
mirror setup of our starting point [145] (D3-branes at singularities). The
mirror geometry is fully specified by a punctured Riemann surface Σ in
which D6-branes, wrapping one-cycles, give rise to the appropriate field
theory.8 Gauge fields are associated with different one-cycles, where D6 are
wrapped, matter fields to intersections among these cycles, and superpoten-
tial terms arise from open string worldsheet instantons supported at disks
in this Riemann surface. In fact, this Riemann surface can be seen as the
“thickened” version of the web diagram. Furthermore, one can embed the
dimer graph on a planar version of it and read immediately both the geom-
etry and the field theory from it. This diagram has been called the shiver.
The shiver and the dimer are related by an untwisting procedure [145]. The
physical interpretation is now as follows.

• Faces in the shiver correspond to ZZPs in the dimer and represent
punctures in Σ with (p, q) charge given by the winding numbers of the
ZZPs.

• ZZPs on the shiver correspond to faces on the dimer and represent
the one-cycles (Special Lagrangian three-cycles in the full geometry)
where D6-branes wrap. They are hence representing gauge groups.

• ZZP intersections represent brane intersections where open string
massless bifundamental fields are located.

• Disks on the surface are euclidean disks in the full geometry where
open string worldsheet instantons may arise. These generate the su-
perpotential (albeit non-perturbatively!).

In Figure 9.7 we show the prototypical example, the conifold.

Already in [54], orientifolds were partially understood in this frame-
work. It was noted that the O6-planes should be viewed as stretching be-
tween the different punctures. Different pieces of the O-plane would there

7This is a standard fact of orientifolds. Upon T-duality along a direction spanned by
the O-plane, an Op-plane is mapped to an O(p − 1)-plane, with action θ → −θ on the
dual cycle.

8These one-cycles are associated with three-cycles in the full geometry.
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(a) (b) (c) (d)

Figure 9.7: (a) Conifold web diagram. (b) shows the actual surface describ-
ing the mirror geometry. The zig-zag paths in blue and red are one-cycles
where D6-branes may wrap. (c) Tiling of the mirror Riemann surface Σ
giving rise to the conifold gauge theory. (d) Orientifold of the conifold.
Orange segments and dots denote O-planes and punctures where they end,
respectively.

be assigned different signs. A full understanding of the available sign choices
was not achieved and we will not pursue it here. An orientifold of the coni-
fold is shown in Figure 9.7d.

A simple example: C2/Z2 × C

In this section, we explicitly map all orientifolds in the dimer with those
in the T-dual and mirror picture. While we are not able to derive matter
field projections on the T-dual nor the mirror, we hope to convey a unifying
picture. We will focus on C2/Z2×C for several reasons. It admits all kinds
of orientifolds (fixed points, lines, and glide reflections), a simple T-dual
set-up, and its mirror Σ has genus zero, making it amenable to discussion.
Orientifolds in the dimer can be classified into four groups, depending on
the fixed loci. There are 2 different fixed point orientifolds, shown in Fig-
ures 9.8b and 9.8c and a fixed line orientifold, in Figure 9.8d. These were
already discussed in [54]. Different sign assignments, possibly respecting the
sign rule, yield different field contents. Finally, as discussed in Section 9.2,
a glide orientifold is realized in the dimer as shown in Figure 9.8e.

A complete classification, up to sign permutations and anomaly can-
cellation, is shown in Table 9.3.

In Section 9.3.1, we have discussed the setup T-dual to the glide orien-
tifold, shown again in Figure 9.9e. The orientifolds in Figures 9.9b to 9.9d
have been discussed in the literature [173,189,190]. One can easily identify
these three orientifolds in the dimer setup as Figures 9.8b to 9.8d, respec-
tively. It is worth mentioning that the fixed lines orientifold with the same
sign correspond to the O4-plane in the T-dual, while the case with opposite
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O-Type Figure Signs Group Tensor Content

Fixed Points

Figure 9.8b

(+ + ++)

SU

Adj + 2 + 2

(+ +−−)
Adj + +

+ +

(+−−+) Adj + 2 + 2

(−+ +−) Adj + 2 + 2

(−−−−) Adj + 2 + 2

Figure 9.8c

(+ + ++) SO × SO 1 + 2

(+ +−−) SO × USp 1 + 2

(−−++) USp× SO 1 + 2

(+−+−) SO × SO 1 + 2

(−+−+) USp× USp 1 + 2

(+−−+) SO × USp 1 + 2

(−+ +−) USp× SO 1 + 2

(−−−−) USp× USp 1 + 2

Fixed Lines Figure 9.8d

(++) SO × SO 1 + 2

(+−) SO × USp 1 + 2

(−+) USp× SO 1 + 2

(−−) USp× USp 1 + 2

Glide Figure 9.8e SU
Adj +

+ + +

Table 9.3: Different orientifold projections on the dimer.
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1 1

2

(a)

1 1

2

(b)

1 1

2

(c) (d)

1 1

2

(e)

Figure 9.8: (a) Dimer model unit cell of C2/Z2×C. Three possible orientifold
actions with fixed loci are shown in (b), (c) and (d). (b) and (c) correspond
to fixed points, while (d) is a fixed line. (e) is a glide orientifold with no
fixed loci.

signs is mapped to an O8-plane. Finally, the glide orientifold, Figure 9.8e
is identified with Figure 9.9e.

The shiver is shown in Figure 9.10a. It is essentially the same as the
T-dual with punctures A and D sitting at the NS5 locations. This was to be
expected since the S1 in the T-dual is kept in Σ. This makes it particularly
easy to find the orientifold actions on this surface.9 The four types are
shown in Figure 9.10 with labels matching those of Figures 9.8 and 9.9.
Note, in particular, that the glide reflection, in Figure 9.10e consists of a
π rotation and a reflection with respect to the dotted orange circle. The
total action thus exchanges punctures B and C, for instance. Unlike the
other orientifold actions, there are no fixed loci in this case. While the field
content can be deduced from the drawings by assigning a sign to every O-
plane piece and assigning the matter projection individually (as in the open
string computation), it is not clear how to enforce SUSY in this picture.
Without further knowledge, it is not obvious which projections are SUSY-
preserving.

9.4 Involutions and zig-zag paths

In this section, we first develop, in Section 9.4.1, a condition the toric
diagram (or equivalently, the ZZPs) of a singularity must satisfy to be com-
patible with the glide reflection. This enlarges the dictionary between ori-
entifold projections of a given toric singularity and its ZZPs content, as

9Otherwise one would need to think about the field content on the dimer or the alga
map [145].
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(a) (b) (c) (d)

(e)

Figure 9.9: (a) T-dual to C2/Z2×C. Three possible orientifold actions with
fixed loci are shown in (b), (c) and (d). (b) and (c) correspond to fixed
points, while (d) is a fixed line. (e) is a shift (glide reflection) with no fixed
loci.

(a) (b) (c)

(d) (e)

Figure 9.10: (a) Tiling of the mirror Riemann surface Σ of C2/Z2×C. Three
possible orientifold planes are shown in (b), (c) and (d). The orientifold
plane is shown in orange and its different pieces are labelled using orange
numbers. In the dimer (b) and (c) correspond to fixed points, while (d) is
a fixed line. (e) is a shift orientifold with no fixed loci.
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initiated by [73]. Secondly, and with the help of ZZP techniques [140], we
show in Section 9.4.2 how to detect the presence of fractional branes in the
orientifolded singularity. Finally, in Section 9.5, we give a general proof
that the “would be” shift orientifold projection is incompatible with the
requirement to preserve SUSY.

9.4.1 Glide orientifold from the toric diagram

A glide reflection can be seen as a combination of a shift and a reflection
in the dimer model, even if each of them is not a symmetry per se. Starting
from what we learned in our examples and using this simple observation,
we can understand how this involution acts on the ZZP content of the toric
diagram.

First of all, we notice that the shift and the reflection are performed
along the same axis. Consider, for instance, a horizontal shift and axis of
reflection as in Figure 9.11. The action of the glide reflection reverts the
horizontal component of each ZZP. Actually, the glide reflection leaves no
fixed ZZPs, since even those perpendicular to the axis are mapped among
themselves because of the shift part of the glide reflection.

1

2

3

1'
2'

3'

Figure 9.11: The glide orientifold maps together nodes of the same color.
The dashed blue line delineates the unit cell of the parent theory, while the
red frame represents the orientifold. The ZZPs 1, 2, 3 are mapped to 1′, 2′, 3′

respectively.

Putting the two observations together we can say that: if the glide
reflection is composed by a horizontal shift and a reflection axis, directed as
(1, 0) in the dimer, ZZPs are mapped as follows: (p, q) is sent to (−p, q) when
p 6= 0, while all other ZZPs of the form (0,±1) are mapped to one another,
preserving the orientation, meaning that they come in even numbers. In
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our example of Figure 9.12, the orange (1, 1) and purple (−1, 1) ZZPs are
interchanged. The same is true for the blue and green ZZPs of the (0,−1)
type.

1

1

1

1

2

2

Figure 9.12: The Klein bottle obtained from the dimer of C2/Z2 × C and
the corresponding ZZPs.

Similarly, in order to construct a Klein bottle with a vertical shift and
reflection axis, the toric diagram should have ZZPs (1, 0) and (−1, 0) in even
numbers, possibly different, and ZZPs (p, q) with q 6= 0 paired with ZZPs
(p,−q).

These statements can be summarized by saying that the toric diagram
should be symmetric with respect to a vertical or horizontal axis. Moreover,
each ZZP has to be mapped to another one, imposing that each kind of
ZZP parallel to the axis of reflection in the toric plane should come in even
numbers. We show in Figure 9.13 that our examples of Section 9.2 satisfy
this criterion.

(a) (b) (c)

Figure 9.13: Toric diagrams for singularities that satisfy our necessary crite-
rion to admit one (with an axis of reflection in red) or two (with the second
axis of reflection in blue) glide projections: (a) orbifold C2/Z4, (b) conifold-
like C/Z2, and (c) zeroth Hirzebruch surface F0.
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Lastly, an important remark is that this condition may not be satisfied
in some of the SL(2,Z) “frames” of the toric diagram, or equivalently, the
unit cell in the dimer model may not be symmetric with respect to the glide
reflection. Thus, we should state that a generic toric diagram can admit a
glide orientifold if it satisfies the conditions above up to a SL(2,Z) action
that can bring its unit cell to a symmetric form with respect to the glide.

9.4.2 Fractional branes in glide orientifolds

As already mentioned in Section 9.2.4, these orientifolded theories may
admit non-trivial rank assignments, i.e. fractional branes. Their presence
can be deduced from the symmetries of the toric diagram and they can be
seen as inherited from the “parent” theory. Following [5, 140], in what we
dub “Butti’s Algorithm”, we can assign a value vΓ to each of the n ZZPs of
the toric diagram. These values give rise to anomaly-free rank assignments,
given that they satisfy the following constraints,{∑

Γ vΓpΓ = 0∑
Γ vΓqΓ = 0

, (9.31)

where the (pΓ, qΓ) are the winding numbers of the ZZP associated with vΓ.

Since we know how the glide reflection acts on the ZZPs, we may follow
the procedure of [5] to see which fractional branes survive the projection. As
explained there, only symmetric fractional branes survive, in the sense that,
given two ZZPs vα and vᾱ mapped to each other under the glide reflection,
only rank assignments satisfying the following identification survive,

vα = vᾱ . (9.32)

The orientifold projection thus reduces the number of variables vΓ to the
subset of vα. Moreover, one can check that Equation (9.31) leaves only one
non-trivial relation: ∑

α

vαqα = 0 . (9.33)

Butti’s algorithm has a redundancy that allows performing a global shift on
the vα without affecting the ranks of the gauge groups. Hence, we end up
with

#Fractional branes = n/2− 2 (9.34)

in the orientifolded theory.
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Butti’s algorithm also tells how to construct different kind of fractional
branes in the parent theory by specifying a set of vΓ. We now apply this
method to theories with a glide reflection orientifold to see when may N = 2
and deformation fractional branes arise.

• N = 2 fractional branes: The parent theory admits such fractional
branes whenever the toric diagram hosts k > 1 ZZPs with the same
winding numbers, say (pµ, qµ). They are turned on whenever only
some of these vµ, among the whole set of ZZPs {vΓ}, are non-
vanishing. Following Equation (9.31), one has

k∑
i=1

vµi = 0 , and vν = 0 if (pν , qν) 6= (pµ, qµ) . (9.35)

This condition is compatible with Equation (9.32) only if the k ZZPs
are sent to ZZPs with the same winding numbers by the glide reflec-
tion, restricting to (0, 1) or (0,−1) when (p, q) is mapped to (−p, q).
Moreover, k should be a multiple of 4, since for each couple of ZZPs
with a symmetric assignment v, we need a second couple with as-
signment −v in order to satisfy the sum in Equation (9.35). In the
examples of Section 9.2, we found that the singularity C2/Z4 satisfies
this criterion, see Figure 9.14a.

• Deformation fractional branes: The parent theory will have a defor-
mation fractional brane if there is a subset of m ZZPs in equilibrium
{vσ} ⊂ {vΓ}:

m∑
i=1

(pσi , qσi) = 0 . (9.36)

The deformation brane is turned on whenever all vσ have the same
non-zero value and all other vτ /∈ {vσ} are vanishing. A glide re-
flection orientifold theory will have a deformation brane if there is a
subset of m ZZPs in equilibrium where each ZZP is accompanied by
its image under the glide action, and where m is smaller than n. In
the examples of Section 9.2, we found that C/Z2 satisfies this criterion
while the zeroth Hirzebruch surface F0 does not, see Figure 9.14b and
Figure 9.14c.

9.5 Shift orientifolds

So far we have only considered orientifolds acting as glide reflections on
the dimer. Now we address those acting as a simple shift. We have not dis-
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(a)
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vv
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Figure 9.14: Symmetric fractional branes in the parent theory lead to frac-
tional branes in its glide orientifolded version. Couples of ZZPs paired by
the glide action are drawn in the same color. (a) N = 2 fractional brane in
C2/Z4, (b) deformation fractional brane in C/Z2, and (c) the zeroth Hirze-
bruch surface F0 admits only the regular brane as a symmetric fractional
brane.

cussed these orientifolds earlier because they always break supersymmetry,
as we show in the following. In particular, we will see that the holomorphic
three-form Ω3 is even under such an orientifold action, contradicting the
rule of thumb that it should be odd.

As we observed in Section 9.1, the shift involution must identify nodes
of opposite colors on the dimer, in order to be consistent with the orientifold
identification rules. Under such a shift, each ZZP is mapped to a ZZP of
opposite winding numbers, (p, q) → (−p,−q). This can be easily deduced
from Figure 9.15.

1 1'

2

3

3'

2'

Figure 9.15: The shift orientifold maps white nodes to black nodes, and vice-
versa. The dashed blue line delineates the unit cell of the parent theory,
while the red frame represents the orientifold. The ZZPs 1, 2, 3 are mapped
to 1′, 2′, 3′ respectively.
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From the toric diagram, it is possible to obtain the equations defin-
ing associated toric variety probed by the D-branes. To do so we need to
compute the integer generators of the dual cone to the toric diagram. This
procedure is standard in toric geometry and we refer to [126] for all the de-
tails. From the lattice vertices on the boundary of the toric diagram (ri, si),
we obtain the generators of the cone given by ni = (ri, si, 1). Recall that
the dual cone is then given by

σ∨ = {am ∈MR | a ∈ R>0, m · ni ≥ 0∀ni ∈ σ} , (9.37)

where MR
∼= R ×M and M ∼= Z3. It is easy to see that the vectors m

are of the form (p, q, a), where (p, q) are the windings of the ZZPs and a
is an integer. Indeed, the generators of the dual cone are nothing but the
inward-pointing vectors, normal to the faces of the cone generated by the
ni. We now need to add the extra generators to span the dual integer
cone, S∨ = σ∨ ∩ Z3. This is achieved by computing linear combinations
of the generators with positive rational coefficients and adding all integer
vectors we obtain this way. Finally, the equations defining our singularity
are given by associating complex coordinates to the generators of the integer
dual cone, and the relations among them are obtained with the following
identification,

m1 + m2 + · · · = m4 + m5 + · · · → x1x2 · · · = x4x5 · · · . (9.38)

For example, let us consider the toric diagram of the conifold, which
we place in Z2 as the square with vertices (0, 0), (0, 1), (1, 1), (0, 1). The
associated cone is

σ =

〈 0
0
1

 ,

 0
1
1

 ,

 1
1
1

 ,

 1
0
1

〉 , (9.39)

and its dual is

σ∨ = S∨ =
〈
m1 = (1, 0, 0), m2 = (0, 1, 0), m3 = (−1, 0, 1), m4 = (0,−1, 1)

〉
,

(9.40)
from which it is easy to read the equation defining the singularity:

m1 + m3 = m2 + m4 → x1x3 = x2x4 . (9.41)
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(0,0,1)

(0,1,1) (1,1,1)

(1,0,1)

Figure 9.16: The toric diagram of the conifold.

As a second example let us consider the toric diagram of dP3 and the
cone it generates:

σ =

〈 0
−1
1

 ,

 1
−1
1

 ,

 1
0
1

 ,

 0
1
1

 ,

 −1
1
1

 ,

 −1
0
1

〉 .

(9.42)
It is dual to S∨ which is the cone:〈
m1 = (0, 1, 1), m2 = (−1, 0, 1), m3 = (−1,−1, 1), m4 = (0,−1, 1),

m5 = (1, 0, 1), m6 = (1, 1, 1), m0 = (0, 0, 1)
〉
,

(9.43)

where we added the vector m0 since m1 + m4 = 2m0, meaning that we
where missing an integer generator. The equations of the variety are

(-1,1,1)

(-1,0,1)

(0,-1,1) (1,-1,1)

(1,0,1)

(0,1,1)

Figure 9.17: The toric diagram of dP3.

x1x4 = x2x5 = x3x6 = x2
0

x1x3x5 = x2x4x6 . (9.44)

We can use the fact that under the shift involution each ZZP is mapped
to a ZZP of opposite winding, hence the corresponding toric diagram must
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be symmetric under the reflection about its center of mass. Such center of
mass has, in general, half-integer coordinates (α, β). Under such a reflection,
a generic point in the lattice with coordinates (r, s) ∈ Z2 is sent to (2α −
r, 2β − s). Under this operation, the generators of the cone are mapped
according to

n′ =

 −1 0 2α
0 −1 2β
0 0 1

 · n (9.45)

which maps a generator m = (a, b, 1) to m′ = (2α− r, 2β − s, 1). The dual
cone is in turn invariant under the (right) action of that matrix, which acts
as

m′ =

 −1 0 0
0 −1 0

2α 2β 1

 ·m , (9.46)

or simply,

m = (p, q, a) → m′ = (−p,−q, 2αp+ 2βq + a) . (9.47)

From these observations, we deduce the following properties:

1. All generators of the dual cone, obtained via Equation (9.37), mi =
(pi, qi, a), come paired with another generator m′i = (−pi,−qi, a′), for
some integer a while a′ is obtained via Equation (9.47).

2. Given a generator mi = (pi, qi, a) and its shift image m′i =
(−pi,−qi, a′), we see that a new integer generator that we were missing
can be added m0 = (0, 0, 1), since

mi + m′i = (a+ a′)m0 . (9.48)

This generator is invariant under the shift.

3. All other extra generators come in pairs. Given an extra generator nl
such that

mi + · · ·+ m′j + · · · = bml , (9.49)

with b integer, by a symmetry argument, we also need to add m′l,
since we have10

m′i + · · ·+ mj + · · · = bm′l . (9.50)

10The transformation law in Equation (9.47) acts linearly on Equation (9.49) such that
we obtain Equation (9.50).
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We now rearrange the generators into two sets: the set of mi with
i = 1, ..., k and the set mi+k = m′i of their images under the shift. Moreover
we have m0 which is the invariant generator. To each generator mi we
associate a complex coordinate xi. We have 2k + 1 of them, related by
2k − 2 relations, that define the toric three-fold. We divide these relations
in two kinds. The k first kind relations are of the form

xixi+k − xa+a′

0 = 0 , (9.51)

and come from Equation (9.48). We use it to relate every image xi+k to its
partner xi and to x0. The second kind relations relate all remaining xi and
x0 together. For example, they may look like

xixjx
b
h − xlxmxc0 = 0 , (9.52)

for some integers b and c.

Under the shift, relations of the first kind are invariant, those of the
second kind are not. However, we can build more symmetric expressions for
the latter. As we did when going from Equation (9.49) to Equation (9.50),
Equation (9.52) becomes, under the shift,

xi+kxj+kx
b
h+k − xl+kxm+kx

c
0 = 0 . (9.53)

We can now multiply Equation (9.52) by a term (xi+kxj+kx
b
h+k) and use

the last equation to find

(xixjx
b
h)(xl+kxm+k)x

c
0 − (xlxm)(xi+kxj+kx

b
h+k)x

c
0 = 0 , (9.54)

which is now symmetric up to a sign under the shift. We dub these relations
the symmetrized second kind relations.

To describe our Calabi-Yau 3-fold, we start with 2k+1 variables. From
the equations of the first kind we can express all the xi+k in terms of the
xi and x0, fixing k variables. Then we can use the symmetrized second
kind relations to fix k − 2 equations, leaving us with only 3 independent
variables. Now, the non-vanishing holomorphic three-form Ω3 is obtained
as the Poincaré residue along the CY3 of the meromorphic (2k+ 1)-form in
the ambient space C2k+1:

Ω3 = Res
dx1 ∧ ... ∧ dxk ∧ ... ∧ dx2k ∧ dx0 k∏

i=1

Pi

k−2∏
i=1

Qi

 , (9.55)

where the Pi are equations of the first kind, while Qi are of the symmetrized
second one.
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Under the action of the shift, the numerator of the 3-form is multiplied
by (−1)k, since the shift acts on the coordinates exchanging them in pairs.
From the denominator we get a factor (−1)k−2 coming from the symmetrized
second kind equations, canceling the factor at the numerator and leaving
the 3-form invariant. This means that such orientifold projection does not
preserve the same supersymmetry as the D3-branes.

Let us finish this section working out an explicit example. In the case
of dP3, one has k = 3, and the holomorphic 3-form is the residue of the
meromorphic 7-form.

Ω3 = Res
dx1 ∧ ... ∧ dx6 ∧ dx0

(x1x4 − x2
0)(x2x5 − x2

0)(x3x6 − x2
0)(x1x3x5 − x2x4x6)

. (9.56)

Under the involution, the numerator is multiplied by (−1)3. The first three
relations are invariants while the fourth one takes a minus sign. In the end,
Ω3 is even under the symmetry, and hence there cannot be any supersym-
metric shift orientifold of dP3.

9.6 Conclusions

In this chapter, we have studied orientifolds on D3-branes at toric CY
singularities using dimer models. We established a classification in terms
of smooth involutions of the dimer torus, which allowed us to find the last
supersymmetric possibility, the glide reflection orientifold. This possibility
may also be reached by directly performing the orientifold projection on
the open string spectrum. A last possibility existed, a shift orientifold, but
it breaks all supersymmetries, as explicitly argued by studying its action
on the holomorphic three-form. Note that these two cases, not considered
before, leave no fixed loci. This exhausts the possible orientifolds acting
smoothly on the dimer torus.

Given a toric gauge theory and its associated dimer, one may find the
projected theory with the same dictionary as orientifolds with fixed loci.
The resulting theories have properties strikingly similar to non-orientifolded
theories.

• Unlike orientifold theories with fixed loci, glide reflection orientifolds
are guaranteed to satisfy the anomaly cancellation conditions for some
rank assignment. In fact, these theories are non-chiral. This fact is
non-trivial, see Chapter 8, and granted by the absence of fixed loci in
the glide orientifold that would give rise to tensor matter that could
spoil the ACC. From the geometric point of view, this boils down to
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the absence of net RR fluxes sourced by these orientifolds, as there are
no fixed loci that can be interpreted as an O-plane. T-duality sheds
further light, since the glide orientifold turns to a pair of oppositely
charged O-planes on a circle, in the sense of [166,184].

• Again contrary to intuition, these theories are conformal, as shown by
explicit computation of the β-function, that vanishes identically.

• Some of these theories admit N = 2 or deformation fractional branes.
The latter trigger a cascade of dualities à la Klebanov-Strassler, with
a constant step that allows for a UV completion purely in terms of
field theory. This is unlike some orientifolds with fixed loci in the
literature [55] and opens up the possibility of a simple supergravity
dual.

• The glide reflection orientifold may be understood in the T-dual and
mirror picture, at least for C2/Z2, providing a unifying picture.

This closes the analysis of orientifolds of brane tilings, or at least those
acting as smooth involutions on the torus. However, one may consider
other kinds of involutions. For example, involutions not respecting the
color mapping presented in Section 9.1 or non-smooth involutions, can lead
to new projections of the tiling, different from the usual orientifold. One
may also look for quotients of higher-order, in the spirit of what has been
done with S-folds [191,192], and their connection with dimer models. These
directions are yet to be explored.

Orientifolds with fixed loci have found extensive use in phenomeno-
logical applications by allowing for non-perturbatively generated superpo-
tentials or opening the door to supersymmetry breaking, as we will see in
Part III. We hope that our new results may shed light on these and related
issues.
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9.A Worldsheet analysis for the Klein bottle pro-
jection of C2/Z4

In this appendix, we present the worldsheet computations for the Klein-
bottling of C2/Z4 presented in Section 9.2.2.

The open sector of strings on the orbifold before the orientifold projec-
tion is obtained as follows:

Aµ =


A1µ 0 0 0

0 A2µ 0 0
0 0 A3µ 0
0 0 0 A4µ

 , Φ1 =


0 X12 0 0
0 0 X23 0
0 0 0 X34

X41 0 0 0

 ,

Φ2 =


0 0 0 Y14

Y21 0 0 0
0 Y32 0 0
0 0 Y43 0

 , Φ3 =


Z11 0 0 0
0 Z22 0 0
0 0 Z33 0
0 0 0 Z44

 .

(9.57)

The appropriate orientifold projection, defined as in Equations (9.8)
and (9.9), is given by

γΩ =


0 0 1N 0
0 0 0 1N

1N 0 0 0
0 1N 0 0

 , and R =

 0 1 0
1 0 0
0 0 1

 . (9.58)

It gives the following identification of gauge bosons

A1µ = −AT3µ and A2µ = −AT4µ , (9.59)

the resulting gauge group is SU(N)1×SU(N)2. The matter content follows
from

X12 = Y T
43 ≡ X12 ∈ ( 1, 2) ,

X23 = Y T
14 ≡ X21 ∈ ( 2, 1) ,

Y21 = XT
34 ≡ Y21 ∈ ( 2, 1) ,

Y32 = XT
41 ≡ Y12 ∈ ( 1, 2) ,

Z11 = ZT33 ≡ Z11 ∈ Adj1 ,
Z22 = ZT44 ≡ Z22 ∈ Adj2 .

(9.60)

One can check that the superpotential is the one advertised in Equation
(9.14).
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9.B Computations for the orbifolds of the conifold

9.B.1 Orbifold of the conifold C/Z2

Let be a non-chiral orbifold of the conifold, C/(Zl × Zm). The general
action is given by

γgV1,2γ
−1
g = V1,2

γgA1γ
−1
g = e2πi/lA1 , γgA2γ

−1
g = A2 (9.61)

γgB1γ
−1
g = e−2πi/lB1 , γgB2γ

−1
g = B2 ,

and

γgV1,2γ
−1
g = V1,2

γgA1γ
−1
g = e2πi/mA1 , γgA2γ

−1
g = A2 (9.62)

γgB1γ
−1
g = B1 , γgB2γ

−1
g = e−2πi/mB2 ,

where V1,2 are the two adjoint vectors related to the gauge groups. In the
case of our first example, C/Z2, the action gives the following fields

V1 =

(
V1 0
0 V3

)
, V2 =

(
V2 0
0 V4

)
, A1 =

(
0 A14

A32 0

)
,

A2 =

(
A12 0
0 A34

)
, B1 =

(
B21 0
0 B43

)
, B2 =

(
0 B23

B41 0

)
,

(9.63)
with a superpotential given by

W = A1B1A2B2 −A1B2A2B1 . (9.64)

We consider the following orientifold projection in order to reproduce
the glide projection.

V1,2 = −γΩV
T

1,2γ
−1
Ω ,

A1,2 = γΩB
T
1,2γ

−1
Ω , (9.65)

with

γΩ =

(
0 1N

1N 0

)
. (9.66)
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The action on mesons, x = (A1B1)2 y = (A2B2)2, z = A1B2 and
w = A2B1, is

x↔ y , z → z , w → w ,

Ω3 =
dx ∧ dy ∧ dz

2wz2
→ Ω′3 =

dy ∧ dx ∧ dz

2wz2
= −Ω3 (9.67)

which means that the action preserves supersymmetry on the branes.

The gauge group is SU(N1)1 × SU(N2)2 and matter content given by

A14 = BT
23 ≡ A = ( 1, 2) ,

B41 = AT32 ≡ B = ( 1, 2) ,
A12 = BT

43 ≡ C = ( 1, 2) ,
B21 = AT34 ≡ D = ( 1, 2) ,

(9.68)

with superpotential

W = ABCD −BACTDT . (9.69)

9.B.2 Zeroth Hirzebruch surface F0

In this case we take the following actions on the fields

γgV1,2γ
−1
g = V1,2 ,

γgA1γ
−1
g = −A1 ,

γgA2γ
−1
g = −A2 , (9.70)

γgB1γ
−1
g = B1 ,

γgB2γ
−1
g = B2 ,

leading to

V1 =

(
V1 0
0 V3

)
, V2 =

(
V2 0
0 V4

)
, A1 =

(
0 A1

14

A1
32 0

)
,

A2 =

(
0 A2

14

A2
32 0

)
, B1 =

(
B1

21 0
0 B1

43

)
, B2 =

(
B2

21 0
0 B2

43

)
.

The orientifold action maps 1→ 4 and 2→ 3, it can be summarized as

V1,2 = −γΩV
T

1,2γ
−1
Ω ,

A1 = γΩA
T
2 γ
−1
Ω , (9.71)

B1 = γΩB
T
2 γ
−1
Ω ,
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with

γΩ =

(
1N 0
0 1N

)
. (9.72)

The resulting gauge group is SU(N)1 × SU(N)2 and the matter content is
given by

A1
14 = A2T

14 ≡ US,A = 1, 1 ,

A2
32 = A2T

32 ≡ ZS,A = 2, 2 ,
B1

21 = B2
43 ≡ X = ( 1, 2) ,

B2
21 = B1

43 ≡ Y = ( 1, 2) ,

(9.73)

with the following superpotential,

W = XUSY
TZA −XTZSY UA . (9.74)

In order to compute the action the 3-form, we compute the equations
defining the singularity using the geometrical approach described in Sec-
tion 9.5. The singularity is described by the following equations in C9

z1z3 = z2z4 = z2
0 ,

z1z2 = z2
5 , z2z3 = z2

7 , (9.75)

z1z4 = z2
6 , z3z4 = z2

8 .

The action on mesons is

z1 ↔ z2 , z3 ↔ z4 , z6 ↔ z7 (9.76)

while all other coordinates are invariant. The action on the 3-form is

Ω3 = Res
dz1 ∧ dz2 ∧ dz3 ∧ dz4 ∧ dz5 ∧ dz6 ∧ dz7 ∧ dz8 ∧ dz0∏

i Pi
→ −Ω3 ,

(9.77)

since the polynomials are invariant and in the numerator we are exchanging
three pairs of coordinates, resulting in an overall minus sign.

9.B.3 A cascade in the glide projection of C/Z2

For a generic choice of ranks, SU(N + M)1 × SU(N)2, one finds that
the gauge theory has a non-trivial RG-flow and SU(N + M)1 goes more
rapidly to strong coupling as we approach the infrared regime of the theory:

β1 = 3M , β2 = −3M . (9.78)
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The mesons of the first gauge group are

M1 = BA M2 = BC , M3 = CTDT and M4 = DA , (9.79)

and one thus finds that this gauge theory is Seiberg dual [91] to SU(N −
M)1×SU(N)2 with a matter content given by the mesons M1,M2,M3 and
M4 in addition to the following list of bifundamental fields:

a = ( 1, 2) , b = ( 1, 2) , c = ( 1, 2) and d = ( 1, 2) . (9.80)

The superpotential is given by

W = M2M4 −M1M3 +M1ab+M2cb+M3d
T cT +M4ad

= abdT cT − badc (9.81)

where the mesons have been integrated out using F-term relations.

The new gauge theory SU(N −M)1 × SU(N)2 ends up with the same
matter content and superpotential (up to an overall sign) as the initial
SU(N+M)1×SU(N)2. This can be seen easily with the following mapping:

A→ b , B → a , C → d and D → c . (9.82)

The M deformation branes thus trigger a cascade of Seiberg dualities à la
Klebanov-Strassler [27]. In particular, for N being an integer multiple of M ,
we expect the cascade flow down to SU(2M) × SU(M) where the physics
should the same as for the deformed conifold. Indeed, we can schematically
define baryonic operators B̄ = [ACT ]M , B = [BDT ]M , and a 2M × 2M
squared matrix M in terms of the mesonic operators of Equation (9.79)
that should obey a relation of the form

detM− B̄B = Λ4M
2M , (9.83)

where Λ2M is the strong coupling scale of SU(2M). Going on the baryonic
branch B̄ = B = iΛ2M

2M , one finds that the mesons decouple, leaving a SYM
SU(M) dynamics displaying confinement and chiral symmetry breaking.
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Part III

Dynamical Supersymmetry
Breaking in Dimer Models
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Chapter 10

Supersymmetry Breaking Vacua
and their Coulomb Branch

Instability

We present in this chapter a large class of models of D-branes at ori-
entifolded Calabi-Yau singularities which enjoy dynamical supersymmetry
breaking at low energy, by means of either the SU(5) or 3−2 supersymmetry
breaking models. Once embedded in a warped throat or, equivalently, in a
large N theory, all models display an instability along a Coulomb branch di-
rection towards supersymmetry preserving vacua. Interestingly, the nature
of the runaway mechanism is model-independent and has a precise geomet-
rical interpretation. This naturally suggests the properties a Calabi-Yau
singularity should have in order for such instability not to occur. These
results were originally presented in [2].

The chapter is structured as follows. In Section 10.1 we present a sum-
mary of our main results, to provide the reader with a simple illustration of
the physical picture that emerges from the examples we have explored. We
then proceed to discuss in detail several cases. In Section 10.2 we review
the orientifold of the C3/Z6′ singularity, already analyzed in [74], finding
not only the SU(5) model but also a 3− 2 model, and their instability. In
Section 10.3 we consider the orientifold of a pseudo del Pezzo singularity,
PdP4, where we also recover both an SU(5) and a 3− 2 model. The insta-
bility is also present, though the presence of anomalous dimensions makes
the analysis slightly more subtle. In Section 10.4, we present a large number
of new orientifold set-ups, generalizing previous ones, based on orbifolds or
blow-ups of del Pezzo CY singularities, where SU(5) and possibly 3−2 mod-
els are found. In all such set-ups, we identify, again, a runaway Coulomb
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branch instability. In Section 10.5, we provide a no-go theorem showing
that whenever N = 2 fractional branes are allowed, they inevitably destabi-
lize the otherwise stable DSB vacua. We then look at singularities that do
not allow for N = 2 fractional branes, in order to avoid from the start the
mechanism of instability. A brief and partial scan yielding negative results
hints that in such cases an SU(5) or a 3− 2 model cannot be easily found.

10.1 Overview of the problematic

Supersymmetry breaking models in dimer models

Recently, a series of papers renewed the interest in models of D-branes
at CY singularities leading to dynamical supersymmetry breaking. This
originated from [54] where an existence proof for a possibly stable DSB
model obtained by considering fractional branes at orientifold singularities
was given. It is then natural to ask first which DSB models we have a
chance of being able to engineer. Known DSB models are rather specific
gauge theories, and we have to match their properties to the ones of the
gauge theories one can engineer with branes.

D-branes at singularities yield quiver gauge theories. In particular,
since all matter fields can be related to open strings, they all have two gauge
theory indices, corresponding to the two ends of the open strings. Without
orientifold projection we have only two possibilities: matter fields are either
in the adjoint representation (if both ends are on the same D-brane) or in
the bifundamental representation (if they join two different D-branes). In
the presence of an orientifold, there is the additional possibility of having
fields in the symmetric or antisymmetric representations or their conjugates.

A generic property of DSB models is that they have a rather contrived
matter content so that there cannot be mass terms and in addition, clas-
sical flat directions should be lifted by the superpotential. In particular,
known DSB models, with only a few notable exceptions, are chiral gauge
theories. We will focus on the following two well-known models since they
involve matter in at most two-index representations of the gauge groups.
See Chapter 2 for a more detailed reminder on their properties.

SU(5) model. This model [71] has an SU(5) gauge group and one GUT-
like chiral family:

Q̃ = , A = . (10.1)

No chiral gauge-invariant can be written, hence it has no superpo-
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tential and no classical flat directions. With arguments based on
’t Hooft anomaly matching, its vacuum is believed to break super-
symmetry in a purely strongly coupled fashion. The supersymmetry
breaking vacuum energy density is given in terms of its dynamical
scale, Evac ∝ Λ4

SU(5). The SU(5) model has a matter field in the anti-
symmetric representation, hence to recover it an orientifold projection
is necessary.

3− 2 model. This other model [94] involves two gauge groups, SU(3) and
SU(2) respectively, and one chiral family, resembling the ones of the
Standard Model:

Q = ( 3, 2) , Ū = 3 , D̄ = 3 , L = 2 . (10.2)

This model has a number of flat directions, but a cubic superpotential
lifts them all:

W = D̄QL . (10.3)

After taking into account non-perturbatively generated contributions
to the superpotential, it turns out there is a conflict between F-
terms and D-terms so that no supersymmetric vacuum can be found.
The actual minimum breaks supersymmetry dynamically, where now
Evac ∝ Λ4

SU(3) or Λ4
SU(2), depending on which group confines first. In

principle, the above field content (SU gauge groups, (bi)fundamental
matter, together with a cubic superpotential) does not seem to require
an orientifold projection. As it will become clear in Chapter 11, such
a projection is nevertheless necessary in order to allow for a fractional
brane (i.e. an anomaly-free configuration) with the desired ranks for
the gauge groups.

It turns out that fixed loci in the orientifold projections will be neces-
sary to recover these DSB models, either for introducing (anti)symmetric
matter or SO(N)/USp(N) gauge groups. Hence, we will focus in this part
of the thesis on the projections introduced in [54] and leave aside the glide
projections of Chapter 9 from now on.

Other known DSB models cannot be engineered with brane construc-
tions, such as the SO(10) model [193] (because of the spinor representation)
and the 4− 1 model [194,195] (because of the U(1) charges). Further mod-
els would deserve a closer look, but doing this is beyond the scope of the
present work.

As we explained at length in Chapter 8, it turns out that, generically,
the anomaly cancellation conditions result in constraints on the various
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ranks of the form1 ∑
i

Ni =
∑
j′

Nj′ + 4 , (10.4)

where the two sums run on two different sets of gauge theory nodes, and
strictly speaking the Ni and Nj′ are not the ranks but the dimensions of
the fundamental representation of SU(N), SO(N) or USp(N) groups. The
imbalance of 4 units in Equation (10.4) is due to the orientifold charge,
which contributes to tadpole cancellations.

Two simple ways to satisfy Equation (10.4) are the following. We can
take one Ni = 5, one Nj′ = 1 and all other ranks to vanish, so that the re-
maining gauge group is SU(5)×SU(1) or SU(5)×SO(1). The trivial factor
actually allows for a bifundamental between the two nodes to be interpreted
as a (anti)fundamental of SU(5). If the latter also has an antisymmetric
matter field, then the field content is exactly the one of the SU(5) DSB
model.

The other simple solution to Equation (10.4) is to take one Ni = 3,
another one Nj 6=i = 2, one Nj′ = 1, and again all other factors to vanish,
leading to the gauge group SU(3) × SU(2)/USp(2) × SU(1)/SO(1). The
3−2 model is recovered if bifundamentals are linking the three gauge groups,
together with a cubic superpotential term, and in addition to an antisym-
metric of SU(3) which provides for the remaining (anti)triplet, necessary
for anomaly cancellation.

In some of the examples that we will review below, some additional de-
coupled gauge singlets will be present, or even additional decoupled gauge
sectors, which themselves do not break supersymmetry. We will even en-
counter an example with two decoupled SU(5) models.

The first conclusion we will draw is that there is a sizeable number
of orientifold singularities that allow for configurations of branes realizing
either the SU(5) or 3 − 2 models at low energy. They can be engineered
by bound states of fractional D3-branes which arise at the end of compli-
cated RG-flows (often described by a duality cascade [27]) or on the N = 4
Coulomb branch of regular D3-branes, depending on the singularity struc-
ture.

The Coulomb branch instability

A common feature of all CY singularities in which the above DSB mod-
els will be found in this chapter is that they admit N = 2 fractional branes.

1As explained in [54], we can have a multiple of +4 in the equation.
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The latter are related to a partial resolution of the singularity displaying
a non-isolated C2/Zn singularity and a N = 2 Coulomb branch associated
with it (further details on this class of fractional branes are provided in
Chapter 6). Hence, the supersymmetry breaking vacuum is destabilized
and ceases to exist. This novel decay mechanism, which remarkably has an
elegant geometric origin, was originally uncovered in [74].

The basic dynamical mechanism describing such instability goes as fol-
lows. In the decoupling limit [21], the DSB model emerges as a vacuum
configuration of a (possibly intricate) system of regular and fractional D-
branes, with the vacuum energy depending on the VEVs of the scalar fields.
TheN = 4 Coulomb branch is parameterized by regular branes. If anN = 2
fractional brane direction exists, there is, in addition, an N = 2 Coulomb
branch. One can show that the energy of the supersymmetry breaking vac-
uum is related to the strong coupling scale Λ of the SU(5) or SU(3)×SU(2)
gauge groups2 and, by scale matching, to the strong coupling scale ΛUV of
the UV-complete model with regular branes as follows

Evac = Λ4 =

(
v′

v

)α
Λ4
UV , α ∈ R , (10.5)

where the exponent α is model-dependent and given by a ratio of beta func-
tions and v and v′ are the VEVs on the Coulomb branches associated with
the N = 2 fractional brane and its complement, respectively. Fractional
branes are defined modulo regular branes so that a fractional brane and its
complement combine into a regular brane. The case v = v′ then corresponds
to the N = 4 Coulomb branch.

From Equation (10.5), it follows that on the N = 4 Coulomb branch
the vacuum energy equals Λ and the supersymmetry breaking vacuum is
hence preserved. On the N = 2 Coulomb branch, instead, where v 6= v′,
the vacuum energy relaxes to 0, with a moduli space parameterized by v
at v′ = 0 or vice-versa, depending on the sign of α. Geometrically, this
corresponds to a supersymmetric configuration described by the N = 2
fractional branes associated with v located at a finite distance along the
non-isolated C2/Zn singularity describing its Coulomb branch, and their
complement sitting at the origin.

The only possibility for evading this decay mechanism of the super-
symmetry breaking vacuum is that α = 0. Using some basic properties of
Calabi-Yau varieties and the fact that fractional branes are described by a
non-conformal field theory at low energy, we will show in Section 10.5 that

2In the 3 − 2 model, Λ refers to the scale of the gauge group factor, either SU(3) or
SU(2), that dominates the dynamics.
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α 6= 0. The upshot is that whenever such N = 2 classical flat directions
exist at a singularity which admits the aforementioned DSB models, and
so for the models constructed in [74] and the present chapter, the quan-
tum behavior of the latter tilts the flat directions towards supersymmetry
preserving vacuum. The models are hence unstable, or at most metastable.

Let us schematically discuss what occurs to the gauge theory in this
process. We denote G���SUSY the SUSY breaking model, namely its gauge
group (and possibly flavor group), matter fields, and interactions. When N
regular D3-branes are added, the SUSY breaking sector extends to

G���SUSY
+ N regular−−−−−−−−−→

branes
G���SUSY+N ×G′N , (10.6)

where G���SUSY+N indicates that the ranks of the gauge and flavor groups are
increased by N . G′N denotes the theory associated with the complement.
The subindex indicates that all gauge groups in this sector have rank N . In
addition, there is matter connecting the G���SUSY+N and G′N sectors. Along
the N = 2 Coulomb branch, the theory is higgsed down to

G���SUSY+N ×G′N
v 6= v′−−−−−→ G���SUSY ×G′N , (10.7)

We are left precisely with the original SUSY breaking theory of interest,
but now coupled to G′N . This extension of the theory spoils supersymmetry
breaking.

The only way to avoid this decay mechanism is to look for singularities
that admit supersymmetry breaking D-brane configurations and are free of
local C2/Zn singularities. Whether such geometries exist or not is a question
that will be investigated in Chapters 11 and 12.

Note that we do not investigate here the existence of stable DSB models
in brane constructions that include flavors, engineered by non-compact D7-
branes, for which it is already known that metastable DSB vacua can be
found [63].

We now turn to the analysis of a series of singularities, showing how
the general pattern described above emerges.

10.2 The C3/Z6′ singularity

As a warm-up, let us start considering the (fixed point) orientifold of
the orbifold C3/Z6′ , already analysed in [74]. The orbifold action is defined
by the Z6′ acting on the complex coordinates of C3 as

g : zi → ei2πvizi , (10.8)
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with i = 1, 2, 3 and v = (1, 2, 3)/6. The dimer associated with the C3/Z6′

orbifold singularity is reported in Figure 10.1, including the fixed points
with respect to which we will eventually take the orientifold projection.

0

2

4

0

4
0

2

4

0

5

1
3

5

1

Figure 10.1: The C3/Z6′ dimer. The theory is chiral, with 6 gauge factors
and 18 bifundamental chiral superfields Xij . The parallelogram is a possible
choice of unit cell. Red crosses represent fixed points under the orientifold
action.

From the dimer, one can read the field content of the theory as well as
the superpotential which is

W = X152 +X143 +X032 +X053 +X254 +X104

−X052 −X031 −X142 −X043 −X253 −X154 , (10.9)

where, for the ease of notation, we have defined Xlmn ≡ XlmXmnXnl, and
Xlm is in the ( l, m) representation, where l,m, n = 0, 1, ..., 5. Following
the general rules summarized in Chapter 7, one can see that there do not
exist deformation fractional branes but N = 2 fractional branes. For in-
stance, the strip 0−2−4 and its complement 1−3−5, are N = 2 fractional
branes.

We now perform an orientifold projection via point reflection. The
unit cell has an even number of white nodes hence, following Chapter 7,
we have to choose orientifold charges with an even number of + signs. A
convenient choice is (+ + −−) starting from the fixed point on face 0 and
going clockwise. The orientifold projection gives the following identifications
between faces

0↔ 0 1↔ 5 2↔ 4 3↔ 3. (10.10)

The daughter theory has hence gauge group

SO(N0)× SU(N1)× SU(N2)× USp(N3) , (10.11)
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and matter in the following representations

X1 = ( 0, 1) , X2 = ( 0, 2) , X3 = ( 0, 3),

Y1 = ( 1, 3) , Y2 = ( 2, 3) , Z1 = ( 1, 2)

Z2 = ( 1, 2) , W = ( 1, 2) , A = 2 , S = 1 .(10.12)

Imposing anomaly cancellation condition on the two SU factors we get{
N0 +N1 −N2 −N3 + 4 = 0 SU(N1)

N0 +N1 −N2 −N3 + 4 = 0 SU(N2)
(10.13)

which is one and the same condition, that is

N0 +N1 −N2 −N3 + 4 = 0 . (10.14)

SU(5) model

An interesting choice of ranks compatible with the constraint in Sec-
tion 10.2 is N0 = 1, N1 = 0, N2 = 5, N3 = 0. With this choice, the theory be-
comes exactly the one describing the non-calculable SU(5) DSB model (the
SO(1) becomes a flavor index), which breaks supersymmetry dynamically
in a stable vacuum. The corresponding quiver is reported in Figure 10.2.

*
SO(1) SU(5)

>
X2

A

Figure 10.2: The quiver of the SU(5) model at the C3/Z6′ orbifold singular-
ity. Matter fields follow the definitions in Section 10.2. The asterisk refers
to the antisymmetric representation.

As recently argued in [74], in the decoupling limit this DSB vacuum
becomes actually unstable. In such limit the effective matter-coupled gauge
theory becomes

SO(N + 1)× SU(N)× SU(N + 5)× USp(N) , (10.15)

which actually corresponds to adding N regular D3-branes at the singular-
ity. This is a much richer theory than SO(1) × SU(5) and it might have,
possibly, many vacua. One should then ask whether in the larger moduli
space of Equation (10.15) there are instabilities that make the supersym-
metry breaking vacuum unstable. This can be easily understood by scale
matching.
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The vacuum energy of the putative supersymmetry breaking vacuum
will be ∼ Λ4, with Λ the intrinsic scale of the SU(5) model. The higgsing
of the N regular branes can be obtained giving a VEV of scale v to the
gauge-invariant operator3

Φ = Tr(X1WY2X
T
3 ) . (10.16)

This makes the theory of Equation (10.15) flow to SO(1)× SU(5), namely
the DSB SU(5) model.

We can match the UV and IR scales evaluating the β functions of
the relevant SU factor above and below the scale v.4 Note that because
the orbifold theory is a projection of N = 4 SYM, fundamental fields do
not acquire anomalous dimensions (equivalently, all superpotential terms
are cubic). With obvious notation, we have (here, and in similar formulas
thereafter, we omit a factor of 8π2 for clarity of exposition)

g−2
SU(5+N) =

[
3(N + 5)− 1

2 (6N + 4)
]

ln
(

µ
ΛUV

)
= 13 ln

(
µ

ΛUV

)
,

g−2
SU(5) =

[
15−

(
1
2 + 3

2

)]
ln
( µ

Λ

)
= 13 ln

( µ
Λ

)
.

(10.17)

Matching the gauge coupling at µ = v we get

Λ = ΛUV . (10.18)

This shows that the effective potential does not depend on the VEV of Φ,
meaning that regular brane dynamics does not change the nature of the
supersymmetry breaking vacuum and its stability (there is no force acting
on the N regular branes).

In fact, it turns out that there exists a different instability channel.
This has to do with moduli associated with N = 2 fractional branes, which
are massless classically, but become runaway once non-perturbative correc-
tions are taken into account. From the dimer in Figure 10.1 we see that a
regular brane can be seen as a bound state of two N = 2 fractional branes
corresponding to the strips 0−2−4 and 1−3−5, respectively. The classical
flat directions correspond to the z2 fixed line that is left invariant by g3, see

3Hereafter, we assume that all fields appearing in the gauge-invariants have a rank N
piece in the upper left part, to ensure the correct higgsing pattern. If the rank N pieces
are all proportional to the identity, then an SU(N) diagonal gauge group is preserved. It
can be checked to have N = 4 SUSY to a good approximation, and to decouple from the
rest of the quiver. We will not consider it further.

4The absence of the denominator with respect to the usual NSVZ expression is due to
a choice of normalization for the vector superfield which differs from the canonical one by
a factor of 1/g2, as usual in the framework of the gauge/gravity correspondence.
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Equation (10.8). Locally, this is a C2/Z2 singularity. Both these fractional
branes survive the orientifold projection, becoming 0 − 2 and 1 − 3 strips.
Note that (135) and (024) are closed loops which represent operators not
present in the superpotential. Hence, their VEVs represent motion along
classical flat directions. In the daughter theory these directions are given
by the operators5

Φ̃ = Tr(X2AX
T
2 )2 , Φ̃′ = Tr(JY1SY

T
1 )2 , (10.19)

and we will denote the scale of their VEVs as v and v′, respectively. The
higgsing pattern is then6

SO(N + 1)× SU(N)× SU(N + 5)× USp(N)
v−→ SO(1)× SU(N)× SU(5)× USp(N)

v′−→ SO(1)× SU(5) .
(10.20)

Above and below the scale v the gauge couplings run as

g−2
SU(5+N) =

[
3(N + 5)− 1

2 (6N + 4)
]

ln
(

µ
ΛUV

)
= 13 ln

(
µ

ΛUV

)
,

g−2
SU(5)N

=
[
15− 1

2 (4N + 4)
]

ln
(

µ
ΛN

)
= (13− 2N) ln

(
µ

ΛN

)
.

(10.21)

Matching them at µ = v we get

Λ13−2N
N = v−2NΛ13

UV . (10.22)

Repeating the same computation above and below the scale v′ we have

g−2
SU(5)N

=
[
15− 1

2 (4N + 4)
]

ln
(

µ
ΛN

)
= (13− 2N) ln

(
µ

ΛN

)
,

g−2
SU(5) =

[
15−

(
1
2 + 3

2

)]
ln
( µ

Λ

)
= 13 ln

( µ
Λ

)
.

(10.23)

and in turn Λ13−2N
N = v′−2NΛ13. The end result is then

Λ13 =

(
v′

v

)2N

Λ13
UV . (10.24)

This shows that the DSB vacuum is unstable. There exists a one-
dimensional supersymmetric moduli space sitting at v′ = 0 and parame-
terized by v. Indeed, one can estimate the minima of the potential in a
(v, v′) plane and check that any point at v, v′ 6= 0 is driven to the v′ = 0
axis. The gradient flow is reported in Figure 10.3.

5As before, we assume that the fields in the gauge-invariants have a rank N upper
left piece, and we do not consider the decoupled effective N = 2 diagonal gauge group.
Note that the traces involve squares since Tr(X2AX

T
2 ) = 0 because of antisymmetry of

A, while Tr(JY1SY
T
1 ) = 0 because of antisymmetry of the USp-invariant J.

6This pattern occurs for v � v′. One can check that the end result does not change
when inverting the order of the two scales.
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Figure 10.3: Plot of −Grad(V ) as a function of v and v′. The flow goes
towards v′ = 0, suggesting that the system, eventually, relaxes to a super-
symmetry preserving vacuum at finite distance in field space.

In principle, one might try to obtain the SU(5) by a different UV com-
pletion. For instance, one can add to the DSB configuration M fractional
branes populating the second and fourth gauge factors only, corresponding
to the strip 1 − 3 − 5 in the mother theory, which becomes 1 − 3 after the
orientifold projection. The theory, in this case, has gauge group

SO(1)× SU(M)× SU(5)× USp(M) . (10.25)

This configuration does not change much the fate of the DSB vacuum.
Previous analysis shows that lacking one modulus, v in our conventions, the
one-dimensional moduli space of supersymmetry preserving vacua becomes
an isolated vacuum. This agrees with known field theory results [195]: the
SU(5) factor has extra vector-like matter and the theory does not lead to a
supersymmetry breaking vacuum to start with.

If one instead populates nodes 0 and 2, N0 = M,N1 = 0, N2 = M +
4, N3 = 0 which in the mother theory corresponds to adding M N = 2
fractional branes associated with the strip 0−2−4, the theory has a runaway
direction associated with v. Note that this last system has the same gauge
and matter content of a known, stable, DSB model [71, 195], but it lacks a
crucial cubic term in the superpotential whose effect is indeed to stop the
runaway associated with v. The special case M = 1 is the only stable DSB
model (our original brane construction, in fact).

To sum up, the C3/Z6′ singularity does admit fractional brane config-
urations whose low energy open string dynamics enjoys stable DSB vacua.
However, once coupled to regular branes, the supersymmetry breaking vac-
uum becomes unstable towards supersymmetry preserving ones. The C3/Z6′
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singularity can be embedded into a larger singularity which admits deforma-
tion branes [72] and, as such, a cascade (dual to a warped throat [196–198]).
So the above analysis suggests that, at least within this construction, it is
not possible to embed the SU(5) DSB model into a warped throat keeping
it stable [74].

3− 2 model

Looking at Section 10.2, one can see that another possible anomaly-
free rank assignment is given by N0 = 1, N1 = 0, N2 = 3, N3 = 2 which
corresponds to the following gauge theory

SO(1)× SU(3)× USp(2) . (10.26)

Using the fact that USp(2) = SU(2) (for which the fundamental and an-

tifundamental are equivalent representations) and that for SU(3) = ,
from Section 10.2 we see that the matter content is

X2 = ( 0, 2) = D, X3 = ( 0, 3) = L,

Y2 = ( 2, 3) = Q, A = 2 = U , (10.27)

with tree level superpotential

W = DQL . (10.28)

This reproduces exactly the DSB 3−2 model [94]! The corresponding quiver
is reported in Figure 10.4.

*
SO(1)

SU(3)

>
X2

A

USp(2)

>
Y2

X3

Figure 10.4: The quiver of the 3−2 model at the C3/Z6′ orbifold singularity.
Matter fields follow the definitions in Section 10.2. Arrows are indicated only
when needed. The asterisk refers to the antisymmetric representation, as in
Figure 10.2.

Again, one could ask what is the fate of this DSB vacuum in the full
theory. In the present model, we have to perform the scale matchings on the
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gauge group that is most strongly coupled, since the DSB vacuum energy
will be expressed in terms of its dynamical scale. We start by considering
a regime where supersymmetry breaking is driven by the non-perturbative
contributions in the SU(3) gauge group [165].

As in the SU(5) model, upon adding regular branes and higgsing
them, the vacuum shows no instability. Indeed, giving a VEV to Φ =
Tr(X1WY2X

T
3 ), the gauge coupling running above and below the matching

scale is

g−2
SU(3+N) =

[
3(N + 3)− 1

2 (6N + 4)
]

ln
(

µ
ΛUV

)
= 7 ln

(
µ

ΛUV

)
,

g−2
SU(3) =

[
9−

(
1
2 + 1

2 + 1
)]

ln
(
µ

Λ3

)
= 7 ln

(
µ

Λ3

)
,

(10.29)

and hence Λ = ΛUV .

However, the theory has N = 2 fractional branes, and following the
same two-steps higgsing pattern as before, namely

SO(N + 1)× SU(N)× SU(N + 3)× USp(N + 2)
v−→ SO(1)× SU(N)× SU(3)× USp(N + 2)

v′−→ SO(1)× SU(3)× USp(2) .

(10.30)

we get, above and below the scale v

g−2
SU(3+N) =

[
3(N + 3)− 1

2 (6N + 4)
]

ln
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µ
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)
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)
,
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2 (4N + 4)
]
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= (7− 2N) ln
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(10.31)

and, at scale v′

g−2
SU(3)N

=
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9− 1

2 (4N + 4)
]
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,

(10.32)

which gives in the end

Λ 7
3 =

(
v′

v

)2N

Λ7
UV . (10.33)

We can now repeat the analysis when the supersymmetry breaking
dynamics is driven by the strong coupling scale of SU(2). We have

g−2
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[
3 (N+4)

2 − 1
2 (3N + 4)

]
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)
= 4 ln
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)
,

(10.34)
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and hence Λ2 = ΛUV by higgsing the N regular branes. Along the N = 2
directions we get instead the matching

g−2
USp(2+N) =

[
3 (N+4)

2 − 1
2 (3N + 4)

]
ln
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µ
ΛUV

)
= 4 ln

(
µ

ΛUV

)
,

g−2
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=
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3 (N+4)

2 − 1
2 (N + 4)

]
ln
(

µ
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= (4 +N) ln
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(10.35)

at scale v and
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,

(10.36)

at scale v′. The final relation one gets between the UV and IR scale is now

Λ 4
2 =

(
v

v′

)N
Λ4
UV . (10.37)

This result is analogous to the one obtained before (even though the roles of
v and v′ are exchanged). We conclude that the Coulomb branch is unstable
and it is so independently of the regime in which the 3−2 model finds itself.

10.3 The PdP4 singularity

We now want to consider a different model, based on the pseudo del
Pezzo 4 singularity, PdP4 for short. We choose, for definiteness, the phase
I, following the conventions of [129], where pseudo del Pezzo singularities
were introduced. The dimer is depicted in Figure 10.5.

5

5 5
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1
3 3

1

6
7

2
4

4
2

7
6

Figure 10.5: PdP4 dimer. Red crosses represent fixed points under the
orientifold action.
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As for the orbifold model, from the dimer, one can extract the field
theory content and the corresponding superpotential, which now reads

W = X1543 +X375 +X1642 +X5276−X152−X7643−X5427−X5316 , (10.38)

with by now familiar index conventions. Note that the superpotential admits
also quartic terms now, implying that (some) fundamental fields have large
anomalous dimensions. This is related to an important qualitative difference
with respect to the previous example. In this model there exist deformation
fractional branes, together with N = 2 ones. For instance, the strip 1−3−5
is a N = 2 brane, while 2 − 6 and 1 − 2 − 5 are two different kinds of
deformation branes.

Upon point reflection with charges (+−+−) starting on the fixed point
on face 5 and going clockwise, we get the following identifications between
faces

1↔ 3 2↔ 7 4↔ 6 5↔ 5 . (10.39)

The daughter theory has hence gauge group

SO(N5)× SU(N1)× SU(N2)× SU(N4) , (10.40)

and matter in the following representations

X1 = ( 1, 5) , X2 = ( 5, 2) , X4 = ( 5, 4) ,

Y1 = ( 4, 1) , Y2 = ( 4, 2) , Z = ( 2, 1) ,

A1 = 1 , A2 = 2 , S4 = 4 .

(10.41)

The anomaly cancellation conditions for the three SU factors are
N2 +N1 −N5 −N4 − 4 = 0 SU(N1)

N5 +N4 −N2 −N1 + 4 = 0 SU(N2)

N5 −N1 −N2 +N4 + 4 = 0 SU(N4)

, (10.42)

which is the unique condition

N1 +N2 −N4 −N5 − 4 = 0 . (10.43)

SU(5) model

The constraint in Equation (10.43) allows to obtain an effective SU(5)
DSB model, as for the theory studied in the previous section, by choosing
N5 = 1, N1 = 5, N2 = N4 = 0.7

7We note that there is also the configuration N4 = 1, N1 = 5, N2 = N5 = 0 that leads
to a SU(5) DSB model, with the extra decoupled singlet S4. The analysis goes through
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We can now proceed as for the orbifold C3/Z6′ and add to the afore-
mentioned DSB brane configuration N regular D3-branes, which change the
theory to SO(N+1)×SU(N+5)×SU(N)×SU(N) (with the corresponding
matter and superpotential terms).

As already noticed, differently from the orbifold case, where the tree-
level potential of the parent theory contains only cubic terms, and hence
the anomalous dimensions of all fields are zero, in this model, we have both
cubic and quartic terms, and so we have to take into account non-trivial
anomalous dimensions. We can compute such anomalous dimensions in
the parent theory. They are fixed by populating the dimer with regular
branes and imposing vanishing β functions and R-charge equal 2 to all
superpotential terms (in the present case this corresponds to 7 + 8 = 15
equations).

The symmetries of the dimer help in simplifying the system one has
to solve. In particular there exist three Z2 symmetries acting on faces as
2↔ 3, 1↔ 7 and (4, 1, 2)↔ (6, 3, 7), respectively. Using these symmetries
the number of independent anomalous dimensions is just 5 which gives back
only 4 independent equations one has to solve, implying in the end a solution
with one unfixed modulus. This can be fixed by a-maximization [88] giving
finally, for the fields in Equation (10.41), the following result

γX1 = 2/5 , γX2 = 2/5 , γX4 = −4/5 ,

γY1 = −4/5 , γY2 = −4/5 , γZ = −4/5 ,

γA1 = −4/5 , γA2 = −4/5 , γS4 = 2/5 .

(10.44)

The orientifold projection may provide 1/N corrections to these anomalous
dimensions, as fractional branes similarly do. Here and in the following, we
will consistently neglect both of them.

We can now proceed as in the previous example by adding N regular
branes to the DSB system, higgsing and doing scale matching. The gauge
coupling associated with face 1 above and below the scale v of the VEV of

very similarly. Further interchanging the roles of nodes 1 and 2 provides two more trivially
equal examples.
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the gauge-invariant operator Φ = Tr(X4Y2ZX1) runs as
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(10.45)
Matching the scale at µ = v we get

Λ = ΛUV . (10.46)

Again, the matching of the two scales is exact, i.e. Λ does not depend on v.

Let us now investigate other possible decay channels. In the parent
theory, a regular brane can be seen as a bound state of a N = 2 brane
associated with the strip 1− 3− 5 and its complement, 2− 4− 6− 7. Upon
orientifolding these two fractional branes become 1 − 5 and 2 − 4 strips,
respectively. We can see that also in this theory, after the orientifold pro-
jection, the two types of N = 2 fractional branes behave differently, one
leading to a supersymmetric vacuum and the other triggering supersymme-
try breaking into a runaway. The details are similar to the orbifold case, and
we refrain to repeat the analysis here. The end result, after scale matching,
is

Λ12 =

(
v′

v

) 9
5
N

Λ12
UV . (10.47)

The dynamics is qualitatively the same as for the C3/Z6′ case. The theory
enjoys a one-dimensional moduli space of supersymmetry preserving vacua
at v′ = 0, parameterized by v.

3− 2 model

Also this orientifold admits a 3 − 2 DSB model. Indeed, a different
rank assignment which satisfies the anomaly cancellation condition is N5 =
1, N1 = 3, N2 = 2, N4 = 0 which gives a SU(3) × SU(2) × SO(1) gauge
theory with matter content

X1 = ( 1, 5) = D X2 = ( 5, 2) = L , Z = ( 2, 1) = Q ,

A1 = 1 = U , A2 = 2 = S ,
(10.48)

217



where we used again that the two index antisymmetric representation of
SU(3) is equal to the antifundamental, and that the two index antisym-
metric of SU(2) is actually the singlet representation. The matter content
is precisely the one of the 3 − 2 model (up to a decoupled singlet S) and,
from Equation (10.38), one can also see that the only term surviving in the
superpotential is precisely

W = DQL . (10.49)

As for the SU(5) model, the addition of regular branes does not destabilize
the DSB vacuum. As before, however, the theory has N = 2 fractional
branes, which eventually do destabilize the vacuum, as in the orbifold case.
In particular, it is possible to show, by scale matching, that the strong
coupling scale which controls the DSB vacuum energy (Λ3 of the SU(3)
factor or Λ2 of the SU(2) factor) is affected by the higgsing procedure and
the vacuum energy relaxes to zero. The scale matchings give, in the two
cases,

Λ6
3 =

(
v′

v

) 9
5
N

Λ6
UV , Λ3

2 =

(
v

v′

) 6
5
N

Λ3
UV , (10.50)

which, again, shows that the vacuum is unstable, eventually.

The PdP4 case is different from the previous orbifold case in that it
has a natural warped throat UV completion. Indeed, it contains defor-
mation fractional branes, so that the parent theory admits a cascade of
Seiberg dualities. For instance, in the conformal case, Ni = N for any i,
it is straightforward to show that starting from node 1 and following the
sequence 1 → 2 → 4 → 5 → 6 → 7 → 3 we get back to the starting point.
Then, if we add M (deformation) fractional branes on nodes 1− 2− 5, we
trigger a cascade. Performing the previous sequence six times, we find that
the number of regular branes is diminished by seven times the number of
fractional ones

SU1(N ′ +M)× SU2(N ′ +M)× SU3(N ′)× SU4(N ′)
×SU5(N ′ +M)× SU6(N ′)× SU7(N ′)

(10.51)

where N ′ = N − 7M . Upon orientifolding,8 the fractional brane configu-
ration that could give rise to the one containing the 3− 2 model discussed
above should in fact be

N5 = 1 + 2M N1 = 3 +M N2 = 2 +M N4 = 0 , (10.52)

which is indeed compatible with the anomaly condition in Equation (10.43).
This can be seen in the parent theory as a bound state ofM fractional branes

8See Chapter 7 for the subtleties of performing a duality cascade in an orientifolded
theory.
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1− 2− 5 and M fractional branes 3− 5− 7, both of deformation type, one
mirror of the other through the orientifold projection. Now, however, this
superposition of deformation branes can be alternatively seen as being com-
posed of two sets of N = 2 fractional branes, 1 − 3 − 5 and 2 − 5 − 7,
whose Coulomb branch survives the orientifold projection. A straightfor-
ward repetition of the scale matchings previously discussed shows that even
this different UV completion has a Coulomb branch instability, eventually.

10.4 Other supersymmetry breaking set-ups

In this section, we want to generalize the previous analysis and show
that the DSB SU(5) and 3−2 models arise in a large class of CY orientifold
singularities, either C3 orbifolds or Pseudo del Pezzo’s, of which previous
examples are prototypes. As we will see, in all these models the same
instability channel displayed above emerges.

10.4.1 del Pezzo singularities

We start focusing on non-orbifold singularities, like the one discussed
in Section 10.3 and limit ourselves to toric CYs whose dual gauge theories
admit at most eight gauge factors. The complete list of corresponding toric
diagrams and dimers can be found in [149], to which we refer for details.

Most of these singularities are obtained as blow-ups of del Pezzo singu-
larities. Toric CY del Pezzo singularities are complex cones over del Pezzo
surfaces dPn with n = 0, . . . , 3 [46]. By blowing up at smooth points of the
del Pezzo one obtains larger CY singularities, dubbed Pseudo del Pezzo’s,
following the terminology of [129]. The blow-up corresponds to unhiggsing
in the dual field theory.

Within this class, we list below those singularities which, after suit-
able orientifold projection, admit an anomaly-free rank assignment giving
a SU(5) or 3 − 2 dynamical supersymmetry breaking model. The general
procedure to obtain a consistent orientifold projection from a dimer is sum-
marized in Chapter 7, whose conventions we follow.

For each singularity, we present the dimer, including the unit cell and
the orientifold action. Orientifold charges are reported as a string of plus
and minus signs with the following conventions. For point reflection, by
starting from the bottom left corner of the unit cell and going clockwise.
For lines, the first sign is for the central line and the second for the one on
the edge of the fundamental cell. We also present the gauge group and the
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SU(5) model 3− 2 model

PdP3c ◦ ◦
PdP3b (lines) ◦ ×
PdP3b(points) ◦ ×
PdP4b ◦ ◦
PdP5 ◦ ×
PdP5b ◦ ×
PdP5′a ◦ ×
PdP5′b ◦ ×

Table 10.1: DSB models in del Pezzo singularities.

matter content of the orientifolded theory, the anomaly cancellation condi-
tions (ACC) for the SU gauge factors, and the rank assignment leading to
interesting DSB configurations (as far as the 3− 2 model, it is understood
that also the correct cubic superpotential term is reproduced). Finally, for
each singularity, we indicate the Coulomb branch directions whose quan-
tum dynamics we have analyzed, following the two-steps higgsing pattern
discussed in previous sections. For the sake of clarity, these are indicated in
terms of the faces of the dimer after the orientifold action has been taken
into account. Our results are summarized in Table 10.1.

• PdP3c (+−+−)

1

2

1

1

2

1

4
5

3
6

4
5

Figure 10.6: PdP3c dimer with orientifold points.

– Gauge group:

SO(N1)× USp(N2)× SU(N3)× SU(N4) (10.53)
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– Matter content:

X1 = ( 1 , 3) , X2 = ( 3, 2) , Z = ( 3, 4) ,

Y1 = ( 4, 1) , Y2 = ( 2, 4) , V = ( 2, 1) ,

A4 = 4 , S3 = 3 .

(10.54)

– ACC:{
N4 −N1 +N2 −N3 − 4 = 0 SU(N3) and SU(N4)

(10.55)

– DSB configurations:

∗ SU(5) model: N1 = 1, N4 = 5; N3 = 1, N4 = 5 gives an
additional singlet, S3.

∗ 3− 2 model: N1 = 1, N2 = 2 and N4 = 3.

– Coulomb branch directions:

1− 4 , 2− 3 . (10.56)

• PdP3b (+−)

Figure 10.7: PdP3b dimer with orientifold lines.

– Gauge group:

SO(N1)× USp(N2)× SU(N3)× SU(N4) (10.57)

– Matter content:

Z = ( 1, 2) , X1 = ( 1, 3) , X2 = ( 3, 2) ,
V = ( 3, 4) , Y2 = ( 4, 2) , Y1 = ( 1, 4) ,

S4 = 4 , A3 = 3 .

(10.58)
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– ACC:{
N1 −N2 +N3 −N4 − 4 = 0 SU(N3) , SU(N4) (10.59)

– DSB configurations:

∗ SU(5) model: N3 = 5 and N4 = 1. This model has an extra
singlet due to the symmetric tensor of SU(N4), S4.9

– Coulomb branch directions:

3− 4 , 1− 2 . (10.60)

Note that this is the only example we found of a line orientifold admit-
ting an anomaly-free rank assignment leading to a DSB configuration.

• PdP3b (+−+−)
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Figure 10.8: PdP3b dimer with orientifold points.

– Gauge group:

SU(N1)× SU(N3)× SU(N5) (10.61)

– Matter content:

Z = ( 5, 3), X1 = ( 1, 3), X2 = ( 1, 5)

Y1 = ( 3, 1), Y2 = ( 5, 1),

S1 = 1, A1 = 1,

S5 = 5, A3 = 3. (10.62)

9N3 = 5 and N2 = 1 is not a valid configuration since N2, being related to a USp
group, has to be even.
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– ACC:{
N3 −N5 − 4 = 0 SU(N1), SU(N3), SU(N5) (10.63)

– DSB configurations:

∗ SU(5) model: N3 = 5 and N5 = 1. This model has an extra
singlet due to the symmetric tensor of SU(N5), S5.

– Coulomb branch directions:

3− 5 , 1 . (10.64)

• PdP4b (−−++)
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Figure 10.9: PdP4b dimer with orientifold points.

– Gauge group:

SU(N1)× SO(N2)× SU(N3)× SU(N4) (10.65)

– Matter content:

X1 = ( 2, 1) , X3 = ( 2, 3) , X4 = ( 4, 2) ,
Y1 = ( 3, 1) , Y2 = ( 1, 4) , Z1 = ( 3, 4) ,
Z2 = ( 4, 3) , Z3 = ( 4, 3)

A1 = 1 , S3 = 3 , A4 = 4 .

(10.66)

– ACC:{
N1 −N2 −N3 +N4 − 4 = 0 SU(N1), SU(N3), SU(N4)

(10.67)

– DSB configurations:
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∗ SU(5) model I: N1 = 5 and N2 = 1; equivalently N4 = 5
and N2 = 1.

∗ SU(5) model II: N1 = 5 and N3 = 1. This model has an
extra singlet due to the symmetric tensor of SU(N3), S3.

∗ 3− 2 model: N1 = 3, N2 = 1 and N4 = 2. There is again an
extra singlet due to the antisymmetric tensor of SU(N4), A4.
The roles of nodes 1 and 4 can be interchanged, providing
another equivalent model.

– Coulomb branch directions:

1− 2 , 3− 4 . (10.68)

• PdP5 (−,+,+,−)
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2718271
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Figure 10.10: PdP5 dimer with orientifold points.

– Gauge group:

SU(N1)× SU(N2)× SU(N5)× SU(N6) (10.69)

– Matter content:

X1 = ( 1, 5) , X2 = ( 5, 6) , X3 = ( 1, 6) ,
X4 = ( 2, 1) , X5 = ( 2, 5) , X6 = ( 2, 6) ,

A2 = 2 , S6 = 6 , S5 = 5 ,

A1 = 1 .

(10.70)

– ACC:{
N1 +N2 −N5 −N6 − 4 = 0

SU(N1), SU(N2),

SU(N5), SU(N6)

(10.71)

– DSB configurations:
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∗ SU(5) models: N1 = 5 or N2 = 5 and N5 = 1 or N6 = 1. In
all configurations there is an additional singlet arising from
the symmetric representation at nodes 5 or 6.

Note that in this model it is straightforward to exclude the exis-
tence of a 3−2 model, since the superpotential is purely quartic.

– Coulomb branch directions:

1− 5 , 2− 6 . (10.72)

As a side remark, note that PdP5 is actually an orbifold of the coni-
fold, hence it inherits some of its features, such as all anomalous di-
mensions being equal to γ = −1/2. This makes the scale matching
simpler to check.

• PdP5b (+−−+)

5

4

5

4

6

6

7

72

2

2

2

8

8

8

8

3
1

1
3

Figure 10.11: PdP5b dimer with orientifold points.

– Gauge group:

SU(N1)× SU(N2)× SU(N4)× SU(N5) (10.73)

– Matter content:

X1 = ( 1, 2) , X2 = ( 1, 4) , X3 = ( 1, 5) ,
Y1 = ( 4, 2) , Y2 = ( 2, 5) , Z1 = ( 4, 5) ,

Z2 = ( 5, 4) , Z3 = ( 4, 5) , A1 = 1 ,

S5 = 5 , S2 = 2 , A4 = 4 .

(10.74)

– ACC:{
N1 −N2 −N5 +N4 − 4 = 0

SU(N1), SU(N2),

SU(N4), SU(N5)

(10.75)
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– DSB configurations:

∗ SU(5) models: N1 = 5 and N2 = 1, or N1 = 5 and N5 = 1,
or N4 = 5 and N2 = 1. They all include a singlet related to
the symmetric of the SU(1) node.

– Coulomb branch directions:

1− 2 , 4− 5 . (10.76)

This exhausts Pseudo del Pezzo’s properly defined. Below we consider
two more models in the list reported in [149] (corresponding to the toric
diagrams 15 and 16 of their table 6, respectively).

• PdP5′a (−+ +−)

This singularity can be obtained by unhiggsing PdP3c.
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Figure 10.12: PdP5′a dimer with orientifold points.

– Gauge group:

SU(N1)× SU(N3)× SU(N4)× SU(N5) (10.77)

– Matter content:

X1 = ( 3, 1) , X2 = ( 4, 1) , X3 = ( 5, 1) ,
Y1 = ( 3, 5) , Y2 = ( 4, 3) , Z1 = ( 5, 4) ,

Z2 = ( 4, 5) , Z3 = ( 4, 5) , A1 = 1 ,

S5 = 5 , S3 = 3 , A4 = 4 .

(10.78)

– ACC:{
N1 −N3 −N4 +N5 − 4 = 0 SU(N1), SU(N3)

N1 −N3 +N4 −N5 − 4 = 0 SU(N4), SU(N5)
(10.79)

leading to N1 = N3 + 4, N4 = N5.

226



– DSB configurations:

∗ SU(5) model: N1 = 5 and N3 = 1. There is an additional
singlet given by S3.

– Coulomb branch directions:

1− 3 , 4− 5 . (10.80)

• PdP5′b (−+−+)

This singularity is again an unhiggsing of PdP3c.

5 1 8 3

3 6 4 7

7 2 5 1

1 8 3 6

6 4 7 2

Figure 10.13: PdP5′b dimer with orientifold points.

– Gauge group:

SU(N1)× SU(N2)× SU(N3)× SU(N4) (10.81)

– Matter content:

X1 = ( 1, 2) , X2 = ( 4, 1) , X3 = ( 1, 3) ,
Y1 = ( 2, 3) , Y2 = ( 4, 2) , Z = ( 4, 3) ,

A1 = 1 , A2 = 2 , S3 = 3 ,

S4 = 4 .

(10.82)

– ACC:{
N1 −N2 +N3 −N4 − 4 = 0 SU(N1), SU(N4)

N1 +N2 −N3 −N4 − 4 = 0 SU(N2), SU(N3)
(10.83)

leading to N1 = N4 + 4, N2 = N3.

– DSB configurations:
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∗ SU(5) model: N1 = 5 and N4 = 1. We have again the
additional singlet S4.

– Coulomb branch directions:

1− 4 , 2− 3 . (10.84)

One can continue the unhiggsing process and look for more and more
singularities admitting fractional brane configurations described by SU(5)
or 3 − 2 DSB models at low energy. The procedure is easy to understand
from the point of view of toric diagrams and we refer the interested reader
to [149].

The above analysis shows that the DSB SU(5) and the 3 − 2 models
are not specific to the PdP4 example discussed in section 10.3 but actually
arise in a large (in principle infinite, see above comment) class of (blown
up) del Pezzo singularities, sensibly enlarging the landscape of D-brane
configurations enjoying a stable DSB vacuum at low energy.

Similarly to the PdP4 case, one can then ask what is the fate of these
vacua in a large N completion. As anticipated, one can show that the
Coulomb branch directions we have indicated and that all these singularities
possess, become runaway at the quantum level, and the true vacua are in
fact supersymmetric.

10.4.2 Orbifolds of flat space

In this subsection, we want to generalize the analysis of Section 10.2
and present other instances of (orientifolds of) C3 orbifold singularities dis-
playing DSB models. The corresponding dimers can be obtained from the
hexagonal tiling of C3 with algorithms that can be found in [199]. We report
below a scan of both C3/Zn and C3/Zp × Zq orbifolds.

Orbifolds C3/Zn

Following the same logic of the C3/Z6′ case, we extended our analysis
to higher orders of the cyclic group Zn. DSB models can again be found for
some orientifold projections. Interestingly, no DSB models were found for
n odd. We summarize our scan for n as large as 30 in Table 10.2.

In the above table, a triplet (a, b, c) refers to an orbifold action defined
as

g : zi → e2πiwizi (10.85)
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Action on C3 SU(5) model 3− 2 model

Z8 (1,2,5) ◦ ×
Z12 (1,4,7) ◦ ×
Z30 (1,10,19) ◦ ×

Table 10.2: DSB models in orbifolds of flat space C3/Zn.

with w = (a, b, c)/n, where a+b+c = 0 modn. It turns out that a necessary
condition for allowing interesting DSB models is to focus on orientifold point
reflection with two points on top a face. This has the effect of giving an
orientifoled theory with two SO/USp gauge factors and (n−2)/2 SU factors
as

SO/USp× SU × · · · × SU × SO/USp . (10.86)

Let us summarize the specific features of each case.

• C3/Z8 (+−+−)
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Figure 10.14: C3/Z8 dimer with orientifold points.

– Gauge group:

SO(N1)× SU(N2)× SU(N3)× SU(N4)× USp(N5) (10.87)

– Matter content:

( 1, 2) , ( 1, 3) , ( 1, 4) ,
( 2, 3) , ( 2, 4) , ( 2, 5) ,
( 2, 3) , ( 3, 4) , ( 3, 5) ,

( 3, 4) , ( 4, 5) , 2 ,

4 .

(10.88)
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– ACC:
N1 +N2 − 2N3 −N4 +N5 − 4 = 0 SU(N2)

N1 −N5 = 0 SU(N3)

N1 −N2 − 2N3 +N4 +N5 + 4 = 0 SU(N4)

(10.89)

leading to N2 = N4 + 4, N1 = N3 = N5.

– DSB configurations:

∗ SU(5) model: N2 = 5 and N4 = 1, with an additional singlet
at node 4.

– Coulomb branch directions:

2− 4 , 1− 3− 5 . (10.90)

• C3/Z12 (−+−+)

1

5

9

1

2

6

2

6

10

11

12

1

8

7

3

74

8

12

5

9

1

Figure 10.15: C3/Z12 dimer with orientifold points.

– Gauge group:

USp(N1)× SU(N2)× SU(N3)× SU(N4)
×SU(N5)× SU(N6)× SO(N7)

(10.91)

– Matter content:

( 1, 2), ( 1, 5), ( 1, 6), ( 2, 4)

( 2, 5), ( 2, 7), ( 2, 6), ( 2, 3)

( 3, 4), ( 3, 6), ( 3, 7), ( 3, 4)

( 4, 5), ( 4, 6), ( 4, 5), ( 5, 6)

( 6, 7), 3, 5. (10.92)
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– ACC:

N1 +N4 −N5 +N7 −N6 −N3 = 0 SU(N2)

N2 − 2N4 +N6 −N7 +N3 − 4 = 0 SU(N3)

N2 −N6 = 0 SU(N4)

N1 −N2 + 2N4 −N6 −N5 − 4 = 0 SU(N5)

N1 −N2 −N3 +N4 −N5 +N7 = 0 SU(N6)

(10.93)

leading to N2 = N4 = N6, N1 = N5 + 4, N3 = N7 + 4.

– DSB configurations:

∗ SU(5) model: N3 = 5, N7 = 1 and N1 = 4. This is actually
an anomaly-free SU(5) × USp(4) gauge theory, with mat-
ter charged under the SU(5) factor only. The USp(4) pure
SYM condenses leaving exactly the non-calculable SU(5)
DSB model at low energy.

– Coulomb branch directions:

3− 7 , 1− 5 , 2− 4− 6 . (10.94)

• C3/Z30

Due to the large order of this orbifold, we will refrain from listing all
its characteristics (and displaying the dimer) but just comment on the
outcome.

Upon orientifolding, the gauge group reduces to sixteen gauge groups
and the ACC allows for the following choice of non-vanishing ranks

SO(1)1 × SU(5)2 × SU(4)3 × SU(4)4 × SU(4)5 × USp(4)6 ,(10.95)

with matter content

Q = ( 1, 2), X = ( 4, 3), Y = ( 5, 4),

Z = ( 3, 5), A = 2 , (10.96)

and tree level superpotential

W = Y XZ . (10.97)

Each SU(4) factor has four flavors and they all condense on the bary-
onic branch. Supposing that, say, SU(4)3 condenses first, the super-
potential becomes a mass term for the meson M = XZ and the field
Y , which can then be integrated out. The remaining two SU(4)s be-
come pure SYM at low energy and condense, too, leaving again a DSB
SU(5) model at low energy.
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Action on C3 SU(5) model 3-2 model

Z2 × Z4 [(0,1,1),(1,0,3)] ◦ ×
Z3 × Z3 [(0,1,2),(1,0,2)] ◦ ◦
Z2 × Z6 [(0,1,1),(1,0,5)] ◦◦ ×

Table 10.3: DSB models in orbifolds of flat space C3/Zp × Zq.

The analysis for orbifolds of orders higher than 30 is more complicated,
hence we stop our scan at this level. We just mention that, for instance, a
Z40 orbifold seems to possess an SU(5) DSB model configuration, though it
comes together with a decoupled sector involving 6 more gauge groups. A
preliminary analysis suggests that the extra sector eventually confines in a
supersymmetric vacuum, but a detailed analysis is clearly beyond the scope
of the present scan.

All the above examples have also the usual Coulomb branch instability
that destabilizes the DSB vacua. Being orientifolds of orbifolds, all anoma-
lous dimensions vanish and it is a simple exercise to check that the scale
matchings lead to a dependency on the VEVs in the DSB vacuum energy.

Orbifolds C3/Zp × Zq

One may also consider the product of cyclic groups, i.e. the Zp × Zq
orbifold action. Also within this class, at least within our scan, one can find
DSB SU(5) models as well as 3 − 2 models. The end results, for some of
the cases we have analysed, are summarized in Table 10.3.

Starting from C3, the orbifold action is now defined by two triplets,
corresponding to Zp and Zq actions, respectively, both defined as (10.85).
Similarly, following the conventions of [199], to which we refer for details,
faces in the dimer have a double-index notation associated with the two
independent orbifold actions.

From the dimer, one can look for suitable orientifold projections and
DSB anomaly-free rank assignments. Again, in all cases, a Coulomb branch
runaway direction is present as soon as one tries to embed the D-brane
configurations in a large N theory.

In the following, we list the properties of each case.

• C3/Z2 × Z4 (−+−+)
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Figure 10.16: C3/Z2 × Z4 dimer with orientifold points.

We denote the surviving faces by i ≡ (1, i) with i = 1 . . . 4.

– Gauge group:

SU(N1)× SU(N2)× SU(N3)× SU(N4) (10.98)

– Matter content:

( 1, 2) , ( 1, 3) , ( 1, 4) , ( 1, 2) ,
( 1, 2) , ( 2, 3) , ( 2, 4) , ( 3, 4) ,

( 3, 4) , ( 3, 4) ,

1 , 2 , 3 , 4 .

(10.99)

– ACC:{
N1 +N4 −N2 −N3 − 4 = 0

SU(N1), SU(N2),

SU(N3), SU(N4)

(10.100)

– DSB configurations:

∗ SU(5) model: N1 = 5 and N3 = 1, or N4 = 5 and N2 =
1. Both models have an additional singlet at nodes 3 or 2,
respectively.

– Coulomb branch directions:

1− 3 , 2− 4 . (10.101)
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Figure 10.17: C3/Z3 × Z3 dimer with orientifold points.

• C3/Z3 × Z3 (−−+−)

We denote the surviving faces as follows

1 ≡ (1, 1)↔ (2, 2) 2 ≡ (1, 2)↔ (2, 1)

3 ≡ (1, 3)↔ (2, 3) 4 ≡ (3, 1)↔ (3, 2) (10.102)

5 ≡ (3, 3)

– Gauge group:

SU(N1)× SU(N2)× SU(N3)× SU(N4)× SO(N5) (10.103)

– Matter content:

( 1, 2) , ( 1, 5) , ( 1, 4) , ( 1, 3) ,
( 1, 2) , ( 2, 3) , ( 2, 4) , ( 2, 4) ,
( 2, 3) , ( 3, 4) , ( 3, 5) , ( 4, 5) ,

1 , 3 , 4 .

(10.104)

– ACC:{
N1 − 2N2 +N3 +N4 −N5 − 4 = 0

SU(N1), SU(N3),

SU(N4)

(10.105)
while the ACC on SU(N2) is trivially satisfied.

– DSB configurations:

∗ SU(5) models: N5 = 1 and either N1 = 5, N3 = 5 or N4 = 5.

∗ 3-2 models: N1 = 3, N3 = 2 and N5 = 1, and any other
permutation of nodes 1, 3 and 4. There is an additional
decoupled singlet related to the antisymmetric at the SU(2)
node.
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– Coulomb branch directions:

1− 5 , 2− 3− 4 . (10.106)

• C3/Z2 × Z6 (−−++)

(2,1)

(1,1)

(1,1)

(1,2)

(2,2)

(2,2)

(2,3)

(1,3)

(1,3)

(1,4)

(2,4)

(2,4)

(2,5)

(1,5)

(1,5)

(1,6)

(2,6)

(2,6)

(2,1)

(1,1)

(1,1)

(1,2)

(2,2)

(2,2)

Figure 10.18: The dimer of the orbifold C3/Z2 ×Z6 with orientifold points.

Upon the following face identifications

1 ≡ (1, 1)↔ (2, 2) 2 ≡ (1, 3)↔ (2, 6)

3 ≡ (1, 5)↔ (2, 4) 4 ≡ (1, 2)↔ (2, 1) (10.107)

5 ≡ (1, 6)↔ (2, 3) 6 ≡ (1, 4)↔ (2, 5)

the gauge group is
∏6
i SU(Ni) with matter in the following represen-

tations

( 1, 2) , ( 2, 3) , ( 4, 5) , ( 6, 5) ,
( 1, 5) , ( 5, 3) , ( 3, 6) , ( 6, 2) ,
( 2, 4) , ( 4, 1) , ( 1, 4) , ( 1, 4) ,
( 2, 5) , ( 2, 5) , ( 3, 6) , ( 3, 6) ,

1 , 3 , 4 , 6 .

(10.108)
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The ACC read
N2 −N5 +N4 −N1 + 4 = 0 SU(N1) and SU(N4)

N2 −N5 +N6 −N3 + 4 = 0 SU(N3) and SU(N6)

N1 −N3 −N4 +N6 = 0 SU(N2) and SU(N5)

.(10.109)

The solution to the ACC allows for a choice of ranks leaving a non-
anomalous theory with gauge group

SU(5)1 × SU(1)2 × SU(5)3 (10.110)

and matter content given by

X = ( 1, 3) , A1 = 1 , Y = ( 2, 3) , A2 = 2 . (10.111)

We then end up with two decoupled SU(5) DSB models. Since we now
have two independent contributions to the vacuum energy, one could
think that the different higgsing scales can conspire in a non-trivial
way, possibly leading to a non-zero minimum.

Again, higgsing by regular branes does not destabilize the supersym-
metry breaking vacua. Performing the following (three steps, now)
N = 2 brane higgsing pattern

SU(5 +N)1 × SU(1 +N)2 × SU(5 +N)3

×SU(N)4 × SU(N)5 × SU(N)6
v−→ SU(5)1 × SU(1 +N)2 × SU(5 +N)3 × SU(N)5 × SU(N)6

v′−→ SU(5)1 × SU(1 +N)2 × SU(5)3 × SU(N)5
v′′−→ SU(5)1 × SU(1)2 × SU(5)3

,

(10.112)
we get instead the following scale matching

Λ13
1,IR =

(
v′′

v

)N
Λ13

1,UV and Λ13
3,IR =

(
v′′

v′

)N
Λ13

3,UV , (10.113)

for the two SU(5) factors, respectively. The potential hence scales as

V ∼

∣∣∣∣∣
(
v′′

v

)N/13

Λ1,UV

∣∣∣∣∣
4

+

∣∣∣∣∣
(
v′′

v′

)N/13

Λ3,UV

∣∣∣∣∣
4

. (10.114)

When trying to minimize the potential with respect to v, v′ and v′′, the
minimum is reached at v′′ = 0, and it is a supersymmetry preserving
one. In other words, there is no compensation between the two factors
in the potential, as one could have in principle hoped for.
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This ends the list of examples we wanted to present. As anticipated,
in all orbifold models we have discussed, similarly to the models of Sec-
tion 10.4.1, the supersymmetry breaking vacua are destabilized once one
tries to embed the DSB configurations in a large N theory. As one can eas-
ily check, the mechanism is again the same: while regular branes correspond
to exact flat directions, N = 2 fractional brane directions become runaway
once the dependence of the vacuum energy on the Coulomb branch modulus
is taken into account.

10.5 A no-go theorem and how to avoid it

In previous sections, we presented several models which allow for brane
configurations giving DSB vacua, both at orbifold and del Pezzo-like singu-
larities. However, when properly UV-complete, all models include runaway
directions, associated with N = 2 fractional branes, which destabilize the
non-supersymmetric minima. One might wonder whether it is possible to
get rid of such a ubiquitous instability channel.

The first question one could ask is under which conditions the dangerous
Coulomb branch direction can remain flat at the quantum level. For this to
hold it suffices that the coefficient α in Equation (10.5) vanishes,

α = 0 . (10.115)

Let us then see if this can happen.

We start by considering the gauge theory prior to the orientifold pro-
jection. Generically, N regular D3-branes at the singularity the theory
reproduce a SCFT and all β functions vanish, that is for each gauge factor
the following holds

βSU(N) = 3N − N

2

n∑
i=1

(1− γi) = 0 , (10.116)

where γi are the anomalous dimensions of the bi-fundamental fields charged
under the given gauge group (recall that in the unorientifolded theory all
matter fields are in bifundamental representations).

Let us now add M fractional branes to the N regular ones and fo-
cus on those gauge groups to which the fractional branes couple to. The
corresponding β function changes as

βSU(N+M) = 3(N+M)−N
2

j∑
i=1

(1−γ(0)
i )−N +M

2

k∑
i=1

(1−γ(1)
i ) , (10.117)
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where γ
(0)
i are the anomalous dimensions of bifundamental fields charged

under groups not coupling to the fractional branes while γ
(1)
i are those

of fields charged under groups coupling to the fractional branes. Using
Equation (10.116) and the following identity:

n∑
i

(1− γi) =
k∑
i

(1− γ(1)
i ) +

j∑
i

(1− γ(0)
i ) , (10.118)

Equation (10.117) can be re-written as

βSU(N+M) =
M

2

j∑
i=1

(1− γ(0)
i ) , (10.119)

which does not vanish since fractional branes do not support a SCFT. Hence
we conclude that

j∑
i=1

(1− γ(0)
i ) 6= 0 . (10.120)

Let us now consider the orientifold action and start with a configuration
with regular D3-branes, only. One important point is that β functions are
now affected by the fact that some ranks are finitely shifted to balance the
O-plane charge. For example, in the PdP4 model discussed in Section 10.3,
the orientifolded theory with N regular branes has gauge group SO(N +
1)× SU(N + 5)× SU(N)× SU(N).

Compared to Equation (10.116), the expression for the β function be-
comes

3(N + c)−
n∑
i=1

(1− γi)
N + bi

2
= 3c−

n∑
i=1

(1− γi)
bi
2
, (10.121)

where c is the extra coefficient of the gauge group we are considering and
bi those of the gauge groups under which bifundamental matter is charged
(in our PdP4 example c = 5 for the SU(N + 5) group, and bifundamental
matter charged also under the SO(N + 1) group has b = 1). Note that
the β function is no longer vanishing, due to the O-plane charge, and its
coefficient does not depend on N .

Let us now perform the two-steps Higgsing which N = 2 fractional
branes make possible, as in all models previously considered. Using the
same conventions as in previous sections, the gauge coupling running at
different scales is
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• UV (above scale v)

1
g2
SU(N+c)

=
(

3(N + c)−
∑n

i=1(1− γi)N+bi
2

)
ln
(

µ
ΛUV

)
=

(
3c−

∑n
i=1(1− γi) bi2

)
ln
(

µ
ΛUV

)
.

(10.122)

• Intermediate scale (below scale v and above scale v′)

1
g2
SU(c)N

=
(

3c−
∑k

i=1(1− γ(1)
i ) bi2 −

∑j
i=1(1− γ(0)

i )N+bi
2

)
ln
(

µ
ΛN

)
=

(
3c−

∑n
i=1(1− γi) bi2 −

∑j
i=1(1− γ(0)

i )N2

)
ln
(

µ
ΛN

)
.

(10.123)

• IR (below scale v′)

1

g2
SU(c)

=

3c−
n∑
i=1

(1− γi)
bi
2

 ln

(
µ

Λ

)
. (10.124)

Note that this pattern holds for all groups and all kinds of matter. Indeed,
the presence of (anti)symmetric representations gives factors of the form
(N + b)/2 in the β function, the same as having fundamental matter charged
under a SU(N + b) flavor group.

Matching the scale at µ = v and µ = v′ gives

Λ3c−
∑n
i=1(1−γi)

bi
2 =

(
v′

v

)∑j
i=1(1−γ(0)i )N

2

Λ
3c−

∑n
i=1(1−γi)

bi
2

UV , (10.125)

which implies that

α ∝
j∑
i=1

(1− γ(0)
i )

N

2
. (10.126)

In order for α to vanish we need that

j∑
i

(1− γ(0)
i ) = 0 , (10.127)

which is in contradiction with Equation (10.120). This shows that whenever
N = 2 fractional branes couple to the DSB nodes, they inevitably become
runaway and destabilize the otherwise stable DSB vacuum.
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10.6 Outlook

Our no-go theorem suggests that in order to avoid this instability chan-
nel one could try to look at singularities which, unlike those we have an-
alyzed, admit deformations or DSB branes and no N = 2 ones, and see
whether there could be room for DSB models there.

A comprehensive survey of toric singularities up to eight gauge groups
is provided in [149] and we have analyzed, in this finite class, all singular-
ities having deformation and/or DSB fractional branes only (note that C3

orbifolds do not belong to this class, since at these singularities a basis of
fractional branes, if there are any, always includes N = 2 ones).

More specifically, following the list provided in [149], the singularities
not admitting N = 2 fractional branes are the following ones: for toric
diagrams of area 2 (Table 1) singularity number 2; for toric diagrams of
area 4 (Table 2) singularities number 6 and 7; for area 5 (Table 3) number
5, for area 6 (Table 4), number 8, 9, 10, 12 and 13; for area 7 (Table 5),
number 7, 8 and 9; for area 8 (Table 6), number 1, 3, 4, 5, 7, 8, 13 and 17.
In order to obtain the dimer, we used the techniques of [146].

Starting from these singularities, one has to see which do admit orien-
tifold point or line projections. This can be done using the criteria spelled
out in [73]. If an orientifold projection is admitted, one performs it and
then checks the anomaly cancellation conditions. The latter often do not
have any solutions (barring the addition of flavors). If they do have solu-
tions, instead, one has then to see if the corresponding orientifold admits a
configuration reproducing a DSB model.

The upshot of our scan is that there exist several possible points and
lines reflections and in some cases, one can also satisfy anomaly cancellation
conditions without the addition of extra flavors. When this is the case,
however, it turns out that there do not exist configurations leading to any
known DSB model and in fact, all solutions lead to supersymmetric vacua.
This result seems to suggest that the presence of line singularities (i.e.
N = 2 fractional branes) is a key property a CY singularity should have
to allow for DSB low energy dynamics but, at the same time, the one that
eventually makes the vacua unstable. In the next chapter, we will elaborate
further on this point.
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Chapter 11

Stability of Supersymmetry
Breaking Vacua in Dimer Models

In the previous chapter, by generalizing previous results of [74], it was
shown that in the decoupling limit [21], in which the DSB fractional D-
brane bound state becomes part of a UV complete large N D-brane model
and gravity is decoupled, all models display an instability. This instabil-
ity turned out to have a common, model-independent geometric origin in
terms of N = 2 fractional branes probing the singularity. More drastically,
a no-go theorem was proven which implies that whenever N = 2 classi-
cal flat directions exist at a singularity that admits such DSB models, the
quantum behavior of the latter is such that the flat directions are tilted and
supersymmetry preserving vacua exist.

An obvious way to circumvent this no-go theorem and avoid the un-
wanted slide towards supersymmetric vacua is to look at singularities free of
N = 2 fractional branes to start with and see whether stable DSB models of
the type above can be engineered there. Or, alternatively, a stronger no-go
theorem should exist which excludes such a possibility altogether.

This is what we will be concerned about in the two next chapters.
More precisely, our main goal will be to answer the following question:
Is it possible to get a DSB model, more specifically the SU(5) or the 3 −
2 models, from D-branes at a Calabi-Yau singularity that is free of any
(known) instability?

In the present chapter, we aim at determining whether DSB models at
orientifolds can be embedded on singularities which, locally in the dimer,
do not display any non-isolated C2/Zn singularity. Usual dimer techniques,
see Chapter 6, will of course play an important role.
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Quite surprisingly, we will find a variant of the SU(5) model, dubbed
the twin SU(5), as a candidate for a fully stable DSB model, and that can a
priori appear in a consistent dimer model. The realization of this particular
DSB model on a given singularity is left for Chapter 12.

This chapter is organized as follows. In Section 11.1 and Section 11.2,
we discuss the possibility to embed the SU(5) and the 3 − 2 models in
the absence of N = 2 fractional branes. This will single out the twin
SU(5). We also address a left open question by explaining in Section 11.2
why orientifold projections are needed for recovering the 3 − 2 model in
dimers. In Appendix 11.A, we give precisions on the shape of the fractional
brane hosting a twin SU(5) model. Finally, in Appendix 11.B some details
are given on anomaly cancellation conditions for the models discussed in
Section 11.2. These results were originally presented in [4].

11.1 SU(5) models

Let us first consider the SU(5) model. This theory has an SU(5) gauge

group and one GUT-like chiral family ⊕ . The presence of the antisym-
metric representation implies that if one wants to engineer such a model by
D-branes at a CY singularity, an orientifold projection is necessary. More-
over, one has to consider two gauge groups in order to get the antifunda-
mental representation , which can be generated by either an SU(1) or an
SO(1) flavor group, see Chapter 10 for examples. Using the dimer formal-
ism, there are two classes of orientifolds, depending on whether they have
fixed points or fixed lines [54] (see Chapter 7 for a short review). We will
analyze them in turn.

11.1.1 Fixed points orientifolds

Let us remind that fixed point orientifolds are associated with dimers
that enjoy a point reflection. It is always possible to choose the unit cell
of the dimer in such a way that its corners coincide with a fixed point.
Additionally, due to the dimer’s toroidal periodicity, there will also be fixed
points at the center of the boundaries of the unit cell, and in the center of
the unit cell itself, see Figure 11.1.

As we now review, we not only need a fixed point on one edge of the
SU(5) face but a second fixed point is needed to avoid anomalies in the face
providing the (anti)fundamental matter field.
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Figure 11.1: A schematic representation of a dimer unit cell with orientifold
fixed points. The shaded points are the periodic images of the four basic
ones.

The first possibility is to directly avoid the anomaly in the flavor group
by having it SO or USp. USp is ruled out since it would give always an
even number of antifundamentals, hence more than one. We are then left
with SO(1).

• SO flavor group

Figure 11.2 shows the generic structure of a local configuration of a
dimer leading to the SU(5) model, including the signs for the two rel-
evant fixed points. The dotted lines and nodes represent a completely
general configuration for the rest of the dimer, only constrained by
its compatibility with the point reflections. The blue dotted line indi-
cates that it is possible to choose the unit cell such that the two fixed
points live on one of the four segments that form its boundary. This
comment will be relevant later.

× × × 
1 1’ 2 2 

+ + - 

Figure 11.2: Fixed point orientifold realizing the SU(5) model with SO(1)
flavor group. The dotted part of the graph indicates the rest of the dimer,
which is completely general and not necessarily hexagonal as shown.

Assigning arbitrary ranks to the gauge groups, Ni for face i in the
dimer, the anomaly cancellation conditions (ACC) have a solution in
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which N1 = N1′ = 5, N2 = 1 and the rest of the faces are empty.1

This choice leads exactly to the SU(5) model. Face 1 becomes the
SU(5)1 gauge group. Since face 2 has a fixed point with a positive
sign on top of it, becomes the SO(1)2 flavor group.

A second possibility is that the flavor group is of SU type, with its
anomaly (when regular branes are added) being canceled by the presence of
symmetric matter on a different edge of the face.

• SU flavor group with symmetric

Figure 11.3 shows the local configuration of a dimer leading to another
realization of the SU(5) model in a fixed point orientifold. Once again,
the ACC have a solution in which N1 = N1′ = 5, N2 = N2′ = 1 and the
rest of the faces are empty. The resulting theory is the SU(5) model,
plus a decoupled singlet corresponding to the symmetric associated
with the edge between face 2 and its image.

× × × 
1 1’ 2 2’ 

+ + - 

Figure 11.3: Fixed point orientifold realizing the SU(5) model with SU(1)
flavor group.

Note that the SU(1) group has no anomaly, but the symmetric is
necessary to cancel the anomaly when all the ranks are increased by N
(corresponding to the addition of N regular D3-branes which populate
the dimer democratically). By construction, the additional (white)
faces with rank N will not contribute to the anomaly. In order to
cancel the N + 5 antifundamentals coming from face 1, we need to
have a symmetric of SU(N + 1) at face 2. It reduces to a decoupled
singlet when N = 0.

A third possibility is that the flavor group is of SU type, and its
anomaly (when regular branes are added) is canceled by 5 fundamentals

1Of course whether the ACC of the empty nodes are also satisfied depends on the
details of the boundary of the cluster of faces under consideration. This observation also
applies to the examples that follow.
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attached to an SO(5) group. This configuration is shown in Figure 11.4.
The low energy theory of this configuration is an SU(5) model together with
a decoupled SO(5) SQCD with one flavor. The latter theory develops an
ADS superpotential [94], so that we have a runaway behavior (on top of the
DSB of the SU(5) model), and hence no true vacuum. We thus discard this
possibility since it is already unstable at this low energy field theory level.

× 
3 

+ × 
1 1’ 2 2’ 

- × 
3 

+ 

Figure 11.4: Fixed point orientifold realizing the SU(5)1 model with SU(1)2

flavor group and an additional SO(5)3 factor. SO(5)3 develops an ADS
superpotential and leads to a runaway behavior.

A fourth possibility is that the flavor group is again of SU type, but
now its anomaly is canceled by the presence of a replica of the SU(5) group
with its own antisymmetric. We will call this possibility twin SU(5) model.

• SU flavor group with twin SU(5)

Figure 11.5 shows the local configuration of a dimer leading to yet
another realization of the SU(5) model in a fixed point orientifold.
The ACC have a solution in which N1 = N1′ = 5, N2 = N2′ = 1,
N3 = N3′ = 5 and the rest of the faces are empty. The resulting the-
ory corresponds to two SU(5) models sharing the same SU(1) flavor
group which provides their (anti)fundamentals. Since SU(1) is actu-
ally empty, and in any case, no chiral gauge-invariants can be written
for each SU(5) model, the twins are effectively decoupled and thus
their low energy dynamics is completely independent.

In principle, we could go on with further possibilities. Indeed, the
anomaly of the second SU(5) gauge group at face 3 can be canceled with a
fundamental, instead of an antisymmetric. The simplest possibility is that
the fundamental is attached to an SO(1) face. However it could also be an
SU(1) with a symmetric, or further an SU(1) with 5 antifundamentals given
by an SO(5), or another SU(5). The possibilities already discussed above
repeat themselves. What is important to notice is that the gauge theory on
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× 
3’ 

- × 
1 1’ 2 2’ 

- × 
3 

- 

Figure 11.5: Fixed point orientifold realizing the twin SU(5) model.

face 3 would always be an SU(5) with one flavor, hence developing an ADS
superpotential and leading to runaway behavior.

We thus conclude that the only possibilities to engineer an SU(5)
model, which is stable at low energies, in a dimer with fixed points are the
three bullets above: SO flavor group, SU flavor group with a symmetric
and SU flavor group with twin SU(5).

An important remark is that in all the examples above the following
holds: there can be a long chain of gauge groups to eventually cancel the
anomaly of the initial SU(5) gauge group, but it always ends with an ori-
entifold fixed point.2 As a consequence, we do not have to look far in order
to identify an N = 2 fractional brane in these dimers. Remarkably, in all
cases, the SU(5) model is fully supported on a set of faces that corresponds
to an N = 2 fractional brane in the parent (i.e., non-orientifolded) theory.
From Figure 11.2, Figure 11.3 and Figure 11.5 we see that in all cases the
SU(5) model indeed lives on a stripe that gives rise to a gauge-invariant not
contained in the superpotential. The VEV of such an operator parametrizes
the corresponding Coulomb branch.

We conclude that an SU(5) model cannot be obtained for this class of
orientifolds if the parent theory does not contain line singularities, i.e.N = 2
fractional branes.3 The previous discussion implies that the no-go theorem
in Chapter 10 cannot be avoided for this class of orientifolds.

Let us discuss how the instability explained in Section 10.1 is realized
in these models in more detail. We start with the model with SO flavor,

2We are ignoring more ramified possibilities. For instance, for an SU(1) flavor at face
2, we could imagine providing the 5 fundamentals from more than one SO gauge group.
That would lead to the need for more than one extra fixed point. The other cases can be
treated similarly. Thus a more precise statement is that we always need at least another
fixed point to cancel the anomaly of the SU(5) at face 1.

3This result is consistent with an observation made in [73], namely that singularities
with deformation branes are incompatible with point projections.
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Figure 11.2. After adding N regular D3-branes, the relevant gauge group
becomes

SU(N + 5)1 × SO(N + 1)2 . (11.1)

Let us denote

A = 1 , Q = ( 1, 2) (11.2)

where A corresponds to the edge in the dimer between face 1 and its ori-
entifold image and Q corresponds to the edge between faces 1 and 2. The
Coulomb branch is parameterized by the expectation value of the gauge-
invariant going around the stripe. In principle we can build an SU(N + 5)1

gauge-invariant as

φSOab = Q
i
aQ

j
bAij , (11.3)

where i, j are fundamental indices of SU(N + 5)1 and a, b are fundamental
indices of SO(N + 1)2. Note that it is in the antisymmetric representation
of SO(N +1)2, hence it does not exist for N = 0, and it has vanishing trace
for N ≥ 1.

As discussed in the previous chapter, we actually need to go twice
around the stripe in order to have a non-vanishing gauge-invariant given by

〈δacδbdφSOab φSOcd 〉 , (11.4)

parametrizing the Coulomb branch. That the gauge-invariant still vanishes
automatically for N = 0, is consistent with the fact that the SU(5) model
does not have a moduli space and that the additional regular branes are
necessary for the instability.

We now consider the case with SU flavor and a symmetric, Figure 11.3.
After adding N regular D3-branes, the gauge group becomes

SU(N + 5)1 × SU(N + 1)2 . (11.5)

We denote

A = 1 , Q = ( 1, 2) , S = 2 (11.6)

where now S corresponds to the edge between face 2 and its image under
the second fixed point. The SU(N + 5)1 gauge-invariant is

φSUab = Q
i
aQ

j
bAij , (11.7)

where now a, b are fundamental indices of SU(N + 1)2. It is in the anti-
symmetric representation of SU(N + 1)2, hence again it does not exist for

N = 0, and for N ≥ 1 it cannot be contracted with S
ab

which is symmetric.
A non-vanishing gauge-invariant is given by

〈SacSbdφSUab φSUcd 〉 , (11.8)
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which now parametrizes the Coulomb branch. The same remarks as in the
previous case apply.

Finally, let us discuss the last case of the twin SU(5), where the gauge
group becomes

SU(N + 5)1 × SU(N + 1)2 × SU(N + 5)3 . (11.9)

We denote

A = 1 , Q = ( 1, 2) , P = ( 2, 3) , A = 3 (11.10)

where now P corresponds to the edge between faces 2 and 3, and A to
the edge between face 3 and its image under the second fixed point. The
SU(N + 5)1 and SU(N + 5)3 gauge-invariants are

φab = Q
i
aQ

j
bAij , φ

ab
= P

a
αP

b
βA

αβ
, (11.11)

where α, β are fundamental indices of SU(N + 5)3. They are in the an-
tisymmetric and conjugate antisymmetric representation of SU(N + 1)2,
respectively. They do not exist for N = 0, but for N ≥ 1 the simplest
gauge-invariant is given by

〈φabφ
ab〉 , (11.12)

which parametrizes the Coulomb branch in this case. The same remarks as
in the previous cases apply. Further, note that this last case allows for a
simpler gauge-invariant parametrization of the Coulomb branch because it
is the only one where the two fixed points (giving rise to A and A) have the
same sign, see Figure 11.5. In the two previous cases, the fixed points have
opposite signs, and we have to take the loop twice.

Double SU(5) models

In some cases, the structure of the dimer is such that it could be possible
to use all four fixed points to generate a pair of SU(5) models. Figure 11.6
shows the general structure for a dimer giving rise to two SU(5) models with
SO(1) flavor nodes. Other possibilities, for instance, two models with SU(1)
flavor nodes, an SU(1)/SO(1) combination, or two twin SU(5) models, are
also feasible. The same logic of previous examples applies to each of the
two stripes of blue faces, so we conclude that each of these models contains
N = 2 fractional branes and hence is not stable.

The different cases considered so far illustrate the general strategy that
we will apply to most of the other models we will be considering. While the
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1 1’ 

+ + - 

× × × 
1 1’ 2 2 

+ + - 

+ + - 

× × × 
3 3’ 4 4 

× × × 
2 2 

Figure 11.6: General structure of a fixed point orientifold realizing a double
SU(5) with SO(1) flavor group model.

DSB models under consideration are relatively simple, we are considering
here their embedding into arbitrarily complicated toric singularities. There-
fore, establishing the existence of N = 2 fractional branes (which implies
the instability of the DSB model) might naively seem an intractable prob-
lem since, generically, the majority of the dimer model will be unknown.
However, as it occurred in the previous examples, the necessary interplay
between the region of the dimer that makes up the DSB model and the
orientifold fixed points (or fixed lines, as we will see shortly), implies that
we fully know the dimer model along a “short direction” of the unit cell.
This is sufficient to identify an N = 2 fractional brane. In even simpler
terms, in these cases, the DSB models are actually supported on faces of
the dimer that define an N = 2 fractional brane. We will see that there is
only one specific way to circumvent this argument.

11.1.2 Fixed line(s) orientifolds

A second possibility is that dimers admit line reflection orientifolds with
either two independent fixed lines or a single diagonal fixed line.

An orientifold with two fixed lines is such that the unit cell of the dimer
can be taken to be rectangular, and the dimer is further invariant under a
reflection leaving fixed the lines going along one of the boundaries of the
unit cell. By the periodicity of the dimer, there must be a second fixed
line parallel to the first one and going through the middle of the unit cell.
Vertical and horizontal fixed lines will be considered on the same footing
here.
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Figure 11.7: A schematic representation of orientifold fixed lines going
through the dimer unit cell: two fixed lines on the left, a single fixed line
on the right.

Orientifolds with a single fixed line are such that the unit cell can be
taken to have the shape of a rhombus, and the dimer is invariant under
reflections about a fixed line that goes along one of the diagonals of the
rhombus. The periodicity of the dimer does not imply the presence of
other fixed lines in the unit cell. Again, we will not make the distinction
between the two diagonals. Both situations are depicted in Figure 11.7.
In the following, we will use the two nomenclatures “double and single” or
“horizontal/vertical and diagonal fixed lines” interchangeably.

DSB models between two fixed lines

The cases with two fixed lines are basically identical to the orientifolds
considered in the previous section, with the exchange of fixed points for
fixed lines. Therefore, we present them succinctly.

• SO flavor group

Figure 11.8 shows the local configuration realizing the SU(5) model
with SO(1) flavor group, including the signs of the fixed lines. This is
achieved by setting N1 = N1′ = 5, N2 = 1 and vanishing ranks for all
other faces. Since the two lines have opposite signs, this configuration
is only possible in orientifolds with two independent fixed lines.

• SU flavor group with symmetric

Figure 11.9 shows the local configuration realizing the SU(5) model
with SU(1) flavor group and a symmetric. This corresponds to N1 =
N1′ = 5, N2 = N2′ = 1 and vanishing ranks for all other faces. Since
the two lines have opposite signs, this configuration is only possible in
orientifolds with two independent fixed lines.

• SU flavor group with twin SU(5)
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1 1’ 2 2 
+ + - 

Figure 11.8: Two fixed lines orientifold realizing the SU(5) model with
SO(1) flavor group.

1 1’ 2 2’ 
+ + - 

Figure 11.9: Two fixed lines orientifold realizing the SU(5) model with
SU(1) flavor group.

Figure 11.10 shows the local configuration realizing the SU(5) model
with SU(1) flavor group and a twin SU(5) model. This corresponds
to N1 = N1′ = 5, N2 = N2′ = 1, N3 = N3′ = 5 and vanishing ranks
for all other faces. In this case, the two lines have the same sign, hence
it is possible to find this configuration both in orientifolds with two
independent fixed lines or with a single diagonal fixed line. Note that
in the latter case, we have to consider the situation in which the strip
goes from one line to a second one, in a contiguous unit cell.

3’

-

1 1’2 2’

-

3

-

Figure 11.10: Two fixed lines orientifold realizing the twin SU(5) model.

Using the same arguments as for the fixed point orientifolds in Sec-
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tion 11.1.1, we conclude that in all these cases the models are supported on
a stripe of faces of the dimer that define an N = 2 fractional brane.

Multiple SU(5) models

We previously saw that fixed point orientifolds can give rise to double
SU(5) models. Similarly, orientifolds with fixed lines can produce multiple
SU(5) models, as shown in Figure 11.11. In this case, the number of models
is not restricted to two. It is important to note that, unlike in the example
shown in the Figure, it is possible for different stripes to use the two fixed
lines in different ways, for instance simultaneously leading to models with
both SO(1) and SU(1) flavor groups, when the two lines have opposite
signs. Once again, our general discussion applies to each individual stripe
of blue faces, so we conclude that N = 2 fractional branes exist for each
individual stripe and hence the models are not stable.

5 5’ 

1 1’ 2 2 

3 3’ 4 4 

6 6 

+ + - 

Figure 11.11: An example of the general structure of a portion of a dimer
with two fixed lines giving rise to multiple SU(5) models.

DSB Models on a single fixed line: the twin SU(5)

There is one additional way in which an SU(5) model could be engi-
neered. This is when both the projection needed for the antisymmetric of
SU(5) and the one for canceling the anomaly due to the antifundamental,
are provided by the same fixed line. This could be realized both in orien-
tifolds with a diagonal fixed line, and in orientifolds with two fixed lines.
What is important is that only one line is needed to define the relevant
cluster of faces.
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Importantly, since the orientifold line cannot change sign along the
dimer, this possibility is effective only when the two projections have the
same sign. Then the only case that fits the bill is the twin SU(5) model, as
the one in Figure 11.10.

Basically, the chain of gauge groups represented by faces 1, 2, and 3 has
to bend and end on the same line. There are now two possibilities. Either
all the black nodes at the bottom of the edges between faces 1, 2 and 3 are
one and the same, or the chain 1 − 2 − 3 and their images enclose some
(unoccupied) faces of the dimer. The latter case is inconsistent from the
dimer point of view, as shown in Appendix 11.A: such a chain cannot be
a fractional brane in the parent theory. We are thus left with the former
case, which in the dimer corresponds to a hexagonal cluster of faces around
a node, as depicted in Figure 11.12.

1 1’

2

3 3’

2’

Figure 11.12: The hexagonal cluster with six faces on an orientifold line.
All faces are here depicted with four edges, but some of them could have
more.

Interestingly, such a collection of faces surrounding a node corresponds
to a deformation fractional brane in the classification of [67]. It is reassuring
that unlike in the cases with fixed points, deformation branes are compatible
with line orientifolds [73].

The analysis of this case is similar to what we carried out for the twin
SU(5) model previously, leading to a gauge group

SU(N + 5)1 × SU(N + 1)2 × SU(N + 5)3 . (11.13)

The difference is that now the node at the center of the hexagonal cluster
corresponds to a sextic superpotential term. Using the same notation as in
Equation (11.10), we have

W = TrAQPAP
T
Q
T

= Trφφ . (11.14)

For N = 0, the superpotential vanishes and we are left with two SU(5)
models sharing an SU(1) flavor node, in which both surviving SU(5) fac-
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tors break supersymmetry dynamically into a stable vacuum. Unlike the
other realizations of the twin SU(5) model, in the present one there is no
indication that the dimer must contain an N = 2 fractional brane.

Combining the analysis in Sections 11.1.1 and 11.1.2, we conclude that
engineering a single SU(5) DSB model without instabilities at an orientifold
of a toric singularity is impossible. Conversely, our analysis implies that
engineering a minimal SU(5) model requires non-isolated singularities with
curves of C2/Zn singularities passing through the origin, which in turn result
in the instability. This means that, as explained in Chapter 6, the toric
diagram must contain internal points on its boundary edges. On the other
hand, our analysis shows that an instance of a DSB model, the twin SU(5)
model, actually exists which is compatible with an orientifold projection
with fixed line(s). We should now understand whether such sub-dimer can
actually be embedded into a consistent dimer and, if so, whether such dimer
can be free of N = 2 fractional branes. We investigate these questions in
Chapter 12.

11.2 3−2 Models

Let us now turn to the 3 − 2 model, another prominent example of
DSB that was recovered within brane setups at orientifold singularities in
Chapter 10. The model has a gauge group SU(3) × SU(2). Its matter
content is reminiscent of one SM generation

Q = ( 3, 2) , U = 3 , D = 3 , L = 2 , (11.15)

where the subindices indicate the corresponding gauge group in an obvious
way. In addition, the theory has the following superpotential

W = DQL . (11.16)

In principle, the above field content (SU gauge groups, (bi)fundamental
matter, together with a cubic superpotential) does not seem to require an
orientifold projection. As it will become clear in the following, such a projec-
tion is nevertheless necessary in order to allow for a fractional brane (i.e. an
anomaly-free configuration) with the desired ranks for the gauge groups.

11.2.1 General features

Let us think more carefully about the basic features of the D-brane
realization of this model. In this subsection, we enumerate all different
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ways to recover the 3 − 2 model from fractional branes at an orientifold
singularity. The structure of these models is more intricate than that of the
SU(5) model, so it is convenient to draw the corresponding quivers.

The candidate models are presented in Figure 11.13. In the figure,
we have kept the ranks of the gauge group general by introducing Ni, i =
1, . . . , 4. These additional integers account for more general configurations
of D-branes at the singularity, e.g. the addition of regular or fractional
D3-branes, and we posit that anomaly cancellation must hold even in those
cases. The 3−2 model arises when all Ni and the ranks of additional gauge
groups, which depend on the specific singularity and are not shown in these
quivers, vanish.

1

SO(N1+1) SU(N2+2)SU(N3+3)SO(N4+1)

×

1

SO(N1+1) USp(N2+2)SU(N3+3)

×

or or
𝑈"

𝐷" 𝐿

𝑄

𝑈"
𝐷" 𝐿

𝑄
𝐴̅!

Figure 11.13: Four quivers giving rise to the 3− 2 model when all Ni = 0.
All these models use three orientifold fixed loci.

For similar reasons as in the case of the SU(5) model, we need at least
an additional gauge group factor, which we will call node 1, to serve as
a flavor group providing the D and L fields. Both D and L should be
connected to the same node for the superpotential Equation (11.16) to be
possible. In dimer terminology, we identify the smallest building block of
a 3− 2 model as three faces connected by a trivalent vertex. In this sense,
3 − 2 model realizations are necessarily more involved than SU(5) model
realizations since the latter only required a building block of two faces.

The quivers in Figure 11.13 should be interpreted as follows. For each
of the two endpoints of the quiver, we have presented two possibilities. The
two options on the left correspond to realizing U as an antisymmetric of
node SU(3) or via a fourth gauge group acting as a flavor node. The two
options on the right correspond to the fact that node 2 can be either USp(2)
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or SU(2). All possible combinations of these endpoints realize the desired
3− 2 model, therefore Figure 11.13 accounts for four models.

In principle, the flavor nodes 1 and 4 in Figure 11.13 could be SU
or SO. However, if these nodes were of SU type, their ACC in the case of
general ranks would require additional nodes, that come to life when regular
D-branes are added. Generically, these gauge groups will give rise to new
matter fields charged under the nodes of the original quiver. Such fields
would contribute to and potentially help in the cancellation of anomalies.
However, for N regular D3-branes, it is easy to show that for neither node
the anomaly would cancel, as there would still be an imbalance of one or
three units for nodes 1 and 4, respectively. In order to cancel the anomalies,
there are then only two options. The first is to introduce an orientifold
projection. It turns out that setting both nodes to be SO is the simplest such
option, and without loss of generality we will stick to it in the following. The
second option is to compensate for the anomaly by a mirror construction.
We defer the treatment of the latter possibility to the last subsection.

It is worth noting that in two of the four models described by Fig-
ure 11.13, those for which the second gauge group is SU(N2 + 2), we have
also introduced an antisymmetric tensor Ā2. This field is necessary for satis-
fying the ACC for the more general ranks that arise when regular D3-branes
are added (see Appendix 11.B). It becomes a singlet when N2 = 0, so it
decouples and does not affect the IR physics.

A final option is to get the two antifundamentals of the SU(3), U and
D from the same flavor SO(1) group. However, in order to realize the 3− 2
model, the structure of the dimer model should be such that a UQL term
is not present in the superpotential. This possibility is then obtained by
simply identifying nodes 1 and 4 in Figure 11.13.

We thus reach the conclusion that we need no less than three orientifold
projections to realize a 3 − 2 model: one for the SO(1) flavor group (thus
with a + sign), one for node 2 which is either USp(2) or SU(2) with an
antisymmetric (in both cases, with a − sign), and one for node 3, either
with an antisymmetric (− sign) or with the SO(1) flavor node 4 (+ sign).
Of course, some of these projections can be given by the same object, in the
case of an orientifold line, provided they require the same sign.4

All quivers described by Figure 11.13 are viable as stand-alone gauge
theories. However, as for the SU(5) model, we need to verify whether the

4It is worth noting that in all the realizations of the 3− 2 model found in Chapter 10,
node 3 has an antisymmetric, node 1 is of SO type, while node 2 is USp(2) in the Z′6
orbifold and in PdP4, and SU(2) with an antisymmetric in PdP3c, PdP4b and the Z3×Z3

orbifold.
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theories remain anomaly-free upon the addition of regular and/or fractional
D3-branes. It turns out that the SO(N1 + 1)×SU(N2 + 2)×SU(N3 + 3)×
SO(N4 + 1) model does not pass this test, as shown in Appendix 11.B.

Below we investigate the realization of these models in terms of fixed
points and fixed line(s) orientifolds.

11.2.2 Fixed points orientifolds

Interestingly, for the purpose of establishing the existence of an N = 2
fractional brane, and hence the instability of the supersymmetry breaking
vacuum, it is sufficient to focus on a very small part of all these theories. In
particular, all of them contain one of the following two subsectors:

• SO(N1 + 1)× USp(N2 + 2).

• SO(N1 + 1)× SU(N2 + 2) with the tensor A2.

Knowledge of the dimer around gauge groups 1 and 2 will be enough for
our purposes. Let us consider the general structure of the dimers associated
with these two possibilities.

• SO(N1 + 1)× USp(N2 + 2) ⊂ 3− 2 model

Figure 11.14 shows the general structure of the relevant part of the
dimer model. The edge between faces 1 and 2 represents the L field.
Clearly, faces 1 and 2 define a stripe that winds around the unit cell
of the parent dimer, giving rise to a gauge-invariant that is not in the
superpotential. Therefore, they correspond to an N = 2 fractional
brane.

× ××
2 11

+ +-

Figure 11.14: A piece of the dimer for a fixed point orientifold realizing the
3− 2 model with an SO(N1 + 1)× USp(N2 + 2) subsector.
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• SO(N1 + 1)× SU(N2 + 2) with A2 ⊂ 3− 2 model

Figure 11.15 shows the part of the dimer that we are interested in. The
edge between faces 1 and 2 corresponds to L, while the one between
face 2 and its image gives rise to A2. Once again, we see that faces 1,
2, and 2’ define an N = 2 fractional brane in the parent dimer. It is
interesting to note that this picture is identical to Figure 11.2 for the
SU(5) model.

× ××
2 2’1 1

+ +-

Figure 11.15: A piece of the dimer for a fixed point orientifold realizing the
3− 2 model with an SO(N1 + 1)× SU(N2 + 2) with A2 subsector.

From the previous discussion, we conclude that all realizations of the
3−2 model at fixed point orientifolds suffer from an N = 2 fractional brane
instability.

Models with more than one type of N = 2 fractional branes

Before moving on, let us consider the models in Figures 11.14 and
11.15 in further detail. As we have already mentioned, in all these cases the
portion of the dimer realizing the 3 − 2 model involves three fixed points.
For concreteness, let us focus on the case in which U is an antisymmetric
of node 3 and node 2 if of USp type. All other combinations are analogous
and lead to the same conclusions. Figure 11.16 shows the general structure
of the dimer model. Interestingly, in this case, we can identify yet another
N = 2 fractional brane, in addition to the one covered by our previous
analysis. This new fractional brane corresponds to faces 1, 3, and 3’ in the
parent dimer and is shown in pink in Figure 11.16. We conclude that when
sub-dimers as in Figures 11.14 and 11.15 are embedded in a complete dimer
model, the corresponding toric singularity has at least two different types
of N = 2 fractional branes. Explicit models illustrating this phenomenon
were constructed in [2].

Another interesting fact we would like to notice has to do with the
intertwining between SU(5) and 3 − 2 models realizations. Figure 11.16
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3’

3

3’

3

××
2 11

+ +-

× ××
2 11

+ +-

×-

×

×-

Figure 11.16: General structure of the dimer model for one of the models
in Figure 11.13. This model contains two different N = 2 fractional branes.
They are shown in blue and pink, with the striped face belonging to both
of them.

shows that in any such configuration realizing a 3−2 model, an SU(5) model
can also be realized, by simply turning off the rank of node 2, while pumping
up the rank of node 3 to SU(5). Even more, 3 − 2 model realizations like
the one of Figure 11.15 allow for two alternative SU(5) model realizations,
the other one being by turning off node 3 and setting node 2 to SU(5), as
already noticed when commenting the figure. Multiple explicit examples of
this connection can be found in [2]. The only realization of a 3 − 2 model
that does not lead directly to a realization of the SU(5) model would be one
with USp(2) at node 2 and a node 4 to compensate the anomaly of node 3.
Unfortunately, no examples of this exist in the literature, and it is beyond
our scope to find one here, as we have in any case shown that it would be
afflicted by an N = 2 fractional brane instability.

Double 3−2 models

It is natural to ask whether fixed point orientifolds can lead to a pair
of 3 − 2 models. In this case, each of the models should use two of the
four fixed points. However, all the models of Figure 11.13 need three dif-
ferent projections, and thus three different fixed points. One could still
think about the case where nodes 1 and 4 are identified, where only two
identifications are actually required. However, in order for node 3 to have
two different connections with node 1, the faces corresponding to this 3− 2
model realization end up being spread across all the unit cell, so that again
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two such models cannot coexist.5

11.2.3 Fixed line(s) orientifolds

We now consider the realization of the 3−2 models in orientifolds with
fixed lines.

The analysis in the case in which the 3 − 2 model uses two different
orientifold fixed lines is identical to the one for fixed points. In particular,
it is sufficient to focus on faces 1 and 2. We simply need to replace fixed
points with fixed lines in the previous discussion.

• SO(N1 + 1)× USp(N2 + 2) ⊂ 3− 2 model

Figure 11.17 shows the relevant part of the dimer. We immediately
identify an N = 2 fractional brane in the parent dimer consisting of
faces 1 and 2.

2 11

+ +-

Figure 11.17: A piece of the dimer for an orientifold with two fixed lines
realizing the 3− 2 model with an SO(N1 + 1)× USp(N2 + 2) subsector.

• SO(N1 + 1)× SU(N2 + 2) with A2 ⊂ 3− 2 model

Figure 11.18 shows the part of the dimer that we focus on. Faces 1,
2, and 2’ form an N = 2 fractional brane in the parent dimer.

Multiple 3−2 models

Orientifolds with fixed lines can in principle give rise to multiple 3− 2
models, stacking them as we did in Figure 11.11 for SU(5). In this case,
the projection needed for node 3 can be provided either by the line with a

5It would be interesting to investigate whether such model can actually be engineered
in terms of dimers. Again, since we have already proven that all realizations of the 3− 2
models at fixed point orientifolds are unstable, we do not pursue this challenging question
any further.
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+ +-

1 12 2’

Figure 11.18: A piece of the dimer for an orientifold with two fixed lines
realizing the 3−2 model with an SO(N1+1)×SU(N2+2) with A2 subsector.

− sign, in case of an antisymmetric, or by the line with a + sign, in case
of a flavor node 4. Our previous arguments show that each of these models
contains (at least) an N = 2 fractional brane and are hence unstable.

SU(5) - 3−2 mixed models

At this point, it is interesting to point out that our arguments for
multiple models, in the case of fixed lines, indicate that we can also have
models that realize a combination of SU(5) and 3− 2 models. Once again,
our arguments from Section 11.1 and this section show that each DSB sector
would be independently unstable.

11.2.4 Twin 3−2 models?

We are now left to investigate the possibility that the anomalies of the
3− 2 model are canceled in a twin realization, along the lines of what was
done for the SU(5) model in Figures 11.5 and 11.10. Further, we would like
to know if there is a realization similar to the one of Figure 11.12, i.e. on
a single fixed line, which would not automatically imply the presence of
N = 2 fractional branes.

As already alluded to, we can cancel the anomalies of a node 1 of
SU nature, and/or node 4, if in the configuration there is a twin copy of
the 3 − 2 model sharing the SU(1) node. Note that in compensating the
anomaly with a twin, it is important that the two models are decoupled.
If we were to use the same mechanism to compensate for the anomaly of
node 2, the non-zero coupling of node 2 itself would couple the twins and
alter the low energy physics of the models (typically destroying the stable
supersymmetry breaking dynamics). Hence whatever we do, node 2 will
always require a projection. As a consequence, if such twin model is realized
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in a way that it extends between two different fixed points or fixed lines, by
the same arguments used around Figures 11.5 and 11.10, there will beN = 2
fractional branes that render the DSB model eventually unstable. We will
thus refrain from investigating further the feasibility of such a configuration.

Finally, we would like to see if it is possible to realize a twin 3 −
2 model on a single fixed line. Given that node 2 and its twin require
a − sign, in principle we have two options. Either both node 3 and its
twin have an antisymmetric by ending up on the same fixed line, or they
compensate the anomaly by sharing an SU(1) node 4. It is easy to draw
the minimal requirements for the portion of the dimer that would translate
these properties, see respectively Figures 11.19 and 11.20.

Figure 11.19: A tentative sub-dimer for a twin 3−2 model where the SU(3)
faces have an antisymmetric flavor.

Figure 11.20: A tentative sub-dimer for a twin 3−2 model where the SU(3)
faces share a flavor SU(1)4.

Naively, these configurations look consistent and one can find a choice
of ranks satisfying the ACC. These are the following. For Figure 11.19,
N3 = N3′ = N3̄ = N3̄′ = M3 + 3, N2 = N2′ = N2̄ = N2̄′ = M2 + 2 and
N1 = N1′ = M2+M3+1. For Figure 11.20, N3 = N3′ = N3̄ = N3̄′ = M3+3,
N1 = N1′ = M1 + 1, N4 = N4′ = M ′1 + 1 and N2 = N2̄ = M1 +M ′1 + 2.

Assuming that in the parent theory every rank parametrizing the so-
lutions above can be taken independently large, we observe that both situ-
ations would imply the existence of a fractional brane described by a ring
of faces with equal ranks (up to the usual O(1) corrections) surrounding a
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hole. These are obtained by setting M2 = 0 in Figure 11.19, and M1 = 0,
M ′1 = M3 in Figure 11.20. The ring-shaped would-be fractional brane is
depicted in both figures by the yellow-shaded faces. As shown in the Ap-
pendix 11.A, this is an inconsistent dimer. We conclude that unlike the
SU(5) model, there is no way to build a stable twin version of the 3 − 2
model on a single orientifold line.

11.3 Outlook

We carried out an investigation that shows that in the minimal real-
izations of the SU(5) and 3 − 2 models at orientifolds of singularities, the
instability associated with N = 2 fractional branes is unavoidable. Remark-
ably, this result ties the ability to engineer these models to basic geometric
features of the underlying singularity: the presence of non-isolated C2/Zn
singularities, and hence it explains the results collected in Chapter 10. This
is yet another example of the connection between geometry and features or
dynamics of the corresponding quantum field theories, such as e.g. confine-
ment and complex deformations [27] or runaway DSB and the absence of
complex deformations [66,67].

These general results will then guide our search for models without in-
stabilities. Indeed, we showed that a simple variant of the SU(5) model,
that we dub twin SU(5), can a priori be realized by D-branes at an orien-
tifold of a toric CY, which lacks non-isolated C2/Zn singularities and, as
such, is free of the aforementioned decay channel, and stable. The next
chapter is devoted to the search of such a singularity.
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11.A Holes in the dimer and zig-zag paths

In the following, we present an argument forbidding the presence of
holes of reduced rank inside a specific sub-dimer that appears in different
twin models. We rely on ZZP techniques for anomaly cancellation developed
in [5, 140]. One associates a value vi to every ZZP in the dimer and then
assigns an arbitrary rank to a given face in the dimer. The remaining ranks
are set by requiring that the rank differences between two adjacent faces
m,n obey Nm −Nn = vi − vj where i, j are the ZZP separating them.

Consider a ring-shaped sub-dimer of rank N +O(1). We assume that
as we go along it, from one of its faces to another, we only cross edges with
identical orientation, see Figure 11.21a. We now show that the region inside
the ring, the “hole”, is inconsistent if of reduced rank.

(a) (b)

Figure 11.21: (a) Generic ring of rank N+O(1) surrounded by faces of rank
O(1) with a hole of rank O(1). (b) Face 2 edges with zig-zag paths.

Consider a face of the ring, as face 2 in Figure 11.21b. The intersections
between the ZZP 1, 2, 3, and 4 yield

N1 −N2 = v1 − v2 ∼ 0 , N2 −N3 = v4 − v3 ∼ 0 , (11.17)

where ∼ means “equal up to O(1)”. Since the hole is supposed to be of rank
O(1), the intersections with Zig-Zags that separate it from the ring give

N ∼ v2 − vd, −N ∼ vd − v4, ⇒ v2 ∼ v4 . (11.18)

Changing the number of edges between face 2 and the hole can only be done
by adding/removing pairs of edges and will not change the fact that

v1 ∼ v2 ∼ v3 ∼ v4 and vd ∼ v1 −N , (11.19)

where vd is understood as any ZZP that comes with the pair of edges added
between the hole and face 2. One can repeat the reasoning for every face
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of the ring and find that its internal edges will be always produced by ZZP
∼ v1. This is in contradiction with the presence of ZZP vd ∼ v1 −N since
there are only ZZP ∼ v1 entering the hole. It implies that vd is circular or
not present. The first option is forbidden in dimer models and the second
spoils the presence of the hole itself. Hence the presence of an anomaly-free
hole inside such a ring is inconsistent.

As a comment, let us notice that to reach this conclusion we did not
assume anything about the exterior of the ring. If one does not look at the
hole but asks that the exterior has a reduced rank, it implies that ZZP va
on its border, see Figure 11.21b, will satisfy

va ∼ v1 +N ∼ v3 +N , (11.20)

and thus we recover the result of Equation (11.18) using Equation (11.17).
Again, it can be shown that this result does not depend on the number of
edges in contact with the exterior of the ring. The cluster (hexagonal or
otherwise) is now viable only with ranks N +O(1), because it is made only
of ZZP ∼ v1.

11.B Anomaly cancellation conditions for 3−2
quivers

Not all of the quivers presented in Figure 11.13 are free of anomalies
when Ni 6= 0. In this appendix, we check this explicitly. Our calculations
also motivate the choice of the antisymmetric tensor A2 to satisfy the ACC.
Below we summarize the ACC for each of these models. For completeness,
we added here as different cases also the two models where nodes 1 and 4
are identified.

• SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 3:

Node 3: (N3 + 3− 4)− (N1 + 1) + (N2 + 2) = 0 . (11.21)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 3:

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: (N3 + 3− 4)− (N1 + 1) + (N2 + 2) = 0 .

(11.22)

Note that the choice of conjugate representation for the antisymmetric
tensor of SU(N2 + 2) is fixed by the first equation, in order to satisfy
it when all Ni = 0.
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For these two first models, the ACC reduce to

N1 = N2 +N3 . (11.23)

• SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3)× SO(N4 + 1):

Node 3: − (N1 + 1) + (N2 + 2)− (N4 + 1) = 0 . (11.24)

In this case, N3 is not constrained by the ACC, which can be rewritten
as

N2 = N1 +N4 . (11.25)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3)× SO(N4 + 1):

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: −(N1 + 1) + (N2 + 2)− (N4 + 1) = 0 .

(11.26)

This translates to the two conditions

N1 = N2 +N3 ,
N2 = N1 +N4 ,

(11.27)

implying N3 = −N4. This in turn sets N3 = N4 = 0, since all Ni must
be positive and potentially large. In principle this issue does not rule
out the possible engineering of these models, since the corresponding
dimers might give rise to additional gauge groups and fields when
regular D3-branes are added, in a way that anomalies are cancelled.
Assuming that at least some fractional branes are needed in order to
turn on all the ranks of the 3 − 2 model (i.e. even for Ni = 0), then
such models are excluded.

• SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 2( 3, 1):

− 2(N1 + 1) + (N2 + 2) = 0 , (11.28)

which is simply
N2 = 2N1 . (11.29)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 2( 3, 1):

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: −2(N1 + 1) + (N2 + 2) = 0 .

(11.30)

This can be simplified into

N2 = 2N1 ,
N3 = −N1 ,

(11.31)

which has no solution beyond Ni = 0 in the absence of additional
ingredients coming from the full dimer.

266



The results of this appendix can be summarized in Table 11.1.

Gauge theories ACC

SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 3 3

SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 3 3

SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3)× SO(N4 + 4) 3

SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3)× SO(N4 + 4) 7

SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 2( 3, 1) 3

SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 2( 3, 1) 7

Table 11.1: List of 3− 2 model realizations and their ACC.
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Chapter 12

The Octagon

In this chapter, we argue that stable DSB is in the landscape of string
theory. We produce an orientifold of a toric singularity which allows for a
brane configuration displaying a variant of the SU(5) DSB model, dubbed
the twin SU(5) in the previous chapter, and that has no instabilities. In
particular, those described in Chapter 10 are absent because the singularity
does not admit N = 2 fractional branes. This provides a counter-example
to what could have been conjectured, namely that DSB models were pos-
sible only in singularities admitting N = 2 fractional branes, and hence,
following the no-go theorem presented in Chapter 10, unstable towards su-
persymmetric vacua. Our results were originally presented in [3, 4].

In Section 12.1 we show that such local construction can be embedded
in a fully consistent singularity, the Octagon, and present the orientifold that
leads to the twin SU(5) model. We review the UV-complete supersymme-
try breaking gauge theory associated with it and study its stability in the
infrared in Section 12.2. Finally, we comment on the perspectives of our
results in Section 12.3. Appendices 12.A and 12.B present an application of
the Fast Forward Algorithm for the Octagon and complementary comments
on the stability of the supersymmetry breaking vacuum respectively.

12.1 The rise of the Octagon

We have shown previously that the only alternative for an a priori
consistent realization of a DSB model which does not automatically imply
the presence of an N = 2 fractional brane, and hence is potentially stable
in the decoupling limit, is the twin SU(5) living on a single fixed line of an
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orientifold. The twin SU(5) model is described by the hexagonal cluster in
the dimer, reproduced in Figure 12.1. Now, we want to understand if such
cluster can be embedded in a fully consistent dimer and if such dimer can
be free of N = 2 fractional branes.

1 1’

2

3 3’

2’

Figure 12.1: The hexagonal cluster with six faces on an orientifold line. All
faces are here depicted with four edges, but some of them could have more.

Now we can ask whether this fractional brane is of deformation or run-
away DSB type, in the parent theory (we already know we do not want it
to be of N = 2 type). If it were a runaway DSB brane some other regions
of the dimer, besides the hexagon, would be populated and the correspond-
ing faces would have ranks with different multiples of N [67, 68]. This is
the key ingredient to generate an ADS superpotential and hence a runaway
behavior, and this will still be true after orientifolding. Thus a runaway
DSB brane in the parent theory, if it survives the orientifold, will still be
of runaway type. Populating the dimer with regular branes, the runaway
sector will communicate with the twin SU(5) sector, destabilizing the vac-
uum. The other possibility is that the hexagonal cluster corresponds to a
deformation brane in the parent theory and that it survives the orientifold
projection.

It is known [67, 140] that deformation fractional branes are related to
subset of ZZPs in equilibrium, see Chapter 6. We are looking for a dimer
containing a six-valent node inside a cluster of faces. The corresponding
toric diagram must contain at least 6 edges whose associated ZZPs are
ordered around the relevant node [154, 157]. Those ZZPs need to be them-
selves in equilibrium, and once removed the rest of the (p, q)-web must be
in equilibrium too. This implies that we need at least two extra ZZPs in
equilibrium, for a total of eight. The absence of N = 2 fractional branes
in the dimer further requires that there cannot be more than one ZZP with
a given winding (p, q) of the unit cell. This corresponds to toric diagrams
with no more than two consecutive points which are aligned on an external
edge.
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Since we are looking for a singularity admitting line orientifolds, we
consider toric diagrams with line symmetry, either vertical/horizontal or
diagonal.

• Diagonal line

From Figure 12.1 we see that we need two antisymmetric fields, in 1

and 3 representations, respectively. Even if dimer models containing
the required deformation can be engineered, it turns out that there
is no solution to the ACC of the full dimer, as it happens for all the
theories but a very special family, the trapezoids, which typically con-
tains N = 2 fractional branes obtained as orientifolds of dimers with
a diagonal fixed line, see Chapter 8. Thus, such cases are excluded.

• Vertical/horizontal lines

As discussed in Section 11.1, the freedom in choosing different charges
for the two fixed lines is a crucial difference with respect to diagonal
line orientifolds. In fact, it guarantees the existence of solutions to the
ACC after orientifolding, exactly balancing the contribution from the
different tensor fields. As discussed in Chapter 8, this is ensured by
noticing that tensor fields come in pairs in the dimer, one in each of
the two lines. Assigning opposite signs to the two lines grants that the
two contributions cancel, yielding an anomaly-free theory. If the two
signs are chosen the same, the situation is the same as with diagonal
lines.

The upshot is that having vertical/horizontal lines, with opposite signs
for the two orientifold lines, is the only option that can lead to viable twin
SU(5) models and it is what we are going to focus on in the following.

The need for two tensor fields is a stringent constraint on the ZZPs, and
therefore on the toric diagram. In particular, it implies that two couples
of ZZPs must have the correct intersection number among themselves and
with the fixed lines, as computed from the toric diagram, see Chapters 6
and 8.

Remarkably, the aforementioned necessary conditions provide substan-
tial guidance for where to look for a model that works, as we now explain.
The simplest example of a toric diagram with the required eight ZZP, with
the correct intersection numbers, no N = 2 fractional branes and the neces-
sary horizontal symmetry is the toric diagram depicted in Figure 12.2, that
we dub the Octagon.
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Figure 12.2: The toric diagram of the Octagon singularity.

+ -

Figure 12.3: The (unit cell of the) dimer describing the symmetric phase of the
Octagon. Orientifold lines are in red. Each orientifold line has a sign associated
with it, which in this case needs to be opposite one another.

Using standard techniques one can associate a dimer to a toric diagram,
one for each different toric phase [32, 46]. A generic toric phase does not
display the symmetry required to perform the orientifold projection. In
the present case, however, one can find a symmetric toric phase where the
vertical fixed lines are manifest and which realizes the twin SU(5) model
as described above. The corresponding dimer is depicted in Figure 12.3,
where the hexagonal cluster is described by the white dot in the center of
the unit cell. A quick and direct way to check that the dimer in Figure 12.3
does correspond to the toric diagram in Figure 12.2 is by the Fast Forward
Algorithm [46], as detailed in Appendix 12.A.

Before performing the orientifold projection, it is straightforward to
see that the following rank assignment is anomaly-free: faces 1, 2, 3, 7, 12, 13
and 14 have gauge group SU(N +M), and all the others have gauge group
SU(N). Setting N = 0, one has only seven SU(M) gauge groups: one
isolated Super-Yang-Mills (SYM) on face 7 and the six others forming a
loop whose links are bi-fundamentals, together with a sextic superpotential
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proportional to the only gauge-invariant (it is represented by the white dot
in the center of the unit cell). This rank assignment corresponds to a so-
called deformation fractional brane [67], as expected. One can easily see that
such a gauge theory eventually leads to a confining behavior just like SYM.
This can be naturally UV-complete starting from a system of N regular and
M fractional D3-branes which trigger an RG-flow that can be described by
a duality cascade, similar to [27] and many other examples that were found
since then. The effective number of regular branes diminishes along with
the flow and the deep IR dynamics is described by fractional branes only.

In the presence of an orientifold projection, it is no longer granted
that an anomaly-free rank assignment exists at all. For instance, in the
present case, it can be shown that it is not possible to find one if the signs
of the two lines are the same, in agreement with the results of Chapter 8.
However, choosing opposite signs as in Figure 12.3, one can see that there is
a rank assignment that is anomaly-free: SU(N +M + 4) for faces 1 and 3,
SU(N +M) for face 2, SO(N +M + 4) for face 7, SU(N) for faces 4, 5 and
6, and USp(N) for face 8. Setting N = 0 we obtain a gauge theory with
an isolated SO(M + 4)7 SYM together with a quiver gauge theory based on
the group SU(M + 4)1 × SU(M)2 × SU(M + 4)3 with matter fields and a
superpotential that we proceed to analyze in-depth in the next section. See
Figure 12.4 to visualize the deformation brane on the dimer model. The twin
SU(5) model is given by the rank assignment SU(5)1 × SU(1)2 × SU(5)3

with all other faces being empty but face 7 which is a decoupled pure SYM
with gauge group SO(5) and hence confines on its own.

+ -

Figure 12.4: Dimer diagram of the Octagon with the deformation brane in
grey. Red lines represent the orientifold lines.
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12.2 Dynamical supersymmetry breaking on the
Octagon

12.2.1 The UV-complete model

The gauge theory

SU(M + 4)1 × SU(M)2 × SU(M + 4)3 (12.1)

has matter content

A1 = 1, X12 = ( 1, 2), X23 = ( 2, 3), A3 = 3 , (12.2)

and superpotential

W = A1X12X23A3X
T
23X

T
12 . (12.3)

The superpotential can be interpreted as follows. The gauge-invariant
XT

12A1X12 of group 1 and the gauge-invariant X23A3X
T
23 of group 3 are

respectively in the 2 and 2 of gauge group 2, with the superpotential
above providing a bilinear in these two invariants, thus akin to a mass term.
It is obvious that the antisymmetrics of SU(M)2 can exist as such only if
M ≥ 2. In this case, one can show that strongly coupled dynamics gener-
ates superpotential terms that, together with the tree-level one, eventually
lead to supersymmetric vacua. For M = 0 one gets instead two decoupled
theories at faces 1 and 3 both having gauge group SU(4) and one chiral
superfield in the antisymmetric, which have a runaway behavior. The case
of interest is of course M = 1.

For M = 1, we recover the twin SU(5) model. Node 2 becomes trivial
(SU(1) is empty) and, more importantly, the superpotential actually van-
ishes. Indeed, both nodes 1 and 3 are SU(5) gauge theories with matter in

the ⊕ representations, and there is no chiral gauge-invariant that can be
written in this situation [71]. Hence the two gauge theories are effectively
decoupled, and their IR behavior can be established independently. Both
happen to be the SU(5) model for stable DSB. Since the SO(5) SYM on
node 7 just confines, we thus determine that this configuration displays DSB
in its vacuum. Quite interestingly, this DSB vacuum may then arise at the
bottom of a duality cascade (possibly more complicated with respect to the
simpler unorientifolded case, due to the orientifold projection which would
modify it, see [55]), hence within a stringy UV-complete theory.
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12.2.2 Stability in the infrared

Is this DSB vacuum stable? In principle, there can be different sources
of potential instabilities.

First, one could be concerned about stringy instantons, whose presence
may affect the low energy dynamics. Indeed, the D-brane configuration
giving rise to the twin SU(5) DSB model, N = 0,M = 1, contains both a
USp(0) and an SU(1) factor coupling to the SU(5) gauge groups. These
are the two instances where contributions to the low energy effective super-
potential are allowed (see [56] and [200], respectively). However, no such
contributions can be generated in our model simply because there are no
chiral gauge-invariants that can be written which can contribute to the su-
perpotential. We thus conclude that stringy instantons cannot alter the
DSB dynamics.

A second source of instability is the one discussed in [74] and Chap-
ter 10. In fact, as can be readily seen from the toric diagram of Figure 12.2,
this singularity does not admit N = 2 fractional branes. The latter arise
when the singularity can be partially resolved to display, locally, a non-
isolated C2/Zn singularity and a Coulomb-like branch associated with it.
This translates into the presence of points inside some of the edges along
the boundary of the toric diagram. The Octagon does not have this prop-
erty. Hence, without the presence of N = 2 fractional branes, there is no
vacuum expectation value on which the energy of the DSB vacuum can de-
pend, or equivalently there is no Coulomb branch along which the energy
can slide to zero value.

The attentive reader might note that, given a singularity free of any
N = 2 fractional brane directions, there can exist partial resolutions which
generate a different singularity which admits non-isolated singularities. The
Octagon is no exception. However, the fractional brane configuration we
consider and the orientifold projection, both instrumental to our DSB
model, obstruct such dangerous resolutions [198]. See Appendix 12.B for
more details on this point.

A final source of instability may come from the N = 4 Coulomb branch
represented by regular D3-branes. As in the previously analyzed cases of
Chapter 10, one can easily show that this is a non-supersymmetric flat direc-
tion, essentially because of the conformality of the parent (non-orientifolded,
large N) gauge theory. Therefore, there are no supersymmetric vacua along
this branch.1

1Flat directions are usually not expected in a non-supersymmetric vacuum. Sublead-
ing 1/N corrections to anomalous dimensions of matter fields, which could lift such flat
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12.3 Conclusions

In this chapter, we have presented a model, based on the Octagon,
which is the first instance, to our knowledge, of a stable DSB configuration
of fractional branes. The Octagon emerges as the simplest possible dimer
having all required properties to admit, upon orientifolding, stable DSB
D-brane configurations. One might ask whether less minimal models exist
which share the same properties. Given the remarkable properties of this
family of models, we consider it important to study them in further detail.
We do not have an answer to this question, yet. Still, dimer techniques
have (once again) proven to be a very powerful tool to provide a direct
link between geometry and gauge theories dynamics, both in finding no-go
theorems, like the one presented in Chapter 10 or the connection between
minimal SU(5) and 3 − 2 models and the presence of N = 2 fractional
branes established Chapter 11, as well as in unveiling concrete ways to evade
them. Therefore, we cannot exclude that further surprises are possible and
generalizations of the Octagon model will eventually be found.

In particular, we would also like to find other types of DSB models from
dimers with possibly higher ranks and, as such, a higher number of fractional
branes in their string theory realization. They are of interest since the gauge-
gravity correspondence may then provide a reliable supergravity solution
to study dynamical supersymmetry breaking from another viewpoint than
QFT. Indeed, we would access the decoupling limit that ensures a valid
description of our model in a supergravity regime all the way down to the
infrared, where the interesting dynamical phenomenon occurs.

Finally, we remark that it seems possible to extend the computations
shown in Appendix 12.B to any kind of fractional branes living on a toric
CY variety. It would be interesting to find geometric criteria for the sin-
gularity, along the lines of Chapter 8, to determine whether its fractional
branes obstruct certain partial resolutions, in the absence and presence of
orientifold plane.

direction, are not easily calculable, particularly in a complicated singularity such as the
Octagon. However, they should neither change the number of supersymmetric vacua nor
modify the behavior of the potential at infinity, at least for sufficiently large N .
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12.A The Octagon and its symmetric phase

As discussed in Chapter 6, to any dimer model one can associate a
weighted, signed adjacency matrix, known as the Kasteleyn matrix, whose
determinant is the characteristic polynomial of the dimer model from which
one can extract the toric data. This procedure is known as the Fast Forward
Algorithm.

To obtain the Kasteleyn matrix one assigns a sign to every edge such
that for every face in the dimer the product of signs is +1 if its number
of edges is 2 mod 4 and −1 if its number of edges is 0 mod 4. One then
constructs two closed oriented (gauge-invariant) paths γw, γz with holonomy
(0, 1) and (1, 0). Every edge crossed by these paths is multiplied by w or
1/w, depending on the relative orientation (respectively by z or 1/z). The
resulting graph for the Octagon is shown in Figure 12.5.

Figure 12.5: Dimer diagram of the Octagon with weights (in red) for build-
ing the Kasteleyn matrix. White and black nodes have been numbered.
Two fundamental paths are shown in blue.

The adjacency matrix of the graph with such weights is the Kasteleyn
Matrix and, for the Octagon, it reads
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K =



1 2 3 4 5 6 7 8 9

1 w 1 0 w 1 −1
z 0 0 0

2 1 0 1 −1 0 0 0 0 0
3 0 1 1 0 −1 0 0 0 0
4 0 0 0 −w 1 1 0 0 0
5 0 0 0 w 0 1 wz 0 0
6 0 0 1 1 1 0 −z −z z
7 0 0 0 0 1 −1 0 z 0
8 −1 0 0 0 0 0 1 0 1
9 0 1 0 0 0 0 0 1 1


(12.4)

where rows and columns correspond to white and black nodes in the dimer,
respectively. Its determinant is

detK = w3z2+w3z+w2z3−24w2z2+26w2z−w2+wz3+24wz2+26wz+w−z2+z .
(12.5)

One may compute the Newton Polygon of the above expression and it should
correspond to the toric diagram of the dimer one is dealing with [45]. For
every monomial a wbzc one draws a point in a 2d lattice with coordinates
(b, c). As expected, one obtains the toric diagram depicted in Figure 12.2.
Nicely, there is a single perfect matching for each of its external points, thus
ensuring that the dimer meets a necessary condition of minimality.

12.B Partial resolutions of the Octagon

In Figure 12.6 we depict the toric diagram of the Octagon singularity
and the corresponding dimer diagram with the fractional brane configura-
tion which gives rise, upon orientifolding, to our DSB model. The rank
assignments are as specified in Section 12.2. Neighboring faces with dif-
ferent colors indicate the fact that the gauge groups are different in the
considered configuration.

We list in Figure 12.7 the first partial resolutions of the Octagon that
preserve the orientifold symmetry (following [73], the resulting toric diagram
has to remain symmetric with respect to the orientifold line) and allow
for the presence of N = 2 fractional branes. Further partial resolutions
consistent with the orientifold projection inexorably lead to orbifolds of the
conifold, for which our comments on the case of Figure 12.7c (see below)
will remain valid.

The corresponding dimer diagrams are obtained following Gulotta’s
algorithm [157] and are presented in Figure 12.8. The algorithm operates
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(a)
+ -

(b)

Figure 12.6: The Octagon: (a) Toric diagram. (b) Dimer diagram with the
deformation brane in grey. Red lines represent the orientifold lines.

(a) (b) (c)

Figure 12.7: First partial resolutions of the orientifolded Octagon admitting
N = 2 fractional branes.

the partial resolution by “merging” some zig-zag paths within the dimer
diagram of Figure 12.6b. This action is equivalent to assigning a VEV to
the edges on which these zig-zag paths cross each other.

In the cases of Figure 12.8a and Figure 12.8b, we see that the partial
resolution is in obstruction with the very nature of our deformation brane
because it implies the fusion of faces of different ranks already at the level
of the non-orientifolded theory. In the case of Figure 12.8c, instead, the
partial resolution is obstructed because it is obtained giving a VEV to edges
separating faces of ranks that differ by the orientifold charge, for example,
the edge separating faces 1 and 2.

Therefore, we conclude that any partial resolution of the Octagon singu-
larity which opens up N = 2 fractional brane directions is indeed obstructed
in our model.
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Figure 12.8: Dimer diagrams after partial resolutions.
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