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Abstract

Extending rank-based inference to a multivariate setting such as multiple-output
regression or MANOVA with unspecified d-dimensional error density has remained
an open problem for more than half a century. None of the many solutions proposed
so far is enjoying the combination of distribution-freeness and efficiency that makes
rank-based inference a successful tool in the univariate setting. A concept of center-
outward multivariate ranks and signs based on measure transportation ideas has been
introduced recently. Center-outward ranks and signs are not only distribution-free
but achieve in dimension d > 1 the (essential) maximal ancillarity property of tra-
ditional univariate ranks. In the present case, we show that fully distribution-free
testing procedures based on center-outward ranks can achieve parametric efficiency.
We establish the Hájek representation and asymptotic normality results required in
the construction of such tests in multiple-output regression and MANOVA models.
Simulations and an empirical study demonstrate the excellent performance of the
proposed procedures.

Keywords: Distribution-free tests; Multivariate ranks; Multivariate signs; Hájek represen-
tation.

1 Introduction

Linear models—regression (single- and multiple-output), Analysis of Variance (ANOVA

and MANOVA)—are probably the most popular and most useful of all statistical models;

they are found in the table of contents of all statistical textbooks and statistical softwares,

and are part of daily statistical practice in all domains of application. The pseudo-Gaussian
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approach—Gaussian quasi maximum likelihood estimation and pseudo-Gaussian F tests—

is largely dominant in that context on the ground that pseudo-Gaussian methods remain

asymptotically valid under a broad class of non-Gaussian densities satisfying mild moment

conditions. One should beware of excessive confidence in such asymptotics, though.

1.1 Pseudo-Gaussian tests

Let us concentrate on hypothesis testing. The problem with pseudo-Gaussian tests under

unspecified noise density is twofold:

(a) although pseudo-Gaussian tests are asymptotically valid under a broad range of

non-Gaussian densities, that asymptotic validity is far from uniform: actually, in

a semiparametric model with parameter θ where the underlying noise has unspecified

density f in some broad class F of densities, a sequence ϕ(n) of tests of the null

hypothesis θ = θ0 has asymptotic level α iff limn→∞ supf∈F Eθ0,f [ϕ
(n)] ≤ α, whereas

pseudo-Gaussian tests ϕ
(n)
G only satisfy the pointwise condition limn→∞ Eθ0,f [ϕ

(n)
G ] ≤ α

for all f ∈ F ;

(b) still for fixed n, the performance of pseudo-Gaussian tests may rapidly deteriorate

away from the Gaussian.

Appendix A.1 illustrates these pitfalls in the case of Hotelling’s bivariate two-sample test.

1.2 Rank-based tests

A natural way to restore uniform asymptotics, thereby solving the validity problem in (a)

consists in resorting to distribution-free tests, and this is how rank tests enter the picture.

Rank-based testing methods have been quite successful in testing problems for single-ouput

regression and linear models such as ANOVA (see the classical monographs by Hájek and

Šidák (1967), Randles and Wolfe (1979) or Puri and Sen (1985)) and univariate linear

time series (Hallin et al. (1985), Koul and Saleh (1993), Hallin and Puri (1994)). Being

distribution-free, rank tests remain valid over the full class of absolutely continuous distri-

butions. In linear models (this includes testing for single-output regression slopes, testing

for treatment effects in analysis of variance, testing against location shifts in two-sample

problems) and ARMA time series, they do reach parametric or semiparametric efficiency

bounds at given reference densities, thus reconciling the conflicting objectives of robustness
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and efficiency. The celebrated Chernoff-Savage result (Chernoff and Savage (1958) and, for

time-series, Hallin (1994)) moreover indicates that, far from losing power with respect to

their pseudo-Gaussian counterparts, rank tests make the latter non-admissible under any

non-Gaussian density f .

Extending these attractive features to a multivariate (multiple-output) context, of

course, is highly desirable and the problem of defining multivariate concepts of ranks has

been a long-standing open problem, for which many solutions have been proposed in the

literature. Puri and Sen (1971) for a variety of problems in multivariate analysis (includ-

ing multiple-output regression and MANOVA) and Hallin et al. (1989) for VARMA time

series models construct tests based on it componentwise ranks which, however, fail to be

distribution-free. Building upon an ingenious multivariate extension of the L1 definition of

quantiles, Oja (1999, 2010) defines the so-called spatial ranks; the resulting tests are neither

distribution-free nor efficient. Tests based on the ranks of various concepts of statistical

depth also have been proposed (Liu (1992), Liu and Singh (1993), He and Wang (1997), Zuo

and He (2006)). While distribution-free, these ranks are failing to exploit any directional

information, and hence typically do not allow for any type of asymptotic efficiency. As for

the tests based on the Mahalanobis ranks and signs proposed by Hallin and Paindaveine

(2002a,b, 2004, 2005), they do achieve, within the class of linear models and linear time

series with elliptical densities, parametric or semiparametric efficiency at correctly specified

elliptical reference densities; their distribution-freeness, hence their validity, unfortunately,

is limited to the class of elliptical distributions.

Inspired by measure transportation ideas, a new concept of ranks and signs for multi-

variate observations has been introduced recently under the name of Monge-Kantorovich

ranks and signs in Chernozhukov et al. (2017), under the name of center-outward ranks

and signs in Hallin (2017) and Hallin et al. (2021a), along with the related population

concepts of center-outward distribution and quantile functions. Unlike earlier concepts,

these ranks and signs extend to dimension d > 1 the essential maximal ancillarity prop-

erty (see Section 2.4 and Appendices D1 and D.2 of Hallin et al. (2021a)) of univariate

ranks; the corresponding empirical center-outward distribution functions, moreover, satisfy

a Glivenko-Cantelli result.

Center-outward ranks and signs have been successfully applied (Boeckel et al. (2018),

Deb and Sen (2019), Ghosal and Sen (2019), Shi et al. (2021, 2020)) in the construction of

3



distribution-free tests of independence between random vectors and multivariate goodness-

of-fit; applications to the study of tail behavior and extremes can be found in De Valk

and Segers (2018); Beirlant et al. (2020) are using the related center-outward empirical

quantiles in the analysis of multivariate risk; Hallin et al. (2021b, 2020b) are proposing

center-outward tests and R-estimators for VAR and VARMA time series models with un-

specified innovation densities. The present paper goes one step further in the direction

of a toolkit of distribution-free tests for multiple-output multivariate analysis by deriv-

ing a Hájek-type asymptotic representation result for linear center-outward rank statistics.

Asymptotic normality follows as a corollary, from which center-outward rank tests are con-

structed for multiple-output regression models (including, as special cases, MANOVA and

two-sample location models). Those tests are fully distribution-free, hence valid, over the

entire family of absolutely continuous distributions; for adequate choice of the scores, para-

metric efficiency is attained at chosen densities. Since this paper was written (Hallin et al.,

2020a), some further results (among them, partial Chernoff-Savage and Hodges-Lehmann

properties) on the two-sample problem have been obtained by Deb et al. (2021).

1.3 A motivating example

The importance of center-outward rank tests in daily statistical practice is illustrated

with the following real-life motivating example. The Wisconsin Diagnostic Breast Cancer

(WDBC) data1, first analyzed in Street et al. (1993) in a classification context, contains

records on n = 569 patients from two groups—benign or malignant tumor diagnosis.

For each patient, several features were recorded from the digitized image of a fine needle

aspirate of the breast mass, resulting in d = 30 variables, labeled V1–V30. The two groups

of patients are well separated: the two-sample Hotelling test in dimension d = 30 very sig-

nificantly rejects the null hypothesis of equal locations (R delivers a p-value 0.000, meaning

that the actual p-value is less than 10−22!). However, for some smaller subsets of variables

(dimension three or four), the Hotelling test remains non-significant; the subset consisting

of V12 (mean of fractal dimension), V14 (standard error of texture), V21 (standard er-

ror of symmetry), and V22 (standard error of fractal dimension) is an example. Figure 1

shows bivariate scatterplots and histograms for these four variables, revealing skewness in

1The dataset is available at Machine Learning Repository Dua and Graff (2017).
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all univariate marginals and deviations from elliptical symmetry in bivariate marginals.
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Figure 1: Wisconsin Diagnostic Breast Cancer (WDBC) data: bivariate scatterplots and uni-

variate histograms for mean fractal dimension (V12), standard error of texture (V14), standard

error of symmetry (V21), and standard error of fractal dimension (V22) in 212 malignant patients

(triangles) and 357 benign patients (circles).

The Hotelling and Wilcoxon2 center-outward rank tests have been performed for the

corresponding four-dimensional dataset and all its three-dimensional marginals3; p-values

are shown in Table 1. With p-value 0.0090, the Wilcoxon test in dimension 4 is significant

at 5% and 1% levels, while Hotelling (p-value 0.0595) is not. Turning to dimension 3,

Wilcoxon is always significant at 5% level (at 1% level in all cases but one), while Hotelling

never rejects on 1%. The most spectacular case is that of the subset {V 12, V 14, V 21}

where Wilcoxon and Hotelling yield p-values 0.0327 and 0.9899., respectively. Such dis-

crepancies most likely originate in the skewness, non-ellipticity and/or the heavy tails of

2See Section 5.3.1 for a precise description.
3The center-outward ranks were computed for a 569-point random grid with nR = 20, nS = 28, n0 = 9;

the nS = 28-points over the sphere were generated (seed 1111 in R Core Team (2021)) as in Section A.7.2.
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Variables (12,14,21, 22) (12,14,21) (12,14,22) (12,21,22) (14,21,22)

Hotelling 0.0595 0.9899 0.0299 0.0346 0.2136

c-o Wilcoxon 0.0090 0.0327 0.0007 0.0000 0.0018

Table 1: Wisconsin Diagnostic Breast Cancer (WDBC) data: p-values of the two-sample location

Hotelling and center-outward Wilcoxon rank tests for the 4-dimensional marginal WDBC data

corresponding to the set of variables {V12,V14,VV21,V22} and its 3-dimensional subsets.

the observations; their impact in terms of diagnostic power may have crucial consequences.

1.4 Outline of the paper

The paper is organized as follows. Section 2 briefly describes the main tools to be used:

center-outward distribution and quantile functions (Section 2.1) and their empirical coun-

terparts, the center-outward ranks and signs (Section 2.2). The main properties of these

concepts are summarized in Section 2.3 (Proposition 2.1); their invariance/equivariance

properties are established in Proposition 2.2. Section 3 is entirely devoted to the key theo-

retical results of this paper, which extend and generalize the classical approach by Hájek and

Šidák (1967): a Hájek-type asymptotic representation for multivariate center-outward lin-

ear rank statistics and the resulting asymptotic normality result. Section 4.1 describes the

multiple-output regression model to be considered throughout, which contains, as particu-

lar cases, the two-sample location and MANOVA models, of obvious practical importance.

Local asymptotic normality is established in Section 4.2 for this model under general error

densities (Proposition 4.1) and, for the purpose of future comparisons, for the particu-

lar case of elliptical distributions (Proposition 4.2). The center-outward rank tests we are

proposing are described in Section 5.2, along with (Corollary 5.2) their local asymptotic op-

timality properties. Due to their importance in applications, the particular cases of the hy-

potheses of equal locations in the two-sample problem and no treatment effect in MANOVA

are considered in Section 5.3. Sections 6.1 and 6.2 propose some simple choices of score

functions, extending the classical median-test-score (based on center-outward signs only),

Wilcoxon, and van der Waerden (normal-score) tests. Section 6.3 discusses affine invari-

ance issues. Section 7 is devoted to a Monte Carlo exploration, in dimension d = 2, of the

finite-sample performance of our rank tests which appear to outperform their competitors in

non-elliptical situations while performing equally well under ellipticity. Section 7.3 presents
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an archaeological MANOVA application in dimension d = 4; while traditional MANOVA

methods cannot reject the hypothesis of no treatment effect, our fully distribution-free

center-outward rank-based test rejects it quite significantly, which might lead to revising

some of the conclusions (Phelps et al., 2016) on Middle-East economic exchanges between

Egypt and Syro-Palestine in the Byzantine-Islamic transition period. All proofs are con-

centrated in an online appendix where we also provide simulations in dimension d = 6.

2 Center-outward ranks and signs in Rd

2.1 Center-outward distribution functions

Throughout, denote by Z(n) a triangular array (Z
(n)
1 , . . . ,Z

(n)
n ), n ∈ N of i.i.d. d-dimensional

random vectors with distribution P in the family Pd of absolutely continuous distributions

on Rd. The notation spt(P) is used for the support of P, spt(P) for its interior. The

open (resp. closed) unit ball and the unit hypersphere in Rd are denoted by Sd (resp. Sd)

and Sd−1, respectively; Ud stands for the spherical4 uniform distribution over Sd, µd for the

Lebesgue measure over Rd; Id is the d× d unit matrix, 1A the indicator of the Borel set A.

The definition of the center-outward distribution function of P is particularly simple

for P in the so-called class P+
d of distributions with nonvanishing densities—namely, the

class of all distributions with density f := dP/dµd such that, for all D ∈ R+, there exist

constants λ−D;P and λ+
D;P satisfying 0 < λ−D;P ≤ f(z) ≤ λ+

D;P < ∞ for all z with ‖z‖ ≤ D

(so that spt(P) = Rd and P-a.s. is equivalent to µd-a.e.). The main result in McCann

(1995) then implies the existence of an a.e. unique convex lower semi-continuous func-

tion ϕ : Rd → R with gradient ∇ϕ such that5 ∇ϕ#P = Ud. Call F± := ∇ϕ the

center-outward distribution function of P. It follows from Figalli (2018) that F± defines

a homeomorphism between the punctured unit ball Sd \{0} and its image Rd \F−1
± (0):

call Q± : u 7→ Q±(u) := F−1
± (u), u 6= 0 the center-outward quantile function. Figalli also

shows that, defining Q±(0) := F−1
± (0) yields a convex and compact subset with Lebesgue

measure zero in Rd, the center-outward median set of P.

4Namely, the spherical distribution with uniform (over [0, 1]) radial density—equivalently, the product
of a uniform over the distances to the origin and a uniform over the unit sphere Sd−1. For d = 1, it
coincides with the Lebesgue uniform; for d ≥ 2, it has unbounded density at the origin.

5We borrow from measure transportation the convenient notation T#P (T : Rd → Rd pushes P forward
to T#P) for the distribution under Z ∼ P of T (Z).
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All the intuition and all the properties of center-outward distribution and quantile

functions hold for P ∈ P+
d ; this special case is the one considered in Hallin (2017). A more

general case is addressed in del Barrio et al. (2020) and Hallin et al. (2021a) where we refer

to for details, but requires more technical definitions, which we are skipping here. Note,

however, that while some statements below only hold under P ∈ P+
d , many others (including

validity), due to distribution-freeness, can be made under the very general condition P ∈ Pd.

2.2 Center-outward ranks and signs

Except for a few particular cases such as spherical distributions, the above definitions

are not meant for an analytical derivation of F± and Q± which typically involves Monge-

Ampère equations;6 estimation is possible, though, via their empirical counterparts F
(n)
±

and Q
(n)
± , based on center-outward ranks and signs, which we now describe.

Associated with the n-tuple Z
(n)
1 , . . . ,Z

(n)
n , the empirical center-outward distribution

function F
(n)
± is mapping Z

(n)
1 , . . . ,Z

(n)
n to a “regular” grid Gn of the unit ball Sd. That

grid Gn is obtained as follows:

(a) first factorize n into n = nRnS + n0, with 0 ≤ n0 < min(nR, nS);

(b) next consider a “regular array” SnS
:= {snS

1 , . . . , snS
nS
} of nS points on the sphere Sd−1

(see the comment below);

(c) finally, the grid consists in the collection Gn of the nRnS points g of the form(
r/
(
nR + 1

))
snS
s , r = 1, . . . , nR, s = 1, . . . , nS,

along with (n0 copies of) the origin in case n0 6= 0: a total number n− (n0 − 1) or n

of distinct points, thus, according as n0 > 0 or n0 = 0.

By “regular” we mean “as uniform as possible”, in the sense, for example, of the low-

discrepancy sequences of the type considered in numerical integration and Monte-Carlo

methods (see, e.g., Niederreiter (1992), Judd (1998), or Santner et al. (2003)). The

only mathematical requirement needed for Proposition 2.1 below is the weak convergence,

as n→∞, of the uniform discrete distribution over Sn to the uniform distribution over Sd;

all sequences Sn satisfying that requirement yield the same asymptotic results. A uniform

i.i.d. sample of points over Sd, for example, satisfies the requirement but fails to produce

mutually independent ranks and signs; moreover, one easily can construct arrays that

6In particular, no closed forms of F± and Q± are known for non-spherical elliptical distributions.
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are “more regular” than an i.i.d. one. For instance, one could see that nS or nS − 1

of the points snS
s in Sn are such that − snS

s also belongs to SnS
, so that ‖

∑nS

s=1 snS
s ‖

is 0 or 1 according as nS is even or odd. One also could consider factorizations of the

form n = nRnS + n0 with nS even and 0 ≤ n0 < min(2nR, nS), then require Sn to be

symmetric with respect to the origin, automatically yielding
∑nS

s=1 snS
s = 0.

The empirical counterpart F
(n)
± of F± is defined as the (bijective, once the origin is

given multiplicity n0) mapping from Z
(n)
1 , . . . ,Z

(n)
n to the grid Gn that minimizes the sum

of squared Euclidean distances
∑n

i=1

∥∥F(n)
± (Z

(n)
i ) − Z

(n)
i

∥∥2
. That mapping is unique with

probability one; in practice, it is obtained via a simple optimal assignment (pairing) algo-

rithm (a linear program; see Section 4 of Hallin (2017) for details).

Call center-outward rank of Z
(n)
i the integer (in {1, . . . , nR} or {0, . . . , nR} according

as n0 = 0 or not) R
(n)
i;±s := (nR + 1)

∥∥F(n)
± (Z

(n)
i )
∥∥ and center-outward sign of Z

(n)
i the unit

vector S
(n)
i;± := F

(n)
± (Z

(n)
i )/

∥∥F(n)
± (Z

(n)
i )
∥∥ for F

(n)
± (Z

(n)
i ) 6= 0; for F

(n)
± (Z

(n)
i ) = 0, put S

(n)
i;±s = 0.

Some desirable finite-sample properties, such as strict independence between the ranks

and the signs, only hold for n0 = 0 or 1, due to the fact that the mapping from the sample

to the grid is no longer injective for n0 ≥ 2. This, which has no asymptotic consequences

(since the number n0 of tied values involved is o(n) as n → ∞), is easily taken care of by

the following tie-breaking device:

(i) randomly select n0 directions s0
1, . . . , s

0
n0

in SnS
, then

(ii) replace the n0 copies of the origin with the new gridpoints 1
2(nR+1)

s0
1, . . . ,

1
2(nR+1)

s0
n0

.

The resulting grid (for simplicity, the same notation Gn is used) no longer has multiple

points, and the optimal pairing between the sample and the grid is bijective; the n0 smallest

ranks, however, take the non-integer value 1/2. Again, this tie-breaking device has no

influence on asymptotic results.

2.3 Main properties

This section summarizes the main properties of the concepts defined in Sections 2.1 and 2.2;

further properties and a proof for Proposition 2.1 can be found in Hallin et al. (2021a).

Proposition 2.1. Let F± denote the center-outward distribution function of P ∈ Pd. Then,

(i) F± is a probability integral transformation of Rd: namely, Z ∼ P iff F±(Z) ∼ Ud;

by construction, ‖F±(Z)‖ is uniform over the interval [0, 1], F±(Z)/‖F±(Z)‖ uniform
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over the sphere Sd−1, and they are mutually independent.

Let Z
(n)
i , . . . ,Z

(n)
i be i.i.d. with distribution P ∈ Pd and center-outward distribution func-

tion F±. Then,

(ii)
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is uniformly distributed over the n!/n0! permutations with

repetitions of the gridpoints in Gn with the origin counted as n0 indistinguishable

points (resp. the n! permutations of Gn if either n0 ≤ 1 or the tie-breaking device

described in Section 2.2 is adopted);

(iii) if either n0 = 0 or the tie-breaking device described in Section 2.2 is adopted, the

n-tuple of center-outward ranks
(
R

(n)
1;±, . . . , R

(n)
n;±

)
and the n-tuple of center-outward

signs
(
S

(n)
1;±, . . . ,S

(n)
n;±

)
are mutually independent;

(iv) if either n0 ≤ 1 or the tie-breaking device described in Section 2.2 is adopted,

the n-tuple
(
F

(n)
± (Z

(n)
1 ), . . . ,F

(n)
± (Z

(n)
n )
)

is essentially maximal ancillary.7

Assuming, moreover, that P ∈ P+
d ,

(v) (Glivenko-Cantelli) max
1≤i≤n

∥∥∥F(n)
± (Z

(n)
i )− F±(Z

(n)
i )
∥∥∥→ 0 a.s. as n→∞.

Center-outward distribution functions, ranks, and signs also inherit, from the invariance

features of Euclidean distances, elementary but quite remarkable invariance and equivari-

ance properties under orthogonal transformations. Denote by FZ
± the center-outward distri-

bution function of Z and by F
Z;(n)
± the empirical distribution function of a sample Z1, . . . ,Zn

associated with a grid Gn.

Proposition 2.2. Let µ ∈ Rd and denote by O a d× d orthogonal matrix. Then,

(i) Fµ+OZ
± (µ+ Oz) = OFZ

±(z), z ∈ Rd;

(ii) denoting by F
µ+OZ;(n)
± the empirical distribution function of the sample µ+OZ1, . . . ,µ+OZn

associated with the grid OGn (hence, by F
Z;(n)
± the empirical distribution function of

the sample Z1, . . . ,Zn associated with the grid Gn),

Fµ+OZ;(n)
± (µ+ OZi) = OFZ;(n)

± (Zi), i = 1, . . . , n; (2.1)

(iii) the center-outward ranks R
(n)
i;± and the cosines S

(n)′
i;± S

(n)
j;± computed from the sam-

ple Z1, . . . ,Zn and the grid Gn are the same as those computed from the

sample µ+ OZ1, . . . ,µ+ OZn and the grid OGn.

See Appendix A.2 for the proof.

7See Section 2.4 and Appendices D1 and D.2 of Hallin et al. (2021a) for a precise definition of this
crucial property (which entails distribution-freeness) and a proof.
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These orthogonal equivariance and invariance properties, however, do not extend to

non-orthogonal affine transformations.

3 Hájek representation and asymptotic normality

As in Hájek and Šidák (1967), the rank-based statistics to be used in this context are

quadratic forms in vectors of linear rank statistics—involving center-outward ranks and

signs instead of ordinary ranks, though. Fundamental in Hájek’s approach is an asymptotic

representation result establishing the asymptotic equivalence between linear rank statistics

and sums of independent variables. We start with a center-outward version of that result;

asymptotic normality follows as a corollary.

3.1 Linear center-outward rank statistics

Linear rank statistics in this context depend on a score function J : Sd → R
d and are

indexed by triangular arrays {c(n)
1 , . . . , c

(n)
n } of real numbers (regression constants). On

those score functions and regression constants we are making the following assumptions.

Assumption 3.1. (i) J : Sd → R
d is continuous over Sd;

(ii) for any sequence s(n) = {s(n)
1 , . . . , s

(n)
n } of n-tuples in Sd such that the uniform discrete

distribution over s(n) converges weakly to Ud as n→ ∞,

lim
n→∞

n−1tr
n∑
r=1

J(s(n)
r )J′(s(n)

r ) = tr

∫
Sd

J(u)J′(u) dUd (3.2)

where
∫
Sd

J(u)J′(u) dUd <∞ has full rank.

As we shall see, a special role is played, in relation with spherical distributions, by score

functions of the form

J(u) := J(‖u‖) u

‖u‖
1[‖u‖6=0] u ∈ Sd (3.3)

for some function J : [0, 1)→ R. Assumption 3.1 then holds if (i) J is continuous and (ii)

0 < lim
n→∞

n−1

n∑
r=1

J2
(
r/(n+ 1)

)
=

∫ 1

0

J2(u) du <∞ (3.4)

(a sufficient condition for (3.4) is the traditional assumption that J has bounded variation,

i.e. is the difference of two nondecreasing functions). Both (3.2) and (3.4) extend the

conditions on univariate scores in Section V.1.6 of Hájek and Šidák (1967).
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As for the regression constants, we assume that the classical Noether conditions hold.

Assumption 3.2. The c
(n)
i ’s are not all equal (for given n) and satisfy

n∑
i=1

(c
(n)
i − c̄(n))2/max

1≤i≤n
(c

(n)
i − c̄(n))2 −→∞ as n→∞ (3.5)

where c̄(n) := n−1
∑n

i=1 c
(n)
i .

Associated with the score functions J, consider the d-dimensional statistics

T∼
(n)
a =

( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))J(F(n)

± (Z
(n)
i )), (3.6)

T∼
(n)
e :=

( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))E

[
J(F±(Z

(n)
i ))

∣∣∣∣F(n)
± (Z

(n)
i )

]
,

and

T(n) :=
( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))J(F±(Z

(n)
i )).

Adopting Hájek’s terminology, call T∼
(n)
a an approximate-score linear rank statistic and T∼

(n)
e

an exact-score linear rank statistic. As we shall see, both T∼
(n)
a and T∼

(n)
e admit the same

asymptotic representation T(n), hence are asymptotically equivalent. For score functions of

the form (3.3), we have

T∼
(n)
a =

( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))J

( R
(n)
i;±

nR + 1

)
S

(n)
i;± ,

T∼
(n)
e =

( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2

×
n∑
i=1

(c
(n)
i − c̄(n))E

[
J
(∥∥F±(Z

(n)
i )
∥∥) F±(Z

(n)
i )∥∥F±(Z
(n)
i )
∥∥
∣∣∣∣F(n)

± (Z
(n)
i )

]
,

and

T(n) =
( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))J(

∥∥F±(Z
(n)
i )
∥∥)

F±(Z
(n)
i )∥∥F±(Z
(n)
i )
∥∥ .

3.2 Asymptotic representation and asymptotic normality

The following proposition is a center-outward multivariate counterpart of the asymptotic

results in Section V.1.6 of Hájek and Šidák (1967). Throughout this section, we assume

that F
(n)
± is computed from a triangular array (Z

(n)
1 , . . . ,Z

(n)
n ), n ∈ N of i.i.d. d-dimensional

random vectors with distribution P ∈ P+
d and center-outward distribution function F±.
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Proposition 3.1 (Hájek representation). Let Assumptions 3.1 and 3.2 hold

and Z
(n)
1 , . . . ,Z

(n)
n be i.i.d. with distribution P ∈ P+

d . Then,

(i) T∼
(n)
a −T(n) = oq.m.(1), (ii) T∼

(n)
e −T(n) = oq.m.(1), and (iii) T∼

(n)
a −T∼

(n)
e = oq.m.(1)

as n→∞ in such a way that nR →∞ and nS →∞.8

See Appendix A.3 for the proof.

The asymptotic normality of T∼
(n)
a and T∼

(n)
e then follows from Proposition 3.1 and the

asymptotic normality of T(n), along with the distribution-freeness of T∼
(n)
a and T∼

(n)
e .

Proposition 3.2 (Asymptotic normality). Let Assumptions 3.1 and 3.2 hold and Z
(n)
1 , . . . ,Z

(n)
n

be i.i.d. with distribution P ∈ Pd. Then, T∼
(n)
a , T∼

(n)
e , and T(n) are asymptotically normal

as n → ∞ (in such a way that nR → ∞ and nS → ∞), with mean 0 and covari-

ance
∫
Sd

J(u)J′(u) dUd reducing, for J of the form (3.3), to d−1
∫ 1

0
J2(u) du Id.

See Appendix A.4 for the proof.

4 Multiple-output linear models

Based on the center-outward ranks and signs of Section 3, we now construct rank tests

for the slopes of multiple-output linear models, extending to a multivariate setting the

methods developed, e.g. in Puri and Sen (1985) for the single-output case.

4.1 The model

Consider the multiple-output linear (or multiple-output regression) model under which an

observed Y(n) satisfies

Y(n) = 1nβ
′
0 + C(n)β + ε(n), (4.1)

where 1n := (1, . . . , 1)′,

Y(n) =


Y

(n)
11 Y

(n)
12 . . . Y

(n)
1d

...
...

...

Y
(n)
n1 Y

(n)
n2 . . . Y

(n)
nd

 =


Y

(n)′
1

...

Y
(n)′
n


8The notation oq.m.(1) stands for a sequence of random vectors tending to zero in quadratic mean

(hence also in probability).
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is an n× d matrix of n observed d-dimensional outputs,

C(n) =


c

(n)
11 c

(n)
12 . . . c

(n)
1m

...
...

...

c
(n)
n1 c

(n)
n2 . . . c

(n)
nm

 =


c

(n)′
1

...

c
(n)′
n


an n×m matrix of (specified) deterministic covariates,

β′0 = (β01, . . . , β0d) and β =


β11 β12 . . . β1d

...
...

...

βm1 βm2 . . . βmd

 =


β′1
...

β′m


a d-dimensional intercept and an m× d matrix of regression coefficients, and

ε(n) =


ε

(n)
11 ε

(n)
12 . . . ε

(n)
1d

...
...

...

ε
(n)
n1 ε

(n)
n2 . . . ε

(n)
nd

 =


ε

(n)′
1

...

ε
(n)′
n


an n×d matrix of nonobserved i.i.d. d-dimensional errors ε

(n)
i , i = 1, . . . , n with density fε.

If β0 is to be identified, a location constraint has to be imposed on fε. One could think of

the classical constraint Eε
(n)
i = 0 (requiring the existence of a finite mean): β0 + β′c

(n)
i

then is to be interpreted as the expected value of Y
(n)
i for covariate values c

(n)
i . In the

context of this paper, however, a more natural location constraint (which moreover does

not require any integrability condition) is Fε±(0) = 0, where Fε± stands for the center-

outward distribution function of the ε
(n)
i ’s: 0 and β0 + β′c

(n)
i then are center-outward

medians for ε and Y
(n)
i , respectively.

In most applications, however, one is interested mainly in the impact of the input

covariates c
(n)
i on the output Y

(n)
i : the matrix β is the parameter of interest, and β0 is

a nuisance. There is no need, then, for identifying β0 nor qualifying β0 + β′c
(n)
i as a

mean or a center-outward median for Y
(n)
i : β is to be interpreted as a matrix of treatment

effects governing the shift δ′β in the distribution of the d-dimensional output produced

by a variation δ in the m-dimensional covariate. Center-outward ranks and signs being

insensitive to shifts, there is even no need to specify, nor to estimate β0.

4.2 Local Asymptotic Normality (LAN)

The model (4.1) is easily seen to be locally asymptotically normal (LAN) under the following

two classical assumptions.
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Assumption 4.1. The square root z 7→ (fε)1/2 (z) of the error density is differentiable in

quadratic mean,9 with quadratic mean gradient∇ (fε)1/2. Lettingϕfε := −2∇ (fε)1/2/(fε)1/2,

assume moreover that the information matrix Ifε := E
[
ϕfε(ε)ϕ′fε(ε)

]
has full rank d.

On the regression constants C(n), we borrow from Hallin and Paindaveine (2005) the

following assumptions; note that Part (iii) requires that each of the m triangular arrays of

constants c
(n)
ij , i ∈ N, j = 1, . . . ,m satisfies Assumption 3.2.

Assumption 4.2. Let c̄(n) := n−1
∑n

i=1 c
(n)
i , V

(n)
c := n−1

∑n
i=1

(
c

(n)
i − c̄(n)

)(
c

(n)
i − c̄(n)

)′
, and

denote by D
(n)
c the diagonal matrix with diagonal elements

(
V

(n)
c

)
jj

, j = 1, . . . ,m:

(i)
(
V

(n)
c

)
jj
> 0 for j = 1, . . . ,m;

(ii) defining R
(n)
c := D

(n)−1/2
c V

(n)
c D

(n)−1/2
c , the limit Rc := limn→∞R

(n)
c exists, is positive

definite, and factorizes into Rc =
(
KcK

′
c

)−1
for some full-rank m×m matrix Kc;

(iii) letting c̄
(n)
j := n−1

∑n
i=1 c

(n)
ij , the following Noether conditions hold:

lim
n→∞

n∑
i=1

(
c

(n)
ij − c̄

(n)
j

)2
/ max

1≤i≤n

(
c

(n)
ij − c̄

(n)
j

)2
=∞, j = 1, . . . ,m.

Letting Z
(n)
i = Z

(n)
i (β) := Y

(n)
i −1nβ

′
0−β′c

(n)
i , the following result readily follows from,

e.g., (Lehmann and Romano, 2005, Theorem 12.2.3). In order to simplify the notation, we

throughout adopt the same contiguity rates as in Hallin and Paindaveine (2005). Namely,

we consider local perturbations of the parameter β of the form β + ν(n)τ where τ is

an m× d matrix and ν(n) := n−1/2K
(n)
c , with K

(n)
c :=

(
D

(n)
c

)−1/2
Kc. This is a notational

convenience and has no impact on the form of locally asymptotically optimal test statistics.

Proposition 4.1. Under Assumptions 4.1 and 4.2, the model (4.1) is LAN (with respect

to β), with central sequence ∆
(n)
β0;fε(β) := n1/2vecΛ

(n)
β0;fε where

Λ
(n)
β0;fε :=

1

n

n∑
i=1

K(n)′
c

(
c

(n)
i − c̄(n)

)
ϕ′fε(Z

(n)
i ) (4.2)

and Fisher information Ifε ⊗ Im

LAN for the same linear model (4.1) has been established (in the broader context of

regression with VARMA errors in Hallin and Paindaveine (2005)) under the assumption

9It follows from a result by Lind and Roussas (1972) independently rediscovered by Garel and Hallin
(1995) that quadratic mean differentiability is equivalent to partial quadratic mean derivability with respect
to all variables.

15



that the error density fε is centered elliptical,10 that is, has the form

fε(z) = κ−1
d,f

(
detΣ

)−1/2
f
(
(z′Σ−1z)1/2

)
(4.3)

with κd,f :=
(
2πd/2/Γ(d/2)

) ∫∞
0
rd−1f(r) dr for some symmetric positive definite shape ma-

trix Σ and some radial density f (over R+
0 ) such that f(z) > 0 Lebesgue-a.e. in R+

0

and
∫∞

0
rd−1f(r) dr < ∞. When ε is elliptical with shape matrix Σ and radial density f,

‖Σ−1/2ε‖ has density f?d(r) = (µd−1;f)
−1rd−1f(r)I[r > 0], where µd−1;f :=

∫∞
0
rd−1f(r)d r, and

distribution function F ?
d;f.

Assumption 4.1 then is equivalent to the mean square differentiability, with quadratic

mean derivative
(
f1/2
)′
, of x 7→ f1/2(x), x ∈ R+

0 (a scalar); letting ϕf :=−2
(
f1/2
)′
/f1/2, we

automatically get Id;f :=
∫ 1

0

(
ϕf ◦

(
F ?
d;f

)−1
(u)
)2

du < ∞. Define the sphericized residuals

Z
(n) ell
i :=

(
Σ̂

(n))−1/2(
Y

(n)
i − β0 − β′c

(n)
i

)
=
(
Σ̂

(n))−1/2(
Z

(n)
i

)
, i = 1, . . . , n (4.4)

where the matrix
(
Σ̂

(n))1/2
is the symmetric root of a consistent estimator Σ̂

(n)
of some mul-

tiple aΣ of Σ (a > 0 an arbitrary constant) satisfying the following consistency assumption.

Assumption 4.3. Under (4.1), Σ̂
(n)
− aΣ = OP(n−1/2) as n→∞, for some a > 0; more-

over, Σ̂
(n)

is invariant under permutations and reflections (with respect to the origin) of the

residuals Z
(n)
i = (Y

(n)
i −1nβ

′
0−β′c

(n)
i )’s, and equivariant under their affine transformations.

A traditional choice which, however, rules out heavy-tailed radial densities with infinite

second-order moments, is the empirical covariance of the Z
(n)
i ’s. An alternative, satisfy-

ing Assumption 4.3 without any moment assumptions, is Tyler’s estimator of scatter, see

Theorem 4.1 in Tyler (1987) for strong consistency, Theorem 4.2 for asymptotic normality.

Under Assumption 4.3, which entails the affine invariance of Z
(n) ell
i , Proposition 4.1

takes the following form.

Proposition 4.2. Under Assumptions 4.2 and 4.3, the model (4.1) with error density fε

of the elliptical type (4.3) and quadratic mean differentiable f1/2 is LAN (with respect to β),

with central sequence

∆
(n) ell

Σ̂
(n)
,β0;f

(β) := n1/2
((

Σ̂
(n))−1/2 ⊗ Im

)
vecΛ

(n) ell

Σ̂
(n)
,β0;f

(β) = ∆
(n) ell
Σ,β0;f(β) + oP(1) (4.5)

where

10For simplicity, we henceforth are dropping the word “centered.”
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Λ
(n) ell

Σ̂
(n)
,β0;f

(β) :=
1

n

n∑
i=1

ϕf

(∥∥Z(n) ell
i

∥∥)K(n)′
c

(
c

(n)
i − c̄(n)

)( Z
(n) ell
i∥∥Z(n) ell
i

∥∥
)′
, (4.6)

yielding a Fisher information matrix 1
d
Id;f Σ

−1 ⊗ Im.

This LAN result, where the residuals are subjected to preliminary (empirical) spheri-

cization via
(
Σ̂

(n))−1/2
, stresses the fact that elliptical families with given f are parametrized

spherical families (indexed by Σ). Actually, since ∆
(n) ell
Σ,β0;f(β) =

(
Id ⊗Σ−1/2

)
∆

(n) ell
Id,β0;f(β),

the limiting Gaussian shift experiments associated with elliptical and spherical errors co-

incide (with the perturbation vec(τ ) of vec(β) in the elliptical case corresponding to a

perturbation vec(ς) =
(
Id ⊗Σ−1/2

)
vec(τ ) in the spherical case). That invariance under

linear sphericization of local limiting Gaussian shifts, however, does not extend to the

general case of Proposition 4.1.

5 Rank tests for multiple-output linear models

5.1 Elliptical (Mahalanobis) rank tests

Rank-based inference for elliptical multiple-output linear models was developed in Hallin

and Paindaveine (2005). The ranks and the signs there are the elliptical or Mahalanobis

ranks and signs—namely, the ranks R
(n) ell
i of the moduli

∥∥Z(n) ell
i ‖ and the signs (direc-

tions) S
(n) ell
i := Z

(n) ell
i /‖Z(n) ell

i ‖, both computed, in agreement with the above remark on

the spherical nature of elliptical families, after the empirical sphericization (4.4).

Consider the null hypothesis H
(n)
0 (β0) under which Y(n) satisfies (4.1) with β = β0,

specified β0, elliptical fε, and radial density f. Hallin and Paindaveine (2005) define

Λ∼
(n) ell
J := n−1

n∑
i=1

J
(R(n) ell

i

n+ 1

)
S

(n) ell
i

(
c

(n)
i − c̄(n)

)′
K(n)

c

for a score function J : [0, 1)→ R and show that the test of H
(n)
0 (β0) can be based on

Q˜ (n) ell
J (β0) =

n d∫ 1

0
J2(u)du

(
vecΛ˜ (n) ell

J

)′(
vecΛ˜ (n) ell

J

)
,

which has asymptotically χ2
md distribution under the null.

The validity of tests based on those elliptical ranks and signs, unfortunately, requires

an elliptical fε. A welcome relaxation of stricter Gaussianity assumptions, ellipticity re-

mains an extremely strong symmetry requirement; it is made, essentially, for lack of any-

thing better but is unlikely to hold in practice. If the assumption of ellipticity is to be
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waived, elliptical ranks and signs are losing their distribution-freeness for the benefit of

the center-outward ranks and signs. And, since center-outward ranks and signs, in view of

Proposition 2.2, are invariant under location shift, center-outward rank tests can address

the (more realistic) unspecified intercept case without any additional estimation step.

5.2 Center-outward rank tests

Denote by F
(n)
± the empirical center-outward distribution associated with the observed

n-tuple (Z
(n)
1 , . . . ,Z

(n)
n ) where Z

(n)
i now is defined as Y

(n)
i − β

′c
(n)
i , by R

(n)
i;± and S

(n)
i;± , re-

spectively, the corresponding center-outward ranks and signs. In line with the form of the

central sequence (4.2), consider

Λ∼
(n)±
J := n−1

n∑
i=1

K(n)′
c

(
c

(n)
i − c̄(n)

)
J′

(
R

(n)
i;±

nR + 1
S

(n)
i;±

)
. (5.1)

It follows from the asymptotic representation result of Proposition 3.1 that, when the

actual density is fε, for the scores J = ϕfε ◦ F−1
± , with ϕfε defined in Assumption 4.1

∆∼
(n)
β0;fε(β) := n1/2vecΛ∼

(n)±
J = ∆

(n)
β0;fε(β) + oP(1) (5.2)

and ∆∼
(n)
β0;fε(β) thus constitutes a version, based on the center-outward ranks and signs and

hence distribution-free, of the central sequence ∆
(n)
β0;fε(β) in (4.2). The following asymptotic

normality result then holds.

Proposition 5.1. Let Y
(n)
i satisfy (4.1) and Assumptions 3.1 and 4.2 hold. Then,

(i) n1/2vecΛ∼
(n)±
J is asymptotically normal, with mean 0 and covariance IJ ⊗ Im where

IJ :=
∫
Sd

J(u)J′(u)dUd, under the null hypothesis H
(n)
0 (β0) that β = β0 while the

intercept β0 and the distribution P ∈ Pd of the ε’s remain unspecified;

(ii) the test rejecting H
(n)
0 (β0) whenever the test statistic

Q
∼

(n)±

J
:= n

(
vecΛ∼

(n)±
J

)′
I−1

J ⊗ Im

(
vecΛ∼

(n)±
J

)
(5.3)

exceeds the (1 − α) quantile of a chi-square distribution with md degrees of freedom

has asymptotic level α as n→∞;11

11Since Q
∼

(n)±

J
is distribution-free under the null hypothesis H

(n)
0 (β0), the finite-n size of this test is

uniform over H
(n)
0 (β0), hence uniformly close to α for n large enough. This is in sharp contrast with daily

practice pseudo-Gaussian tests, which remain asymptotically valid under a broad range of distributions,
albeit not uniformly so (see Section 1.1).
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(iii) for J = ϕfε ◦ F−1
± where F± denotes the center-outward distribution function asso-

ciated with fε, the covariance IJ ⊗ Im coincides with Ifε ⊗ Im and the test based

on Q
∼

(n)±

Jfε
is, under error density fε, locally asymptotically maximin, at asymptotic

level α, for the null hypothesis H
(n)
0 (β0).

Corollary 5.2. (i) In the particular case of a spherical score of the form (3.3), the test

statistic Q
∼

(n)±

J
simplifies into

Q
∼

(n)±

J
=

nd∫ 1

0
J2(u)du

(
vecΛ∼

(n)±
J

)′ (
vecΛ∼

(n)±
J

)
(5.4)

where Λ∼
(n)±
J := n−1

∑n
i=1 J

(
R

(n)
i;±

nR+1

)
K

(n)′
c

(
c

(n)
i − c̄(n)

)
S

(n)′
i;± and n1/2vecΛ∼

(n)±
J is asymp-

totically normal with mean 0 and variance d−1
∫ 1

0
J2(u)du Imd.

(ii) The test statistic Q
∼

(n)±

J
with spherical score Jf := ϕf ◦

(
F ?
d;f

)−1
yields locally asymp-

totically optimal tests under the spherical density with radial density f.

The results of this section provide asymptotic (centered normal and chi-square) distri-

butions under the null. Deriving asymptotic (shifted normal and noncentral chi-square)

distributions under local alternatives is a straightforward application of Le Cam’s third

lemma. The shifts and noncentrality parameters, however, take the form of integrals in-

volving the score function J = ϕfε ◦F−1
± where F± denotes the center-outward distribution

function associated with the actual density fε. Unless fε is spherical, these scores, ac-

cordingly, cannot be expressed under analytical form and these integrals thus are of little

practical interest: rather than overloading the paper with cumbersome but useless formulas,

we do not report them. The case of spherical densities fε is an exception, though: provided

that the test statistic itself is based on spherical scores, the noncentrality parameters of its

asymptotic non-null chi-square distributions coincide with those obtained under ellipticity

in Hallin and Paindaveine (2005): see Hallin and Paindaveine (2002b) for numerical values,

AREs, Chernoff-Savage and Hodges-Lehmann results.

5.3 Some particular cases

In this section, we provide explicit forms of the test statistic for the two-sample and

MANOVA problems. Because of their simplicity and practical value (see Section 6.1),

we concentrate on the case (5.4) of spherical scores, from which the general case (5.3) is

easily deduced (essentially, by substituting J
(
R

(n)
i;±

nR+1
S

(n)
i;±

)
for J

(
R

(n)
i;±

nR+1

)
S

(n)
i;±).
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5.3.1 Center-outward rank tests for two-sample location

An important particular case is the two-sample location model, where n = n1 +n2 and (4.1)

holds with covariates of the form C(n) = (1′n1
,0′n2

)′ (with 1n1 an n1-dimensional column vec-

tor of ones, 0n2 an n2-dimensional column vector of zeros); the parameter β = (β11, . . . , β1d)
′

here is a d-dimensional row vector. The objective is to test the null hypothesis H0 : β = 0d

under which the distributions of Y
(n)
1 , . . . ,Y

(n)
n1 and Y

(n)
n1+1, . . . ,Y

(n)
n coincide. Elemen-

tary computation yields c̄(n) = n1/n, V
(n)
c = n1n2/n

2, and Kc = 1. If the regular

grid Gn is chosen such that ‖
∑nS

s=1 snS
s ‖ = 0 (which is always possible in view of Sec-

tion 2.2),
∑n

i=1 J
(
R

(n)
i;±

nR+1

)
S

(n)
i;± = 0 and the test statistic (5.4) takes the simple form

Q
∼

(n)±

J
=

(
nd/n1n2

∫ 1

0

J2(u)du

)∥∥∥∥∥
n1∑
i=1

J
( R

(n)
i;±

nR + 1

)
S

(n)
i;±

∥∥∥∥∥
2

; (5.5)

else, a centering term n1

n

∑n
i=1 J

(
R

(n)
i;±

nR+1

)
S

(n)
i;± is to be subtracted. Assumption 4.2 (iii) requi-

res limn→∞ nmin{n1, n2}/max{n1, n2} =∞, which holds whenever

lim
n→∞

min{n1, n2} =∞. (5.6)

Under Assumptions 3.1 and (5.6), with P ∈ Pd, Q∼
(n)±

J
is, under H0, asymptotically χ2

with d degrees of freedom and the null hypothesis can be rejected at asymptotic level α

whenever Q
∼

(n)±

J
exceeds the (1− α) quantile of a χ2

d distribution.

5.3.2 Center-outward rank tests for MANOVA

Another important special case of model (4.1) is the multivariate K-sample location or

MANOVA model. The observation here decomposes into K samples, with respective

sizes n1, . . . , nK and n =
∑K

k=1 nk. Precisely, Y(n) =:
(
Y(n;1), . . . ,Y(n;k), . . . ,Y(n;K)

)
with

Y(n;k) =


Y

(n)
k;11 Y

(n)
k;12 . . . Y

(n)
k;1d

...
...

...

Y
(n)
k;nk1 Y

(n)
k;nk2 . . . Y

(n)
k;nkd


and (4.1) holds with the matrix of covariates

C(n) =


d

(n)
11 d

(n)
12 . . . d

(n)
1,K−1

d
(n)
21 d

(n)
22 . . . d

(n)
2,K−1

...
... · · · ...

d
(n)
K1 d

(n)
K2 . . . d

(n)
K,K−1,
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where d
(n)
ij = 1ni

I[i = j], i = 1, . . . , K and j = 1, . . . , K− 1. The null hypothesis is the hy-

pothesis of no treatment effect H0 : β = 0(K−1)×d.

Letting v(n) := (n1/n, . . . , nK−1/n)′, the matrix Vc
(n) in Assumption 4.2 takes the

form Vc
(n) = diag{v(n)} − v(n)v(n)′, where diag{v(n)} stands for the diagonal matrix

with diagonal entries v(n). If the regular grid Sn is chosen such that ‖
∑nS

s=1 snS
s ‖ = 0

and (V
(n)
c )−1/2 is substituted for its limit K

(n)
c , the test statistic (5.4) simplifies into

Q
∼

(n)±

J
=

d∫ 1

0
J2(u)du

K∑
k=1

1

nk

∥∥∥∥∥∥
n1+...+nk∑

i=n1+...+nk−1+1

J
( R

(n)
i;±

nR + 1

)
S

(n)
i;±

∥∥∥∥∥∥
2

.

Assumption 4.2(iii) is satisfied as soon as limn→∞min{n1, . . . , nK} → ∞. Assuming

moreover that 0 < lim infn→∞ nk/n ≤ lim supn→∞ nk/n < 1 for 1 ≤ k ≤ K, the limit ma-

trix Rc is positive definite12 and Assumption 4.2(ii) is satisfied as well. Then, under the null

hypothesis of no treatment effect, Q
∼

(n)±

J
is asymptotically chi-square with (K− 1)d degrees

of freedom and the test rejecting H0 whenever Q
∼

(n)±

J
exceeds the corresponding (1 − α)

quantile has asymptotic level α irrespective of the actual error distribution P ∈ Pd. This

test is a multivariate generalization of the well-known univariate rank test for K-sample

equality of location (the univariate one-way ANOVA hypothesis of no treatment effect), see

(Hájek and Šidák, 1967, p.170). Note that, for K = 2, Q
∼

(n)±

J
coincides with the two-sample

test statistic obtained in Section 5.3.1.

6 Choosing a score function

Section 5 allows us to construct, based on any J or J satisfying Assumption 3.1 (either

with (3.2) or (3.4)), strictly distribution-free center-outward rank tests of the null hypoth-

esis H
(n)
0 (β0) under which β = β0 while the intercept β0 and the error distribution P ∈ Pd

remain unspecified. All these tests, however, depend on a score function to be selected

by the practitioner. Some will favor simple scores of the spherical type (see Section 6.1);

others may want to base their choice on efficiency considerations (see Section 6.2).

12This limit possibly can exist along subsequences, with asymptotic statements modified accordingly.
For the sake of simplicity, we do not include this in subsequent results.
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6.1 Standard score functions

Popular choices are the spherical sign test, Wilcoxon and van der Waerden scores. Let us

describe them, in more details, in the particular case of the two-sample problem.

The two-sample sign test is based on the degenerate score Jsign(r) := 1 for r ∈ [0, 1);

using the fact that
∑n

i=1 S
(n)
i;± = 0, one gets for (5.5), with the notation of Section 5.3.1, the

very simple test statistic

Q
∼

(n)±

sign
=

nd

n1n2

∥∥∥∥∥
n1∑
i=1

S
(n)
i;±

∥∥∥∥∥
2

.

The choice JWilcoxon(r) := r similarly characterizes the Wilcoxon two-sample test: noting

that
∑n

i=1R
(n)
i;±S

(n)
i;± = 0 holds if

∑n
i=1 S

(n)
i;± = 0 and that

∫ 1

0
r2du= 1/3, this yields

Q
∼

(n)±

Wilcoxon
=

3nd

n1n2(nR + 1)

∥∥∥∥∥
n1∑
i=1

R
(n)
i;±S

(n)
i;±

∥∥∥∥∥
2

.

As for the two-sample van der Waerden test, it is based on the Gaussian or van der Waer-

den scores JvdW(r) :=
(
Ψ−1
d (r)

)1/2
, where Ψd denotes the cumulative distribution function

of a chi-square variable with d degrees of freedom. Clearly
∫ 1

0
J2

vdW(r)dr =
∫∞

0
xdΨd(x) = d

and, provided that
∑n

i=1 S
(n)
i;± = 0,

∑n
i=1

(
Ψ−1
d

(
R

(n)
i;±

nR+1

))1/2

S
(n)
i;± = 0. Hence, the van der

Waerden center-outward rank test statistics takes the form

Q
∼

(n)±

vdW
=

n

n1n2

∥∥∥∥∥
n1∑
i=1

(
Ψ−1
d

( R
(n)
i;±

nR + 1

))1/2

S
(n)
i;±

∥∥∥∥∥
2

.

6.2 Score functions and efficiency

The tests statistics in Section 6.1 offer the advantage of a structure paralleling the structure

of the numerator of the classical Gaussian F test—basically substituting, in the latter, S
(n)
i;±

(sign test scores), R
(n)
i;±S

(n)
i;± (Wilcoxon scores), or

(
Ψ−1
d

(
R

(n)
i;±

nR+1

))1/2

S
(n)
i;± (van der Waerden

scores) for the sphericized residuals (4.4)13 and adopting the adequate standardization.

The choice of a score function also can be guided by efficiency considerations, selecting J

in relation to some reference distribution under which efficiency is to be attained. This,

in the univariate case, yields the normal (van der Waerden), Wilcoxon or sign test scores,

achieving efficiency under Gaussian, logistic, or double exponential reference densities;

13The computation of which, moreover, requires the specification of β0 or its consistent estimation—
something center-outward ranks and signs do not need in view of their shift-invariance.
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as we shall see, Q
∼

(n)±

sign
and Q

∼

(n)±

vdW
similarly achieve efficiency at spherical exponential and

Gaussian reference distributions.14

In the same spirit, one could contemplate the idea of achieving, based on center-outward

rank tests, efficiency at some selected reference distribution Pε0 in Pd (with density fε0 and

center-outward distribution function Fε0;± satisfying the adequate regularity assumptions).

Indeed, it follows from Proposition 5.1 that efficiency under Pε0 can be achieved by a test

based on the test statistic Q
∼

(n)±

J
given in (5.3) with score J = ϕfε0 ◦

(
Fε0;±

)−1
. This, however,

raises two problems. First, in order for ϕfε0 to be analytically computable, the distribu-

tion Pε0 has to be fully specified (up to location and a global scaling parameter), with closed-

form density function fε0 . Second, the corresponding score function J = ϕfε0 ◦
(
Fε0;±

)−1
also

involves the center-outward quantile function (Fε0;±)−1 for which, except for a few particu-

lar cases (spherical distributions), no explicit form is available in the literature. Once Pε0

is fully specified, in principle, it can be simulated, and an arbitrarily precise numerical

evaluation of (Fε0;±)−1 can be obtained, to be plugged into J. This may be computationally

heavy, but increasingly efficient algorithms are available in the domain of numerical measure

transportation: see, e.g., Mérigot (2011) or Peyré and Cuturi (2019).

Now, choosing a fully specified reference Pε0 may be embarrassing—this means, for

instance, a skew-t distribution with specified degrees of freedom, shape matrix, and skew-

ness parameter (without loss of generality, location can be taken as 0), a multinormal or

elliptical distribution with specified radial density and specified (up to a positive global

factor) covariance (again, the mean can be taken as 0), ... Fortunately, a full specifica-

tion of Pε0 can be relaxed to the specification of a parametric family with parameter ϑ,

say, such as the family Pskew t of all skew-t distributions with location 0 (parameters: a

shape matrix and a d-tuple of skewness parameters) or the family P ell
f of all elliptical

distributions (4.3) with radial density f (parameter: a scatter matrix). The unspecified

parameter ϑ of Pε0 indeed can be replaced, in the numerical evaluation of Fε0;±, with consis-

tent estimated values provided that the estimator ϑ̂ is measurable with respect to the order

statistic15 of the residuals Z
(n)
i . Plugging these estimators into the score J—this include

14Due to the fact that the density f?d;f of the modulus of a spherical logistic fails to be logistic for d > 1,
the Wilcoxon test based on Q

∼

(n)±

Wilcoxon
, however, does not enjoy efficiency under spherical logistic; this is also

the case of the elliptical rank tests based on Wilcoxon scores in Hallin and Paindaveine (2002a,b, 2005).
15The order statistic of the n-tuple Z1, . . . ,Zn of d-dimensional (d > 1) random vectors can be defined

as any reordering Z(1), . . . ,Z(n) generating the σ-field of permutation-invariant Borel sets of σ
(
Z1, . . . ,Zn

)
;

for instance, the one resulting from ordering the observations Zi from smallest to largest first component.
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the standardization factor and the numerical evaluation of Fε0;±—yields data-driven (order-

statistic-driven) scores J(n).16 Conditionally on the order statistic, the corresponding test

statistic is still distribution-free and its (conditional) critical values yield unconditionally

correct size. However, these critical values involve the order statistic: the resulting tests

therefore no longer are ranks tests but permutation tests.17 The theoretical properties,

feasibility, and finite-sample performance of this data-driven approach should be explored

and numerically assessed—this is, however, beyond the scope of this paper and we leave it

for future research.

In view of this, no obvious non-spherical convenient candidate emerges as a reference

density in dimension d > 1. The center-outward test statistic achieving optimality at the

spherical distributions with radial density f is Q
∼

(n)±

Jf
with Jf as in part (iii) of Corollary 5.2.

6.3 Affine invariance and sphericization

Affine invariance (testing) or equivariance (estimation), in “classical multivariate analysis,”

is often considered an essential and inescapable property. Closer examination, however, re-

veals that this particular role of affine transformations is intimately related to the affine

invariance of Gaussian and elliptical families of distributions. When Gaussian or ellipti-

cal assumptions are relaxed, affine transformations are losing this privileged role and the

relevance of affine invariance/equivariance properties is much less obvious. We refer to

Appendix A.6 for a more detailed discussion of that invariance issue.

7 Some numerical results

A Monte Carlo simulation study is conducted (Sections 7.1–7.2) in order to explore the

finite-sample performance of our tests. Results are presented for two-sample location and

MANOVA models, and limited to the Wilcoxon score function J(r) = r; other choices for J

lead to very similar figures, which we therefore do not report.

16Similar data-driven scores have been proposed in the univariate case by Dodge and Jurečková (2000).
17A permutation test is a test enjoying Neyman α-structure with respect to the sufficient and complete

order statistic.
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7.1 Two-sample location, d = 2

Consider first the two-sample location problem in dimension d = 2. Two independent

random samples of size n1 = n2 = n/2 were generated and the two test statistics Q
∼

(n) ell

Wilcoxon

and Q
∼

(n)±

Wilcoxon
(see Sections 5 and 5.3.1) were computed. The sample covariance matrix Σ̂

was used for the computation of Λ∼
(n) ell
Wilcoxon

and the elliptical or Mahalanobis ranks and signs.

Rejection frequencies were computed for the following error densities:

(a) a centered bivariate normal distribution with unit variances and correlation ρ = 1/4;

(b) a centered bivariate t-distribution with the same scaling matrix as in (a) and ν degree

of freedom, ν = 1 (Cauchy) and ν = 3;18

(c) a mixture, with weights w1 = 1/4 and w2 = 3/4, of two bivariate normal distributions

with means µ1 = (3/4, 0)′ and µ2 = (−1/4, 0)′ and covariance matrices

Σ1 =

 1 2/3

2/3 1

 and Σ2 =

 1 −2/3

−2/3 1

 ,

respectively;

(d) a mixture, with weights w1 = 1/4 and w2 = 3/4, of two bivariate t1 (Cauchy)

distributions centered at µ1 = (3/4, 0)′ and µ2 = (−1/4, 0)′, with the same scaling

matrices Σ1 and Σ2 as in (c);

(e) a “U-shaped” mixture, with weights w1 = 1/2, w2 = 1/4, and w3 = 1/4, of three

bivariate normal distributions, N2(µ1,Σ1), N2(µ2,Σ2), and N2(µ3,Σ3) where

µ1 = (0, 0)′, µ2 = (−3, 1)′, µ3 = (3, 1)′,

and

Σ1 =

2 0

0 1/8

 , Σ2 =

 1/2 −1/3

−1/3 1/2

 , Σ3 =

1/2 1/3

1/3 1/2

 ;

(f) an “S-shaped” mixture, with equal weights w = 1/3, of three bivariate normal distri-

butions, N2(µ4,Σ4), N2(µ5,Σ5), and N2(µ6,Σ4) where

µ4 = (−9/2,−1/2)′, µ5 = (0,−1/2)′, µ6 = (9/2, 1)′,

and

Σ4 =

 3/2 −
√

3/8

−
√

3/8 1

 , Σ5 =

 3/2
√

3/8√
3/8 1

 , Σ6 =

 3/2 −
√

3/8

−
√

3/8 1

 ;

18The bivariate t-distribution with m degrees of freedom and scaling matrix A′A is the one defined
in Example 2.5 of Fang et al. (2017) as the distribution of a random vector ξ := µ + A′ζ

√
m/
√
s

where ζ ∼ N2(0, I2) and s ∼ χ2
m, independent of ζ—not to be confused with the elliptical distribution

with Student radial density f.
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(g) a skew-t-distribution with ν degrees of freedom, ν = 1 and 3, with skewness para-

meter α = (5,−3)′, scaling matrix Σ7 =

 1 −1/2

−1/2 1

, and location ξ = 0.

Mixture error densities naturally appear in the context of hidden heterogeneities due,

for instance, to omitted covariates; as for asymmetries, they are likely to be the rule rather

than the exception. Samples of size 200 from the Gaussian mixtures (c), (e), and (f) and

the skew-t distribution with 3 degrees of freedom (g) are shown in Appendix A.7.1, Figure 9.

To investigate finite-sample performance, a first sample was generated from one of the

distributions (a)–(g), a second one from the same distribution shifted by the vector (δ, δ)′

for δ ∈ [0.00, 0.24]. Three sample sizes n1 = n2 = 50, 200, and 450 (hence, n = 100, 400,

and 900) were considered, yielding three groups of curves (from light gray to black, colors

in the online version). The regular grids Gn for computation of the center-outward ranks

and signs are constructed with nS = nR = 10 for n = 100, nS = nR = 20 for n = 400,

and nS = nR = 30 for n = 900. Each simulation was replicated N = 1000 times and the

empirical size and power of the test were computed for α = 0.05. The resulting rejection

frequencies show the dependence of the power on δ; they are provided in Figures 2—4. For

the sake of comparison, we also provide the power of Hotelling’s classical two-sample test.

.
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Figure 2: Empirical powers of two-sample location tests based on the Wilcoxon center-outward

rank statistic (solid line), the Wilcoxon elliptical rank statistic (dashed line), and Hotelling’s two-

sample test (dotted line), as functions of the shift δ under bivariate normal and elliptical Student

(1 and 3 degrees of freedom) error densities; sample sizes n1 = n2 = 50, 200, and 450.

Figure 2 displays the empirical power curves for the elliptical distributions (a) and (b).

The results for the normal distribution are very similar for the three tests: rank-based

tests (Wilcoxon scores), thus, are no less powerful than the optimal Hotelling test. As
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expected, Hotelling crashes under the t1 distribution, while the Wilcoxon elliptical test,

although based on the sample covariance matrix, performs surprisingly well (the robustness

of ranks offsets infinite variance). The tests based on Q
∼

(n) ell

Wilcoxon
and Q

∼

(n)±

Wilcoxon
both outperform

Hotelling also for the t-distribution with 3 degrees of freedom. The conclusion is that center-

outward rank tests perform equally well as elliptical rank tests under elliptical densities.
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Figure 3: Empirical powers of two-sample location tests based on the Wilcoxon center-outward

rank statistic (solid line), the Wilcoxon elliptical rank test statistic (dashed line), and Hotelling’s

two-sample test (dotted line), as functions of the shift δ, for the mixtures of two normal (left

panel) and two t1 error densities (right panel), respectively; sample sizes n1 = n2 = 50, 200,

and 450.

The remaining distributions (c)–(g) are non-elliptical ones. Results for the mixtures (c)

and (d) are shown in Figure 3. For the mixture (c) of two normals, the results obtained for

the three tests are still quite similar, but the center-outward rank test based on Q
∼

(n)±

Wilcoxon
, in

general, yields the largest power. For the mixture (d) of two t1 (Cauchy) distributions, the

Hotelling test fails miserably and the center-outward rank test very clearly outperforms the

elliptical rank test for all sample sizes. Figure 4 provides the results for the mixtures (e)–(f)

and the skew-t-distribution (g), respectively. The power curve for the test statistic Q
∼

(n)±

Wilcoxon

computed from the linearly sphericized residuals (using the sample mean and the sample

covariance matrix as estimators of location and scatter) is added as a dot-dashed line. In all

these plots, the center-outward rank test statistic leads to the largest power. Note that the

linear sphericization of the residuals, which makes the test affine-invariant, may noticeably

deteriorate the power (see the discussion in Section 6.3 and Appendix A.6).
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Figure 4: Empirical powers of two-sample location tests based on the Wilcoxon center-outward

rank statistic (solid line), the Wilcoxon center-outward rank statistic computed from linearly

sphericized residuals (dot-dashed line), the Wilcoxon elliptical rank test statistic (dashed line),

and Hotelling’s two-sample test (dotted line), as functions of the shift δ for the ”U-shaped” (upper

left panel) and the ”S-shaped” (upper right panel) mixtures of three normal error densities, and

skew-t error densities with ν = 1.1 (bottom left panel) and ν = 3 (bottom right panel) degrees of

freedom, respectively; sample sizes n1 = n2 = 50, 200, and 450.

7.2 One-way MANOVA, d = 2

The performance of center-outward rank tests is very briefly studied here for one-way

MANOVA with K = 3 groups, still for d = 2. Two random samples were generated from

the distribution (a) (Gaussian) or (e) (U-shaped mixture of three Gaussians), as described

in Section 7.1, and the third sample was drawn from the same distribution shifted by the

vector (δ, δ)′ for δ ∈ [0.00, 0.24]. A balanced design with groups of size n1 = n2 = n3 = 75

(hence n = 225) and n1 = n2 = n3 = 300 (hence n = 900) was considered. For n = 225,

the grid Gn is constructed with nR = nS = 15; for n = 900, we set nR = nS = 30. As in
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Figure 5: Empirical powers of MANOVA tests based on the Wilcoxon center-outward rank

statistic (solid line), the Wilcoxon elliptical rank test statistic (dashed line), and Pillai’s classical

test (dotted line), as functions of the shift δ, for the normal distribution (left panel) and the U-

shaped mixture of three normals (right panel); the sample sizes are n1 = n2 = n3 = 75 and 300.

Section 7.1, the results are presented for the Wilcoxon scores J(r) = r only—other choices

lead to very similar conclusions.

Rejection frequencies are plotted in Figure 5 for the center-outward rank test based

on Q
∼

(n)±

Wilcoxon
(solid line), the elliptical rank test statistic Q

∼

(n) ell

Wilcoxon
(dashed line), and the Pillai

trace test based on an approximate F-distribution (dotted line). Under normal density, the

three tests perform very similarly. For the non-elliptical mixture distribution, however,

the center-outward rank test achieves sizeably larger power than the other two. Further

simulations yielding, in dimension d = 6, similar conclusions, are provided in Appendix A.7.

7.3 An empirical illustration

The practical value of the center-outward rank tests developed in the previous sections is

illustrated with the following archeological application where classical methods fail to de-

tect any treatment effect. The data consist of n = 126 measurements of MgO (Magnesium

oxide), P2O5 (Phosphorus pentoxide), CoO (Cobalt monoxide), and Sb2O3 (Antimony tri-

oxide) (dimension d = 4, thus) in natron glass vessels excavated from three Syro-Palestinian

sites in present-day Israel: Apollonia (n1 = 54 observations), Bet Eli’ezer (n2 = 17 obser-

vations), and Egypt (n3 = 55 observations); a fourth site only has two observations and

was dropped from the analysis. This dataset has been originally analyzed by Phelps et al.
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(2016) with the objective of detecting possible differences among the three sites. Bivariate

plots of these four variables are shown in Figure 6, where one can observe that the marginal

distributions of CoO, and Sb2O3 exhibit heavy tails and are very far from normal, and their

joint distribution far from elliptically symmetric. A traditional (pseudo-Gaussian) test here

is Pillai’s trace test19 reducing, in the two-sample case, to Hotelling’s classical T -square test.

First, all the two-dimensional data subsets corresponding to the bivariate plots in

Figure 6 were analyzed (six bivariate MANOVA models, thus). Pillai’s test yields non-

significant p-values for all combinations, see Table 2. But the center-outward tests we are

proposing in this paper do detect significant differences between the three groups whenever

the variable CoO is included in the analysis. Two versions20 of the center-outward ranks

and signs are considered in Table 2 below (c-o tests I and II, respectively).

Inspection of Table 2 reveals that, unlike Pillai’s trace, the Wilcoxon center-outward

rank tests (c-o I and II) reject the null hypothesis at significance level α = 0.05. As for

the Wilcoxon tests based on elliptical ranks (based on the sample covariance function),

they yield highly non-significant p-values for all couples of variables; the corresponding

results are not presented here. Next, the MANOVA comparison is conducted for the full

4-dimensional dataset. Pillai’s test p-value is 0.1553: no difference detected among the

three groups, thus, at level α ≤ 0.15. In sharp contrast, the Wilcoxon center-outward rank

test (with nR = 7 and nS = 18) yields a p-value 10−15, which is highly significant. The

elliptical Wilcoxon rank test (based on the sample covariance matrix), on the other hand,

with p-value 0.5827, also fails to detect anything at any level α ≤ 0.5.

This, according to archeological sources, might lead to revising some of the conclusions

made by Phelps et al. (2016) on Middle-East economic exchanges between Egypt and Syro-

Palestine in the Byzantine-Islamic transition period.

8 Conclusion and perspectives

Classical multivariate analysis methods, which are daily practice in a number of applied

domains, remain deeply marked by Gaussian and elliptical assumptions. In particular,

19Alternatives are Wilks’ Lambda, the Lawley-Hotelling Trace, and Roy’s largest root tests. In the
two-sample case, they all coincide; else, they are asymptotically equivalent.

20These two versions correspond to two choices of the grid Gn, with either nS = 7 and nR = 18
or nS = 18 and nR = 7—see Section 2.2 for an explanation.
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Figure 6: The content of MgO, P2O5, CoO, and Sb2O3 in natron glass vessels from Appolonia

(circles), Bet Eli’ezer (triangles), and Egypt (squares).

no distribution-free approach is available so far for hypothesis testing in multiple-output

regression models, which include the fundamental two-sample and MANOVA models—

except for the elliptical or Mahalanobis rank tests developed in Hallin and Paindaveine

(2005) which, however, require the strong assumption of elliptic symmetry, an assumption

which is unlikely to hold in most applications. Based on the recent concept of center-

outward ranks and signs, this paper proposes the first efficient fully distribution-free tests

of the hypothesis of no treatment effect in that multiple-output context, thereby extending

to the multivariate case the classical Hájek approach to univariate rank-based inference

(Hájek and Šidák, 1967). Simulations and an empirical example demonstrate the excellent

performance of the method. This lays the theoretical bases (asymptotic representation

and asymptotic normality results for linear center-outward rank statistics) and theoretical

guidelines (Hájek projection of LAN central sequences) for further developments.
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Pillai’s test c-o test I c-o test II

MgO P2O5 0.3547 0.3817 0.0946

MgO CoO 0.1217 0.0000 0.0000

MgO Sb2O3 0.2268 0.1865 0.3236

P2O5 CoO 0.1491 0.0000 0.0000

P2O5 Sb2O3 0.1957 0.0561 0.3004

CoO Sb2O3 0.1453 0.0000 0.0000

Table 2: p-values for the bivariate MANOVA Pillai trace and Wilcoxon center-outward rank tests

based on nR = 7, nS = 18 (c-o test I) and nR = 18, nS = 7 (c-o test II), respectively.
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Appendix

A.1 The power of of pseudo-Gaussian tests away from the Gaus-

sian

This section provides evidence of the deterioration (highligted in the Introduction) of the

performance of pseudo-Gaussian tests away from Gaussian distributions.

Figure 7 illustrates the deterioration of pseudo-Gaussian tests performance in the case

of Hotelling’s bivariate two-sample test under skew-Gaussian distributions with location 0,

correlation ρ, and skewness parameter λ = (a, a)>. Recall that bivariate skew-normal

distributions (see pp. 128–131 in Azzalini and Capitanio (2014) for details) are indexed by

a triplet (ξ,Ψ,λ) where ξ is a location, Ψ a shape matrix, and λ a skewness parameter.

Setting

ξ = (0, 0)>, Ψ =

1 ρ

ρ 1

 , and λ = (a, a)>, ρ ∈ (−1, 1), a ∈ R,

refer to this distribution as SNρ,a. For a = 0, SNρ,0 coincides with the bivariate centered

Gaussian distribution with covariance Ψ.
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Figure 7: Rejection frequencies of Hotelling’s two-sample test (nominal size α = 5%)

for sample sizes n1 = n2 = 100 under the skew-normal distribution SNρ,a. Left panel:

the empirical power against shift (δ, δ)> for ρ = 0 and various values of the skewness

parameter a. Right panel: empirical sizes for various values of (ρ, a).

Although skew-Gaussian distributions satisfy the conditions for the asymptotic valid-
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ity of Hotelling’s pseudo-Gaussian test, the left-hand panel of Figure 7 shows the rapid

deterioration of power as the skewness parameter a increases (correlation ρ = 0) while

the right-hand panel highlights the erraticism of the size of the same Hotelling test across

skewness and correlation parameter values despite a relatively large sample of size 200.

Skewness is not the only feature damaging Hotelling’s power, though. The settings

in Figure 8 are the same as in the left-hand panel of Figure 7, now for the following

“increasingly non-Gaussian” distributions:

(a) a “U-shaped” mixture of three bivariate normal distributions, N2(µ1,Σ1), N2(µ2,Σ2),

and N2(µ3,Σ3) with weights 1− 2w, w, and w, respectively,

µ1 = (0, 0)>, µ2 = (−3, 1)>, µ3 = (3, 1)>,

Σ1 =

2 0

0 1
8

 , Σ2 =

 1
2
−1

3

−1
3

1
2

 , Σ3 =

1
2

1
3

1
3

1
2

 ,

and w ∈ [0.00, 0.45];

(b) an “S-shaped” mixture of three bivariate normal distributions, N2(µ4,Σ4), N2(µ5,Σ5),

and N (µ6,Σ4) with weights w, 1− 2w, and w, respectively,

µ4 = (−9/2,−1/2)>, µ5 = (0,−1/2)>, µ6 = (9/2, 1)>,

Σ4 =

 σ2
1 −ρσ1

−ρσ1 1

 , Σ5 =

 σ2
1 ρσ1

ρσ1 1


where σ2

1 = 3/2 and ρ = 1/2, and w ∈ [0.00, 0.45];

(c) a bivariate distribution with standard Gaussian marginals and joint distribution mod-

elled via the Clayton copula with parameter t, t ∈ {0, 1/2, 1, 2, 5, 10};

(d) a bivariate t-distribution with ν degrees of freedom for ν ∈ {∞, 5, 3, 2, 1} (where

ν =∞ corresponds to the standard bivariate Gaussian).

The first sample (n1 = 100) was drawn from one of the distributions (a)–(d), the

second one (n2 = 100) from the same distribution shifted by (δ, δ)> for δ ∈ [0.00, 0.24]. The

rejection frequencies were computed from 1000 replications for α = 0.05. Figure 8 illustrates

how the rejection frequencies, for given δ, deteriorate as the underlying distributions move

away from the Gaussian.
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A.2 Proof of Proposition 2.2.

Starting with (ii), note that, for any (z1, . . . , zn) ∈ Rnd, (u1, . . . ,un) ∈ Rnd, and µ ∈ Rd,

denoting by π a permutation of {1, . . . , n},
n∑
i=1

‖µ+ zi − uπ(i)‖2 −
n∑
i=1

‖zi − uπ(i)‖2 = nµ′µ+ 2µ′
n∑
i=1

zi − 2µ′
n∑
i=1

ui

does not depend on π; the optimal pairing between the µ+ zi’s and the ui’s thus does not

depend on µ, so that F
µ+Z;(n)
± (µ+ Zi) = F

Z;(n)
± (Zi) for all i (with F

µ+Z;(n)
± and F

Z;(n)
± con-
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Figure 8: Rejection rates of the two-sample Hotelling test when the second sample is shifted

by (δ, δ)> for samples of sizes n1 = n2 = 100 from the U-shaped mixture (a)(top left panel),

the S-shaped mixture (b) (top right panel), the Clayton copula (c) (bottom left panel), and

the bivariate t distribution (d) (bottom right panel).
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structed from the same grid Gn). As for F
OZ;(n)
± (OZi) computed from OGn and OF

Z;(n)
± (Zi)

computed from Gn, they obviously coincide since the Euclidean distances on which they

are based coincide. Part (iii) of the proposition is an immediate consequence.

Turning to (i), note that F±, as the gradient of a convex function, enjoys (see, e.g., Rock-

afellar (1966)) cyclical monotonicity: for any finite collection of points z1, . . . , zk ∈ Rnd,

it holds that

〈F±(z1), z2 − z1〉+ 〈F±(z2), z3 − z2〉+ . . .+ 〈F±(zk), z1 − zk〉 ≤ 0.

Equivalently, considering the grid Gk :=
{
F±(z1), . . . ,F±(zk)

}
, any k-tuple of the

form (zi,F±(zi)), i = 1, . . . , k constitutes an optimal coupling minimizing

S(k)
z :=

k∑
i=1

‖F±(zi)− zπ(i)‖2

over the k! permutations π of {1, . . . , k}: denoting by F
z;(k)
± the minimizer of S

(k)
z , thus,

Fz;(k)
± (zi) = F±(zi), i = 1, . . . , k for any k. (A1)

Now, for fixed k, (ii) applies, so that, similar to (2.1),

Fµ+Oz;(k)
± (µ+ Ozi) = OFz;(k)

± (zi). (A2)

In view of (A1) (for F± = FZ
±), however,

Fµ+Oz;(k)
± (µ+ Ozi) = Fµ+OZ

± (µ+ Ozi) and Fz;(k)
± (zi) = FZ

±(zi). (A3)

The result follows from piecing together (A2) and (A3). �

A.3 Proof of Proposition 3.1

We throughout write Zi for Z
(n)
i . First consider Part (i) of the proposition. We have

T∼
(n)
a −T(n) =

( n∑
i=1

(c
(n)
i − c̄(n))2

)−1/2
n∑
i=1

(c
(n)
i − c̄(n))[J(F(n)

± (Zi))− J(F±(Zi))].

Let a
(n)
i := a(F

(n)
± (Zi),F±(Zi)) := J(F

(n)
± (Zi))− J(F±(Zi)). Then,

∥∥T∼ (n)
a −T(n)

∥∥2
=
( n∑
i=1

(c
(n)
i − c̄(n))2

)−1
[

n∑
i=1

(c
(n)
i − c̄(n))2

∥∥a(n)
i

∥∥2

+
∑
i 6=j

(c
(n)
i − c̄(n))(c

(n)
j − c̄(n))a

(n)′
i a

(n)
j

]
.
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Since E‖a(n)
i ‖2 = E‖a(n)

1 ‖2 and Ea
(n)′
i a

(n)
j = Ea

(n)′
1 a

(n)
2 , we get

E
∥∥T∼ (n)

a −T(n)
∥∥2

= E
∥∥a(n)

1

∥∥2 − Ea
(n)′
1 a

(n)
2 ≤ 2E

∥∥a(n)
1

∥∥2
.

Hence, it only remains to show that

E
∥∥a(n)

1

∥∥2
= E

∥∥J(F(n)
± (Z1))− J(F±(Z1))

∥∥2

= E
∥∥ζn − ζ∥∥2 → 0

with ζn := J(F
(n)
± (Z1)) and ζ := J(F±(Z1)). It follows from the Glivenko-Cantelli theorem

in Hallin et al. (2021a), the continuity of J, and the continuity over R \ {0} of x 7→ x/
∥∥x∥∥

that ζn → ζ a.s. Furthermore, Assumption 3.1 implies that

E
∥∥ζn∥∥2

= tr EJ(F(n)
± (Z1))J′(F(n)

± (Z1))→ tr EJ(F±(Z1))J′(F±(Z1)) = E
∥∥ζ∥∥2

.

It follows (see, for instance, part (iv) of Theorem 5.7 in (Shorack, 2000, Chapter 3))

that E
∥∥ζn− ζ∥∥2→ 0. This concludes the proof for Part (i) of the proposition.

Turning to Part (ii), put

b
(n)
i := J(F±(Zi))− E

[
J(F±(Zi))

∣∣∣∣F(n)
± (Zi)

]
,

and let us show that E
∥∥b(n)

1

∥∥2
= o(1). Since ‖ζn − ζ‖ tends a.s. to zero, it follows from

the Egorov theorem (see, e.g., Theorem 7.5.1 in Dudley (1989)) that, for any ε > 0, there

is a set A ⊂ Ω such that

P(A) > 1− ε and sup
ω∈A
‖ζn(ω)− ζ(ω)‖ → 0.

Denoting by Ac the complement of A in Ω, we have

E
∥∥b(n)

1

∥∥2
= E

∥∥ζ − E[ζ|F(n)
± (Z1)]

∥∥2

= E
∥∥ζ1A + ζ1Ac − E[ζ1A + ζ1Ac|F(n)

± (Z1)]
∥∥2

≤ 3E
∥∥ζ1A − E[ζ1A|F(n)

± (Z1)]
∥∥2

+ 3E
∥∥ζ1Ac

∥∥2

+ 3E
∥∥E[ζ1Ac|F(n)

± (Z1)]
∥∥2

=: 3
(
I

(n)
1 + I2 + I

(n)
3

)
, say.

In view of the square-integrability of ζ, I2 can be made arbitrarily small as ε → 0. As

for I
(n)
3 , we have

I
(n)
3 = E

∥∥E[ζ1Ac

∣∣F(n)
± (Z1)]

∥∥2 ≤ E
(

E
[
‖ζ1Ac‖2|F(n)

± (Z1)
])

= E
∥∥ζ1Ac

∥∥2
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where P(Ac) ≤ ε, so that I
(n)
3 also is arbitrarily small as ε→ 0.

It remains to prove that I
(n)
1 → 0 as n → ∞. Recall that F

(n)
± (Z1), with probabil-

ity (1− n0/n) tending to one, is a point of the regular grid Gn of n− (n0− 1)1n0>0 points

in the unit ball used in the construction of F
(n)
± . Moreover, for any g ∈ Gn \{0}, we

have P[F
(n)
± (Z1) = g] = 1/n. Define

B(n)
g := {ω : F(n)

± (Z1)(ω) = g}.

Clearly,
{
B

(n)
g , g ∈ Gn

}
constitutes a disjoint partition of Ω and P(B

(n)
g ) → 0 uniformly

in g ∈ Gn as n→∞. Then,

I
(n)
1 = E

∥∥∥ ∑
g∈Gn

(
ζ1A1

B
(n)
g
− E[ζ1A|F(n)

± (Z1)]1
B

(n)
g

)∥∥∥2

= E
∑
g∈Gn

∥∥∥ζ1A1
B

(n)
g
− E[ζ1A|F(n)

± (Z1)]1
B

(n)
g

∥∥∥2

where the latter equality follows form the fact that 1
B

(n)
g

1
B

(n)
h

= 1(g=h). Since B
(n)
g is an

atom of σ
(
F

(n)
± (Z1)

)
, the latter conditional expectation is a constant on B

(n)
g , namely

E
[
ζ1A

∣∣F(n)
± (Z1)

]
1
B

(n)
g

=
1
B

(n)
g

P(B
(n)
g )

∫
η∈B(n)

g

ζ(η)1A(η)dP(η).

Hence,

I
(n)
1 =

∑
g∈Gn

∫
Ω

∥∥∥∥1B(n)
g

(ω)

∫
η∈B(n)

g

[ζ(ω)1A(ω)− ζ(η)1A(η)]
dP(η)

P(B
(n)
g )

∥∥∥∥2

dP(ω)

=
∑
g∈Gn

∫
Ω

∥∥∥∥1B(n)
g

(ω)

∫
η∈B(n)

g

[(
ζ(ω)− ζn(ω)

)
1A(ω)

+
(
ζn(η)− ζ(η)

)
1A(η)

] dP(η)

P(B
(n)
g )

∥∥∥∥2

dP(ω)

since ζn(ω)1A(ω)1
B

(n)
g

(ω) = J(g) = ζn(η)1A(η)1
B

(n)
g

(η) on A ∩ B(n)
g . Now, we are almost

done. Since, for ω ∈ A, we have the uniform convergence of ‖ζn(ω) − ζ(ω)‖ to zero, we

may bound the integrand uniformly. More precisely, for any ε̃ > 0 there exists nε̃ such

that ‖ζ(ω)− ζn(ω)‖ < ε̃ for all n ≥ nε̃ and all ω ∈ A, so that, from Jensen’s inequality,

I
(n)
1 ≤

∑
g∈Gn

∫
Ω

1
B

(n)
g

(ω)

∫
B

(n)
g

[
2
∥∥ζ(ω)− ζn(ω)

∥∥2
1A(ω)

+ 2
∥∥ζ(η)− ζn(η)

∥∥2
1A(η)

] dP(η)

P(B
(n)
g )

dP(ω)

≤
∑
g∈Gn

∫
Ω

1
B

(n)
g

(ω) 4ε̃2 P(B
(n)
g )

P(B
(n)
g )

dP(ω) = 4ε̃2E
∑
g∈Gn

1
B

(n)
g

= 4ε̃2.
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Part (ii) of the proposition follows. Part (iii) is an immediate consequence of Parts (i)

and (ii). �

A.4 Proof of Proposition 3.2

First assume that P ∈ P+
d , with center-outward distribution function F±. In view of

Proposition 3.1, establishing the result for T(n) is sufficient.

Put V := F±(Z
(n)
1 ). Then V

D
= UW, where U and W are mutually independent, U is

uniform over [0, 1], and W is uniform over the unit sphere Sd−1. Clearly,

ET(n) = 0 and Var (T(n)) = Var J(V) =

∫
Sd

J(u)J′(u) dUd

so that, for J of the form (3.3),

Var (T(n)) = EJ2(U)Var W =
1

d

∫ 1

0

J2(u) du Id

since Var W = 1
d

Id (see, e.g. page 34 of Fang et al. (2017)). Now, T(n) is a sum of

independent variables, and the Noether condition (3.5) ensures that the Feller-Lindenberg

condition holds. The desired asymptotic normality result (for T∼
(n)
a and T∼

(n)
e , under P ∈ P+

d )

thus follows from the central limit theorem. Finally, consider the general case P ∈ Pd.

Distribution-freeness implies that the finite-n distributions of T∼
(n)
a and T∼

(n)
e are the same

under P ∈ Pd as under P′ ∈ P+
d . Hence, their asymptotic distributions under P ∈ Pd

and P′ ∈ P+
d also coincide. This completes the proof. �

A.5 Proof of Proposition 5.1

First assume that the error distribution P, with center-outward distribution function F±,

is in P+
d . Noting that, for column vectors a and b, we have vec

(
ab′
)

= b⊗ a,

n1/2vecΛ∼
(n)±
J = n−1/2

n∑
i=1

vec
[
K(n)′

c (c
(n)
i − c̄(n))J′

( R
(n)
i;±

nR + 1
S

(n)
i;±

)]
= n−1/2

n∑
i=1

J
( R

(n)
i;±

nR + 1
S

(n)
i;±

)
⊗
(
K(n)′

c (c
(n)
i − c̄(n))

)
.

It follows from Proposition 3.1 that this latter statistic is asymptotically equivalent to

TJ = n−1/2

n∑
i=1

J
(
F±(Z

(n)
i )
)
⊗
(
K(n)′

c (c
(n)
i − c̄(n))

)
,
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which is a sum of independent variables such that ETJ = 0, and

Var TJ = n−1

n∑
i=1

Var
[
J
(
F±(Z

(n)
i )
)
⊗
(
K(n)′

c (c
(n)
i − c̄(n))

)]
= n−1

n∑
i=1

E
[
J
(
F±(Z

(n)
i )
)
⊗
(
K(n)′

c (c
(n)
i − c̄(n))

)
× J′

(
F±(Z

(n)
i )
)
⊗
(

(c
(n)
i − c̄(n))′K(n)

c

]
= n−1

n∑
i=1

E
[
J
(
F±(Z

(n)
i )
)
J′
(
F±(Z

(n)
i )
)

⊗
(
K(n)′

c (c
(n)
i − c̄(n))(c

(n)
i − c̄(n))′K(n)

c

)]
=

∫
Sd

J(u)J′(u) dUd ⊗ n−1K(n)′
c

n∑
i=1

[
(c

(n)
i − c̄(n))(c

(n)
i − c̄(n))′

]
K(n)

c ,

which tends to IJ⊗ Im as n→∞. The Lindeberg condition is satisfied, so that TJ , hence

also n1/2vecΛ∼
(n)±
J , has the announced asymptotic normal distribution.

Finally, consider the general case of an absolutely continuous P ∈ Pd: as in the

proof of Proposition 3.2, distribution-freeness implies that the asymptotic distribution

of n1/2vecΛ∼
(n)±
J is the same under P ∈ Pd as under P ∈ P+

d . This completes the proof

of Part (i). In view of (5.2); Parts (ii) and (iii) readily follow. �

A.6 Affine invariance and sphericization

Affine invariance (testing) or equivariance (estimation), in “classical multivariate analysis,”

is generally considered an essential and inescapable property. Closer examination, however,

reveals that this particular role of affine transformations is intimately related to the affine

invariance of Gaussian and elliptical families of distributions. When Gaussian or ellipti-

cal assumptions are relaxed, affine transformations are losing this privileged role and the

relevance of affine invariance/equivariance properties is much less obvious.

When Y(n)A′ (where A is an arbitrary full-rank d × d matrix), is observed instead

of Y(n), Σ̂
(n)

is replaced with Σ̂
(n)

A = AΣ̂
(n)

A′, yielding sphericized residuals of the

form Z
(n) ell
A;i :=

(
AΣ̂

(n)
A′
)−1/2

AZ
(n)
i instead of Z

(n) ell
i . It follows from elementary calculation

that Z
(n) ell
A;i = PZ

(n) ell
i with P = (AΣ̂

(n)
A′)−1/2A(Σ̂

(n)
)1/2 orthogonal. Strictly speaking,

sphericized residuals, thus, are not affine-invariant. This possible discrepancy between

sphericized residuals is due to the fact that square roots such as (Σ̂
(n)

)−1/2 are only defined
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up to an orthogonal transformation; choosing the symmetric root is a convenient choice, but

does not yield P = Id.
21 However, the moduli ‖Z(n) ell

A;i ‖ and ‖Z(n) ell
i ‖ coincide, irrespective

of P, and so do the cosines

〈Z(n) ell
A;i ,Z

(n) ell
A;j 〉

‖Z(n) ell
A;i ‖‖Z

(n) ell
A;j ‖

and
〈Z(n) ell

i ,Z
(n) ell
j 〉

‖Z(n) ell
i ‖‖Z(n) ell

j ‖
, i, j = 1, . . . , n.

The affine-invariance of typical elliptical-rank-based test statistics, which are quadratic

forms involving those moduli and cosines, follows.

Being measurable with respect to the ranks of the moduli ‖Z(n) ell
i ‖ and the scalar

products 〈Z(n) ell
i ,Z

(n) ell
j 〉/‖Z(n) ell

i ‖‖Z(n) ell
j ‖, the elliptical rank statistics developed in Hallin

and Paindaveine (2005) are affine-invariant; this is in full agreement with our previous

remark that the limiting local Gaussian shifts in elliptical experiments are unaffected under

affine transformations.

The center-outward distribution functions, ranks and signs cannot be expected to en-

joy similar affine-invariance properties—actually, it has been proved (Proposition 3.14 in

Cuesta-Albertos et al. (1993)) that they do not. If, however, affine invariance is considered

an indispensable property, it is easily restored: choosing your favorite (consistent under

ellipticity) estimator of scatter Σ̂
(n)

(which also requires, in case β0 is not specified, an

estimator of location µ̂(n)), just compute the sphericized residuals Z
(n) ell
i in (4.4) prior to

computing the center-outward ranks and signs and performing the tests: in view of Propo-

sition 2.2, the resulting center-outward ranks and signs enjoy the same affine-invariance

properties (invariance of the ranks and the cosines of signs) as the elliptical ones.

If the actual density fε is elliptical, this linear sphericization does not modify the local

experiment, hence local asymptotic powers and, in case the scores themselves are spherical,

efficiency properties, are preserved. If the actual density fε is not elliptical, however, such

linear sphericization22 has a nonlinear impact23 on fε-based central sequences: the corre-

sponding Gaussian shift experiments are not preserved and, irrespective of the scores they

are based on, the local asymptotic powers of center-outward rank tests are affected. Sum-

ming up, preliminary sphericization does restore affine-invariance of center-outward rank

21The Cholesky square root does: see Proposition 2 in Hallin et al. (2020c).
22Actually, only a “second-order sphericization,” as the distribution of Z

(n) ell
i still fails to be spherical

unless the error distribution itself was.
23The signs, indeed, now are sitting “inside” the function ϕfε .
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tests while preserving their local powers under ellipticity, but distorts those local pow-

ers under non-elliptical error densities. Figure 4 provides examples where that distortion

significantly deteriorates the power.

Whether affine-invariance is desirable or not is open to discussion. In “classical multi-

variate analysis,” that is, under Gaussian or elliptical densities, linear sphericization pre-

serves local experiments, making affine invariance a natural requirement. When considering

more general error distributions P, linear transformations are losing their privileged status:

they no longer sphericize the distribution P of a typical Z ∼ P and no longer preserve

local experiments. Moreover, while all consistent-under-ellipticity estimators Σ̂
(n)

and µ̂(n)

yield, under ellipticity, the same limiting location and scatter values, distinct estimators,

under non-elliptical densities, will converge to distinct and sometimes hardly interpretable

limits: µ̂(n) = X
(n)

(the arithmetic mean) and µ̂(n) = X
(n)
Oja (the Oja median, Oja (1983)),

which asymptotically coincide under ellipticity, may yield completely distinct locations;

what is the relevance of Tyler’s scatter matrix in a distribution where sign curves are not

straight lines and decorrelation of radii (through which center µ̂(n)?) makes little sense?

etc. The distortion of local powers under non-elliptical error densities thus depends on

the choice of Σ̂
(n)

and µ̂(n), which is hard to justify. While easily implementable, affine

invariance/equivariance, in such a context, is thus a disputable requirement.

A.7 Further simulations

A.7.1 Scatterplots fom the Gaussian mixtures (c), (e), and (f) and the skew-t

distribution with 3 degrees of freedom (g)

Figure 9 provides scatterplots (samples of size 200) from the bivariate Gaussian mix-

tures (c), (e), and (f) and from the skew-t distribution with 3 degrees of freedom (g)

as described in Section 7.1.

A.7.2 Two-sample location, d = 6

A Monte Carlo simulation study was conducted for the two-sample location test in Rd

for d = 6. The setting is similar to that for d = 2. Two independent random samples

of size n1 = n2 = n/2 were generated and the test statistics Q˜ (n) ell
Wilcoxon and Q˜ (n)±

Wilcoxon were

computed, along with Hotelling’s test statistic . The sample covariance matrix Σ̂n was used
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for the computation of Q˜ (n) ell
Wilcoxon. Rejection frequencies were computed for the following

error distributions:

(a) the centered multivariate normal with identity variance matrix,

(b) the centered spherical Cauchy distribution (i.e., the elliptical t-distribution with 1

degree of freedom) and identity scatter matrix,

(c) the distribution with Clayton copula with parameter θ ∈ {1/2, 2} and exponential

marginals (with mean 1). Note that these choices of θ correspond to Kendall’s τ

values 0.2 and 0.5, respectively.

The first sample was generated from one of the distributions in (a)–(c), the second one

from the same distribution shifted by the vector (δ, . . . , δ)> with δ ∈ {0.00, 0.05, 0.10, 0.20}.

A random grid, simulated specifically for each joint random sample (of size n), was used

for the computation of F
(n)
± . For specified nR and nS such that nR · nS = n, direc-
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Figure 9: Sample plots of 200 observations drawn form the the Gaussian mixtures (c), (e), and (f)

and from the skew-t-distribution with 3 degrees of freedom (g) described in Section 7.1.
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tions sr1, . . . , s
r
nS

, r = 1, . . . , nR were generated uniformly over the sphere S5; the grid

then consists of the points

r

nR + 1
· srs, r = 1, . . . , nR, s = 1, . . . , nS.

The results we are presenting below were computed for nR = 8, 10, 16, 20, 25, corresponding

to n = 2n1 = 200, 400, 800, 1200, 1600 respectively.

0.00 0.05 0.10 0.15 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normal distribution

δ

p
o
w

e
r

n=200
n=400
n=800
n=1200
n=1600

0.00 0.05 0.10 0.15 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t−distribution, 1 df

δ

p
o
w

e
r

n=200
n=400
n=800
n=1200
n=1600

Figure 10: The empirical powers of two-sample location tests based on the Wilcoxon

center-outward rank statistic (solid line), the Wilcoxon elliptical rank statistic (dashed

line), and the two-sample Hotelling test (dotted line) as functions of the shift δ for the 6-

variate normal distribution (left panel) and Cauchy distribution (right panel). Sample sizes

are n1 = n/2 = n2.

Each simulation was replicated N = 1000 times and the empirical power and size of the

test were computed for α = 0.05. The resulting rejection frequencies show the dependence

of the power on the parameter δ and they are provided in Figures 10 and 11. The left panel

of Figures 10 unsurprisingly reveals that if the underlying distribution is Gaussian, then the

classical Hotelling test yields the largest power, closely followed by the elliptical Wilcoxon

test. The loss of power resulting from using Wilcoxon rather than normal scores, thus,

seems to increase with the dimension (for d = 2, it was hardly visible). Under the Cauchy

distribution, the two rank tests yield comparable results, with an increasing advantage for

the center-outward one as n and δ grow, while the Hotelling test fails miserably (the power

lies below α for all δ).
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Figure 11: The empirical powers of two-sample location tests based on the Wilcoxon center-

outward rank statistic (solid line), the Wilcoxon elliptical rank statistic (dashed line), and

the two-sample Hotelling test (dotted line) as functions of the shift δ for the distribution (c)

with exponential marginals and joint Clayton copula with θ = 1/2 (left panel) and θ = 2

(right panel). Sample sizes are n1 = n/2 = n2.

Figure 11 indicates that, under non-elliptical distributions of the form (c), the center-

outward rank test spectacularly outperforms its two competitors; the differences between

the three tests are particularly large for θ = 2 (stronger copula dependence).

A.7.3 One-way MANOVA, d = 6

A similar simulation study was conducted for MANOVA (K = 3 groups) in R6. As

for d = 2 in Section 7.2, two random samples were generated from one of the distribu-

tions (a)–(c) listed in Section A.7.2 and the third sample was drawn from the same distri-

bution shifted by a vector (δ, . . . , δ)> with δ ∈ {0.00, 0.05, 0.10, 0.20}. A balanced design

with n1 = n2 = n3 = n/3 was considered for n = 300, 750, 1500. Figures 12 and 13 are

reporting the rejection rates for α = 0.05 of the Wilcoxon center-outward rank test (solid

line), the Wilcoxon elliptical rank test (dashed line) and Pillai’s classical trace test (dotted

line). If the underlying distribution of the three samples is Gaussian, the elliptical and

Pillai tests outperform the center-outward one—which, again, is hardly surprising since

they are exploiting the information that the observations are elliptical or Gaussian. Un-

der the Cauchy distribution, however, the elliptical test is over-rejecting, with rejection

49



0.00 0.05 0.10 0.15 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normal distribution

δ

p
o
w

e
r

n=300
n=750
n=1500

0.00 0.05 0.10 0.15 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t−distribution, 1 df

δ

p
o
w

e
r

n=300
n=750
n=1500

Figure 12: The empirical powers of MANOVA tests based on the Wilcoxon center-outward

rank statistic (solid line), the Wilcoxon elliptical rank statistic (dashed line), and Pillai’s

test (dotted line) as functions of the shift δ for the 6-variate normal distribution (left panel)

and Cauchy distribution (right panel). Balanced samples of sizes n1 = n2 = n3 = n/3 are

considered.
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Figure 13: The empirical powers of MANOVA tests based on the Wilcoxon center-outward

rank statistic (solid line), the Wilcoxon elliptical rank statistic (dashed line), and Pillai’s

test (dotted line) as functions of the shift δ for the normal distribution (left panel) and

Cauchy distribution (right panel). Balanced samples of sizes n1 = n2 = n3 = n/3 are

considered.
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frequency significantly larger than the nominal size α = 0.05. As for Pillai’s test , it fails

completely. For the non-elliptical distributions with exponential marginals (Figure 13), the

center-outward rank test clearly outperforms the other two. The elliptical test seems to be

very conservative here.
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