
viruses

Article

Prediction and Evolution of the Molecular Fitness of
SARS-CoV-2 Variants: Introducing SpikePro

Fabrizio Pucci 1,2 and Marianne Rooman1,2,*

����������
�������

Citation: Pucci, F.; Rooman, M.

Prediction and Evolution of the

Molecular Fitness of SARS-CoV-2

Variants: Introducing SpikePro.

Viruses 2021, 13, 935. https://

doi.org/10.3390/v13050935

Academic Editors: Luis

Martinez-Sobrido and Fernando

Almazan Toral

Received: 10 April 2021

Accepted: 14 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
fapucci@ulb.be

2 Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
* Correspondence: Marianne.Rooman@ulb.be

Abstract: The understanding of the molecular mechanisms driving the fitness of the SARS-CoV-2
virus and its mutational evolution is still a critical issue. We built a simplified computational model,
called SpikePro, to predict the SARS-CoV-2 fitness from the amino acid sequence and structure
of the spike protein. It contains three contributions: the inter-human transmissibility of the virus
predicted from the stability of the spike protein, the infectivity computed in terms of the affinity of the
spike protein for the ACE2 receptor, and the ability of the virus to escape from the human immune
response based on the binding affinity of the spike protein for a set of neutralizing antibodies. Our
model reproduces well the available experimental, epidemiological and clinical data on the impact of
variants on the biophysical characteristics of the virus. For example, it is able to identify circulating
viral strains that, by increasing their fitness, recently became dominant at the population level.
SpikePro is a useful, freely available instrument which predicts rapidly and with good accuracy the
dangerousness of new viral strains. It can be integrated and play a fundamental role in the genomic
surveillance programs of the SARS-CoV-2 virus that, despite all the efforts, remain time-consuming
and expensive.

Keywords: viral fitness; SARS-CoV-2; COVID-19; spike protein variants; deep mutagenesis; protein
stability; protein binding affinity; immune escape

1. Introduction

Despite mitigation measures put in place around the world to slow down the fast
spreading of the SARS-CoV-2 virus, the COVID-19 viral pandemic continues to have global
devastating effects, with more than 150,000,000 people infected and 3,200,000 deaths at
the end of April 2021 [1]. Lots of efforts and resources have been devoted in the last year
to develop vaccines and new therapeutics in response to the SARS-CoV-2 infection [2,3].
Several vaccines such as mRNA-1273 [4], BNT162b2 [5], AZD1222 [6], Sputnik V [7],
Ad26 [8] and NVX-CoV2373 [9] have proven to be safe and efficacious against the viral agent
and have recently been approved by the regulatory agencies for emergency use. Thanks
to these developments, large-scale vaccine administration is now ongoing throughout
the world.

Moreover, while the pathogenic mechanisms of the viral infection are not totally
clear [10], effective therapeutic agents have been developed. For example, neutralizing
antibodies (nAbs) targeting the viral spike protein or human convalescent plasma have been
employed in clinical practice by passively transferring them to patients [11–14]. Although
with varying degrees of effectiveness, these therapies generally tend to improve the disease
conditions and to reduce viral load especially if administered in early phases of the disease.

The increase in viral immunity at the population level due to infection, vaccination
or passive immunization via nAbs clearly results in a stronger selection pressure on the
SARS-CoV-2 virus [15,16]. This causes the emergence of new variants of the virus which
are able to escape from the immune response. Lots of computational and experimental
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studies are currently focusing on the understanding of these escape mechanisms in the
SARS-CoV-2 viral infection [17–21] and on setting up SARS-CoV-2 immune surveillance of
the world’s population to track and eventually limit the spreading of potentially escaping
variants [22–27].

However, the prediction of how SARS-CoV-2 evolves under this selective pressure
is far from obvious. Indeed, even though SARS-CoV-2 has a moderate mutation rate
compared to other RNA viruses due to its more accurate replication [28], tracking viral
dynamics in the huge space of possible variant combinations (including also deletions and
insertions) under the influence of human immunity makes predictions highly challenging.
Extensive large-scale monitoring of SARS-CoV-2 evolution and host immunity will help to
better understand these issues [28].

In this paper, we performed an extensive computational analysis of the mutational
mechanisms that lead to the emergence of SARS-CoV-2 strains with increased fitness,
with the aim to better understand the molecular mechanisms that drive viral adaptation and
escape from the human immune system. We performed in silico mutagenesis experiments
and predicted the impacts of mutations in the spike protein on its stability and on its
affinity for nAbs and for the angiotensin-converting enzyme 2 (ACE2), known to be the
SARS-CoV-2 entry point into the cells. We validated these predictions on viral variants for
which experimental, epidemiological or clinical data have been obtained, and especially on
the variants that are emerging and rapidly spreading to become prevalent genotypes. Our
predictions are of utmost importance to help monitor the future evolutionary dynamics of
SARS-CoV-2 and to identify the emergent strains whose spread will have to be limited via
either the design of new vaccines or new mitigation measures.

2. Methods
2.1. Spike Protein Structures

The spike protein or S-protein of the SARS-CoV-2 virus (Uniprot code P0DTC2) is
a homotrimeric glycoprotein attached to the viral membrane. It can adopt two forms,
a closed and an open form. The transition between these forms increases the solvent
exposure of the protein’s receptor-binding domain (RBD), which encompasses residues
333–526 and mediates the fusion of the membranes of the virus and of the host’s cells.

The 3-dimensional (3D) structures of the two forms have been experimentally re-
solved by cryo-electron microscopy (cryo-EM) and are deposited in the Protein DataBank
(PDB) [29]. The closed form, with PDB code 6VXX, has a resolution of 2.80 Å [30], and the
open form, 6VYB, has a resolution of 3.20 Å. These structures have thus quite a low res-
olution and do not contain all the residues of the spike protein. To obtain structures of
the closed and open forms without missing residues, we modelled the complete amino
acid sequence using the PDB structures 6VXX and 6YVB as templates and the homology
modelling webserver SWISS-MODEL [31].

More accurate structures, resolved by X-ray crystallography, are available for the RBD
of the spike protein. We used the PDB structure 6M0J [32] for this region, which contains
the RBD bound to ACE2, with a resolution of 2.45 Å.

Furthermore, we set up a dataset of spike protein/nAb complexes taken from [33],
referred to as DnAb. We used the following selection criteria:

• Human monoclonal nAbs generated in response to SARS-CoV-2 infection;
• nAbs targeting the spike protein;
• nAbs/spike protein complexes available in the PDB, with X-ray structure of resolution

≤ 3.2 Å.

DnAb contains 31 structures of nAbs/spike protein complexes, listed in the GitHub
repository github.com/3BioCompBio/SpikeProSARS-CoV-2. These nAbs exclusively tar-
get the RBD of the spike protein, and are assumed to mimic the diversity of the human
immune B-cell repertoire.
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2.2. Spike Protein Stability

To compute the change in folding free energy upon point mutations in the spike
protein, we used the PoPMuSiC algorithm [34], which is based on the 3D structure of the
target protein and a combination of statistical mean-force potentials. These potentials use
a coarse-grained representation of protein structures and were derived from frequencies
of association between sequence and structure motifs observed in a non-redundant set of
well-resolved 3D structures, which were transformed into free energies using the inverse
Boltzmann law. They take into account implicitly the effect of the solvent and thus drasti-
cally reduce the computational cost of the algorithms that use them. For further details
about PoPMuSiC and its energy functions, see [34].

We applied PoPMuSiC to the modelled structures of the open and closed forms of the
full spike protein (obtained using 6VYB and 6VXX as templates), and to the experimental
structure of the RBD domain (6M0J), which are described in Section 2.1, and used it to
compute the effect of all possible single-site mutations on the spike protein stability. More
precisely, PoPMuSiC provided the change in folding free energy ∆∆Gi caused by each
mutation i in each of the three spike protein structures considered. The ∆∆GS

i value used in
what follows was obtained with the following rules: for mutations of residues in the RBD, we
considered the ∆∆Gi based on the 6M0J structure of the RBD; for mutations of other residues,
we averaged the predicted ∆∆Gi’s obtained from the 6VYB- and 6VXX-based models.

2.3. Spike Protein/ACE2 Binding Affinity

For the changes in binding affinity upon single-site mutations, we used the BeAtMuSiC
predictor [35], which is a linear combination of free energy values predicted by PoPMuSiC
on the protein complex and on the separate partners. We applied BeAtMuSiC to predict the
effect of all possible single-site mutations in the viral spike protein on its binding affinity for
the ACE2 receptor of the host, which allows entry of SARS-CoV-2 virus into cells. For this
purpose, we considered the X-ray structure 6M0J of the RBD/ACE2 receptor complex (see
Section 2.1) as input, and computed the change in binding free energy ∆∆GACE2

i of the
RBD/ACE2 complex upon mutations i in the RBD. Mutations in the spike protein outside
the RBD were assumed to have no effect on ACE2 binding, even though they might play a
role due to long-range effects [36].

2.4. Spike Protein/nAb Binding Affinity

The changes in binding affinity between the spike protein and the 31 nAbs from the
DnAb set (see Section 2.1) caused by all possible point mutations in the spike protein were
also estimated using BeAtMuSiC [35]. We computed the effect of each mutation i on the
binding affinity ∆∆GnAb

i (p) of each nAb/spike protein complex p, and computed their
mean value over the 31 complexes from DnAb:

∆∆GnAb
i =

1
ni

ni

∑
p=1

∆∆GnAb
i (p) (1)

where ni is the number of structures that include the mutation i. Indeed, the structures of
the nAb/spike protein complexes do not cover exactly the same region of the spike protein.

2.5. SARS-CoV-2 Fitness

Viral fitness is a parameter related to how efficiently the virus produces infectious
progeny [37]. Despite this simple definition, characterizing fitness quantitatively is very
challenging [38], since it is a fairly complex function of different features among which
the viral inter-host transmissibility, its infectivity and its ability to escape from the host’s
immune response [39]. In this paper, we estimated the global fitness Φi of a variant i of
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the SARS-CoV-2 virus on the basis of a simplified model which only takes into account the
spike protein. More precisely, we defined it as a product of three fitness contributions:

Φi = φS
i × φACE2

i × φnAb
i (2)

where φS, φACE2 and φnAb represent the relative propensities of the mutant virus to be
transmitted between hosts, to infect the host, and to escape from the host’s immune system.
These propensities are assumed to be higher for spike protein variants i that are stabler [40]
(∆∆GS

i < 0), that have greater binding affinity for the ACE2 receptor [41] (∆∆GACE2
i < 0),

and that have lower binding affinity for nAbs (∆∆GnAb
i > 0), respectively. We thus defined

the fitness contributions φS
i and φACE2

i of a mutation i to be a positive decreasing function

of ∆∆GS
i and ∆∆GACE2

i , respectively, and φnAb
i a positive increasing function of ∆∆GnAb

i .
More precisely:

φS
i = exp

[
−max

(
∆∆GS

i
kcal/mol

, βS

)
+ µS

]

φACE2
i = exp

[
−max

(
∆∆GACE2

i
kcal/mol

, βACE2

)
+ µACE2

]
(3)

φnAb
i = exp

[
min

(
∆∆GnAb

i
kcal/mol

,−βnAb

)
− µnAb

]

where µS, µACE2, µnAb, βS, βACE2 and βnAb are parameters. The choice of the φ-functions
and parameters is justified as follows:

• Mutations i that strongly destabilize the spike protein (∆∆GS
i � 0 kcal/mol) or its

binding to ACE2 (∆∆GACE2
i � 0 kcal/mol), or that stabilize its binding with nAbs

(∆∆GnAb
i � 0 kcal/mol) have a fitness close to zero.

• Mutations that stabilize the spike protein (∆∆GS
i < 0 kcal/mol) or its binding to

ACE2 (∆∆GACE2
i < 0 kcal/mol), or that destabilize its binding to nAbs (∆∆GnAb

i >
0 kcal/mol) have an evolutionary advantage and a fitness higher than one.

• To avoid excessively high fitness values, we cut the exponential growth of the φ-
functions for ∆∆Gi = β, with β = βS = βACE = βnAb chosen to be −1, similarly to
what has been proposed in [42].

• The folding free energy changes predicted by PoPMuSiC have been shown to be biased
towards destabilizing mutations [43,44]. To correct for this effect, the µS parameter was
chosen to be equal to 0.5. The changes in binding free energy predicted by BeAtMuSiC
have an analogous bias, as they are constructed from PoPMuSiC scores. Following
the BeAtMuSiC construction detailed in [35], a bias in the PoPMuSiC energy value of
0.5 kcal/mol results in a bias in the BeAtMuSiC energy value of 0.19 kcal/mol. We
thus fixed µS = 0.50 and µACE = µnAb = 0.19.

• We set by definition the fitness value of the wild-type equal to one: φS
0 = φACE2

0 =

φnAb
0 = 1.

Note that PoPMuSiC and BeAtMuSiC are implicitly based on the approximation that
variants do not impact too strongly on the target protein structure. We thus neglect here
large conformational rearrangements in the spike protein and possible effects of allosteric
communication.

The global viral fitness, which takes into account multiple mutations in the spike
protein, is defined as the product of the fitness values of all point mutations i as:

Φ =
m

∏
i

Φi (4)
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where m corresponds to the total number of mutations in the spike protein relative to the
wild-type strain. Note that, in doing so, we considered the mutations as independent and
discard possible epistatic effects.

3. Results
3.1. Computational Pipeline

In its viral evolution, SARS-CoV-2 and our immune system are constantly engaged in
what is known as a cat-and-mouse game, where SARS-CoV-2 attempts to increase its fitness
by increasing the inter-host transmissibility, the infectivity of the host and/or the escape
from the host’s immune response. To quantitatively describe the viral fitness landscape,
we developed a simplified model in which we focused on the spike protein. This protein,
which protrudes from the virus surface, is a crucial component of the infection, as its
binding to the ACE2 receptor of the host mediates the entry of the virus into the host’s cells.
The binding affinity of the spike protein for ACE2 has thus been related to SARS-CoV-2
infectivity [41]. The stability properties of the spike protein itself are another key element
in the viral infection which has been related to the viral transmissibility between hosts [40].

Moreover, the spike protein is a major inducer of the host’s immune response [19,27].
We mimicked the effect of the immune system on the SARS-CoV-2 virus through a set
of 31 nAb/spike protein complexes contained in the dataset DnAb (see Section 2.1). We
observed that these nAbs target exclusively the RBD of the spike protein and that the
epitopes cover almost the entire RBD surface, as shown in Figure 1. It is interesting to note
that the epitopes targeted by the majority of these nAbs are situated in or close to the RBD
region that binds to ACE2, as seen from comparing Figure 1a and Figure 1b; these epitopes
are thus likely to be immunodominant. A recent investigation suggests that RBD-binding
antibodies are the major contributors of the neutralizing activity in convalescent human
plasma [19,27]. This justifies our approximation of considering the nAbs of the set DnAb as
representative of the immune response.

(a)

(b)

Figure 1. Receptor binding domain of the SARS-CoV-2 spike protein (PDB code 6M0J). The two
views are related by a 180◦ rotation with respect to the plane (shown as a vertical line) representing
the ACE2 binding interface. (a) The ensemble of residues that bind to ACE2 are colored in red
spheres and the other residues are in blue. (b) The ensemble of epitope residues targeted by at
least one nAb and less then ten nAbs of the DnAb set are in light pink spheres, those targeted
by ten or more nAbs are in dark pink spheres and the other, non-epitope, residues are in blue.
The list of epitope residues and ACE2 binding sites can be found in our GitHub repository (https:
//github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/main/Structures/Epitope.dat, accessed
on 10 April 2021).

https://github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/main/Structures/Epitope.dat
https://github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/main/Structures/Epitope.dat
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The SARS-CoV-2 fitness, defined qualitatively on the basis of its efficiency to produce
infectious progeny [37], is complicated to define quantitatively [38]. It depends in a complex
manner on a series of features, among which the transmissibility of the virus between hosts,
the infectivity of the host and the ability of the virus to escape from the host’s immune
response [39]. We thus approximated the global SARS-CoV-2 fitness Φ as a product of three
fitness contributions φS, φACE2 and φnAb, which describe the transmissibility, infectivity
and escape features, respectively (Equations (1)–(4)). In addition, we focused exclusively on
the impact of variants of the spike protein. We estimated the three fitness contributions φS,
φACE2 and φnAb in terms of the change in folding free energy upon mutation of the spike
protein (∆∆GS), the change of its binding affinity for ACE2 (∆∆GACE2) and the change of

its binding affinity for a set of nAbs (∆∆GnAb), using statistical physics-based approaches
and more specifically the PoPMuSiC [34] and BeAtMuSiC [35] algorithms, as detailed in
Sections 2.2–2.4. Note that the effect of multiple mutations on the fitness were considered
as independent and thus simply multiplied (Equation (4)).

In order to identify mutations in the spike protein that increase or decrease the
SARS-CoV-2 transmissibility or infectivity, or that facilitate or block the escape from the
protective immunity elicited by the infection, we constructed a computational pipeline
of three steps, schematically represented in Figure 2, in which we estimated ∆∆GS and

φS, ∆∆GACE2 and φACE2, and ∆∆GnAb and φnAb. Using this pipeline, we performed large-
scale computational mutagenesis experiments, in which we introduced basically all point
mutations in the spike protein and predicted their effect on viral fitness. In what follows, we
confronted these predictions with a large series of available experimental, epidemiological
and clinical data on the SARS-CoV-2 infection and evolution.

Mutagenesis!
S-protein stability

c

Mutagenesis!
S-protein/ACE2 binding affinity

Mutagenesis!
S-protein/nAbs binding affinity
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Figure 1. Receptor binding domain of the SARS-COV-2 spike protein. The ensemble of epitope residues targeted by at least one
of the nAbs considered in this paper are in light pink spheres, and the other, non-epitope, residues are in blue spheres. The two
views are related by a 180 degree rotation with respect to the plane representing the ACE2-binding interface.

Here we estimated the fitness f of the SARS-CoV-2 virus on the basis of a simplified model which takes into86

account only the spike protein. More realistic models consider the whole viral genome with the set of 29 ; we leave87

this point for a future investigation. We defined the molecular fitness F of a point mutation i as:88
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The global viral fitness, which takes into account multiple mutations in the spike protein, is defined as the106

product of the fitness values of all point mutations i as:107

Figure 2. Schematic representation of the three steps of our computational pipeline: in silico mutage-
nesis experiments to compute the change in stability of the spike protein, and its change in binding
affinity for ACE2 and for the 31 nAbs from DnAb. The spike protein is in blue, ACE2 in red and the
antigen-binding fragment of a nAb in orange. The structures used for the pictures on the left, center
and right have the PDB codes 6VXX, 6M0J and 7B3O, respectively.

Our prediction pipeline, called SpikePro, is freely available as an easy-to-use c++
program, which needs a variant spike protein sequence in fasta format as input. It outputs
the sequence alignment with the reference spike protein (Uniprot code P0DTC2), the list
of all point mutations introduced and the predicted overall viral fitness Φ. It can be
downloaded from github.com/3BioCompBio/SpikeProSARS-CoV-2.
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3.2. Spike Protein Stability and SARS-Cov-2 Transmissibility

We performed a large in silico mutagenesis experiment to study the influence of
mutations on spike protein stability and thus on inter-host viral transmissibility [40]. Using
PoPMuSiC [34], we computed the change in folding free energy ∆∆GS

i of all possible
single-site mutations i in the spike protein, and the corresponding fitness contribution φS

i
defined in Equation (4).

As a first check of our method, we analyzed the relation between the predicted ∆∆GS
i

values for all point mutations in the RBD domain and the measured effects of these variants
on spike protein expression [45]. These measurements were done using a yeast surface
display platform, in which protein expression was quantitatively determined at large
scale via flow cytometry. Even though protein expression and stability are only partially
correlated, we found a good Pearson correlation coefficient of −0.51 (p-value < 10−200)
between the measured expression and the predicted ∆∆GS

i values, which can be considered
as the first validation of our approach.

To analyze the relation between stability predictions and epidemiological data, we
compared the computed spike protein stability changes ∆∆GS

i with the observed mutation
rate Ri. We estimated Ri as the number of occurrences of each point mutation i in the set of
about 7.8× 105 SARS-CoV-2 spike protein sequences collected in the GISAID database [46],
divided by the number of residues in the spike protein. We analyzed Ri as a function of
the predicted ∆∆GS

i values for all possible mutations i in the whole spike protein. As seen
in Figure 3a, the majority of mutations that became dominant during the evolutionary
trajectory show a slight increase in the spike protein stability, with ∆∆GS

i between −1 and
0 kcal/mol. A smaller number of dominant variants have their stability slightly decreased
with ∆∆GS

i between 0 and 1 kcal/mol. Outside of this free energy interval, the rate Ri
almost vanishes.

Moreover, we found a very good agreement between the predicted fitness φS
i and the

Ri rate, as seen in Figure 3b. Indeed, variants that are predicted to be fitter than the wild
type protein, and especially variants i with φS

i > 2, have a high Ri rate, which means that
they circulate a lot and became fixed during viral evolution. We will deepen this point in
Sections 3.6 and 3.7.

It is important to underline that we did not fit any parameters of our model on the
SARS-CoV-2 data. Thus, this prediction as well as all the predictions presented in the
following sections are truly blind predictions.

Figure 3. Mutation rate Ri of SARS-CoV-2 spike protein variants i observed in the GISAID database [46]
as a function of (a) the predicted change in folding free energy ∆∆GS

i (in kcal/mol) and (b) the
predicted fitness contribution φS

i .

It is instructive to analyze the localization of the variants fixed through viral evolution
in the 3D structure of the spike protein. The mean values of Ri in the core (solvent
accessibility <20%), in partially buried regions (20–50%) and at the surface (>50%) are
equal to 0.06, 0.06 and 0.23, respectively. This indicates that variants that became fixed are
mainly situated in solvent-exposed regions, where they can play a key role in modulating
binding with other biomolecules. Variants in buried or partially buried regions are less
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often observed, as these areas are more constrained from a structural point of view and are
usually not involved in function.

We also compared our stability predictions with results of molecular dynamics and
nanomechanical simulations, which identified three protein segments as strongly contribut-
ing to the RBD stability, i.e., (A348–A352), (F400–R403) and (N450–R454) [47]. We found
that the value of ∆∆GS

i averaged over all possible point mutations inserted in these three
segments is equal to (1.0, 2.1, 1.4) kcal/mol, respectively, and the corresponding fitness
contribution φS

i to (0.7, 0.5, 0.6). The strongly destabilizing effects of mutations predicted in
these three regions indicate that they are particularly optimized for stability, in agreement
with [47]. This result further supports the ability of our approach to properly capture the
stability properties of the spike protein.

3.3. Spike Protein/ACE2 Binding Affinity and SARS-CoV-2 Infectivity

We analyzed here the impact of variants on the binding of the spike protein with the
ACE2 receptor. For all possible point substitutions i in the spike protein, we computed
the change in binding affinity of the spike protein/ACE2 complex, ∆∆GACE2

i , using the
BeAtMuSiC program [35]. Based on the ∆∆GACE2

i values, we estimated the φACE2
i viral

fitness (Equation (4)), aimed at modeling infectivity. Indeed, a higher binding affinity
between the spike protein and ACE2 results in a higher efficiency of virus entry into the
host’s cells [41], which in turn leads to an increase in SARS-CoV-2 infectivity.

We compared the predicted binding free energy values ∆∆GACE2
i with the experi-

mentally characterized binding properties of thousands of variants introduced in the RBD
of the spike protein using a yeast surface display platform, in which binding to ACE2
was quantitatively determined via flow cytometry [45]. Such deep mutagenesis scanning
techniques are excellent tools to estimate biophysical quantities on a large scale. However,
even though the average accuracy is reasonably good, the measured quantities are often
noisy [48].

A good agreement was found between the computed ∆∆GACE2
i values and the large-

scale measured binding affinity properties, with a Pearson’s correlation coefficient of −0.46
(p-value < 10−240). This result can be considered as very good, especially as not only the
computed but also the experimental values have limited accuracy. It clearly underlines the
quality of our prediction approach.

3.4. Spike Protein/nAb Binding Affinity and Immune Escape

Immune evasion is the well-known mechanism used by viruses to evade from the
immune system of its host, thus making its replication and spreading more efficient [49].
This mechanism involves a series of strategies such as spontaneous mutations that result in
the inactivation of nAbs [50] or in the inhibition of pattern-recognition receptors initiating
signalling pathways [51].

To represent the diversity of the B-cell receptor repertoire and to mimic the effect of
the human immune response, we considered the set DnAb of more than 30 nAbs, of which
the 3D structures with the RBD of the spike protein were experimentally resolved (see
Section 2.1). We performed a large-scale in silico mutagenesis experiment by introducing
all possible point mutations i in the RBD of the spike protein and by computing with

BeAtMuSiC [35] the resulting change in binding free energy ∆∆GnAbs
i averaged over all

spike protein/nAb complexes that contain the mutation, as well as their associated fitness
contribution φnAb

i (see Equations (1)–(4)). With this procedure, we identified key spike
protein variants that are likely to either help or destroy the neutralization activity of
the nAbs.

In a first stage, we performed validation tests on BeAtMuSiC’s ∆∆GnAb
i predictions.

We compared them with deep mutagenesis scanning data measuring the impact of muta-
tions in the RBD on their escape fractions from two nAbs, REGN10933 and REGN10987,
which are often administrated as a cocktail to COVID-19 patients [52]. The escape fractions
were estimated using a high-throughput yeast-surface-display platform, in which folded
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RBDs were expressed on the yeast cell surface and the fraction of cells that express mutant
RBDs and that are bound to nAbs was measured [20]. Per-mutant escape fraction values
close to zero indicate that the variant protein is bound to nAbs while values close to one
indicate that it is not.

The structures of the complexes formed by the spike protein and REGN10933 or
REGN10987 nAbs were recently resolved (PDB code 6XDG). They target two different
structural epitopes in the RBD of the spike protein. We did not include these structures in
our set DnAb as they were resolved via cryo-EM technique at only 3.9 Å of resolution. We
predicted the changes in binding affinity ∆∆Gi of the two spike protein/nAb complexes
caused by all RBD mutations i for which experimental escape fractions were available.
Despite the low resolution of the 3D structures, we found good Pearson correlation coeffi-
cients of 0.48 (p-value < 10−28) and 0.43 (p-value < 10−12) between the per-mutant escape
fractions and the computed changes in affinity ∆∆Gi for REGN10933 and REGN10987
nAbs, respectively.

In a second stage, we estimated the fitness contributions φnAb
i of all possible mutations

i in the spike protein’s RBD on the basis of the predicted changes in binding free energy
for the set of 31 good-resolution nAbs/spike protein complexes collected in DnAb. We
made here and in what follows the strong approximation that these 31 nAbs represent the
diversity of the human nAb repertoire. To validate this model, we compared the estimated
fitness contributions φnAb

i with a series of data obtained from in vivo experiments aimed to
study the viral escape from nAbs.

We started by considering the set of 22 variants of the spike protein for which the
neutralizing activity of six nAbs has been experimentally tested in terms of the relative
degree of resistance (in %) of the growth of each mutant virus in the presence or in the
absence of each of these nAbs [17]; we considered the average percentage over the six
nAbs tested. Low percentages identify variants that escape much more from nAbs than
the wild type virus and high percentages, variants that only weakly affect the wild-type
spike protein/nAbs affinity. We predicted correctly 18 out of the 22 variants as having
φnAb fitness values greater than one; the last four variants have φnAb ∼ 0.9. Detailed
results are reported in Table 1 for the five variants shown to have the broadest in vitro
neutralizing spectrum [17]. Our results reproduce quite well the in vitro trends: variants
that are likely to escape from at least some nAbs tend to have fitness values larger than
one. Note, moreover, that the antibodies tested in [17] are different from the nAbs of our
DnAb set. Because of that, we did not expect such a good match between the experiments
and our predictions. This result suggests that the set DnAb is truly representative of the
antibody repertoire neutralizing the SARS-CoV-2 virus.

Table 1. List of the five variants of the spike protein RBD which have the broadest in vitro neutralizing
spectrum, as measured in [17]. Their measured average resistance to six nAbs compared to the wild-type
are given, as well as their fitness φnAb predicted on the basis of the 31 nAbs from the DnAb set.

Variants Resistance to nAbs φnAb

S349A 35% 1.1
G446A 37% 1.4
G447A 41% 1.6
N448A 26% 1.5
E484A 44% 1.1

The response to the viral infection drastically depends on the ensemble of nAbs
present in the host, given that each nAb behaves differently with respect to wild-type
and variant strains. In agreement with this, the predicted change in binding free energy
∆∆GnAb

i is found to strongly depend on the considered variant and nAb/spike protein

complex, as clearly seen in Figure 4. Remember that it is the average ∆∆GnAb
i over all

the nAbs that is used to define the fitness contribution φnAb and thus the overall immune
escape ability.
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Figure 4. HeatMap of the predicted ∆∆GnAb
i values for each of the 31 nAb/spike protein complexes

from the set DnAb. The color scale is shown on the right (in kcal/mol). Light blue corresponds to
variants that slightly stabilize the complex and orange, to mutations that destabilize the complex.
The most destabilizing mutations are likely to lead the virus to escape from the immune system.

We also validated our fitness predictions φnAb against the large-scale experimental
estimation of the immune escape fractions of about 2000 variants, averaged over a set
of 17 nAbs [53]; note that these nAbs are not in the set DnAb. We found a reasonably
good overall Pearson correlation coefficient of 0.29 (p-value < 10−25) between φnAb and
measured escape fractions. Looking in more detail, the residues whose mutations most
affect nAb binding belong to two regions of the RBD: the 443–450 and 484–490 loops
that are situated at both sides of the ACE2 binding interface [53]. Using our set DnAb of
nAbs, we predicted the second region as potentially leading to immune escape with a φnAb

value of 1.6. The nAb escaping capability is predicted to be weaker for the first region,
with φnAb = 1.1.

A 3D representation of the per-residue fitness contributions φnAb
i in the RBD of the

spike protein, averaged over all possible mutations at each position, is shown in Figure 5.
This figure is very useful to identify residues whose mutation is likely to lead to the escape
of the virus from the DnAb set of nAbs.

1.0

2.4

2.0

1.5

Figure 5. Average per-residue φnAb fitness contributions related to the ability of the virus to escape
from the immune system, mapped onto the 3D structure of the spike protein RBD (PDB code 6M0J).
As shown in the color bar on the right, residues whose mutation lead to highest average φnAb and
thus to viral escape from nAbs are shown in white; residues with fitness values of one or lower and
not allowing viral escape are in dark blue. The φnAb fitness values for all residues in the RBD are
given in our GitHub repository (https://github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/
main/phi_nAb.dat, accessed on 10 April 2021). The ACE2 binding interface is shown in red in the
two small pictures at the top (see also Figure 1). The left and right pictures are related by a 180◦

rotation with respect to the vertical plane (shown as a line) representing the ACE2 binding interface.

https://github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/main/phi_nAb.dat
https://github.com/3BioCompBio/SpikeProSARS-CoV-2/blob/main/phi_nAb.dat
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3.5. Immune Escape from Polyclonal Human Sera

We examined to what extent our method reproduces the impact of variants on the
neutralizing activity of polyclonal human sera. Note that such activity depends on a wide
range of factors among which inter-patient variability and time since infection [53]. Our
computational approach is obviously unable to capture all intricate dependencies but
instead, we expect it to detect general trends.

We used deep mutagenesis scanning data from [53], in which the escape fractions of
about 2000 single-site RBD variants were assessed on the neutralizing activity of plasma
samples taken from 17 SARS-CoV-2-infected individuals, at different time points after in-
fection. We calculated the correlation between the escape fraction for each variant averaged
over the patients and post-infection time points and the predicted fitness contributions φnAb

computed from the DnAb set of nAbs. We obtained a reasonably good Pearson correlation
coefficient of 0.35 (p-value < 10−42) between the predicted and measured quantities.

Only few residues appear to contribute substantially to the escape mechanisms, when
averaged over the whole plasma sample collection. Indeed, only 23 residues have an
average escape fraction greater than 3%. Our predictions for these residues are in very
good agreement with experiments: we obtained an average per-residue φnAb equal to 1.5.
Residue F456 shows almost perfect agreement: it has the highest measured escape fraction,
and also has the highest predicted φnAb value, equal to 2.2. Almost all substitutions at
that position are predicted to strongly impact on the binding in the majority of spike-
protein/nAbs complexes analyzed.

Finally, it is interesting to compare the measured immune escaping fractions in poly-
clonal plasma discussed in this section with the experimentally characterized escape
fractions in the set of nAbs studied in [53] and discussed in Section 3.4. We found that their
linear correlation coefficient is equal to 0.4 (p-value < 10−16), which indicates there are
differences between the tested cocktail of nAbs and serum plasma. Possible explanations
include the scarcity of the tested antibodies in the polyclonal plasma, or the subdominance
of the epitopes they target [53].

3.6. Overall Variant Fitness, Transmissibility, Infectivity and Immune Escape

We focused on five SARS-CoV-2 variants most frequently observed worldwide, as re-
ported in the GISAID database [46] in March 2021, and predicted their fitness; the results
are shown in Table 2.

The most frequently observed spike protein variant involves the substitution of aspar-
tic acid at position 614 into glycine, situated outside the RBD. This variant quickly became
dominant after its appearance in early 2020 [40,54]. We correctly predicted a substantial
increase in fitness for this variant with respect to wild type, which is driven by an increased
stability of the spike protein (φS

D614G = 3.7). We hypothesize that this stabilization leads to a
higher person-to-person viral transmissibility, as also suggested in [40,54,55] and observed
in vivo [55]. In the latter study, a stabilization of the spike protein was measured upon
D614G substitution via a strengthening of the S1–S2 subunit interactions, where S1 is
the receptor binding subunit containing the RBD and S2 is the membrane fusion subunit.
In contrast, this variant was shown to alter neither the binding of the spike protein to ACE2
nor the antibody neutralization, as it is situated outside the RBD [55]. We also correctly
reproduced this result, with fitness values of φACE2

D614G = 1.0 = φnAb
D614G (Table 2). The overall

predicted fitness is thus ΦD614G = 3.7.
Two other variants, A222V and P681H, show similar albeit less pronounced trends.

Our results predict an increase in transmissibility (φS
A222V ≈ φS

P681H ≈ 2.0), but to a
lesser extent than D614G. Experimental data are in agreement with the weaker impacts
of these variants on the spike protein fitness and the viral transmissibility compared to
D614G [56,57]. The A222V variant has been related to the large outbreaks in Europe in early
summer 2020, while P681H is associated to the so-called UK lineage (B.1.1.7) that appeared
in UK in late 2020 and is now becoming dominant in Europe in the current outbreaks.
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Finally, N501Y is also a widely spread variant appearing in all major lineages, i.e., UK
(B.1.1.7), Brazilian (P.1) and South African (B.1.351) lineages. We predicted this variant
as having a high overall fitness Φ due to a combination of increased fitness contributions
φS

N501Y and φACE2
N501Y, but a φnAb

N501Y=1. In other words, we predicted this variant to be more
transmissible and infectious than the wild type but to have no impact on the response
of the human immune system. More precisely, we predicted N501Y as improving the
stability of the spike protein RBD and its binding affinity for ACE2; the latter property is
also suggested by another computational study [58]. No clinical data suggest that N501Y
is able to evade the post-vaccination immune response [59]; this tends to support our
prediction results.

Table 2. The five most widely observed variants and their predicted fitness. Occurrences refer to their
number of occurrences in the GISAID database [46], φS

i , φACE2
i , and φnAb

i to the fitness contributions
of the variants i related to the stability of the spike protein, its binding affinity for ACE2 and its
escape propensity from the host’s immune system, respectively, and Φi to the total fitness.

Variants Occurrences φS
i φACE2

i φnAb
i Φi

D614G 96% 3.7 1.0 1.0 3.7
A222V 19% 2.0 1.0 1.0 2.0
P681H 19% 1.6 1.0 1.0 1.6
N501Y 18% 2.1 1.4 1.0 2.9

3.7. Viral Evolution and Overall Fitness

We applied our prediction pipeline to analyze SARS-CoV-2 evolution, focusing on
the spike protein. We started by predicting the viral fitness Φ of all the SARS-CoV-2
strains collected in the GISAID database [46] from December 2019 until March 2021, which
amounts to about 7.8× 105 strains. We subdivided the strains according to the month of
collection and computed the per-month average of viral fitness. The results are reported in
Figure 6a as a function of time. Clearly, we predict an increase in the viral fitness since the
beginning of the infection in December 2019, in agreement with epidemiological results.
This result demonstrates once again the quality of our computational pipeline.

Note that to predict the future evolution of the fitness Φ, it is necessary to take into
account different parameters such as the varying repertoire of human nAbs and the effect
of vaccination. While the fitness contributions φS and φACE2 are expected to reach a plateau
when the spike protein sequence becomes optimal for stability and for binding to ACE2,
the cat-and-mouse game played by the virus and its host leads the host to continuously
adapt its B-cell repertoire to the new variants of the virus, so that φnAb certainly increases
with respect to the old nAbs, but not with respect to the new nAbs. In total, the overall
fitness Φ is expected to plateau after some time, or at least to increase less.

We analyzed in more detail the evolution of the partial distribution function of the
per-month averaged fitness in Figure 6b. In January 2020, the population was dominated
by the wild type strain whose fitness Φ is by definition equal to one. The effect of the
D614G spike protein variant with a predicted Φ ∼ 4 started to be observed from May
2020, while in October of the same year, additional mutations with Φ = 2.0, such as A222V,
started to be fixed in the population, leading to a further increase in Φ. In March 2021,
the distribution became dominated by new variants, i.e., UK, South-African and Brazilian
variants, with a much higher fitness than both the wild-type and D614G strains.
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Table 2: List of the five most widely observed variants with their predicted fitnesses.
In the first column there is the variants, in the second their occurrences in the GISAID
database, in the third, fourth and fifth column the fitness related to the stability, binding
and escaping from the host immune systems and in the last column the total fitness values
of the variants.
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Figure 6. Time evolution of the predicted overall fitness Φ. (a) Average fitness 〈Φ〉 per month for the
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Finally, we carefully checked that our large-scale mutagenesis predictions are not
biased towards high fitness values. Indeed, such bias could potentially cause a trivial
increase in fitness upon evolution and lead to erroneous interpretations. To check this,
we created 2 × 106 viral strains by inserting either three or five random mutations in
the wild-type spike protein and assumed that they became fixed with probability one
independently of their fitness value; the number of random mutations was chosen based
on the average number of single variants per strain in the GISAID database [46] which
is between three and four. We then computed the fitness Φ for all these random variant
strains. On the other hand, we plotted the Φ distribution of the real variant strains observed
in the GISAID database. The fitness distribution of the two simulated strains and of the
real viral strain are completely different, as shown in Figure 7. Indeed, when three or five
random mutations are inserted in the spike protein, the Φ distributions have a median
value of 0.32 and 0.12, respectively; moreover, 79% and 86% of the mutated strains have a
lower overall fitness Φ than the wild-type virus. In contrast, the distribution of real strains
has a median of 4.8 and basically all the strains (99.5%) have a predicted fitness higher
than the wild type. In summary, random strains show a fitness distribution that peaks at a
value of zero, in contrast to the real viral strains whose fitness distribution is much more
extended, reaching values of more than 10. This confirms that the high fitness values that
we predict are not due to unwanted biases of any kind, and that one cannot obtain fitness
values as high as those of variants observed in real strains just by considering random
mutations. This last analysis further supports the unbiased nature and validity of our
computational approach.
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4. Conclusions

Here we set up and validated SpikePro, a simple computational model that predicts
the impact of spike protein variants on the SARS-CoV-2 fitness and more specifically,
on inter-host viral transmissibility, infectivity of the host and ability of escaping from the
host’s immune system. Moreover, the program is easy to use and can be freely downloaded
from github.com/3BioCompBio/SpikeProSARS-CoV-2. SpikePro allows identification,
with good accuracy and in a few seconds, of new SARS-CoV-2 variants with high fitness
which need to be closely monitored by health agencies.

Although innovative diagnostic strategies [60] and genomic surveillance schemes [61,62]
have recently been introduced to mitigate SARS-CoV-2 spreading, which for example
integrate rapid large-scale viral genome sequencing with epidemiological analyses [61],
such approaches remain time-consuming and require substantial amounts of human and
financial resources to be implemented. SpikePro has thus a central role to play in the
genomic surveillance programs of the new SARS-CoV-2 strains, especially in the near
future with the growing number of people vaccinated and thus the larger selective pressure
on the virus [63].

We thoroughly analyzed and validated SpikePro on a wide series of experimental,
epidemiological and clinical data available. Despite the simplicity of the model, the approx-
imations made, and the absence of parameters that were fitted to optimize the accuracy
of the predictions, the SpikePro pipeline reproduces well the collected data. Whether
the validation is performed on large-scale mutagenesis data, nAb cocktails or polyclonal
human sera, whether the comparison involves the fitness of the spike protein, of the spike
protein/ACE2 complex, or of a series of spike protein/nAb complexes, the results are good
with correlation coefficients in the 0.3 to 0.5 range.

In addition, SpikePro predicts a high overall fitness value for the frequently occurring
variants such as the UK, Brazilian or South-African variants and correctly identifies the
main fitness contributions. It also reproduces well the overall fitness evolution of the
SARS-CoV-2 virus over the past pandemic year.

It has to be emphasized that the SpikePro model, besides being able to reproduce
known results, has a true prediction potential in describing and interpreting the effect of
new spike protein variants that could be fixed in the near future and the future SARS-
CoV-2 evolution, owing to the physical description of the fitness in terms of free energy
contributions, which are estimated using the well-known structure-based PoPMuSiC and
BeAtMuSiC predictors [34,35].

Despite the progress we made towards a better understanding of the molecular
mechanisms underlying the SARS-CoV-2 fitness, we made some approximations in the
construction of our model which we will try to relax in future studies. In particular, we
did not take into account possible amino acid deletions or insertions in the spike protein,
although they have been proven to influence viral fitness. For example, the deletions
∆69–70 and ∆144–145 in the N-terminal domain of the spike protein, found in different
lineages, have been associated to an increase in human-to-human viral transmission and
to altered antigenicity [21,64]. It would also be interesting to take into account epistatic
effects. Indeed, while more and more variants become fixed, interactions between them are
expected to become non-negligible. The model should also be extended to other proteins
of the SARS-CoV-2 virus such as the non-structural protein 1 (Nsp1) which also contributes
to immune evasion [65], rather than considering the spike protein only. Finally, when
more nAbs/spike protein complexes will be resolved at high resolution, they will enrich
our set DnAb and better describe the B-cell receptor repertoire. Considering a weighted
combination of the effects of RBD variants on all nAbs depending on different factors
such as time and vaccination status would further improve our method in mimicking the
immune response and its temporal evolution.
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