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We study the Hall response of topologically trivial mobile impurities (Fermi polarons) interacting weakly
with majority fermions forming a Chern-insulator background. This setting involves a rich interplay between
the genuine many-body character of the polaron problem and the topological nature of the surrounding cloud.
When the majority fermions are accelerated by an external field, a transverse impurity current can be induced. To
quantify this polaronic Hall effect, we compute the drag transconductivity, employing controlled diagrammatic
perturbation theory in the impurity-fermion interaction. We show that the impurity Hall drag is not simply
proportional to the Chern number characterizing the topological transport of the insulator on its own—it also
depends continuously on particle-hole breaking terms, to which the Chern number is insensitive. However, when
the insulator is tuned across a topological phase transition, a sharp jump of the impurity Hall drag results, for
which we derive an analytical expression. We describe how to experimentally detect the polaronic Hall drag and
its characteristic jump, setting the emphasis on the circular dichroism displayed by the impurity’s absorption
rate.
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I. INTRODUCTION

As a rule of thumb, interacting many-body systems in more
than one dimension are difficult to analyze, and controllable
routes to the inclusion of interactions are rare. One such
approach is to consider a noninteracting “majority” system,
couple it to a small number of quantum impurities, and study
the interaction effects on the impurities only. If the majority
system is a conventional metal, the impurities are transformed
into so-called Fermi polarons [1,2], which by now are rou-
tinely observed in ultracold-gas [3–7] and also solid state
experiments [8]—for a review, see, for instance, Refs. [9–11].

In these systems, the local kinematic properties of the
impurities are modified by the interaction with the medium,
while the medium itself is unmodified if the impurity density
is small. The next logical question to ask is whether global
topological characteristics of the medium [12] can influence
the impurity as well: Can a topologically trivial impurity in-
herit the topological quantum numbers of the medium? Such
an interaction-induced topology is a fundamentally interesting
prospect. Furthermore, this question is of high relevance to
current cold-atom experiments, where a broad family of topo-
logical band structures have been realized [13]. Topological
and polaronic physics are thus well-controlled (and highly
active) but largely separate fields in cold-atom research, and it
is thus worthwhile and intriguing to combine them together.

*dpimenov@umn.edu

This goal has been approached in a few recent theoretical
works, mainly from two perspectives: Either interaction ef-
fects are strong such that an impurity-majority bound state
is formed [14–17], and the impurity inherits the topological
quantum numbers of the majority, or, alternatively, one can
study the problem in weak coupling [18], as previously done
by some of us, with the majority forming a Chern insulator.
This perturbative approach is well controlled and does not
require additional regularization.

As a diagnostic tool for the inherited topological properties
of the impurity particles, Ref. [18] numerically computed the
impurity Hall drag for majority particles governed by the
Haldane lattice model [19]. It was found that the Hall drag
is neither quantized nor simply follows the majority phase
diagram, and even vanishes in the center of the topological
phase; however, it exhibits a sharp jump upon tuning the
insulator across its topological phase transition. In this paper,
we introduce a generic (continuum) Dirac model of a Chern
insulator. This model follows the same universal physics as
the Haldane model, but allows for an analytical understanding
of the phenomena numerically observed in Ref. [18]. With a
diagrammatical approach, we show that the Hall drag can be
split into two drag contributions exerted by majority particles
and holes, respectively. These two contributions counteract
each other, and completely cancel at the particle-hole symmet-
ric point. This is reminiscent of Coulomb drag in two-layer
systems [20–22], and explains the observed vanishing of
the drag in the center of the majority topological phase. If
particle-hole symmetry is broken, the impurity Hall drag can
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be nonvanishing even if the majority Chern insulator is in
the trivial phase. To understand the observed jump across the
topological phase transition, one should view the majority
system as a combination of Dirac-like fermions with a linear
dispersion, and “spectator” fermions [23] with a quadratic
dispersion. At the phase transition, the spectator fermions
change smoothly, but the Dirac fermions feel the gap closing
and exhibit a singular Berry curvature. We show that this
singularity is integrated over in the expression for the impurity
Hall drag, which leads to a jump proportional to the change
in Chern number, including the correct sign. This is the only
clear manifestation of topology in weak-coupling impurity
transport. We derive an analytical formula for the jump, and
validate all results numerically for the Haldane lattice model.
To supplement the theoretical results, we present a detailed
discussion on how to detect the Hall drag and jump with
various experimental techniques. A particular promising ap-
proach is to use circular dichroism, that is, measuring impurity
excitation rates upon driving the system with left and right
circularly polarized fields [24–27]. A systematic method of
computing the excitation rates in an interacting many-body
system is presented along the way.

The remainder of this paper is structured as follows: In
Sec. II, we present the continuum Dirac model and the evalu-
ation of the impurity drag. In Sec. III, we investigate the jump
across the topological phase transition. The drag including its
jump at the topological transition is analyzed for the Haldane
model in Sec. IV. The different measurement protocols are
detailed in Sec. V, with special focus on the dichroic mea-
surement. Conclusions and outlook are presented in Sec. VI.
Some technical details are relegated to Appendixes.

II. DRAG TRANSCONDUCTIVITY IN
THE CONTINUUM MODEL

We start by computing the impurity drag in a generic
continuum model and consider the following two-dimensional
Bloch Hamiltonian for majority particles indexed by a pseu-
dospin ↑,

H↑(k) =
3∑

i=0

ψ
†
↑(k)hi(k)σiψ↑(k),

ψ↑(k) = [c↑,A(k), c↑,B(k)]T ,

h1(k) = kx, h2(k) = ky, h3(k) = m + d1k2,

h0(k) = d2k2, k = |k|, (1)

with σ0 = 1 and σi with i = 1, 2, 3 being the Pauli matrices.
Throughout this paper we will work in units where h̄ = c =
e = 1; all quantities are measured in appropriate powers of the
(inverse) physical fermion mass, while momenta are rescaled
by the band velocity. Equation (1) can be seen as a low-energy
approximation to a microscopic tight-binding Hamiltonian
with a two-sublattice structure (A, B) and broken time-
reversal invariance. The eigenenergies corresponding to (1)
read

ε↑;1,2(k) = h0(k) ∓ h(k), h(k) =
√

k2 + h3(k)2. (2)

Fxy(k)

k

C = 1
C = 0

Fxy(k)

k

FIG. 1. Berry curvature for d1 = −1 and m = ±0.1 (solid lines),
m = ±0.2 (dashed lines). The inset shows a zoom-in on small values
of Fxy(k), highlighting the sign change of the Berry curvature in the
trivial phase.

Without the terms d1, d2 [which have physical dimensions
(mass)−1], Eq. (1) describes a gapped Dirac cone with mass
gap m. The term d1 serves as a UV regularizer and makes
the dispersion quadratic at higher energies while preserving
particle-hole symmetry, ε↑,1(k) = −ε↑,2(k). The symmetry is
broken for finite d2. We assume |d1| > |d2|, thus the lower
(upper) band is filled (empty).

For general d2, the Hamiltonian (1) is in the Altland-
Zirnbauer class A [28], and gives rise to a quantized Chern
number C. As shown below, it reads

C = 1

2π

∫
dk

1

2

[m − d1k2]

[k2 + (m + d1k2)2]3/2

= 1

2
[sgn(m) − sgn(d1)]. (3)

The integrand of Eq. (3) is nothing but the Berry curvature
Fxy(k). As visualized in Fig. 1, for m → 0 Fxy(k) consists of
a sharp half-quantized peak for k � m, arising from the Dirac
fermions, on top of a broad background from high-energy
“spectator” fermions [23]. Both types of fermions effectively
contribute a half-integer Chern number, such that the total
Chern number is quantized to an integer.

As explicit in Eq. (3), C does not depend on the particle-
hole symmetry breaking parameter d2. This is in line with
the geometrical interpretation of C as a winding number [29],
which is independent of the term h0 commuting with the
Hamiltonian [30].

As a preparation for the later calculations, it is useful to
recap the computation of C explicitly as C = −2πσxy [31,32],
with σxy the transconductivity; the conductivity quantum is
σ0 = e2/h̄ = 1/2π with the chosen units. In a linear response,
σxy is proportional to the retarded current-current correlation
function, which may be obtained by analytical continuation
from imaginary time,

σxy = lim
ω→0

1

−iωA0
[−〈Ĵx

↑Ĵy
↑〉 (i�)|i�→ω+i0+ ], (4)

with A0 the system area, and Ĵ↑ the current operators at van-
ishing external momentum.
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1; ωk,k

2; Ω + ωk,k

Particle

Hole

Jx
↑,12(k)Jy

↑,21(k)

Ω Ω

FIG. 2. Diagram representing Eq. (5), with α = 1, β = 2.

The imaginary time correlator in Eq. (4) can be written as

−〈Ĵx
↑Ĵy

↑〉 (i�)

= A0

∫
k

G↑,α (ωk, k)G↑,β (� + ωk, k)Jx
↑,αβ (k)Jy

↑,βα (k),

∫
k

≡
∫

dkdωk

(2π )3
, G↑,α (ωk, k) = 1

iωk − ε↑,α (k)
, (5)

where α, β refer to band indices and the Einstein summation
convention is implied. Jx/y

↑,αβ are current matrix elements in
the diagonal basis (see Appendix A for details). The standard
diagrammatical representation of Eq. (5) is shown in Fig. 2.
The Matsubara Green’s function G↑,1 describes the propaga-
tion of a hole in the filled lower band, while G↑,2 represents
a particle in the upper band. The frequency integral in Eq. (5)
only receives contributions when α �= β, and thus one can
view the creation of virtual particle-hole pairs as the origin
of the conductivity. These quasiparticles are virtual, since the
external field does not provide enough energy (� → 0) to
overcome the band gap.

The evaluation of Eqs. (5) and (4) is straightforward. One
finds

σxy = −i
∫

dk
(2π )2

Jx
↑,12(k)Jy

↑,21(k) − Jx
↑,21(k)Jy

↑,12(k)

[ε↑,1(k) − ε↑,2(k)]2

= − 1

2π
C. (6)

Inserting current matrix elements and dispersions into Eq. (6)
produces Eq. (3). After this noninteracting prelude, we are
ready to attack the polaron problem. We consider a minority
particle species indexed by ↓, with a trivial quadratic Hamil-
tonian H↓(p):

H↓(p) = ε↓(p)c†
↓(p)c↓(p), ε↓(p) = p2

2M
. (7)

We can view the impurities as governed by a similar
tight-binding Hamiltonian as the majority, but with a chem-
ical potential almost at the bottom of the lower band,
around which the dispersion is approximated by an ef-
fective mass M. Higher impurity bands can be safely
neglected.

The majority and minority particles interact via an on-site
interaction Hint [18], which does not distinguish between the
sublattices (recall that the sublattices give rise to the two-band

Jy
↑,αβ(k) Jx

↓ (q)

β; ωk,k

α; Ω + ωk,k Ω + ωq, q

ωq, q

Jy
↑,αβ(k) Jx

↓ (−q)

β; ωk,k

α; Ω + ωk,k Ω + ωq,−q

ωq,−q

ωq + ω̃,0

2; ωk + ω̃, k − q

ωq + ω̃,0

1; Ω + ωk − ω̃, k − q

FIG. 3. Leading contributions to the drag transconductivity.
Dashed lines represent impurities, and dotted lines interaction matrix
elements W [see Eq. (8)]. The energy-momentum structure of the
central part and the colored elements are explained in the main text.

structure):

Hint = g

A0

∑

=A,B

∑
k,p,q

c†
↑,
(k + q)c↑,
(k)c†

↓(p − q)c↓(p)

= g

A0

∑
k,p,q

c†
↑,α (k + q)c↑,β (k)c†

↓(p − q)c↓(p)Wαβ (k, q),

Wαβ (k, q) ≡ [U †
↑ (k + q)U↑(k)]αβ, (8)

where we have rotated to the band space in the second line.
Now we imagine a constant and uniform force E = Eey acting
on both majority and minority particles [33]. Due to the inter-
action Hint, a transverse impurity current Jx

↓ will be induced;
without an interaction, there is none due to time-reversal
symmetry of the impurities. To quantify this effect, we must
compute the Hall drag transconductivity

σ↓↑ ≡ lim
ω→0

1

−iωA0
[−〈Ĵx

↓Ĵy
↑〉 (i�)|i�→ω+i0+]. (9)

This computation will be done to second order in the
impurity-majority coupling g, since the first-order contribu-
tion vanishes [18]; thus, attractive and repulsive interactions
lead to the same result. We point out that such a perturbative
expansion is well controlled for small g, and no resummation
is needed, in contrast with the recent evaluation of longitudi-
nal polaron drag in the metallic case [34].

As in the case of Coulomb drag in two-layer systems [20],
the O(g2) contribution corresponds to the two diagrams shown
in Fig. 3. We evaluate these diagrams to leading order in
the small impurity density n↓. The diagrams involve an
impurity loop and are therefore proportional to n↓, unlike
the single-particle polaron diagrams which have an impurity
“backbone” [35]. It is convenient to identify the impurity
lines that represent filled states (=̂impurity holes). Since these
carry vanishing momenta in the small density limit, impu-
rity lines coupled to the current vertex, Jx

↓(q) = qx/M, are
excluded. Thus, the central (red) line corresponds to a filled
state. We may set its momentum to zero as done in Fig. 3,
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(a)

(b)

d2

σ↓↑ · (2π)4

g2n↓

σ↓↑ · (2π)4

g2n↓

m

C = 1C = 0

FIG. 4. Impurity transconductivity σ↓↑ from a numerical evalua-
tion of Eq. (10). Lines are guides for the eye. (a) σ↓↑ as a function
of d2 for M = 1, m = 0.2, d1 = −1. (b) σ↓↑ as a function of m for
M = 1, d1 = −1, d2 = 0.5.

and the integration over filled states then simply produces a
factor of n↓.

Identification of the red line with a filled state also fixes
the (red) index of the central majority line in order for the
ω̃ integral (see Fig. 3) to be nonvanishing. Schematically the
top diagram in Fig. 3 describes the scattering of an impurity
with a particle, with momentum transfer q, and the bottom
diagram the scattering with a hole, with momentum transfer
−q. Therefore, the net momentum transfer and drag vanish
in the particle-hole symmetric case [20–22], as will be seen
explicitly below. The remaining evaluation of the diagrams is
straightforward (see Appendix B). We obtain

σ↓↑ = −2g2n↓
∫

dk
(2π )2

dq
(2π )2

Im{Jy
↑,12(k)W 22(k − q, q)

×W 21(k,−q)}
×qx

M

1

[ε↑,1(k) − ε↑,2(k)]2 [d (k, q) + c(k, q)], (10)

d (k, q) = 2ε↑,1(k) − ε↑,2(k) − ε↑,2(k − q) − ε↓(q)

[ε↑,1(k) − ε↑,2(k − q) − ε↓(q)]3 ,

c(k, q) = 2ε↑,2(k) − ε↑,1(k) − ε↑,1(k − q) + ε↓(q)

[ε↑,1(k − q) − ε↑,2(k) − ε↓(q)]3
. (11)

Here, c, d represent the contributions of the “direct” (top
in Fig. 3) and “crossed” (bottom) diagrams. When flipping
d2 → −d2, we have ε1 → −ε2 and vice versa, thus σ↓↑ is an-
tisymmetric in d2. In particular, it vanishes in the particle-hole
symmetric case, d2 = 0. A numerical evaluation of Eq. (10) as
a function of d2 is shown in Fig. 4(a). Let us point out that the

complete cancellation of σ↓↑ at d2 = 0 only occurs to second
order, O(g2), and is not expected in higher order, as can be
shown explicitly for the Haldane model (see below).

In Fig. 4(b), σ↓↑ is depicted as a function of m for nonzero
d2, tuning the majority system from the trivial phase with
C = 0 to a nontrivial one, C = 1. While σ↓↑ exhibits a clear
jump when the majority particles undergo a topological phase
transition (see the next section), it is neither constant in
the nontrivial phase, nor does it vanish in the trivial phase:
For the majority particles, time-reversal symmetry is bro-
ken everywhere in the phase diagram, but for C = 0 the
transconductivity contributions of the “Dirac” and “spectator”
fermions cancel exactly, as long as the chemical potential is in
the gap and the lower majority band is completely filled. In
the case of the gapless impurity band, such a cancellation is
not guaranteed, and the impurity Hall drag therefore does not
vanish in the nontrivial phase.

III. THE JUMP ACROSS THE PHASE TRANSITION FOR
THE CONTINUUM MODEL

Another salient feature of Fig. 4(b) is the discontinuous
change of the drag transconductivity which occurs upon cross-
ing the topological phase boundary m = 0. This jump can be
understood as arising from a singular contribution of Dirac
fermions: When the gap closes, the Dirac part of the majority
Berry curvature [∝m in Eq. (3)] evolves into a delta func-
tion, sgn(m)δ(2)(k)—compare also Fig. 1. In contrast, the part
corresponding to the spectator fermions [∝d1 in Eq. (3)] is
smooth across the transition. In the expression for the impurity
drag (10), a singular Dirac contribution ∝sgn(m)δ(2)(k) arises
as well. This singular contribution changes sign across the
transition, and so induces the jump �σ↓↑ in the Hall drag,
with a sign determined by the change in Chern number �C.
To extract �σ↓↑ we can set k = 0 in all parts of Eq. (10) which
are nonsingular as k → 0. As detailed in Appendix C, in this
way we obtain

σ↓↑,Dirac =g2n↓
∫

dk
(2π )2

dq
(2π )2

Im
{
Jy
↑,Dirac,12(k)Jx

↑,Dirac,21(k)
}

[ε↑,1(k) − ε↑,2(k)]2

× q2
x

Mq
√

1 + (d1q)2

(
1

[ε↓(q) + ε↑,2(q)]2

− 1

[ε↓(q) − ε↑,1(q)]2

)
, (12)

where Jx/y
↑,Dirac(k) represents the majority current carried by the

Dirac (i.e., not the spectator) fermions. Compared to Eq. (10)
the k and q integrals in Eq. (12) have factorized. The k in-
tegral, which simplifies to an integral over a delta function
as m → 0, is nothing but the Chern number contribution of
the Dirac fermions [cf. Eq. (6)]. It evaluates to (1/8π )sgn(m).
Performing the remaining q integral, one finds

σ↓↑,Dirac = − g2n↓
(2π )4

4π2d2M sgn(m)

1 + 4M
[|d1| + (

d2
1 − d2

2

)
M

] . (13)

Defining �σ↓↑ as the jump of Hall drag when going from
the trivial to the topological phase, with a change in the Chern
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M

M

σ↓↑,spec · (2π)4

g2n↓

Δσ↓↑ · (2π)4

g2n↓

FIG. 5. Jump of the Hall drag �σ↓↑ in the continuum model as a
function of M, with d1 = −1, d2 = 0.5. The dashed line corresponds
to Eq. (14), and points are computed numerically by evaluating
Eq. (10) at two points m = ±0.001 close to the phase boundary.
Numerical errors are of the order of the point size. Inset: The smooth
contribution of the spectator fermions, obtained numerically from
Eq. (10).

number �C, Eq. (13) leads to the final result:

�σ↓↑ = �C g2n↓
(2π )4

(
− 8π2d2M

1 + 4M
[|d1| + (

d2
1 − d2

2

)
M

]
)

. (14)

As a check, in Fig. 5 this formula is compared with a nu-
merical evaluation of the jump from Eq. (10) as a function
of the impurity mass M, yielding excellent agreement. Note
that both Hall drag and jump will vanish in the limits M →
0 or M → ∞: In the former limit, the impurity cannot interact
efficiently with the majority particles due to the large kinetic
energy cost, while in the latter the impurity is immobile and
cannot be dragged. While the Dirac part of the Hall drag
σ↓↑,Dirac changes sign at the transition, there is also a small
smooth background contribution from the spectator fermions,
to be denoted σ↓↑,spec. This contribution can be extracted
numerically from Eq. (10) as

σ↓↑,spec = 1
2 [σ↓↑(m = 0+) + σ↓↑(m = 0−)] (15)

(see the inset to Fig. 5).
We note in passing that the jump of σ↓↑ is reminiscent of

the recently shown [36] change of sign in the Hall coefficient
for a single-particle gapless Dirac cone upon variation of the
particle density.

IV. DRAG AND JUMP IN THE HALDANE LATTICE MODEL

The general behavior of σ↓↑ to leading order O(g2) is not
limited to the continuum model (1), but will hold in other
Chern insulators as well. As another example, we consider
a situation [18] where the majority particles are described by
the Haldane model on the honeycomb lattice [19], with the
Hamiltonian

H↑(k) =
3∑

i=0

ψ
†
↑(k)[hi(k)σi]ψ↑(k),

ψ↑(k) = [c↑,A(k), c↑,B(k)]T , ki = k · ui,

h0(k) = −2t ′ cos(φ)[cos(k1 − k2) + cos(k1) + cos(k2)],

h1(k) = −[1 + cos(k1) + cos(k2)],

h2(k) = −[(sin(k1) + sin(k2)],

h3(k) = �/2 + 2t ′ sin(φ)[sin(k1 − k2) + sin(k2) − sin(k1)],

(16)

where u1 = (3/2,
√

3/2)T , u2 = (3/2,−√
3/2)T , and the lat-

tice constant and nearest-neighbor hopping amplitude are
set to 1. The reciprocal lattice vectors are given by b1 =
(2π/3, 2π/

√
3)T , b2 = (−2π/3, 2π/

√
3)T . The model is

parametrized by the next-nearest-neighbor hopping t ′, the an-
gle φ quantifying the time-reversal symmetry breaking, and
the sublattice potential offset �. For given values of t ′, φ,�,
the majority chemical potential is implicitly placed in the gap
(its precise value is irrelevant). The well-known topological
phase diagram of the Haldane model is shown in Fig. 6(a).

The impurity particles are governed by the tight-binding
model for graphene (i.e., t ′ = � = 0), with the chemical po-
tential at the bottom of the lower band [18] by setting h0(k) =
3. The impurity-majority interaction, Eq. (8), is straight-
forwardly modified to account for the impurity multiband
structure.

The Hall drag σ↓↑ can then be derived in analogy to the
continuum model (see Appendix D for details); the only minor
change is the appearance of diagonalizing unitary matrices
U↓(q) for the impurity. A numerical evaluation of σ↓↑ is
presented in Figs. 6(b)–6(d). Now, the particle-hole sym-
metric case where ε1 = −ε2 corresponds to φ = ±π/2, and
σ↓↑ vanishes accordingly [18]. Furthermore, one can easily
demonstrate the symmetry σ↓↑(φ) = −σ↓↑(π − φ) [see Ap-
pendix D below Eq. (D2)]. This symmetry is readily seen
in Fig. 6(c), which shows a cut through the phase diagrams
for fixed � = 0. Combined with the symmetry σ↓↑(φ) =
−σ↓↑(−φ) inherited from the Haldane model, this gives the
Hall drag a periodicity

σ↓↑(φ) = σ↓↑(φ + π ), (17)

apparent in Fig. 6(b). This remarkable manifestation of
particle-hole antisymmetry is in stark contrast to the pure
majority case, where the Chern number only has the trivial
periodicity C(φ) = C(φ + 2π ) [see Fig. 6(a)].

At the special particle-hole symmetric parameter points,
φ = ±π/2, � = 0, one can also get insight into the behavior
of σ↓↑ to higher order in g (see Appendix E): Employing a
particle-hole transformation which also exchanges the band
indices of the majority particles, it can be shown that at these
points the Hall drag is antisymmetric in g to all orders. So
while there is no O(g) contribution, and the leading order
O(g2) must vanish, at order O(g3) the Hall drag will be
nonzero.

In the numerics, the jump of σ↓↑ across the topological
phase transition is again prominent, and clearly delineates
the topological phases of the parent Haldane model. Its ori-
gin is analogous to the continuum model—it comes from a
sign-changing contribution of Dirac fermions, which becomes
singular upon gap closing. The only significant difference
is that there are now two Dirac cones in the problem, but
except at the special points φ = 0, π , the gap closes at only
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0 π/2−π/2 π−π

0

Δ0

−Δ0

σ↓↑ · (2π)4

g2n↓

σ↓↑ · (2π)4

g2n↓

σ↓↑ · (2π)4

g2n↓

Δ/Δ0

φ

φ = π/4

Δ = 0

φ

Δ

C = 1C = −1

−π π

-Δ0

(a)

(b)

(c)

(d)

t = 0.1
t = 0.2

FIG. 6. Impurity Hall drag σ↓↑ in the Haldane model. (a) Majority phase diagram. �0 = 6
√

3t ′ is the value of � where the phase transition
occurs for φ = π/2. (b) σ↓↑ from a numerical evaluation of Eq. (D2) for t ′ = 0.2. Cuts through the phase diagram along the dashed lines are
shown in the next panels. (c) σ↓↑ as a function of φ for � = 0 and two values of t ′. (d) σ↓↑ as a function of � for φ = π/4 and same two
values of t ′. The abscissa is rescaled by �0(t ′).

one of them. In the language employed for the continuum
model, states near the Dirac cone with an open gap count as
spectator fermions. A detailed analysis of the jump leads to
(see Appendix D)

�σ↓↑ = �C g2n↓
(2π )4

f (t ′, φ), (18)

where f (t ′, φ) is a numerical function defined in Eq. (D4).
It involves the remaining q integral, which is difficult to
evaluate analytically in the lattice case. In Fig. 7(a), �σ↓↑ is
depicted as a function of φ. It is maximal as φ → 0+, π−,
where the particle-hole asymmetry of the dispersion (away
from the Dirac points) is largest. Again, the jump occurs
on top of a smooth background contribution from the spec-
tator fermions, presented in Fig. 7(b). It too is maximal as
φ → 0+, π−, approaching 1/2�σ↓↑: Close to these angles,
the spectator contribution is almost fully determined by the
second Dirac cone, which has a very small gap. Accordingly,
the values of the sign-changing drag contribution σ↓↑,Dirac

and the almost Dirac-like background contribution are the
same.

V. MEASUREMENT OF THE HALL DRAG

We now discuss how to detect σ↓↑ experimentally. In a
solid state system, the total transversal conductivity σxy,tot is an
easily accessible quantity, typically obtained from a resistivity
measurement. Since the majority particles form a Chern insu-
lator, their contribution to σxy,tot is quantized, and the Hall drag
contribution σ↓↑ can in principle be read off by subtracting

this quantized value from σxy,tot. In practice, however, it may
be necessary to use the specific parameter dependence of σ↓↑
to separate it from σxy,tot. σ↓↑ can for example be obtained as
the contribution to σxy,tot proportional to the impurity density
n↓, or by subtracting measurements of σxy,tot at two particle-
hole inverted points of the phase diagram.

Chern insulators have also been successfully realized in
ultracold-gas systems. Here, an established technique for mea-
suring topological quantum numbers [37,38] is the in situ
observation of the center-of-mass displacement of the atomic
cloud upon the action of an external force. In the present po-
laron context, this measurement would have to be performed
in a state-dependent manner to extract the Hall drag. In addi-
tion, one could conduct either a state-dependent time-of-flight
measurement [39,40], or Raman spectroscopy (as recently im-
plemented for polarons [41]), to infer the in-trap momentum
distribution of the impurity, in view of evaluating the current
response of the impurity to an applied force.

All these transport experiments would extract the Hall
drag from the linear current response to an external, linearly
polarized electric field, which is the standard point of view.
However, recent theoretical works have shown [24–26,42,43]
that topological invariants can also be obtained from a mea-
surement of excitation rates to second order in the amplitudes
of circularly polarized fields, which was verified in the ex-
periment of Ref. [27]. For the Hall drag σ↓↑, a relation to an
impurity excitation rate can be established as well, as we now
show. Measuring such excitation rates may be a simpler route
to detect σ↓↑ experimentally, in both ultracold-gas and solid
state systems.
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φ

φ

σ↓↑,spec · (2π)4

g2n↓

Δσ↓↑ · (2π)4

g2n↓(a)

(b)

FIG. 7. (a) Jump of the Hall drag �σ↓↑ in the Haldane model as a
function of φ, with t ′ = 0.2 and � = �c tuned to the transition line.
The dashed line corresponds to formula (18), and points are com-
puted numerically by evaluating Eq. (D2) at two points close to the
phase boundary, with � = �c ± 0.001 (solid circles). For compari-
son, a numerical evaluation with � = �c ± 0.1 is also shown (open
circles), which yields qualitative agreement only. (b) Smooth con-
tribution from spectator fermions, obtained numerically from (D2).
Horizontal lines correspond to �σ↓↑(φ = 0+, π−)/2.

To set the stage, we first rephrase the results of Ref. [24]
for the majority sector (a noninteracting Chern insulator). The
particles are coupled to external left or right circular polarized
electrical fields,

E±(t ) = 2E [cos(ωt ),± sin(ωt )]T , (19)

with ω a fixed drive frequency. In the temporal gauge, the
time-dependent light-matter Hamiltonian reads

H↑,±(t ) = 2E

ω
[Ĵx

↑ sin(ωt ) ∓ Ĵy
↑ cos(ωt )]. (20)

1; ε1(k),k 1; ε1(k),k2; ω + ε1(k),k

ω ω

Jx
21(k) Jy

12(k)

FIG. 8. On-shell self-energy diagram. Incoming and outgoing
fermion lines represent particles from the lower band, the inter-
mediate line a particle from the upper band, and the wiggly lines
the circularly polarized electrical fields. The Feynman rules are ex-
plained in Appendix F.

When this perturbation is switched on, particles are ex-
cited from the lower to the upper band. One can define the
associated depletion rates of initially occupied states with
momentum k, �↑,±(k, ω), which depend on the polarization
of the driving field (“circular dichroism”). In Ref. [24], these
rates are obtained from Fermi’s golden rule. Let ��↑(ω) be
the difference in total depletion rates for a fixed frequency
ω, ��↑(ω) ≡ 1/2

∑
k[�↑,+(k, ω) − �↑,−(k, ω)]. Then the

Chern number C follows the simple relation [44]

A0E2C = −
∫ ∞

0
dω��↑(ω). (21)

This integration has to be understood as an average of ��↑(ω)
over different drive frequencies, obtained by repeating the
experiment many times [27].

For our purposes here, it is useful to rederive the result (21)
from diagrammatic perturbation theory. This is achieved by
relating the depletion rate to the on-shell retarded self-energy
as

�±,↑(k, ω) = −2 Im[�±(ε↑,1(k), k; ω)]. (22)

In turn, the self-energy to second order in H↑,± can be repre-
sented by the Feynman diagram of Fig. 8, plus the diagram
with the Ĵx

↑, Ĵy
↑ vertices interchanged. The necessary Feyn-

man rules in energy-momentum space are easily derived from
H↑,±, and are detailed in Appendix F. There are also processes
involving (Ĵx

↑)2, (Ĵy
↑)2, but they cancel in ��↑(ω). Working

directly in the real frequency space for convenience, ��↑(ω)
can then be directly written down as

��↑(ω) = −
∑

k

Im[�+(ε1(k), k; ω) − �−(ε1(k), k; ω)]

= −
∑

k

E2

ω2
Im

[[
2iJx

↑,21(k)Jy
↑,12(k) − 2iJy

↑,21(k)Jx
↑,12(k)

] 1

ω + ε↑,1(k) − ε↑,2(k) + i0+

]
. (23)

Integrating over ω, we find∫ ∞

0
dω��↑(ω) = 4πE2A0

(2π )2

∫
dk

∫ ∞

0
dω

δ(ω − [ε↑,2(k) − ε↑,1(k)])
ω2

Im[Jx
↑,12(k)Jy

↑,21(k)]
(6)= −A0E2C, (24)

in agreement with Eq. (21).
To summarize, we have related the majority Chern number

to the differential depletion rate of filled states from the lower
band when the system is subjected to a circular perturbation.

We can now extend this idea to the impurity case. We con-
sider our previous interacting majority-impurity setup, with a
small number of impurities prepared in the lower band, and
couple both majority and impurity particles to the circular
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ωq, q ωq − ω, q0,0 0,0

Jx
↓ (q)

ω

ω

2; ω + ωk − ωq,k − q

1; ωk,k2; ω + ωk,k

Jy
↑,21(k)

ωq − ω, q ωq, q0,0 0,0

Jx
↓ (q)

ω

ω

2; ω + ωk − ωq,k − q

2; ω + ωk,k1; ωk,k

Jy
↑,12(k)

ωq, q0,0 0,0

2; ω + ωk − ωq,k − q

1; ωk,k 2; ω + ωk,k

Jx
↑,21(k − q)

1; ωk − ωq,k − q

Jy
↑,12(k)

−ωq,−q0,0 0,0

2; ω + ωk − ωq,k − q

1; ωk,k2; ω + ωk,k

Jx
↑,21(k − q)

1; ωk − ωq,k − q

Jy
↑,12(k)

(a) (b)

(c) (d)

FIG. 9. Nonvanishing contributions to the impurity depletion rate �↓,±(0, ω). (a), (b) Diagrams not related to the drag, which are particle-
hole symmetric. (c), (d) Diagrams related to the drag. These two diagrams differ in the orientation of the field lines and the band index structure
of the majority particles.

fields. On their own, the impurities would not experience a
differential depletion because of the time-reversal invariance
of the impurity Hamiltonian. Only due to the interaction with
the majority particles would such differential depletion will
set in, corresponding to the occupation of higher momentum
states. Note that, for strong impurity-majority interactions, it
will rather be polaronic (dressed impurity) states which are
depleted. For weak coupling, however, such band-dressing
effects can be neglected [to order O(g2)], and we can think
in terms of bare impurities in lieu of polarons. In technical
terms, our Feynman diagrams will not contain any impurity
self-energy insertions.

Let us couple the impurities to the circular fields in the
same way as the majority particles [Eq. (20)]. We consider
the depletion rate of the filled impurity state with vanishing
momentum �↓,±(0, ω) ≡ �↓,±(ω), which is of most interest
when the impurity density is small. Since nonvanishing contri-
butions to ��↓(ω) must involve majority scattering, to order
O(g2) there are two classes of relevant diagrams; representa-
tive diagrams are shown in Fig. 9.

Consider first Figs. 9(a) and 9(b). These diagrams describe
processes where only the majority particles are excited by the
external fields. Since they do not involve an impurity current,
they are not related to the drag. Two additional diagrams

where the direction of the external field lines is inverted can
be drawn as well.

The structural difference between Figs. 9(a) and 9(b) is the
orientation of the majority lines, which maps to an inverted
energy-momentum transfer on the impurity (marked red).
Thus, similar to the drag diagrams of Fig. 3, the diagrams are
related by particle-hole symmetry. However, the contributions
of these diagrams add up rather than cancel, since they do not
contain an impurity current operator J↓(q), which is odd in q.
Therefore, as can be verified by a straightforward evaluation
[cf. Appendix F, Eq. (F4)], the total contribution ��↓,ph of
these diagrams obeys ��↓,ph(φ) = ��↓,ph(π − φ) for the
Haldane and ��↓,ph(d2) = ��↓,ph(−d2) for the continuum
model. As a result, in an experiment these processes can
be projected out by subtracting ��↓,ph(φ) − ��↓,ph(π − φ),
which leaves out only the antisymmetric drag contribution.
Another way to separate ��↓,ph from the drag is to have
a different coupling constant between the external field and
impurities, which is feasible in the ultracold-gas setup where
the circular perturbation can for example be implemented
by lattice shaking [27,45]. Since ��↓,ph is independent of
the coupling to the impurities, it can again be eliminated by
subtracting measurements obtained for two different impurity
couplings.
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Let us assume either such an elimination implicitly, and
move on to Figs. 9(c) and 9(d). In essence, they correspond
to the drag transconductivity diagram of Fig. 3 (top), with
the central (red) impurity line cut. The two other diagrams in
this class have crossed interaction lines, akin to the “crossed”
diagrams of Fig. 3 (bottom). The evaluation of these four
diagrams is straightforward (see Appendix F). Summation
over the filled impurity states simply yields∑

p,filled

�↓,±(p, ω) �
∑

p,filled

�↓,±(ω) = A0n↓�↓,±(ω). (25)

For the integrated differential depletion rate, one then finds∫ ∞

0
dω��↓,xy(ω) = 2πA0E2σ↓↑, (26)

as naively expected from Eq. (24). However, the impurity
depletion rate also receives a contribution from the processes
involving the currents Ĵy

↓, Ĵx
↑. Per the Feynman rules (cf. Ap-

pendix F), these diagrams come with a relative minus sign,
and then yield a factor of 2 for the total differential rate, since
σxy,↓↑ = −σyx,↓↑ for both the continuum and the Haldane
model, as one can check easily. Modulo the antisymmetriza-
tion discussed above, we therefore have

σ↓↑ = 1

4πA0E2

∫ ∞

0
dω��↓(ω). (27)

This result can also be rephrased in terms of excitation
instead of depletion rates. Since the impurities are initially
prepared at the bottom of the band, one can write∫ ∞

0
dω��↓(ω) =

∑
q>0

∫ ∞

0
dω��↓,exc(q, ω), (28)

meaning that the impurities are excited into states with a
higher momentum which are initially empty. These q states
correspond to the intermediate impurity lines in Fig. 9. Via
Eq. (27) we can then define a q-resolved impurity drag as

σ↓↑ ≡
∑
q>0

σ↓↑(q). (29)

This provides an alternative view on, say, the topological
jump �σ↓↑. For the Haldane model, it can be phrased as
�σ↓↑ = �C

∫
dq fjump(q), where fjump(q) is a known function

[see Eqs. (18) and (D4)]. If the excitation rates defined in
Eq. (28) can be experimentally detected in q-resolved fash-
ion (for instance with band mapping techniques [46–48]), so
can the q-resolved impurity drag σ↓↑(q). Measuring σ↓↑(q)
at two points in the phase diagram close to the topological
boundary then gives direct access to fjump(q). Taken the other
way around, supposing that fjump(q) is known for the model
realized in the experiment, so at each q point an independent
estimate of the change in Chern number across the phase
transition �C is possible.

VI. CONCLUSIONS

In this work we have studied to which extent a topo-
logically trivial impurity can be Hall-dragged by majority
excitations in a Chern insulator, looking at two different mod-
els in a controlled perturbative setting. Since the impurity Hall

drag is sensitive to the dispersion of the majority particles
and holes, there is no one-to-one correspondence to the Chern
number; nevertheless, the change in Chern number across a
topological transition is clearly reflected by a discontinuous
jump in the drag transconductivity σ↓↑. This jump arises
from the integrated singular Berry curvature of the majority
fermions. The transconductivity can be extracted either from
transport experiments, or from a measurement of impurity ex-
citation rates upon driving the system by a circularly polarized
field.

A worthwhile goal for future study is the extension to the
strong-coupling limit, in particular the analysis of impurity-
majority bound state formation. These bound states may have
a rather rich physics: They could inherit the topological char-
acteristics of the majority particles [14,15], have opposite
chirality as found for the Haldane model in the two-body
limit [49], or even be topological when the single-particle
states are trivial [50–52].
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APPENDIX A: BASIS ROTATION

To evaluate the conductivities, it is convenient to work in
the diagonal band basis, introducing a diagonalizing unitary
matrix U↑(k),

U †
↑ (k)H↑(k)U↑(k) = diag[ε↑,1(k), ε↑,2(k)], (A1)

U↑(k) =
(

U↑,A1(k) U↑,A2(k)

U↑,B1(k) U↑,B2(k)

)
,

U↑,A1(k) = h3(k) − h(k)√
2h(k)[h(k) − h3(k)]

,

U↑,A2(k) = h3(k) + h(k)√
2h(k)[h(k) + h3(k)]

,

U↑,B1(k) = h1(k) + ih2(k)√
2h(k)[h(k) − h3(k)]

,

U↑,B2(k) = h1(k) + ih2(k)√
2h(k)[(h(k) + h3(k)]

, (A2)
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where A, B refer to the sublattice- and 1,2 to the diagonal band
basis. The same expressions apply for the Haldane model as
well.

In the band basis, the second-quantized current operator is
given by

Ĵx/y
↑ =

∑
k

c†
↑,α (k)Jx/y

↑,αβ (k)c↑,β (k), (A3)

with matrix elements

Jx
↑(k) = U †

↑ (k)Jx,0
↑ (k)U↑(k),

Jx,0
↑ (k) = ∂H↑(k)

∂kx
= σx + 2kx(d1σz + d21), (A4)

and likewise for Jy
↑(k).

APPENDIX B: EVALUATION OF THE DRAG DIAGRAMS IN THE CONTINUUM MODEL

Let us start by considering the first “direct” diagram in Fig. 3 with majority band indices α = 1, β = 2. Its contribution to the
Matsubara correlator −〈Ĵx

↓Ĵy
↑〉 (i�), to be denoted by P1(i�), reads

P1(i�) = −g2n↓A0

∫
k,q

∫
dω̃

2π
Jy
↑,12(k)W 22(k − q, q)W 21(k,−q)Jx

↓(q)
1

i(� + ωq) − ε↓(q)

1

iωq − ε↓(q)

1

i(ωq + ω̃) + 0+

× 1

i(� + ωk ) − ε↑,1(k)

1

iωk − ε↑,2(k)

1

i(ωk + ω̃) − ε↑,2(k − q)
, (B1)

where 0+ in the third impurity propagator ensures the correspondence to filled states. Evaluating the frequency integrals, we find

P1(i�) = −g2n↓A0

∫
dk

(2π )2

dq
(2π )2

Jy
↑,12(k)W 22(k − q, q)W 21(k,−q)Jx

↓(q)

× 1

ε↑,1(k) − ε↑,2(k − q) − ε↓(q)

1

−i� + ε↑,1(k) − ε↑,2(k − q) − ε↓(q)

1

−i� + ε↑,1(k) − ε↑,2(k)
. (B2)

Upon analytical continuation, i� → ω, only the O(ω) part contributes to the static drag as in the noninteracting case. With
Eq. (9), we get

σ↓↑,1 = ig2n↓
∫

dk
(2π )2

dq
(2π )2

Jy
↑,12(k)W 22(k − q, q)W 21(k,−q)

qx

M

1

[ε↑,1(k) − ε↑,2(k)]2 d (k, q), (B3)

with d (k, q) as defined in Eq. (11). The remaining three contributions to σ↓↑ have the following structure: The direct diagram with
majority indices α = 2, β = 1 leads to Eq. (B3) with A ≡ Jy

↑,12(k)W 22(k − q, q)W 21(k,−q) replaced by B ≡ −Jy
↑,21(k)W 12(k −

q, q)W 22(k,−q); using the elementary properties of unitary matrices, one can show that B = −A (with A the complex conjugate
of A), thus yielding the part ∝d (k, q) of Eq. (10) in the main text. The remaining “crossed” diagram of Fig. 3 likewise generates
the part ∝c(k, q).

APPENDIX C: JUMP OF THE HALL DRAG IN THE CONTINUUM MODEL

To derive the jump from Eq. (10), we need to project on the part of the k integrand corresponding to the Dirac fermions,
which becomes singular at k = 0 as m → 0. This can be done by setting k = 0 in all regular parts. The last factor in the
integrand becomes

d (k, q) + c(k, q) →
(

1

[ε↓(q) + ε↑,2(q)]2
− 1

[ε↓(q) − ε↑,1(q)]2

)
. (C1)

In the part involving interaction matrices W , it is useful to rewrite

W 22(k − q, q)W 21(k,−q)
(8)= U †

↑,2n(k)U↑,n2(k − q)U †
↑,2m(k − q)U↑,m1(k) → U †

↑,2n(k)U↑,n2(−q)U †
↑,2m(−q)U↑,m1(k)

= [
U †

↑ (k)V (q)U↑(k)
]

21
, V (q)nm ≡ U↑,n2(−q)U †

↑,2m(−q), (C2)

where n, m are sublattice indices, and in the second step we have only kept the singular k dependence. V (q) is a Hermitian
matrix, and so can be expanded as a linear combination of the unit and Pauli matrices with real coefficients. Then it is easy to
show that only the contribution ∝σx survives the integration in Eq. (10), while the rest either does not contribute to the required
imaginary part or is antisymmetric in kx. Therefore, we can write

[U †
↑ (k)V (q)U↑(k)]21 =̂ [U †

↑ (k)σxU↑(k)]21Re[V (q)12] = [U †
↑ (k)Jx,0

↑,DiracU↑(k)]21
−qx

2q
√

1 + (d1q)2
, (C3)

where in the last step we identified the current operator of the Dirac fermions in the sublattice basis, σx = Jx,0
↑,Dirac [cf. Eq. (1)],

and wrote out V (q) by inserting matrix elements of U↑(−q) from Appendix A. Inserting Eqs. (C1) and (C3) into Eq. (10), we
can write the sign-changing Dirac part of the Hall drag as shown in Eq. (12) of the main text.
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APPENDIX D: IMPURITY HALL DRAG AND JUMP IN THE HALDANE MODEL

In the Haldane model, the on-site interaction is defined by [cf. Eq. (8)]

Hint = g

A0

∑

=A,B

∑
k,p,q

c†
↑,
(k + q)c↑,
(k)c†

↓,
(p − q)c↓,
(p) = g

A0

∑
k,p,q

c†
↑,α (k + q)c↑,β (k)c†

↓,1(p − q)c↓,1(p)Wαβ (k, p, q),

Wαβ (k, p, q) =
∑


=A,B

U ↑,
α (k + q)U↑,
β (k)U ↓,
1(p − q)U↓,
1(p). (D1)

In Eq. (D1), we have restricted the impurity to the lower band, which is legitimate for weak interactions.
With this interaction, the derivation of the Hall drag proceeds analogously to the continuum model, Appendix B, and results

in

σ↓↑ = −2g2n↓
∫

dk
(2π )2

dq
(2π )2

Im
{
Jy
↑,12(k)W 22(k − q, q, q)W 21(k, 0,−q)

}
Jx
↓,11(q)

1

[ε↑,1(k) − ε↑,2(k)]2 [d (k, q) + c(k, q)],

(D2)

with Jx
↓,11(q) the impurity current operator in the band basis (taking into account lower band contributions only), and c, d as in

Eq. (11), only replacing the single band energy of the continuum model ε↓(q) by the lower band energy ε↓,1(q).
From Eq. (D2) one can readily derive the additional symmetry σ↓↑(φ) = −σ↓↑(π − φ) mentioned in the main text. In the

majority Hamiltonian H↑(k), h0(k; φ) = −h0(k; π − φ), while the other coefficients are invariant under such reflection. As a
result, one finds c(k, q; φ) = −d (k, q; π − φ). All other elements of Eq. (D2) do not change, which shows the property as
claimed.

To evaluate the jump of the Hall drag �σ↓↑ in the Haldane model in analogy with Sec. III, let us focus on the transition line,
�c = 6

√
3t ′ sin(φ), where the gap closes at the Dirac point kA = (0, 4π/3

√
3)T . Since σ↓↑ is symmetric in �, for a given value

of φ the value of �σ↓↑ at −�c is the same. To extract the singular Dirac contribution at kA, we let k → kA in all regular parts of
Eq. (D2). In this limit,

Jx
↑(k) → U †

↑ (k) 3
2σyU↑(k) ≡ Jx

↑,Dirac(k). (D3)

This current can be extracted from the interaction part of Eq. (D2) as in Sec. III, which allows us to write the Dirac part of the
Hall drag as

σ↓↑,Dirac = g2n↓
(2π )4

∫
dk
π

Im
{
Jy
↑,Dirac,12(k)Jx

↑,Dirac,21(k)
} 1

[ε↑,1(k) − ε↑,2(k)]2 f (t ′, φ),

f (t ′, φ) ≡ −4π

3

∫
dqJx

↓(q)

(
1

[ε↑,1(kA) − ε↑,2(kA − q) − ε↓,1(q)]2 − 1

[ε↑,1(kA − q) − ε↑,2(kA) − ε↓,1(q)]2

)

×Im
{
U↑,A2(kA − q)U †

↓,1A(0)U↓,A1(q)U †
↑,2B(kA − q)U↓,B1(0)U †

↓,1B(q)
}
. (D4)

Again, the k and q integrals have factorized, and the k integral gives ±1/2. This yields a value of the jump as in Eq. (18) of the
main text. The remaining q integral has to be evaluated numerically.

APPENDIX E: ANTISYMMETRY OF THE HALL DRAG AS A FUNCTION OF g IN THE HALDANE MODEL
WITH φ = ±π/2, � = 0

Here, we show that the Hall drag σ↓↑ in the Haldane model, with parameters φ = ±π/2, � = 0, is antisymmetric in the
impurity-majority coupling g to all orders. We work in the diagonal band frame, and perform a particle-hole transformation
which also exchanges the band indices:

bα̃ (k) ≡ c†
↑,α (−k), b†

α̃ (k) ≡ c↑,α (−k), 1̃ ≡ 2, 2̃ ≡ 1. (E1)

Due to particle-hole symmetry for φ = ±π/2, the form of the noninteracting majority Hamiltonian is invariant under this
transformation (up to a constant),

H↑ =
∑

k

c†
↑,α (k)εα (k)c↑,α (k) =

∑
k

b†
α̃ (−k)[−εα (k)]bα̃ (−k) + const =

∑
k

b†
α (k)εα (k)bα (k) + const, (E2)

where εα (k) = −εα̃ (−k) was used. However, the interaction term acquires a minus sign under the variable transformation (E1):

Hint = g

A0

∑
k,p,q

c†
↑,α (k + q)c↑,β (k)c†

↓,1(p − q)c↓,1(p)Wαβ (k, p, q)

= − g

A0

∑
k,p,q

b†
β̃

(−k)bα̃ (−k − q)c†
↓,1(p − q)c↓,1(p)Wαβ (k, p, q) + const
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= − g

A0

∑
k,p,q

b†
α (k + q)bβ (k)c†

↓,1(p − q)c↓,1(p)Wβ̃α̃ (−k − q, p, q) + const

= − g

A0

∑
k,p,q

b†
α (k + q)bβ (k)c†

↓,1(p − q)c↓,1(p)Wαβ (k, p, q) + const. (E3)

The unimportant additional terms are constant in the majority sector. In the last step, we used Wβ̃α̃ (−k − q, p, q) = Wαβ (k, p, q).
This can be easily shown by inserting the matrix elements from Eqs. (A2) and (16), but requires h3(k) = −h3(−k), which is
only fulfilled for � = 0 (and is violated in the continuum model).

Last, the required majority current operator transforms as

Jy
↑,αβ (k) =

∑
k

c†
↑,α (k)U †

↑,αn(k)
[
J0

y,↑(k)
]

nmU↑,mβ (k)c↑,β (k),
[
J0

y,↑(k)
]

nm = [∂ky H↑(k)]nm,

Jy
↑,αβ (k) = −

∑
k

b†
β̃

(−k)U †
↑,αn(k)

[
J0

y,↑(k)
]

nmU↑,mβ (k)bα̃ (−k) + const

= −
∑

k

b†
α (k)U T

↑,α̃m(−k)
[
J0

y,↑(−k)
]T

mnU ↑,nβ̃ (−k)bβ (k) + const. (E4)

Again, inserting matrix elements, one can show that

U T
↑,α̃m(−k)

[
J0

y,↑(−k)
]T

mnU ↑,nβ̃ (−k) = U †
↑,αm(k)

[
J0

y,↑(k)
]

mn
U↑,nβ (k),

and the majority current changes sign. In conclusion, for φ = ±π/2,� = 0 this proves the antisymmetry

σ↓↑(g) = −σ↓↑(−g), (E5)

as claimed in the main text.

APPENDIX F: σ↓↑ FROM CIRCULAR DICHROISM: TECHNICAL DETAILS

The Feynman rules for the perturbation H↑,±(t ) of Eq. (20) in the energy-momentum domain are easily derived from Wick’s
theorem. They read as follows: (1) Each current vertex comes with a factor E/ω. (2) If an incoming (outgoing) electrical field
line couples to a Jx vertex, there is an extra factor −i (i) for both �±(ω). (3) If an electrical field line (incoming or outgoing)
couples to a Jy vertex, this gives a factor ∓ 1 for �±(ω).

The application of these rules directly leads to Eq. (23) in the noninteracting case. For the integrated impurity depletion rate,
let us consider for instance the contribution of the two diagrams of Figs. 9(c) and 9(d), to be denoted D. It reads

D = −n↓g2E2A0

∫ ∞

0
dω

∫
dk

(2π )2

dq
(2π )2

Im

{∫
dωk

2π

∫
dωq

2π

[ − 2iJy
↑,21(k)Jx

↓(q)W 2 + 2iJy
↑,12(k)Jx

↓(q)W
2] 1

ω2

× 1

ωq − ε↓(q) + i0+
1

ωq − ω − ε↓(q) + i0+
1

ωk − ε↑,1(k) − i0+

× 1

ω + ωk − ε↑,2(k) + i0+
1

ω + ωk − ωq − ε↑,2(k − q) + i0+

}
. (F1)

Here, W is shorthand for the proper interaction matrices [cf. Eq. (10)]. The third propagator is advanced (it corresponds to a
majority hole) and has a −i0+ term in the denominator, and the other propagators are retarded. Performing the ωk, ωq integrals
yields

D = −n↓g2E2A0

∫
dk

(2π )2

dq
(2π )2

∫
>0

dω Im

{[ − 2iJy
↑,21(k)Jx

↓(q)W 2 + 2iJy
↑,12(k)Jx

↓(q)W
2] 1

ω2

× 1

ω + ε↑,1(k) − ε↑,2(k − q) − ε↓(q) + i0+
1

ε↑,1(k) − ε↓(q) − ε↑,2(k − q) + i0+
1

ω + ε↑,1(k) − ε↑,2(k) + i0+

}
. (F2)

The expression involving the currents is real, and the imaginary part comes from the propagators only. They yield a sum of two
delta functions, since the propagator in the middle is real. Computing the ω integral, after some trivial algebra, one then finds

D = 2πE2A0 − 2g2n↓
∫

dk
(2π )2

dq
(2π )2

Im
{
Jy
↑,12(k)Jx

↓(q)W 2
} 2ε↑,1(k) − ε↑,2(k) − ε↑,2(k − q) − ε↓(q)

[ε↑,2(k) − ε↑,1(k)]2[ε↑,1(k) − ε↑,2(k − q) − ε↓(q)]3
, (F3)

which is precisely 2πE2A0 times the σ↓↑ contribution of the “direct” diagram [cf. (10)]. The evaluation of the other nonvanishing
drag diagrams (crossed diagram and diagrams with Jy

↓, Jx
↑ interchanged) proceeds in the same manner.
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Since diagrams where both external field lines couple to the impurity vanish when forming ��↓, the only remaining nonzero
diagrams are those of Figs. 9(a) and 9(b) plus those with inverted directions of the external field lines. After some straightforward
simplifications, one finds a total contribution

n↓g2

(2π )4
4E2A0

∫ ∞

0

dω

ω2

∫
dkdq Im

[
Jx
↑,21(k − q)Jy

↑,12(k)W11(k,−q,−q)W22(k − q, 0, q)
]

Im

{
(−1)

1

−ω + ε↑,2(k − q) − ε↑,1(k − q) − i0+
1

ω + ε↑,1(k) − ε↑,2(k) + i0+

×
(

1

ω − ε↑,2(k) + ε↑,1(k − q) − ε↓(q) + i0+ + 1

ω + ε↑,1(k) − ε↑,2(k − q) − ε↓(q) + i0+

)}
. (F4)

It is readily seen that this expression is invariant under ε↑,1 ↔ −ε↑,2, which implies the particle-hole symmetry claimed in the
main text. We have also checked this symmetry explicitly for the Haldane model by numerically implementing Eq. (F4).
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