

Experimental and numerical analysis of a Pump as Turbine (PaT) in micro Pumped Hydro Energy Storage (μ -PHES)

A thesis submitted to obtain the academic degree of Doctor of Engineering Sciences and Technology

Alessandro Morabito

Supervisor Professor Patrick Hendrick

Departement Aero-Thermo-Mechanics

Academic year 2020 - 2021

Abstract

In the last decade, the power generation mix and the energy markets have been affected by the growing development of distributed and renewable energy sources. Nevertheless, a significant drawback of solar and wind energy is their intermittent and weather-dependent production, which often leads to a mismatch between renewable energy production and its use. Thus, the need for energy storage is recently emerging and becoming more relevant in this era of the energy transition.

Among several technologies, today, pumped hydro energy storage (PHES) represents the largest share of the energy storage systems in the world. However, possible new investors, who might be attracted by potential profit in PHES, are repelled by the long payback period and the scarcity of adequate site topology for such power plants. Relevant design decisions can be taken to reduce the costs and improve the performance or to escape the PHES topographical requirements. For this reason, the first part of this PhD thesis reviews and provides potential assessments of some unconventional PHES systems, applied in synergy with existing infrastructures. Such is the standpoint of micro facilities near waterway locks, or underground cavities used as lower reservoirs (UPSH), or the use of pump-turbines at variable geometry to cope with fluctuating loads. Moreover, important information on PHES in micro-scale is largely missing and their potential in distributed energy systems still needs to be unveiled. In the attempt to fill this gap, this thesis provides a techno-economic overview of the design and characterization of a first-of-its-kind PHES micro facility. In micro-scales hydropower projects, the initial capital cost of a conventional hydroelectric unit is hard to be determined and often economically prohibitive. Interestingly, in order to cut the total capital investment, the micro-PHES prototype runs with a single centrifugal pump for both pumping and generating phases and exploits existing stormwater reservoirs. The variable speed regulation is also implemented and it allows the pump to constantly operate at the maximum hydraulic efficiency in order to deal with load variations. In the same way, the pump working in reverse, namely pump as turbine (PaT), runs at the most suitable speed and it keeps a high efficiency over a wide load range. In addition, the analysis of the techno-economic parameters for such a system provides an important dataset for micro-PHES feasibility breakdown.

PaTs are a legitimate cost-effective option in micro hydropower but an universal performance prediction does not exist. Their hydraulic efficiency can possibly shift from the higher efficiency of traditional hydraulic turbines. Nowadays, these reasons restrict PaTs exploitation. In this thesis, a multivariate regression method is applied to the CFD results to build a surrogate model of the PaT hydraulic characteristics as a function of the cutwater geometrical modifications. Based on this model, an optimization problem is solved to identify the most advantageous geometrical asset of the PaT cutwater to maximize the hydraulic efficiency. The presented methodology and design optimization of the cutwater in PaTs, which are extremely suited to our current energy generation needs, provides a unique and much sought guide to its performance, improvements, and adaptation to hydropower.

Contents

Al	bstra	et	i
A	cknov	ledgments	iii
Co	onter	ts v	7 ii
\mathbf{Li}	st of	Figures xi	iii
\mathbf{Li}	st of	Tables x	vi
Ne	omen	clature xv	7 ii
1	Intr	oduction	1
	1.1	Context and motivation	1
	1.2	Thesis objectives and strategy	3
	1.3	Thesis structure	4
	1.4	Publications	6
2	Lite	rature review and state-of-the-art	7
	2.1	Introduction	7
	2.2	Pumped hydro energy storage system (PHES)	9
		2.2.1 Traditional hydro power station	9
		2.2.2 Unconventional PHES	11
		2.2.3 Underground Pumped Storage Hydroelectricity	12
	2.3	Turbomachinery options for hydropower and PHES	14
		2.3.1 Characteristic curves	14
		2.3.2 Hydraulic turbines for hydropower and PHES	16
		2.3.3 Variable speed regulation	22
	2.4	The Deriaz pump-turbine	24
		2.4.1 Variable geometry regulation	25
		2.4.2 Deriaz in PHES plants	28
	2.5	Pump as Turbine (PaT)	31
		2.5.1 Variable speed regulation applied to PaTs	37
		2.5.2 PaT efficiency improvements	38
3	Defi	nition of a framework	41
	3.1	Introduction	41
	3.2	Micro PHES design: the Tucurui case study	45
		3.2.1 Introduction to the project	45
		3.2.2 Characteristics of Tucuruí locks	46
		3.2.3 The facility	47

		3.2.4	The selection of the machines
		3.2.5	Operation scheme
		3.2.6	Energy payback time
		3.2.7	Perspectives for the micro PHES design in tucuruí 51
	3.3	UPSH	case studies in Belgium
		3.3.1	Towards PHES solutions in Belgium
		3.3.2	The slate quarry of Martelange case study
		3.3.3	The coal mine of Péronnes-lez-Binche case study 65
		3.3.4	UPSH in Belgium - Discussion
	3.4	Deriaz	z pump-turbine
		3.4.1	Deriaz hydraulic model
		3.4.2	Selected model case
		3.4.3	Numerical analysis
		3.4.4	Final remarks on Deriaz pump-turbine
	3.5	Chapt	er conclusions
		DI	
4	Mic	cro-PH	ES prototype 91
	4.1	Introd	luction
		4.1.1	Goals of the analysis
	4.2	Micro	-PHES in the "Quartier Negundo"
		4.2.1	Pipeline and pressure losses
		4.2.2	Turbomachinery selection
		4.2.3	Set-up and instrumentation 105
		4.2.4	Error measurement propagation 108
		4.2.5	Experimental methodology
	4.3	Result	5
		4.3.1	Experimental characterisation
		4.3.2	Variable rotational speed efficiency gain
		4.3.3	A simulated day of the micro-PHES
	4.4	Cost-k	penefit analysis $\ldots \ldots 123$
		4.4.1	Sector description of smart-grid business model
		4.4.2	μ -PHES prototype in the <i>Quartier Negundo</i>
		4.4.3	μ -PHES case study
		4.4.4	Economic-evaluation methods
		4.4.5	Analysis results
	4.5	Conclu	usions on micro PHES solution
5	Nu	merica	l investigation 141
-	5.1	Introd	$uction \dots \dots$
	5.2	Proble	em statement
	5.3	Metho	odology
	-	5.3.1	Experimental setup
		5.3.2	Hydraulic domain modelling
		5.3.3	Mesh generation

		5.3.4	Numerical Modelling	155
		5.3.5	Multivariate regression model	157
		5.3.6	Optimization problem	159
	5.4	Result	s	160
		5.4.1	Validation of PaT numerical simulations	160
		5.4.2	Performance evaluation	162
		5.4.3	Surrogate model of the PaT hydraulic performance	168
		5.4.4	Optimal cutwater design	171
		5.4.5	Unsteady verification of the PaT optimum	178
		5.4.6	Development of speed adjustment	183
		5.4.7	Pump performance	185
		5.4.8	Unsteady verification of the pump performance in Λ_{opt}	191
	5.5	Chapte	er conclusions	194
6	Con	clusio	as and perspectives	197
	6.1	Achiev	rements	197
		6.1.1	Review of the objectives	197
		6.1.2	Work novelty	200
	6.2	Future	e work and perspectives	201
		6.2.1	Variable geometry Deriaz pump-turbine	201
		6.2.2	UPSH	202
		6.2.3	μ -PHES design recommendations	203
		6.2.4	Optimal cutwater design finalisation in PaT	205
A	ppen	dices		207
\mathbf{A}	Hyd	lraulic	design of a diagonal pump	209
	A.1	Introd	uction	209
		A.1.1	Scaling laws	210
		A.1.2	Impeller inlet	213
		A.1.3	Impeller outlet	214
		A.1.4	Blade profile	217
в	Fun	damen	tal notes on cavitation	221

Bibliography

List of Figures

1.1	Objectives of the PhD thesis	5
$2.1 \\ 2.2$	World growth in renewable electricity generation	8
	and it generates energy in turbine operation	10
2.3	Seawater-based pumped storage plant in Okinawa	11
2.4	Hydraulic gravity storages (HGS)	12
2.5	Simplified schematic diagram of an UPSH facility	13
2.6	Representation of variable head during pumping water in a tall and	
	narrow tank	15
2.7	Representation of variable head during turbine generation	15
2.8	Types of hydraulic turbines in their application area Q-H	17
2.9	Turbine runners	18
2.10	Centrifugal pump in normal and inverse mode.	20
2.11	Pump characteristic curves for different rotational speeds	23
2.12	Internal view of Deriaz pump-turbine runner	25
2.13	Turbine runners	25
2.14	Diagram of hydraulic turbines	26
2.15	Shapes of Deriaz pump-turbine casing	27
2.16	Deriaz runner normally open and closed	27
2.17	Normalised efficiency and discharge of Deriaz-pump-turbine	28
2.18	Radial view of Deriaz turbine guide vanes	30
2.19	Pump four quadrant characteristics	32
2.20	Representations of the operating regimes in four quadrants	32
2.21	Reliability impact of operation away from BEP	33
2.22	Types of hydraulic turbines and PaT for micro-hydropower	34
2.23	PaT discharge and head ratios	36
2.24	Qualitative representation of variable speed adjustments	37
2.25	PaT hydraulic efficiency comparison	39
3.1	"Demand will follow generation" vision	43
3.2	Mine and quarry exploitation in the Walloon region	44
3.3	Overview of the Tucuruí hydropower dam and its locks.	46
3.4	Schematic representation of the Tucuruí locks and of the installation.	47
3.5	Pump mode system operation in Tucuruí micro PHES	48
3.6	Power production in the hybrid system.	49
3.7	Hybrid system operation scheme.	49
3.8	Comparison of energy alternatives payback.	51
3.9	Belgian electricity generation by source, 1990-2019	52
3.10	Representation of Coo-Trois-Ponts PHES plant and its location	55

3.11	The slate mine on the Martelange site	56
3.12	View of Martelange location and topography	57
3.13	Contingencies costs in percentage of the plant total cost	59
3.14	Discounted cash flow evolution and NPV of the Martelange case study.	60
3.15	Evolution of the gross head, hydraulic efficiency and power for three	
	turbomachinery configurations	62
3.16	PaTs performance estimation for Martelange case study	63
3.17	Scheme of the coal mine of Péronnes-lez-Binche	64
3.18	Schematic representation of Francis turbines in series	65
3.19	SIMSEN components to simulate the Péronnes-lez-Binche power plant.	67
3.20	Gross head, available head and discharge of each Francis	68
3.21	Operating sequence of the three Francis turbines in series	68
3.22	Gross head, available head and discharge of each Francis turbine	69
3.23	Overall cross-section of a Deriaz pump turbine in Naussac II power-	
	house.	74
3.24	Deriaz CFD research domain	77
3.25	Flow streamlines at the pump inlet and flow speed distribution at the	
	leading edge.	81
3.26	Head and efficiency of Deriaz pump-turbine in pump mode	82
3.27	Experimental and numerical data of Deriaz turbine	84
3.28	Efficiency map of Deriaz turbine at $\delta\beta + 5$ blade angle	84
3.29	Hill chart of Deriaz turbine at fixed runner blade angle	85
3.30	Torque map of Deriaz turbine at fixed runner blade angle	85
3.31	Types of hydraulic turbines and Deriaz turbine in their application	
	area Q-H for μ -hydropower	86
4.1	Schematic representation of the implemented μ -PHES, integrated in	
	its micro smart grid	93
4.2	Overview of the <i>Quartier Negundo</i> in Froyennes, Tournai	94
4.3	Interconnection scheme of <i>Quartier Negundo</i> smart grid	95
4.4	View of the upper reservoir in <i>Quartier Negundo</i>	96
4.5	Internal view of the lower reservoir of the μ -PHES	97
4.6	Traversal view of the reservoirs and the technical room in <i>Quartier</i>	
	Negundo	97
4.7	Photo of protection grid at the pipeline inlet at the upper reservoir .	98
4.8	Estimation of h and q ratios by different methods	100
4.9	Regression for head ratio h and discharge ratio q of available PaT	
	experimental data	101
4.10	Decision tree for PaT selection.	102
4.11	Sectional view and photo of the pump/PaT of the μ -PHES	103
4.12	Powerhouse in μ -PHES of the Quartier Negundo $\ldots \ldots \ldots$	104
4.13	Schematic view of the micro-hydropower station and location of the	
	measurement devices	105
4.14	Pressure transmitted manifold practise	106

4.15	Measuring instrumentation	107
4.16	Control instrumentation	107
4.17	Error propagation in function of the dimensionless discharge number.	109
4.18	Schematic layout of the set-up	110
4.19	Pressure measurements for sensor A, B and C facing PaT run-up,	
	opening valve, normal operation, closing valve and shut-down	111
4.20	Human-machine interface developed on the LabView for real time	
	control and analysis. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	112
4.21	Experimental results of the pump characteristics and its hydraulic	
	efficiency	115
4.22	Experimental results of the pump and its power consumption	116
4.23	Experimental results of PaT characteristics in Q-H plot limited by	
	the runaway curve	116
4.24	Experimental results on PaT efficiency over the variable head, H_{\cdot} .	117
4.25	Electrical efficiency and torque over the variation of the rotational	
	speed for turbine and pump modes. \ldots \ldots \ldots \ldots \ldots \ldots	117
4.26	Gain in hydraulic efficiency in pump mode by using variable speed	
	over the variation of the head	119
4.27	η_{PAT} normalized to its maximum over H at different speed regimes .	120
4.28	Gain in hydraulic efficiency in turbine mode by using variable rota-	
	tional speed over the variation of the head.	120
4.29	Absorbed and produced power by the storage system according to	
	the load profile and RES production	122
4.30	Imbalance power (SI) and prices of $30/04/2020$ at a quarter-hourly	
	basis	128
4.31	Schematic representation of reducing the consumption at peaks and	
	load-shifting.	129
4.32	Wind turbines capacity factor during the month of April, 2017 in	1.00
4.00	Froyennes	130
4.33	PV panels capacity factor in Tournai, Belgium 2017	131
4.34	Samples of the weekly load consumption of <i>Quartier Negundo</i>	132
4.35	illustration of the μ -PHES prototype in the <i>Quartier Negundo</i> (left)	100
4.90	and a second case study (right)	133
4.30	Discounted cash now and NPV of the μ -PHES in the Quartier Ne-	197
1 97	<i>ganuo</i> (left) and in the second case study (light)	197
4.37	Estimations of the NFV of the μ -FHES of two further scenarios.	
	electricity price raise $(+0.5\%/\text{vear})$	137
4.38	LCOE sensitivity analysis using the <i>u</i> -PHES in <i>Quartier Neurolo</i>	138
4.30	LCOE comparison of the μ -PHES with other storage technologies	130
1.00	Let μ i the μ i the with other storage technologies .	100
5.1	Numerical investigation workflow and used tools in the methodology	143
5.2	Overview of the simulated domain $\hfill \ldots \hfill \ldots \hfi$	144

5.3	Detail of the geometry in CATIA V5 R25 for the baseline cutwater	
	and a tested configuration	145
5.4	Domain geometry improvements by rebuilding the cutwater	145
5.5	Flow path in a centrifugal pump volute	148
5.6	Qualitative representation of a volute with a tangential exit	148
5.7	Variation of the cutwater rounding variable R	150
5.8	Variation of the cutwater length variable S	150
5.9	Variation of the cutwater tilt angle variable A.	150
5.10	Velocity triangles at the entrance and exit of the PaT runner	151
5.11	Blade to blade topology map of the mesh blocks and cell point dis-	
	tributions	151
5.12	Full mesh illustration of the pump impeller and blade to blade topology	152
5.13	View of the wall surfaces of a volute and cut-view of a volute mesh.	153
5.14	Mesh convergence test conducted to assess the independence of the	
	grid on the accuracy of the solution.	153
5.15	Evaluation of non-dimensional wall distance y^+ for the volute and	
	impeller in the baseline case	154
5.16	Examples of fitted regression of two-variables relationship	158
5.17	Numerical simulations and experimental data comparison for the	
	pump specific energy coefficient Ψ and pump efficiency η_h over the	
	relative discharge number.	161
5.18	Numerical and experimental comparison for the PaT specific energy	
	coefficient Ψ and PaT efficiency η_h over the relative discharge number.	161
5.19	Flow field for the baseline cutwater at φ_{BEP}	162
5.20	Illustrations of three different cutwater at $\varphi = 0.0152$	163
5.21	Head and efficiency characteristics for cutwaters with $S = 2L$ as a	
	function of the discharge number and the cutwater angle, A	164
5.22	Head and efficiency characteristics for cutwaters with $S = 3L$ as a	
	function of the discharge number and the cutwater angle, A	165
5.23	Head and efficiency characteristics for cutwaters with $S = 4L$ as a	
	function of the discharge number and the cutwater angle, A	166
5.24	Numerical error for mass-flow mismatch between the inlet and outlet	
	over the relative discharge number φ/φ_{BEP} for 224 simulations	167
5.25	Test model accuracy for $\hat{\eta}_{PAT} = f(S, R, A, Q_{11}, n_{11})$	169
5.26	Test model accuracy for $\hat{Q}_{11} = g(S, R, A, n_{11})$	170
5.27	Ψ and η of the baseline and optimal cutwater designs at N_{PAT}	172
5.28	Velocity streamline and velocity magnitude $[m/s]$ contour for the	
	baseline geometry and the optimal asset at different discharge number	173
5.29	Static pressure profiles at mid-flow span and Cp contour for the ro-	
	tor/stator interface in both baseline and optimized cutwater geometry.	174
5.30	Contours of the absolute velocity angle [rad] across the volute cut-	
	view and on the R/S used in Fig. 5.29	175
5.31	Contours of the turbulence kinetic energy k distribution $[\mathrm{m}^2/\mathrm{s}^2]$	
	across the volute cut-view.	175

5.32	3D overview of the absolute velocity vector profiles $[\mathrm{m/s}]$ in the base-	
	line geometry	176
5.33	3D overview of the absolute velocity vector profiles $[m/s]$ in the opti-	
	mized geometry	176
5.34	Through-flow vorticity contours over the volute cross-sections at BEP	
	for the baseline and optimized geometry	177
5.35	RANS and URANS characteristics of Λ_{opt} in PaT mode	178
5.36	URANS α_2 fluctuations in points P1, P2, P3, and P4. The coor-	
	dinates (x, y) of stations exhibited in Figure are as follows: P1(0,	
	0.162), P2(0.162, 0), P3(0, -0.162), and P4(-0.162, 0)	179
5.37	URANS α_2 fluctuations in points ad different span angles $\ldots \ldots$	179
5.38	Comparison of α_2 for steady and unsteady states at $\varphi/\varphi_{BEP} = 0.87$.	180
5.39	Comparison of α_2 for steady and unsteady states at $\varphi/\varphi_{BEP} = 0.77$.	181
5.40	Comparison of α_2 for steady and unsteady states at $\varphi/\varphi_{BEP} = 0.97$.	182
5.41	PaT performances with the baseline and optimal cutwater designs for	
	$\Omega = [0.85, 1.28].$	183
5.42	Detail of the PaT efficiency in Fig. 5.41 for the optimized geometry	
	under speed variations Ω	184
5.43	CFD velocity streamline of the pump	186
5.44	Absolute pressure distribution along the volute cross-section for five	
	representative cases	187
5.45	CFD velocity streamline and Cp contour of pump cutwater \ldots	188
5.46	Pump hydraulic efficiency at $\varphi/\varphi_{BEP} = 1$	189
5.47	Pump hydraulic efficiency at $\varphi/\varphi_{BEP} = 0.9$	190
5.48	Pump hydraulic efficiency at $\varphi/\varphi_{BEP} = 1.1$	190
5.49	Comparison of the numerical pump characteristics with the baseline	
	geometry and Λ_{opt}	191
5.50	RANS velocity magnitude iso-surface $(V = 2 \text{ m/s})$ downstream the	
	cutwater of Λ_{opt} in pump mode	192
5.51	Water flow streamlines of the pump at $\varphi/\varphi_{BEP} = 1$ under Λ_{opt} asset.	192
5.52	URANS velocity magnitude iso-surface ($V = 1 \text{ m/s}$) downstream the	
	cutwater of Λ_{opt} in pump mode	193
5.53	URANS velocity magnitude iso-surface ($V = 2 \text{ m/s}$) downstream the	
	cutwater of Λ_{opt} in pump mode	193
61	Achievements of the DhD thesis	100
0.1	Achievements of the PhD thesis	198
A.1	Slip factor effect on velocity triangle	215
A.2	Schematic representations of the overlap angle	217
A.3	Trailing edge parameters of the pump	218
A.4	Single-arc method of constructing blade profile	219
D -		0.00
B.1	Static head of the pump minimum pressure point	222
B.2	Critical $\sigma_c r$ for pumps, Kaplan turbines, Francis turbines and PaTs .	223

List of Tables

2.1	Available turbomachinery solutions for PHES and UPSH	21
2.2	Pumped storage plants using Deriaz pump-turbine	29
2.3	Performance prediction methods for PaT	35
3.1	Energy infrastructure trends summary	42
3.2	Energy tariff in the Amazon region $(US\$/kWh)$ in 2018	
	[National Electric Energy Agency 2018]	50
3.3	Existing pumped hydro storage plants in Belgium.	54
$3.4 \\ 3.5$	Breakdown of the total initial investment cost expressed in $k \in$ Data and NPV results for a preliminary economic evaluation of UPSH	58
	in Martelange.	61
3.6	Mechanical data of Deriaz prototype working in Naussac II.	75
3.7	Operational data in pumping and generating Deriaz prototype in	
	Naussac II power-plant	75
3.8	Mechanical data of the downsized Deriaz pump. In Figure a down-	
	sized model of a Deriaz pump-turbine	76
3.9	Mesh convergence test on the same project case at $\delta\beta = 5^{\circ}$, $a_0 = 56$ %	
	and mass flow of 0.18 $[m^3/s]$	78
3.10	Mesh quality summary for turbine case at $\delta\beta = 5^{\circ}$ and closing runner	
	blade at $\delta\beta = 0^{\circ}$	79
3.11	Turbulent model test for an assigned mesh	80
3.12	Adopted boundary conditions for the CFD simulations	82
3.13	Inlet condition for the flow direction in turbine mode	83
4.1	Extract of the pump data-sheet Main parameters of the pump in-	100
	stalled at the micro pumped storage facility plant.	106
4.2	Instrumentation range and accuracy summary.	108
4.3	Summary of PHES control and command actions.	113
4.4	Value for green certificate in Brussels, Belgium, from June 2020	125
4.5	List of the main players in the electricity market in Belgium.	126
4.6	Averaged capacity factor for the PV panels and wind turbines in	190
4 17	Beigrum 2017	130
4.7	Capital costs for μ -PHES in <i>Quartier Negundo</i> and cost estimation	194
4.0	Tor the second case study.	134
4.8	Data and NPV results for a economic evaluation of μ -PHES	137
5.1	List of independent variables describing the cutwater	149
5.2	Mesh details for the baseline case study domain	154
5.3	Turbulent model test applied to a PaT: Spalart-Allmaras (SA), k- ε	
	models, k- ω with or without Extended Wall Function (EWF)	156

5.4	Adopted boundary conditions for the CFD simulations	157
5.5	Basis functions for $\hat{\eta}_{PAT}$ by the variables S, R, A Q_{11} , and n_{11}	169
5.6	Basis functions for \hat{Q}_{11} by the variables S, R, A, and n_{11} for third	
	degree maximum fit spline.	170
5.7	Predicted optimal cutwater geometry and the resulting efficiency by	
	varying n_{11}	171
5.8	Divergence of the absolute velocity angle α_2 in RANS and URANS	179
6.1	SWOT analysis of μ -PHES	204
A.1	Mechanical data of Deriaz prototype working in Naussac II	212
A.2	Design values along five main streamlines	216

Nomenclature

Latin symbols

a_0	Guide vane opening	mm
Ă	Cutwater inclination angle	\deg
b	Passage depth	m
В	Systematic error	_
c	Absolute velocity	m/s
c_{mix}	Celerity of the sound in a fluid mixture	m/s
C	Cost	€
C_d	Discharge coefficient	-
Cp	Static pressure coefficient	-
d	Yearly discount rate	-
dx	Average element size	m
D	Diameter	m
e	Specific hydraulic energy	$\rm J/kg$
E	Energy	kWh
f	Grid frequency	Hz
g	Gravitational acceleration	$ m m/s^2$
h	Head ratio	_
h_i	Hinge function factor	-
H	Head	m
i	Incidence deviation	\deg
k_i	Constant	-
K	Project duration	year
L	Length	m
m	Mass flow rate	m kg/s
M	Torque	Nm
n	Rotational frequency	$\mathrm{rot/s}$
np	Number of poles in a generator	-
n_{11}	Unit speed	-
N	Rotational speed	rpm
N_s	Specific speed	$rpm, m^3/s, m$
p	Pressure	Pa
P	Power	kW
q	Discharge ratio	-
Q	Discharge	$\mathrm{m^3/s}$
Q_{11}	Unit discharge	-
r	Nominal cutwater radius	mm
R	Radius	m
Re	Reynolds number	-

S	Cutwater stretching	m
t	Time	\mathbf{S}
u	Peripheral velocity	m/s
U	Uncertainty	-
v	General speed vector	m/s
V	Volume	m^3
V_r	Energy loss fraction	-
w	Relative velocity	m/s
W	Direction flow	-
y^+	Non-dimensional wall distance	-
z	Number of blades	-
Z	Altitude	m

Greek symbols

α	Absolute velocity angle	\deg
β	Relative velocity angle	\deg
γ	Blade pivot angle	\deg
η	Efficiency	-
Θ	Angular coordinate	\deg
λ	Blade inclination	\deg
Λ	Domain	-
μ	Dynamic viscosity	Pa s
ν	Dimensionless turbine specific speed	-
ξ	Efficiency ratio	-
π	Power number	-
ρ	Density	$ m kg/m^3$
σ	Thoma number	-
au	Slip coefficient	-
φ	Discharge number	-
ψ	Correction coefficient	-
ω	Angular speed	$\mathrm{rad/s}$
Ω	Rotational speed ratio	-
Ψ	Specific energy coefficient	-

Subscripts

11	Unit factor
1	Pump inlet
2	Pump outlet
a	Available
ad	Normalised value
CFD	Numerical
cr	Critical
curt	Curtailment
exp	Experimental
eff	Effective
fit	Fitting
g	Geodetic
geo	Geometrical
h	Hydraulic
i	Index
in	Injected
l	Loss
L	Liquid
m	Mechanic
m	Meridional
max	Maximum
min	Minimum
md	Model
n	Nominal
opt	Optimal
p	Pump
pty	Prototype
r	Radial
rw	Runaway
syt	System
t	Turbine
th	Theoretic
u	Circumferential direction
v	Volumetric
vp	Vapour
vol	Volumetric

Acronyms

AGV	Adjustable Guide Vanes
AR	Aspect Ratio
ATM	Aero-Thermo-Mechanics
BEP	Best Efficiency Point
BF	Basis Function
CAD	Computer Aided Design
CFD	Computational Fluid Dynamic
CFL	Courant-Friedrich-Levy number
CPU	Central Processing Unit
DES	Decentralized energy sources
DNIT	National Department of Transport Infrastructure
DSO	Distribution system operator
EEX	European Energy Exchange
EES	Electrical Energy Storage
ER	Expansion Ratio
EWF	Extended Wall Function
FEA	Finite Element Analysis
FS	Factor of safety
HGS	Hydraulic Gravity Storage
IDETA	Agence de Développement Territorial
LCOE	Levelised Cost Of Energy
LCOS	Levelized Cost of Storage
MARS	Multivariate Adaptive Regression Spline
MTBF	Mean Time Between Failures
NPV	Net Present Value
OPEX	Operating Expense
O&M	Operations and Maintenance
PaT	Pump as Turbine
PHES	Pumped Hydro Energy Storage
μ -PHES	Micro Pump Hydro Energy Storage
PLC	Programmable Logic Controller
PV	PhotoVoltaic
RES	Renewable Energy Source
RPT	Reversible Pump-Turbine
SA	Spalart-Allmaras model
SPS	Seawater Pump Storage
SST	Shear Stress Transport
TSO	Transmission System Operator
UPHS	Underground Pumped-Storage Hydroelectricity
UPS	Uninterruptible Power Supply
VFD	Variable Frequency Drive