1	Alginate modification via click chemistry for
2	biomedical applications
3	
4	Yaling Deng ^a , Amin Shavandi ^{b *} , Oseweuba Valentine Okoro ^b , and Lei Nie ^{c *}
5	
6	
7	^a College of Intelligent Science and Control Engineering, Jinling Institute of Technology,
8	Nanjing 211169, China
9	
10	^b BioMatter unit - 3BIO - Ecole polytechnique de Bruxelles, Université Libre de Bruxelles
11	(ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
12	E-mail : <u>amin.shavandi@ulb.be</u>
13	
14	College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
15	College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China. Tel:
16	+86-13600621068. <u>ORCID:</u> 0000-0002-6175-5883
17	E-mail: <u>nieleifu(a)yahoo.com; nielei(a)xynu.edu.cn</u>
18	
19	
20	Highlights
21	• The need for the modification of alginate properties was established
22	• Click chemistry reactions were discussed
23	• Functionality of using click chemistry for alginate-based materials was explored

24 25	Contents	
26	Abstract	3
27	1 Introduction	4
28	2 Alginate functionalized with click chemistry and its properties	5
29	2.1 Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC)	6
30	2.2 Strain-promoted alkyne-azide cycloaddition	11
31	2.3 Diels-Alder reaction	12
32	2.4 Inverse electron demand Diels-Alder (IEDDA) cycloaddition	14
33	2.5 Thiol-ene/yne addition	19
34	2.5.1 Free-radical thiol-ene addition click reactions	19
35	2.5.2 Thiol-Michael addition click reactions	21
36	2.5.3 Thiol-yne addition click reaction	23
37	2.6 Oxime based click reactions	24
38	2.7 Other click reactions	24
39	3 Biomedical Applications	29
40	3.1 Wound dressing	29
41	3.2 Pharmaceutical applications	31
42	3.2.1 Drug delivery	32
43	3.2.2 Protein delivery	36
44	3.3 Tissue regeneration	
45	3.4 3D Bioprinting	42
46	4 Conclusions and Outlook	45
47	References	47
48 49 50 51 52 53 54 55		
56 57 58 59		

60

61 Abstract

Alginate biopolymers are characterized by favorable properties, of biocompatibility, 62 degradability, and non-toxicity. However, the poor stability properties of alginate have limited 63 64 its suitability for diverse applications. Recently, click chemistry has generated significant research interest due to its high reaction efficiency, high selectivity for a single product, 65 66 harmless byproducts, and processing simplicity. Alginate modified using click chemistry enables the production of alginate derivatives with enhanced physical and chemical properties. 67 Herein, we review the employment of click chemistry in the development of alginate-based 68 69 materials or systems. Various click chemistries were highlighted, including azide and alkyne 70 cycloaddition (e.g. Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), Strainpromoted alkyne-azide cycloaddition (SPAAC)), Diels-Alder reaction (Inverse electron 71 72 demand Diels-Alder (IEDDA) cycloaddition, Tetrazine-norbornene Diels-Alder reactions), 73 Thiol-ene/yne addition (Free-radical thiol-ene addition click reactions, Thiol-Michael addition 74 click reactions, Thiol-yne addition click reaction), Oxime based click reactions, and other click 75 reactions. Alginate functionalized with click chemistry and its properties were also discussed. 76 The present study shows that click chemistry may be employed in modifying the mechanical strength, biochemical/biological properties of alginate-based materials. Finally, the 77 applications of alginate-based materials in wound dressing, drug delivery, protein delivery, 78 79 tissue regeneration, and 3D bioprinting were described and the future perspectives of alginates 80 modified with click chemistry, are subsequently presented. This review provides new insights for readers to design structures and expand applications of alginate using click chemistry 81

82 reactions in a detailed and more rational manner.

- 83
- 84

85 Keywords: click chemistry; alginate; biomedical applications; biomaterial engineering

86

87

88 **1 Introduction**

Alginate is a natural water-soluble polysaccharide. It can be extracted from some brown algaecell walls and bacteria, such as *Ascophyllum nodosum*, and, *Pseudomonas* spp respectively (Lee & Mooney, 2012; Smidsrød & Skja°k-Br1k, 1990). Alginate contains β -D-mannuronic acid (M) and 1-4 linked α -L-guluronic residues (G). Typically, the blocks repeat and display homogenous chains of MMM and GGG, interdispersed with heterogeneous chains of MGM (Lee & Mooney, 2012; J. Sun & Tan, 2013).

Due to the excellent qualities of alginate, in terms of biocompatibility, biodegradability, and 95 non-antigenicity (Paques, van der Linden, van Rijn, & Sagis, 2014), it has been extensively 96 97 used in biomedical and pharmaceutical applications, including tissue engineering(Chawla, 98 Kaur, Joshi, & Singh, 2020; J. Liu et al., 2020), drug delivery(Joshy et al., 2018; Yin, Wang, & 99 Wang, 2018) and wound dressings(Zhang & Zhao, 2020; Zhao et al., 2020). Alginate can be 100 transformed into several forms, such as hydrogels, microspheres, microcapsules, foams, 101 sponges, and fibers, thus enhancing its applicability in various fields(Venkatesan, Bhatnagar, Manivasagan, Kang, & Kim, 2015). Although alginate is used in different applications, it still 102 103 has some disadvantages, such as poor stability in aqueous conditions and uncontrollable 104 degradation. Pure alginate also exhibits weak mechanical properties which leads to the rupturing of alginate hydrogels when stretched to ~ 1.2 times of its original length, thus 105

106 restricting the application of alginate hydrogels (J.-Y. Sun et al., 2012).

107 To obtain alginates with desirable properties, various strategies have been developed to 108 synthesize functional alginates, including physical, chemical, and biological methods. The free 109 functional moieties distributing along the backbone, hydroxyl and carboxyl, provide active 110 sites. That is ideal for chemical functionalization and thus makes alginate a versatile material 111 for numerous applications. Alginate is, therefore, able to readily form alginate derivatives, which are characterized by enhanced characteristics such as improved biodegradability (Gong 112 et al., 2021), mechanical strength (H. Yan et al., 2016) and gelation property (Heo, Akimoto, 113 114 Kobatake, & Ito, 2019). These alginate derivatives are also characterized by tunable cell affinity. A consideration of the methods employed in facilitating the improvement of alginate properties 115 suggests that click chemistry constitutes a highly efficient procedure. At the time of preparing 116 117 this review, there are a few papers covering the click reactions in polysaccharides (Liebert, Hänsch, & Heinze, 2006; Meng & Edgar, 2016). However, literature regarding alginate-based 118 119 modification or functionalization, using click chemistry is sparse. It is, therefore, crucial to 120 summarize these studies. This article aims to summarize the recent progress of alginate-based 121 modification using click chemistry and highlight the recent applications of click chemistry. 122 Herein, the prospects of alginate applications based on click chemistry are also discussed.

123

2 Alginate functionalized with click chemistry and its properties

124 Click chemistry, first coined by Sharpless, is a synthetic concept that describes a group of 125 reactions that "...must be modular, wide in scope, give very high yields, generate only harmless byproducts that can be removed by nonchromatographic methods, and be stereospecific (but 126

127 not necessarily enantioselective)" (Kolb, Finn, & Sharpless, 2001; Kolb & Sharpless, 2003). These reactions require mild reaction conditions, are insensitive to oxygen and water, easy to 128 129 perform, and require simple product isolation methods (Kolb et al., 2001; Kolb & Sharpless, 130 2003). Click chemistry includes the combination of activated molecules via a two-step coupling 131 involving click functional groups, leading to the formation of a stable conjugate(Bilal, Rasheed, 132 Zhao, Iqbal, & Cui, 2018). Furthermore, the high thermodynamic driving force (i.e. > 20 133 kcal/mol) that characterizes click chemistry reactions, leads to a high selectivity for the formation of a single product. (Kolb et al., 2001). These features make click chemistry reactions 134 135 suitable for various applications. Click chemistry therefore opens an interesting prospect to design alginate for the preparation of functionalized materials. Recognizing therefore the 136 importance of click chemistry, the major types of click chemistry reactions previously explored 137 138 in the literature, will be introduced in the following subsections. The effects of alginate 139 modified with different click reaction on properties, such as mechanical properties, drug 140 delivery and antibacterial, are also discussed.

141 **2.1 Copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC)**

The click reaction involving azide and alkyne functional groups typically leads to a high yield
of ~ 95% while under a mild temperature condition which ranges from 25-70 °C(Wolfgang &
Christian, 2006). This click reaction can also tolerate functional groups which are firmly and
covalently bonded to the backbone or substrate since the aromatic 1,2,3-triazole ring has high
stability (Huang & Chang, 2009).

147 Cu(I)-catalysed [3+2] azido-alkyne cycloaddition (CuAAC) was developed by Sharpless et

148 al. and Meldal et al (Rostovtsev, Green, Fokin, & Sharpless, 2002; Tornøe, Christensen, & Meldal, 2002), and is based on Huisgen's 2,3-cycloaddition chemistry (Huisgen, 1963). This 149 150 reaction forms a triazole from an azide and terminal alkyne and is activated using a Cu catalyst 151 (Table 1) (Baskin & Bertozzi, 2009). CuAAC usually occurs in the richly functionalized 152 biological environment at physiological temperatures (Agard, Prescher, & Bertozzi, 2004). It 153 allows for high-sensitivity detection of azides and is often referred to as the most widely used click reaction. During the reaction of CuAAC, Cu(I) with catalytic characteristics is difficult 154 155 to remove from the products. Cu(II) could form an excellent polymeric backbone with alginate 156 (Bahsis et al., 2020). Super porous hydrogels were prepared through coordination of copper (II) to a naturally occurring alginate biopolymer via CuAAC. There is an effective electrostatic 157 158 interaction between copper (II) ions and alginate chains (Rui Rodrigues & Lagoa, 2006), 159 meanwhile, the guluronic units could capture divalent cations (Akamatsu, Maruyama, Chen, 160 Nakao, & Nakao, 2011). Therefore, the cross-linking structure was formed, and copper (II) 161 ions act as cross-linking agents.

The versatility of the CuAAC reaction with highly reactive functional groups endows alginatebased materials with desirable properties. To enhance the long-term stability and mechanical strength of alginate hydrogels, the CuAAC reaction was used to control and improve structural stability through covalent crosslinking. Alginate functionalized with pendant alkyne groups or azide groups was synthesized to prepare gel capsules via click chemistry (Breger et al., 2015). These click capsules were permanent "click" crosslinks. Compared to traditional Ca⁺² crosslinked alginate capsules, the gel capsules produced from click chemistry showed 169 improved stability in ionic media, consistent molecular weight cut-off (MWCO), increased permeability to diffusants, and water swelling characteristics (Figure 1). Alginate hydrogels 170 171 employed in therapeutic drug encapsulation could also have enhanced stabilities when CuAAC 172 chemistry method is used. The cross-linked alginate matrix is employed in encapsulating ionic or non-ionic drugs and presents its advantages. The research by Kumar et al showed that the 173 174 alginate-graft-POEGMA materials, preparing with functionalized alginate and poly(oligo ethylene glycol methacrylate) (POEGMA) using alkyne and terminal azide groups respectively 175 with the method of CuAAC, demonstrated an improved encapsulation efficiencies (up to 50%) 176 177 and a enhanced anti-tumor performance, for the doxorubicin-loaded particles, specifically, such that tumors were almost eliminated (Kumar et al., 2019). In addition, the hydrogel-containing 178 nanoparticles can be designed as drug carriers for the treatment of serious diseases, such as 179 180 neurodegenerative disorders and cancer (Kishimoto et al., 2012). But the small size and large 181 surface area of nanoparticles can lead to agglomeration, which results in limited drug loading 182 and 'burst release' (Kurdtabar & Rezanejade Bardajee, 2019). Click reaction could be utilized to decorate molecules to solve the agglomeration. Crescenzo et al decorate alginate chains with 183 184 Azido-homoalanine Kcoil (Aha-Kcoil) by azide-alkyne click chemistry, that form the hybrid hydrogel system, promoting the uniform dispersion and release of gold nanoparticles (Roth et 185 al., 2019). 186

187

Figure 1. "click" alginate hydrogel capsules. (a) Schematics of click reaction between azide and alkyne functionalized alginate to fabricate "click" alginate hydrogels; (b) Optical microscopy images of Ca^{2+} and "click" crosslinked alginate capsules in d.i. H₂O (A, C) and after exposure to EDTA (B, D). "Click" capsules maintained the integrity for at least 1 month and up to 6 months when stored in water on the lab bench at room temperature. (c) Schematic of crosslinked alginate hydrogel. (1) "click" crosslink; (2) Ca^{2+} crosslink.(Breger et al., 2015)

195

196 For the polymer with specifical structures, 1,3-dipolar cycloadditions are the effective synthetic route to modify alginate chains to form block copolymers or biological hybrids with 197 198 desired performance. Cyclic cRGD-pentapeptides were conjugated to biomacromolecule 199 alginate on the hydroxyl group with Rutjes' method (Krause, Kirschning, & Dräger, 2012; Paleček, Dräger, Kirschning, 2011). The synthesized "smart" bioactive polymer may be 200 employed in hydrogel development, which is suitable for therapies and tissue engineering 201 applications. This method also could be utilized for chitosan biomaterials. In a previous work, 202 the long-chain quaternary ammonium was grafted at 6-OH of chitosan to form a derivative via 203 204 the protection-click reaction deprotection process. The hydrogels prepared with derivatives and 205 sodium alginate exhibited controlled Tea tree oil releasing properties, the equilibrium swelling 206 ratio was mainly affected by its sodium alginate content (Y. Chen et al., 2017). Additionally, 207 when bis-propargyl-succinate and bis-propargyl hexane urethane reagents are utilised, a hybrid hydrogel can be formulated using alkynated alginate or hyaluronic acid. The gelation behavior 208 209 and swelling properties were characterized as a function of their composition and solution pH. 210 When the gels were examined in PBS at 37°C, there was no significant weight loss during the 211 initial 5 days. Subsequently, different weight loss occurs and leads to the change of hydrogel 212 stability, due to the chemical structure involving in click reaction. Long alkylene groups with 213 hydrophobic properties retard the hydrolytic degradation rate, while ester groups are more 214 prone to hydrolytic decomposition than urethane groups. Therefore, the preliminary hydrolytic 215 degradation of the hybrid hydrogel was also faster than that of urethane-containing gel (Bui, Jeon, Um, Chung, & Kim, 2015). 216

217 To track the status of alginate and confirm the clinical effect both in vitro and in vivo, the 218 use of the fluorescence-labeling option may be valuable. Crucially, the lack of intrinsic 219 fluorescent groups indicates that a chemical labelling procedure is necessary. For example, 220 studies have shown that in the production of coumarin-grafted blue-emitting fluorescent 221 alginate via carbodiimide coupling then alkyne-azide 'click' chemistry, the modified alginate 222 retains the capability to create hydrogels that are mechanically stable and maintain fluorescence for long time periods (Araújo et al., 2020). CuAAC chemistry may be utilized to build synthetic 223 224 molecular architectures with excellent properties.

Unfortunately, the copper catalyst is toxic to both bacterial (Link & Tirrell, 2003) and mammalian cells, and it is retained in the products, thus precluding the broad exploration (Tan, Rubin, & Marra, 2011). In order to overcome these problems, a series of noncopper-catalyzed click reactions have been developed recently and used for highly efficient "click" conjugation,
such as strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand
Diels-Alder reaction between tetrazine and norbornene, Michael addition, and Oxime (Devaraj,

231 Weissleder, & Hilderbrand, 2008; Jewett & Bertozzi, 2010).

232 2.2 Strain-promoted alkyne-azide cycloaddition

233 The Bertozzi research group (Agard et al., 2004; Codelli, Baskin, Agard, & Bertozzi, 2008; Sletten & Bertozzi, 2008) initially detected the strain-promoted alkyne-azide cycloaddition 234 235 (SPAAC) click reaction. It was observed that the alkyne-azide cycloaddition could be 236 substantially promoted through bringing ring strain into the alkyne moiety rather than a metal catalyst (H. Jiang et al., 2015; Zheng et al., 2012). The click reactions of cyclooctyne 237 derivatives are typically rapid with a constant reaction rate, k₂, of up to 2.3 M⁻¹s⁻¹ (Agard et al., 238 239 2004; Blackman, Royzen, & Fox, 2008). Crucially, this reaction type can occur under physiological conditions, without Cu(I) catalysts, thus preventing the risk of unwanted toxic 240 241 effects (Baskin & Bertozzi, 2009; Saxon & Bertozzi, 2000). Due to its high reactivity, biorthogonality and little off-target reactivity, the SPAAC click reaction has attracted rapidly 242 243 increasing interest and can be used to repeatedly refill drug-releasing depots at a tumor site, repeating the release of a drug at a site of tumor resection, leading to improvements in the 244 efficacy and tolerability in tumor models (Agard et al., 2004; Brudno et al., 2018; Roy, Mondal, 245 246 Hatai, & Bandyopadhyay, 2014). For instance, in the study by Brudno et al (Moody, Palvai, & 247 Brudno, 2020), refillable hydrogel depots were created from highly modified alginate strands by using multi-arm cyclooctyne cross-linkers. Tetrabicyclononyne (tBCN) agents covalently 248

cross-link azide-modified alginate hydrogels. These alginate gels, produced via click-linking were altered using azide groups via an extended level of substitution, and caused negligible inflammatory responses in the host (Moody et al., 2020).

252

253 **2.3 Diels-Alder reaction**

The [4+2]-cycloaddition reaction between an electron-rich diene and electron-deficient 254 dienophile was discovered by Otto Diels and Kurt Alder and bears their names "Diels-Alder" 255 reaction (Sanyal, 2010). This discovery was the basis of their Nobel Prize award in 1950. The 256 257 [4+2] cycloaddition, as the typical Diels-Alder reaction, contains a conjugated diene which is electron-rich, and electron-poor dienophile (such as alkene, maleic acid) to form a cyclohexene 258 259 system (Meng & Edgar, 2016), that is well-known in facilitating hydrogel cross-linking (Fan et al., 2015). This reaction has several excellent features, such as mild reaction conditions, high 260 261 efficiency, thermal reversibility, and excludes the involvement of any chemical initiator (Kirchhof, Brandl, Hammer, & Goepferich, 2013; Koehler, Alge, Anseth, & Bowman, 2013). 262 263 In addition, water can be used as a solvent to enhance the reaction rate (Moulay & Touati, 264 2010).

Furan compounds are important heterocyclic compounds that facilitate easier cyclic reactions due to their low aromaticity (Oliver Kappe, Shaun Murphree, & Padwa, 1997). Furan/maleimide Diels-Alder adduct presents a relatively low temperature of decoupling through its retro-Diels-Alder reaction (wherein, retro-Diels-Alder is the reverse process of the Diels-Alder rection, specifically the dissociation the Diels-Alder adducts formed with diene and the dienophile(Kwart & King, 1968)). It may be used for various interesting applications,
such as recyclable and self-healing materials.

Calcium-binding derivatives of alginate were synthesized by partial substitution of its 272 carboxyl functionalities with furan. Based on Ca²⁺ physical networks, a low density of covalent 273 274 crosslinks with maleimide end groups and a four-arm poly(ethylene glycol) crosslinker were 275 incorporated into a highly transient physical network to synthesize hydrogel (Ghanian, Mirzadeh, & Baharvand, 2018). The long chains of furan-alginate consisting of G-rich domains 276 277 formed calcium-cross-linked stiff zones, which were surrounded by PEG-mediated covalent 278 cross-links. The stiff zones dissipated energy through reversible dissociation. Permanent PEG 279 cross-links, as elastically active zones, stored energy for rapid self-recovery upon unloading and prevented massive plastic deformation of chains (Figure 2). These hydrogels have 280 281 interesting features, such as immediate self-recovery under cyclic loading, highly efficient and 282 autonomous self-healing upon fracture, and capability for viable cell encapsulation.

283 Additionally, various bismaleimides and trismaleimides characterized by different molar 284 masses were used in furan-modified alginate chains as cross-linkers. The hydrogels with tuning 285 mechanical properties and pulsatile swelling behavior were fabricated with Diels-Alder chemistry (García-Astrain & Avérous, 2019). García-Astrain and Avérous successfully 286 287 functionalized alginate with furfurylamine and then a series of cross-linked alginate hydrogels 288 were formed using the reaction of furan-modified alginate and maleimide cross-linkers 289 (García-Astrain & Avérous, 2018). After the conjunction of an antimicrobial peptide HHC10 with the oxy-norbornene group, the hydrogels fabricated with furyl-modified sodium alginate 290

and bimaleimide functional PEG molecule were demonstrated to present strong antibacterial
properties and good biocompatibility (G. Wang et al., 2018). These hydrogels can be employed
to support sustained mechanical functions, replace or repair load-bearing soft tissues, and
provide good antimicrobial properties.

295

Figure 2. Design and self-recovery, self-healing properties of tough hydrogels based on Dual Cross-linked alginate. (a) Biologically Inspired Design of Tough Hydrogels; (b) Schematic representation and photographs of the healing process under physiological conditions for two colored cuts of the DC hydrogels; (c) Recovery efficiency of the hysteresis energy and work of loading after each cycle; (d) Compression stress-strain curves of the original and healed samples of the DA and DC hydrogels. (Ghanian et al., 2018)

302

303 2.4 Inverse electron demand Diels-Alder (IEDDA) cycloaddition

304 Inverse electron demand Diels-Alder (IEDDA) cycloaddition is a rapid chemical reaction,

305 capable of achieving completion even under mild conditions. In the IEDDA reaction, a 1,2,4,5-

306	tetrazines (s-tetrazines) derivative performs as a 'diene' (norbornene, Nb) and an alkyne (or
307	strained alkene) acts as a 'dienophile' (tetrazine, Tz) (Carboni & Lindsey, 1959). [4+2]-
308	Cycloaddition occurs on C ^{3,6} carbon atoms of tetrazine, and the nitrogen molecule and
309	oxidation provide the pyridazine cycle(Suvorov, Cheskov, Mironov, & Grin, 2019). The
310	electron demand in the Diels-Alder reaction indicates that a diene that is rich in electrons reacts
311	with an electron-poor dienophile. In the IEDDA, however, an electron-rich dienophile reacts
312	with a diene that is electron deficient (Oliveira, Guo, & Bernardes, 2017). The reaction rate
313	constant typically ranges from 10 ³ to 10 ⁶ M ⁻¹ s ⁻¹ , depending on the structures of the reactants
314	(Izquierdo & Delgado, 2018; Oliveira et al., 2017; Selvaraj & Fox, 2013). IEDDA is suitable
315	for biocompatible materials due to the capability of encapsulating drugs without causing
316	damage(Desai, Koshy, Hilderbrand, Mooney, & Joshi, 2015).
317	Several Nb and Tz can be introduced into the alginate system to tune the crosslinking density
318	and the properties of the matrix without changing the total amount of alginate. The results from
319	Mooney et al's study showed that Nb-Tz click chemistry has the ability to control stiffness and
320	viscoelasticity of artificial extracellular matrix (ECM) hydrogels, without altering the
321	diffusional nutrient transport or alginate architecture at the cellular scale, compared with ionic-
322	only alginate hydrogels (Vining, Stafford, & Mooney, 2019). Tetrazine (Tz), transcyclooctene
323	(TCO), and norbornene (Nb) were used to modify alginate by combining EDC/NHS (ethyl-3-
324	(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS))
325	carbodiimide crosslinker via click chemistry. These single cell-encapsulated microscale
326	hydrogels (25-30 μ m microgels) have been fabricated to form structures with packing densities

327 comparable loose randomly packed configurations (Y. Hu et al., 2017). Norbornene groups, 328 such as a 'diene', also could be utilized to decorate alginate to control properties. The reactions 329 between norbornene-functionalized alginates (Alg-Nb) and tetrazine cross-linkers while also 330 using IEDDA click chemistry, could prepare hydrogels with facilitating precise DOX release 331 (Figure 3) (Anugrah, Ramesh, Kim, Hyun, & Lim, 2019). Under the trigger of NIR irradiation, 332 the hydrogel was de-cross-linked to linear alginate chains. The various cross-linking densities 333 were controlled by adjusting the feed ratio of the precursors, Alg-Nb, and diselenide-tetrazine 334 (Se-Tz), then tuning the release rate of loaded DOX (Anugrah et al., 2019).

335

Figure 3. Near-infrared responsive alginate-based hydrogels via tetrazine-norbornene
chemistry. (a) A schematic illustration of NIR-responsive alginate-based hydrogels; (b) Photos
of the degradation process. (Anugrah et al., 2019)

339

The incorporation of norbornene (Nb) and tetrazine (Tz) endow more elastic properties to the alginate hydrogels (Gonzalez-Pujana et al., 2020). It has been demonstrated that G-blocks of alginate may be reinforced by permanent covalent crosslinking, such that IEDDA reaction 343 executes the "click" to connect the existing G-block ionic crosslinks (Vining et al., 2019), thus 344 providing permanent covalent crosslinking to reinforce alginate. The modified alginate and 345 cytokine-loaded heparin-coated beads prolonged the immunomodulatory licensing of hMSCs. 346 In another study, Joshi (Desai et al., 2015) incorporated tetrazine and norbornene groups with 347 alginate polymer chains to enable covalently crosslinked click alginate hydrogels formation 348 (Figure 4). Mechanical properties and swelling properties were tuned by altering the total 349 polymer concentration and by varying the complementary click functional group's stoichiometric ratio. The alginate hydrogels also can facilitate cell encapsulation without 350 351 causing damage. Moreover, the rheological and mechanical properties of crosslinked alginatebased hydrogels were modified via changing the substitution degree of norbornene, oxidation 352 353 state, and the proportion of norbornene to tetrazine integrated in the alginate-based hydrogels 354 (Lueckgen et al., 2018).

355

Figure 4. An illustration of click alginate polymer synthesis (A) and mechanical properties (B-D). (A) Click alginate hydrogels fabrication. Modification of alginate backbone carboxylic

358 acids with tetrazine or norbornene using aqueous carbodiimide chemistry, to produce Alg-T or 359 Alg-N polymers, respectively. Alg-T and Alg-N polymers are mixed leading to the production of acovalently crosslinked click alginate hydrogel network, with the release of N₂. Click 360 alginate hydrogel mechanical properties. Representative in situ dynamic rheometry plot at 361 25 °C for 3% w/v click alginate at N:T = 1, demonstrating modulus evolution with time (B). 362 363 Compressive Young's modulus (C) and volumetric swelling ratios (D) for 2%, 3% and 4% w/v click alginate hydrogels at varying N:T ratio. Values represent mean and standard deviation 364 365 (n = 4)(Desai et al., 2015).

366

367 The tetrazine-based IEDDA reaction between a dipyridyl-functionalized tetrazine and transcyclooctene is biorthogonal ligation, which was first reported by Fox and co-workers 368 (Blackman et al., 2008). The reaction rate of the tetrazine-based IEDDA reaction is three orders 369 370 of magnitude greater than the optimized SPAAC reaction, leading to the fastest biorthogonal conjugation of tetrazine ligation (Patterson, Nazarova, & Prescher, 2014). The tetrazine-371 372 norbornene Diels-Alder reaction involves tetrazine and norbornene compounds that are 373 asymmetric, leading to the production of several isomeric dihydropyridazine products, with rate constants for the second-order reaction of 1.9 and 1.6 M⁻¹s⁻¹ in an aqueous buffer and fetal 374 375 bovine serum respectively (Devaraj et al., 2008). It has the potential to create functionalization 376 and coupling of polymers without requiring additional additives, initiators, or catalysts.

For the degradation of tetrazine under physiological conditions, designated groups will be introduced into IEDDA reactions. That has been demonstrated and undertaken by Shoichet. IEDDA-crosslinked HA hydrogels were designed by replacing tetrazine with the more stable methylphenyltetrazine to eliminate reagent degradation (Delplace et al., 2020). The designed IEDDA hydrogel facilitates multiphoton imaging of embedded retinal explants in a duration longer than the duration required by agarose thermogel (Delplace et al., 2020). Furthermore, when the trans-cyclooctene (TCO) moiety was incorporated into the sugar backbone, the alginate polymer (TCO-gel) was constructed. These gels will react with circulating in-Tz molecules through IEDDA reaction in a biorthogonal fashion, localizing the Tz molecules and their radioactive cargo to the TCO-gel. This approach could precisely regulate, when biochemical and/or physical signals are manifested in a biomaterial that is implanted and also improves the spatial site of systemic tiny molecules via vivo chemical delivery (Mejía Oneto, Gupta, Leach, Lee, & Sutcliffe, 2014).

390 2.5 Thiol-ene/yne addition

391 The thiol-click reaction is a well-expanded concept of click polymerization. The reaction of a thiol with carbon-carbon double bond, or simply "ene", as the general concept of thiol-click 392 reaction, has been well known since the early 1900s (Posner, 1905). Many basic thiol-ene 393 394 reactions have been defined since the early 2000s. The reactions of a thiol with ene, triggered 395 by a radical (thiol-ene reaction) or anionic chain (thiol Michael addition), have the characters 396 of click chemistry, such as being insensitive to ambient oxygen and water, single specifically 397 products and rapid reaction rates. This significant versatility makes the thiol-ene reaction 398 amenable to various applications, including biomedical, tissue engineering and bioorganic 399 modification fields. These thiol reactions include thiol-ene free-radical addition, catalyzed thiol Michael addition, and thiol-yne addition reactions. 400

401 2.5.1 Free-radical thiol-ene addition click reactions

402 Free-radical thiol-ene reactions involve the formation of thiyl radical, which then propagates 403 across the 'ene' functional group to produce the carbon-centered radical. The radical source, or 404 photo initiator under the light, extracts hydrogen from thiyl radicals to form thiyl in a chain 405 transfer process which may be added to the carbon-carbon double bond (Aimetti, Machen, & 406 Anseth, 2009; Cramer & Bowman, 2001). In other words, thiyl radical activates the carbon-407 carbon double bond by forming a carbon-based radical. A chain transfer reaction involving the 408 carbon-based radical and another thiol group facilitates the generation of a new thiyl radical or 409 propagate through carbon-carbon double bonds (Rydholm, Bowman, & Anseth, 2005).

410 This reaction involves the alternation of propagation and chain transfer events. UV light can be used to rapidly initiate Thiol-ene chemistry, under mild conditions and in the absence of 411 412 complex reagents(Beria et al., 2014). The light mediated thiol-ene reaction can be effectively activated at the special location and time and combines the benefits of click chemistry with 413 superiorities of photo-initiated processes. A homogeneous polymer network could 414 415 subsequently be formed by tuning the combination of step-growth and chain-growth mechanisms (Cramer & Bowman, 2001). The distinct advantages of thiol-ene reaction, such as 416 417 simplified polymerization kinetics, decreased shrinkage and stress, and lacked sensitivity to 418 oxygen inhibition, solve the limitations of traditional photo-initiated systems(Hoyle & 419 Bowman, 2010).

UV-directed thiol-ene click reaction, as an effective method, is extensively employed in the preparation of gels and post-modification of polymers, with the purpose of obtaining qualified hydrogel (Yap et al., 2020). Lang et al (Xu et al., 2020) functionalized sodium alginate backbone to synthesis SA derivatives via grafting vinyl ether (VE) side chains to form amido linkages (-CONH-). A dual crosslinking alginate hydrogel SA-VE/DTT was fabricated through 425 hydrogen-bonded along with thiol-ene click chemistry reaction under UV exposure (Xu et al., 2020). These systems maintained fast gelation, superior storage modulus, and long-term 426 stability. Wang et al introduced cysteine-terminated antimicrobial peptide HHC10-CYS 427 428 (HHC10) into sodium alginate hydrogel via the photoinitiated thiol-ene reaction. The antibacterial activity was up to 100% after culture for 24h, and the cytocompatibility was 429 430 improved (G. Wang et al., 2018). In the process of preparation, the efficient photo-click 431 reaction provides spatiotemporal control through a step-growth mechanism. This photo click chemical reaction affords sites for cell attachment and embedment with enhanced the quality 432 433 (Pereira, Barrias, Bártolo, Granja, 2018). After implantation in the backs of mice (C57/B16) for 8 weeks, hydrogel modified with thiol-ene chemistry by UV irradiation improved the tissue 434 435 and cell infiltration, with in vivo implantation resulting in degradable materials rather than nondegradable controls. 436

Thiol-ene click reaction could manipulate antimicrobial properties via decorating hydrogel. Various cellulose derivatives were prepared via the thiol-ene click reaction between cellulose and the thiol compounds (H. Hu, You, Gan, Zhou, & Zhang, 2015). The micelles through combining derivatives and Ag nanoparticles displayed good antimicrobial activities to both *S. aureus* and *E. coil* (H. Hu, Wu, Wang, Wang, & Zhou, 2019). The optimal preparation route and excellent biological performance of the above hydrogels may bring about potential biomedical applications in wound dressing materials.

444 2.5.2 Thiol-Michael addition click reactions

445 Thiol-Michael addition type reactions refer to reactions between thiols and electron deficient

446 enes (Allen & Happ, 1964). Allen et al first reported these reaction types (Allen & Happ, 1964). The most widely used enes are (meth) acrylates, maleimides, acrylonitrile, cinnamates, 447 448 crotonates, fumarate esters, and α,β-unsaturated ketones (Hoyle & Bowman, 2010). Maleimide 449 as ene has been most widely used in the thiol-Michael reaction (M. Li, De, Gondi, & Sumerlin, 450 2008). Catalysts, such as metals, organometallics, Lewis acids, are utilized to initiate the thiol-451 Michael reaction (Mather, Viswanathan, Miller, & Long, 2006). Most of the thiol-Michael 452 reaction focuses on the addition of thiol-groups to acrylic compounds (Çakmakçi, Yuce-Dursun, & Demir, 2017; Kröger, Boonen, & Paulusse, 2017; Moon, Pekkanen, Long, Showalter, & 453 454 Libby, 2017). Meanwhile, Michael acceptors also contain maleimides, vinyl sulfones, fumarates, crotonate, ynones and propiolates (Nair et al., 2014; Stolz & Northrop, 2013). 455 Accompanied by the initiation of terminating chains in thiol-Michael reactions, there are no 456 anionic coupling processes compared to the thiol-ene radical reaction (Hoyle & Bowman, 457 458 2010). This reaction can occur under mild conditions in short reaction times i.e. minutes or 459 even seconds. Thiol-Michael addition type reactions are therefore suitable for functionalization 460 of polymer or preparing biomaterials.

Michael addition reaction is selective for the formation of hydrogels, *in situ*, and is wellknown as a viable polymer synthesis strategy (Z. Q. Liu et al., 2015). The *in situ* cross-linking of hydrogels using the Michael addition reaction between thiol-modified chitosan and poly(propylene oxide) poly(ethylene oxide)- poly(propylene oxide) (PPO-PEO-PPO) was undertaken by Gabilondo et al (Guaresti, Basasoro, González, Eceiza, & Gabilondo, 2019). These hydrogels are characterized by high sensitivity to variations in pH and also present 467 complete degradation in lysozyme solution after 24 h of immersion. Hydrogel with bifunctional 468 cross-linker in 1:3 ratio has a more cross-linked network, showing lower swelling ratios than 469 other tested hydrogels. With the addition of the cross-linker, the decrease of mean storage and 470 loss modulus was also observed. Therefore, the swelling and rheological behaviors were 471 regulated by altering the cross-linking agent in the networks.

472 **2.5.3 Thiol-yne addition click reaction**

473 Thiol-yne addition click reaction is similar to thiol-ene chemistry in that thiol groups react with carbon-carbon triple bonds (Truong, Tsang, & Forsythe, 2017). Thiyl radical addition to 474 475 an 'yne' functional forms a vinyl sulfide radical, and then chain transfers to a thiol group, to regenerate a thivl radical and form the vinyl sulfide addition product (Lowe & Bowman, 2013; 476 Minozzi et al., 2011). A carbon-centered radical is formed through thiyl radical addition to 477 478 vinyl sulfide group. Then the chain transfers to another thiol functional group, leading to the 479 regeneration of the thiyl radical and formation of the thiol-vinyl sulfide addition product (Lowe 480 & Bowman, 2013). The thiol-yne addition click reaction could progress via a radical or 481 nucleophilic mechanism (Macdougall, Truong, & Dove, 2017). The radical method has been 482 utilized in polymer science to synthesize a series of materials, including dendrimer (G. Chen, Kumar, Gregory, & Stenzel, 2009), multifunctional brush polymers (Hensarling, Doughty, 483 Chan, & Patton, 2009), and block polymers (Chang & Dong, 2013). The nucleophilic method 484 485 has been adopted to synthesize hydrogel materials (Cai et al., 2016).

486 Thiol-yne click-reaction is a suitable approach to prepare robust click-hydrogels. According487 to Dove et al injectable alginate hydrogels, fabricated via the thiol-yne click reaction, had

exceptional mechanical performance and were capable of retaining their mechanical properties
even after being immersed in a cell culture media for three weeks (Pérez-Madrigal et al., 2020).
The extended stability enhanced cytocompatibility, and sufficient stiffness was also retained.

491

492 **2.6 Oxime based click reactions**

493 Oxime click reactions facilitate oxime bond formation and involve reactions between a substituent of aminooxy and an aldehyde or ketone moiety to produce imine hydrazone and 494 chemical bonds of oxime (Kalia & Raines, 2008). Since oxime bonds have higher stabilities 495 496 compared to bonds in thiol groups, it has emerged as a robust strategy in fields such as bioconjugation (Ulrich, Boturyn, Marra, Renaudet, & Dumy, 2014) and biomacromolecules 497 (Christman et al., 2011). Oxime reactions have the properties of click reactions, such as high 498 499 reaction rates, water production as a by-product, and orthogonality to molecules present in the cellular environment(Kalia & Raines, 2008). Thus, Oxime click reactions have been 500 501 extensively employed in modifying surfaces of materials (Zeng, Ramya, Dirksen, Dawson, & 502 Paulson, 2009) and bequeaths the unique properties of tuning and reversibility, to varying 503 degrees (Grover, Lam, Nguyen, Segura, & Maynard, 2012; Lin et al., 2013).

504

505 2.7 Other click reactions

506 Beyond the click reactions mentioned above, three other click reactions have been developed 507 recently. Firstly, the spontaneous amino-yne click reaction was reported by Tang et al (B. He 508 et al., 2017; B. He et al., 2016). It involves reactions of amines and propiolate, and can proceed 509 in a regio- and stereospecific fashion under mild conditions without any photoinitiator or catalyst(B. He et al., 2017; B. He et al., 2016, Oktay, Demir, & Kayaman-Apohan, 2020). As a 510 511 high reactivity reaction, hydroamination between dipropiolate and secondary diamine can 512 occur, leading to products with high molecular weights, characterized by excellent yields. 513 Second, nitrile-click chemistry, as an effective and novel strategy, has been received attention 514 (Y. Li et al., 2019; Oktay, Zhang, You, & Hong, 2018). The nitrile-containing polymers, especially based on C≡N groups, have been devoted to click reaction (Zil'berman, 1986). The 515 click reaction with sodium azide and zinc chloride was utilized to modify acrylonitrile 516 517 polymers(Tsarevsky, Bernaerts, Dufour, Du Prez, & Matyjaszewski, 2004). Therefore, polyacrylonitrile (PAN) is completely suitable for nitrile-click chemistry (W. Wang et al., 2017). 518 519 Surface modification of PAN using nitrile-click chemistry has constituted the research focus in 520 recent times. And third, novel click chemistry is the protection-click reaction-deprotection 521 process. During the reaction, phthalic anhydride was used to protect 2-NH₂, and azid group 522 was utilized to replace 6-OH group of chitosan. The click chemistry reaction was occurred 523 between an azide group and an alkynyl terminated quaternary ammonium salt. The final 524 product was obtained along with the deprotection of phthalic group (Y. Chen et al., 2017). This preparation method improves the thermal stability of products and water solubility. These click 525 reactions are useful for modifying functional molecules due to its chemo selectivity. 526

Click reactions	Reacting functional groups	Mechanism	Advantages	Disadvantages	Properties	Applications
CuAAC	azide+alkyne; e.g., azide and alkyne end group	$ + N_3 \qquad Cu(I) \qquad N \qquad $	Cu catalyst; Reversible; Bioorthogonal; no by-products	Cytotoxicity of Cu and difficult to remove completely	Structural stability; promotes the uniform dispersion(Roth et al., 2019);	Cell encapsulation(Breger et al., 2015), drug delivery(Kuma r et al., 2019), antibacterial materials(Y. Chen et al., 2017)
SPAAC	azide+alkyne ring; e.g., azide and cyclooctyne	$M_{N_3}^{+}$ F_{F}^{-} F_{F}^{-}	No catalyst;	Disturbing cross- linking reaction due to hydrophobicity of the cyclooctane(S. Fu, Dong, Deng, Zhuo, & Zhong, 2017; Truong et al., 2015)	Tuning mechanical properties; decrease inflammatory(Mo ody et al., 2020); Control stiffness	Tissue engineering; drug delivery;
IEDDA	Dienophile+diene; e.g., Tetrazyne and norbornene	N N $+$ $+$ N $+$ $+$ N $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	No catalyst; Faster rate of reaction than Cu- free click reaction;		and viscoelasticity(Vi ning et al., 2019); rheological and mechanical properties; prolong immunomodulator y properties(Gonzal ez-Pujana et al., 2020):	Cell encapsulation, drug delivery, targeted delivery of systemic small molecules(Mej ía Oneto et al., 2014);
Diels- Alder	diene+alkene; e.g., furan and maleimide		No catalyst; Thermally reversible(Wei, Yang, Zheng, & Shen, 2009);	Longer reaction time (gelation time is 1.5- 24h)(Fisher, Anandakumaran, Owen, &	2020); Self- healing(Ghanian et al., 2018); mechanically properties; swelling	Soft tissue engineering, drug delivery(Garcí a-Astrain & Avérous,

527 Table 1. Major click chemistry reaction types and their applications in biomaterials

529

530 **3 Biomedical Applications**

The excellent biocompatibility and promising physicochemical properties of alginate have promoted various biomedical applications, including wound dressing, pharmaceutical, tissue regeneration, renewable energy, and 3D bioprinting applications. The following sections describe the recent advances and summary of applications of alginate-based materials modified via click reactions.

536 **3.1 Wound dressing**

537 The skin, as the largest organ in human body, is a natural barrier that protects the 538 internal organs against pathogens and dehydration from environmental aggressions 539 (Hoque & Haldar, 2017). When the surface of skin is interrupted via dermal wounds (acute and chronic), protection from the pathogens is a significant clinical challenge for 540 health services, due to poor vascularization, protease susceptibility, and microbial 541 542 invasion at the wound site (Parani, Lokhande, Singh, & Gaharwar, 2016). The function 543 of wound dressing is to protect the damaged area from bacterial infection, and to 544 provide an appropriate environment to encourage the re-establishment of the skin 545 integrity and homeostasis thus accelerating the healing process (Kujath & Michelsen, 546 2008; Ma et al., 2019). Due to its biocompatibility, biodegradability, nonimmunogenicity, affordability, and water content, alginate and alginate-based materials 547 are of considerable attention and attractive for use as wound dressing. Alginate 548 dressings can absorb wound fluid in the dry state and form hydrogels. That provides a 549 550 moist environment and reduces bacterial infections for wound healing. However, pure

alginates are generally limited by their poor mechanical stability when in the swollen state and may dehydrate if not covered. It is difficult to secure skin, prevent bacterial infection, and promote bioactivities, especially in chronic wound healing. To overcome the poor mechanical stability of hydrogels, functionalized alginate dressings have been developed.

557

Figure 5. crosslinking alginate hydrogel with superior gel properties based on viny ether
sodium alginate. (A) Synthesis diagram of SA-VE/DTT hydrogel; (B) Hydrogen
bonding verification: SA-VE/H₂O hydrogel added with (a) DI water; (b) NaSCN
aqueous solutions (3 mol/L); (C) Rat tail hemostasis test results: (a) natural hemostasis;
(b) Ca-Alg; (c) SA-VE.(Xu et al., 2020)

563

Different types of functional groups have been introduced to produce alginate-based wound dressing materials. Mixing of functional alginates with other biopolymers will facilitates the formation of a structure that is characterized by a crosslinked network. Vinyl ether side chains were grafted into sodium alginate backbone, thus providing new reaction sites for further cross-linking. The functionalized sodium alginate subsequently formed a series of dual crosslinking hydrogel sodium alginate-vinyl ether/dithiothreitol (SA-VE/DTT) with dithiothreitol under UV exposure (Figure 5)(Xu
et al., 2020). The hydrogel system displayed superior mechanical strength, long-term
stability, as well as a fast hemostasis behavior when applied for 26 s in rat tail wounds.
By increasing the amount of charged groups inside the hydrogel, the internal structure
was resembled to form double network hydrogel with high toughness (Benselfelt &
Wågberg, 2019).

576 Additional, antibacterial properties can ensure the success rate of medical supplies. 577 The conventional strategies are using in loading antibacterial substances (such as 578 antibacterial particles or groups, antibiotic, or antimicrobial agents) into hydrogels to 579 possess antibacterial activity (M. Chen et al., 2019; M. He, Wang, Zhang, Zhao, & Zhao, 2017). However, their application is restricted because of the risk of temporary 580 581 antimicrobial activity, gel formation, and cytotoxicity of nanoparticles (D. Jiang et al., 2016). Chemical grafting of agents can enhance antimicrobial efficacy, reduce 582 583 cytotoxicity, and prolong biostability (Ng et al., 2014). The antimicrobial peptide 584 HHC10 was introduced into SA/PEG hydrogels via a photoinitiated thiol-ene click 585 reaction, showing strong antibacterial properties and desirable biocompatibility (G. Wang et al., 2018). Chemical reaction strategies can effectively immobilize 586 587 antibacterial agents in medical devices, enhancing the antibacterial properties, and thus 588 have significant application potential.

589 **3.2 Pharmaceutical applications**

590 Alginate is the backbone of different pharmaceutical applications, including

31

591 thickening, gel-forming, encapsulation. It performs a major role in regulated drug release. However, there are some restrictions for the conventional drug delivery systems, 592 including low drug efficacy, poor targeting, poor distribution, uncontrolled 593 594 pharmacokinetics, and serious side effects in non-target tissues (Aw, Addai-Mensah, & 595 Losic, 2012). Nowadays, hydrogels as depots for tissue localized drug delivery have 596 been accepted as a proper solution to address these problems. Hydrogel delivery 597 systems can transport the drugs to the targeted sites. Here, we describe progress in the 598 pharmaceutical application using alginate or alginate derivatives.

599 3.2.1 Drug delivery

Alginate hydrogels constitute well-researched technologies for drug delivery and 600 have been explored in the regulation of drug release. The most important advantages of 601 602 using alginate to encapsulate drugs are its excellent hydrophilicity and the efficiency of 603 the gelation process which occurs under mild condition (Erik, Aase, Paul, Anders, & 604 Maria, 2010). Diffusion is the dominant release mechanism in controlled drug release 605 from hydrogels (Peppas, Bures, Leobandung, & Ichikawa, 2000). Alginate hydrogels 606 have a typically porous structure, leading to the rapid diffusion of drug molecules. Injection hydrogels are used ubiquitously as cell and drug carriers. A click cross-607 linking strategy is established to be adequate for injectable hydrogels and was employed 608

609 in the development of functionalized alginate hydrogels (Kim et al., 2016). Injection610 hydrogels may be used as refillable hydrogel depots, for targeting drug-carrying

611 nanoparticles refills to a device placed within a tumor site (Brudno et al., 2014).

612 Refillable hydrogel depot system based on biorthogonal click chemistry capture prodrug refills from the blood and then sustainably release active drugs locally (Brudno 613 614 et al., 2018). The use of biorthogonal click chemistry in targeting circulating small 615 molecules to alginate hydrogel resident intramuscularly in diseased tissues was 616 demonstrated in the literature (Brudno et al., 2015). These small molecules were shown 617 to be capable of repeatedly targeting the diseased area in a sustained manner for about 618 one month. The click-mediated targeting exhibited high specificity for the target sites 619 and enhanced the delivery of suitable small molecules (Brudno et al., 2015; Mejía 620 Oneto et al., 2014). Brudno et al introduced tetrabicyclononyne (tBCN) agents to fabricate cross-link azide-modified alginate hydrogels (Moody et al., 2020). tBCN click 621 cross-linked gels improved click-mediated capture of small molecules drugs from the 622 623 blood, and this *in vivo* targeting was sustained over multiple weeks and with multiple rounds of systemic capture (Figure 6). For several special environment, stimuli-624 625 responsive triggers have been introduced to alginate hydrogels to facilitate smart 626 hydrogels under physiological conditions. The utilization of smart hydrogels for drug 627 delivery applications, has been receiving increasing interest in recent times. Under external stimuli, these smart hydrogels can release entrapped drug molecules in a 628 controlled and targeted manner while also minimizing unwanted intrusiveness of the 629 630 procedure (Matricardi, Di Meo, Coviello, Hennink, & Alhaique, 2013; Qiu & Park, 631 2001). The improvement in the molecular mobility was achieved when comb-type grafted hydrogels with network-graft architecture and dangling chains were 632

633 incorporated into a cross-linked network, for enhanced conformational adjustment634 ability of the incorporated chains when responding to external stimuli (S.-Q. Chen, Li,

- 635 Pan, Li, & He, 2016).
- 636

Figure 6. tBCN cross-linked azide-alginate gels and refillable depot stability for uses in 638 639 the body. (A) Using click chemistry to cross-link refillable depots. Left to Middle: 640 Azide-alginate strands are added and injected into target tissues and cross-link in situ. Middle to Right: Intravascular administration of cyclooctyne-conjugated 641 therapeutics permits selective capture and display of drug at gel site. (B) 642 643 Biocompatibility of tBCN cross-linked azide-alginate gels. Model/reference images of H&E stained sections from injection site and five major organs four weeks after 644 intramuscular injection of calcium and tBCN cross-linked azide-alginate hydrogels and 645 646 PBS-injected controls. Scale bar = $400 \,\mu m$. (C) Cross-linking with tBCN improves ontarget capture of circulating DBCO fluorophores. Reference images (a) and quantitation 647 (b) of fluorophore capture by intramuscularly-injected alginate hydrogels. Azide-648 alginate cross-linked with either tBCN or calcium were compared to control gels that 649 650 did not contain azide groups and a PBS injection. DBCO-Cy7 was administered i.v. 24 651 hours following depot implantation. One week following i.v. administration, mice were imaged to assay capture and retention of fluorescent signal at the target site. Samples 652 show mean \pm SEM. Statistical significance represented as **p < 0.01, and ****p < 653 0.0001 between groups by multiple unpaired t-tests with Holm-Sidak correction for 654 multiple comparisons. N=6. (Moody et al., 2020) 655

656

657

659	Polymeric microspheres are effective delivery vehicles, which provide the potential for
660	greater suspension stability, high drug loading, and lower burst release (Mohanraj &
661	Chen, 2006). Encapsulating the drug in polymeric microspheres is an effective strategy
662	that can control and sustain drug release. It can encapsulate the drugs in the hydrophilic
663	alginate polymer, protect encapsulated drugs from harsh physiological
664	microenvironments including moisture, heat, oxidation and 'mask' their horrible taste
665	and odour (Sharma, Purwar, & Gupta, 2015), and deliver hydrophobic drugs to a
666	specific treatment target in aqueous systems. For instance Rashidan et al encapsulated
667	synthesized anti-cancer compounds into Na-alginate microspheres (Rashdan, Farag, El-
668	Gendey, & Mounier, 2019). The study showed that Fickian diffusion law described the
669	drug release mechanism while also highlighting that sustainable drug release was
670	achieved. This is an effective solution to the hydrophobic defect of these compounds
671	by encapsulation in hydrophilic Na-alginate polymer microspheres. Pore size and
672	crosslinking density determine the release rate of the encapsulated drug. Increasing
673	polymer crosslinking density, accompanied by the decrease of equilibrium swelling and
674	average pore size, leads to the decrease in the drug diffusion rate (Korsmeyer & Peppas,
675	1981). When introducing Ca^{2+} to alginate solution, a reticulated structure, known as the
676	"egg-box" model, was formed by the interaction of Ca^{2+} ions and electronegative
677	alginate molecules. Hence, it is easier to control and sustain the drug delivery system.
678	Compared to traditional ionic crosslinked alginate capsules, click capsules showed

679 improved permeability to diffusants of small size and superior stability, which have the
680 capability to encapsulate drug and cells (Breger et al., 2015; Gattás-Asfura, Valdes,
681 Celik, & Stabler, 2014).

682

683 3.2.2 Protein delivery

684 Protein encapsulated polymeric microspheres have proved effective in releasing even 685 very labile bioactive moieties (R. R. Chen & Mooney, 2003; Saltzman & Olbricht, 2002), thus have drawn attention for many years. Proteins, including enzymes, growth 686 687 factors, hormones, and interleukins, are employed in several biomedical applications as therapeutic agents (Dimitrov, 2012). Protein pharmaceuticals have high specificity and 688 activity at relatively low concentrations, making them indispensable in combating 689 690 human diseases. However, some harsh microenvironments, such as changes in pH, 691 temperature, and ionic strength, can trigger the denaturing or alteration of protein 692 structures, leading to the loss of therapeutic qualities (Z. Li et al., 2013; Wells & 693 Sheardown, 2007). Alginate is an excellent candidate for protein delivery because it 694 cannot be degraded in the human body via enzyme-catalyzed processes (Shalaby & Burg, 2003). Alginate is therefore attractive for encapsulation protein to minimize 695 denaturation and prevent degradation. Several strategies have been assessed to enhance 696 697 and regulate protein release from alginate-based formulations.

698 Due to the porous structure and inherent hydrophilic properties, hydrogels have been699 chosen to tune the release rates of protein. However, hydrogels, with larger mesh sizes

36

700	than typical proteins, easily lead to the rapid release by diffusions (Boontheekul, Kong,
701	& Mooney, 2005). Alginate can be utilized to prepare crosslinked hydrogels with a
702	suitable structure to encapsulate proteins. For instance, I. Noh et al prepared
703	functionalized alginate-based terpolymeric semi-interpenetrating (semi-IPN) hydrogel
704	with small pore sizes (9.4 \pm 3.1 µm, 5.2 \pm 1.1 µm, 1.8 \pm 0.4 µm) (Das, Pham, Lee, & Noh,
705	2019). These pores led to a sustained release of bovine albumin serum (BSA) for a
706	period of 5 days and the sustained release of 5-amino salicylic acid (5-ASA) for a period
707	of 30 h. The affinity and interaction of heparin-binding proteins and alginate
708	contributed to the regulated containment and discharge of proteins (Ruvinov, Freeman,
709	Fredo, & Cohen, 2016; Zuo et al., 2015). However, the cross reaction occurs between
710	the crosslinking chemistries and encapsulated proteins, leading to the loss of bioactivity
711	(McCall & Anseth, 2012). The bioorthogonal click chemistry between tetrazine and
712	norbornene can form covalently crosslinked hydrogels, meanwhile, keep the integrity
713	of encapsulated cargo (Alge, Azagarsamy, Donohue, & Anseth, 2013; Koshy et al.,
714	2016). When Laponite was incorporated into alginate substitute via spontaneous
715	tetrazine and norbornene ligation, the interactions of alginate and Laponite could alter
716	the crosslinking and swelling behavior. This hydrogel avoided protein denaturation and
717	sustained the release of the encapsulated protein. The interactions of positively charged
718	domains on proteins and negatively-charged Laponite played a crucial role (Koshy,
719	Zhang, Grolman, Stafford, & Mooney, 2018).

720 Alginate microspheres can efficiently encapsulate and protect proteins from

degradation, allowing for continuous protein release over a prolonged period. 721 722 Crosslinking interactions between sodium alginate and proteins enabled the efficient loading of protein to alginate microspheres (Wells & Sheardown, 2007). In another 723 724 study, alginate microspheres, with a diameter of 1-10 µm, effectively sustained the release of recombinant human bone morphogenic protein-2 (rhBMP-2) and also 725 improved cell growth (Quinlan et al., 2015). Amino-yne click reaction was developed 726 727 for enzyme immobilization due to its sustainability (Oktay, Demir, & Kayaman-728 Apohan, 2019). The immobilized enzyme using amino-yne was observed to preserve 729 100% of its optimal activity at pH and temperature of 6.5 and 55 °C respectively (Oktay 730 et al., 2020). Furthermore, a suitable environment was provided for the encapsulated live cells to grow, while also providing covalent modification on the cell-load 731 732 microcapsules.

733 **3.3 Tissue regeneration**

734 Cartilage is a highly hypocellular tissue without self-repair abilities due to the absence of vascularization and chondrocytes density (Costantini et al., 2016; Kesti et 735 736 al., 2015). Sports injuries or trauma result in focal lesions of the tissue, that may lead to the degeneration of the surrounding tissue. Surgical intervention is an effective 737 738 method to treat and repair cartilage defects. Tissue engineering technique, combining 739 stem cells, engineering technologies, and scaffolds, can fabricate biological constructs 740 and thus support the regeneration of cartilage (J. R. Choi, Yong, & Choi, 2018). The hydrogels, formed with alginate and alginate-based materials, are three-dimensional 741

cross-linked networks, providing the microenvironment to facilitate the migration,
adhesion, proliferation, and delivering cells and bioactive molecules (B. Choi, Kim, Lin,
Wu, & Lee, 2014). Therefore, these hydrogels have often been utilized in tissue
engineering approaches.

746 Nowadays, some alginate-based hydrogels have gained a lot of interest, because these 747 hydrogels can form the desired shapes to match irregular defects and transplant 748 chondrogenic cells via a minimally invasive method (Ren, He, Xiao, Li, & Chen, 2015). Injectable hydrogel application has also generated a lot of attention in cartilage- and 749 750 bone tissue-engineering applications. Click chemistry methods have been utilized to 751 prepare injectable hydrogels, such as Michael addition-mediated hydrogels (Tan & Marra, 2010) and click chemistry-mediated hydrogels (Takahashi et al., 2013). For 752 753 instance, Dove et al found that improved stiffness values and enhanced stability properties in aqueous media (Figure 7) were displayed in injectable click-hydrogels, 754 755 ALG/HA-SH:21A click-hydrogels (Pérez-Madrigal et al., 2020), relative to gelatin-756 based hydrogels cross-linked using the thiol-yne click reaction (Truong et al., 2017). 757 These hydrogels maintained the important properties of injectability, cytocompatibility, and long-term stability in the soft 3D scaffold. In another study, the addition of calcium 758 759 alginate microsphere with leptin to hydrogel, promoted cartilage restoration when it 760 was transplanted into cartilage defects in rabbit femurs (R. Fu et al., 2019). 761 Hydrogel loading cell growth factors and bioactive drugs have been employed as the

762 medium of delivery in bone tissue engineering applications (H. Chen et al., 2017), to

763 maintain transfected chondrocytes for cartilage regeneration and regulate the discharge of tissue induction factor, and antibacterial drugs (Fernandez, Tierney, Cunniffe, 764 O'Brien, & Kelly, 2016; Orth et al., 2011). X. D. Cao et al choose Diels-Alder click 765 766 chemistry and the thiol-ene reaction to fabricate sodium alginate based antibacterial 767 hydrogels SA/PEG-HHC10 hydrogels. The sterilization rate reached 100% when a 768 sufficient amount of HHC10 was incorporated (G. Wang et al., 2018). In another study, Etienne et al (Mateescu et al., 2015) designed two hydrogels, based on alginate 769 770 modified with catechol moieties and the mixture of alginate catechol and thiol-771 terminated Pluronic (AC/Plu-bisSH). Cytocompatible cross-linked HA-PEG hydrogels 772 were produced by employing furan functionalized HA and dimaleimide modified poly (ethylene glycol) using the Diels-Alder click reaction, which is adequate for soft tissue 773 774 engineering applications (Figure 5) (Nimmo, Owen, & Shoichet, 2011). These hydrogels can be injected and also 'jellify' in a few minutes. Moreover, the introduction 775 776 of CTL in these gels inhibited P. gingivalis development in the surrounding living environment. 777

Alginate-based dual-crosslinked hydrogels with two orthogonal crosslinking mechanisms, which are the spontaneous Diels-Alder reaction and the ultraviolet lightinitiated thiol-ene reaction were also employed by Cipitria et al (Lueckgen et al., 2020). These mechanisms facilitated the hydrogels characterized with configurations in stiffness, biomolecule presentation and degradation, granting localised regulation of cell behavior. To endow cell activity of pure alginate, alginate was chemospecifically functionalized with thiol-ended bioactive peptides (Bubenikova et al., 2012). The alginate-based biomimetic matrices with multiple peptide signals promoted specific cell interaction on the functionalized areas and avoided non-specific adhesion due to the inert pure alginate. Therefore, alginate hydrogels have broad potential applications for tissue engineering.

789

790

Figure 7. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds withsuperior mechanical performance.

(A) Preparation of ALG/HA-SH:2_{1A} click-hydrogels. Schematics illustrating the composition and cross-linking of the dense HA-SH: yne network (a) and the alginatebased network (b). (c) Photographs of as prepared click-hydrogels: HA-SH:2_{1A} (no alginate in the composition) and ALG/HA-SH:2_{1A} (NCL = not cross-linked with Ca²⁺;

- 798 CL = cross-linked with Ca^{2+}). (d) Schematics illustrating the preparation steps of
- 799 ALG/HA-SH:2_{1A} click-hydrogels;
- (B) Cryo-SEM images taken for HA-SH:2_{1A} (left) and ALG/HA-SH:2_{1A} (right) clickhydrogels;
- 802 (C) Long-term stability of ALG/HA-SH:2_{1A} click-hydrogels at 37 °C in different 803 environments. Swelling factor (SF) values recorded for click-hydrogels immersed in (a)

cell culture media with 1.8 mM Ca²⁺ (inset shows photo of ALG/HA-SH:2_{1A} after 14 days of immersion; (b) Ringer's solution with 8 mM of Ca²⁺ at various concentrations of hyaluronidase (100 U mL⁻¹, 50 U mL⁻¹, or 10 U mL⁻¹, and 0 U mL⁻¹). Error bars: SD with n = 4. (Pérez-Madrigal et al., 2020)

808

809 **3.4 3D Bioprinting**

810 Three-dimensional (3-D) bioprinting is a rapid and effective approach for fabricating 811 functional tissues in vitro (Seliktar, Dikovsky, & Napadensky, 2013). This approach 812 facilitates the generation of complex geometry characterized by spatial heterogeneity 813 that is not granted when traditional scaffold-based techniques are utilised. 3-D 814 bioprinting addresses critical challenges facing current tissue engineering approaches. 815 Bioinks (cell-laden biomaterials), may be employed forencapsulated cell deposition in 816 a fabricated 3D construct and in developed complex structures of natural systems and 817 tissues (Groll et al., 2016; Moroni et al., 2018). Extrusion, inkjet bioprinting, and laser mechanisms are common bioprinting technologies (Hölzl et al., 2016; Malda et al., 818 819 2013). The most commonly employed technique is the extrusion bioprinting method 820 due to its comprehensive structure, operational simplicity, low cost, and printing 821 functionality of cells with high densities (Murphy & Atala, 2014). Continuous bioink 822 filament extruding from the nozzle is the most important property for extrusion. For 823 inkjet bioprinting, bioink with picoliter-size droplets with low viscosity are used to construct higher resolution samples. For laser-assisted printing, higher concentration 824 sodium alginate solution (6% and 8%) yielded a better printing quality and printed well-825 defined tubular constructs (J. Yan, Huang, & Chrisey, 2013). It reduced shear and 826 827 intensity impact/damage.

The ink constituents and quality are critical for printing structures to meet both 828 mechanical and biological requirements. Alginates have received much attention 829 830 because of their ability to robustly form cell-compatible hydrogels in mild conditions. 831 To facilitate tissue formation, alginates were used as bioinks to provide a matrix scaffold to direct a specific 3-D cell growth (Jia et al., 2014). Daly et al., (Daly, 832 833 Critchley, Rencsok, & Kelly, 2016) determined that alginate was most preferable to 834 facilitate improvement of the hyaline-like cartilage for 3D bioprinting relative to other bioinks such as GelMA and BioINKTM. The viscosity and density are essential physical 835 836 properties for alginate bioink. High viscosity bioinks provide integrity structures and support their own weight. However, gelation hinders the movement of encapsulated 837 cells and reduces the capability to enable surrounding matrix re-structuring. Low 838 839 viscosity bioinks provide a spacious and reconfigurable environment, lacking 840 printability and integrity. Shear-thinning properties are possessed by alginate which 841 also present high viscosities at relatively low concentrations of the alginate solution 842 (Rezende, Bártolo, Mendes, & Filho, 2009). Bioprinting of fibroblast-laden alginate via 843 extrusion printing revealed that even at a high concentration (10 wt.%) favorable printability (5 layers) was achievable, whereas for longer term cell culture (2 wt.%) the 844 single layer may correlated with concentration (Shi, Laude, & Yeong, 2017). 845 846 Rheological modifiers were utilized to prepare bioink, endowing desirable properties 847 for the formation of free-standing structures (Leppiniemi et al., 2017; H. Li, Tan, & Li, 2018). Apeldoorn et al (Marchioli et al., 2015) observed that 4% alginate/5% gelatin 848

849	was a suitable hydrogel solution for plotting of islet and β -cells, which does not
850	compromise the viability and morphology. However, high viscosity resulted in a dense
851	mesh size, which impairs glucose diffusion and limits islet functionality, leading to high
852	shear stresses on cells and subsequently, cell death (Marchioli et al., 2015; Ning,
853	Guillemot, Zhao, Kipouros, & Chen, 2016). The concentration of alginate solution
854	influences cell migration and morphology. Figure 8, shows a modular cell-laden bioink
855	based on a norbornene functionalized alginate system, which is characterized by a rapid
856	UV-induced thiol-ene cross-linking mechanism that prevents acrylate kinetic chain
857	formation(Ooi et al., 2018). This system was developed by Baker et al., (Ooi et al.,
858	2018). This altered bioink enabled printability and high cell survivability even at lower
859	concentrations and produced 3-dimensional constructs that were stable. A novel
860	crosslinking strategy was introduced into the bioink comprising of catechol modified
861	hyaluronic acid (HACA) and alginate, involving ionic crosslinking, catechol mediated
862	crosslinking, and Michael addition (Zhou, Yue, Chen, & Wallace, 2020). This bioink
863	was easily extruded and crosslinking occurred when the two solutions from core and
864	shell were in contact. During printing, proteins with cell adhesion motifs (gelatin) can
865	be integrated with HACA/alginate hydrogel to improve cell interactions, and thus
866	obtain high cell viability.

868

Figure 8. Norbornene functionalized alginate system as a cell-laden bioink for 869 extrusion-based bioprinting. (A) Schematic overview of the strategy employed to 870 871 develop photoactive alginate bioink (Alg-norb) for bioprinting of hydrogels reported in the current work. (B) Scaffolds bioprinted in a) the geometry of a pyramid. b) and c) 872 873 the geometry of a cube. Porous-like structures can be seen in the cube scaffold shown in d) X-Y and e) Z planes when imaged between two glass coverslips. Of note, the 874 bioprinting conditions used to produce these scaffolds match those optimized for high-875 cell viability. These scaffolds have shown stability in PBS for over two months. 876 Theoretical side length = 6.9 mm (13 strands, 0.53 mm between strands), total height = 877 878 5.2 mm (200 µm/layer, 26 layers). (C) Images of 3D bioprinted hydrogels loaded with 879 cells at a) day 0 and b) day 7. Green and red cell tracker labeled L929 as two different 880 bioinks printed as alternating fibers c) in the X-Y plane and d) in the Z direction.(Ooi et al., 2018) 881

882

883 4 Conclusions and Outlook

Efficient and orthogonal click chemistries are critical for the functionalization of alginate molecules to produce well-defined structures and macromolecules. This review highlighted some exciting perspectives regarding the exploration of click reaction chemistry loaded novel cues in the application of alginate. Click modified alginate and alginate-based systems have been applied in different fields. Alginate and its derived polymers were discussed to demonstrate the feasibility of using click functionalization for various applications, along with their features. Some new types of materials with novel functionalities, physiochemical stability, mechanical stability, cytocompatibility,
and antibacterial properties, can be regulated to significance level with applied
perspectives. Those constructs significantly reduce the cost in some applications, such
as pharmaceutical, tissue engineering, wounding dressing, and 3D bioprinting.

895 The future success of alginate or alginate-based systems is mainly dependent on rational 896 structure and properties, designed via click chemistry, and involving chemical, physical, and biological properties. These properties can be adjusted by careful selection of 897 898 molecules with appropriate molecular weights, regulating the proportion of reactive 899 functional groups, types of functional groups, and constructive mechanism. Multi block copolymers are expected to be synthesized by standard chain extension via click 900 901 reactions. It is also important for click reaction alginate to optimize fabrication 902 procedures, adopt green preparation process, and improve cytocompatibility. However, unreacted initiators left behind may diffuse out of prepared products, leading to 903 904 undesirable impacts on humans i.e., toxicity. For the application of hydrogel to cell 905 attachment, improving cell binding and modulating degradation via click chemistry 906 should be investigated. Click chemistry, as the cross-linking reaction, can generate micells for targeted delivery of therapeutic compounds. For 3D bioprinting, tuning 907 viscosity and density of bioink, controlling gelation time, and techniques to obtain high 908 cell survivability, should be studied. Due to continuous investigations into its potential 909 910 uses, the future role of functionalized alginate and alginate systems remains noteworthy, 911 with new treatment options in future research anticipated.

0	1	2
_		Z.

912913 5 Acknowledgments

	This research was supported by the National Natural Science Foundation of China
915	(31700840), Natural Science Foundation of Jiangsu Province (BK20200791).
916	Oseweuba also gratefully acknowledges the financial support of Wallonia-Brussels
917	International via the Wallonie-Bruxelles International (WBI) excellence Postdoctoral
918	fellowship.
919	6 Conflict of Interest
920	The authors declare that they have no known competing financial interests or personal
921	relationships that could have appeared to influence the work reported in this paper.
922	
923	References
924	Agard, N. J., Prescher, J. A., & Bertozzi, C. R. (2004). A Strain-Promoted [3 + 2]
925	Azide-Alkyne Cycloaddition for Covalent Modification of Biomolecules in
926	Living Systems. Journal of the American Chemical Society, 126(46), 15046-
927	15047. doi:10.1021/ja044996f
928	Aimetti, A. A., Machen, A. J., & Anseth, K. S. (2009). Poly(ethylene glycol) hydrogels
929	formed by thiol-ene photopolymerization for enzyme-responsive protein
000	
930	delivery. <i>Biomaterials</i> , <i>30</i> (30), 6048-6054.
930 931	delivery. Biomaterials, 30(30), 6048-6054. doi: https://doi.org/10.1016/j.biomaterials.2009.07.043 6048-6054.
930 931 932	delivery.Biomaterials,30(30),6048-6054.doi: https://doi.org/10.1016/j.biomaterials.2009.07.043 Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic
930 931 932 933	delivery.Biomaterials,30(30),6048-6054.doi: https://doi.org/10.1016/j.biomaterials.2009.07.043 Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with
930 931 932 933 934	delivery.Biomaterials,30(30),6048-6054.doi:https://doi.org/10.1016/j.biomaterials.2009.07.043Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drasticdifference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. Journal of Colloid and Interface Science,
930 931 932 933 934 935	delivery.Biomaterials,30(30),6048-6054.doi:https://doi.org/10.1016/j.biomaterials.2009.07.043Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drasticdifference in porous structure of calcium alginate microspheres prepared withfresh or hydrolyzed sodium alginate. Journal of Colloid and Interface Science,363(2), 707-710. doi:https://doi.org/10.1016/j.jcis.2011.08.014
930 931 932 933 934 935 936	delivery.Biomaterials,30(30),6048-6054.doi:https://doi.org/10.1016/j.biomaterials.2009.07.043Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drasticdifference in porous structure of calcium alginate microspheres prepared withfresh or hydrolyzed sodium alginate. Journal of Colloid and Interface Science,363(2), 707-710. doi:https://doi.org/10.1016/j.jcis.2011.08.014Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically
930 931 932 933 934 935 936 937	delivery.Biomaterials,30(30),6048-6054.doi:https://doi.org/10.1016/j.biomaterials.2009.07.043Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drasticdifference in porous structure of calcium alginate microspheres prepared withfresh or hydrolyzed sodium alginate. Journal of Colloid and Interface Science,363(2), 707-710. doi:https://doi.org/10.1016/j.jcis.2011.08.014Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). SyntheticallyTractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using
930 931 932 933 934 935 936 937 938	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953.
 930 931 932 933 934 935 936 937 938 939 	 delivery. <i>Biomaterials, 30</i>(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science, 363</i>(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules, 14</i>(4), 949-953. doi:10.1021/bm4000508
930 931 932 933 934 935 936 937 938 939 940	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE
 930 931 932 933 934 935 936 937 938 939 940 941 	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED
 930 931 932 933 934 935 936 937 938 939 940 941 942 942 	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED COMPOUNDS. 42(3), 650-654. doi:10.1139/v64-095
 930 931 932 933 934 935 936 937 938 939 940 941 942 943 941 	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED COMPOUNDS. 42(3), 650-654. doi:10.1139/v64-095 Anugrah, D. S. B., Ramesh, K., Kim, M., Hyun, K., & Lim, K. T. (2019). Near-infrared Using the total of the doi. 10.1011/100000000000000000000000000000
 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED COMPOUNDS. 42(3), 650-654. doi:10.1139/v64-095 Anugrah, D. S. B., Ramesh, K., Kim, M., Hyun, K., & Lim, K. T. (2019). Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED COMPOUNDS. 42(3), 650-654. doi:10.1139/v64-095 Anugrah, D. S. B., Ramesh, K., Kim, M., Hyun, K., & Lim, K. T. (2019). Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release. <i>Carbohydrate Polymers</i>, 2021.115070. Link.
 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 	 delivery. <i>Biomaterials</i>, 30(30), 6048-6054. doi:<u>https://doi.org/10.1016/j.biomaterials.2009.07.043</u> Akamatsu, K., Maruyama, K., Chen, W., Nakao, A., & Nakao, Si. (2011). Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. <i>Journal of Colloid and Interface Science</i>, 363(2), 707-710. doi:<u>https://doi.org/10.1016/j.jcis.2011.08.014</u> Alge, D. L., Azagarsamy, M. A., Donohue, D. F., & Anseth, K. S. (2013). Synthetically Tractable Click Hydrogels for Three-Dimensional Cell Culture Formed Using Tetrazine–Norbornene Chemistry. <i>Biomacromolecules</i>, 14(4), 949-953. doi:10.1021/bm4000508 Allen, C. F. H., & Happ, G. P. (1964). THE THERMAL REVERSIBILITY OF THE MICHAEL REACTION: II. NITROKETONES AND RELATED COMPOUNDS. 42(3), 650-654. doi:10.1139/v64-095 Anugrah, D. S. B., Ramesh, K., Kim, M., Hyun, K., & Lim, K. T. (2019). Near-infrared light-responsive alginate hydrogels based on diselenide-containing cross-linkage for on demand degradation and drug release. <i>Carbohydrate Polymers</i>, 223, 115070. doi:<u>https://doi.org/10.1016/j.carbpol.2019.115070</u>

- 948 (2020). Coumarin-grafted blue-emitting fluorescent alginate as a potentially
 949 valuable tool for biomedical applications. *Journal of Materials Chemistry B*,
 950 8(4), 813-825. doi:10.1039/C9TB01402K
- Aw, M. S., Addai-Mensah, J., & Losic, D. (2012). A multi-drug delivery system with
 sequential release using titania nanotube arrays. *Chemical Communications*,
 48(27), 3348-3350. doi:10.1039/C2CC17690D
- Bahsis, L., Ablouh, E.-H., Anane, H., Taourirte, M., Julve, M., & Stiriba, S.-E. (2020).
 Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide–
 alkyne cycloaddition type reactions in water. *RSC Advances*, 10(54), 3282132832. doi:10.1039/D0RA06410F
- Baskin, J. M., & Bertozzi, C. R. (2009). Copper-Free Click Chemistry. In *Click Chemistry for Biotechnology and Materials Science* (pp. 29-51).
- Benselfelt, T., & Wågberg, L. (2019). Unidirectional Swelling of Dynamic Cellulose
 Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D
 Shapeability. *Biomacromolecules*, 20(6), 2406-2412.
 doi:10.1021/acs.biomac.9b00401
- Beria, L., Gevrek, T. N., Erdog, A., Sanyal, R., Pasini, D., & Sanyal, A. (2014).
 'Clickable' hydrogels for all: facile fabrication and functionalization. *Biomaterials Science*, 2(1), 67-75. doi:10.1039/C3BM60171D
- Bilal, M., Rasheed, T., Zhao, Y., Iqbal, H. M. N., & Cui, J. (2018). "Smart" chemistry
 and its application in peroxidase immobilization using different support
 materials. *International Journal of Biological Macromolecules*, *119*, 278-290.
 doi:https://doi.org/10.1016/j.ijbiomac.2018.07.134
- Blackman, M. L., Royzen, M., & Fox, J. M. (2008). Tetrazine Ligation: Fast
 Bioconjugation Based on Inverse-Electron-Demand Diels-Alder Reactivity. *Journal of the American Chemical Society*, 130(41), 13518-13519.
 doi:10.1021/ja8053805
- Boontheekul, T., Kong, H.-J., & Mooney, D. J. (2005). Controlling alginate gel
 degradation utilizing partial oxidation and bimodal molecular weight
 distribution. *Biomaterials*, 26(15), 2455-2465.
 doi:https://doi.org/10.1016/j.biomaterials.2004.06.044
- Breger, J. C., Fisher, B., Samy, R., Pollack, S., Wang, N. S., & Isayeva, I. (2015).
 Synthesis of "click" alginate hydrogel capsules and comparison of their stability,
 water swelling, and diffusion properties with that of Ca+2 crosslinked alginate
 capsules. 103(5), 1120-1132. doi:10.1002/jbm.b.33282
- Brudno, Y., Desai, R. M., Kwee, B. J., Joshi, N. S., Aizenberg, M., & Mooney, D. J.
 (2015). In Vivo Targeting through Click Chemistry. 10(4), 617-620.
 doi:<u>https://doi.org/10.1002/cmdc.201402527</u>
- Brudno, Y., Pezone, M. J., Snyder, T. K., Uzun, O., Moody, C. T., Aizenberg, M., &
 Mooney, D. J. (2018). Replenishable drug depot to combat post-resection cancer
 recurrence. *Biomaterials*, *178*, 373-382.
 doi:https://doi.org/10.1016/j.biomaterials.2018.05.005

- Brudno, Y., Silva, E. A., Kearney, C. J., Lewin, S. A., Miller, A., Martinick, K. D.,
 Mooney, D. J. (2014). Refilling drug delivery depots through the blood. *111*(35),
 12722-12727. doi:10.1073/pnas.1413027111 %J Proceedings of the National
 Academy of Sciences
- Bubenikova, S., Stancu, I.-C., Kalinovska, L., Schacht, E., Lippens, E., Declercq, H.,
 Martinez, J. (2012). Chemoselective cross-linking of alginate with thiolterminated peptides for tissue engineering applications. *Carbohydrate Polymers, 88*(4), 1239-1250. doi:<u>https://doi.org/10.1016/j.carbpol.2012.01.089</u>
- Bui, Q. T., Jeon, Y.-S., Um, S. H., Chung, D. J., & Kim, J.-H. (2015). Preparation of
 novel hybrid gels from polyaspartamides and natural alginate or hyaluronate by
 click reaction. *Journal of Polymer Research*, 22(3), 27. doi:10.1007/s10965014-0649-3
- Cai, X. Y., Li, J. Z., Li, N. N., Chen, J. C., Kang, E.-T., & Xu, L. Q. (2016). PEG-based
 hydrogels prepared by catalyst-free thiol-yne addition and their postantibacterial modification. *Biomaterials Science*, 4(11), 1663-1672.
 doi:10.1039/C6BM00395H
- 1006 Çakmakçi, E., Yuce-Dursun, B., & Demir, S. (2017). Maleic anhydride
 1007 functionalization of OSTE based coatings via thiol-ene "Click" reaction for the
 1008 covalent immobilization of xylanase. *Reactive and Functional Polymers, 111*,
 1009 38-43. doi:<u>https://doi.org/10.1016/j.reactfunctpolym.2016.11.006</u>
- Caliari, S. R., & Burdick, J. A. (2016). A practical guide to hydrogels for cell culture.
 Nature Methods, 13(5), 405-414. doi:10.1038/nmeth.3839
- 1012 Carboni, R. A., & Lindsey, R. V. (1959). Reactions of Tetrazines with Unsaturated
 1013 Compounds. A New Synthesis of Pyridazines. *Journal of the American*1014 *Chemical Society*, *81*(16), 4342-4346. doi:10.1021/ja01525a060
- 1015 Chang, X., & Dong, C.-M. (2013). Synthesis of Hyperbranched Polypeptide and PEO
 1016 Block Copolymer by Consecutive Thiol-Yne Chemistry. *Biomacromolecules*,
 1017 14(9), 3329-3337. doi:10.1021/bm400951m
- 1018 Chawla, D., Kaur, T., Joshi, A., & Singh, N. (2020). 3D bioprinted alginate-gelatin
 1019 based scaffolds for soft tissue engineering. *International Journal of Biological*1020 *Macromolecules*, 144, 560-567.
 1021 doi:https://doi.org/10.1016/j.ijbiomac.2019.12.127
- 1022 Chen, G., Kumar, J., Gregory, A., & Stenzel, M. H. (2009). Efficient synthesis of
 1023 dendrimersvia a thiol-yne and esterification process and their potential
 1024 application in the delivery of platinum anti-cancer drugs. *Chemical*1025 *Communications*(41), 6291-6293. doi:10.1039/B910340F
- Chen, H., Xing, X., Tan, H., Jia, Y., Zhou, T., Chen, Y., Hu, X. (2017). Covalently 1026 1027 hydrogel dressing antibacterial alginate-chitosan integrated gelatin 1028 microspheres containing tetracycline hydrochloride for wound healing. 1029 and Materials Science Engineering: С, 70, 287-295. 1030 doi:https://doi.org/10.1016/j.msec.2016.08.086
- 1031 Chen, M., Fan, D., Liu, S., Rao, Z., Dong, Y., Wang, W., Cheng, Z. (2019). Fabrication

- 1032of self-healing hydrogels with surface functionalized microcapsules from1033stellate mesoporous silica. Polymer Chemistry, 10(4), 503-511.1034doi:10.1039/C8PY01402G
- 1035 Chen, R. R., & Mooney, D. J. (2003). Polymeric Growth Factor Delivery Strategies for
 1036 Tissue Engineering. *Pharmaceutical Research*, 20(8), 1103-1112.
 1037 doi:10.1023/A:1025034925152
- 1038 Chen, S.-Q., Li, J.-M., Pan, T.-T., Li, P.-Y., & He, W.-D. (2016). Comb-Type Grafted
 1039 Hydrogels of PNIPAM and PDMAEMA with Reversed Network-Graft
 1040 Architectures from Controlled Radical Polymerizations. 8(2), 38.
- 1041 Chen, Y., Wang, F., Zhang, N., Li, Y., Cheng, B., & Zheng, Y. (2017). Preparation of a
 1042 6-OH quaternized chitosan derivative through click reaction and its application
 1043 to novel thermally induced/polyelectrolyte complex hydrogels. *Colloids and*1044 *Surfaces* B: *Biointerfaces*, 158, 431-440.
 1045 doi:https://doi.org/10.1016/j.colsurfb.2017.07.028
- 1046 Choi, B., Kim, S., Lin, B., Wu, B. M., & Lee, M. (2014). Cartilaginous Extracellular
 1047 Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. ACS
 1048 Applied Materials & Interfaces, 6(22), 20110-20121. doi:10.1021/am505723k
- 1049 Choi, J. R., Yong, K. W., & Choi, J. Y. (2018). Effects of mechanical loading on human
 1050 mesenchymal stem cells for cartilage tissue engineering. 233(3), 1913-1928.
 1051 doi:<u>https://doi.org/10.1002/jcp.26018</u>
- 1052 Christman, K. L., Broyer, R. M., Schopf, E., Kolodziej, C. M., Chen, Y., & Maynard,
 1053 H. D. (2011). Protein Nanopatterns by Oxime Bond Formation. *Langmuir*, 27(4),
 1054 1415-1418. doi:10.1021/la103978x
- Codelli, J. A., Baskin, J. M., Agard, N. J., & Bertozzi, C. R. (2008). Second-Generation
 Difluorinated Cyclooctynes for Copper-Free Click Chemistry. *Journal of the American Chemical Society*, 130(34), 11486-11493. doi:10.1021/ja803086r
- 1058 Costantini, M., Idaszek, J., Szöke, K., Jaroszewicz, J., Dentini, M., Barbetta, A.,
 1059 Święszkowski, W. J. B. (2016). 3D bioprinting of BM-MSCs-loaded ECM
 1060 biomimetic hydrogels for in vitro neocartilage formation. 8(3), 035002.
- 1061 Cramer, N. B., & Bowman, C. N. (2001). Kinetics of thiol–ene and thiol–acrylate
 1062 photopolymerizations with real-time fourier transform infrared. *39*(19), 33111063 3319. doi:10.1002/pola.1314
- 1064 Daly, A. C., Critchley, S. E., Rencsok, E. M., & Kelly, D. J. J. B. (2016). A comparison
 1065 of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
 1066 8(4), 045002.
- 1067 Das, D., Pham, H. T. T., Lee, S., & Noh, I. (2019). Fabrication of alginate-based stimuli-1068 responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for 1069 controlled release of bovine albumin serum and 5-amino salicylic acid. 1070 *Materials* Science and Engineering: С, 98, 42-53. doi:https://doi.org/10.1016/j.msec.2018.12.127 1071
- 1072 Delplace, V., Nickerson, P. E. B., Ortin-Martinez, A., Baker, A. E. G., Wallace, V. A.,
 1073 & Shoichet, M. S. (2020). Nonswelling, Ultralow Content Inverse Electron-

1074	Demand Diels-Alder Hyaluronan Hydrogels with Tunable Gelation Time:
1075	Synthesis and In Vitro Evaluation. 30(14), 1903978.
1076	doi: <u>https://doi.org/10.1002/adfm.201903978</u>
1077	Desai, R. M., Koshy, S. T., Hilderbrand, S. A., Mooney, D. J., & Joshi, N. S. (2015).
1078	Versatile click alginate hydrogels crosslinked via tetrazine-norbornene
1079	chemistry. Biomaterials, 50, 30-37.
1080	doi:https://doi.org/10.1016/j.biomaterials.2015.01.048
1081	Devaraj, N. K., Weissleder, R., & Hilderbrand, S. A. (2008). Tetrazine-Based
1082	Cycloadditions: Application to Pretargeted Live Cell Imaging. Bioconjugate
1083	Chemistry, 19(12), 2297-2299. doi:10.1021/bc8004446
1084	Dimitrov, D. S. (2012). Therapeutic Proteins. In V. Voynov & J. A. Caravella (Eds.),
1085	Therapeutic Proteins: Methods and Protocols (pp. 1-26). Totowa, NJ: Humana
1086	Press.
1087	Erik, J., Aase, B., Paul, G., Anders, J., & Maria, S. (2010). Release of Antithrombotic
1088	Drugs from Alginate Gel Beads. Current Drug Delivery, 7(4), 297-302.
1089	doi: <u>http://dx.doi.org/10.2174/156720110793360630</u>
1090	Fan, M., Ma, Y., Zhang, Z., Mao, J., Tan, H., & Hu, X. (2015). Biodegradable
1091	hyaluronic acid hydrogels to control release of dexamethasone through aqueous
1092	Diels-Alder chemistry for adipose tissue engineering. Materials Science and
1093	Engineering: C, 56, 311-317. doi: https://doi.org/10.1016/j.msec.2015.04.004
1094	Fisher, S. A., Anandakumaran, P. N., Owen, S. C., & Shoichet, M. S. (2015). Tuning
1095	the Microenvironment: Click-Crosslinked Hyaluronic Acid-Based Hydrogels
1096	Provide a Platform for Studying Breast Cancer Cell Invasion. 25(46), 7163-
1097	7172. doi: <u>https://doi.org/10.1002/adfm.201502778</u>
1098	Fu, A., Gwon, K., Kim, M., Tae, G., & Kornfield, J. A. (2015). Visible-Light-Initiated
1099	Thiol-Acrylate Photopolymerization of Heparin-Based Hydrogels.
1100	Biomacromolecules, 16(2), 497-506. doi:10.1021/bm501543a
1101	Fu, R., Han, F., Liu, L., Yu, F., Gui, Z., Wang, X., Xia, L. (2019). The Effects of Leptin
1102	on the Proliferation and Differentiation of Primary Chondrocytes in Vitro and
1103	Cartilage Regeneration in Vivo. ACS Biomaterials Science & Engineering, 5(4),
1104	1907-1919. doi:10.1021/acsbiomaterials.8b01168
1105	Fu, S., Dong, H., Deng, X., Zhuo, R., & Zhong, Z. (2017). Injectable hyaluronic
1106	acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-
1107	alkyne cycloaddition click reaction. Carbohydrate Polymers, 169, 332-340.
1108	doi: <u>https://doi.org/10.1016/j.carbpol.2017.04.028</u>
1109	García-Astrain, C., & Avérous, L. (2018). Synthesis and evaluation of functional
1110	alginate hydrogels based on click chemistry for drug delivery applications.
1111	Carbohydrate Polymers, 190, 271-280.
1112	doi:https://doi.org/10.1016/j.carbpol.2018.02.086
1113	García-Astrain, C., & Avérous, L. (2019). Synthesis and behavior of click cross-linked
1114	alginate hydrogels: Effect of cross-linker length and functionality. International
1115	Journal of Biological Macromolecules, 137, 612-619.

1116	doi: <u>https://doi.org/10.1016/j.ijbiomac.2019.07.010</u>
1117	Gattás-Asfura, K. M., Valdes, M., Celik, E., & Stabler, C. L. (2014). Covalent layer-
1118	by-layer assembly of hyperbranched polymers on alginate microcapsules to
1119	impart stability and permselectivity. Journal of Materials Chemistry B, 2(46),
1120	8208-8219. doi:10.1039/C4TB01241K
1121	Gonzalez-Fernandez, T., Tierney, E. G., Cunniffe, G. M., O'Brien, F. J., Kelly, D. J.
1122	(2016). Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate
1123	Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering.
1124	Tissue Engineering, 22(9-10), 776-787. doi:10.1089/ten.tea.2015.0576
1125	Ghanian, M. H., Mirzadeh, H., & Baharvand, H. (2018). In Situ Forming,
1126	Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic
1127	and Click Cross-Linked Alginate. Biomacromolecules, 19(5), 1646-1662.
1128	doi:10.1021/acs.biomac.8b00140
1129	Gong, Y., Ding, P., Xu, MJ., Zhang, CM., Xing, K., & Qin, S. (2021). Biodegradation
1130	of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in
1131	wastewater and soil under high salinity conditions. Journal of Environmental
1132	Management, 289, 112525. doi:https://doi.org/10.1016/j.jenvman.2021.112525
1133	Gonzalez-Pujana, A., Vining, K. H., Zhang, D. K. Y., Santos-Vizcaino, E., Igartua, M.,
1134	Hernandez, R. M., & Mooney, D. J. (2020). Multifunctional biomimetic
1135	hydrogel systems to boost the immunomodulatory potential of mesenchymal
1136	stromal cells. <i>Biomaterials</i> , 257, 120266.
1137	doi:https://doi.org/10.1016/j.biomaterials.2020.120266
1138	Groll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, DW., Dalton, P. D., Malda, J.
1139	(2016). Biofabrication: reappraising the definition of an evolving field.
1140	Biofabrication, 8(1), 013001. doi:10.1088/1758-5090/8/1/013001
1141	Grover, G. N., Lam, J., Nguyen, T. H., Segura, T., & Maynard, H. D. (2012).
1142	Biocompatible Hydrogels by Oxime Click Chemistry. Biomacromolecules,
1143	<i>13</i> (10), 3013-3017. doi:10.1021/bm301346e
1144	Guaresti, O., Basasoro, S., González, K., Eceiza, A., & Gabilondo, N. (2019). In situ
1145	cross-linked chitosan hydrogels via Michael addition reaction based on water-
1146	soluble thiol-maleimide precursors. European Polymer Journal, 119, 376-384.
1147	doi: <u>https://doi.org/10.1016/j.eurpolymj.2019.08.009</u>
1148	He, B., Su, H., Bai, T., Wu, Y., Li, S., Gao, M., Tang, B. Z. (2017). Spontaneous Amino-
1149	yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific
1150	Poly(β -aminoacrylate)s. Journal of the American Chemical Society, 139(15),
1151	5437-5443. doi:10.1021/jacs.7b00929
1152	He, B., Zhen, S., Wu, Y., Hu, R., Zhao, Z., Qin, A., & Tang, B. Z. (2016). Cu(1)-
1153	Catalyzed amino-yne click polymerization. <i>Polymer Chemistry</i> , 7(48), 7375-
1154	/382. doi:10.1039/C6PY01501H
1155	He, M., wang, Q., Zhang, J., Zhao, W., & Zhao, C. (2017). Substrate-Independent Ag-
1150	Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and
115/	inermoresponsive Anubacterial Properties. ACS Appliea Materials &

Interfaces, 9(51), 44782-44791. doi:10.1021/acsami.7b13238 1158 Hensarling, R. M., Doughty, V. A., Chan, J. W., & Patton, D. L. (2009). "Clicking" 1159 1160 Polymer Brushes with Thiol-yne Chemistry: Indoors and Out. Journal of the 1161 American Chemical Society, 131(41), 14673-14675. doi:10.1021/ja9071157 Heo, Y., Akimoto, J., Kobatake, E., & Ito, Y. (2019). Gelation and release behavior of 1162 1163 visible light-curable alginate. J polymer Journal, 52, 323-332. 1164 Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., & Ovsianikov, A. (2016). 1165 Bioink properties before, during and after 3D bioprinting. *Biofabrication*, 8(3), 032002. doi:10.1088/1758-5090/8/3/032002 1166 1167 Hoque, J., & Haldar, J. (2017). Direct Synthesis of Dextran-Based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical 1168 1169 Biofilms. ACS Applied Materials & Interfaces, 9(19), 15975-15985. 1170 doi:10.1021/acsami.7b03208 1171 Hoyle, C. E., & Bowman, C. N. (2010). Thiol-Ene Click Chemistry. 49(9), 1540-1573. 1172 doi:10.1002/anie.200903924 1173 Hu, H., Wu, X., Wang, H., Wang, H., & Zhou, J. (2019). Photo-reduction of Ag 1174 nanoparticles by using cellulose-based micelles as soft templates: Catalytic and 1175 antimicrobial activities. Carbohydrate Polymers, 213. 419-427. 1176 doi:https://doi.org/10.1016/j.carbpol.2019.02.062 1177 Hu, H., You, J., Gan, W., Zhou, J., & Zhang, L. (2015). Synthesis of allyl cellulose in 1178 NaOH/urea aqueous solutions and its thiol-ene click reactions. Polymer 1179 Chemistry, 6(18), 3543-3548. doi:10.1039/C5PY00301F 1180 Hu, Y., Mao, A. S., Desai, R. M., Wang, H., Weitz, D. A., & Mooney, D. J. (2017). 1181 Controlled self-assembly of alginate microgels by rapidly binding molecule pairs. Lab on a Chip, 17(14), 2481-2490. doi:10.1039/C7LC00500H 1182 1183 Huang, C.-J., & Chang, F.-C. (2009). Using Click Chemistry To Fabricate Ultrathin 1184 Thermoresponsive Microcapsules through Direct Covalent Layer-by-Layer Assembly. Macromolecules, 42(14), 5155-5166. doi:10.1021/ma900478n 1185 Huisgen, R. (1963). 1,3-Dipolar Cycloadditions. Past and Future. 2(10), 565-598. 1186 doi:10.1002/anie.196305651 1187 1188 Izquierdo, E., & Delgado, A. (2018). Click chemistry in sphingolipid research. 1189 Chemistrv **Physics** Lipids, 215, and of 71-83. 1190 doi:https://doi.org/10.1016/j.chemphyslip.2018.07.004 1191 Jewett, J. C., & Bertozzi, C. R. (2010). Cu-free click cycloaddition reactions in 1192 biology. 1272-1279. chemical Chemical Society Reviews, 39(4), 1193 doi:10.1039/B901970G Jia, J., Richards, D. J., Pollard, S., Tan, Y., Rodriguez, J., Visconti, R. P., Mei, Y. (2014). 1194 1195 Engineering alginate as bioink for bioprinting. Acta Biomaterialia, 10(10), 4323-4331. doi:https://doi.org/10.1016/j.actbio.2014.06.034 1196 Jiang, D., Zhang, Y., Zhang, F., Liu, Z., Han, J., & Wu, X. (2016). Antimicrobial and 1197 1198 antifouling nanocomposite hydrogels containing polythioether dendron: high-1199 loading silver nanoparticles and controlled particle release. Colloid and

1200	Polymer Science, 294(12), 2021-2028. doi:10.1007/s00396-016-3967-7
1201	Jiang, H., Qin, S., Dong, H., Lei, Q., Su, X., Zhuo, R., & Zhong, Z. (2015). An
1202	injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via
1203	bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Soft
1204	Matter, 11(30), 6029-6036. doi:10.1039/C5SM00508F
1205	Joshy, K. S., Susan, M. A., Snigdha, S., Nandakumar, K., Laly, A. P., & Sabu, T. (2018).
1206	Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles
1207	for anti-HIV drug delivery. International Journal of Biological Macromolecules,
1208	107, 929-937. doi:https://doi.org/10.1016/j.ijbiomac.2017.09.078
1209	Kalia, J., & Raines, R. T. (2008). Hydrolytic Stability of Hydrazones and Oximes.
1210	47(39), 7523-7526. doi:10.1002/anie.200802651
1211	Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D'Este, M., Eglin, D., & Zenobi-
1212	Wong, M. (2015). A versatile bioink for three-dimensional printing of cellular
1213	scaffolds based on thermally and photo-triggered tandem gelation. Acta
1214	Biomaterialia, 11, 162-172. doi:https://doi.org/10.1016/j.actbio.2014.09.033
1215	Kim, K., Park, J. H., Park, S. H., Lee, H. Y., Kim, J. H., & Kim, M. S. (2016). An
1216	Injectable, Click-Cross-Linked Small Intestinal Submucosa Drug Depot for the
1217	Treatment of Rheumatoid Arthritis. 5(24), 3105-3117.
1218	doi: <u>https://doi.org/10.1002/adhm.201601040</u>
1219	Kirchhof, S., Brandl, F. P., Hammer, N., & Goepferich, A. M. (2013). Investigation of
1220	the Diels-Alder reaction as a cross-linking mechanism for degradable
1221	poly(ethylene glycol) based hydrogels. Journal of Materials Chemistry B, 1(37),
1222	4855-4864. doi:10.1039/C3TB20831A
1223	Kishimoto, M., Minagawa, M., Yanagihara, H., Oda, T., Ohkochi, N., & Kita, E. (2012).
1224	Synthesis and magnetic properties of platelet γ -Fe2O3 particles for medical
1225	applications using hysteresis-loss heating. Journal of Magnetism and Magnetic
1226	Materials, 324(7), 1285-1289. doi:https://doi.org/10.1016/j.jmmm.2011.11.036
1227	Koehler, K. C., Alge, D. L., Anseth, K. S., & Bowman, C. N. (2013). A Diels-Alder
1228	modulated approach to control and sustain the release of dexamethasone and
1229	induce osteogenic differentiation of human mesenchymal stem cells.
1230	<i>Biomaterials</i> , <i>34</i> (16), 4150-4158.
1231	doi:https://doi.org/10.1016/j.biomaterials.2013.02.020
1232	Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse
1233	Chemical Function from a Few Good Reactions. 40(11), 2004-2021.
1234	doi:10.1002/1521-3773(20010601)40:11<2004:Aid-anie2004>3.0.Co;2-5
1235	Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug
1236	discovery. Drug Discovery Today, 8(24), 1128-1137.
1237	doi:https://doi.org/10.1016/S1359-6446(03)02933-7
1238	Korsmeyer, R. W., & Peppas, N. A. (1981). Effect of the morphology of hydrophilic
1239	polymeric matrices on the diffusion and release of water soluble drugs. Journal
1240	of Membrane Science, 9(3), 211-227. doi: <u>https://doi.org/10.1016/S0376-</u>
1241	<u>7388(00)80265-3</u>

1242 Koshy, S. T., Desai, R. M., Joly, P., Li, J., Bagrodia, R. K., Lewin, S. A., Mooney, D. J. 1243 (2016). Click-Crosslinked Injectable Gelatin Hydrogels. 5(5), 541-547. 1244 doi:https://doi.org/10.1002/adhm.201500757 Koshy, S. T., Zhang, D. K. Y., Grolman, J. M., Stafford, A. G., & Mooney, D. J. (2018). 1245 1246 Injectable nanocomposite cryogels for versatile protein drug delivery. Acta 1247 Biomaterialia, 65, 36-43. doi:https://doi.org/10.1016/j.actbio.2017.11.024 1248 Krause, A., Kirschning, A., & Dräger, G. (2012). Bioorthogonal metal-free click-1249 ligation of cRGD-pentapeptide to alginate. Organic & Biomolecular Chemistry, 1250 10(29), 5547-5553. doi:10.1039/C2OB25604E 1251 Kröger, A. P. P., Boonen, R. J. E. A., & Paulusse, J. M. J. (2017). Well-defined single-1252 chain polymer nanoparticles via thiol-Michael addition. Polymer, 120, 119-128. 1253 doi:https://doi.org/10.1016/j.polymer.2017.05.040 1254 Kujath, P., & Michelsen, A. (2008). Wounds - From Physiology to Wound Dressing. 1255 105(13), 239-248. doi:10.3238/arzteb1.2008.0239 1256 Kumar, J. N., Wu, Y.-L., Loh, X. J., Ho, N. Y., Aik, S. X., & Pang, V. Y. (2019). The 1257 effective treatment of multi-drug resistant tumors with self-assembling alginate 1258 copolymers. Polymer Chemistry, 10(2), 278-286. doi:10.1039/C8PY01255E 1259 Kurdtabar, M., & Rezanejade Bardajee, G. (2019). Stimuli-Responsive Hydrogel Based on Poly((2-Dimethylamino)Ethyl Methacrylate) Grafted onto Sodium Alginate 1260 1261 as a Drug Delivery System. Polymer Science, Series B, 61(5), 642-652. 1262 doi:10.1134/S1560090419050099 1263 Kwart, H., & King, K. (1968). The reverse Diels-Alder or retrodiene reaction. Chemical Reviews, 68(4), 415-447. doi:10.1021/cr60254a002 1264 1265 Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. 1266 Progress Polvmer Science. 106-126. in 37(1), 1267 doi:https://doi.org/10.1016/j.progpolymsci.2011.06.003 Leppiniemi, J., Lahtinen, P., Paajanen, A., Mahlberg, R., Metsä-Kortelainen, S., 1268 Pinomaa, T., Hytönen, V. P. (2017). 3D-Printable Bioactivated Nanocellulose-1269 1270 Alginate Hydrogels. ACS Applied Materials & Interfaces, 9(26), 21959-21970. doi:10.1021/acsami.7b02756 1271 Li, H., Tan, C., & Li, L. (2018). Review of 3D printable hydrogels and constructs. 1272 1273 Materials æ Design. 159. 20-38. doi:https://doi.org/10.1016/j.matdes.2018.08.023 1274 1275 Li, M., De, P., Gondi, S. R., & Sumerlin, B. S. (2008). End group transformations of 1276 RAFT-generated polymers with bismaleimides: Functional telechelics and modular block copolymers. 46(15), 5093-5100. doi:10.1002/pola.22837 1277 Li, Y., Wang, H., Lu, J., Chu, A., Zhang, L., Ding, Z., Shi, G. (2019). Preparation of 1278 1279 immobilized lipase by modified polyacrylonitrile hollow membrane using 1280 nitrile-click chemistry. *Bioresource* Technology, 274, 9-17. 1281 doi:https://doi.org/10.1016/j.biortech.2018.11.075 Li, Z., Shen, J., Ma, H., Lu, X., Shi, M., Li, N., & Ye, M. (2013). Preparation and 1282 1283 characterization of pH- and temperature-responsive nanocomposite double

network hydrogels. Materials Science and Engineering: C, 33(4), 1951-1957. 1284 doi:https://doi.org/10.1016/j.msec.2013.01.004 1285 1286 Liebert, T., Hänsch, C., & Heinze, T. (2006). Click Chemistry with Polysaccharides. 1287 27(3), 208-213. doi:https://doi.org/10.1002/marc.200500686 1288 Lin, F., Yu, J., Tang, W., Zheng, J., Defante, A., Guo, K., Becker, M. L. (2013). Peptide-1289 Functionalized Oxime Hydrogels with Tunable Mechanical Properties and 1290 Gelation Behavior. Biomacromolecules, 14(10), 3749-3758. 1291 doi:10.1021/bm401133r Link, A. J., & Tirrell, D. A. (2003). Cell Surface Labeling of Escherichia coli via 1292 1293 Copper(I)-Catalyzed [3+2] Cycloaddition. Journal of the American Chemical 1294 Society, 125(37), 11164-11165. doi:10.1021/ja036765z 1295 Liu, J., Fang, Q., Lin, H., Yu, X., Zheng, H., & Wan, Y. (2020). Alginate-poloxamer/silk 1296 fibroin hydrogels with covalently and physically cross-linked networks for 1297 cartilage tissue engineering. Carbohydrate Polymers, 247. 116593. doi:https://doi.org/10.1016/j.carbpol.2020.116593 1298 Liu, Z. Q., Wei, Z., Zhu, X. L., Huang, G. Y., Xu, F., Yang, J. H., Chen, Y. M. (2015). 1299 1300 Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids and Surfaces B: Biointerfaces, 128, 140-148. 1301 1302 doi:https://doi.org/10.1016/j.colsurfb.2015.02.005 1303 Lowe, A., & Bowman, C. (2013). In Thiol-X Chemistries in Polymer and Materials Science (pp. 1-27). 1304 1305 Lueckgen, A., Garske, D. S., Ellinghaus, A., Desai, R. M., Stafford, A. G., Mooney, D. 1306 J., Cipitria, A. (2018). Hydrolytically-degradable click-crosslinked alginate 1307 hydrogels. Biomaterials, 181. 189-198. 1308 doi:https://doi.org/10.1016/j.biomaterials.2018.07.031 1309 Lueckgen, A., Garske, D. S., Ellinghaus, A., Mooney, D. J., Duda, G. N., & Cipitria, A. (2019). Enzymatically-degradable alginate hydrogels promote cell spreading 1310 1311 and in vivo tissue infiltration. Biomaterials, 217. 119294. 1312 doi:https://doi.org/10.1016/j.biomaterials.2019.119294 Lueckgen, A., Garske, D. S., Ellinghaus, A., Mooney, D. J., Duda, G. N., & Cipitria, A. 1313 (2020). Dual alginate crosslinking for local patterning of biophysical and 1314 1315 biochemical properties. Biomaterialia, Acta 115, 185-196. 1316 doi:https://doi.org/10.1016/j.actbio.2020.07.047 1317 Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Guo, Z. (2019). Nanocomposite 1318 sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential 1319 wound dressing: In vitro and in vivo evaluation. Composites Part B: 1320 Engineering, 167, 396-405. doi:https://doi.org/10.1016/j.compositesb.2019.03.006 1321 1322 Macdougall, L. J., Truong, V. X., & Dove, A. P. (2017). Efficient In Situ Nucleophilic Thiol-yne Click Chemistry for the Synthesis of Strong Hydrogel Materials with 1323 1324 Tunable Properties. Letters. 93-97. ACS Macro 6(2), doi:10.1021/acsmacrolett.6b00857 1325

Mahou, R., Borcard, F., Crivelli, V., Montanari, E., Passemard, S., Noverraz, F., 1326 1327 Wandrey, C. (2015). Tuning the Properties of Hydrogel Microspheres by Adding 1328 Chemical Cross-linking Functionality to Sodium Alginate. Chemistry of Materials, 27(12), 4380-4389. doi:10.1021/acs.chemmater.5b01098 1329 Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J. A., 1330 1331 Hutmacher, D. W. (2013). 25th Anniversary Article: Engineering Hydrogels for 1332 Biofabrication. 25(36), 5011-5028. 1333 doi:https://doi.org/10.1002/adma.201302042 Marchioli, G., van Gurp, L., van Krieken, P. P., Stamatialis, D., Engelse, M., van 1334 1335 Blitterswijk, C. A., van Apeldoorn, A. A. (2015). Fabrication of three-1336 dimensional bioplotted hydrogel scaffolds for islets of Langerhans 1337 transplantation. 025009. doi:10.1088/1758-Biofabrication, 7(2), 1338 5090/7/2/025009 Mateescu, M., Baixe, S., Garnier, T., Jierry, L., Ball, V., Haikel, Y., Lavalle, P. (2015). 1339 Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device 1340 1341 Infection. PLoS One. 10(12). 1342 doi:http://dx.doi.org/10.1371/journal.pone.0145143 1343 Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition 1344 reactions in macromolecular design for emerging technologies. Progress in 1345 Polymer Science. 31(5), 487-531. doi:https://doi.org/10.1016/j.progpolymsci.2006.03.001 1346 1347 Matricardi, P., Di Meo, C., Coviello, T., Hennink, W. E., & Alhaique, F. (2013). 1348 Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery 1349 and tissue engineering. Advanced Drug Delivery Reviews, 65(9), 1172-1187. 1350 doi:https://doi.org/10.1016/j.addr.2013.04.002 1351 McCall, J. D., & Anseth, K. S. (2012). Thiol-Ene Photopolymerizations Provide a Facile Method To Encapsulate Proteins and Maintain Their Bioactivity. 1352 1353 Biomacromolecules, 13(8), 2410-2417. doi:10.1021/bm300671s 1354 Mejía Oneto, J. M., Gupta, M., Leach, J. K., Lee, M., & Sutcliffe, J. L. (2014). Implantable biomaterial based on click chemistry for targeting small molecules. 1355 1356 Acta Biomaterialia, 10(12),5099-5105. 1357 doi:https://doi.org/10.1016/j.actbio.2014.08.019 1358 Meng, X., & Edgar, K. J. (2016). "Click" reactions in polysaccharide modification. 1359 52-85. Progress in Polymer Science, 53, 1360 doi:https://doi.org/10.1016/j.progpolymsci.2015.07.006 Minozzi, M., Monesi, A., Nanni, D., Spagnolo, P., Marchetti, N., & Massi, A. (2011). 1361 1362 An Insight into the Radical Thiol/Yne Coupling: The Emergence of Arylalkyne-Tagged Sugars for the Direct Photoinduced Glycosylation of Cysteine-1363 1364 Containing Peptides. The Journal of Organic Chemistry, 76(2), 450-459. doi:10.1021/jo101906j 1365 Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles - A review. Tropical Journal of 1366 Pharmaceutical Research, 5(1), 561-573. doi:10.4314/tjpr.v5i1.14634 1367

1368	Moody, C. T., Palvai, S., & Brudno, Y. (2020). Click cross-linking improves retention
1369	and targeting of refillable alginate depots. Acta Biomaterialia, 112, 112-121.
1370	doi: <u>https://doi.org/10.1016/j.actbio.2020.05.033</u>
1371	Moon, N. G., Pekkanen, A. M., Long, T. E., Showalter, T. N., & Libby, B. (2017). Thiol-
1372	Michael 'click' hydrogels as an imageable packing material for cancer therapy.
1373	Polymer, 125, 66-75. doi: https://doi.org/10.1016/j.polymer.2017.07.078
1374	Moroni, L., Boland, T., Burdick, J. A., De Maria, C., Derby, B., Forgacs, G., Vozzi, G.
1375	(2018). Biofabrication: A Guide to Technology and Terminology. Trends in
1376	<i>Biotechnology,</i> 36(4), 384-402.
1377	doi:https://doi.org/10.1016/j.tibtech.2017.10.015
1378	Moulay, S., & Touati, A. (2010). Cycloaddition reactions in aqueous systems: A two-
1379	decade trend endeavor. Comptes Rendus Chimie, 13(12), 1474-1511.
1380	doi:https://doi.org/10.1016/j.crci.2010.05.025
1381	Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature
1382	<i>Biotechnology</i> , 32(8), 773-785. doi:10.1038/nbt.2958
1383	Nair, D. P., Podgórski, M., Chatani, S., Gong, T., Xi, W., Fenoli, C. R., & Bowman, C.
1384	N. (2014). The Thiol-Michael Addition Click Reaction: A Powerful and Widely
1385	Used Tool in Materials Chemistry. Chemistry of Materials, 26(1), 724-744.
1386	doi:10.1021/cm402180t
1387	Ng, V. W. L., Chan, J. M. W., Sardon, H., Ono, R. J., García, J. M., Yang, Y. Y., &
1388	Hedrick, J. L. (2014). Antimicrobial hydrogels: A new weapon in the arsenal
1389	against multidrug-resistant infections. Advanced Drug Delivery Reviews, 78,
1390	46-62. doi:https://doi.org/10.1016/j.addr.2014.10.028
1391	Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-Alder Click Cross-Linked
1392	Hyaluronic Acid Hydrogels for Tissue Engineering. Biomacromolecules, 12(3),
1393	824-830. doi:10.1021/bm101446k
1394	Ning, L., Guillemot, A., Zhao, J., Kipouros, G., & Chen, X. J. T. E. P. C. M. (2016).
1395	Influence of flow behavior of alginate-cell suspensions on cell viability and
1396	proliferation. 22(7), 652-662.
1397	Oktay, B., Demir, S., & Kayaman-Apohan, N. (2020). Immobilization of pectinase on
1398	polyethyleneimine based support via spontaneous amino-yne click reaction.
1399	Food and Bioproducts Processing, 122, 159-168.
1400	doi: <u>https://doi.org/10.1016/j.fbp.2020.04.010</u>
1401	Oktay, B., Demir, S., & Kayaman-Apohan, N. J. C. (2019). Preparation of a Poly
1402	(ethylene glycol)-Based Cross-Linked Network from a Click Reaction for
1403	Enzyme Immobilization. 4(20), 6055-6059.
1404	Oliveira, B. L., Guo, Z., & Bernardes, G. J. L. (2017). Inverse electron demand Diels-
1405	Alder reactions in chemical biology. Chemical Society Reviews, 46(16), 4895-
1406	4950. doi:10.1039/C7CS00184C
1407	Oliver Kappe, C., Shaun Murphree, S., & Padwa, A. (1997). Synthetic applications of
1408	furan Diels-Alder chemistry. Tetrahedron, 53(42), 14179-14233.
1409	doi:https://doi.org/10.1016/S0040-4020(97)00747-3

- 1410 Ooi, H. W., Mota, C., ten Cate, A. T., Calore, A., Moroni, L., & Baker, M. B. (2018).
 1411 Thiol–Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting.
 1412 *Biomacromolecules, 19*(8), 3390-3400. doi:10.1021/acs.biomac.8b00696
- Orth, P., Kaul, G., Cucchiarini, M., Zurakowski, D., Menger, M. D., Kohn, D., & Madry,
 H. (2011). Transplanted articular chondrocytes co-overexpressing IGF-I and
 FGF-2 stimulate cartilage repair in vivo. *Knee Surg Sports Traumatol Arthrosc, 19*(12), 2119-2130. doi:10.1007/s00167-011-1448-6.
- Paleček, J., Dräger, G., Kirschning, A. (2011). A Practical Large-Scale Synthesis of
 Cyclic RGD Pentapeptides Suitable for Further Functionalization through
 'Click' Chemistry. *Synthesis*, 4, 653-661. doi: 10.1055/s-0030-1258396.
- Paques, J. P., van der Linden, E., van Rijn, C. J. M., & Sagis, L. M. C. (2014).
 Preparation methods of alginate nanoparticles. *Advances in Colloid and Interface Science, 209*, 163-171. doi:<u>https://doi.org/10.1016/j.cis.2014.03.009</u>
- Parani, M., Lokhande, G., Singh, A., & Gaharwar, A. K. (2016). Engineered
 Nanomaterials for Infection Control and Healing Acute and Chronic Wounds. *ACS Applied Materials & Interfaces, 8*(16), 10049-10069.
 doi:10.1021/acsami.6b00291
- Patterson, D. M., Nazarova, L. A., & Prescher, J. A. (2014). Finding the Right
 (Bioorthogonal) Chemistry. ACS Chemical Biology, 9(3), 592-605.
 doi:10.1021/cb400828a
- Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in
 pharmaceutical formulations. *European Journal of Pharmaceutics and Biopharmaceutics*, 50(1), 27-46. doi:<u>https://doi.org/10.1016/S0939-</u>
 6411(00)00090-4
- Pereira, R. F., Barrias, C. C., Bártolo, P. J., Granja, P. L. (2018). Cell-instructive pectin
 hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue
 engineering. Acta Biomaterialia, 66, 282-293. doi:
 org/10.1016/j.actbio.2017.11.016
- 1438 Pérez-Madrigal, M. M., Shaw, J. E., Arno, M. C., Hoyland, J. A., Richardson, S. M., & 1439 Dove, A. P. (2020). Robust alginate/hyaluronic acid thiol-yne click-hydrogel 1440 scaffolds with superior mechanical performance and stability for load-bearing 1441 **Biomaterials** 405-412. soft tissue engineering. Science. 8(1), 1442 doi:10.1039/C9BM01494B
- Posner, T. (1905). Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die
 Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. 38(1), 646-657.
 doi:10.1002/cber.190503801106
- Pupkaite, J., Rosenquist, J., Hilborn, J., & Samanta, A. (2019). Injectable ShapeHolding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked
 Using Thiol-Michael Addition Click Reaction. *Biomacromolecules*, 20(9),
 3475-3484. doi:10.1021/acs.biomac.9b00769
- 1450Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery.1451AdvancedDrugDeliveryReviews, 53(3), 321-339.

1452	doi: <u>https://doi.org/10.1016/S0169-409X(01)00203-4</u>
1453	Quinlan, E., López-Noriega, A., Thompson, E., Kelly, H. M., Cryan, S. A., & O'Brien,
1454	F. J. (2015). Development of collagen-hydroxyapatite scaffolds incorporating
1455	PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for
1456	bone tissue engineering. Journal of Controlled Release, 198, 71-79.
1457	doi: <u>https://doi.org/10.1016/j.jconrel.2014.11.021</u>
1458	Rashdan, H. R. M., Farag, M. M., El-Gendey, M. S., & Mounier, M. M. (2019). Toward
1459	Rational Design of Novel Anti-Cancer Drugs Based on Targeting, Solubility,
1460	and Bioavailability Exemplified by 1,3,4-Thiadiazole Derivatives Synthesized
1461	Under Solvent-Free Conditions. 24(13), 2371.
1462	Ren, K., He, C., Xiao, C., Li, G., & Chen, X. (2015). Injectable glycopolypeptide
1463	hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials,
1464	51, 238-249. doi:https://doi.org/10.1016/j.biomaterials.2015.02.026
1465	Rezende, R. A., Bártolo, P. J., Mendes, A., & Filho, R. M. (2009). Rheological behavior
1466	of alginate solutions for biomanufacturing. 113(6), 3866-3871.
1467	doi: <u>https://doi.org/10.1002/app.30170</u>
1468	Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise
1469	Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation"
1470	of Azides and Terminal Alkynes. 41(14), 2596-2599. doi:10.1002/1521-
1471	3773(20020715)41:14<2596: Aid-anie2596>3.0.Co;2-4
1472	Roth, A., Murschel, F., Latreille, PL., Martinez, V. A., Liberelle, B., Banquy, X., & De
1473	Crescenzo, G. (2019). Coiled Coil Affinity-Based Systems for the Controlled
1474	Release of Biofunctionalized Gold Nanoparticles from Alginate Hydrogels.
1475	Biomacromolecules, 20(5), 1926-1936. doi:10.1021/acs.biomac.9b00137
1476	Roy, B., Mondal, D., Hatai, J., & Bandyopadhyay, S. (2014). A highly efficient tandem
1477	[3+2] "click" cycloaddition/6-exo-cyclization strategy for the construction of
1478	triazole fused pyrazines. RSC Advances, 4(100), 56952-56956.
1479	doi:10.1039/C4RA12489H
1480	Rui Rodrigues, J., & Lagoa, R. (2006). Copper Ions Binding in Cu-Alginate Gelation.
1481	Journal of Carbohydrate Chemistry, 25(2-3), 219-232.
1482	doi:10.1080/07328300600732956
1483	Ruvinov, E., Freeman, I., Fredo, R., & Cohen, S. (2016). Spontaneous Coassembly of
1484	Biologically Active Nanoparticles via Affinity Binding of Heparin-Binding
1485	Proteins to Alginate-Sulfate. Nano Letters, 16(2), 883-888.
1486	doi:10.1021/acs.nanolett.5b03598
1487	Rydholm, A. E., Bowman, C. N., & Anseth, K. S. (2005). Degradable thiol-acrylate
1488	photopolymers: polymerization and degradation behavior of an in situ forming
1489	biomaterial. Biomaterials, 26(22), 4495-4506.
1490	doi:https://doi.org/10.1016/j.biomaterials.2004.11.046
1491	Saltzman, W. M., & Olbricht, W. L. (2002). Building drug delivery into tissue
1492	engineering design. Nature Reviews Drug Discovery, 1(3), 177-186.
1493	doi:10.1038/nrd744

1494 Sanyal, A. (2010). Diels-Alder Cycloaddition-Cycloreversion: A Powerful Combo in 1495 Materials Design. 211(13), 1417-1425. doi:10.1002/macp.201000108 1496 Saxon, E., & Bertozzi, C. R. (2000). Cell Surface Engineering by a Modified Staudinger Reaction. Science, 287(5460), 2007-2010. doi:10.1126/science.287.5460.2007 1497 Seliktar, D., Dikovsky, D., & Napadensky, E. (2013). Bioprinting and Tissue 1498 1499 Engineering: Recent Advances and Future Perspectives. 53(9-10), 795-804. 1500 doi:https://doi.org/10.1002/ijch.201300084 1501 Selvaraj, R., & Fox, J. M. (2013). trans-Cyclooctene-a stable, voracious dienophile 1502 for bioorthogonal labeling. Current Opinion in Chemical Biology, 17(5), 753-1503 760. doi:https://doi.org/10.1016/j.cbpa.2013.07.031 1504 Shalaby, S. W., & Burg, K. J. (2003). Absorbable and biodegradable polymers: CRC 1505 press. 1506 Sharma, N., Purwar, N., & Gupta, P. (2015). MICROSPHERES AS DRUG CARRIERS 1507 FOR CONTROLLED DRUG DELIVERY: A REVIEW. International Journal 1508 Pharmaceutical Sciences and Research, 6, 4579-4587. of 1509 doi:10.13040/IJPSR.0975-8232.6(11).4579-87 1510 Shi, P., Laude, A., & Yeong, W. Y. (2017). Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness. 1511 1009-1018. 1512 Journal of Biomedical Materials Research, 105(4), 1513 doi:https://doi.org/10.1002/jbm.a.35971 Shih, H., & Lin, C.-C. (2012). Cross-Linking and Degradation of Step-Growth 1514 1515 Hydrogels Formed by Thiol-Ene Photoclick Chemistry. Biomacromolecules, 1516 13(7), 2003-2012. doi:10.1021/bm300752j 1517 Sletten, E. M., & Bertozzi, C. R. (2008). A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry. Organic Letters, 10(14), 3097-3099. doi:10.1021/ol801141k 1518 1519 Smidsrød, O., & Skja°k-Brlk, G. (1990). Alginate as immobilization matrix for cells. 1520 Trends in Biotechnology, 8, 71-78. doi:https://doi.org/10.1016/0167-7799(90)90139-O 1521 1522 Stolz, R. M., & Northrop, B. H. (2013). Experimental and Theoretical Studies of 1523 Selective Thiol-Ene and Thiol-Yne Click Reactions Involving N-Substituted 1524 Maleimides. The Journal of Organic Chemistry, 78(16), 8105-8116. 1525 doi:10.1021/jo4014436 Sun, J.-Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., 1526 Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 1527 1528 133-136. doi:10.1038/nature11409 1529 Sun, J., & Tan, H. (2013). Alginate-Based Biomaterials for Regenerative Medicine 1530 Applications. Materials, 6(4), 1285-1309. doi.org/10.3390/ma6041285 Suvorov, N. V., Cheskov, D. A., Mironov, A. F., & Grin, M. A. (2019). Inverse electron 1531 1532 demand Diels-Alder reaction as a novel method for functionalization of natural 1533 chlorins. Mendeleev *Communications*, 29(2), 206-208. 1534 doi:https://doi.org/10.1016/j.mencom.2019.03.031 1535 Takahashi, A., Suzuki, Y., Suhara, T., Omichi, K., Shimizu, A., Hasegawa, K., Ito, T.

- 1536 (2013). In Situ Cross-Linkable Hydrogel of Hyaluronan Produced via Copper1537 Free Click Chemistry. *Biomacromolecules*, 14(10), 3581-3588.
 1538 doi:10.1021/bm4009606
- Tan, H., & Marra, K. G. (2010). Injectable, Biodegradable Hydrogels for Tissue
 Engineering Applications. 3(3), 1746-1767.
- Tan, H., Rubin, J. P., & Marra, K. G. (2011). Direct Synthesis of Biodegradable
 Polysaccharide Derivative Hydrogels Through Aqueous Diels-Alder Chemistry. *Macromolecular Rapid Communications, 32*(12), 905-911.
 doi:10.1002/marc.201100125
- Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:
 [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar
 Cycloadditions of Terminal Alkynes to Azides. *The Journal of Organic Chemistry*, 67(9), 3057-3064. doi:10.1021/jo011148j
- Truong, V. X., Tsang, K. M., & Forsythe, J. S. (2017). Nonswelling Click-Cross-Linked
 Gelatin and PEG Hydrogels with Tunable Properties Using Pluronic Linkers. *Biomacromolecules*, 18(3), 757-766. doi:10.1021/acs.biomac.6b01601
- Truong, V. X., Tsang, K. M., Simon, G. P., Boyd, R. L., Evans, R. A., Thissen, H., &
 Forsythe, J. S. (2015). Photodegradable Gelatin-Based Hydrogels Prepared by
 Bioorthogonal Click Chemistry for Cell Encapsulation and Release. *Biomacromolecules*, 16(7), 2246-2253. doi:10.1021/acs.biomac.5b00706
- Tsarevsky, N. V., Bernaerts, K. V., Dufour, B., Du Prez, F. E., & Matyjaszewski, K.
 (2004). Well-Defined (Co)polymers with 5-Vinyltetrazole Units via
 Combination of Atom Transfer Radical (Co) polymerization of Acrylonitrile
 and "Click Chemistry"-Type Postpolymerization Modification. *Macromolecules*, 37(25), 9308-9313. doi:10.1021/ma048207q
- Ulrich, S., Boturyn, D., Marra, A., Renaudet, O., & Dumy, P. (2014). Oxime Ligation:
 A Chemoselective Click-Type Reaction for Accessing Multifunctional Biomolecular Constructs. 20(1), 34-41. doi:10.1002/chem.201302426
- Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.-H., & Kim, S.-K. (2015).
 Alginate composites for bone tissue engineering: A review. *International Journal of Biological Macromolecules*, 72, 269-281.
 doi:https://doi.org/10.1016/j.ijbiomac.2014.07.008
- Vining, K. H., Stafford, A., & Mooney, D. J. (2019). Sequential modes of crosslinking
 tune viscoelasticity of cell-instructive hydrogels. *Biomaterials*, 188, 187-197.
 doi:<u>https://doi.org/10.1016/j.biomaterials.2018.10.013</u>
- Wang, G., Zhu, J., Chen, X., Dong, H., Li, Q., Zeng, L., & Cao, X. (2018). Alginate
 based antimicrobial hydrogels formed by integrating Diels–Alder "click
 chemistry" and the thiol–ene reaction. *RSC Advances*, 8(20), 11036-11042.
 doi:10.1039/C8RA00668G
- 1575 Wang, W., Wang, Y., Liu, Y., Jiang, L., Bai, L., Chen, H., & Cheng, Z. (2017).
 1576 Microwave-assisted rapid fabrication of antibacterial polyacrylonitrile
 1577 microfibers/nanofibers via nitrile click chemistry and electrospinning. *134*(44),

45490. doi:10.1002/app.45490 1578 1579 Wei, H.-L., Yang, Z., Zheng, L.-M., & Shen, Y.-M. (2009). Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer, 50(13), 2836-2840. 1580 1581 doi:https://doi.org/10.1016/j.polymer.2009.04.032 1582 Wells, L. A., & Sheardown, H. (2007). Extended release of high pI proteins from 1583 alginate microspheres via a novel encapsulation technique. European Journal 1584 *Pharmaceutics* and *Biopharmaceutics,* 65(3), 329-335. of 1585 doi:https://doi.org/10.1016/j.ejpb.2006.10.018 Wolfgang, H. B., & Christian, K. (2006). Azide/Alkyne-"Click" Reactions: 1586 Applications in Material Science and Organic Synthesis. Current Organic 1587 1791-1815. 1588 Chemistry, 10(14), 1589 doi:http://dx.doi.org/10.2174/138527206778249838 1590 Xu, S., Liang, W., Xu, G., Huang, C., Zhang, J., & Lang, M. (2020). A fast and dual 1591 crosslinking hydrogel based on vinyl ether sodium alginate. Applied Surface 1592 Science, 515, 145811. doi:https://doi.org/10.1016/j.apsusc.2020.145811 1593 Yan, H., Chen, X., Li, J., Feng, Y., Shi, Z., Wang, X., & Lin, Q. (2016). Synthesis of 1594 alginate derivative via the Ugi reaction and its characterization. Carbohydrate polymers, 136, 757-763. doi:10.1016/j.carbpol.2015.09.104 1595 Yan, J., Huang, Y., & Chrisey, D. B. J. B. (2013). Laser-assisted printing of alginate 1596 1597 long tubes and annular constructs. Biofabrication. 5(1). 015002. 1598 doi:10.1088/1758-5082/5/1/015002 1599 Yap, P. L., Auyoong, Y. L., Hassan, K., Farivar, F., Tran, D. N. H., Ma, J., & Losic, D. 1600 (2020). Multithiol functionalized graphene bio-sponge via photoinitiated thiol-1601 ene click chemistry for efficient heavy metal ions adsorption. Chemical 1602 Engineering Journal, 124965. 395, 1603 doi:https://doi.org/10.1016/j.cej.2020.124965 Yin, Z.-C., Wang, Y.-L., & Wang, K. (2018). A pH-responsive composite hydrogel 1604 1605 beads based on agar and alginate for oral drug delivery. Journal of Drug 1606 Delivery Science Technology, 43, 12-18. and doi:https://doi.org/10.1016/j.jddst.2017.09.009 1607 1608 Yu, L., Zhang, Z., You, Y.-Z., & Hong, C.-Y. (2018). Synthesis of sequence-controlled 1609 polymers via sequential thiol-ene and amino-yne click reactions in one pot. 1610 Polymer Journal, 103, 80-87. European 1611 doi:https://doi.org/10.1016/j.eurpolymj.2018.02.006 1612 Zeng, Y., Ramya, T. N. C., Dirksen, A., Dawson, P. E., & Paulson, J. C. (2009). High-1613 efficiency labeling of sialylated glycoproteins on living cells. *Nature Methods*, 1614 6(3), 207-209. doi:10.1038/nmeth.1305 1615 Zhang, M., & Zhao, X. (2020). Alginate hydrogel dressings for advanced wound 1616 management. International Journal of Biological Macromolecules, 162, 1414-1617 1428. doi:https://doi.org/10.1016/j.ijbiomac.2020.07.311 Zhao, X., Liu, L., An, T., Xian, M., Luckanagul, J. A., Su, Z., Wang, Q. (2020). A 1618 1619 hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta

1620	Biomaterialia, 104, 85-94. doi: <u>https://doi.org/10.1016/j.actbio.2019.12.032</u>
1621	Zheng, J., Smith Callahan, L. A., Hao, J., Guo, K., Wesdemiotis, C., Weiss, R. A., &
1622	Becker, M. L. (2012). Strain-Promoted Cross-Linking of PEG-Based Hydrogels
1623	via Copper-Free Cycloaddition. ACS Macro Letters, 1(8), 1071-1073.
1624	doi:10.1021/mz3003775
1625	Zhou, Y., Yue, Z., Chen, Z., & Wallace, G. (2020). 3D Coaxial Printing Tough and
1626	Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink
1627	System. 9(24), 2001342. doi: <u>https://doi.org/10.1002/adhm.202001342</u>
1628	Zil'berman, E. N. (1986). The Reactions of Nitrile-containing Polymers. Russian
1629	Chemical Reviews, 55(1), 39-48. doi:10.1070/rc1986v055n01abeh003170
1630	Zuo, Q., Guo, R., Liu, Q., Hong, A., Shi, Y., Kong, Q., Xue, W. (2015). Heparin-
1631	conjugated alginate multilayered microspheres for controlled release of bFGF.
1632	Biomedical Materials, 10(3), 035008. doi:10.1088/1748-6041/10/3/035008
1633	