
1 

 

Alginate modification via click chemistry for 1 

biomedical applications 2 

 3 

Yaling Denga, Amin Shavandib *, Oseweuba Valentine Okorob, and Lei Niec * 4 

 5 

 6 
aCollege of Intelligent Science and Control Engineering, Jinling Institute of Technology, 7 

Nanjing 211169, China 8 

 9 
bBioMatter unit - 3BIO - École polytechnique de Bruxelles, Université Libre de Bruxelles 10 

(ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium 11 

E-mail : amin.shavandi@ulb.be  12 

 13 
cCollege of Life Sciences, Xinyang Normal University, Xinyang 464000, China. 14 

College of Life Sciences, Xinyang Normal University (XYNU), Xinyang 464000, China. Tel: 15 

+86-13600621068. ORCID: 0000-0002-6175-5883 16 

E-mail: nieleifu@yahoo.com; nielei@xynu.edu.cn 17 

 18 

 19 

Highlights  20 

• The need for the modification of alginate properties was established  21 

• Click chemistry reactions were discussed  22 

• Functionality of using click chemistry for alginate-based materials was explored  23 

mailto:amin.shavandi@ulb.be
mailto:nieleifu@yahoo.com
mailto:nielei@xynu.edu.cn


2 

 

Contents 24 

 25 

Abstract ...................................................................................................................................... 3 26 

1 Introduction ............................................................................................................................. 4 27 

2 Alginate functionalized with click chemistry and its properties ............................................. 5 28 

2.1 Copper-(Ⅰ)-catalyzed azide-alkyne cycloaddition (CuAAC) ............................................ 6 29 

2.2 Strain-promoted alkyne-azide cycloaddition .................................................................. 11 30 

2.3 Diels-Alder reaction ....................................................................................................... 12 31 

2.4 Inverse electron demand Diels-Alder (IEDDA) cycloaddition ...................................... 14 32 

2.5 Thiol-ene/yne addition.................................................................................................... 19 33 

2.5.1 Free-radical thiol-ene addition click reactions ......................................................... 19 34 

2.5.2 Thiol-Michael addition click reactions .................................................................... 21 35 

2.5.3 Thiol-yne addition click reaction ............................................................................. 23 36 

2.6 Oxime based click reactions ........................................................................................... 24 37 

2.7 Other click reactions ....................................................................................................... 24 38 

3 Biomedical Applications ....................................................................................................... 29 39 

3.1 Wound dressing .............................................................................................................. 29 40 

3.2 Pharmaceutical applications ........................................................................................... 31 41 

3.2.1 Drug delivery ........................................................................................................... 32 42 

3.2.2 Protein delivery ........................................................................................................ 36 43 

3.3 Tissue regeneration ......................................................................................................... 38 44 

3.4 3D Bioprinting ................................................................................................................ 42 45 

4 Conclusions and Outlook ...................................................................................................... 45 46 

References ................................................................................................................................ 47 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 



3 

 

 60 

Abstract 61 

Alginate biopolymers are characterized by favorable properties, of biocompatibility, 62 

degradability, and non-toxicity. However, the poor stability properties of alginate have limited 63 

its suitability for diverse applications. Recently, click chemistry has generated significant 64 

research interest due to its high reaction efficiency, high selectivity for a single product, 65 

harmless byproducts, and processing simplicity. Alginate modified using click chemistry 66 

enables the production of alginate derivatives with enhanced physical and chemical properties. 67 

Herein, we review the employment of click chemistry in the development of alginate-based 68 

materials or systems. Various click chemistries were highlighted, including azide and alkyne 69 

cycloaddition (e.g. Copper-(Ⅰ)-catalyzed azide-alkyne cycloaddition (CuAAC), Strain-70 

promoted alkyne-azide cycloaddition (SPAAC)), Diels-Alder reaction (Inverse electron 71 

demand Diels-Alder (IEDDA) cycloaddition, Tetrazine-norbornene Diels-Alder reactions), 72 

Thiol-ene/yne addition (Free-radical thiol-ene addition click reactions, Thiol-Michael addition 73 

click reactions, Thiol-yne addition click reaction), Oxime based click reactions, and other click 74 

reactions. Alginate functionalized with click chemistry and its properties were also discussed. 75 

The present study shows that click chemistry may be employed in modifying the mechanical 76 

strength, biochemical/biological properties of alginate-based materials. Finally, the 77 

applications of alginate-based materials in wound dressing, drug delivery, protein delivery, 78 

tissue regeneration, and 3D bioprinting were described and the future perspectives of alginates 79 

modified with click chemistry, are subsequently presented. This review provides new insights 80 

for readers to design structures and expand applications of alginate using click chemistry 81 
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reactions in a detailed and more rational manner. 82 

 83 

 84 

Keywords: click chemistry; alginate; biomedical applications; biomaterial engineering 85 

 86 

 87 

1 Introduction  88 

Alginate is a natural water-soluble polysaccharide. It can be extracted from some brown algae-89 

cell walls and bacteria, such as Ascophyllum nodosum, and, Pseudomonas spp respectively 90 

(Lee & Mooney, 2012; Smidsrød & Skja˚k-Br˦k, 1990). Alginate contains β-D-mannuronic 91 

acid (M) and 1-4 linked α-L-guluronic residues (G). Typically, the blocks repeat and display 92 

homogenous chains of MMM and GGG, interdispersed with heterogeneous chains of MGM 93 

(Lee & Mooney, 2012; J. Sun & Tan, 2013).  94 

Due to the excellent qualities of alginate, in terms of biocompatibility, biodegradability, and 95 

non-antigenicity (Paques, van der Linden, van Rijn, & Sagis, 2014), it has been extensively 96 

used in biomedical and pharmaceutical applications, including tissue engineering(Chawla, 97 

Kaur, Joshi, & Singh, 2020; J. Liu et al., 2020), drug delivery(Joshy et al., 2018; Yin, Wang, & 98 

Wang, 2018) and wound dressings(Zhang & Zhao, 2020; Zhao et al., 2020). Alginate can be 99 

transformed into several forms, such as hydrogels, microspheres, microcapsules, foams, 100 

sponges, and fibers, thus enhancing its applicability in various fields(Venkatesan, Bhatnagar, 101 

Manivasagan, Kang, & Kim, 2015). Although alginate is used in different applications, it still 102 

has some disadvantages, such as poor stability in aqueous conditions and uncontrollable 103 

degradation. Pure alginate also exhibits weak mechanical properties which leads to the 104 

rupturing of alginate hydrogels when stretched to ~ 1.2 times of its original length, thus 105 
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restricting the application of alginate hydrogels (J.-Y. Sun et al., 2012).  106 

To obtain alginates with desirable properties, various strategies have been developed to 107 

synthesize functional alginates, including physical, chemical, and biological methods. The free 108 

functional moieties distributing along the backbone, hydroxyl and carboxyl, provide active 109 

sites. That is ideal for chemical functionalization and thus makes alginate a versatile material 110 

for numerous applications. Alginate is, therefore, able to readily form alginate derivatives, 111 

which are characterized by enhanced characteristics such as improved biodegradability (Gong 112 

et al., 2021), mechanical strength (H. Yan et al., 2016) and gelation property (Heo, Akimoto, 113 

Kobatake, & Ito, 2019). These alginate derivatives are also characterized by tunable cell affinity. 114 

A consideration of the methods employed in facilitating the improvement of alginate properties 115 

suggests that click chemistry constitutes a highly efficient procedure. At the time of preparing 116 

this review, there are a few papers covering the click reactions in polysaccharides (Liebert, 117 

Hänsch, & Heinze, 2006; Meng & Edgar, 2016). However, literature regarding alginate-based 118 

modification or functionalization, using click chemistry is sparse. It is, therefore, crucial to 119 

summarize these studies. This article aims to summarize the recent progress of alginate-based 120 

modification using click chemistry and highlight the recent applications of click chemistry. 121 

Herein, the prospects of alginate applications based on click chemistry are also discussed. 122 

2 Alginate functionalized with click chemistry and its properties 123 

Click chemistry, first coined by Sharpless, is a synthetic concept that describes a group of 124 

reactions that “…must be modular, wide in scope, give very high yields, generate only harmless 125 

byproducts that can be removed by nonchromatographic methods, and be stereospecific (but 126 
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not necessarily enantioselective)” (Kolb, Finn, & Sharpless, 2001; Kolb & Sharpless, 2003). 127 

These reactions require mild reaction conditions, are insensitive to oxygen and water, easy to 128 

perform, and require simple product isolation methods (Kolb et al., 2001; Kolb & Sharpless, 129 

2003). Click chemistry includes the combination of activated molecules via a two-step coupling 130 

involving click functional groups, leading to the formation of a stable conjugate(Bilal, Rasheed, 131 

Zhao, Iqbal, & Cui, 2018). Furthermore, the high thermodynamic driving force (i.e. > 20 132 

kcal/mol) that characterizes click chemistry reactions, leads to a high selectivity for the 133 

formation of a single product. (Kolb et al., 2001). These features make click chemistry reactions 134 

suitable for various applications. Click chemistry therefore opens an interesting prospect to 135 

design alginate for the preparation of functionalized materials. Recognizing therefore the 136 

importance of click chemistry, the major types of click chemistry reactions previously explored 137 

in the literature, will be introduced in the following subsections. The effects of alginate 138 

modified with different click reaction on properties, such as mechanical properties, drug 139 

delivery and antibacterial, are also discussed. 140 

2.1 Copper-(Ⅰ)-catalyzed azide-alkyne cycloaddition (CuAAC) 141 

The click reaction involving azide and alkyne functional groups typically leads to a high yield 142 

of ~ 95% while under a mild temperature condition which ranges from 25-70 °C(Wolfgang & 143 

Christian, 2006). This click reaction can also tolerate functional groups which are firmly and 144 

covalently bonded to the backbone or substrate since the aromatic 1,2,3-triazole ring has high 145 

stability (Huang & Chang, 2009). 146 

Cu(I)-catalysed [3+2] azido-alkyne cycloaddition (CuAAC) was developed by Sharpless et 147 
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al. and Meldal et al (Rostovtsev, Green, Fokin, & Sharpless, 2002; Tornøe, Christensen, & 148 

Meldal, 2002), and is based on Huisgen’s 2,3-cycloaddition chemistry (Huisgen, 1963). This 149 

reaction forms a triazole from an azide and terminal alkyne and is activated using a Cu catalyst 150 

(Table 1) (Baskin & Bertozzi, 2009). CuAAC usually occurs in the richly functionalized 151 

biological environment at physiological temperatures (Agard, Prescher, & Bertozzi, 2004). It 152 

allows for high-sensitivity detection of azides and is often referred to as the most widely used 153 

click reaction. During the reaction of CuAAC, Cu(Ⅰ) with catalytic characteristics is difficult 154 

to remove from the products. Cu(Ⅱ) could form an excellent polymeric backbone with alginate 155 

(Bahsis et al., 2020) . Super porous hydrogels were prepared through coordination of copper 156 

(Ⅱ) to a naturally occurring alginate biopolymer via CuAAC. There is an effective electrostatic 157 

interaction between copper (Ⅱ) ions and alginate chains (Rui Rodrigues & Lagoa, 2006) , 158 

meanwhile, the guluronic units could capture divalent cations (Akamatsu, Maruyama, Chen, 159 

Nakao, & Nakao, 2011) . Therefore, the cross-linking structure was formed, and copper (Ⅱ) 160 

ions act as cross-linking agents. 161 

The versatility of the CuAAC reaction with highly reactive functional groups endows alginate-162 

based materials with desirable properties. To enhance the long-term stability and mechanical 163 

strength of alginate hydrogels, the CuAAC reaction was used to control and improve structural 164 

stability through covalent crosslinking. Alginate functionalized with pendant alkyne groups or 165 

azide groups was synthesized to prepare gel capsules via click chemistry (Breger et al., 2015). 166 

These click capsules were permanent “click” crosslinks. Compared to traditional Ca+2 167 

crosslinked alginate capsules, the gel capsules produced from click chemistry showed 168 
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improved stability in ionic media, consistent molecular weight cut-off (MWCO), increased 169 

permeability to diffusants, and water swelling characteristics (Figure 1). Alginate hydrogels 170 

employed in therapeutic drug encapsulation could also have enhanced stabilities when CuAAC 171 

chemistry method is used. The cross-linked alginate matrix is employed in encapsulating ionic 172 

or non-ionic drugs and presents its advantages. The research by Kumar et al showed that the 173 

alginate-graft-POEGMA materials，preparing with functionalized alginate and poly(oligo 174 

ethylene glycol methacrylate) (POEGMA) using alkyne and terminal azide groups respectively 175 

with the method of CuAAC, demonstrated an improved encapsulation efficiencies (up to 50%) 176 

and a enhanced anti-tumor performance, for the doxorubicin-loaded particles, specifically, such 177 

that tumors were almost eliminated  (Kumar et al., 2019). In addition, the hydrogel-containing 178 

nanoparticles can be designed as drug carriers for the treatment of serious diseases, such as 179 

neurodegenerative disorders and cancer (Kishimoto et al., 2012). But the small size and large 180 

surface area of nanoparticles can lead to agglomeration, which results in limited drug loading 181 

and ‘burst release’ (Kurdtabar & Rezanejade Bardajee, 2019). Click reaction could be utilized 182 

to decorate molecules to solve the agglomeration. Crescenzo et al decorate alginate chains with 183 

Azido-homoalanine Kcoil (Aha-Kcoil) by azide-alkyne click chemistry, that form the hybrid 184 

hydrogel system, promoting the uniform dispersion and release of gold nanoparticles (Roth et 185 

al., 2019). 186 

 187 
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 188 

Figure 1. “click” alginate hydrogel capsules. (a) Schematics of click reaction between azide 189 

and alkyne functionalized alginate to fabricate “click” alginate hydrogels; (b) Optical 190 

microscopy images of Ca2+ and “click” crosslinked alginate capsules in d.i. H2O (A, C) and 191 

after exposure to EDTA (B, D). “Click” capsules maintained the integrity for at least 1 month 192 

and up to 6 months when stored in water on the lab bench at room temperature. (c) Schematic 193 

of crosslinked alginate hydrogel. ① “click” crosslink; ② Ca2+ crosslink.(Breger et al., 2015) 194 

 195 

For the polymer with specifical structures, 1,3-dipolar cycloadditions are the effective 196 

synthetic route to modify alginate chains to form block copolymers or biological hybrids with 197 

desired performance. Cyclic cRGD-pentapeptides were conjugated to biomacromolecule 198 

alginate on the hydroxyl group with Rutjes’ method  (Krause, Kirschning, & Dräger, 2012; 199 

Paleček, Dräger, Kirschning, 2011). The  synthesized “smart” bioactive polymer may be 200 

employed in hydrogel development, which is suitable for therapies and tissue engineering 201 

applications. This method also could be utilized for chitosan biomaterials. In a previous work, 202 

the long-chain quaternary ammonium was grafted at 6-OH of chitosan to form a derivative via 203 

the protection-click reaction deprotection process. The hydrogels prepared with derivatives and 204 

sodium alginate exhibited controlled Tea tree oil releasing properties, the equilibrium swelling 205 

ratio was mainly affected by its sodium alginate content (Y. Chen et al., 2017). Additionally, 206 
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when bis-propargyl-succinate and bis-propargyl hexane urethane reagents are utilised, a hybrid 207 

hydrogel can be formulated using alkynated alginate or hyaluronic acid. The gelation behavior 208 

and swelling properties were characterized as a function of their composition and solution pH. 209 

When the gels were examined in PBS at 37°C, there was no significant weight loss during the 210 

initial 5 days. Subsequently, different weight loss occurs and leads to the change of hydrogel 211 

stability, due to the chemical structure involving in click reaction. Long alkylene groups with 212 

hydrophobic properties retard the hydrolytic degradation rate, while ester groups are more 213 

prone to hydrolytic decomposition than urethane groups. Therefore, the preliminary hydrolytic 214 

degradation of the hybrid hydrogel was also faster than that of urethane-containing gel (Bui, 215 

Jeon, Um, Chung, & Kim, 2015). 216 

To track the status of alginate and confirm the clinical effect both in vitro and in vivo, the 217 

use of the fluorescence-labeling option may be valuable. Crucially, the lack of intrinsic 218 

fluorescent groups indicates that a chemical labelling procedure is necessary. For example, 219 

studies have shown that in the production of coumarin-grafted blue-emitting fluorescent 220 

alginate via carbodiimide coupling then alkyne-azide ‘click’ chemistry, the modified alginate 221 

retains the capability to create hydrogels that are mechanically stable and maintain fluorescence 222 

for long time periods (Araújo et al., 2020). CuAAC chemistry may be utilized to build synthetic 223 

molecular architectures with excellent properties. 224 

Unfortunately, the copper catalyst is toxic to both bacterial (Link & Tirrell, 2003) and 225 

mammalian cells, and it is retained in the products, thus precluding the broad exploration (Tan, 226 

Rubin, & Marra, 2011). In order to overcome these problems, a series of noncopper-catalyzed 227 
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click reactions have been developed recently and used for highly efficient “click” conjugation, 228 

such as strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand 229 

Diels-Alder reaction between tetrazine and norbornene, Michael addition, and Oxime (Devaraj, 230 

Weissleder, & Hilderbrand, 2008; Jewett & Bertozzi, 2010). 231 

2.2 Strain-promoted alkyne-azide cycloaddition 232 

The Bertozzi research group (Agard et al., 2004; Codelli, Baskin, Agard, & Bertozzi, 2008; 233 

Sletten & Bertozzi, 2008) initially detected the strain-promoted alkyne-azide cycloaddition 234 

(SPAAC) click reaction. It was observed that the alkyne-azide cycloaddition could be 235 

substantially promoted through bringing ring strain into the alkyne moiety rather than a metal 236 

catalyst (H. Jiang et al., 2015; Zheng et al., 2012). The click reactions of cyclooctyne 237 

derivatives are typically rapid with a constant reaction rate, k2, of up to 2.3 M-1s-1 (Agard et al., 238 

2004; Blackman, Royzen, & Fox, 2008). Crucially, this reaction type can occur under 239 

physiological conditions, without Cu(I) catalysts, thus preventing the risk of unwanted toxic 240 

effects (Baskin & Bertozzi, 2009; Saxon & Bertozzi, 2000). Due to its high reactivity, 241 

biorthogonality and little off-target reactivity, the SPAAC click reaction has attracted rapidly 242 

increasing interest and can be used to repeatedly refill drug-releasing depots at a tumor site, 243 

repeating the release of a drug at a site of tumor resection, leading to improvements in the 244 

efficacy and tolerability in tumor models (Agard et al., 2004; Brudno et al., 2018; Roy, Mondal, 245 

Hatai, & Bandyopadhyay, 2014). For instance, in the study by Brudno et al (Moody, Palvai, & 246 

Brudno, 2020), refillable hydrogel depots were created from highly modified alginate strands 247 

by using multi-arm cyclooctyne cross-linkers. Tetrabicyclononyne (tBCN) agents covalently 248 
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cross-link azide-modified alginate hydrogels. These alginate gels, produced via click-linking 249 

were altered using azide groups via an extended level of substitution, and caused negligible 250 

inflammatory responses in the host (Moody et al., 2020). 251 

 252 

2.3 Diels-Alder reaction    253 

The [4+2]-cycloaddition reaction between an electron-rich diene and electron-deficient 254 

dienophile was discovered by Otto Diels and Kurt Alder and bears their names “Diels-Alder” 255 

reaction (Sanyal, 2010). This discovery was the basis of their Nobel Prize award in 1950. The 256 

[4+2] cycloaddition, as the typical Diels-Alder reaction, contains a conjugated diene which is 257 

electron-rich, and electron-poor dienophile (such as alkene, maleic acid) to form a cyclohexene 258 

system (Meng & Edgar, 2016), that is well-known in facilitating hydrogel cross-linking (Fan 259 

et al., 2015). This reaction has several excellent features, such as mild reaction conditions, high 260 

efficiency, thermal reversibility, and excludes the involvement of any chemical initiator 261 

(Kirchhof, Brandl, Hammer, & Goepferich, 2013; Koehler, Alge, Anseth, & Bowman, 2013). 262 

In addition, water can be used as a solvent to enhance the reaction rate (Moulay & Touati, 263 

2010).  264 

Furan compounds are important heterocyclic compounds that facilitate easier cyclic 265 

reactions due to their low aromaticity (Oliver Kappe, Shaun Murphree, & Padwa, 1997). 266 

Furan/maleimide Diels-Alder adduct presents a relatively low temperature of decoupling 267 

through its retro-Diels-Alder reaction (wherein, retro-Diels-Alder is the reverse process of the 268 

Diels-Alder rection, specifically the dissociation the Diels-Alder adducts formed with diene 269 
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and the dienophile(Kwart & King, 1968)). It may be used for various interesting applications, 270 

such as recyclable and self-healing materials.  271 

Calcium-binding derivatives of alginate were synthesized by partial substitution of its 272 

carboxyl functionalities with furan. Based on Ca2+ physical networks, a low density of covalent 273 

crosslinks with maleimide end groups and a four-arm poly(ethylene glycol) crosslinker were 274 

incorporated into a highly transient physical network to synthesize hydrogel (Ghanian, 275 

Mirzadeh, & Baharvand, 2018). The long chains of furan-alginate consisting of G-rich domains 276 

formed calcium-cross-linked stiff zones, which were surrounded by PEG-mediated covalent 277 

cross-links. The stiff zones dissipated energy through reversible dissociation. Permanent PEG 278 

cross-links, as elastically active zones, stored energy for rapid self-recovery upon unloading 279 

and prevented massive plastic deformation of chains (Figure 2). These hydrogels have 280 

interesting features, such as immediate self-recovery under cyclic loading, highly efficient and 281 

autonomous self-healing upon fracture, and capability for viable cell encapsulation.  282 

Additionally, various bismaleimides and trismaleimides characterized by different molar 283 

masses were used in furan-modified alginate chains as cross-linkers. The hydrogels with tuning 284 

mechanical properties and pulsatile swelling behavior were fabricated with Diels-Alder 285 

chemistry (García-Astrain & Avérous, 2019). García-Astrain and Avérous successfully 286 

functionalized alginate with furfurylamine and then a series of cross-linked alginate hydrogels 287 

were formed using the reaction of furan-modified alginate and maleimide cross-linkers 288 

(García-Astrain & Avérous, 2018). After the conjunction of an antimicrobial peptide HHC10 289 

with the oxy-norbornene group, the hydrogels fabricated with furyl-modified sodium alginate 290 
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and bimaleimide functional PEG molecule were demonstrated to present strong antibacterial 291 

properties and good biocompatibility (G. Wang et al., 2018). These hydrogels can be employed 292 

to support sustained mechanical functions, replace or repair load-bearing soft tissues, and 293 

provide good antimicrobial properties.  294 

 295 

Figure 2. Design and self-recovery, self-healing properties of tough hydrogels based on Dual 296 

Cross-linked alginate. (a) Biologically Inspired Design of Tough Hydrogels; (b) Schematic 297 

representation and photographs of the healing process under physiological conditions for two 298 

colored cuts of the DC hydrogels; (c) Recovery efficiency of the hysteresis energy and work of 299 

loading after each cycle; (d) Compression stress-strain curves of the original and healed 300 

samples of the DA and DC hydrogels. (Ghanian et al., 2018) 301 

 302 

2.4 Inverse electron demand Diels-Alder (IEDDA) cycloaddition 303 

Inverse electron demand Diels-Alder (IEDDA) cycloaddition is a rapid chemical reaction, 304 

capable of achieving completion even under mild conditions. In the IEDDA reaction, a 1,2,4,5-305 
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tetrazines (s-tetrazines) derivative performs as a ‘diene’ (norbornene, Nb) and an alkyne (or 306 

strained alkene) acts as a ‘dienophile’ (tetrazine, Tz) (Carboni & Lindsey, 1959). [4+2]-307 

Cycloaddition occurs on C3,6 carbon atoms of tetrazine, and the nitrogen molecule and 308 

oxidation provide the pyridazine cycle(Suvorov, Cheskov, Mironov, & Grin, 2019). The 309 

electron demand in the Diels-Alder reaction indicates that a diene that is rich in electrons reacts 310 

with an electron-poor dienophile. In the IEDDA, however, an electron-rich dienophile reacts 311 

with a diene that is electron deficient (Oliveira, Guo, & Bernardes, 2017). The reaction rate 312 

constant typically ranges from 103 to 106 M-1s-1, depending on the structures of the reactants 313 

(Izquierdo & Delgado, 2018; Oliveira et al., 2017; Selvaraj & Fox, 2013). IEDDA is suitable 314 

for biocompatible materials due to the capability of encapsulating drugs without causing 315 

damage(Desai, Koshy, Hilderbrand, Mooney, & Joshi, 2015).  316 

Several Nb and Tz can be introduced into the alginate system to tune the crosslinking density 317 

and the properties of the matrix without changing the total amount of alginate. The results from 318 

Mooney et al’s study showed that Nb-Tz click chemistry has the ability to control stiffness and 319 

viscoelasticity of artificial extracellular matrix (ECM) hydrogels, without altering the 320 

diffusional nutrient transport or alginate architecture at the cellular scale, compared with ionic-321 

only alginate hydrogels ( Vining, Stafford, & Mooney, 2019). Tetrazine (Tz), transcyclooctene 322 

(TCO), and norbornene (Nb) were used to modify alginate by combining EDC/NHS (ethyl-3-323 

(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS)) 324 

carbodiimide crosslinker via click chemistry. These single cell-encapsulated microscale 325 

hydrogels (25-30 μm microgels) have been fabricated to form structures with packing densities 326 
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comparable loose randomly packed configurations (Y. Hu et al., 2017). Norbornene groups, 327 

such as a ‘diene’, also could be utilized to decorate alginate to control properties. The reactions 328 

between norbornene-functionalized alginates (Alg-Nb) and tetrazine cross-linkers while also 329 

using IEDDA click chemistry, could prepare hydrogels with facilitating precise DOX release 330 

(Figure 3) (Anugrah, Ramesh, Kim, Hyun, & Lim, 2019). Under the trigger of NIR irradiation, 331 

the hydrogel was de-cross-linked to linear alginate chains. The various cross-linking densities 332 

were controlled by adjusting the feed ratio of the precursors, Alg-Nb, and diselenide-tetrazine 333 

(Se-Tz), then tuning the release rate of loaded DOX (Anugrah et al., 2019).  334 

 335 

Figure 3. Near-infrared responsive alginate-based hydrogels via tetrazine-norbornene 336 

chemistry. (a) A schematic illustration of NIR-responsive alginate-based hydrogels; (b) Photos 337 

of the degradation process. (Anugrah et al., 2019) 338 

 339 

The incorporation of norbornene (Nb) and tetrazine (Tz) endow more elastic properties to the 340 

alginate hydrogels (Gonzalez-Pujana et al., 2020). It has been demonstrated that G-blocks of 341 

alginate may be reinforced by permanent covalent crosslinking, such that IEDDA reaction 342 



17 

 

executes the “click” to connect the existing G-block ionic crosslinks (Vining et al., 2019), thus 343 

providing permanent covalent crosslinking to reinforce alginate. The modified alginate and 344 

cytokine-loaded heparin-coated beads prolonged the immunomodulatory licensing of hMSCs. 345 

In another study, Joshi (Desai et al., 2015) incorporated tetrazine and norbornene groups with 346 

alginate polymer chains to enable covalently crosslinked click alginate hydrogels formation 347 

(Figure 4). Mechanical properties and swelling properties were tuned by altering the total 348 

polymer concentration and by varying the complementary click functional group’s 349 

stoichiometric ratio. The alginate hydrogels also can facilitate cell encapsulation without 350 

causing damage. Moreover, the rheological and mechanical properties of crosslinked alginate-351 

based hydrogels were modified via changing the substitution degree of norbornene, oxidation 352 

state, and the proportion of norbornene to tetrazine integrated in the alginate-based hydrogels 353 

(Lueckgen et al., 2018).  354 

 355 

Figure 4. An illustration of click alginate polymer synthesis (A) and mechanical properties (B-356 

D). (A) Click alginate hydrogels fabrication. Modification of alginate backbone carboxylic 357 
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acids with tetrazine or norbornene using aqueous carbodiimide chemistry, to produce Alg-T or 358 

Alg-N polymers, respectively. Alg-T and Alg-N polymers are mixed leading to the production 359 

of acovalently crosslinked click alginate hydrogel network, with the release of N2. Click 360 

alginate hydrogel mechanical properties. Representative in situ dynamic rheometry plot at 361 

25 °C for 3% w/v click alginate at N:T = 1, demonstrating modulus evolution with time (B). 362 

Compressive Young's modulus (C) and volumetric swelling ratios (D) for 2%, 3% and 4% w/v 363 

click alginate hydrogels at varying N:T ratio. Values represent mean and standard deviation 364 

(n = 4)(Desai et al., 2015). 365 

 366 

The tetrazine-based IEDDA reaction between a dipyridyl-functionalized tetrazine and trans-367 

cyclooctene is biorthogonal ligation, which was first reported by Fox and co-workers 368 

(Blackman et al., 2008). The reaction rate of the tetrazine-based IEDDA reaction is three orders 369 

of magnitude greater than the optimized SPAAC reaction, leading to the fastest biorthogonal 370 

conjugation of tetrazine ligation (Patterson, Nazarova, & Prescher, 2014). The tetrazine-371 

norbornene Diels-Alder reaction involves tetrazine and norbornene compounds that are 372 

asymmetric, leading to the production of several isomeric dihydropyridazine products, with 373 

rate constants for the second-order reaction of 1.9 and 1.6 M-1s-1 in an aqueous buffer and fetal 374 

bovine serum respectively (Devaraj et al., 2008). It has the potential to create functionalization 375 

and coupling of polymers without requiring additional additives, initiators, or catalysts. 376 

For the degradation of tetrazine under physiological conditions, designated groups will be 377 

introduced into IEDDA reactions. That has been demonstrated and undertaken by Shoichet. 378 

IEDDA-crosslinked HA hydrogels were designed by replacing tetrazine with the more stable 379 

methylphenyltetrazine to eliminate reagent degradation (Delplace et al., 2020). The designed 380 

IEDDA hydrogel facilitates multiphoton imaging of embedded retinal explants in a duration 381 

longer than the duration required by agarose thermogel (Delplace et al., 2020). Furthermore, 382 
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when the trans-cyclooctene (TCO) moiety was incorporated into the sugar backbone, the 383 

alginate polymer (TCO-gel) was constructed. These gels will react with circulating in-Tz 384 

molecules through IEDDA reaction in a biorthogonal fashion, localizing the Tz molecules and 385 

their radioactive cargo to the TCO-gel. This approach could precisely regulate, when 386 

biochemical and/or physical signals are manifested in a biomaterial that is implanted and also 387 

improves the spatial site of systemic tiny molecules via vivo chemical delivery (Mejía Oneto, 388 

Gupta, Leach, Lee, & Sutcliffe, 2014). 389 

2.5 Thiol-ene/yne addition  390 

The thiol-click reaction is a well-expanded concept of click polymerization. The reaction of 391 

a thiol with carbon-carbon double bond, or simply “ene”, as the general concept of thiol-click 392 

reaction, has been well known since the early 1900s (Posner, 1905). Many basic thiol-ene 393 

reactions have been defined since the early 2000s. The reactions of a thiol with ene, triggered 394 

by a radical (thiol-ene reaction) or anionic chain (thiol Michael addition), have the characters 395 

of click chemistry, such as being insensitive to ambient oxygen and water, single specifically 396 

products and rapid reaction rates. This significant versatility makes the thiol-ene reaction 397 

amenable to various applications, including biomedical, tissue engineering and bioorganic 398 

modification fields. These thiol reactions include thiol-ene free-radical addition, catalyzed thiol 399 

Michael addition, and thiol-yne addition reactions.  400 

2.5.1 Free-radical thiol-ene addition click reactions 401 

Free-radical thiol-ene reactions involve the formation of thiyl radical, which then propagates 402 

across the ‘ene’ functional group to produce the carbon-centered radical. The radical source, or 403 
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photo initiator under the light, extracts hydrogen from thiyl radicals to form thiyl in a chain 404 

transfer process which may be added to the carbon-carbon double bond (Aimetti, Machen, & 405 

Anseth, 2009; Cramer & Bowman, 2001). In other words, thiyl radical activates the carbon-406 

carbon double bond by forming a carbon-based radical. A chain transfer reaction involving the 407 

carbon-based radical and another thiol group facilitates the generation of a new thiyl radical or 408 

propagate through carbon-carbon double bonds (Rydholm, Bowman, & Anseth, 2005). 409 

This reaction involves the alternation of propagation and chain transfer events. UV light can 410 

be used to rapidly initiate Thiol-ene chemistry, under mild conditions and in the absence of 411 

complex reagents(Beria et al., 2014). The light mediated thiol-ene reaction can be effectively 412 

activated at the special location and time and combines the benefits of click chemistry with 413 

superiorities of photo-initiated processes. A homogeneous polymer network could 414 

subsequently be formed by tuning the combination of step-growth and chain-growth 415 

mechanisms (Cramer & Bowman, 2001). The distinct advantages of thiol-ene reaction, such as 416 

simplified polymerization kinetics, decreased shrinkage and stress, and lacked sensitivity to 417 

oxygen inhibition, solve the limitations of traditional photo-initiated systems(Hoyle & 418 

Bowman, 2010). 419 

UV-directed thiol-ene click reaction, as an effective method, is extensively employed in the 420 

preparation of gels and post-modification of polymers, with the purpose of obtaining qualified 421 

hydrogel  (Yap et al., 2020). Lang et al (Xu et al., 2020) functionalized sodium alginate 422 

backbone to synthesis SA derivatives via grafting vinyl ether (VE) side chains to form amido 423 

linkages (-CONH-). A dual crosslinking alginate hydrogel SA-VE/DTT was fabricated through 424 
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hydrogen-bonded along with thiol-ene click chemistry reaction under UV exposure (Xu et al., 425 

2020). These systems maintained fast gelation, superior storage modulus, and long-term 426 

stability. Wang et al introduced cysteine-terminated antimicrobial peptide HHC10-CYS 427 

(HHC10) into sodium alginate hydrogel via the photoinitiated thiol-ene reaction. The 428 

antibacterial activity was up to 100% after culture for 24h, and the cytocompatibility was 429 

improved  (G. Wang et al., 2018). In the process of preparation, the efficient photo-click 430 

reaction provides spatiotemporal control through a step-growth mechanism. This photo click 431 

chemical reaction affords sites for cell attachment and embedment with enhanced the quality 432 

(Pereira, Barrias, Bártolo, Granja, 2018). After implantation in the backs of mice (C57/B16) 433 

for 8 weeks, hydrogel modified with thiol-ene chemistry by UV irradiation improved the tissue 434 

and cell infiltration, with in vivo implantation resulting in degradable materials rather than non-435 

degradable controls. 436 

Thiol-ene click reaction could manipulate antimicrobial properties via decorating hydrogel. 437 

Various cellulose derivatives were prepared via the thiol-ene click reaction between cellulose 438 

and the thiol compounds (H. Hu, You, Gan, Zhou, & Zhang, 2015). The micelles through 439 

combining derivatives and Ag nanoparticles displayed good antimicrobial activities to both S. 440 

aureus and E. coil (H. Hu, Wu, Wang, Wang, & Zhou, 2019). The optimal preparation route 441 

and excellent biological performance of the above hydrogels may bring about potential 442 

biomedical applications in wound dressing materials. 443 

2.5.2 Thiol-Michael addition click reactions 444 

Thiol-Michael addition type reactions refer to reactions between thiols and electron deficient 445 
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enes (Allen & Happ, 1964). Allen et al first reported these reaction types (Allen & Happ, 1964). 446 

The most widely used enes are (meth) acrylates, maleimides, acrylonitrile, cinnamates, 447 

crotonates, fumarate esters, and α,β-unsaturated ketones (Hoyle & Bowman, 2010). Maleimide 448 

as ene has been most widely used in the thiol-Michael reaction (M. Li, De, Gondi, & Sumerlin, 449 

2008). Catalysts, such as metals, organometallics, Lewis acids, are utilized to initiate the thiol-450 

Michael reaction (Mather, Viswanathan, Miller, & Long, 2006). Most of the thiol-Michael 451 

reaction focuses on the addition of thiol-groups to acrylic compounds (Çakmakçi, Yuce-Dursun, 452 

& Demir, 2017; Kröger, Boonen, & Paulusse, 2017; Moon, Pekkanen, Long, Showalter, & 453 

Libby, 2017). Meanwhile, Michael acceptors also contain maleimides, vinyl sulfones, 454 

fumarates, crotonate, ynones and propiolates (Nair et al., 2014; Stolz & Northrop, 2013). 455 

Accompanied by the initiation of terminating chains in thiol-Michael reactions, there are no 456 

anionic coupling processes compared to the thiol-ene radical reaction (Hoyle & Bowman, 457 

2010). This reaction can occur under mild conditions in short reaction times i.e. minutes or 458 

even seconds. Thiol-Michael addition type reactions are therefore suitable for functionalization 459 

of polymer or preparing biomaterials.  460 

Michael addition reaction is selective for the formation of hydrogels, in situ, and is well-461 

known as a viable polymer synthesis strategy (Z. Q. Liu et al., 2015). The in situ cross-linking 462 

of hydrogels using the Michael addition reaction between thiol-modified chitosan and 463 

poly(propylene oxide) poly(ethylene oxide)- poly(propylene oxide) (PPO-PEO-PPO) was 464 

undertaken by Gabilondo et al (Guaresti, Basasoro, González, Eceiza, & Gabilondo, 2019). 465 

These hydrogels are characterized by high sensitivity to variations in pH and also present 466 
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complete degradation in lysozyme solution after 24 h of immersion. Hydrogel with bifunctional 467 

cross-linker in 1:3 ratio has a more cross-linked network, showing lower swelling ratios than 468 

other tested hydrogels. With the addition of the cross-linker, the decrease of mean storage and 469 

loss modulus was also observed. Therefore, the swelling and rheological behaviors were 470 

regulated by altering the cross-linking agent in the networks. 471 

2.5.3 Thiol-yne addition click reaction 472 

Thiol-yne addition click reaction is similar to thiol-ene chemistry in that thiol groups react 473 

with carbon-carbon triple bonds (Truong, Tsang, & Forsythe, 2017). Thiyl radical addition to 474 

an ‘yne’ functional forms a vinyl sulfide radical, and then chain transfers to a thiol group, to 475 

regenerate a thiyl radical and form the vinyl sulfide addition product (Lowe & Bowman, 2013; 476 

Minozzi et al., 2011). A carbon-centered radical is formed through thiyl radical addition to 477 

vinyl sulfide group. Then the chain transfers to another thiol functional group, leading to the 478 

regeneration of the thiyl radical and formation of the thiol-vinyl sulfide addition product (Lowe 479 

& Bowman, 2013). The thiol-yne addition click reaction could progress via a radical or 480 

nucleophilic mechanism (Macdougall, Truong, & Dove, 2017). The radical method has been 481 

utilized in polymer science to synthesize a series of materials, including dendrimer (G. Chen, 482 

Kumar, Gregory, & Stenzel, 2009), multifunctional brush polymers (Hensarling, Doughty, 483 

Chan, & Patton, 2009), and block polymers (Chang & Dong, 2013). The nucleophilic method 484 

has been adopted to synthesize hydrogel materials (Cai et al., 2016).  485 

Thiol-yne click-reaction is a suitable approach to prepare robust click-hydrogels. According 486 

to Dove et al injectable alginate hydrogels, fabricated via the thiol-yne click reaction, had 487 
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exceptional mechanical performance and were capable of retaining their mechanical properties 488 

even after being immersed in a cell culture media for three weeks (Pérez-Madrigal et al., 2020). 489 

The extended stability enhanced cytocompatibility, and sufficient stiffness was also retained. 490 

 491 

2.6 Oxime based click reactions 492 

Oxime click reactions facilitate oxime bond formation and involve reactions between a 493 

substituent of aminooxy and an aldehyde or ketone moiety to produce imine hydrazone and 494 

chemical bonds of oxime (Kalia & Raines, 2008). Since oxime bonds have higher stabilities 495 

compared to bonds in thiol groups, it has emerged as a robust strategy in fields such as 496 

bioconjugation (Ulrich, Boturyn, Marra, Renaudet, & Dumy, 2014) and biomacromolecules 497 

(Christman et al., 2011). Oxime reactions have the properties of click reactions, such as high 498 

reaction rates, water production as a by-product, and orthogonality to molecules present in the 499 

cellular environment(Kalia & Raines, 2008). Thus, Oxime click reactions have been 500 

extensively employed in modifying surfaces of materials (Zeng, Ramya, Dirksen, Dawson, & 501 

Paulson, 2009) and bequeaths the unique properties of tuning and reversibility, to varying 502 

degrees (Grover, Lam, Nguyen, Segura, & Maynard, 2012; Lin et al., 2013). 503 

 504 

2.7 Other click reactions 505 

Beyond the click reactions mentioned above, three other click reactions have been developed 506 

recently. Firstly, the spontaneous amino-yne click reaction was reported by Tang et al (B. He 507 

et al., 2017; B. He et al., 2016). It involves reactions of amines and propiolate, and can proceed 508 
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in a regio- and stereospecific fashion under mild conditions without any photoinitiator or 509 

catalyst(B. He et al., 2017; B. He et al., 2016, Oktay, Demir, & Kayaman-Apohan, 2020). As a 510 

high reactivity reaction, hydroamination between dipropiolate and secondary diamine can 511 

occur, leading to products with high molecular weights, characterized by excellent yields. 512 

Second, nitrile-click chemistry, as an effective and novel strategy, has been received attention 513 

(Y. Li et al., 2019; Oktay, Zhang, You, & Hong, 2018). The nitrile-containing polymers, 514 

especially based on C≡N groups, have been devoted to click reaction (Zil'berman, 1986). The 515 

click reaction with sodium azide and zinc chloride was utilized to modify acrylonitrile 516 

polymers(Tsarevsky, Bernaerts, Dufour, Du Prez, & Matyjaszewski, 2004). Therefore, 517 

polyacrylonitrile (PAN) is completely suitable for nitrile-click chemistry (W. Wang et al., 2017). 518 

Surface modification of PAN using nitrile-click chemistry has constituted the research focus in 519 

recent times. And third, novel click chemistry is the protection-click reaction-deprotection 520 

process. During the reaction, phthalic anhydride was used to protect 2-NH2, and azid group 521 

was utilized to replace 6-OH group of chitosan. The click chemistry reaction was occurred 522 

between an azide group and an alkynyl terminated quaternary ammonium salt. The final 523 

product was obtained along with the deprotection of phthalic group (Y. Chen et al., 2017). This 524 

preparation method improves the thermal stability of products and water solubility. These click 525 

reactions are useful for modifying functional molecules due to its chemo selectivity. 526 
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Table 1. Major click chemistry reaction types and their applications in biomaterials 527 

Click 

reactions 

Reacting functional 

groups 
Mechanism Advantages Disadvantages Properties Applications 

CuAAC 

azide+alkyne; 

e.g., azide and alkyne 

end group 
 

Cu catalyst; 

Reversible; 

Bioorthogonal; 

no by-products 

Cytotoxicity of 

Cu and difficult to 

remove 

completely 

Structural 

stability; 

promotes the 

uniform 

dispersion(Roth et 

al., 2019); 

Cell 

encapsulation(

Breger et al., 

2015), drug 

delivery(Kuma

r et al., 2019), 

antibacterial 

materials(Y. 

Chen et al., 

2017) 

SPAAC 

azide+alkyne ring; 

e.g., azide and 

cyclooctyne 

 

 

No catalyst; 

Disturbing cross-

linking reaction 

due to 

hydrophobicity of 

the cyclooctane(S. 

Fu, Dong, Deng, 

Zhuo, & Zhong, 

2017; Truong et 

al., 2015) 

Tuning 

mechanical 

properties; 

decrease 

inflammatory(Mo

ody et al., 2020); 

Tissue 

engineering; 

drug delivery; 

IEDDA 

Dienophile+diene; 

e.g., Tetrazyne and 

norbornene 

 

 

No catalyst; 

Faster rate of 

reaction than Cu-

free click reaction; 

 

Control stiffness 

and 

viscoelasticity(Vi

ning et al., 2019); 

rheological and 

mechanical 

properties; 

prolong 

immunomodulator

y 

properties(Gonzal

ez-Pujana et al., 

2020); 

Cell 

encapsulation, 

drug delivery, 

targeted 

delivery of 

systemic small 

molecules(Mej

ía Oneto et al., 

2014); 

Diels-

Alder 

diene+alkene; 

e.g., furan and 

maleimide 

 

No catalyst; 

Thermally 

reversible(Wei, 

Yang, Zheng, & 

Shen, 2009); 

Longer reaction 

time (gelation 

time is 1.5-

24h)(Fisher, 

Anandakumaran, 

Owen, & 

Self-

healing(Ghanian 

et al., 2018); 

mechanically 

properties; 

swelling 

Soft tissue 

engineering, 

drug 

delivery(Garcí

a-Astrain & 

Avérous, 
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Shoichet, 2015); behaviour; 

antibacterial 

properties(G. 

Wang et al., 

2018); 

2018), 

Thiol-ene 

alkene+thiol; 

e.g., Methacrylate group 

and dithiothreitol  

Using 

photoinitiatorr; 

Spatial and 

temporal 

control(Rydholm et 

al., 2005); 

Insensitivity to 

oxygen(Shih & Lin, 

2012) 

Radical is toxic to 

encapsulated cell 

in initiation 

step(A. Fu, Gwon, 

Kim, Tae, & 

Kornfield, 2015; 

Rydholm et al., 

2005) 

Mechanical and 

permeability; 

stability; 

antimicrobial 

capacity(H. Hu et 

al., 2019); 

degradation 

behaviour(Lueckg

en et al., 2019); 

Wound 

dressing; drug 

delivery; tissue 

engineering 

Thiol-

Michael 

Thiol+α,β-unsaturated 

carbonyl group; 

maleimide+thiol; 

e.g., maleimides, 

acrylate esters 

Alkene-thiol Michael addition 

 
Methacrylate-thiol Michael addition 

 

 
Thiol-maleimide Michael addition 

 

 
Thiol-vinysulfone Michael addition 

 

No catalyst; 

Mild reaction 

condition 

The reaction is 

disturbed by thiols 

of 

protein(Pupkaite, 

Rosenquist, 

Hilborn, & 

Samanta, 2019) 

Control 

rheological and 

swelling 

behavior(Guaresti 

et al., 2019); 

Tissue 

engineering 
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Thiol-yne alkynes+thiol 

 

Initiator  

Mechanical 

performance; 

stability; 

cytocompatibility; 

Soft tissue 

regeneration(P

érez-Madrigal 

et al., 2020);  

Oxime 

coupling 

Aminooxy+aldehyde/ke

tone; e.g., 

Aldehyde+hydroxylami

ne 

 

 

No catalyst; 

Fast reaction 

kinetics; 

 

Challenge of 

synthesize 

precursor(Grover 

et al., 2012) 

  

       

528 
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 529 

3 Biomedical Applications  530 

The excellent biocompatibility and promising physicochemical properties of alginate 531 

have promoted various biomedical applications, including wound dressing, 532 

pharmaceutical, tissue regeneration, renewable energy, and 3D bioprinting applications. 533 

The following sections describe the recent advances and summary of applications of 534 

alginate-based materials modified via click reactions.  535 

3.1 Wound dressing 536 

The skin, as the largest organ in human body, is a natural barrier that protects the 537 

internal organs against pathogens and dehydration from environmental aggressions 538 

(Hoque & Haldar, 2017). When the surface of skin is interrupted via dermal wounds 539 

(acute and chronic), protection from the pathogens is a significant clinical challenge for 540 

health services, due to poor vascularization, protease susceptibility, and microbial 541 

invasion at the wound site (Parani, Lokhande, Singh, & Gaharwar, 2016). The function 542 

of wound dressing is to protect the damaged area from bacterial infection, and to 543 

provide an appropriate environment to encourage the re-establishment of the skin 544 

integrity and homeostasis thus accelerating the healing process (Kujath & Michelsen, 545 

2008; Ma et al., 2019). Due to its biocompatibility, biodegradability, non-546 

immunogenicity, affordability, and water content, alginate and alginate-based materials 547 

are of considerable attention and attractive for use as wound dressing. Alginate 548 

dressings can absorb wound fluid in the dry state and form hydrogels. That provides a 549 

moist environment and reduces bacterial infections for wound healing. However, pure 550 
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alginates are generally limited by their poor mechanical stability when in the swollen 551 

state and may dehydrate if not covered. It is difficult to secure skin, prevent bacterial 552 

infection, and promote bioactivities, especially in chronic wound healing. To overcome 553 

the poor mechanical stability of hydrogels, functionalized alginate dressings have been 554 

developed. 555 

 556 

 557 

Figure 5. crosslinking alginate hydrogel with superior gel properties based on viny ether 558 

sodium alginate. (A) Synthesis diagram of SA-VE/DTT hydrogel; (B) Hydrogen 559 

bonding verification: SA-VE/H2O hydrogel added with (a) DI water; (b) NaSCN 560 

aqueous solutions (3 mol/L); (C) Rat tail hemostasis test results: (a) natural hemostasis; 561 

(b) Ca-Alg; (c) SA-VE.(Xu et al., 2020) 562 

 563 

Different types of functional groups have been introduced to produce alginate-based 564 

wound dressing materials. Mixing of functional alginates with other biopolymers will 565 

facilitates the formation of a structure that is characterized by a crosslinked network. 566 

Vinyl ether side chains were grafted into sodium alginate backbone, thus providing new 567 

reaction sites for further cross-linking. The functionalized sodium alginate 568 

subsequently formed a series of dual crosslinking hydrogel sodium alginate-vinyl 569 
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ether/dithiothreitol (SA-VE/DTT) with dithiothreitol under UV exposure (Figure 5)(Xu 570 

et al., 2020). The hydrogel system displayed superior mechanical strength, long-term 571 

stability, as well as a fast hemostasis behavior when applied for 26 s in rat tail wounds. 572 

By increasing the amount of charged groups inside the hydrogel, the internal structure 573 

was resembled to form double network hydrogel with high toughness (Benselfelt & 574 

Wågberg, 2019).  575 

Additional, antibacterial properties can ensure the success rate of medical supplies. 576 

The conventional strategies are using in loading antibacterial substances (such as 577 

antibacterial particles or groups, antibiotic, or antimicrobial agents) into hydrogels to 578 

possess antibacterial activity (M. Chen et al., 2019; M. He, Wang, Zhang, Zhao, & Zhao, 579 

2017). However, their application is restricted because of the risk of temporary 580 

antimicrobial activity, gel formation, and cytotoxicity of nanoparticles (D. Jiang et al., 581 

2016). Chemical grafting of agents can enhance antimicrobial efficacy, reduce 582 

cytotoxicity, and prolong biostability (Ng et al., 2014). The antimicrobial peptide 583 

HHC10 was introduced into SA/PEG hydrogels via a photoinitiated thiol-ene click 584 

reaction, showing strong antibacterial properties and desirable biocompatibility (G. 585 

Wang et al., 2018). Chemical reaction strategies can effectively immobilize 586 

antibacterial agents in medical devices, enhancing the antibacterial properties, and thus 587 

have significant application potential. 588 

3.2 Pharmaceutical applications 589 

Alginate is the backbone of different pharmaceutical applications, including 590 



32 

 

thickening, gel-forming, encapsulation. It performs a major role in regulated drug 591 

release. However, there are some restrictions for the conventional drug delivery systems, 592 

including low drug efficacy, poor targeting, poor distribution, uncontrolled 593 

pharmacokinetics, and serious side effects in non-target tissues (Aw, Addai-Mensah, & 594 

Losic, 2012). Nowadays, hydrogels as depots for tissue localized drug delivery have 595 

been accepted as a proper solution to address these problems. Hydrogel delivery 596 

systems can transport the drugs to the targeted sites. Here, we describe progress in the 597 

pharmaceutical application using alginate or alginate derivatives. 598 

3.2.1 Drug delivery  599 

Alginate hydrogels constitute well-researched technologies for drug delivery and 600 

have been explored in the regulation of drug release. The most important advantages of 601 

using alginate to encapsulate drugs are its excellent hydrophilicity and the efficiency of 602 

the gelation process which occurs under mild condition (Erik, Aase, Paul, Anders, & 603 

Maria, 2010). Diffusion is the dominant release mechanism in controlled drug release 604 

from hydrogels (Peppas, Bures, Leobandung, & Ichikawa, 2000). Alginate hydrogels 605 

have a typically porous structure, leading to the rapid diffusion of drug molecules. 606 

Injection hydrogels are used ubiquitously as cell and drug carriers. A click cross-607 

linking strategy is established to be adequate for injectable hydrogels and was employed 608 

in the development of functionalized alginate hydrogels (Kim et al., 2016). Injection 609 

hydrogels may be used as refillable hydrogel depots, for targeting drug-carrying 610 

nanoparticles refills to a device placed within a tumor site (Brudno et al., 2014). 611 
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Refillable hydrogel depot system based on biorthogonal click chemistry capture 612 

prodrug refills from the blood and then sustainably release active drugs locally (Brudno 613 

et al., 2018). The use of biorthogonal click chemistry in targeting circulating small 614 

molecules to alginate hydrogel resident intramuscularly in diseased tissues was 615 

demonstrated in the literature (Brudno et al., 2015). These small molecules were shown 616 

to be capable of repeatedly targeting the diseased area in a sustained manner for about 617 

one month. The click-mediated targeting exhibited high specificity for the target sites 618 

and enhanced the delivery of suitable small molecules (Brudno et al., 2015; Mejía 619 

Oneto et al., 2014). Brudno et al introduced tetrabicyclononyne (tBCN) agents to 620 

fabricate cross-link azide-modified alginate hydrogels (Moody et al., 2020). tBCN click 621 

cross-linked gels improved click-mediated capture of small molecules drugs from the 622 

blood, and this in vivo targeting was sustained over multiple weeks and with multiple 623 

rounds of systemic capture (Figure 6). For several special environment, stimuli-624 

responsive triggers have been introduced to alginate hydrogels to facilitate smart 625 

hydrogels under physiological conditions. The utilization of smart hydrogels for drug 626 

delivery applications, has been receiving increasing interest in recent times. Under 627 

external stimuli, these smart hydrogels can release entrapped drug molecules in a 628 

controlled and targeted manner while also minimizing unwanted intrusiveness of the 629 

procedure (Matricardi, Di Meo, Coviello, Hennink, & Alhaique, 2013; Qiu & Park, 630 

2001). The improvement in the molecular mobility was achieved when comb-type 631 

grafted hydrogels with network-graft architecture and dangling chains were 632 
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incorporated into a cross-linked network, for enhanced conformational adjustment 633 

ability of the incorporated chains when responding to external stimuli (S.-Q. Chen, Li, 634 

Pan, Li, & He, 2016).  635 

 636 

 637 

Figure 6. tBCN cross-linked azide-alginate gels and refillable depot stability for uses in 638 

the body. (A) Using click chemistry to cross-link refillable depots. Left to Middle: 639 

Azide-alginate strands are added and injected into target tissues and cross-link in 640 

situ. Middle to Right: Intravascular administration of cyclooctyne-conjugated 641 

therapeutics permits selective capture and display of drug at gel site. (B) 642 

Biocompatibility of tBCN cross-linked azide-alginate gels. Model/reference images of 643 

H&E stained sections from injection site and five major organs four weeks after 644 

intramuscular injection of calcium and tBCN cross-linked azide-alginate hydrogels and 645 

PBS-injected controls. Scale bar = 400 µm. (C) Cross-linking with tBCN improves on-646 

target capture of circulating DBCO fluorophores. Reference images (a) and quantitation 647 

(b) of fluorophore capture by intramuscularly-injected alginate hydrogels. Azide-648 

alginate cross-linked with either tBCN or calcium were compared to control gels that 649 

did not contain azide groups and a PBS injection. DBCO-Cy7 was administered i.v. 24 650 

hours following depot implantation. One week following i.v. administration, mice were 651 

imaged to assay capture and retention of fluorescent signal at the target site. Samples 652 

show mean ± SEM. Statistical significance represented as **p < 0.01, and ****p < 653 

0.0001 between groups by multiple unpaired t-tests with Holm-Sidak correction for 654 

multiple comparisons. N=6. (Moody et al., 2020) 655 

 656 

 657 
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 658 

Polymeric microspheres are effective delivery vehicles, which provide the potential for 659 

greater suspension stability, high drug loading, and lower burst release (Mohanraj & 660 

Chen, 2006). Encapsulating the drug in polymeric microspheres is an effective strategy 661 

that can control and sustain drug release. It can encapsulate the drugs in the hydrophilic 662 

alginate polymer, protect encapsulated drugs from harsh physiological 663 

microenvironments including moisture, heat, oxidation and ‘mask’ their horrible taste 664 

and odour (Sharma, Purwar, & Gupta, 2015), and deliver hydrophobic drugs to a 665 

specific treatment target in aqueous systems. For instance Rashidan et al encapsulated 666 

synthesized anti-cancer compounds into Na-alginate microspheres (Rashdan, Farag, El-667 

Gendey, & Mounier, 2019). The study showed that Fickian diffusion law described the 668 

drug release mechanism while also highlighting that sustainable drug release was 669 

achieved. This is an effective solution to the hydrophobic defect of these compounds 670 

by encapsulation in hydrophilic Na-alginate polymer microspheres. Pore size and 671 

crosslinking density determine the release rate of the encapsulated drug. Increasing 672 

polymer crosslinking density, accompanied by the decrease of equilibrium swelling and 673 

average pore size, leads to the decrease in the drug diffusion rate (Korsmeyer & Peppas, 674 

1981). When introducing Ca2+ to alginate solution, a reticulated structure, known as the 675 

“egg-box” model, was formed by the interaction of Ca2+ ions and electronegative 676 

alginate molecules. Hence, it is easier to control and sustain the drug delivery system. 677 

Compared to traditional ionic crosslinked alginate capsules, click capsules showed 678 
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improved permeability to diffusants of small size and superior stability, which have the 679 

capability to encapsulate drug and cells (Breger et al., 2015; Gattás-Asfura, Valdes, 680 

Celik, & Stabler, 2014). 681 

 682 

3.2.2 Protein delivery 683 

Protein encapsulated polymeric microspheres have proved effective in releasing even 684 

very labile bioactive moieties (R. R. Chen & Mooney, 2003; Saltzman & Olbricht, 685 

2002), thus have drawn attention for many years. Proteins, including enzymes, growth 686 

factors, hormones, and interleukins, are employed in several biomedical applications as 687 

therapeutic agents (Dimitrov, 2012). Protein pharmaceuticals have high specificity and 688 

activity at relatively low concentrations, making them indispensable in combating 689 

human diseases. However, some harsh microenvironments, such as changes in pH, 690 

temperature, and ionic strength, can trigger the denaturing or alteration of protein 691 

structures, leading to the loss of therapeutic qualities (Z. Li et al., 2013; Wells & 692 

Sheardown, 2007). Alginate is an excellent candidate for protein delivery because it 693 

cannot be degraded in the human body via enzyme-catalyzed processes (Shalaby & 694 

Burg, 2003). Alginate is therefore attractive for encapsulation protein to minimize 695 

denaturation and prevent degradation. Several strategies have been assessed to enhance 696 

and regulate protein release from alginate-based formulations. 697 

Due to the porous structure and inherent hydrophilic properties, hydrogels have been 698 

chosen to tune the release rates of protein. However, hydrogels, with larger mesh sizes 699 
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than typical proteins, easily lead to the rapid release by diffusions (Boontheekul, Kong, 700 

& Mooney, 2005). Alginate can be utilized to prepare crosslinked hydrogels with a 701 

suitable structure to encapsulate proteins. For instance, I. Noh et al prepared 702 

functionalized alginate-based terpolymeric semi-interpenetrating (semi-IPN) hydrogel 703 

with small pore sizes (9.4±3.1 µm, 5.2±1.1 µm, 1.8±0.4 µm) (Das, Pham, Lee, & Noh, 704 

2019). These pores led to a sustained release of bovine albumin serum (BSA) for a 705 

period of 5 days and the sustained release of 5-amino salicylic acid (5-ASA) for a period 706 

of 30 h. The affinity and interaction of heparin-binding proteins and alginate 707 

contributed to the regulated containment and discharge of proteins (Ruvinov, Freeman, 708 

Fredo, & Cohen, 2016; Zuo et al., 2015). However, the cross reaction occurs between 709 

the crosslinking chemistries and encapsulated proteins, leading to the loss of bioactivity 710 

(McCall & Anseth, 2012). The bioorthogonal click chemistry between tetrazine and 711 

norbornene can form covalently crosslinked hydrogels, meanwhile, keep the integrity 712 

of encapsulated cargo (Alge, Azagarsamy, Donohue, & Anseth, 2013; Koshy et al., 713 

2016). When Laponite was incorporated into alginate substitute via spontaneous 714 

tetrazine and norbornene ligation, the interactions of alginate and Laponite could alter 715 

the crosslinking and swelling behavior. This hydrogel avoided protein denaturation and 716 

sustained the release of the encapsulated protein. The interactions of positively charged 717 

domains on proteins and negatively-charged Laponite played a crucial role (Koshy, 718 

Zhang, Grolman, Stafford, & Mooney, 2018).  719 

Alginate microspheres can efficiently encapsulate and protect proteins from 720 
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degradation, allowing for continuous protein release over a prolonged period. 721 

Crosslinking interactions between sodium alginate and proteins enabled the efficient 722 

loading of protein to alginate microspheres (Wells & Sheardown, 2007). In another 723 

study, alginate microspheres, with a diameter of 1-10 μm, effectively sustained the 724 

release of recombinant human bone morphogenic protein-2 (rhBMP-2) and also 725 

improved cell growth (Quinlan et al., 2015). Amino-yne click reaction was developed 726 

for enzyme immobilization due to its sustainability (Oktay, Demir, & Kayaman‐727 

Apohan, 2019). The immobilized enzyme using amino-yne was observed to preserve 728 

100% of its optimal activity at pH and temperature of 6.5 and 55 oC respectively (Oktay 729 

et al., 2020). Furthermore, a suitable environment was provided for the encapsulated 730 

live cells to grow, while also providing covalent modification on the cell-load 731 

microcapsules. 732 

3.3 Tissue regeneration  733 

Cartilage is a highly hypocellular tissue without self-repair abilities due to the 734 

absence of vascularization and chondrocytes density (Costantini et al., 2016; Kesti et 735 

al., 2015). Sports injuries or trauma result in focal lesions of the tissue, that may lead 736 

to the degeneration of the surrounding tissue. Surgical intervention is an effective 737 

method to treat and repair cartilage defects. Tissue engineering technique, combining 738 

stem cells, engineering technologies, and scaffolds, can fabricate biological constructs 739 

and thus support the regeneration of cartilage (J. R. Choi, Yong, & Choi, 2018). The 740 

hydrogels, formed with alginate and alginate-based materials, are three-dimensional 741 
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cross-linked networks, providing the microenvironment to facilitate the migration, 742 

adhesion, proliferation, and delivering cells and bioactive molecules (B. Choi, Kim, Lin, 743 

Wu, & Lee, 2014). Therefore, these hydrogels have often been utilized in tissue 744 

engineering approaches.  745 

Nowadays, some alginate-based hydrogels have gained a lot of interest, because these 746 

hydrogels can form the desired shapes to match irregular defects and transplant 747 

chondrogenic cells via a minimally invasive method (Ren, He, Xiao, Li, & Chen, 2015). 748 

Injectable hydrogel application has also generated a lot of attention in cartilage- and 749 

bone tissue-engineering applications. Click chemistry methods have been utilized to 750 

prepare injectable hydrogels, such as Michael addition-mediated hydrogels (Tan & 751 

Marra, 2010) and click chemistry-mediated hydrogels (Takahashi et al., 2013). For 752 

instance, Dove et al found that improved stiffness values and enhanced stability 753 

properties in aqueous media (Figure 7) were displayed in injectable click-hydrogels, 754 

ALG/HA-SH:21A click-hydrogels (Pérez-Madrigal et al., 2020), relative to gelatin-755 

based hydrogels cross-linked using the thiol-yne click reaction (Truong et al., 2017). 756 

These hydrogels maintained the important properties of injectability, cytocompatibility, 757 

and long-term stability in the soft 3D scaffold. In another study, the addition of calcium 758 

alginate microsphere with leptin to hydrogel, promoted cartilage restoration when it 759 

was transplanted into cartilage defects in rabbit femurs (R. Fu et al., 2019).  760 

Hydrogel loading cell growth factors and bioactive drugs  have been employed as the 761 

medium of delivery in bone tissue engineering applications (H. Chen et al., 2017),  to 762 
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maintain transfected chondrocytes for cartilage regeneration and regulate the discharge 763 

of tissue induction factor, and antibacterial drugs (Fernandez, Tierney, Cunniffe, 764 

O'Brien, & Kelly, 2016; Orth et al., 2011).  X. D. Cao et al choose Diels-Alder click 765 

chemistry and the thiol-ene reaction to fabricate sodium alginate based antibacterial 766 

hydrogels SA/PEG-HHC10 hydrogels. The sterilization rate reached 100% when a 767 

sufficient amount of HHC10 was incorporated (G. Wang et al., 2018). In another study, 768 

Etienne et al (Mateescu et al., 2015) designed two hydrogels, based on alginate 769 

modified with catechol moieties and the mixture of alginate catechol and thiol-770 

terminated Pluronic (AC/Plu-bisSH). Cytocompatible cross-linked HA-PEG hydrogels 771 

were produced by employing furan functionalized HA and dimaleimide modified poly 772 

(ethylene glycol) using the Diels-Alder click reaction, which is adequate for soft tissue 773 

engineering applications (Figure 5) (Nimmo, Owen, & Shoichet, 2011). These 774 

hydrogels can be injected and also ‘jellify’ in a few minutes. Moreover, the introduction 775 

of CTL in these gels inhibited P. gingivalis development in the surrounding living 776 

environment.  777 

Alginate-based dual-crosslinked hydrogels with two orthogonal crosslinking 778 

mechanisms, which are the spontaneous Diels-Alder reaction and the ultraviolet light-779 

initiated thiol-ene reaction were also employed by Cipitria et al (Lueckgen et al., 2020). 780 

These mechanisms facilitated the hydrogels characterized with configurations in 781 

stiffness, biomolecule presentation and degradation, granting localised regulation of 782 

cell behavior. To endow cell activity of pure alginate, alginate was chemospecifically 783 
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functionalized with thiol-ended bioactive peptides (Bubenikova et al., 2012). The 784 

alginate-based biomimetic matrices with multiple peptide signals promoted specific 785 

cell interaction on the functionalized areas and avoided non-specific adhesion due to 786 

the inert pure alginate. Therefore, alginate hydrogels have broad potential applications 787 

for tissue engineering. 788 

 789 

 790 

 791 
Figure 7. Robust alginate/hyaluronic acid thiol–yne click-hydrogel scaffolds with 792 

superior mechanical performance.  793 

(A) Preparation of ALG/HA-SH:21A click-hydrogels. Schematics illustrating the 794 

composition and cross-linking of the dense HA-SH: yne network (a) and the alginate-795 

based network (b). (c) Photographs of as prepared click-hydrogels: HA-SH:21A (no 796 

alginate in the composition) and ALG/HA-SH:21A (NCL = not cross-linked with Ca2+; 797 

CL = cross-linked with Ca2+). (d) Schematics illustrating the preparation steps of 798 

ALG/HA-SH:21A click-hydrogels;  799 

(B) Cryo-SEM images taken for HA-SH:21A (left) and ALG/HA-SH:21A (right) click-800 

hydrogels;  801 

(C)  Long-term stability of ALG/HA-SH:21A click-hydrogels at 37 °C in different 802 

environments. Swelling factor (SF) values recorded for click-hydrogels immersed in (a) 803 
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cell culture media with 1.8 mM Ca2+ (inset shows photo of ALG/HA-SH:21A after 14 804 

days of immersion; (b) Ringer's solution with 8 mM of Ca2+ at various concentrations 805 

of hyaluronidase (100 U mL−1, 50 U mL−1, or 10 U mL−1, and 0 U mL−1). Error bars: 806 

SD with n = 4. .(Pérez-Madrigal et al., 2020) 807 

 808 

3.4 3D Bioprinting  809 

Three-dimensional (3-D) bioprinting is a rapid and effective approach for fabricating 810 

functional tissues in vitro (Seliktar, Dikovsky, & Napadensky, 2013). This approach 811 

facilitates the generation of complex geometry characterized by spatial heterogeneity 812 

that is not granted when traditional scaffold-based techniques are utilised. 3-D 813 

bioprinting addresses critical challenges facing current tissue engineering approaches. 814 

Bioinks (cell-laden biomaterials), may be employed forencapsulated cell deposition in 815 

a fabricated 3D construct and in developed complex structures of natural systems and 816 

tissues (Groll et al., 2016; Moroni et al., 2018). Extrusion, inkjet bioprinting, and laser 817 

mechanisms are common bioprinting technologies (Hölzl et al., 2016; Malda et al., 818 

2013). The most commonly employed technique is the extrusion bioprinting method 819 

due to its comprehensive structure, operational simplicity, low cost, and printing 820 

functionality of cells with high densities (Murphy & Atala, 2014). Continuous bioink 821 

filament extruding from the nozzle is the most important property for extrusion. For 822 

inkjet bioprinting, bioink with picoliter-size droplets with low viscosity are used to 823 

construct higher resolution samples. For laser-assisted printing, higher concentration 824 

sodium alginate solution (6% and 8%) yielded a better printing quality and printed well-825 

defined tubular constructs (J. Yan, Huang, & Chrisey, 2013). It reduced shear and 826 

intensity impact/damage. 827 
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The ink constituents and quality are critical for printing structures to meet both 828 

mechanical and biological requirements. Alginates have received much attention 829 

because of their ability to robustly form cell-compatible hydrogels in mild conditions. 830 

To facilitate tissue formation, alginates were used as bioinks to provide a matrix 831 

scaffold to direct a specific 3-D cell growth (Jia et al., 2014). Daly et al., (Daly, 832 

Critchley, Rencsok, & Kelly, 2016) determined that alginate was most preferable to 833 

facilitate improvement of the hyaline-like cartilage for 3D bioprinting relative to other 834 

bioinks such as GelMA and BioINKTM. The viscosity and density are essential physical 835 

properties for alginate bioink. High viscosity bioinks provide integrity structures and 836 

support their own weight. However, gelation hinders the movement of encapsulated 837 

cells and reduces the capability to enable surrounding matrix re-structuring. Low 838 

viscosity bioinks provide a spacious and reconfigurable environment, lacking 839 

printability and integrity. Shear-thinning properties are possessed by alginate which 840 

also present high viscosities at relatively low concentrations of the alginate solution 841 

(Rezende, Bártolo, Mendes, & Filho, 2009). Bioprinting of fibroblast-laden alginate via 842 

extrusion printing revealed that even at a high concentration (10 wt.%) favorable 843 

printability (5 layers) was achievable, whereas for longer term cell culture (2 wt.%) the 844 

single layer may correlated with concentration (Shi, Laude, & Yeong, 2017). 845 

Rheological modifiers were utilized to prepare bioink, endowing desirable properties 846 

for the formation of free-standing structures (Leppiniemi et al., 2017; H. Li, Tan, & Li, 847 

2018). Apeldoorn et al (Marchioli et al., 2015) observed that 4% alginate/5% gelatin 848 
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was a suitable hydrogel solution for plotting of islet and β-cells, which does not 849 

compromise the viability and morphology. However, high viscosity resulted in a dense 850 

mesh size, which impairs glucose diffusion and limits islet functionality, leading to high 851 

shear stresses on cells and subsequently, cell death (Marchioli et al., 2015; Ning, 852 

Guillemot, Zhao, Kipouros, & Chen, 2016). The concentration of alginate solution 853 

influences cell migration and morphology. Figure 8, shows a modular cell-laden bioink 854 

based on a norbornene functionalized alginate system, which is characterized by a rapid 855 

UV-induced thiol-ene cross-linking mechanism that prevents acrylate kinetic chain 856 

formation(Ooi et al., 2018). This system was developed by Baker et al., (Ooi et al., 857 

2018). This altered bioink enabled printability and high cell survivability even at lower 858 

concentrations and produced 3-dimensional constructs that were stable. A novel 859 

crosslinking strategy was introduced into the bioink comprising of catechol modified 860 

hyaluronic acid (HACA) and alginate, involving ionic crosslinking, catechol mediated 861 

crosslinking, and Michael addition (Zhou, Yue, Chen, & Wallace, 2020). This bioink 862 

was easily extruded and crosslinking occurred when the two solutions from core and 863 

shell were in contact. During printing, proteins with cell adhesion motifs (gelatin) can 864 

be integrated with HACA/alginate hydrogel to improve cell interactions, and thus 865 

obtain high cell viability.  866 

 867 
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 868 
Figure 8. Norbornene functionalized alginate system as a cell-laden bioink for 869 

extrusion-based bioprinting. (A) Schematic overview of the strategy employed to 870 

develop photoactive alginate bioink (Alg-norb) for bioprinting of hydrogels reported in 871 

the current work. (B) Scaffolds bioprinted in a) the geometry of a pyramid. b) and c) 872 

the geometry of a cube. Porous-like structures can be seen in the cube scaffold shown 873 

in d) X-Y and e) Z planes when imaged between two glass coverslips. Of note, the 874 

bioprinting conditions used to produce these scaffolds match those optimized for high-875 

cell viability. These scaffolds have shown stability in PBS for over two months. 876 

Theoretical side length = 6.9 mm (13 strands, 0.53 mm between strands), total height = 877 

5.2 mm (200 μm/layer, 26 layers). (C) Images of 3D bioprinted hydrogels loaded with 878 

cells at a) day 0 and b) day 7. Green and red cell tracker labeled L929 as two different 879 

bioinks printed as alternating fibers c) in the X-Y plane and d) in the Z direction.(Ooi 880 

et al., 2018) 881 

 882 

4 Conclusions and Outlook 883 

Efficient and orthogonal click chemistries are critical for the functionalization of 884 

alginate molecules to produce well-defined structures and macromolecules. This review 885 

highlighted some exciting perspectives regarding the exploration of click reaction 886 

chemistry loaded novel cues in the application of alginate. Click modified alginate and 887 

alginate-based systems have been applied in different fields. Alginate and its derived 888 

polymers were discussed to demonstrate the feasibility of using click functionalization 889 

for various applications, along with their features. Some new types of materials with 890 
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novel functionalities, physiochemical stability, mechanical stability, cytocompatibility, 891 

and antibacterial properties, can be regulated to significance level with applied 892 

perspectives. Those constructs significantly reduce the cost in some applications, such 893 

as pharmaceutical, tissue engineering, wounding dressing, and 3D bioprinting.  894 

The future success of alginate or alginate-based systems is mainly dependent on rational 895 

structure and properties, designed via click chemistry, and involving chemical, physical, 896 

and biological properties. These properties can be adjusted by careful selection of 897 

molecules with appropriate molecular weights, regulating the proportion of reactive 898 

functional groups, types of functional groups, and constructive mechanism. Multi block 899 

copolymers are expected to be synthesized by standard chain extension via click 900 

reactions. It is also important for click reaction alginate to optimize fabrication 901 

procedures, adopt green preparation process, and improve cytocompatibility. However, 902 

unreacted initiators left behind may diffuse out of prepared products, leading to 903 

undesirable impacts on humans i.e., toxicity. For the application of hydrogel to cell 904 

attachment, improving cell binding and modulating degradation via click chemistry 905 

should be investigated. Click chemistry, as the cross-linking reaction, can generate 906 

micells for targeted delivery of therapeutic compounds. For 3D bioprinting, tuning 907 

viscosity and density of bioink, controlling gelation time, and techniques to obtain high 908 

cell survivability, should be studied. Due to continuous investigations into its potential 909 

uses, the future role of functionalized alginate and alginate systems remains noteworthy, 910 

with new treatment options in future research anticipated. 911 
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