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Abstract: Species distribution modelling studies the relationship between species occurrence records and
their environmental setting, providing a valuable approach to predicting species distribution in the
Southern Ocean (SO), a challenging region to investigate due to its remoteness and extreme weather
and sea conditions. The specificity of SO studies, including restricted field access and sampling, the
paucity of observations and difficulties in conducting biological experiments, limit the performance of
species distribution models. In this review, we discuss some issues that may influence model
performance when preparing datasets and calibrating models, namely the selection and quality of
environmental descriptors, the spatial and temporal biases that may affect the quality of occurrence
data, the choice of modelling algorithms and the spatial scale and limits of the projection area. We
stress the importance of evaluating and communicating model uncertainties, and the most common
evaluation metrics are reviewed and discussed accordingly. Based on a selection of case studies on SO
benthic invertebrates, we highlight important cautions to take and pitfalls to avoid when modelling
the distribution of SO species, and we provide some guidelines along with potential methods and
original solutions that can be used for improving model performance.
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Introduction

Due to its remoteness and extreme weather and sea
conditions, the Southern Ocean (SO) is a challenging
region in which to carry out biological studies (Kaiser
et al. 2013, Gutt et al. 2017). It is also one of Earth's
regions where we observe the most rapid and dramatic
environmental changes in marine ecosystems, motivating
the study of these marine communities (Turner et al.
2014, Ashton et al. 2017, Clark et al. 2019). Ecological
modelling approaches are now well established and can
be used to predict spatial patterns of organisms',
populations' and species' distributions and assess their
environmental drivers (Peterson et al. 2011). Based on
field observations and experimental datasets, ecological
modelling encompasses valuable approaches to helping
to analyse biological data and interpolating our
knowledge of species distributions in relation to
environmental descriptors (Kennicutt et al. 2014).
Species distribution models (SDMs) are ecological

models that study the statistical relationship between
species occurrence records and environmental factors,
determining the set of environmental conditions that is
suitable to a species distribution (Elith et al. 2006, Elith
& Leathwick 2009, Peterson et al. 2011). They represent
the species realized niche (Pearson 2007, Sillero 2011),

being the ensemble of abiotic conditions in which the
species survives and reproduces, adding into
consideration the influence of biotic interactions
(competition, predation, parasitism, symbiosis, etc.)
(Hutchinson 1957). SDMs have been widely used in
various fields of ecology, such as conservation biology,
biogeography, palaeoecology and global change biology
(Pearson 2007). In recent years, a growing number of
ecological studies have used SDMs to analyse the
distribution of marine pelagic and benthic species in the
SO (e.g. marine invertebrates, fish, seabirds and marine
mammals) and to determine species environmental
preferences (Loots et al. 2007, Pierrat et al. 2012, Xavier
et al. 2016, Nachtsheim et al. 2017), to compare
ecological niche predictions in response to changing
environments (Basher & Costello 2016, Gallego et al.
2017, Guillaumot et al. 2018b, Jerosch et al. 2019) or to
identify diversity hotspots for conservation purposes
(Pinkerton et al. 2010, Hibberd 2016, Thiers et al. 2017).
However, the quality of ocean-wide models is often

limited by the heterogeneity, amount and spatial
distribution of data, along with limited temporal and
spatial resolutions. For all of these reasons, both modelling
methods and model construction should be tested for
accuracy and robustness prior to interpretation, and these
indicators should be transparently communicated to ensure
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Fig. 1. Flow chart of the species distribution model construction process. Steps 1–4 concern data collection and treatment. Steps 5–7
integrate procedures for model implementation and validation. Dashed rectangles allow for a possible step backwards when
assessing model uncertainties or evaluating model performance. AUC= area under the receiver operating curve; COR= Pearson
correlation; GIS - Georeferencing Information System; TSS = true skill statistic.
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that model outputs are relevant given the specificities of the
datasets used for modelling.
In the present paper, we review the most common

methodological issues encountered in species distribution
modelling applied to the SO, following the flowchart in
Fig. 1. Challenges regarding occurrence and environmental
dataset peculiarities are described. The choice of SDM
algorithm and procedures to implement and evaluate
models are addressed. Based on benthic invertebrate case
studies, we stress important precautions to take and pitfalls
to avoid during common steps of SDM implementation.
Finally, we aim to provide some guidelines with a set of
potential methods and original solutions that can be used
for improving model performance.

Quality of datasets

Environmental datasets: field data

Preparing environmental datasets is the first encountered
challenge when generating models (Gutt et al. 2012, De
Broyer et al. 2014). The SO, here defined as waters south of
45°S latitude, covers an extensive area of > 20 million km2

(Breitzke 2014). Having access to environmental data with
good temporal and spatial resolutions at such a broad scale
is challenging, an issue common to all broad-scale
oceanographic studies (Robinson et al. 2017). 'Broad scale'
is defined here as the entire SO, 'regional scale' as smaller
areas of a few hundred square kilometres and 'local scale'
as a few square kilometres to square metres (Gage 2004).
Oceanographic data acquisition in the field is strongly

conditioned by weather and sea conditions along with the
seasonality of polar regions (polar night and dense sea-ice
coverage in winter) that prompt recurring gaps in the
acquisition of environmental data in the SO. Data are also
much more frequently sampled close to research stations
and along main sailing routes (Guillaumot et al. 2019).
This is particularly striking in regions such as the
south-western Weddell Sea, along the shores of the
western Antarctic Peninsula and in the Bellingshausen and
Amundsen seas (Clarke et al. 2007, Griffiths et al. 2014).

Environmental datasets: satellite-derived data

Satellite-derived data form a significant source of
information for SO oceanographic studies. Providing
valuable environmental indicators at broad spatial scale,
they can give details about continuous and long-term
measurements of water masses including sea-ice coverage,
extent and duration, sea-surface temperatures and
salinities, biogeochemical parameters, sea level, primary
production and typical meteorological parameters (El
Mahrad et al. 2020).
The accuracy of satellite data, however, should be

considered with care, given detection limits, interpolations

that reduce the influence of atmospheric particulate scatter
and the use of interpolation and gap-filling methods that
smooth raw data at broad spatial and temporal scales
(Pope et al. 2017, Stock et al. 2020).
Whenever possible, it is recommended to validate

environmental data derived from satellite products at
regional and local scales by comparing pixels on a satellite
image with 'real' field observation data (Henson et al. 2015,
Trull et al. 2018). Simple correlation analyses or more
complex ground-truth processes are available to compare
satellite and in situ data and to secure the interpretation of
satellite-derived products (White-Newsome et al. 2013,
Allan 2014). This, however, constitutes a huge task and is
not performed generally before implementing SDMs.

Environmental datasets: access to datasets

Environmental data generated at the scale of the entire SO
can be accessed for free through different web portals such
as the NASA's OceanColor Web (https://oceancolor.gsfc.
nasa.gov), where satellite-derived data, averaging
different temporal measurements down to 4 km
resolution, are available at the scale of the entire SO
dating from 2000. These images are post-processed to
characterize sea-surface temperature or ocean colour as
proxies of surface productivity.
The National Oceanic and Atmospheric Administration's

(NOAA) data centre (WOCE2013; https://www.nodc.noaa.
gov/OC5/woa13/woa13data.html) also makes available
post-processed data of ocean temperature, salinity, oxygen
concentration and nutrients at different grid formats,
down to 0.25° resolution, averaging over six decades (from
1955 to 2012). Bio-ORACLE (https://www.bio-oracle.org)
compiles a large panel of marine data layers at 1° spatial
resolution for different depth layers and time periods, for
the present (2005–2012) and the future (2040–2050;
2090–2100) (Assis et al. 2018). Finally, GEBCO (https://
www.gebco.net) is the reference platform for
very-high-resolution bathymetry data (∼500m resolution)
of the world's oceans.
Several works also make available compilations of these

SO datasets dedicated to ecological modelling in the SO;
they represent a valuable source of information for starting
data preparation and modelling (https://data.aad.gov.au/
metadata/records/Polar_Environmental_Data, https://data.
aad.gov.au/metadata/records/fulldisplay/environmental_layers,
https://data.aad.gov.au/metadata/records/Environmental_
data_Southern_Ocean).
An increasing amount of environmental data collected

during SO oceanographic campaigns have been made
accessible for regional-scale studies. Several web portals
aggregate all of these field measurements and provide
them open access (e.g. https://www.marine-geo.org/
collections/#!/collection/USAP#summary; https://www.
pangaea.de).
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Environmental datasets: spatial and temporal resolutions

Most environmental data are accessible through
broad-scale maps from the aforementioned data portals
and are available with a finest spatial resolution of
∼4 km, if not coarser (https://data.aad.gov.au/metadata/
records/Polar_Environmental_Data, De Broyer et al.
2014, https://data.aad.gov.au/metadata/records/fulldisplay/
environmental_layers, https://data.aad.gov.au/metadata/
records/Environmental_data_Southern_Ocean). This low
resolution strongly hampers the precise assessment of
relationships between species occurrences and
environmental descriptors (Pittman 2017, Staveley et al.
2017) and consequently the accuracy of model
predictions (Connor et al. 2018), because the relevance of
environmental descriptors represents a trade-off between
their resolution and their spatial and temporal coverage
(Guisan et al. 2007, Seo et al. 2009, Lauzeral et al. 2013,
Vale et al. 2014). It is recommended that the resolution of
environmental descriptors used in SDM should be in
line with the scale of ecological processes at play and
for which species ecophysiological responses show the
highest variations, if models are expected to capture
most species-environment relationships (Austin &
Van Niel 2011).
The published environmental datasets are often

averaged over relatively long periods of time (from years
to decades for WOCE2013 or Bio-ORACLE). The
analysis of inter-annual variations can complement the
interpretation of model predictions: the absence of such
information does not preclude running models, but this
should be kept in mind when it comes to interpreting
model outputs (Guillaumot et al. 2018a). Important
environmental variations within a reference time period
may not satisfy the equilibrium criterion between species
distribution and environmental conditions, which is a
strong prerequisite of SDM (Elith et al. 2006) and may
affect the relevance and accuracy of model predictions

(Guillaumot et al. 2018a). In this respect, an alternative
for improving modelling performance would be using
seasonal averages or extreme values as environmental
descriptors rather than pluri-annual to annual averages
(Franklin 2009, Bradie & Leung 2017).

Environmental datasets: cartographic projections

Considering the poles in numerical analyses has long been
a source of difficulty in spatial modelling as the
convergence of meridians distorts shapes, surfaces,
angles or distances towards high latitudes when using
standard cylindrical representations such as the
Mercator projection (Deleersnijder et al. 1993, Eby &
Holloway 1994, Murray 1996). Working with conical or
azimuthal projections (e.g. polar stereographic system)
helps maintain the consistency of angles and shapes and
therefore better meets the requirements of SO studies,
although areas and distances are progressively distorted
when moving away from the pole (Mulcahy & Clarke
2001).
Mapping environmental descriptors and projecting

model predictions can be carried out with either square
or hexagonal pixels. Each option does not alter image
quality and hexagonal shapes may even offer some
advantages (Kamgar-Parsi & Sander 1989, Tirunelveli
et al. 2002). However, some contrasts may be present
between images using square or hexagonal pixels, as each
pixel measures the average environmental conditions in
the considered surface (Vanden Berghe et al. 2013).
Subdividing the study area into sub-regions and using

different pixel shapes can be a good solution for
improving the relevance of representations (Vanden
Berghe et al. 2013, M. Cryer, unpublished data 2015).
Evaluating the accuracy of environmental values
captured both in square and hexagonal pixels using
baseline in situ field measurements can also be

Fig. 2. Cumulative number of Antarctic
species described over time, according to
data available in the Register of Antarctic
Marine species (until March 2010). From
De Broyer & Danis (2011).
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suggested. This is yet to be tested for ecological modelling
studies for the SO.

Environmental datasets: future forecasts

Since 1992, future climate models have been constantly
updated through the efforts of the Coupled Model
Intercomparison Projects (CMIP) featured by the
Intergovernmental Panel on Climate Change (IPCC)
Assessment Reports (ARs) with the aim of providing a

plausible representation of future climate linked to
potential anthropogenic impacts (https://www.ipcc.ch/
site/assets/uploads/2018/03/sres-en.pdf, Mearns et al.
2001). Recent updates (CMIP5 and CMIP6) of climate
models are driven by different possible future
greenhouse gas emission scenarios (Representative
Concentration Pathways RCP2.6, RCP4.5, RCP6.0 and
RCP8.5, from the least to the most pessimistic scenario
for CMIP5, and Shared Socioeconomic Pathways SSP1
to SSP5 for CMIP6) and are built upon the average of
an ensemble of simulations (Hayhoe et al. 2017). Future

Fig. 3.Distribution of benthos sampling sites (red dots) in the Southern Ocean (SO, < 45°S). Sampling sites are not evenly distributed in
the SO, showing important spatial aggregation in the Scotia Arc region and Western Antarctic Peninsula with several clusters along
the Antarctic shelf, and over the Kerguelen and Campbell plateaus. In contrast, deep-sea regions and remote areas of the Antarctic
shelf are under-sampled. From Guillaumot et al. (2019), updated from Griffiths et al. (2014).
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climate models for the SO are available through two main
online platforms: Bio-ORACLE (https://www.bio-oracle.
org; Assis et al. 2018) and the NOAA's portal (https://
psl.noaa.gov/ipcc/ocn).
The relevance of using future predictions based on global

assessment scenarios for marine studies has been widely
questioned (Flato et al. 2014, Frölicher et al. 2016, de la
Hoz et al. 2018), including their use in SDMs, given that
climate models mainly rely on untestable assumptions
(Beaumont et al. 2008, Gotelli & Stanton-Geddes 2015,
Cavanagh et al. 2017, Freer et al. 2018), future layers are
not always available for oceanographic studies (Fabri-Ruiz
2018, Guillaumot et al. 2018a, 2018b), discrepancies
between present observations and future predictions can be
problematic (Jiménez-Valverde et al. 2021) and models are
based on a representation of the climate system that has a
complex cascading effect on ecological processes
(Cavanagh et al. 2017). Cavanagh et al. (2017) examined
how well IPCC-class models reproduced sea-ice
conditions. By subsetting CMIP5 models that best describe
spatial extent and temporal ice cover, they improved the
precision of the projected future sea-ice distribution, which
was better suited to ecological analyses. Extending this
method to other key oceanographic parameters should
contribute to improving the accuracy of future climate
models for the SO and their relevance to ecological studies.

Occurrence datasets: historical compilation

Biological sampling in the SO began with the first
expeditions of the HMS Challenger (1873–1876).
Sampling effort has considerably increased over the
second part of the twentieth century and during recent
decades in particular, following technological advances
that have enabled the access to remote regions and
sample processing (Fig. 2).
This long-lasting and irregular effort in biogeographical

(occurrence) data collection has had an impact on data
compilation and has resulted in heterogeneous datasets,
as observed in several data papers and associated
Integrated Publishing Toolkit (IPT) databases such as
Guillaumot et al. (2016), Fabri-Ruiz et al. (2017) or
Moreau et al. (2018), or in the general platform
biodiversity.aq web portal.
The historical compilation of biological data includes

1) taxon misidentifications and taxonomic inconsistencies
due to the various taxonomic revisions published
through time, 2) errors in the georeferencing of
occurrence records due to contrasting nomenclatures
used to report latitude and longitude, 3) the
accumulation of errors in metadata through the different
generations of curation and 4) errors due to the use of
different coordinate projection systems. Finally, in cases
where species distributions may have shifted with time,
species environmental preferences may have changed or

non-contemporaneous environmental or occurrence
datasets are used, discrepancies between occurrence
records and environmental conditions can be present
and violate the environment-occurrence equilibrium
assumption necessary to generate SDMs. All of these
side effects were reviewed in detail by Newbold (2010).
The impacts on species niche definition and SDM
predictions have been reported in many works (Ensing
et al. 2012, Lahoz-Monfort et al. 2014, Monk 2014,
Aguiar et al. 2015, Tessarolo et al. 2017, Guillaumot
et al. 2018a) that all advise us to thoroughly check
datasets for quality management prior to running models.

Occurrence datasets: spatial aggregation

Most species occurrence datawere collected in the vicinity
of research bases or their surroundings or along recurrent
maritime routes, leading to clear spatial aggregation
patterns in biological datasets (Fig. 3) (Griffiths et al.
2014, Guillaumot et al. 2019).
Spatial aggregation can affect model accuracy, as

aggregated presence records do not fully and
homogeneously represent the entire environment that is
occupied by given species. This aggregation also violates
an initial assumption of SDMs that requires independence
between records (Araújo & Guisan 2006, Hijman 2012).
This may bias model predictions (Luoto et al. 2005,
Segurado et al. 2006, Dormann 2007, Kühn 2007, Crase
et al. 2012), leading to statistical artefacts and generating
inaccurate patterns (Bahn & McGill 2007, Currie 2007).
Spatial aggregation of data and the effect of this spatial

aggregation on model outputs can be quantified using the
Moran's I index, which estimates the spatial
autocorrelation between the presence records used to
build the model and predicted presence probabilities
(Luoto et al. 2005). This spatial autocorrelation implies
that close pixels are expected to present more similar
predicted probabilities than distant ones due to the short
geographical distance between records rather than
environmental similarities alone. Testing and correcting
for this bias should help to reduce its impact on model
predictions (see the 'Correcting spatial biases' section)
(Diniz-Filho et al. 2003, Kühn 2007).

Occurrence datasets: presence-only records

SDMs based on presence/absence data are recognized as
having better predictive performance than models using
presence-only data (Zaniewski et al. 2002, Brotons et al.
2004, Wisz & Guisan 2009, Lobo et al. 2010, Smith
2013, Carvalho et al. 2015, Peel et al. 2019). However,
except for some local-scale studies (e.g. Robinson et al.
2011), in most oceanographic studies species absence
records are usually not available for SDMs, and working
with presence-only records is the only alternative (Lobo
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et al. 2010). SDMs are then built by associating
presence-only records with a random selection of
background records that will be used to characterize the
full environmental conditions (Franklin 2010,
Barbet-Massin et al. 2012). Background records should
not be mistaken for pseudo-absence records that are
artificial absence data, where the species is supposed (but
not confirmed) to be absent. Pseudo-absence records do
not represent the overall conditions of the study area.
Presence/pseudo-absence models represent another
modelling approach, predicting occupied and unoccupied
habitats rather than suitable and less suitable habitats for
presence/background modelling (Sillero & Barbosa 2021).
Presence-only datasets may contain several uncertainties

that can bias model predictions. 1) Working on rare or
cryptic species is generally prone to taxonomic
misidentifications that may either contract or,
alternatively, expand the extent of predicted species
distributions (Costa et al. 2015, Aubry et al. 2017). Such
biases due to taxonomic errors were shown to be highly
variable and to depend on experts identifying specimens,
as suggested by Beale & Lennon (2012), who worked on
a compilation of several collections. 2) Sampling gear
may have an impact on species detection. Inaccurate
species observations may generate false-positive results
(species predicted as being present when they were not
sampled or observed in the field) and false-negative
results (species predicted as being absent when they were
sampled or observed in the field) during model
initialization (Guillera-Arroita 2016). Species presence
records should be carefully scrutinized prior to modelling
(Lozier et al. 2009), or at least records should be
categorized into different subsets of data verifiability
(Aubry et al. 2017). 3) Georeferencing errors are a
frequent issue in databases (Murphey et al. 2004,
Maldonaldo et al. 2015). This is especially the case in
large databases compiling independent datasets using
species presences recorded with varying levels of precision
(Graham et al. 2008, Bloom et al. 2018). Several studies
have simulated virtual random georeferencing errors and
have shown that these errors lead to significant drops in
model performance and inconsistencies in the respective
contributions of environmental descriptor contributions,
influencing model interpretation (Graham et al. 2008,
Osborne & Leitão 2009, Naimi et al. 2011). These side
effects seem to be minimized in local-scale models, here
again advocating for the use of local-scale models
whenever possible (Mitchell et al. 2017).

Occurrence datasets: dealing with small datasets

Usually, the numberof species presence records available for
modelling is relatively limited considering the wide
geographical extent of the SO (De Broyer et al. 2014).
Generating SDMs with small datasets may include many

pitfalls: 1) It reduces the potential of SDMs to transfer in
space and time (Hernandez et al. 2006, Raes 2012), 2) it
truncates predicted distribution and niche definition (Hortal
et al. 2007, 2008, Rocchini et al. 2011, Sánchez-Fernández
et al. 2011, Titeux et al. 2017, El-Gabbas & Dormann
2018), 3) it reduces modelling goodness-of-fit as the model
may wrongly represent reality (Stockwell & Peterson 2002,
McPherson et al. 2004, Pearson et al. 2007, Wisz et al.
2008, Liu et al. 2019), 4) it increases instability between
model replicates (Guillaumot et al. 2018a), 5) it gives rise to
methodological constraints on threshold selection
(Jiménez-Valverde & Lobo 2007, Bean et al. 2012), 6) it
gives rise to methodological constraints on the application
of evaluation metrics (Pearson et al. 2007), 7) it complicates
the identification of model optimal complexity (Galante
et al. 2018) and 8) it leads to a reduction in model accuracy
because presence and background datasets would not differ
markedly (Luoto et al. 2005).
Alternatives arebeingdeveloped toproducemore accurate

models based on a limited amount of presence records. One
solution is generating severalmodels performed on restricted
areas and datasets with more detailed information and then
averaging them with a weighted ensemble approach. This
'ensemble of small models' approach showed improved
performance compared to single models (Lomba et al.
2010, Breiner et al. 2015, 2018).
Another alternative is to restrict the prediction area

according to where occurrence records are found and
ensuring upstream that the number of records is sufficient
to precisely characterize the species environmental
preferences: trivial advice that is surprisingly neglected, as
recently pointed out by Morales et al. (2017) and Araújo
et al. (2019).

Occurrence datasets: definition of species-occupied
environmental space

Spatial aggregation, along with heterogeneity, limited size
and uncertainties in datasets, can strongly bias the
quantification of the species-occupied environmental
space (Hortal et al. 2008, Newbold 2010, Tessarolo et al.
2017). However, accurately defining species-occupied
space is the cornerstone of SDM initialization (Elith
et al. 2006, Boulanger et al. 2018).
Moreover, SDMs suppose that species are in

equilibrium with the environmental conditions that they
inhabit. SDMs do not take into consideration potential
vagrants that have dispersed out of their usual
environmental range or populations that could
momentarily survive in unsuitable habitats because
doing so violates the equilibrium assumption between
species distribution and environmental conditions (Beale
& Lennon 2012). These elements should be cautiously
considered when preparing datasets prior to generating
models by removing any atypical records.
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Over the last two decades, field data acquisition has
expanded through the use of biologging technology with
electronic devices attached to seabirds and marine
mammals in order to access the positions of species all
year long (Raymond et al. 2015, Ropert-Coudert et al.
2020). These data uncover the hidden behaviours of
marine animals and constitute a powerful way of better
estimating species-occupied space; they can also be used
to validate and refine our understanding of the
environmental conditions prevailing in those species
distribution areas (Arthur et al. 2017, Nachtsheim et al.
2017, Hindell et al. 2020).

Adapting model implementation to datasets

The choice of modelling algorithms

To run performant SDMs, several assumptions must be
tested and computing methods adapted to each case
study (Austin 2002, de la Hoz et al. 2019). Among them,
the choice of the modelling algorithm should be of
major concern, as no algorithm works best for all
species, in all areas, at all spatial scales and in all time
periods (Jarnevich et al. 2015, Qiao et al. 2015). The
selection and parameterization of modelling algorithms
proved to be major causes of variation between SDM
predictions (Dormann et al. 2008, Diniz-Filho et al.
2009, Buisson et al. 2010, Watling et al. 2015, Boulanger
et al. 2018). Each algorithm is particularly suited for

dealing with a specific type and quality of data (Guisan
& Zimmermann 2000, Austin 2002, Elith et al. 2006,
Peterson 2011, Guisan et al. 2017), which will determine
the final model outputs (Aguirre-Gutiérrez et al. 2013,
Beaumont et al. 2016).
When modelling species distribution, it is necessary to

select appropriate algorithms that have good
transferability performances (i.e. have good abilities to
correctly transfer predictions to other geographic space
and time periods; Randin et al. 2006) and that they limit
overfitting (i.e. mitigate model complexity) while being
flexible in integrating complex environmental
relationships. Machine-learning algorithms (e.g.
maximum entropy (MaxEnt), boosted regression trees
(BRTs), random forests (RFs), support vector machines
(SVMs); Vapnik 1998, Breiman 2001, Elith et al. 2008,
2011) give access to important aspects of computing
performance (Zhou 2012) and are relevant approaches
for handling complex relationships between species
occurrences and the environment (Olden et al. 2008,
Elith & Leathwick 2009). The BRT and RF algorithms
are particularly suited to complex and heterogeneous
datasets (Fig. 4; Guillaumot et al. 2020a). They were
proven to be efficient in generating performant models
with limited overfitting (Elith et al. 2006, Wisz et al.
2008, Wenger & Olden 2012). They can automatically
select the most informative features among a large set
(Merow et al. 2014, García-Callejas & Araújo 2016,
Guillaumot et al. 2020a) and perform well at

Fig. 4. Compared area under the receiver
operating curve (AUC) performances of
species distribution models generated with
different algorithms (ANN= artificial
neural network, BRT= boosted regression
trees, CTA= classification tree analysis,
FDA= flexible Discriminant analysis,
GAM= generalized additive model,
GLM= generalized linear model,
MARS =multivariate adaptive regression
splines, MAXENT=maximum entropy,
RF = random forest, SRE = surface range
envelope) to predict the distribution of the
sea urchin Sterechinus diadema in the
Southern Ocean. Results show a good
performance for BRT and RF, adapted to
small, historically compiled datasets
(temporally heterogeneous) and spatially
aggregated presence-only data. Models
were calibrated with presence-only data
and 200 background data randomly
sampled in the study area. Average scores
of 100 model replicates. See Guillaumot
et al. (2018b) for details.
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generalizing predictions in the absence of information or,
conversely, at dealing with redundant information
provided by correlated factors (Breiman 1984, De'ath &
Fabricius 2000, Friedman 2001).
The different fields of application and the respective

performance of existing algorithms have been extensively
compared in various works based on 1) a single species
(Pearson et al. 2006: plants in South Africa; Elith &
Graham 2009: plant distribution in South Australian
landscapes; Marmion et al. 2009: European butterflies;
Lorena et al. 2011: plants in South America;
Beaumont et al. 2016: mammals in Australia) or 2) an
ensemble of worldwide distributed terrestrial (Elith
et al. 2006) or marine species (Ready et al. 2010), for
3) certain regions only (Guisan et al. 2007: trees in
Switzerland; Tsoar et al. 2007: snails, birds and bats in
Israel; Reiss et al. 2011: benthic marine species in the
North Sea; Bucklin et al. 2015: vertebrates of Florida)
or 4) using virtual species (Meynard & Quinn 2007,
Qiao et al. 2015, García-Callejas & Araujo 2016).
However, in order to generate such comparisons

(Fig. 4), it is important to specifically adjust each
algorithm to the case study. Algorithms all perform
differently with regards to overfitting, spatial aggregation
and transferability, and comparing model performances
using different parameter settings is challenging (Merow
et al. 2014) given that model parameterization has
strong effects on the quality of model outputs (Anderson
& Gonzalez 2011, Rodda et al. 2011, Warren & Seifert
2011, Yackulic et al. 2013, Radosavljevic & Anderson
2014, Moreno-Amat et al. 2015, Halvorsen et al. 2016,
Galante et al. 2018, Lieske et al. 2018).
Initially developed in the 1990s, ensemble modelling

has been increasingly used since then (Hansen &
Salamon 1990, Schapire 1990). Ensemble modelling
consists of combining several algorithms (Zhou 2012),
input datasets (occurrence or environmental descriptors
datasets) or parameterizations (Araújo & New 2007; and
see Hao et al. 2019 for a review of applications). The
approach is interesting as it can provide predictions that
take into account the variability of several models
(Araújo & New 2007, Hao et al. 2019).
Ensemble modelling has been used for various studies

with SDMs (Araújo & New 2007, Marmion et al. 2009,
Thuiller et al. 2009, Buisson et al. 2010, Luedeling et al.
2014, Trolle et al. 2014, Carvalho et al. 2015, Scales et al.
2016, Jerosch et al. 2019) and has benefitted from the
development of R packages to implement them (Biomod:
Thuiller et al. 2009; BiodiversityR: https://cran.r-project.org/
web/packages/BiodiversityR/index.html; biomod2: https://
cran.r-project.org/package=biomod2; sdm: https://cran.r-
project.org/web/packages/sdm/index.html).
The main benefits of using ensemble models lie in the

fact that the different algorithms will perform differently
for various input cases (regardless of their overall

performance). The models thus complement each other,
avoiding some biases that might have resulted from using
a single algorithm (Marmion et al. 2009, Knutti 2010,
Zhou 2012). However, model interpretation is much
more difficult when mixing algorithms implemented
differently, with contrasting ways of presenting outputs
(Sillero 2011) and different definitions of thresholds for
identifying habitat suitability (Perrault-Hébert 2019),
requiring the normalization of predictions, which is
rarely applied (Zhang & Mahadevan 2019). This is the
main limitation to the approach and could offset the
gains in model performance (Crimmins et al. 2013, Zhu
& Peterson 2017, Hao et al. 2020). Such gains were
contested, especially since model evaluation was often
performed without using an independent evaluation
dataset (Hao et al. 2019). Combining predictions of
different models generated with contrasting assumptions
is therefore tricky when interpreting results (Perrault-
Hébert 2019). Optimizing the parameterization of a
single algorithm (which could be correctly evaluated)
may therefore constitute a more valuable approach
(Perrault-Hébert 2019). Comparing the performance of
different algorithms can be helpful in the first stage of
the modelling process in order to select the most suitable
algorithm and to calibrate the models (Massada et al.
2013).

The choice of environmental descriptors

The selection of environmental descriptors is also a crucial
step in the modelling process (Franklin 2010, Austin &
Van Niel 2011, Petitpierre et al. 2017). Ideally,
environmental descriptors should be selected for their
ecological relevance to the studied organisms (Austin &
Van Niel 2011, Dormann et al. 2012, Bradie & Leung
2017), they must capture environmental discontinuities
and constraints in the distribution area (Jarnevich et al.
2015) and they should also be detailed enough to
represent the habitat complexity and variability in order
to allow for good SDM accuracy and performance
(Elith & Leathwick 2009, Barbet-Massin et al. 2012,
Bucklin et al. 2015, Petitpierre et al. 2017).
In most studies, the final number of descriptors selected

to depict the species environment is generally close to 10
(Pierrat et al. 2012, Mormède et al. 2014, Guillaumot
et al. 2018a, Fabri-Ruiz et al. 2019). Overall, a small
number of descriptors will allow for the generation of
less complex models and facilitate interpretation (Austin
& Van Niel 2011, Braunisch et al. 2013, Bucklin et al.
2015, Petitpierre et al. 2017). In contrast, increasing the
number of descriptors potentially increases the effect of
any collinearity between them (i.e. correlation between
values of descriptors), which may lead to statistical
artefacts in model predictions if the algorithms cannot
handle information redundancy (Dormann et al. 2012,
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Merow et al. 2014). Therefore, collinearity is usually tested
for beforehand and collinear descriptors are adjusted (in
practice, one descriptor of a pair is removed) before
running the model (Dormann et al. 2012, Merow et al.
2013, Fois et al. 2018). However, Guillaumot et al.
(2020a) showed that model complexity, transferability
and accuracy do not significantly change between
models generated with different sets, including from 4 to
58 collinear descriptors when using the BRT algorithm.
BRTs automatically keep the most relevant descriptors
to describe species distribution and can deal with
redundant information (De'ath & Fabricius 2000,
Whittingham et al. 2006, Elith et al. 2008), which is not
the case for all algorithms (Merow et al. 2014).
Selecting environmental descriptors therefore implies

that several tests should be performed upstream in order
to determine the best set to be used depending on
research objectives. Fois et al. (2018) recommended first
calibrating models with a large set of descriptors of
various natures (proximal vs distal descriptors) that will
be pruned stepwise after analysing their ability to
accurately describe the habitat and after testing for
collinearity (El-Gabbas & Dormann 2018). Generating,
testing and comparing several sets of descriptors is a
widespread strategy to target in a stepwise manner the
set that gives the best predictive accuracy (Snickars et al.
2014, Bucklin et al. 2015, Bradie & Leung 2017,
Petitpierre et al. 2017). Replacing environmental
descriptors by principal components of a factorial

analysis also proved to be efficient because complex
environmental gradients of the study area are simplified
in fewer, orthogonalized components (Kühn 2007,
Petitpierre et al. 2017). So far, this latter method has
never been applied to SO case studies, and it should be
tested in order to evaluate the interpretability of model
results.

Correcting spatial biases

Generating a model based on spatially aggregated
presence-only records may bias predictions with a higher
probability of occurrence predicted in highly sampled
areas (Dormann 2007, Guillaumot et al. 2018a). To
compensate for such a bias, a first approach is to sample
background records according to the spatial bias
introduced by the aggregated presence records
themselves (Phillips et al. 2009). The background dataset
is used to define the environmental background: its
boundaries and variability constitute essential
information for building and projecting model outputs
(Wisz & Guisan 2009, Barbet-Massin et al. 2012). The
choice of the number of background records to be
sampled and the extent of their distribution should be
considered carefully when calibrating a model because it
can strongly influence model predictions (Chefaoui &
Lobo 2008, Lobo et al. 2010, Barbet-Massin et al. 2012,
Jarnevich et al. 2017). This number should be with
respect to the prevalence score, being the ratio between

Fig. 5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchin Ctenocidaris nutrix on the Kerguelen
Plateau: a. without compensating for sampling bias; b. with a kernel density estimator (KDE) correction. More background data are
sampled in highly sampled areas. The spatial aggregation of presence-only records near the shoreline of the Kerguelen Islands strongly
biases model predictions. The KDE correction was proven to be efficient at correcting for such a bias and provides more relevant
predictions. From Guillaumot et al. (2018a).
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the species-occupied space (represented by presence
record locations) and the total surface of the study area
(represented by background locations; McPherson et al.
2004). Some advice is provided in Barbet-Massin et al.
(2012) for selecting the correct number of background
records according to prevalence scores.
Targeting background records has been extensively

tested, and several procedures have been developed to
significantly improve the relevance of models (Fig. 5).
Background records can be sampled within predefined
areas (i.e. 'discs' or 'buffers') close to presence records
(Hengl et al. 2009, Phillips et al. 2009, Fourcade et al.
2014, Bertrand et al. 2016), following the presence or
absence of other species (Phillips et al. 2009, Syfert et al.
2013, Iturbide et al. 2015, Molloy et al. 2017, Phillips
et al. 2017, Ranc et al. 2017), according to probabilities
given by a kernel density estimator of the sampling
frequency (Fourcade et al. 2014, Jarnevich et al. 2017,
Guillaumot et al. 2018a, Fabri-Ruiz et al. 2019) or
according to additive descriptors of accessibility and
sampling effort (El-Gabbas & Dormann 2018). Once
again, the selected method should be adapted to each
case study and its efficiency tested prior to model
interpretation (Støa et al. 2018).
A second method consists of filtering the available

presence data to reduce the influence of the clustering of
species records (Segurado et al. 2006, Kramer-Schadt
et al. 2013, Boria et al. 2014). This is an efficient
method compared to the background targeted sampling
approach detailed above, but the remaining number of
presence records after filtering should be sufficient to
correctly determine species-occupied space (Kramer-
Schadt et al. 2013). Reliable information should also be
available to characterize the bias in species occurrence
data (Aiello-Lammens et al. 2015, Sillero & Barbosa
2021). The filtering protocol requires meeting many
prerequisites, but priority is given to keeping presence
data independent and minimizing records clustering
(D. Alagador, personal communication 2019).
Overall, if several methods are developed to correct for

the effect of spatial aggregation on model outputs, it is
recommended that one should interpret model
projections performed for poorly sampled areas with
great caution (Phillips et al. 2009, Iturbide et al. 2018).

Model outputs

Taxonomic bias and population variability

SDMs are usually parameterized using all presence
records available for a species and all environmental
conditions prevailing in the species records (Elith &
Leathwick 2009). When modelling species distribution at
a broad spatial scale, it is often assumed that all
populations of a species have the same relationship to

environmental conditions over the entire distribution
area (Pierrat et al. 2012, Xavier et al. 2016, Guillaumot
et al. 2018b, Fabri-Ruiz et al. 2019). However,
occurrence datasets may include a set of populations
with different phenotypic plasticities (Chevin et al.
2010), transgenerational adaptations (Dixon et al. 2015)
or simply different habitat selection in the case of vagile
species. Therefore, the modelled species can actually
present different abilities to respond to environmental
changes. In particular, physiological performances of
populations are likely to vary in marine species with
wide distribution ranges and high dispersal capabilities
over long distances (Thatje 2012). This is particularly
relevant with regards to future predictions that do not
integrate inter-population variability in the potential
acclimation of species, and this may lead models to
alternatively over- or under-estimate the distribution of
species-suitable environments (Cacciapaglia & van
Woesik 2017, Thyrring et al. 2017).
Phylogeographical studies have also regularly revealed the

existence of cryptic species in the SO benthos, which show
similar morphologies for distinct genotypes and potentially
distinct ecological requirements and geographical
distributions (Lozier et al. 2009). Such studies often stress
the need for taxonomic revisions (González-Wevar et al.
2019, Ocaranza-Barrera et al. 2019, Moreau et al. 2021).
SDMs can be generated based on a spatial subdivision of
presence records according to the genetic structure of taxa,
and in a second step, the different predictions can be
merged together to the broader scale (Knowles et al. 2007,
Marcer et al. 2016, Cacciapaglia & van Woesik 2017,
Ikeda et al. 2017, Roberts et al. 2017, Pardo-Gandarillas
et al. 2018). However, defining the genetic structure of
benthic species in the SO is a long-term endeavour
that requires a constantly renewed sampling effort,
considering the extent and complexity of the study area
(Moreau et al. 2017, Fraser et al. 2018, Moore et al. 2018).
Waiting for taxonomic revisions and enhanced sampling
efforts to best depict relationships between genetic units
and environmental conditions (Vandersteen 2011) and
combining SDMs with experimental data or mechanistic
approaches can be alternatives for taking into account the
possible physiological contrasts between populations
(Kearney & Porter 2009, Buckley et al. 2010, Kearney
et al. 2010, Fordham et al. 2013, Briscoe et al. 2016, Feng
& Papes 2017, López-Farrán et al. 2021).
Definition of the projection area
The limitations in the current knowledge of species

distribution also affect the quality of information
available for estimating their potential distribution
(Thuiller et al. 2003). When the limits of species
environmental ranges are not fully captured, this
uncertainty can significantly impact the accuracy of
SDM predictions (Hortal et al. 2007, 2008, Rocchini
et al. 2011, Sánchez-Fernández et al. 2011, Titeux et al.
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2017, El-Gabbas & Dormann 2018). It reduces the
applicability of models for predictive purposes (Thuiller
et al. 2004), induces model overfitting (Tsoar et al. 2007,
Barve et al. 2011, Guillaumot et al. 2018b) and can lead
to overestimating the extent of suitable areas (Anderson
& Raza 2010). This bias can be partly overcome by
reducing the extent of the projection area to the known
distribution of the available occurrence records
(Anderson & Raza 2010) and by increasing knowledge
regarding species ecology and physiology in order to
identify the environmental conditions that are unsuitable
for their survival or development (Byrne et al. 2016).

Model extrapolation

Models are said to extrapolate when a portion of the
predicted area includes environmental conditions that
are outside the range of values for which the model was
calibrated. Model extrapolation may occur when model
predictions are transferred, either in space or time. When
extrapolated, model predictions are in non-analogue
conditions compared to the initial calibration conditions
because calibration data may not encompass the entire
environmental range of each of the predictors
(Guillaumot et al. 2020b). The set of projected

Fig. 6. Extrapolation map of the species distribution model generated for the sea star Acodontaster hodgsoni, with all presence-only
records available. Extrapolation corresponds here to the ensemble of environmental conditions that are outside of the boundaries of
the calibration range. The extrapolation area is displayed in black and covers 78.6% of the entire projection area; coloured pixels
(yellow-red colour palette) show distribution probabilities (included between 0 and 1). Extracted from Guillaumot et al. (2020b).
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environmental conditions can otherwise still be within the
range of conditions, but specific combinations of
environmental descriptors may be new, also leading to
extrapolation (Mesgaran et al. 2014). In such conditions,
predictions might be ecologically and statistically invalid
and model interpretations inaccurate (Randin et al. 2006,
Williams & Jackson 2007, Williams et al. 2007,
Fitzpatrick & Hargrove 2009, Owens et al. 2013).
Among the different approaches, Elith et al. (2010)

propose estimating and quantifying model extrapolation
using the Multivariate Environmental Similarity Surface

(MESS) index to identify the most influential descriptors
that lead to extrapolation. Grid-cell pixels for which at
least one environmental descriptor has a value outside
the range of environmental values defined by
presence-only records (calibration range) are considered
to be extrapolations. In these cases, the MESS index
gives negative values and the ensemble of pixels
containing negative values defines the extrapolation area
(Elith et al. 2010, Guillaumot et al. 2020b). Most often,
for SDMs performed at the scale of the SO, the number
of records available to define the environmental space

Fig. 7. Extrapolation map of the species distribution model generated for the sea star Acodontaster hodgsoni indicating environmental
descriptors responsible for extrapolation (black pixels of Fig. 6 are here coloured according to the descriptor responsible for
extrapolation; i.e. for each pixel, the predictor in question lies outside the calibration range). In this case study, 14 environmental
descriptors are responsible for extrapolation, with depth being themain contributor.White pixels correspond to areaswhere themodel
does not extrapolate (the corresponding model predictions are shown in Fig. 6). POC stands for 'particulate organic carbon' and Chl a
is the concentration in chlorophyll a on the sea surface. Generated from https://cran.r-project.org/package=SDMPlay.
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occupied by species is limiting and the resolution of
environmental descriptors relatively low (see the 'Quality
of datasets' section). As a consequence, SDM projections
sometimes include wide extrapolation areas that may
cover > 75% of the predicted regions (Fig. 6; Guillaumot
et al. 2020b).
In addition to quantifying the overall extrapolation area

(Fig. 6), it is possible to fine-tune the analysis and define
which environmental descriptors and areas are
concerned with extrapolation (Fig. 7; Owens et al. 2013,
https://CRAN.R-project.org/package=SDMPlay). Such
information could be used to resample the
environmental descriptors implemented in the model.
In any case, it has been recommended to provide

information on model extrapolation and more
generally to other concepts of uncertainties (species
detection, errors, etc.), along with model predictions,
because they are essential to accurate interpretation
(Beale & Lennon 2012, Addison et al. 2013, Guisan
et al. 2013).
Limiting model projections to 'realistic' depth ranges or

some other environmental limiting factor based on a
robust knowledge of species ecology (i.e. some
expert-driven decision) was proven to be efficient at
reducing extrapolation (Kearney & Porter 2009, Hare
et al. 2012, De Villiers et al. 2013, Guillaumot et al.
2020b). Such a strategy is transitional until
complementary samples and more comprehensive
occurrence datasets are made available to better define
the species-occupied space (Guillaumot et al. 2020b).

Model validation and accuracy of model predictions

Some common metrics for the evaluation of model
predictions

Once models are generated, the accuracy of their
predictions must be assessed in order to evaluate the
validity of the models with regards to scientific issues to
address, to compare different model outputs and to
allow for the formulation of reliable interpretations
(Zurell et al. 2020). Several metrics were developed in
order to evaluate the performance of models (Fielding &
Bell 1997, Allouche et al. 2006). Most of them are based
on the calculation of an error matrix (or confusion
matrix) that displays the proportion of presence and
absence records that are correctly predicted by the model
(Allouche et al. 2006).
In most biological studies focused on the SO benthos,

absence records are usually unavailable and SDMs are
generated based on a set of presence/background records
(see the 'Occurrence datasets' section). As a consequence,
the statistics that are commonly used for presence/
absence datasets may not be appropriate for model
evaluation (Wiley et al. 2003, Phillips et al. 2006,

Braunish et al. 2013), such as the κ statistic (Allouche
et al. 2006). In contrast, the area under the curve or area
under the receiver operating curve (AUC) is one of the
most used and appropriate metrics for measuring the
performance of model predictions based on presence/
background data (Hand 2009). The AUC is an objective
measure that remains stable with low-prevalence datasets
(i.e. low frequency of occurrences with regards to the
projection space) and is not sensitive to threshold effects
(Manel et al. 2001, Hand 2009, van Proosdij et al.
2016). However, for presence/background models,
specificity (the fraction of correctly predicted absences)
might be overestimated when the number of background
records is much higher than the number of presence-only
records or when background and presences are
associated with very different environmental values. This
incidentally inflates AUC scores (Phillips et al. 2006,
Raes & ter Steege 2007, Lobo 2008, Jiménez-Valverde
2012) and invalidates the relevance of the AUC metrics
(van Proosdij et al. 2016).
Even when properly employed, the AUC cannot be used

to comparemodelswhen SDMs are generated for different
species based on different environmental descriptors or
projected on distinct regions because the values depend
on the relative size of suitable areas and prevalence
scores may contrast (see the 'Correcting spatial biases'
section) (Wisz et al. 2008, Anderson & Gonzalez 2011).
The AUC metrics must be used as a simple measure of
the relative ranking of model predictions associated with
a specific dataset (El-Gabbas & Dormann 2018). Overall,
each statistic is characterized by specific advantages and
potential biases, so that it is recommended that one uses
several statistics for evaluating model predictions
(Allouche et al. 2006).
The accuracy of model predictions can also be

evaluated by testing the classification of independent test
data, where the available occurrence dataset can be split
into independent subsets to train or test the model (for a
review, see Fielding & Bell 1997).

Cross-validation procedures

Cross-validation procedures are aimed at evaluating
model predictions using a subset of presence or absence
records retrieved from the initial dataset used for
modelling in order to assess how well the test data
match with the modelled predictions (Bahn & McGill
2013). When working with presence-only datasets, two
subsets of presence records are used: one subset is used
to train the model (the training group) and the second
subset is used to test the model (the test group). Test
data and training data must be spatially independent
from each other (Hijmans 2012, Bahn & McGill 2013).
In most modelling exercises, standard cross-validation
procedures are commonly used, in which the initial
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Fig. 8.Different cross-validation procedures based on the study of the sea star Odontaster validus, showing presence-only records and a
random set of 1,000 background data selected according to a kernel density estimation weighting scheme from the dataset of Griffiths
et al. (2014) on sampling effort of the Southern Ocean benthos. Data are split into training (pink) and test (green) subsets. The blue
background corresponds to bathymetry and grey areas to emerged lands. a. Random cross-validation procedure, with a random split
into 75% training and 25% test data. b. 'Twofold CLOCK' clustering by random spatial partition of the dataset into two groups
(one training and one test). c. 'BLOCK' splitting, generated according to median latitudinal and longitudinal values (Muscarella et al.
2014). After the generation of four groups (corresponding to the four colours), one group is randomly defined as the test subset and the
other three groups as the training subsets. A different system of projection was used to represent this map in order to highlight the
latitudinal and longitudinal definition of the transects. d. 'Threefold CLOCK' clustering by random spatial partition of the dataset into
three groups (two training and one test). e. 'Fourfold CLOCK' clustering by random spatial partition of the dataset into four groups
(three training and one test). Extracted from Guillaumot et al. (2019).
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presence dataset is randomly split into a training and test
subset. Frequently, as previously discussed, presence data
are spatially aggregated in SO datasets and the necessary
condition of independence between training and test
data is seldom met, making the model accuracy
evaluation overly optimistic (Telford & Birks 2009,
Hijmans 2012, Radosavljevic & Anderson 2014). In
contrast to random procedures, spatial cross-validation
procedures improve the performance of the validation
step by spatially segregating the training and test subsets,
ensuring the spatial independence between data even
when they are spatially aggregated in the initial datasets
(Dhingra et al. 2016, Roberts et al. 2017, Guillaumot
et al. 2019; see also http://cran.rapporter.net/web/
packages/blockCV/vignettes/BlockCV_for_SDM.html).
Several spatial cross-validation procedures have been

proposed (Fig. 8), and the most appropriate one can be
determined by comparing the different procedures in
order to define the one that is most suitable for the study
(Muscarella et al. 2014, Radosavljevic & Anderson 2014,
Guillaumot et al. 2019, Valavi et al. 2019) depending on
the spatial scale of the analysis, the number and spatial
distribution of the presence data and the selected
algorithm (and its associated complexity) used for
modelling (El-Gabbas & Dormann 2018, Hao et al. 2020).

Conclusions and future prospects

This review summarizes some points and issues to be
considered during SDM construction for modelling the
distribution of SO species (Fig. 1). It shows that accurate
and efficient SDMs can be produced for SO species
when considering potential common biases and issues
and correcting for their side effects. Proposed corrections
must be adjusted to each case study: no consensus
method nor implementation procedure always perform
best - each case study requires proper analyses in order
to generate the most relevant and accurate predictions.
This means that, for each model, several procedures to
implement the model should be tested in order to select
the most suitable one, ideally giving priority to the
availability of independent datasets for evaluating
the models. We showed that SDMs perform best when
the species-occupied space is accurately described, using
extensive occurrence datasets with both presence and
absence records, and when data are checked for
positioning and georeferencing errors. A good
knowledge of species' ecology, life history traits and
populational variations within the overall species
distribution and environmental range help to improve
model quality (Fois et al. 2018). The compilation,
examination and preparation of datasets prior to
modelling are essential steps in generating efficient
models. Estimating and communicating the uncertainties

associated with model predictions are also important
tasks to be highlighted. This process may include a
'simple' interpretation of the ecological relevance of
SDM outputs by experts (Merow et al. 2017) for the
mapping of model extrapolations, as illustrated here.
Model uncertainties are part of model outputs and
should not be omitted (Guisan et al. 2013, Grimm et al.
2014, Grimm & Berger 2016).
Remaining challenges for constructing relevant SDMs

for SO studies include more efforts regarding data
collection outside of the main sampling hotspots and
filling in knowledge gaps in SO species taxonomy. Some
methodological perspectives, developed in other regions,
address the integration of physiological information into
SDMs. This facilitates the understanding of species
environmental preferences and helps one to better
estimate the niches of species (Kearney & Porter 2009,
Talluto et al. 2016, Mathewson et al. 2017, Rodríguez
et al. 2019, Gamliel et al. 2020). Such studies have
recently been developed for SO benthic species: in López-
Farrán et al. (2021), the combination of physiological
experimental results and SDM projections allowed for the
assessment of the invasive potential of the Patagonian
crab Halicarcinus planatus (Fabricius, 1775) on Antarctic
coasts, as was similarly done in Byrne et al. (2016) for the
Arctic sea star Asterias amurensis (Lutken, 1871). Hybrid
modelling approaches constitute another exciting
approach, where information from both SDMs and
physiological models are fully integrated, using the
physiological information as a prior to inform the SDM
(Gamliel et al. 2020). Recently applied to an endemic sea
urchin of the Kerguelen Plateau (C. Guillaumot et al.,
unpublished data 2021), the method allows for more
precise prediction of the effects of seasonal variations on
species habitat suitability.
Other interesting methodological approaches include

the consideration of biotic interaction information,
dispersal capacity estimates or population dynamics in
complement to SDM predictions in order to generalize
the understanding of the main drivers of species
distribution (Pellissier et al. 2010, Meier et al. 2011,
Pagel & Schurr 2012, Conlisk et al. 2013, Pellissier et al.
2013, Leach et al. 2016, Anderson 2017). These,
however, necessitate a deep knowledge of the species
ecology and of the surrounding environment, suggesting
that their first applications should be expected in local-
or regional-scale studies.
A final take-homemessage is that model outputs should

be interpreted carefully and model predictions always
considered with a critical eye. Models are simple
representations of complex systems and should be used
to complement other approaches in order to support
conservation strategies or to address fundamental
research objectives (Porfirio et al. 2014, Kampichler &
Sierdsema et al. 2018).
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