Table of Contents

1	Pre	amble	and obj	ectives	1	
2	Stat	State of the art				
	2.1	The global CH_4 atmospheric budget				
		2.1.1	Sources		10	
			2.1.1.1	Types of CH_4 emissions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10	
			2.1.1.2	Regional patterns in CH_4 emissions	11	
		2.1.2	Sinks .		11	
		2.1.3	Recent (CH_4 growth challenges the Paris agreement targets $\ldots \ldots$	13	
	2.2	Ocean	ic CH_4 bi	ogeochemistry	15	
		2.2.1	Overview	w of oceanic CH_4 distribution	15	
			2.2.1.1	Typical water column profiles	15	
			2.2.1.2	Typical sediment profiles	15	
			2.2.1.3	Spatial distribution in surface waters $\ldots \ldots \ldots \ldots \ldots$	15	
			2.2.1.4	Ocean-atmosphere flux	17	
			2.2.1.5	Existing challenges in dissolved CH_4 measurements $\ . \ . \ .$	19	
		2.2.2	Anaerob	ic CH_4 sources	20	
			2.2.2.1	Methanogenesis	20	
			2.2.2.2	Thermogenic degradation of organic matter \ldots	20	
			2.2.2.3	$Hydrothermalism\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	21	
		2.2.3	The "ma	$\operatorname{rine} \operatorname{CH}_4 \operatorname{paradox}'' \ldots $	22	
			2.2.3.1	Methanogenesis in an aerobic micro-environments $\ . \ . \ .$.	22	
			2.2.3.2	Aerobic microbial production	22	
			2.2.3.3	Aerobic phytoplankton production	23	
		2.2.4	Oceanic	$CH_4 sinks \ldots \ldots$	23	
			2.2.4.1	Anaerobic CH_4 oxidation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	23	
			2.2.4.2	Aerobic CH_4 oxidation	24	
		2.2.5	CH_4 sto	red in hydrates	24	
	2.3	The re	ole of sea	ice in the biogeochemical cycle of CH_4	26	

		2.3.1	Sea-ice physico-chemical properties	6
			2.3.1.1 Sea-ice crystalline structure	6
			2.3.1.2 Sea-ice formation and growth	27
			2.3.1.3 Initial salt incorporation and desalination	8
			2.3.1.4 Gases in sea ice $\ldots \ldots $	31
		2.3.2	CH_4 in sea ice $\ldots \ldots 3$	3
			2.3.2.1 CH_4 storage and release in sea ice	3
			2.3.2.2 Existing CH_4 measurements in sea-ice influenced environments 3	4
	2.4	The u	se of stable isotopes in biogeochemistry	6
		2.4.1	Theoritical principles	6
			2.4.1.1 Stable isotopes fundamentals	6
			2.4.1.2 Stable isotope fractionation	7
		2.4.2	CH_4 stable isotope analysis in ice: experimental principles $\ldots \ldots 4$	0
			$2.4.2.1 \text{Dry extraction} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	0
			2.4.2.2 CH_4 analysis system $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	0
ર	Dis	solved	methane measurements: testing an underway method	૧
0	3.1	Introd	uction 4	5
	3.2	Mater	ial and methods	5
	0.2	3 2 1	$HvdroC CH_4 sensor $	5
		3.2.2	Liqui-Cel+LGR sensor	7
		3.2.3	Discrete measurements	7
		3.2.4	Experimental set-up	7
			3.2.4.1 In natural environments	17
			3.2.4.2 In a controlled environment	17
	3.3	Result	s5	0
		3.3.1	In natural environments	0
			3.3.1.1 The Scheldt estuary	0
			3.3.1.2 The Wadden Sea	0
			3.3.1.3 The Barents Sea	0
			3.3.1.4 The Ross Sea	51
		3.3.2	In a controlled environment	3
		3.3.3	Experiment 1 (E1R1 and E1R2) $\ldots \ldots 5$	3
		3.3.4	Experiment 2 (E2R1 and E2R2) $\ldots \ldots 5$	5
		3.3.5	Experiment 3 (E3) $\ldots \ldots 5$	5
		3.3.6	Experiment 4	6
	3.4	Discus	sion \ldots \ldots \ldots \ldots \ldots 5	57

		3.4.1	HydroC sensor vs Liqui-Cel+LGR sensor and discrete measurements $% \mathcal{A}^{(n)}$	57
		3.4.2	The set-up does influence the response time $\ldots \ldots \ldots \ldots \ldots$	58
		3.4.3	The concentration gradients tested did not clearly influence the response	
			time \ldots	58
	3.5	Conclu	usion	60
4	A j	ourney	from land to sea: the Scheldt estuary	61
5	In a	a shallo	ow coastal environment: the Wadden Sea	73
	5.1	Introd	uction	75
	5.2	Materi	ial and methods	76
		5.2.1	Water column measurements	76
		5.2.2	Atmospheric measurements	77
	5.3	Result	s and discussion	77
		5.3.1	CH_4 in the water column	78
		5.3.2	CH_4 in the atmosphere	80
		5.3.3	CH_4 emissions from the Wadden Sea $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	82
	5.4	Conclu	usion	84
6	Tow	vards p	oolar latitudes: the Barents Sea	85
	6.1	Introd	uction	87
	6.2	The C	hAOS project and JR17007 cruise	88
	6.3	Materi	ial and methods	90
		6.3.1	Dissolved CH_4 measurements	90
		6.3.2	Atmospheric CH_4 measurements	90
	6.4	Result	· · · · · · · · · · · · · · · · · · ·	91
		6.4.1	Water masses	91
		6.4.2	Dissolved CH ₄	93
		6.4.3	Atmospheric CH ₄	96
	6.5	Discus	sion	97
		651	Does sea ice influence surface concentration in dissolved CH_4 ?	97
		6.5.2	Potential for CH_4 in situ production in surface waters	97
		653	Seafloor emissions	98
		6.5.4	CH_4 anomalies in the Norwegian Sea	100
	6.6	Conclu	usion	103
_	m			10-
7	'Ira 7 1	pped in	n landfast sea ice at Barrow and Cape Evans	105
	(.1	introd	uction	108

	7.2 Study location			110		
7.3 Methods \ldots			ods	111		
		7.3.1	CH_4 concentration measurement	111		
		7.3.2	Stable isotopic composition of CH_4	112		
	7.4	Model	lling	112		
	7.5	Result	ts	114		
		7.5.1	Barrow	114		
		7.5.2	Cape Evans	115		
	7.6	Discus	ssion	118		
		7.6.1	Barrow vs Cape Evans: significant differences in the carbon isotopic			
			composition of CH_4 entrapped in sea ice $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	118		
		7.6.2	Barrow	118		
			7.6.2.1 Temporal variability of CH_4 isotopic composition in sea ice .	119		
			7.6.2.2 Evidence for <i>in situ</i> CH_4 oxidation	120		
		7.6.3	Cape Evans	124		
			7.6.3.1 Temporal variability of CH_4 isotopic composition in sea ice .	125		
			7.6.3.2 Evidence for a hydrothermal CH_4 source $\ldots \ldots \ldots \ldots$	126		
			7.6.3.3 Alternative source: in situ CH_4 production	126		
		7.6.4	δD calling for further investigations	130		
	7.7	Conclu	usion	131		
8	Nav	avigating through pack ice in the Ross Sea during autumn				
	8.1	Introd	luction	140		
	8.2	The P	PIPERS cruise	141		
	8.3	Mater	ial and methods	143		
		8.3.1	CH_4 concentration in seawater	143		
		8.3.2	CH_4 concentration in sea ice	143		
		8.3.3	Atmospheric CH_4 mixing ratio	143		
		8.3.4	Stable isotopic composition of CH_4 in discrete samples $\ldots \ldots \ldots$	144		
	8.4	Result	ts	145		
		8.4.1	Water masses on the Ross Sea continental shelf $\ \ldots \ \ldots \ \ldots \ \ldots$	145		
		8.4.2	CH_4 in seawater	145		
		8.4.3	CH_4 in sea ice	150		
		8.4.4	CH_4 in the atmosphere \ldots	150		
	8.5	Discus	ssion	152		
		8.5.1	Seawater	152		

		8.5.2 Sea ice	157					
		8.5.3 Atmosphere	159					
	8.6	Conclusion	162					
9	Con	nclusion						
	9.1	The contribution of temperate coastal regions						
	9.2	The particular case of polar continental shelves $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$						
	9.3	The role of sea ice in the biogeochemical cycle of CH_4						
	9.4	CH_4 dynamics in the light of stable isotopes $\hfill\$	170					
	9.5	Perspectives	171					