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ABSTRACT: Resonant X-ray emission spectroscopy (RXES) has
developed in the past decade as a powerful tool to probe the
chemical state of a metal center and in situ study chemical
reactions. We have used it to monitor spectral changes associated
with the reduction of osmium(VI) nitrido complexes to the
osmium(III) ammine state by the biologically relevant reducing
agent, glutathione. RXES difference maps are consistent with the
proposed DFT mechanism and the formation of two stable
osmium(IV) intermediates, thereby supporting the overall pathway
for the reduction of these high-valent anticancer metal complexes
for which reduction by thiols within cells may be essential to the
antiproliferative activity.

■ INTRODUCTION

Metal nitrides have been known since themid-19th century1 and
span a various range of structures and reactivities.2,3 Although
these compounds have since driven interest for their structures
and fundamental properties, only recently has emerged attention
for their chemical reactivity and biological properties. The
intriguing chemistry of late-transition metal nitrides attracted
deep interest in the past years, and recent reports have shown
their implication in a wide variety of organic transformations
including C−H bond activation,4−7 electrophilic reaction,8−13

N−N coupling,14−19 catalytic oxidation,20−22 and nitrogen
transfer.23−29

Osmium-based anticancer complexes exhibit encouraging
activity with mechanisms of action that differ from current
therapies.30,31 Osmium(II) arene complexes containing azopyr-
idine ligand derivatives have shown nanomolar-range activity
toward a large assortment of cancer cell lines.32 Similar types of
osmium complexes have been proven to induce apoptosis and S-
phase cell cycle arrest through a mitochondria-mediated process
in A549 non-small cell lung cancer cells.33 Osmium(II) half-
sandwich complexes can react with glutathione (GSH) through
ligand exchange and produce reactive oxygen species.34 Such
compounds have also been localized in cellulo using synchrotron-
based X-ray fluorescence nanoprobes, highlighting their
mitochondrial localization.35

The recently developed osmium(VI) nitrido complexes as
used in the present study have been proven to be breast cancer
stem cell-selective36 and have shown promising effects on
glioblastoma models.37 The nitrido functionality demonstrated
reactivity toward both nucleophiles and electrophiles, and it is
likely that this reactive site is important for the biological activity

of nitrido complexes. For now, little mechanistic information
about the chemical properties that bring the anticancer activity
of nitrido compounds is known. However, we believe that
osmium(VI) can readily be reduced to lower oxidation state
species in the presence of bionucleophiles and reducing agents
like GSH, generating free radicals in the process and
participating in the antiproliferation properties.
In the 70s, Eisenberger et al.38 showed that synchrotron

radiation can be used to observe characteristic radiation
narrower than the lifetime width at the Cu K-edge. Later,
Ham̈al̈aïnen et al.39 obtained high-resolution X-ray absorption
spectra by using high-energy-resolution X-ray spectrometers
combined with monochromatic beam excitation. Since then,
many authors have explored the potential of high-energy-
resolution X-ray spectrometers to obtain 2D-RXES (two-
dimensional resonant X-ray emission spectroscopy) planes.40,41

RXES, also known in the literature as resonant inelastic X-ray
scattering (RIXS), is a photon-in photon-out X-ray spectroscopy
capable of mapping the electronic structure of matter42,43 in
chemical44,45 and biological systems.46,47 The RXES process is
based on the excitation of a core electron into unoccupied states
and inner- or valence-shell electrons that are de-excited from the
occupied states to the core levels, which leads to the emission of
an X-ray photon. RXES relies on the intensities and energies of
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the incoming and emitted X-rays, allowing unoccupied and
occupied electronic states of the metal to be probed with
element specificity. The energy resolution of RXES, as compared
to standard XAS (X-ray absorption spectroscopy), is not limited
by the core-hole lifetime due to the superposition of photon
absorption and emission processes. This is important for heavy
elements such as 5d metals (i.e., osmium) carried out at the L3
absorption edge and by detection of the Lα emission line. The L3
core-hole broadening for heavy elements is in the order of a
coupleeV, which makes detailed electronic structures difficult to
obtain with conventional XAS methods. In the case of high
energy resolution, the effect of core-hole broadening is reduced
and the total energy resolution is defined by the spectrometer
resolution, being in the order of 1 eV. Lomachenko et al.48

compared RIXS and HERFD XANES (high-energy-resolution
fluorescence detection X-ray absorption near-edge structure)
spectroscopies for electronic and structural characterization of
osmium compounds and showed that, in comparison to the
conventional (total fluorescence yield) XANES, the high-
resolution X-ray absorption spectrum is more informative, the
peaks being sharper and fully resolved. RXES can therefore
reveal fine changes in the electronic configuration of a 5d metal
center with respect to small modifications on the ligand,
allowing in situ chemical speciation at concentrations relatable to
drug applications. It should be emphasized here that the L3-edge
spectroscopy is more sensitive to the chemical surrounding of
the 5d metal center than K-edge measurements.49,50

The label-free method, termed atomic telemetry, has proved
useful to study the interactions between metal complexes and
biomolecules without the need for extraction, crystallization,
and/or preconcentration.47,51−54 The metal atom in the
complex is directly affected by the chemical transformations,
these being reflected in its electronic levels and subsequently
transmitted through the interaction with the X-ray radiation,
which is analogous to the radio telemetry. Atomic telemetry can
detect and analyze low amounts of metals, making it a valuable
method for elucidating the chemical fate of a metal center, as the
geometry, oxidation state, and coordination sphere of the metal

will be reflected in the X-ray absorption and emission spectra. X-
ray photon-in photon-out core-level spectroscopy is therefore a
powerful tool to map the electronic structure with time
resolution and elemental specificity and under relevant
conditions due to the high penetration of hard X-rays.55,56

The method is especially suitable for complex and multi-
elemental environments because the electronic structure is
provided exclusively from the perspective of the investigated
metal center of the molecule. We herein demonstrate its ability
to provide critical structural data during a multistep reaction
between an anticancer metal complex and a bionucleophile,
supporting a DFT-established pathway.
As part of the investigation in both the biological properties of

such metal nitrides and the chemical properties that would
convey their anticancer activity, we thus report the use of real-
time atomic telemetry to help confirm the anticipated DFT
pathway for the reduction of osmium(VI) nitrido anticancer
complexes by thiols as a multistep reduction from the VI to the
III oxidation state with osmium(IV) intermediates (Figure 1).
We used hard X-rays (∼10 keV) from the SuperXAS beamline of
the Swiss Light Source synchrotron to follow the reduction of
the atom center and the changes in its first coordination sphere.

■ RESULTS AND DISCUSSION

The nitrido ligand can display electrophilic to nucleophilic
behavior, depending on the metal center and its ligands.3

Osmium(VI) nitrido and other metal nitrides are known to
undergo nucleophilic addition on their nitride with alkenes,
amines, phosphines, and thiols.12,13,57−60 The latter may be
involved in the anticancer effects of this class of compounds by
depleting GSH levels and reacting with thiolated proteins, giving
rise to the unfolded protein response.36 A careful examination of
the reactivity of a (salen)ruthenium(VI) nitrido complex with
thiols has been reported a couple of years ago.61 We thus started
by theoretically delineating the reaction mechanism of the
osmium(VI) nitrido complex OsNCl3(phen) with the simplest
organic thiol (namely, methanethiol) for obvious computational
reasons, helped by key experimental facts from the similar

Figure 1. (A) Reduction of the osmium(VI) nitrido OsNCl3(phen) complex 1 to the osmium(III) ammine 7 by 3 equiv of methanethiol. (B)
Localized frontier orbitals of complex 1, showing the triple bonding of the nitrido, the ligand character of the HOMO and LUMO, and the Os−N π*
antibonding nature of the LUMO +1/+2, while LUMO +3 is spread over the entire molecule. (C) Natural bonding orbitals of the osmium(IV)
intermediates 2, 3, and 6 and the final ammine complex 7.

Inorganic Chemistry pubs.acs.org/IC Article

https://doi.org/10.1021/acs.inorgchem.1c00467
Inorg. Chem. 2021, 60, 6663−6671

6664

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467?fig=fig1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://doi.org/10.1021/acs.inorgchem.1c00467?rel=cite-as&ref=PDF&jav=VoR


reaction involving a ruthenium(VI) nitride.61 These were as
follows: (i) a sulfimido intermediate is produced after
consumption of stoichiometric amounts of the thiol and (ii)
addition of two more equivalents of the thiol led to the
production of 1.5 equiv of the corresponding disulfide and the
ruthenium(III) ammine through a sulfilamido intermediate.
From there and consistently to these experimental findings, we
aimed at locating all the transition states along that reaction
pathway at the spin-unrestricted and dispersion-corrected
density functional theory level (ωB97x-D/def2-TZVP, see the
Experimental Section for full details).
The reaction sequence starts with the addition of the thiol to

the nitride through a first transition state TS1 that closely
resembles the N−S adduct intermediate 2 (Figure 2). The latter
will undergo proton shifting (TS2) to produce the first stable
intermediate (3) after reaction with one thiol equivalent. In the
case of ruthenium, available data suggest that the nucleophilic
addition is the rate-limiting step instead of the proton transfer.
Here, the activation energy is rather similar between both steps
(24 vs 30 kcal mol−1), although slightly higher for the proton
shift. The sulfilamido osmium(IV) intermediate 3, for which
both an osmium and a ruthenium congener have been evidenced
by X-ray crystallography,11,61 then reacts with a second
equivalent of thiol through a rate-limiting addition. Proton
transfer to the sulfilamido moiety forms the short-lived
intermediate 5, and the rapid proton shifting to the nitrogen
will expel one disulfide equivalent and produce the osmium(IV)
imido species 6. We can see that the proton transfer steps can

involve rather high energy barriers (TS2 and TS3), suggesting
that proton shuttling through a water molecule may facilitate the
reaction. A last hydrogen transfer step (TS5), consuming the
third thiol equivalent, will finally deliver the osmium(III)
ammine complex and bring the overall thermodynamic driving
force to the reaction. Apart from transition states leading to the
formation of 3, the stationary saddle points TS3, TS4, and TS5
are not obvious and were verified as the actual transition
structures of the considered steps by following the minimal
energy pathway and integration of the intrinsic reaction
coordinate (IRC, Figure 2B), showing that they indeed connect
the expected reactants and products.
We then turned to atomic telemetry and resonant X-ray

emission spectroscopy (RXES) to validate these theoretical
predictions and follow the multistep reduction of OsVI to OsIII

through OsIV intermediates. The reaction pathway was
elucidated by analyzing the changes in RXES maps (ΔRXES)
in real time during the reaction with the bionucleophile GSH,
suspected to be involved in the antiproliferative activity of these
high-valent nitrido complexes (Figure 3). The RXES difference
maps (ΔRXES), which reflect relative changes in the density of
occupied and unoccupied electronic states, were obtained by
direct subtraction of normalized RXES planes for the
corresponding Os complexes. The individual RXES maps can
be found in the Supporting Information (Figure S3). It should
be noted that direct differential maps were obtained by the use of
a dispersive von Hamos spectrometer, enabling precise
correction of the incoming energy.

Figure 2. (A) DFT-predicted reaction pathway for the reduction of the osmium(VI) nitrido complex 1 with methanethiol. (B) IRC minimum energy
pathways for TS3, TS4, and TS5.
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The addition of the first equivalent of GSH caused a
significant change in the electronic structure around the metal
center. This translated in theΔRXES maps as a clear shift of the
main resonance toward higher energies, contrasting with the
intuitively expected change when increasing the electron density
and lowering the oxidation state. The experimental ΔRXES
profile is, however, well reproduced by the induced change in the
theoretical density of electronic states for the optimized
structures 1 and 3. These results confirm that 3 is formed after
the first addition of the thiol and that this first step appears to
occur stoichiometrically and to completion. The apparent
contradiction in the energy shift direction is explained by a
significant reorganization of the Os 5d unoccupied orbital as a

result of the structural transformation in the second coordina-
tion shell and the associated changes in the bond length between
Os and N atoms. Additionally, the strength of hybridization
between Os d and N p orbitals is lower in the Os(IV) complex
and influences the strength of the resonance between 2p3/2 and
unoccupied states.
The addition of the second equivalent of GSH resulted in

minor changes to the ΔRXES map, which suggests changes in
the second coordination sphere of the Os complex but not in its
oxidation state. This is in agreement with the DFT mechanism,
in which the reaction of complex 3 with the second thiol
molecule forms complex 6, which only differs from its
predecessor by the coordinated ligands to the Os-bound

Figure 3. ΔRXES maps revealing the electronic changes induced by sequential addition of 3 equiv of GSH. The plots show the differences in the
electronic states when going from complex 1 to complex 3 (top, ΔRXES = RXES3 − RXES1); complex 3 to complex 6 (middle, ΔRXES = RXES6 −
RXES3); and complex 6 to a 50:50 mixture of 6 and 7 (bottom,ΔRXES = (1/2 RXES7 + 1/2 RXES6)− RXES6). The left and right plots, respectively,
show the experimental and theoreticalΔRXESmaps. The position of 2p3/2→ 5d resonance indicating changes in the occupancy of 5d states is marked
with a dashed line. The direction of changes in the energy position of 5d orbitals is marked with a white arrow.

Figure 4. Proposed reaction mechanism for the reduction of osmium(VI) nitrido complexes by thiols. Oxidation states were determined using
localized orbital bonding analysis as implemented in the Q-Chem code.62
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nitrogen. These small spectral changes from the sulfilamido
osmium(IV) intermediate to the imido osmium(IV) are well
reproduced using the complete transformation of complex 3
into 6, i.e., stoichiometric formation of complex 6. However,
these are too small to unequivocally confirm the presence of
both 3 and 6, but rather confirm the in situ generation of
osmium(IV) intermediates, for which the structures are
postulated by DFT.
The final addition of GSH caused a significant alteration in

and around the main resonance, which is consistent with a
change in the oxidation state. Theoretical analysis of these
differences revealed interesting conclusions. First, the observed
resonant X-ray emission spectral changes confirmed the
formation of the final ammine osmium(III) complex 7 as the
product of the reaction. The shift of the 5d resonance toward
lower energies confirms the reduction from the oxidation state
IV to III. Semiquantitative analysis of the ΔRXES maps further
showed that this third step of the sequential reaction did not
reach completion. Around 50% of the osmium(III) ammine 7 is
produced at the end of the experiment, and this incomplete
reaction may be due to our experimental setup, the inability to

run the reaction in a controlled atmosphere, or the limited
amount of time available at the beam to allow the reaction to
complete. Based on our DFT predictions and experimental
ΔRXES maps, we therefore propose the multistep reaction
mechanism depicted in Figure 4, for the reduction of
osmium(VI) nitrido anticancer complexes by thiols and GSH
within cells. The reaction involves five consecutive steps and
three stable intermediates.
To verify our hypothesis, we have run the reaction with

another complex that was also used as an anticancer agent
against glioblastomamodels. Here too, the addition of 3 equiv of
GSH induced spectral changes that reflected the transformation
to the final Os(III) ammine compound, confirming our data on
the phenanthroline complex. In the terpyridine case, however,
multiple simultaneous processes involving the isomerization of
the starting nitrido compound between its equatorial and axial
isomers rendered the interpretation of the spectral changes
associated with the intermediate Os(IV) states difficult but still
confirmed the reduction of the Os(III) state and the ammine
complex 14 (Figure 5).

Figure 5. (A) Reduction of the cationic terpyridine complex 8 from the osmium(VI) nitrido to the osmium(III) ammine 14 by three molecules of
methanethiol. (B) Axial-equatorial isomerization of complex 8, with a 6 kcal mol−1 free energy gap in favor of the axial isomer. (C) ΔRXES maps
between the final and initial states (ΔRXES = RXES14 − RXES8). (D) DFT-computed pathway for the multistep reduction of 8 by methanethiol.
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■ CONCLUSIONS
To summarize, we disclose here the first use of real-time atomic
telemetry for amultistep reaction involving ametal complex and,
guided by DFT, uncovered the reaction mechanism. We were
able to follow the reduction of osmium(VI) nitrido complexes to
osmium(III) ammine by thiols and more specifically by the
biologically relevant GSH. This marks a new achievement for
resonant X-ray emission spectroscopy in elucidating the
relationship between the structure and mechanism of action
for biological systems.
The past few decades witnessed the rapid development of X-

ray sources and absorption techniques, and second-order
spectroscopies can provide incomparable electronic and
structural information on a wide variety of systems. XAS
methods have been employed for many years to study the
chemical state of samples, both in situ and ex situ. However, the
high-energy-resolution spectroscopy methods push XAS-based
techniques toward enhanced sensitivity, allowing observation of
tiny chemical changes in the studied samples.63,64 The use of
hard X-ray facilities and the monitoring of real-time spectral
changes while the reaction takes place represent an important
accomplishment for both X-ray spectroscopy and the chemical
reactivity of such metal nitrides, which also convey antiprolifer-
ative properties as anticancer compounds. Our theoretical work
is validated by the RXES experiments, bringing experimental
proof for the formation of the postulated osmium(IV)
complexes as reaction intermediates. Changes in the collected
emission maps match the predicted spectra of these
intermediates, and our study highlights the feasibility of the
concept, opening the way for the use of X-ray spectroscopy to
investigate complex reaction mechanisms.

■ EXPERIMENTAL SECTION
Synthesis of the Osmium Complexes. The complexes were

prepared following previously published procedures.65,66 Briefly, a
tetrabutylammonium salt of the Os(VI) nitrido chloride was first
produced followed by the complexation with the bi- and tridentate
heterocyclic ligands in organic solvents, affording the desired
compounds by precipitation over the course of the reaction. These
were then filtered off and washed thoroughly with the reaction solvent.
Real-Time Atomic Telemetry. The electronic structure of

osmium was investigated by means of resonant X-ray emission
spectroscopy at the SuperXAS beamline of the Swiss Light Source
synchrotron at Paul Scherrer Institute, Switzerland. The incidence X-
ray energy was monochromatized with double-crystal Si(111) and
tuned around the L3 edge of Os. The incident photon energy was
calibrated to the copper metal K absorption edge energy using a
reference value of 8979 eV. The obtained inflection point of the edge for
the Os(VI) complex at an energy of 10881.2 eV is in agreement with
previously reported data for Os(IV) (10879.6 eV) and Os(V) (10880.1
eV) complexes.67 Use of L3-edge spectroscopy (2p3/2 atomic level)
provides direct dipole 2p3/2 excitation to the unoccupied 5d orbital. The
following 3d → 2p3/2 electronic decay and accompanying Lα X-ray
emission at 8911.7 eV were monitored using a high-energy-resolution
X-ray spectrometer setup.41,68 The setup compromise a 25 cm-radius
Si(444) diffraction crystal and 2D Pilatus detector. The experimental
resolution, including the incidence beam, was determined to be around
2 eV, a value significantly lower than that of the natural broadening of
the L3 core hole of 5.1 eV.
A 12.5 mM solution of the starting osmium(VI) complex in 4 mL of

DMSO was sequentially added with GSH as concentrated water
solutions (100 μL for each, 300 μL total), 1 equiv at a time, and spectral
changes were monitored. Each equivalent was added after a steady state
was reached, and the timeline was as follows: 1.5 h of RXES
measurement, then addition of the next equivalent of the thiol, 1 h of
reaction, and then again 1.5 h of measurement, with this sequence being

repeated to the last step. For the terpyridine complex, the RXES
measurements were shortened to 1 h, and the second and third
equivalents were added together. The sample was enclosed within a
custom-made cell equipped with a Kapton window ensuring sufficient
X-ray transmission for incidence and emitted X-rays. The RXES planes
were collected continuously around the osmium L3 absorption edge
with an acquisition time of 200 s per full map. Typically, we recorded
four full maps at one sample position and a total of six to eight points
were acquired during each reaction steps. This procedure allows
reduction of radiation damage, and a constant circulation of the
solution was ensured using a magnetic stirrer.

X-ray Data Analysis and Simulation. The collected 2D-RXES
data were normalized employing conventional procedures. The 2D
background function was first determined in a fitting procedure at
incident and emission energies where no fluorescence was detected.
This background function was then removed from the corresponding
RXES maps. Then, for the highest incidence energies, the maximum
XES signal was normalized to 1 so that the projected high-energy-
resolution XAS (HR-XAS) function from the RXES plane was
normalized to 0−1 values at below and above edge energies,
respectively. The HR-XAS spectra (shown in the Supporting
Information) were obtained by cutting the RXES planes across the
most intense emission energy (i.e., Lα1 peak maximum at 8911.7 eV).
The theoretical resonant X-ray emission spectra were calculated with
the second-order perturbation theorem. The differential cross-sectional
equations developed by Tulkki and Aberg69 were employed for the
calculation of X-ray emission signals at given incidence energies. The
energies of the initial and final states were taken from Deslattes et al.,70

and the corresponding core-hole lifetimes were taken from Campbell
and Papp.71 The oscillator strength function for excitation channels was
approximated by electronic density of states calculated with the FEFF
9.6 program, a self-consistent multiple-scattering code.72 DFT-
optimized geometries were used as inputs for FEFF calculations.

Quantum Mechanical Methods. All quantum mechanical
calculations have been achieved using Gaussian09 rev D.01, Orca
4.0.1,73 and Q-Chem 4.6. Geometries of the investigated systems were
fully optimized at the spin-unrestricted density functional theory level
using the dispersion-corrected ωB97x-D exchange−correlation func-
tional.74 The balanced polarized triple-zeta basis set def2-TZVP from
Ahlrichs and Weigend75,76 has been used for all atoms, except for the
metal, for which either the quasi-relativistic Stuttgart−Dresden core
potential was used4 or, for a sharper description of relativistic effects for
core electrons, an all-electron scalar relativistic approximation (zeroth-
order regular approximation, ZORA)77 as implemented in ORCA 4.
Potential energy surface minima found upon optimization were
confirmed by frequency calculations, and free energies were corrected
to account for the zero-point energy. Optimized geometries were
verified as minima (i.e., zero imaginary frequencies). The synchronous
transit-guided quasi-Newton method78,79 was used for locating
transition structures. These structures were further verified as saddle
points by frequency calculations (i.e., one and only one imaginary
frequency). The bulk solvent effects for water have been included
through the integral equation formalism version of the polarizable
continuummodel.80 Natural bond orbital analysis was performed using
the latest version of the program from Weinhold and co-workers
(NBOPro 6.0).81
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