Reduction Mechanisms of Anticancer Osmium(VI) Complexes Revealed by Atomic Telemetry and Theoretical Calculations

Gilles Berger,* Anna Wach, Jacinto Sá, and Jakub Szlachetko

ABSTRACT: Resonant X-ray emission spectroscopy (RXES) has developed in the past decade as a powerful tool to probe the chemical state of a metal center and in situ study chemical reactions. We have used it to monitor spectral changes associated with the reduction of osmium(VI) nitrido complexes to the osmium(III) ammine state by the biologically relevant reducing agent, glutathione. RXES difference maps are consistent with the proposed DFT mechanism and the formation of two stable osmium(IV) intermediates, thereby supporting the overall pathway for the reduction of these high-valent anticancer metal complexes for which reduction by thiols within cells may be essential to the antiproliferative activity.

INTRODUCTION

Metal nitrides have been known since the mid-19th century and span a various range of structures and reactivities. Although these compounds have since driven interest for their structures and fundamental properties, only recently has emerged attention for their chemical reactivity and biological properties. The intriguing chemistry of late-transition metal nitrides attracted deep interest in the past years, and recent reports have shown their implication in a wide variety of organic transformations including C–H bond activation, electrophilic reaction, N–N coupling, catalytic oxidation, and nitrogen transfer.

Osmium-based anticancer complexes exhibit encouraging activity with mechanisms of action that differ from current therapies. Osmium(II) arene complexes containing azopyridine ligand derivatives have shown nanomolar-range activity toward a large assortment of cancer cell lines. Similar types of osmium complexes have been proven to induce apoptosis and S-phase cell cycle arrest through a mitochondria-mediated process in A549 non-small cell lung cancer cells. Osmium(II) half-sandwich complexes can react with glutathione (GSH) through ligand exchange and produce reactive oxygen species. Such compounds have also been localized in cellulo using synchrotron-based X-ray fluorescence nanoprobes, highlighting their mitochondrial localization.

The recently developed osmium(VI) nitrido complexes as used in the present study have been proven to be breast cancer stem cell-selective and have shown promising effects on glioblastoma models. The nitrido functionality demonstrated reactivity toward both nucleophiles and electrophiles, and it is likely that this reactive site is important for the biological activity of nitrido complexes. For now, little mechanistic information about the chemical properties that bring the anticancer activity of nitrido compounds is known. However, we believe that osmium(VI) can readily be reduced to lower oxidation state species in the presence of bionucleophiles and reducing agents like GSH, generating free radicals in the process and participating in the antiproliferation properties.

In the 70s, Eisenberger et al. showed that synchrotron radiation can be used to observe characteristic radiation narrower than the lifetime width at the Cu K-edge. Later, Hämäläinen et al. obtained high-resolution X-ray absorption spectra by using high-energy-resolution X-ray spectrometers combined with monochromatic beam excitation. Since then, many authors have explored the potential of high-energy-resolution X-ray spectrometers to obtain 2D-RXES (two-dimensional resonant X-ray emission spectroscopy) planes.

RXES, also known in the literature as resonant inelastic X-ray scattering (RIXS), is a photon-in photon-out X-ray spectroscopy capable of mapping the electronic structure of matter and biological systems. The RXES process is based on the excitation of a core electron into unoccupied states of nitrido complexes. For now, little mechanistic information about the chemical properties that bring the anticancer activity of nitrido compounds is known. However, we believe that osmium(VI) can readily be reduced to lower oxidation state species in the presence of bionucleophiles and reducing agents like GSH, generating free radicals in the process and participating in the antiproliferation properties.

In the 70s, Eisenberger et al. showed that synchrotron radiation can be used to observe characteristic radiation narrower than the lifetime width at the Cu K-edge. Later, Hämäläinen et al. obtained high-resolution X-ray absorption spectra by using high-energy-resolution X-ray spectrometers combined with monochromatic beam excitation. Since then, many authors have explored the potential of high-energy-resolution X-ray spectrometers to obtain 2D-RXES (two-dimensional resonant X-ray emission spectroscopy) planes.
the incoming and emitted X-rays, allowing unoccupied and occupied electronic states of the metal to be probed with element specificity. The energy resolution of RXES, as compared to standard XAS (X-ray absorption spectroscopy), is not limited by the core-hole lifetime due to the superposition of photon absorption and emission processes. This is important for heavy elements such as 5d metals (i.e., osmium) carried out at the L_3 absorption edge and by detection of the $L\alpha$ emission line. The L_3 core-hole broadening for heavy elements is in the order of 1eV, which makes detailed electronic structures difficult to obtain with conventional XAS methods. In the case of high energy resolution, the effect of core-hole broadening is reduced and the total energy resolution is defined by the spectrometer resolution, being in the order of 1eV. Lomachenko et al.\(^{48}\) compared RIXS and HERFD XANES (high-energy-resolution fluorescence detection X-ray absorption near-edge structure) spectroscopies for electronic and structural characterization of osmium compounds and showed that, in comparison to the conventional (total fluorescence yield) XANES, the high-resolution X-ray absorption spectrum is more informative, the peaks being sharper and fully resolved. RXES can therefore reveal fine changes in the electronic configuration of a 5d metal center with respect to small modifications on the ligand, allowing in situ chemical speciation at concentrations relatable to drug applications. It should be emphasized here that the L_3-edge spectroscopy is more sensitive to the chemical surrounding of the 5d metal center than K-edge measurements.\(^{49,50}\)

The label-free method, termed atomic telemetry, has proved useful to study the interactions between metal complexes and biomolecules without the need for extraction, crystallization, and/or preconcentration.\(^{57,51−54}\) The metal atom in the complex is directly affected by the chemical transformations, these being reflected in its electronic levels and subsequently transmitted through the interaction with the X-ray radiation, which is analogous to the radio telemetry. Atomic telemetry can detect and analyze low amounts of metals, making it a valuable method for elucidating the chemical fate of a metal center, as the geometry, oxidation state, and coordination sphere of the metal will be reflected in the X-ray absorption and emission spectra. X-ray photon-in photon-out core-level spectroscopy is therefore a powerful tool to map the electronic structure with time resolution and elemental specificity and under relevant conditions due to the high penetration of hard X-rays.\(^{55,56}\) The method is especially suitable for complex and multi-elemental environments because the electronic structure is provided exclusively from the perspective of the investigated metal center of the molecule. We herein demonstrate its ability to provide critical structural data during a multistep reaction between an anticancer metal complex and a bionucleophile, supporting a DFT-established pathway.

As part of the investigation in both the biological properties of such metal nitrides and the chemical properties that would convey their anticancer activity, we thus report the use of real-time atomic telemetry to help confirm the anticipated DFT pathway for the reduction of osmium(VI) nitrido anticancer complexes by thiols as a multistep reduction from the VI to the III oxidation state with osmium(IV) intermediates (Figure 1). We used hard X-rays (\sim10keV) from the SuperXAS beamline of the Swiss Light Source synchrotron to follow the reduction of the atom center and the changes in its first coordination sphere.

RESULTS AND DISCUSSION

The nitrido ligand can display electrophilic to nucleophilic behavior, depending on the metal center and its ligands.\(^{3}\) Osmium(VI) nitrido and other metal nitrides are known to undergo nucleophilic addition on their nitride with amines, amides, phosphines, and thiols.\(^{12,13,57−60}\) The latter may be involved in the anticancer effects of this class of compounds by depleting GSH levels and reacting with thiolated proteins, giving rise to the unfolded protein response.\(^{61}\) A careful examination of the reactivity of a (salen)rhodium(VI) nitrido complex with thiols has been reported a couple of years ago.\(^{61}\) We thus started by theoretically delineating the reaction mechanism of the osmium(VI) nitrido complex OsNCl$_3$(phen) with the simplest organic thiol (namely, methanethiol) for obvious computational reasons, helped by key experimental facts from the similar
reaction involving a ruthenium(VI) nitride. These were as follows: (i) a sulfimido intermediate is produced after consumption of stoichiometric amounts of the thiol and (ii) addition of two more equivalents of the thiol led to the production of 1.5 equiv of the corresponding disulfide and the ruthenium(III) ammine through a sulfalamido intermediate. From there and consistently to these experimental findings, we aimed at locating all the transition states along that reaction pathway at the spin-unrestricted and dispersion-corrected density functional theory level (ωB97x-D/def2-TZVP, see the Experimental Section for full details).

The reaction sequence starts with the addition of the thiol to the nitride through a first transition state TS1 that closely resembles the N−S adduct intermediate 2 (Figure 2). The latter will undergo proton shifting (TS2) to produce the first stable intermediate (3) after reaction with one thiol equivalent. In the case of ruthenium, available data suggest that the nucleophilic addition is the rate-limiting step instead of the proton transfer. Here, the activation energy is rather similar between both steps (24 vs 30 kcal mol⁻¹), although slightly higher for the proton shift. The sulfalamido osmium(IV) intermediate 3, for which both an osmium and a ruthenium congener have been evidenced by X-ray crystallography, then reacts with a second equivalent of thiol to produce the sulfimido osmium(IV) imido species 6. We can see that the proton transfer steps can involve rather high energy barriers (TS2 and TS3), suggesting that proton shuttling through a water molecule may facilitate the reaction. A last hydrogen transfer step (TS5), consuming the third thiol equivalent, will finally deliver the osmium(III) ammine complex and bring the overall thermodynamic driving force to the reaction. Apart from transition states leading to the formation of 3, the stationary saddle points TS3, TS4, and TS5 are not obvious and were verified as the actual transition structures of the considered steps by following the minimal energy pathway and integration of the intrinsic reaction coordinate (IRC, Figure 2B), showing that they indeed connect the expected reactants and products.

We then turned to atomic telemetry and resonant X-ray emission spectroscopy (RXES) to validate these theoretical predictions and follow the multistep reduction of OsVI to OsIII through OsIV intermediates. The reaction pathway was elucidated by analyzing the changes in RXES maps (ΔRXES) in real time during the reaction with the bionucleophile GSH, suspected to be involved in the antiproliferative activity of these high-valent nitrido complexes (Figure 3). The RXES difference maps (ΔRXES), which reflect relative changes in the density of occupied and unoccupied electronic states, were obtained by direct subtraction of normalized RXES planes for the corresponding Os complexes. The individual RXES maps can be found in the Supporting Information (Figure S3). It should be noted that direct differential maps were obtained by the use of a dispersive von Hamos spectrometer, enabling precise correction of the incoming energy.

Figure 2. (A) DFT-predicted reaction pathway for the reduction of the osmium(VI) nitrido complex 1 with methanethiol. (B) IRC minimum energy pathways for TS3b, TS4a, and TS5a.
The addition of the first equivalent of GSH caused a significant change in the electronic structure around the metal center. This translated in the ΔRXES maps as a clear shift of the main resonance toward higher energies, contrasting with the intuitively expected change when increasing the electron density and lowering the oxidation state. The experimental ΔRXES profile is, however, well reproduced by the induced change in the theoretical density of electronic states for the optimized structures 1 and 3. These results confirm that 3 is formed after the first addition of the thiol and that this first step appears to occur stoichiometrically and to completion. The apparent contradiction in the energy shift direction is explained by a significant reorganization of the Os 5d unoccupied orbital as a result of the structural transformation in the second coordination shell and the associated changes in the bond length between Os and N atoms. Additionally, the strength of hybridization between Os d and N p orbitals is lower in the Os(IV) complex and influences the strength of the resonance between 2p$_{3/2}$ and unoccupied states.

The addition of the second equivalent of GSH resulted in minor changes to the ΔRXES map, which suggests changes in the second coordination sphere of the Os complex but not in its oxidation state. This is in agreement with the DFT mechanism, in which the reaction of complex 3 with the second thiol molecule forms complex 6, which only differs from its predecessor by the coordinated ligands to the Os-bound
nitrogen. These small spectral changes from the sulfilamido osmium(IV) intermediate to the imido osmium(IV) are well reproduced using the complete transformation of complex 3 into 6, i.e., stoichiometric formation of complex 6. However, these are too small to unequivocally confirm the presence of both 3 and 6, but rather confirm the in situ generation of osmium(IV) intermediates, for which the structures are postulated by DFT.

The final addition of GSH caused a significant alteration in and around the main resonance, which is consistent with a change in the oxidation state. Theoretical analysis of these differences revealed interesting conclusions. First, the observed resonant X-ray emission spectral changes confirmed the formation of the final ammine osmium(III) complex 7 as the product of the reaction. The shift of the 5d resonance toward lower energies confirms the reduction from the oxidation state IV to III. Semiquantitative analysis of the ΔRXES maps further showed that this third step of the sequential reaction did not reach completion. Around 50% of the osmium(III) ammine 7 is produced at the end of the experiment, and this incomplete reaction may be due to our experimental setup, the inability to run the reaction in a controlled atmosphere, or the limited amount of time available at the beam to allow the reaction to complete. Based on our DFT predictions and experimental ΔRXES maps, we therefore propose the multistep reaction mechanism depicted in Figure 4, for the reduction of osmium(VI) nitrido anticancer complexes by thiols and GSH within cells. The reaction involves five consecutive steps and three stable intermediates.

To verify our hypothesis, we have run the reaction with another complex that was also used as an anticancer agent against glioblastoma models. Here too, the addition of 3 equiv of GSH induced spectral changes that reflect the transformation to the final Os(III) ammine compound, confirming our data on the phenanthroline complex. In the terpyridine case, however, multiple simultaneous processes involving the isomerization of the starting nitrido compound between its equatorial and axial isomers rendered the interpretation of the spectral changes associated with the intermediate Os(IV) states difficult but still confirmed the reduction of the Os(III) state and the ammine complex 14 (Figure 5).
CONCLUSIONS

To summarize, we disclose here the first use of real-time atomic telemetry for a multistep reaction involving a metal complex and, guided by DFT, uncovered the reaction mechanism. We were able to follow the reduction of osmium(VI) nitrido complexes to osmium(III) ammine by thiols and more specifically by the biologically relevant GSH. This marks a new achievement for resonant X-ray emission spectroscopy in elucidating the relationship between the structure and mechanism of action for biological systems. The past few decades witnessed the rapid development of X-ray sources and absorption techniques, and second-order spectroscopies can provide incomparable electronic and structural information on a wide variety of systems. XAS methods have been employed for many years to study the chemical state of samples, both in situ and ex situ. However, the high-energy-resolution spectroscopy methods push XAS-based techniques toward enhanced sensitivity, allowing observation of tiny chemical changes in the studied samples.\(^{65,66}\) The use of hard X-ray facilities and the monitoring of real-time spectral changes while the reaction takes place represent an important accomplishment for both X-ray spectroscopy and the chemical reactivity of such metal nitrides, which also convey antiproliferative properties as anticancer compounds. Our theoretical work is validated by the RXES experiments, bringing experimental proof for the formation of the postulated osmium(IV) complexes as reaction intermediates. Changes in the collected emission maps match the predicted spectra of these intermediates, and our study highlights the feasibility of the concept, opening the way for the use of X-ray spectroscopy to investigate complex reaction mechanisms.

EXPERIMENTAL SECTION

Synthesis of the Osmium Complexes. The complexes were prepared following previously published procedures.\(^ {65,66}\) Briefly, a tetrabutylammonium salt of the Os(VI) nitrido chloride was first produced followed by the complexation with the bi- and tridentate heterocyclic ligands in organic solvents, affording the desired compounds by precipitation over the course of the reaction. These were then filtered off and washed thoroughly with the reaction solvent.

Real-Time Atomic Telemetry. The electronic structure of osmium was investigated by means of resonant X-ray emission spectroscopy at the SuperXAS beamline of the Swiss Light Source synchrotron at Paul Scherrer Institute, Switzerland. The incident X-ray energy was monochromatized with double-crystal Si(111) and synchrotron at Paul Scherrer Institute, Switzerland. The incidence X-rays were collected continuously around the osmium L3 absorption edge of 10879.6 eV and Os(V) (10880.1 eV), respectively. The spectral maps were acquired during each reaction steps. This procedure allows reduction of radiation damage, and a constant circulation of the solution was ensured using a magnetic stirrer.

X-ray Data Analysis and Simulation. The collected 2D-RXES data were normalized employing conventional procedures. The 2D background function was first determined in a fitting procedure at incident and emission energies where no fluorescence was detected. This background function was then removed from the corresponding RXES maps. Then, for the highest incidence energies, the maximum XES signal was normalized to 1 so that the projected high-energy-resolution XAS (HR-XAS) function from the RXES plane was normalized to 0–1 values at below and above edge energies, respectively. The HR-XAS spectra (shown in the Supporting Information) were obtained by cutting the RXES planes across the most intense emission energy (i.e., Lα, peak maximum at 891.7 eV).

The theoretical resonant X-ray emission spectra were calculated with the zeroth-order regular approximation, ZORA\(^ {77}\) as implemented in ORCA 4.0.1.\(^ {1}\) and Q-Chem 4.6. Geometry of the investigated systems were fully optimized at the spin-unrestricted density functional theory level using the dispersion-corrected oB97x-D exchange–correlation functional.\(^ {78}\) The balanced polarized triple-zeta basis set def2-TZVP from Ahlrichs and Weigend\(^ {75,76}\) has been used for all atoms, except for the metal, for which either the quasi-relativistic Stuttgart–Dresden core potential was used or, for a sharper description of relativistic effects for core electrons, an all-electron scalar relativistic approximation (zeroth-order regular approximation, ZORA)\(^ {79}\) as implemented in ORCA 4. The second-order surface minima found upon optimization were confirmed by frequency calculations, and free energies were corrected to account for the zero-point energy. Optimized geometries were verified as minima (i.e., zero imaginary frequencies). The synchronous transit-guided quasi-Newton method\(^ {76,79}\) was used for locating transition structures. These structures were further verified as saddle points by frequency calculations (i.e., one and only one imaginary frequency). The bulk solvent effects for water have been included through the integral equation formalism version of the polarizable continuum model.\(^ {80}\) Natural bond orbital analysis was performed using the latest version of the program from Weinhold and co-workers (NBOPro 6.0).\(^ {81}\)

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467.

AUTHOR INFORMATION

Corresponding Author

Gilles Berger – Microbiology, Biorganic & Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles,
Complete contact information is available at:
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00467

Author Contributions
G.B. performed the chemical synthesis of the compounds and all DFT calculations and participated in the experiments at the SLS synchrotron. He prepared the manuscript and analyzed the data. A.W. conducted the experiments at the SLS and participated in the data analysis. J.S. contributed to the design of the study and data analysis. J.Sz. participated in the experiments at the SLS and analyzed the data.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Authors would like to acknowledge the Swiss Light Source for access to the SuperXAS beamline. G.B. was a recipient of an FRS-FNRS Award. J.S. acknowledges partial support from the National Science Center in Poland under grant 2016/21/D/ST4/00378.

REFERENCES

(27) Watanabe, D.; Gondo, S.; Seino, H.; Mizoibe, Y. N-N Bond Cleavage of Organohydrazines by Molybdenum(II) and Tungsten(II) Complexes Containing a Linear Tetraphosphine Ligand. Formation of...
Nitrido or Imido Complexes and Their Reactivities. *Organometallics* 2007, 26, 4909–4920.

