
Analysis of the Stability of a Flat-Plate High-
Speed Boundary Layer with Discrete Roughness

Thesis presented by Iván PADILLA MONTERO
with a view to obtaining the PhD Degree in Engineering Sciences and
Technology (“Docteur en Sciences de l’Ingénieur et Technologie”)
Academic year 2020-2021

Supervisor: Prof. Axel COUSSEMENT
Co-supervisor: Prof. Gérard DEGREZ

Co-supervisor: Dr. Fabio PINNA

Thesis jury:
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von Karman Institute for Fluid Dynamics
Aeronautics and Aerospace Department

Analysis of the Stability of a Flat-Plate High-Speed
Boundary Layer with Discrete Roughness

Iván Padilla Montero

Thesis presented in order to obtain the degree of
Doctor of Philosophy in Engineering Sciences
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von Karman Institute for Fluid Dynamics
Aeronautics and Aerospace Department

Supervisors:
Dr. Fabio Pinna (von Karman Institute for Fluid Dynamics, Belgium)
Prof. Axel Coussement (Université Libre de Bruxelles, Belgium)
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Abstract

Boundary-layer transition from a laminar to a turbulent regime is a critical driver in
the design of high-speed vehicles. The aerothermodynamic loads associated with
transitional or fully turbulent hypersonic boundary layers are several times higher
than those associated with laminar flow. The presence of isolated roughness ele-
ments on the surface of a body can accelerate the growth of incoming disturbances
and introduce additional instability mechanisms in the flow field, eventually lead-
ing to a premature occurrence of transition.

This dissertation studies the instabilities induced by three-dimensional discrete
roughness elements located inside a high-speed boundary layer developing on a
flat plate. Two-dimensional local linear stability theory (2D-LST) is employed to
identify the instabilities evolving in the three-dimensional flow field that character-
izes the wake induced by the roughness elements and to investigate their evolution
downstream. A formulation of the disturbance energy evolution equation avail-
able for base flows depending on a single spatial direction is generalized for the
first time to base flows featuring two inhomogeneous directions and perturbations
depending on three spatial directions. This generalization allows to obtain a de-
composition of the temporal growth rate of 2D-LST instabilities into the different
contributions that lead to the production and dissipation of the total disturbance
energy. This novel extension of the formulation provides an additional layer of
information for understanding the energy exchange mechanisms between a three-
dimensional base flow and the perturbations resulting from 2D-LST.

Stability computations for a calorically perfect gas illustrate that the wake in-
duced by the roughness elements supports the growth of different sinuous and
varicose instabilities which coexist together with the Mack-mode perturbations
that evolve in the flat-plate boundary layer, and which become modulated by the
roughness-element wake. A single pair of sinuous and varicose disturbances is
found to dominate the wake instability in the vicinity of the obstacles. The applica-
tion of the newly developed decomposition of the temporal growth rate reveals that
the roughness-induced wake modes extract most of their potential energy from the
transport of entropy fluctuations across the base-flow temperature gradients and
most of their kinetic energy from the work of the disturbance Reynolds stresses
against the base-flow velocity gradients. Further downstream, the growth rate of
the wake instabilities is found to be influenced by the presence of Mack-mode dis-
turbances developing on the flat plate. Strong evidence is observed of a continuous
synchronization mechanism between the wake instabilities and the Mack-mode
perturbations. This phenomenon leads to an enhancement of the amplification rate
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of the wake modes far downstream of the roughness element, ultimately increasing
the associated integrated amplification factors for some of the investigated condi-
tions.

The effects of vibrational molecular excitation and chemical non-equilibrium
on the instabilities induced by a roughness element are studied for the case of a
high-temperature boundary layer developing on a sharp wedge configuration. For
this purpose, a 2D-LST solver for chemical non-equilibrium flows is developed
for the first time, featuring a fully consistent implementation of the thermal and
transport models employed for the base flow and the perturbation fields. This
is achieved thanks to the automatic derivation and implementation tool (ADIT)
available within the von Karman Institute extensible stability and transition anal-
ysis (VESTA) toolkit, which enables an automatic derivation and implementation
of the 2D-LST governing equations for different thermodynamic flow assumptions
and models. The stability computations for this configuration show that sinuous
and varicose disturbances also dominate the wake instability in the presence of
vibrational molecular energy mode excitation and chemical reactions. The re-
sulting base-flow cooling associated with the modeling of such high-temperature
phenomena is found to have opposite stabilizing and destabilizing effects on the
streamwise evolution of the sinuous and varicose instabilities. The modeling of
vibrational excitation and chemical non-equilibrium acting exclusively on the per-
turbations is found to have a stabilizing influence in all cases.
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1
Introduction

1.1 Atmospheric entry

During the past sixty years, the first steps in human space exploration have become
a reality. The development of space science and technology has enabled humans
to access outer space and orbit around the Earth, as well as giving birth to inter-
planetary travel through the solar system. Up to date, these advancements have led
humans to land on the Moon, robotic rovers to land on Mars and space probes to
visit other planets and asteroids, including landings on the surface of Venus and
Saturn’s moon Titan.

Whether crewed or not, space missions requiring landing on the surface of a
planet with an atmosphere, including missions requiring a return to Earth, have to
deal with the challenge of atmospheric entry. In this context, the term atmospheric
entry refers to the movement of an object from outer space into and through the
gas of a planet’s atmosphere. While in outer space, spacecraft returning from orbit
around a planet or arriving to it following an interplanetary trajectory, move at
a very high speed relative to that of the gas in the planet’s atmosphere. As an
example, the International Space Station (ISS) orbits the Earth at an approximate
velocity of 7.7 km/s (at a height of about 420 km). When a spacecraft docked
to the ISS performs a deorbit burn to return to Earth, such as the Space Shuttle
Orbiter or the Soyuz capsule, it begins to enter the Earth atmosphere at a speed
near 7.7 km/s (Mach number near 24). Similarly, a spacecraft returning from Mars
in a Mars-Earth transfer trajectory, would reach the Earth atmosphere at about
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Figure 1.1: Artwork of the spacecraft carrying NASA’s Perseverance rover decelerating in
the atmosphere of Mars. Perseverance landed successfully on the surface of Mars on the
18th of February 2021. Credit: NASA.

15 km/s (approximately at Mach number 45). Traveling through the gas medium
at such high velocity generates a large amount of atmospheric drag, caused both
by the compression of the gas in front of the vehicle (pressure drag) and by the
friction against the vehicle’s surface (skin-friction drag). This force serves the
purpose of slowing down the spacecraft but at the same time it induces strong
aerothermodynamic loads on the surface of the vehicle, leading to enormous heat
transfer rates.

At first glance, it might seem reasonable to think that other alternatives such
as rocket propulsion or the use of parachutes could provide a controlled entry, de-
scent and landing. Nevertheless, current propulsion technologies do not allow for
this process to be efficient, as an enormous amount of fuel would be necessary
on-board the spacecraft to provide the large amount of deceleration required. Sim-
ilarly, currently existing materials are not able to withstand the stresses that would
be encountered when deploying a parachute at such high speed. For these reasons,
atmospheric entry at high speed is the only effective braking option available at
present. It is important to note, however, that parachutes and rocket propulsion
are often employed during the final phases of the descent and landing processes of
non-lifting vehicles, such as Earth return capsules or Mars entry spacecraft (vehi-
cles such as the Space Shuttle Orbiter do not require such technologies as they are
capable of controlled gliding and landing on a runway). However, they are used
only to further decrease the velocity of the spacecraft beyond its terminal velocity,
so to ensure a safe impact against water or land. Most of the deceleration is in all
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Figure 1.2: Velocity-altitude map illustrating the reentry trajectories of different spacecraft
into Earth’s atmosphere. The thresholds above which different high-enthalpy effects become
important are denoted by dashed lines. Adapted from the map provided by Rivell [1].

cases achieved through atmospheric drag during the entry phase.
During the atmospheric entry process, the kinetic energy of the spacecraft is

invested into heating up the gas around it. The physical mechanisms by which this
conversion takes place are generally described by the theory of hypersonic and
high-temperature gas dynamics, also commonly known as hypersonic aerodynam-
ics. Although no rigorous definition of hypersonic flow exists, a flow is considered
to be hypersonic when its Mach number is high enough so that certain physical
flow phenomena become important (see Anderson [2]). The main phenomena that
characterize hypersonic flows are thin shock layers, entropy layers, viscous inter-
actions, low-density (rarefied) gas effects and high-enthalpy effects. The latter are
a consequence of the high temperatures that can be reached by a gas flowing past
a body at very high speed.

High-temperature flows are characterized by the coexistence of multiple physi-
cal phenomena, which include the excitation of the rotational, vibrational and elec-
tronic molecular energy modes, the dissociation of gas molecules into monoatomic
species and, for very high temperatures, a ionization of such dissociated atoms.
As a result, the analysis of high-enthalpy effects during the different stages of the
atmospheric entry process is a complex matter that involves the coupling of sev-
eral phenomena which often feature different characteristic time and length scales.
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Figure 1.2 illustrates a velocity-altitude map showing the estimated trajectories for
different spacecraft reentering the Earth atmosphere. Different regions of the plot
highlight the different high-temperature phenomena encountered during the reen-
try trajectory. Note that vehicles entering the atmosphere from outside the Earth
orbit feature a significantly higher entry velocity and consequently undergo much
higher aerothermodynamic loads.

1.1.1 The problem of aerodynamic heating

The strong drag encountered during atmospheric entry results in big heat transfer
rates on the surface of a vehicle. The need to accommodate all this heat in order
to maintain the structural integrity of the spacecraft and to keep the temperature
inside within the required limits constitutes what is known as the problem of aero-
dynamic heating [3].

The temperature of the gas in contact with the surface during entry typically
ranges between 1500 and 2000 K1. For example, the leading edge surface tem-
perature at the point of maximum heating during the nominal reentry trajectory
of the Space Shuttle Orbiter is approximately 1800 K [4, 5]. Materials employed
for aeronautical engineering applications are by no means capable of withstanding
such strong thermal loads. For this reason, spacecraft designed to undergo atmo-
spheric entry employ thermal protection systems (TPS), which are surface layers
of heat-resistant materials specifically designed to maintain the structural integrity
of the spacecraft. TPS can be reusable, such as in the case of the Space Shuttle
Orbiter, or single-use, such as the ablative heat shields employed in reentry cap-
sules like Apollo, Soyuz, Orion or Dragon. The left image in figure 1.3 depicts
the Apollo command module after reentry, showing how the ablative material de-
graded during the process, leaving a rough surface. In contrast, the right image
in figure 1.3 illustrates the thermal protection system of the Space Shuttle Atlantis
near the nose region. In this case, the system mainly consists of reusable surface
insulation tiles, together with a reinforced carbon-carbon (RCC) composite mate-
rial in the nose cap and the wing leading edges, which are the regions exposed to
the highest temperatures.

The complexity of the physical phenomena taking place during atmospheric
entry makes it difficult to perform accurate predictions of the heat loads at which
a vehicle will be exposed. For a given mission, these uncertainties lead to the
need of using big safety factors during the design process, which generally result
in oversized thermal protection systems. This, in turn, translates in a higher struc-
tural weight and a detriment in the payload capacity of the spacecraft, ultimately
increasing the mission cost.

1It is important to note that this is the temperature of the gas immediately in contact with the surface.
The temperature of the gas in the shock layer established between the bow shock wave in front of a
vehicle and the surface can be as high as 11000 K [2].
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Figure 1.3: (left) Apollo command module on display at the Science Museum, London, 6
August 2019; (right) Front part of Space Shuttle Atlantis, on display at Kennedy Space
Center, FL, USA, 12 January 2018. Pictures taken by I. Padilla Montero.

Perhaps the most important uncertainty originates from our current inability
to predict the boundary-layer transition process in practical configurations. It is
well known that when a boundary layer transitions from the laminar to the tur-
bulent regime in hypersonic flow, the heat flux at the wall increases dramatically.
During the transition process, the heat-transfer coefficient can surpass the lami-
nar value by almost an order of magnitude [3], even overshooting the value in the
fully developed turbulent regime, which in general is already several times higher
than the laminar counterpart. For example, the turbulent heat-transfer coefficient
on a flat plate in free flight at Mach 6 and at a Reynolds number of 107 is six
times bigger than the respective laminar value [3]. It becomes clear, then, that
a vehicle undergoing atmospheric entry in the turbulent regime will be exposed
to significantly higher temperatures than in the laminar case. In the design pro-
cess, conservative estimations are of paramount importance to ensure that safety
remains the top priority. Given the uncertainties in transition prediction, this often
implies the assumption of fully turbulent flow along the entire reentry trajectory.

To illustrate the importance of transition during reentry, the left plot in fig-
ure 1.4 shows the in-flight temperature signal recorded by one of the temperature
sensors (thermocouples) located in the windward surface of the Space Shuttle Dis-
covery during the reentry of STS-119, as reported by Berger et al. [5]. For this
flight, different thermocouples were installed near the predicted wake region be-
hind an artificial protuberance that was placed on a wing of the Orbiter to inves-
tigate boundary-layer transition, in the context of the project known as boundary-
layer transition flight experiment (BLTFE). The temperature signal represented
here corresponds to the thermocouple labeled TC1 in [5], which was intended to
be located in the central wake region behind the protuberance. As it can be ob-
served, a large increase in temperature is recorded at t ≈ 970 s, which is attributed
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Figure 1.4: (left) Temperature signal recorded by a thermocouple (labeled as TC1) lo-
cated in the wake behind a protuberance installed on a wing of the Space Shuttle Discovery
(windward surface), during the reentry flight of STS-119. The data represented here has
been manually extracted from the original signal shown in figure 9 of reference [5]. The
uncertainty in the measurement is estimated to be ±11 K. Signal time is measured with
respect to the time at which the Orbiter altitude is 122 km (400000 ft), known as the en-
try interface (EI); (right) Surface temperature map of Space Shuttle Endeavour during the
reentry flight of STS-134, obtained by means of infrared thermography (flight Mach number
5.8, angle of attack 28.8 deg). Adapted from [6].

to boundary-layer transition. The corresponding flight Mach number at that instant
is estimated to be 15.6. Note that the surface temperature jump is about 330 K,
that is, a 34% increase with respect to the laminar value before transition onset.

Similarly, the right plot in figure 1.4 shows a surface temperature map of
the Space Shuttle Endeavour during its final reentry flight (STS-134), obtained
by means of high-resolution infrared thermography measurements performed by
Horvath et al. [6] in the framework of the hypersonic thermodynamic infrared
measurements (HYTHIRM) project. The obtained temperature data shows that
boundary-layer transition occurred in an asymmetric manner, starting shortly after
the starboard rear corner of the nose landing gear door. Although a similar tran-
sition pattern was also observed in STS-119, its exact origin remains unknown.
Horvath et al. [6] suggest that it is triggered by some form of isolated roughness
originating from the nose landing gear door (such as a step or gap, for instance).
In this case, the temperature difference between the laminar and the turbulent re-
gions near the centerline of the Orbiter is about 120 K. Note that this measurement
corresponds to a later time in the reentry trajectory than that of the transition onset
depicted in the left plot of figure 1.4. For this measurement, the estimated flight
Mach number is 5.8.
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1.2 Boundary-layer transition in high-speed flow

As introduced in the previous section, boundary-layer transition from a laminar to
a turbulent regime plays a crucial role in the problem of aerodynamic heating. As
a consequence, it becomes a critical driver for the optimal design of hypersonic ve-
hicles. Although hypersonic boundary-layer transition has been an active research
topic for decades, the physical mechanisms involved in the process are not well
understood yet. As a result, the existing transition prediction tools for practical
hypersonic applications still rely heavily on engineering correlations with a high
degree of empiricism, generally developed from wind tunnel experiments.

The boundary-layer transition process is known to be the result of the growth
and interaction of perturbations that are generated inside the boundary-layer and/or
introduced into it from the outside. Several sources of perturbations exist that
can affect the boundary-layer (forcing), such as freestream disturbances, surface
geometry and roughness, acoustic waves, structural vibrations, heat transfer or
ablation. The effectiveness of such perturbations on the transition process depends
on how receptive the boundary layer is to them (receptivity), and whether they are
able to grow or not once evolving inside the boundary layer. Depending on the
disturbance level to which the boundary-layer is exposed, the transition process
can undergo different stages, or paths, the so-called paths to transition (see for
example Morkovin et al. [7]), represented in figure 1.5.

In low-disturbance environments, path A usually prevails. This path begins
with a linear mechanism in which the most unstable perturbations evolving in the
boundary layer experience exponential growth, also known as eigenmode growth
or modal growth. After reaching a certain amplitude, these perturbations develop
secondary instabilities and interact with each other by means of non-linear mecha-
nisms, rapidly triggering a breakdown to turbulence. For higher disturbance levels
(paths B, C and D), the perturbations undergo transient growth directly after enter-
ing the boundary layer through the receptivity mechanisms. Transient growth, also
known as non-modal growth, is a linear mechanism by which a given disturbance
can undergo algebraic growth, even if all the perturbations in the boundary-layer
are stable to modal amplification (see § 3.12). In path B, only a moderate level of
transient growth is experienced by the perturbations, which then undergo a stage
of exponential (modal) growth and follow a similar path to A, with the difference
that in this case the amplitude at which modal interactions become important is
reached before, owing to the additional algebraic growth induced in the prior non-
modal stage. This usually translates in an upstream shift in the transition location
with respect to path A.

When following path C, the perturbations are subject to a non-modal growth
that is strong enough to trigger directly the non-linear interactions that produce
a breakdown to turbulence, without the disturbances undergoing any eigenmode
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Figure 1.5: Different paths to transition depending on the disturbance level. Adapted from
Morkovin et al. [7].

growth. By moving one step further in the disturbance level scale, perturbations
that follow path D experience a very large transient growth, such that both the
modal growth and modal interaction stages are bypassed, leading directly to break-
down. Finally, if the environmental disturbance level is very high, a bypass of all
the different perturbation growth mechanisms can occur, immediately producing
breakdown to turbulence, as depicted by path E.

An illustration of the different stages of the boundary-layer transition process
in a low-disturbance environment, that is, following path A, is shown in the draw-
ing displayed in figure 1.6 for a boundary-layer developing on a flat plate, as orig-
inally depicted by White [8]. In this case, the most unstable disturbance evolving
inside the boundary layer takes the form of a Mack mode [10], or of a Tollmien-
Schlichting (TS) wave in the realm of low-speed flows. As it can be observed, the
transition process begins with the exponential growth of TS waves, in this case
represented as two-dimensional waves with wave fronts parallel to the flat-plate
leading edge. Then, as soon as the amplitude of the TS waves has grown sig-
nificantly, secondary instabilities begin to develop and modal interactions begin
to take place, introducing spanwise vorticity in the boundary layer and producing
streamwise streaks that rapidly breakdown to generate turbulent spots, which even-
tually spread over the complete boundary layer leading to a fully turbulent flow.
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Figure 1.6: Stages of the transition process (not to scale) for a flat-plate boundary layer
following path A (see figure 1.5). Adapted from White [8] and Miró Miró [9].

Although not shown to the respective scale in the figure, the eigenmode-growth
stage is the longest part of the process in this case, and it is where most of the
disturbance amplification takes place.

In order to improve the transition-prediction capabilities for the design of fu-
ture high-speed applications, new methodologies able to take into account a higher
degree of flow physics for each particular case should be developed. In partic-
ular, approaches that properly model the different stages of the transition paths
described above are necessary [11]. The approach with the highest fidelity avail-
able is that of direct numerical simulation (DNS), which allows to evaluate the
complete transition process by means of a numerical solution of the Navier-Stokes
equations. Despite its very high computational cost, numerous DNS analyses in
fundamental configurations have been performed in recent years, as the computa-
tional power available has increased significantly. Hand-in-hand with DNS analy-
ses, hydrodynamic stability theory has become a very attractive and powerful tool
nowadays, owing to its good degree of fidelity at a reduced computational cost
compared to DNS, specially in its linear form [12]. In particular, linear stability
theory allows to evaluate the eigenmode-growth stage of the low-disturbance-level
transition process (path A), which, in many configurations of interest at flight con-
ditions, is the longest stage and it is where most of the disturbance growth takes
place. Additionally, for some applications such as a flat-plate boundary layer, the
linear theory allows to provide an accurate prediction of transition location thanks
to the eN method (see § 3.7).
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Figure 1.7: Gap fillers protruding from the thermal protection system of the Space Shuttle
Discovery (STS-114). Photograph taken from the ISS, August 2005. Credit: NASA.

1.2.1 The role of isolated roughness elements on boundary-layer
transition

One of the most important factors that are known to affect the boundary-layer tran-
sition process at high speed is the presence of localized or distributed roughness on
the surface of a vehicle. Examples include damaged heat-shield tiles, gap fillers,
ablated surfaces or remains of contaminants. For instance, the surface roughness
of the Space Shuttle Orbiter was inherently defined by the placement and instal-
lation of the individual ceramic tiles and by any in-flight damage that altered the
TPS surface. Tile gaps and misalignments resulted in discrete roughness that was
scattered over the windward surface. In addition, the surface roughness could be
further increased by post-launch damage in the form of tile cavities produced by
debris impacts or gap fillers protruding between individual tiles due to structural
vibrations [6]. Figure 1.7 illustrates two protruding gap fillers located on the wind-
ward surface of Space Shuttle Discovery photographed during mission STS-114,
which were found during an inspection of the thermal protection system of the
Orbiter prior to reentry. STS-114 was the first mission after the Space Shuttle
Columbia disaster in 2003 [13]. For this reason, it was known as the Return to
Flight mission. Since Columbia’s accident, the concern regarding safety during
reentry was particularly high. As a result, an extravehicular activity (EVA) was
conducted by a crew member to remove the protruding gap fillers from the TPS.

The perturbations generated by surface roughness can enhance the growth of
incoming disturbances and introduce additional instability mechanisms in the flow
field, eventually leading to a premature occurrence of transition. Flight experi-
ments such as BLTFE and HYTHIRM, introduced in the previous section, have
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demonstrated the relevance of roughness-induced transition in the reentry of the
Space Shuttle Orbiter. After analysis of data gathered during the HYTHIRM
project, evidence was found that the observed transition pattern was most prob-
ably triggered by some form of isolated roughness located in proximity to the
starboard rear corner of the nose landing gear door [6]. In the case of STS-119,
computations went hand-in-hand with the flight experiments. Numerical analyses
performed by Candler & Campbell [14], employing a turbulence model coupled
with a boundary-layer tripping driven by the STS-119 flight measurements, were
directly compared against the respective flight thermal imagery, displaying a good
qualitative agreement. In parallel with flight experiments, numerous wind tun-
nel experimental investigations have also shown that laminar-turbulent transition
can be dominated by roughness effects in a wide range of conditions (see for in-
stance [15–19]).

The effects of two-dimensional discrete roughness elements on boundary-layer
transition were investigated experimentally by Klebanoff & Tidstrom [15] for sub-
sonic boundary layers, who found that the roughness geometry did not generate
any additional instability mechanism in the flow, but rather it introduced modifica-
tions in the base flow which had a destabilizing influence on the already existing
disturbances (Tollmien-Schlichting waves in this case). For the case of a Mach
4.8 boundary layer, Marxen et al. [20] studied the destabilizing effect introduced
by a two-dimensional isolated roughness element on the evolution of a small dis-
turbance by means of direct numerical simulation. The disturbance was generated
by blowing and suction at the wall at a location upstream of the roughness ele-
ment. The roughness was found to accelerate the transition process by introducing
a stable mode in the flow which interfered with the upstream disturbance, effec-
tively amplifying it in a given frequency range. Three-dimensional roughness ele-
ments with heights comparable to the local boundary-layer thickness usually have
a stronger influence than two-dimensional elements on the transition process in
supersonic and hypersonic flows. It has been shown both experimentally and nu-
merically that these elements tend to induce counter-rotating streamwise vortices
in the wake flow field (see for example [21–25]), which lift-up low-momentum
fluid from the near-wall region and give rise to a series of high- and low-velocity
streaks that are surrounded by regions of high shear and can support the growth of
different instabilities [26–31].

Due to the numerous physical processes that come into play and the wide
variety of geometrical configurations that are interesting in practice, roughness-
induced transition is still not well understood. As reviewed by Schneider [19],
current practical methodologies for the prediction of roughness effects on hyper-
sonic boundary-layer transition rely mainly on empirical correlations and extensive
wind tunnel testing. A physical parameter that has been found to play an impor-
tant role in correlating different roughness-induced transition data is the roughness
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Reynolds number, defined here as Reh = uhh/νh, where uh and νh are respec-
tively the streamwise velocity and the kinematic viscosity of the fluid at the lo-
cation and height (h) of the roughness element in a smooth boundary layer. As
shown in the review of Reda [17], several existing roughness-dominated transition
correlations could be modeled by a critical value of Reh, above which boundary-
layer transition would occur in a very short distance downstream of a roughness
element, that is, by means of bypass mechanisms (paths D and E in figure 1.5).

DNS computations by Redford et al. [32] for supersonic flow over a flat plate
with different isolated smooth roughness elements showed that the critical value
of Reh increases as the parameter MhT∞/Tw increases, with Mh being the Mach
number at the roughness position and height in the undisturbed boundary layer and
Tw is the wall-temperature, and found that a linear relation between MhT∞/Tw
and Reh (in particular, MhT∞/Tw = 3(Reh − 300)/700) successfully separated
transitional from non-transitional cases in their DNS database. Later on, Bernar-
dini et al. [33, 34] proposed a modified roughness Reynolds number definition
(Reh,w) by evaluating the dynamic viscosity at the wall instead of doing it at h,
which allowed to account for the effect of wall-temperature. For a cuboidal rough-
ness element, [34] found that a constant value of Reh,w = 460 could success-
fully separate laminar from transitional cases in their DNS computations, there-
fore providing another bypass transition criterion based on the concept of a critical
roughness Reynolds number. Additionally, Bernardini et al. [34] provided another
roughness Reynolds number definition (ReQ) that also includes the effect of the
roughness shape by estimating the momentum deficit past a given obstacle, in
this case issuing a critical roughness Reynolds number criterion that was approxi-
mately independent of the roughness shape and aspect ratio, namely,ReQ between
200 and 280.

A physics-based correlation was proposed by Reshotko & Tumin [35] using
results from transient-growth theory, suggesting that roughness-induced transient
growth could be a relevant mechanism for boundary-layer transition in blunt bod-
ies in the presence of distributed roughness. However, based on the joint efforts of
Hein et al. [36], transient growth could not yet be conclusively linked to the onset
of transition observed in blunt reentry capsules, whose physical mechanism still
remains unknown.

In recent years, a significant number of researchers have focused their efforts
on studying the stability characteristics of the wake induced by three-dimensional
isolated roughness elements in high-speed flow, using both experimental and nu-
merical techniques [26–31, 37–40]. Given the strong inhomogeneity of the wake
flow field, numerical analyses based on stability theory employ two-dimensional
amplitude functions, leading to two-dimensional local linear stability theory (2D-
LST), also known as BiGlobal stability theory [12], or three-dimensional parab-
olized stability equations (3D-PSE) [41]. These studies have revealed that the
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roughness wake supports the growth of sinuous and varicose instability modes
that develop in the high-shear regions introduced by the counter-rotating vortex
pair, and that these disturbances can undergo a substantial growth during the linear
stages of the transition process. Groskopf et al. [26] performed temporal 2D-
LST analyses in the wake behind isolated three-dimensional cuboidal roughness
elements in a Mach 4.8 boundary layer and compared the amplitude functions
against unsteady direct numerical simulations. The results showed the growth of
an even (varicose) and an odd (sinuous) instability mode in the wake behind the
element, reporting a good agreement of the disturbance amplitude shapes against
the DNS data. Kegerise et al. [28] carried out experimental measurements of the
disturbance amplitudes behind a diamond element in a flat plate at Mach 3.5, and
compared them against the spatial amplitude signatures obtained from the 2D-LST
analyses of Choudhari et al. [27] with satisfactory results, reinforcing the validity
of the theory for the geometrical configurations considered. Their investigations
revealed that, for a roughness Reynolds number of 426, the varicose mode was
dominating the transition process, whereas for Reh = 319 the sinuous instability
was leading.

A sharp-edged cuboid geometry at Mach 2.5 was also studied by De Tullio
et al. [29] using DNS as well as spatial 2D-LST and 3D-PSE stability theories.
The two-dimensional eigenfunctions obtained from the 2D-LST computations and
the growth rates extracted from the 3D-PSE simulations were respectively found
to be in very good agreement with the DNS results. In that particular case, the
varicose instability was found to drive the transition process until the breakdown
to turbulence. The same geometrical configuration at Mach 6 was analyzed by De
Tullio & Sandham [30] by means of direct numerical simulation. For a roughness
element with a height of about half the local-boundary layer thickness, three differ-
ent modes were found to govern the wake instability, namely, a sinuous mode and
two varicose modes. The varicose modes featured a higher growth and their de-
velopment persisted for a longer distance downstream. Two different mechanisms
for the excitation of wake modes were identified. On the one hand, the sinuous
instability was found to be excited by the interaction between the external distur-
bances introduced at the domain inflow and the recirculation regions induced by
the roughness element. On the other hand, the varicose modes were excited by
an interaction between the natural boundary-layer modes (Mack’s first and second
modes) and the roughness wake, leading to the hypothesis that a synchronization
mechanism between the boundary-layer modes and the wake modes would lead to
the continuous excitation of the wake modes as the boundary-layer modes grow
downstream. Paredes et al. [42] performed stability computations using the lami-
nar base flows of [30] and also reported good qualitative agreement with the DNS
data for the 2D-LST amplitude functions and the 3D-PSE growth rates, respec-
tively. However, a significant discrepancy was found between the 2D-LST and
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3D-PSE growth rates, whose origin could not be identified.

Van den Eynde & Sandham [43] investigated different roughness geometries
for a Mach 6 flow over a flat plate, showing that a smooth ramping of the rear por-
tion of the roughness shape towards the wall could reduce significantly the growth
of wake instabilities, due to a weakening of the three-dimensional shear layer sur-
rounding the low-velocity streak. Additionally, the analyses of [43] confirmed
that sharper-edged roughness elements are more effective in promoting transition
than smooth elements. Later on, Groskopf & Kloker [31] considered the instabil-
ities induced by skewed roughness elements on top of a flat plate in a Mach 4.8

freestream. In this case, a non-symmetric wake is established behind the elements,
featuring a stronger low-speed streak than the symmetric counterpart. Local lin-
ear stability analyses and DNS results showed that at identical roughness height, a
larger amplification is achieved for the eigenmodes in the oblique configuration.

A few recent works have also focused on roughness elements located on the
heat shield of a reentry capsule. Theiss et al. [38] performed 2D-LST and 3D-PSE
computations in the wake behind different isolated roughness geometries located
on the forebody of a generic capsule at Mach 5.9. For all the cases considered, the
varicose wake modes were the most amplified in terms of maximum N -factors,
with the cylindrical roughness element being the most effective shape. In this
case, in contrast to [42], the growth rates of the 2D-LST and the 3D-PSE compu-
tations were found to be in good qualitative agreement, with 3D-PSE providing
higher growth rates. An important difference with respect to the flat-plate studies
mentioned before is that, due to the strong bow shock in front of the capsule, the
boundary-layer modes upstream of the roughness elements are highly stabilized,
and as a result their interaction with wake modes is not present. Very recently,
Di Giovanni & Stemmer [40] carried out linear stability and DNS computations
for a patch of periodic distributed roughness and DNS computations for a patch
of randomly distributed roughness on a blunt-capsule configuration at Mach 5.9.
For the periodic case, the growth rates of the symmetric and antisymmetric wake
modes were found to be in good agreement between 2D-LST, 3D-PSE and DNS.
For the random case, the DNS results revealed a new type of roughness-induced
cross-flow instability leading to breakdown to turbulence.

At present, currently available investigations do not yet provide a definitive an-
swer on which are the mechanisms that lead to the excitation and dominance of a
given type of roughness instability (varicose/sinuous) over another for a particular
configuration. Similarly, the current understanding of the influence of boundary-
layer disturbances on the roughness-induced wake instabilities is still very prelim-
inary and deserves further analysis.
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1.2.2 High-enthalpy effects on boundary-layer transition

The majority of the aforementioned numerical studies have assumed air to behave
as a calorically perfect gas. However, one-dimensional local linear stability analy-
ses in smooth flat-plate boundary layers have shown that this assumption must be
abandoned when modeling high-enthalpy environments such as those encountered
during atmospheric entry. Instead, flow assumptions accounting for the excitation
of the internal energy modes and the dissociation of air molecules in the transition
process are necessary.

High-temperature effects on the stability of hypersonic boundary layers were
first studied by Malik & Anderson [44], who considered self-similar boundary-
layer profiles in local thermodynamic equilibrium (LTE) to assess the influence of
dissociation. Next, Stuckert & Reed [45] extended this analysis to boundary layers
in chemical non-equilibrium and Hudson et al. [46] included also thermal non-
equilibrium effects. The main findings from these studies showed a destabilization
of the second Mack-mode instability in the presence of internal-energy-mode ex-
citation and dissociation-driven base-flow cooling as well as a shift towards lower
frequencies. Several authors have since investigated high-enthalpy effects on var-
ious configurations and test conditions, employing different stability theories and
thermal and transport models [47–60]. A review of different high-enthalpy effects
on boundary-layer transition can be found in the work of Miró Miró [9].

The investigations listed above are mainly restricted to second-mode insta-
bilities in smooth configurations. Regarding the role of high-enthalpy effects on
roughness-induced transition, little is known as very few studies are currently
available. Groskopf et al. [61] analyzed the instability introduced by a discrete
oblique roughness element in cold and hot hypersonic flow conditions, emulating
the set-up of the BLTFE experiment flown in STS-119 (see the brief description
in § 1.1.1). For the hot case, while their base-flow solutions were obtained by
means of a solver modeling chemical non-equilibrium, only a thermally perfect
gas model was available in the stability implementation, thus neglecting chemical
reactions in the perturbation equations. The results showed a rather negligible in-
fluence of high-temperature effects on the growth rate of the modes developing in
the roughness wake.

Stemmer et al. [62, 63] carried out direct numerical simulations for the flow
field past a blunt wedge with a cuboidal roughness element mounted on top, at
conditions replicating a point in the trajectory of the Hypersonic Boundary-Layer
Transition (HyBoLT) experiment, namely, M = 8.5 at a height of 42.5 km. The
evolution of disturbances behind the roughness element was studied for the calor-
ically perfect gas, chemical equilibrium and chemical non-equilibrium flow as-
sumptions. The results revealed a lower attenuation of the disturbances in the
chemical equilibrium case with respect to the CPG solution, while in the chemi-
cal non-equilibrium case a region of amplification far dowstream of the obstacle
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was observed, in contrast to the other two flow assumptions. Very recently, Di
Giovanni & Stemmer [64, 65] performed direct numerical simulations on a hemi-
spherical capsule-like geometry with a randomly distributed roughness patch in-
cluding thermal and chemical non-equilibrium. They found that the inclusion of
chemical non-equilibrium has a destabilizing effect on the evolution of unstable
modes in the wake induced by the roughness patch.

The most recent analyses available suggest that internal-energy-mode excita-
tion and chemical non-equilibrium may tend to destabilize roughness-induced in-
stabilities. Whether this behavior could be attributed to the same physical reasons
as the destabilization of second Mack-mode disturbances (i.e., base-flow cooling)
deserves additional investigation.

1.3 Thesis scope and structure
Given the important role of isolated roughness elements on boundary-layer transi-
tion, the present doctoral thesis aims to improve our fundamental physical under-
standing of roughness-induced instabilities developing in a hypersonic boundary
layer. Despite the numerous valuable experimental and numerical investigations
available, described in the previous sections, the mechanisms by which three-
dimensional discrete roughness elements influence boundary-layer transition are
still far from being completely understood. Our current knowledge does not yet
allow to predict which instabilities would dominate the transition process in a real-
istic scenario featuring discrete roughness. As a result, the presence of roughness
elements on the surface of a body still remains an important source of uncertainty
in our path towards an accurate prediction of laminar-turbulent transition. Like
many of the works previously referenced, the intention of the present study is to
move one step forward along that path, building upon the knowledge gathered
from prior investigations.

In particular, this research focuses on high-speed flat-plate configurations with
isolated roughness elements at subcritical roughness Reynolds numbers, in which
modal disturbance growth is known to play a major role on the transition process.
On first place, the attention is focused on cold hypersonic flow conditions, in which
high-enthalpy effects are not important, allowing the use of a calorically perfect
gas assumption. This is the case of most numerical and wind tunnel experimental
studies currently available in the literature. In this regime, this work contributes to
address the two following questions:

• Which are the physical processes by which the roughness-induced instabili-
ties extract their energy along the roughness wake?

• Is there a constructive interaction between the Mack-mode instabilities evolv-
ing in a flat-plate boundary layer and the roughness-induced wake instabil-
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ities?

For this purpose, two-dimensional local linear stability analyses are carried
out, which allow to track the modal amplification of roughness-induced instabil-
ities as well as that of Mack-mode perturbations, and a suitable disturbance en-
ergy evolution equation is derived, based on the disturbance energy formulation
of Chu [66]. This allows to obtain a decomposition of the temporal growth rate
of the roughness-induced instabilities into the different physical contributions that
produce and dissipate the disturbance energy, extending the approach of Weder et
al. [67] to perturbations that are inhomogeneous in two spatial directions.

On second place, flight conditions representative of those encountered during
the Space Shuttle Orbiter reentry trajectory at an altitude of 65 km are considered
and applied to a sharp flat-plate configuration at an angle of attack (equivalent to
a sharp-wedge configuration). In this case, an oblique shock wave emanating at
the leading edge compresses the hypersonic freestream to yield a high-temperature
flow field, where molecular vibrational excitation, diffusion transport and dissoci-
ation in the boundary layer become important, requiring the use of the thermally
perfect gas assumption and the need to account for chemical non-equilibrium. For
these conditions, this doctoral work contributes to assess the following unknowns:

• What is the effect of vibrational excitation and dissociation on the instabili-
ties evolving in the wake behind an isolated roughness element?

• From the modeling point of view, how important is it to be consistent between
the modeling assumptions introduced in the governing base-flow equations
and those introduced in the governing stability equations for the case of
roughness-induced instabilities?

As in the CPG case, these questions are approached by means of two-dimensional
local linear stability theory, employing stability equations that contain all the nec-
essary terms to achieve a fully consistent computation when using base flows
obtained from a solution of the TPG or CNE governing equations. Other high-
enthalpy effects that are important during the reentry path of different vehicles
(see figure 1.2), such as thermal non-equilibrium, ionization, surface catalysis or
ablation-product injection are left out of the scope of this work.

This dissertation is structured as follows. Chapter 2 describes the governing
equations used for each of the three different thermodynamic flow assumptions
considered, together with the thermal, transport and chemical models employed.
Chapter 3 is devoted to presenting the fundamentals of hydrodynamic stability
theory, defining the linear stability formulation employed throughout this work
and introducing the disturbance energy evolution equation developed for 2D-LST
eigenmodes. The numerical methodology followed in order to solve the govern-
ing equations to obtain laminar base-flow solutions and to solve the linear sta-
bility problem is described in chapter 4. Next, chapter 5 presents the analysis of
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roughness-induced instabilities in a calorically perfect gas, describing the topology
of the stability spectrum behind the roughness element and the amplitude shape of
the disturbances that develop in the roughness wake. For two different roughness
geometries, the evolution of the different instabilities along the roughness-induced
wake is explored and the mechanisms for the production and dissipation of dis-
turbance energy are identified. The influence of the excitation of the vibrational
molecular energy mode and the presence of chemical non-equilibrium on the be-
havior of roughness-induced disturbances is explored in chapter 6. Finally, con-
cluding remarks and an outlook for future investigations are issued in chapter 7.
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2
Governing equations

This chapter summarizes the governing equations and gas-property models em-
ployed throughout this dissertation. No rarefied gas effects are considered, there-
fore the theoretical framework in use is restricted to the continuum regime.

2.1 Thermodynamic flow assumptions

All the different thermodynamic descriptions of a gas employed in this work are
based on the assumption of a perfect gas. Here, the term perfect gas refers to a
gas in which intermolecular forces are not important. The naming conventions
employed follow the classification of gases given by Anderson [1]. See also Miró
Miró [2].

The primitive thermodynamic variables of the gas are its density (ρ), pressure
(p) and temperature (T ). They are related by means of the perfect gas equation of
state:

p = ρRT, (2.1)

where R is the specific gas constant, which can be evaluated as

R =
R

M
, (2.2)

with R = 8.3144 J/(mol K) being the universal gas constant and M the molar
mass of the gas.
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Figure 2.1: Temperature ranges of vibrational excitation, dissociation and ionization for
air at p = 101325 Pa = 1 atm (standard state), including the corresponding reactions.
Redrawn, original from [1].

2.1.1 Calorically perfect gas (CPG)

A calorically perfect gas is a perfect gas with constant specific heats, which implies
a constant ratio of specific heats γ = cp/cv , with cp and cv being respectively the
specific heat at constant pressure and at constant volume. This condition leads to
simple linear functions that express the static enthalpy (h) and the internal energy
(e) of the gas as a function of temperature only:

h = cpT and e = cvT. (2.3)

Therefore, no specific modeling of the thermal properties cp and cv is required to
describe the behavior of the gas. This flow assumption is suitable for gases at con-
ditions for which the excitation of the vibrational energy mode of the gas molecules
is not yet significant. For air at p = 101325 Pa, this is a good approximation for
T < 800 K (see figure 2.1).
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2.1.2 Thermally perfect gas (TPG)

A thermally perfect gas is a perfect gas in which the specific heats are a function
of temperature only, that is

cp = cp(T ) and cv = cv(T ). (2.4)

This flow assumption accounts for the excitation of the vibrational energy mode of
the gas molecules as well as for the electronic energy associated with the motion
of electrons in the atoms of the gas, but subject to the two following conditions.
On the one hand, vibrational relaxation (represented by the time scale τvib) is as-
sumed to take place considerably faster than the changes in the flow properties
(represented by the time scale τflow), hence the flow can be considered to be in
vibrational equilibrium (and hence also in thermal equilibrium since only the vi-
brational energy mode is considered to be excited). On the other hand, chemical
reactions (represented by the time scale τchem) are assumed to occur substantially
slower than the changes in the flow field, hence the gas can be considered to be
chemically frozen. Therefore, for a thermally perfect gas τvib � τflow � τchem,
that is, a chemically frozen gas in vibrational equilibrium.

Under these considerations, the enthalpy and internal energy of the gas are also
functions of temperature only, which can be expressed as

h = h(T ) and e = e(T ), (2.5)

and their differential changes as

dh = cp dT and de = cv dT. (2.6)

The function employed to describe the variation of the specific heats as a func-
tion of temperature depends on the chosen thermal model. Common models em-
ployed in hypersonic flows are the rigid-rotor harmonic oscillator (RRHO) model
(see for example [3]), which assumes the molecules to behave as a rigid rotor and
as a harmonic oscillator and the species to follow a Boltzmann distribution, and
the polynomial curve fits developed by Thompson et al. [4]. In this work, the lat-
ter model is employed (see § 2.5.1). Since no chemical reactions are present, only
two species are considered for the TPG thermal property modeling, namely, N2

and O2.
For air at atmospheric pressure, the TPG assumption constitutes a suitable

choice up to approximately 2500 K, where the dissociation of oxygen molecules
begins to be significant (see figure 2.1).
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2.1.3 Mixture of perfect gases in chemical non-equilibrium (CNE)

The CNE thermodynamic flow assumption considers a multi-species chemically
reacting gas in which chemical reactions take place at a similar rate as the changes
in the flow field, but in which vibrational relaxation still occurs significantly faster,
that is τvib � τchem ∼ τflow. Therefore, the CNE assumption can be described
as a gas in chemical non-equilibrium yet in thermal equilibrium, such that all the
energy modes of the gas mixture can be described by a single temperature.

Each species of the CNE mixture is assumed to behave by itself as a thermally
perfect gas. However, in this case the thermal properties of the mixture depend not
only on temperature but also on the instantaneous composition of the gas, that is

cp = cp(T, cN2 , cO2 , ..., cs), (2.7)

h = h(T, cN2 , cO2 , ..., cs), (2.8)

e = e(T, cN2 , cO2 , ..., cs), (2.9)

where cs denotes the mass fraction of species s, defined as

cs =
ρs
ρ
, (2.10)

with ρs being the density of species s. The values of cs describe the composition
of the gas at a given position and instant.

Here, an air mixture consisting of five species is considered when accounting
for chemical non-equilibrium, namely, N, O, NO, N2 and O2, also known as air-
5. This mixture is able to model the dissociation of O2 and N2, as well as the
formation and dissociation of NO. Therefore, at atmospheric pressure, this mixture
is valid for temperatures up to 9000 K, where ionization becomes important (see
figure 2.1). In order to model ionization, an eleven-species air mixture is required,
commonly known as air-11. For a discussion on ionization effects on boundary-
layer stability, which falls out of the scope of this study, the reader is referred
to [2, 5].

Besides modeling the evolution of the thermal and transport properties of each
species as a function of temperature, the CNE assumption also requires an appro-
priate modeling of the chemical interaction between the different species. This can
be achieved by the law of mass action together with a list of chemical reactions, as
described in § 2.5.3.

2.2 Navier-Stokes equations
The equations governing the problems studied in this work are the Navier-Stokes
equations (see for instance [6]). They constitute a system of non-linear partial dif-
ferential equations that express the conservation of mass, momentum and energy
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of a fluid in space and time. As introduced before, the only fluid considered in this
investigation is air, which is assumed to behave as a Newtonian fluid. This implies
that there is a linear relationship between the viscous stresses of the fluid and its
strain rate. Additionally, no body forces such as gravity are considered.

In the following, the Navier-Stokes equations are presented for each of the
three different thermodynamic flow assumptions introduced before, expressed in a
Cartesian coordinate system. In this reference frame, the instantaneous velocity of
the fluid is denoted by the vector V = u ex + v ey + w ez , where ex, ey and ez
are unit vectors along the x, y and z directions, respectively.

2.2.1 Calorically perfect gas

For the case of a calorically perfect gas, the system of equations consists of the con-
tinuity equation, three momentum equations and the energy equation, expressed in
non-conservation form as follows:

Dρ

Dt
+ ρ∇ ·V = 0, (2.11a)

ρ
Du

Dt
+
∂p

∂x
− ∂τxx

∂x
− ∂τyx

∂y
− ∂τzx

∂z
= 0, (2.11b)

ρ
Dv

Dt
+
∂p

∂y
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τzy

∂z
= 0, (2.11c)

ρ
Dw

Dt
+
∂p

∂z
− ∂τxz

∂x
− ∂τyz

∂y
− ∂τzz

∂z
= 0, (2.11d)

ρ
De

Dt
+ p∇ ·V +

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

− τxx
∂u

∂x
− τyx

∂u

∂y
− τzx

∂u

∂z
− τxy

∂v

∂x
− τyy

∂v

∂y
− τzy

∂v

∂z

− τxz
∂w

∂x
− τyz

∂w

∂y
− τzz

∂w

∂z
= 0,

(2.11e)

where D/Dt = ∂/∂t + (V · ∇) is the material derivative operator and ∇ =

ex∂/∂x + ey∂/∂y + ez∂/∂z. Under the assumption of a Newtonian fluid, the
viscous stresses are given by

τxx = (2µ+ λ)
∂u

∂x
+ λ

(
∂v

∂y
+
∂w

∂z

)
, (2.12a)

τyy = (2µ+ λ)
∂v

∂y
+ λ

(
∂u

∂x
+
∂w

∂z

)
, (2.12b)

τzz = (2µ+ λ)
∂w

∂z
+ λ

(
∂u

∂x
+
∂v

∂y

)
, (2.12c)
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τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (2.12d)

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
, (2.12e)

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
, (2.12f)

where µ is the dynamic viscosity of the fluid and λ is the bulk viscosity coefficient.
Stokes’ hypothesis is considered, such that

λ = −2

3
µ. (2.13)

The conductive heat flux vector is modeled using Fourier’s law of heat conduction,
whose components are expressed as

qx = −k∂T
∂x

, qy = −k∂T
∂y

and qz = −k∂T
∂z

, (2.14)

where k denotes the thermal conductivity of the fluid. The system of equations is
closed by means of the perfect gas equation of state (2.1).

For convenience in the derivation of the disturbance energy evolution equation
(see § 3.10), the energy equation (2.11e) for a calorically perfect gas is formulated
in terms of the total derivative of the internal energy. See for example [7] for
different equivalent forms of the energy equation.

In this thermodynamic flow assumption, the transport properties µ and k are as-
sumed to be functions of temperature only. They are modeled using either Suther-
land’s law or the Gupta-Wilke transport model (see § 2.5.2.2). To distinguish be-
tween the two choices, the acronyms CPGS and CPGGW are respectively adopted.

2.2.1.1 Non-dimensional form

For convenience in the derivation and the numerical solution of the disturbance
governing equations (see § 3.1), the Navier-Stokes equations are also formulated in
non-dimensional form. For the case of a calorically perfect gas, the dimensionless
quantities employed are the following:

t′ =
tu∞
l
, x′ =

x

l
, u′ =

u

u∞
, v′ =

v

u∞
, w′ =

w

u∞
, ρ′ =

ρ

ρ∞
,

p′ =
p

ρ∞u2
∞
, T ′ =

T

T∞
, e′ =

e

u2
∞
, µ′ =

µ

µ∞
and k′ =

k

k∞
, (2.15)

where (·)′ denotes non-dimensional quantities and (·)∞ denotes the dimensional
reference quantities used for non-dimensionalization, which correspond to the
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freestream flow conditions. The chosen reference length (l) is a boundary-layer
length scale evaluated at the local streamwise coordinate of interest, defined as

l =

√
µ∞x

ρ∞u∞
. (2.16)

This choice of dimensionless quantities leads to the following freestream non-
dimensional numbers:

Mach number: M =
u∞
a∞

, (2.17a)

Reynolds number: Re =
ρ∞u∞l

µ∞
, (2.17b)

Prandtl number: Pr =
cpµ∞
k∞

, (2.17c)

where a∞ denotes the freestream speed of sound, which is defined for a calorically
(or a thermally) perfect gas as

a∞ =
√
γRT∞. (2.18)

The non-dimensional specific heats become

c′v =
1

γ (γ − 1)M2
and c′p =

1

(γ − 1)M2
, (2.19)

such that

R′ = c′p − c′v =
1

γM2
. (2.20)

According to the quantities defined in (2.15), the non-dimensional form of the
CPG Navier-Stokes equations can be written as

Dρ′

Dt′
+ ρ′∇′ ·V′ = 0, (2.21a)

ρ′
Du′

Dt′
+
∂p′

∂x′
− ∂τ ′xx

∂x′
−
∂τ ′yx
∂y′

− ∂τ ′zx
∂z′

= 0, (2.21b)

ρ′
Dv′

Dt′
+
∂p′

∂y′
−
∂τ ′xy
∂x′

−
∂τ ′yy
∂y′

−
∂τ ′zy
∂z′

= 0, (2.21c)

ρ′
Dw′

Dt′
+
∂p′

∂z′
− ∂τ ′xz

∂x′
−
∂τ ′yz
∂y′
− ∂τ ′zz

∂z′
= 0, (2.21d)
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ρ′
De′

Dt′
+ p′∇′ ·V′ + ∂q′x

∂x′
+
∂q′y
∂y′

+
∂q′z
∂z′

− τ ′xx
∂u′

∂x′
− τ ′yx

∂u′

∂y′
− τ ′zx

∂u′

∂z′
− τ ′xy

∂v′

∂x′
− τ ′yy

∂v′

∂y′
− τ ′zy

∂v′

∂z′

− τ ′xz
∂w′

∂x′
− τ ′yz

∂w′

∂y′
− τ ′zz

∂w′

∂z′
= 0,

(2.21e)

with D/Dt′ = ∂/∂t′ + (V′ · ∇′), ∇′ = ex∂/∂x
′ + ey∂/∂y

′ + ez∂/∂z
′ and

V′ = u′ex + v′ey + w′ez . The non-dimensional viscous stresses are given by

τ ′xx =
1

Re

[
(2µ′ + λ′)

∂u′

∂x′
+ λ′

(
∂v′

∂y′
+
∂w′

∂z′

)]
, (2.22a)

τ ′yy =
1

Re

[
(2µ′ + λ′)

∂v′

∂y′
+ λ′

(
∂u′

∂x′
+
∂w′

∂z′

)]
, (2.22b)

τ ′zz =
1

Re

[
(2µ′ + λ′)

∂w′

∂z′
+ λ′

(
∂u′

∂x′
+
∂v′

∂y′

)]
, (2.22c)

τ ′xy = τ ′yx =
µ′

Re

(
∂u′

∂y′
+
∂v′

∂x′

)
, (2.22d)

τ ′xz = τ ′zx =
µ′

Re

(
∂u′

∂z′
+
∂w′

∂x′

)
, (2.22e)

τ ′yz = τ ′zy =
µ′

Re

(
∂v′

∂z′
+
∂w′

∂y′

)
, (2.22f)

and the components of the non-dimensional heat flux vector as

q′x = − k′

(γ − 1)RePrM2

∂T ′

∂x′
, (2.23a)

q′y = − k′

(γ − 1)RePrM2

∂T ′

∂y′
, (2.23b)

q′z = − k′

(γ − 1)RePrM2

∂T ′

∂z′
. (2.23c)

Similarly, the perfect gas equation of state takes the following non-dimensional
form:

p′ =
ρ′T ′

γM2
. (2.24)

To avoid overloading the notation, in the remaining chapters of this work the
use of the symbol (·)′ to denote non-dimensional quantities is dropped. Each time
the non-dimensional form of the governing equations is employed, it is specifi-
cally stated in the text. Results expressed in dimensional quantities are always
accompanied by the corresponding SI units.
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2.2.2 Thermally perfect gas

Under the assumption of a thermally perfect gas, the governing equations are es-
sentially the same as for a calorically perfect gas. For convenience with the thermal
property modeling, however, the energy equation used in this case is expressed in
terms of the static enthalpy of the fluid instead of the internal energy, that is

ρ
Dh

Dt
− Dp

Dt
+
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z
− τxx

∂u

∂x
− τyx

∂u

∂y
− τzx

∂u

∂z

− τxy
∂v

∂x
− τyy

∂v

∂y
− τzy

∂v

∂z
− τxz

∂w

∂x
− τyz

∂w

∂y
− τzz

∂w

∂z
= 0. (2.25)

The difference with respect to the calorically perfect gas assumption resides
in the evaluation of the enthalpy of the fluid. In this case, cp is a function of
temperature and therefore the enthalpy of the fluid must be evaluated using a model
for the thermal properties.

2.2.3 Mixture in chemical non-equilibrium

For a gas in chemical non-equilibrium, the mass fraction of each species in the
mixture becomes an unknown quantity. This is usually expressed by introducing
the density of each species (ρs) as an independent quantity. Therefore, the vector
of state variables in this case becomes: q = [ρs, u, v, w, T ]T, with s ∈ S. This
implies that additional relations are necessary to complete the system. Such addi-
tional governing equations are the species mass conservation equations (or species
continuity equations). Furthermore, the transport of species mass by diffusion is
also an active mechanism in this flow assumption. As a result, diffusion fluxes
must be accounted for in the system.

The species mass conservation equations can be expressed as follows:

ρ
Dcs
Dt

+∇ · js − ẇs = 0, (2.26)

where js is the species mass diffusion flux and ẇs is the mass production rate of
species s. The only diffusion-driving force considered in the scope of this work
is the mass-fraction gradient (thermo- and barodiffusion processes are neglected).
The species mass diffusion flux is then assumed to follow Fick’s first law, which
yields

js = −ρDsm∇cs, (2.27)

whereDsm is the multicomponent diffusion coefficient for the diffusion of species
s into the mixture. An important property is that, for consistency, the sum of
the diffusion fluxes js over all the species must be equal to zero. This brings the
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possibility of substituting the mass-conservation equation of one of the species
by the mixture continuity equation (preferably the one associated to the species
with the largest mass fraction, often known as the bath species), which has the
same form as equation (2.11a). This procedure has been found to improve the
numerical behavior of the system when solving the linear stability problem (see
Miró Miró & Pinna [8]). The diffusion coefficients employed here are modeled
using a simplified, self-consistent diffusion model which relies on the definition of
an effective diffusion coefficient (see § 2.5.2.3).

The net production rate of species mass is governed by the law of mass action
as described in § 2.5.3.1.

Similarly to TPG, the energy equation for CNE is formulated in terms of the
static enthalpy of the mixture. However, an additional term must be added to
account for the transport of energy due to diffusion, that is

ρ
Dh

Dt
− Dp

Dt
+
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z
−∇ · J− τxx

∂u

∂x
− τyx

∂u

∂y
− τzx

∂u

∂z

− τxy
∂v

∂x
− τyy

∂v

∂y
− τzy

∂v

∂z
− τxz

∂w

∂x
− τyz

∂w

∂y
− τzz

∂w

∂z
= 0, (2.28)

where J is the energy diffusion flux, defined as

J =
∑
s

hs js. (2.29)

It is important to note that the energy equation does not contain an explicit term
for the energy exchange due to chemical reactions because the heat of formation
of each species, (∆hf )0

s, is contained within the absolute definition of hs [1].
The mixture continuity equation and the momentum equations have a purely

mechanical nature and are not affected by chemical reactions. Therefore, the sys-
tem of governing equations for CNE consists of equation (2.11a),Ns−1 equations
like equation (2.26) and equations (2.11b), (2.11c), (2.11d) and (2.28). Additional
relations that complete the system are the perfect gas equation of state and the
following condition on the mass fractions:∑

s

cs = 1. (2.30)

2.3 Boundary conditions
Prior to their solution, the governing equations presented in the previous section
must be complemented with boundary conditions according to the physical prob-
lem under investigation. Four different types of boundaries are considered, namely,
solid wall, inflow, outflow and symmetric boundaries, which are discussed next.
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2.3.1 Wall boundary conditions

At solid-wall boundaries, the no-slip and no-penetration conditions are enforced
on the flow velocity components, given by

u = v = w = 0. (2.31)

In addition, a thermal wall condition is imposed, which either takes the form of an
isothermal wall condition, expressed as

T = Tw, (2.32)

where Tw denotes the temperature at the wall, or an adiabatic wall condition, de-
fined as

∂T

∂n

∣∣∣∣
w

= 0, (2.33)

where n is the coordinate normal to the wall and (∂T/∂n)|w is the wall-normal
temperature gradient evaluated at the wall.

For a gas mixture in chemical non-equilibrium, a concentration condition is
also imposed on the species mass fractions at the wall (which in turn determine the
wall values of the species densities ρs). This condition results from the assumption
that no chemical reactions take place at the wall boundary, and receives the name
of non-catalytic wall condition, usually expressed for each species as

∂cs
∂n

∣∣∣∣
w

= 0, (2.34)

where (∂cs/∂n)|w represents the wall-normal mass-fraction gradient evaluated at
the wall.

2.3.2 Inflow boundary conditions

Two different kinds of inflow boundaries are considered in this dissertation, namely,
freestream inflow boundaries at which the flow is supersonic, and inflow bound-
aries at which an inflow profile is given. In the former, all the primitive flow
variables are prescribed to their respective freestream values. In the latter, two
different approaches are used to respect the direction of propagation of informa-
tion within the flow field, depending on whether the flow normal to the boundary
is subsonic or supersonic. At the portions of the inflow profile where the flow is
supersonic, all the primitive flow variables are prescribed to the values supplied
by the inflow profile. At the portions of the inflow where the flow is subsonic, all
primitive flow variables are prescribed except for the pressure, which is extrapo-
lated from the interior of the domain.
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As elaborated in chapter 5, the inflow profile condition is employed in this
work to impose a boundary-layer profile at the inflow boundary.

2.3.3 Outflow boundary conditions

For the configurations studied in this work, only a supersonic outflow condition
is considered. This implies that all the primitive flow variables are extrapolated
from the interior of the domain along the entire outflow boundary, independently
of whether the flow across the boundary is locally subsonic or supersonic.

This approach is a common practice in laminar high-speed flows with small
streamwise gradients [7]. Since the Navier-Stokes equations have a mixed mathe-
matical nature, it is in general better posed to use characteristic relations for each
variable across the boundary, such that a different treatment is applied locally at
the supersonic and subsonic portions of the boundary. Nonetheless, the nature of
the governing equations in a steady and laminar boundary layer (such as that in
the cases analyzed in this work) becomes nearly parabolic. In particular, in the
limit in which the Navier-Stokes equations reduce to the boundary-layer equa-
tions, the mathematical nature of the problem becomes fully parabolic (see for
instance [1, 7]). Since the outlet boundary in this study is always located far away
from the roughness element, the flow field at the outflow boundary features a small
dependence on the streamwise direction and therefore it is well approximated by
the parabolized Navier-Stokes equations (PNS). Far outside of the roughness wake,
where spanwise gradients become negligible, the flow field can also be described
with good accuracy by the boundary-layer equations. According to these consider-
ations, the nearly parabolic behavior of the problem allows this boundary condition
(extrapolation from the interior) to be reasonably valid also in the subsonic part of
the boundary layer. Any upstream propagation of information due to residual el-
lipticity (contained mainly in the streamwise pressure gradient term ∂p̄/∂x) at the
subsonic portion of the outflow boundary is not believed to affect the quality of the
base-flow solution.

2.3.4 Symmetry boundary conditions

At boundaries where the flow is symmetric in the direction normal to the bound-
ary, symmetry boundary conditions are specified. All the scalar primitive flow
variables are enforced to be mirror-imaged across the symmetry plane defined by
the boundary, whereas the flow velocity vector is forced to be tangential to the
boundary. This condition translates into a zero velocity component in the direction
normal to the boundary.
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2.4 Boundary-layer equations

For a wide range of analyses focused on the flow field inside the boundary layer,
the governing equations can be simplified to a system known as the boundary-
layer equations. The main assumptions leading to this simplification are that the
boundary layer is very thin in comparison with the size of the body and that the
Reynolds number is large. The boundary-layer equations can be obtained by in-
troducing these assumptions into the Navier-Stokes equations and performing an
order of magnitude analysis (see [1, 9, 10] for the details).

These assumptions are valid for the analysis of a flat plate boundary layer at
high-speed, and hence the boundary-layer equations constitute a suitable simpli-
fied model for the stability analysis of hypersonic flat plate boundary layers. On
the other hand, they are not valid for the analysis of a flat plate with discrete rough-
ness elements whose size is of the order of the boundary-layer thickness. Never-
theless, as will become clearer in following chapters, the analysis of the smooth
flat plate boundary layer (that is, without any roughness element) is essential for
the understanding of the behavior of boundary-layer disturbances when a rough-
ness element is introduced. For this reason, the steady boundary-layer equations
and their solution are also considered in this work.

Since the current study is restricted to flat plate configurations that are oriented
parallel to the freestream flow direction, in addition to the previously mentioned as-
sumptions, two-dimensional flow is also considered. This removes the presence of
crossflow terms into the resulting boundary-layer equations, which are otherwise
essential for the analysis of swept configurations (refer to [2] for the complete form
of the steady boundary-layer equations in the presence of different high-enthalpy
phenomena).

2.4.1 Calorically and thermally perfect gas

Similarly to the Navier-Stokes equations, the boundary-layer equations for a calor-
ically perfect gas are the same as those for a thermally perfect gas. Introducing the
assumptions listed above into the Navier-Stokes system considered for a thermally
perfect gas (equations (2.11a), (2.11b), (2.11c), (2.11d) and (2.25)), the resulting
boundary-layer equations (valid for both CPG and TPG) can be written as

∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0, (2.35a)

ρu
∂u

∂x
+ ρv

∂u

∂y
+
∂p

∂x
− ∂

∂y

(
µ
∂u

∂y

)
= 0, (2.35b)

∂p

∂y
= 0, (2.35c)
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ρu
∂h

∂x
+ ρv

∂h

∂y
− u∂p

∂x
− ∂

∂y

(
k
∂T

∂y

)
− µ

(
∂u

∂y

)2

= 0. (2.35d)

Note that the wall-normal momentum equation (2.35c) simply states that the
pressure is constant along the boundary-layer for a given x station. For this reason,
the streamwise pressure derivate appearing in equations (2.35b) and (2.35d) is usu-
ally substituted by dpe/dx, where pe denotes the static pressure at the boundary-
layer edge, which is only a function of x. The edge pressure is therefore directly
imprinted on the wall. This is a reasonable assumption for hypersonic flows with
moderately large Mach numbers such as the cases studied along this work (see [1]).

The same wall boundary conditions specified in § 2.3.1 apply to the system
of boundary-layer equations. At the edge of the boundary layer, which can be
considered as the wall-normal far-field boundary (y → ∞), all primitive flow
variables are prescribed to their respective edge values.

Equations (2.35) constitute a parabolic system of non-linear partial differential
equations which can be solved by a marching procedure. Nevertheless, for certain
cases they admit simplified solutions, known as self-similar solutions, which trans-
form the system into a set of ordinary differential equations, reducing enormously
the effort necessary to solve them. The case of a flat plate boundary layer is one of
them, for which the solution is presented in the next section.

2.4.1.1 Self-similar solution for a flat plate

To derive a self-similar boundary-layer solution, an independent-variable transfor-
mation is applied to equations (2.35). The transformation, which in this case re-
ceives different names by different authors (for instance, Lees-Dorodnitsyn trans-
formation by [1], Illingworth transformation by [9] or Levy-Lees transformation
by [10]), is given by

ξ =

∫ x

0

ρeueµe dx, (2.36a)

η =
ue√
2ξ

∫ y

0

ρ dy (2.36b)

where ξ = ξ(x) and η = η(x, y) denote the transformed coordinates and ρe, ue
and µe respectively refer to the density, streamwise velocity and dynamic viscosity
at the edge of the boundary layer, which are functions of ξ only. In addition, the
following non-dimensional quantities are introduced:

∂f

∂η
=

u

ue
, g =

h

he
, C =

ρµ

ρeµe
and Pr =

cpµ

k
, (2.37)
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where he is the static enthalpy at the boundary-layer edge. According to the rela-
tions stated in (2.36) and (2.37), and taking into account that the inviscid flow at
the boundary-layer edge is governed by Euler’s equation, namely

dpe = −ρeue due, (2.38)

the non-dimensional transformed boundary-layer equations become

∂

∂η

(
C
∂2f

∂η2

)
+ f

∂2f

∂η2
=

2ξ

ue

[(
∂f

∂η

)2

− ρe
ρ

]
due
dξ

+ 2ξ

(
∂f

∂η

∂2f

∂ξ∂η
− ∂f

∂ξ

∂2f

∂η2

)
,

(2.39a)

∂p

∂η
= 0, (2.39b)

∂

∂η

(
C

Pr

∂g

∂η

)
+ f

∂g

∂η
+ C

u2
e

he

(
∂2f

∂η2

)2

= 2ξ

(
∂f

∂η

∂g

∂ξ

+
∂f

∂η

g

he

dhe
dξ
− ∂g

∂η

∂f

∂ξ
+
ρeue
ρhe

∂f

∂η

due
dξ

)
.

(2.39c)

Note that there is no continuity equation in the transformed system. This is
due to the fact that by its definition, together with the coordinate transformation,
f takes the form of a stream function, which implicitly satisfies the continuity
equation [1].

For the solution to be self-similar, the dependency on ξ must vanish from the
transformed equations. Restricting the attention to a flat plate case with constant
conditions at the boundary-layer edge (that is ue = const., ρe = const., µe =

const. and he = const.) and with constant wall conditions (either isothermal or
adiabatic), f and g become functions of η only (see for example [1]). Therefore,
all the dependency upon ξ, contained in the right-hand side of equations (2.39a)
and (2.39c), drops out and the equations become:

∂

∂η

(
C
∂2f

∂η2

)
+ f

∂2f

∂η2
= 0, (2.40a)

∂

∂η

(
C

Pr

∂g

∂η

)
+ f

∂g

∂η
+ C

u2
e

he

(
∂2f

∂η2

)2

= 0. (2.40b)

This is a system of ordinary differential equations that represents the self-similar
boundary-layer solution for a flat plate with constant edge and wall conditions.
The boundary conditions that complete the system are three conditions at the wall
(η = 0), namely
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f(0) = 0,
∂f

∂η

∣∣∣∣
η=0

= 0, (2.41)

g(0) =
hw
he

(isothermal) or
∂g

∂η

∣∣∣∣
η=0

= 0 (adiabatic), (2.42)

where hw denotes the static enthalpy at the wall, and two conditions at the boundary-
layer edge (η →∞):

∂f

∂η

∣∣∣∣
η→∞

= 1 and g(η →∞) = 1. (2.43)

2.4.2 Mixture in chemical non-equilibrium

When accounting for chemical non-equilibrium, the mass conservation of each
species as well as the energy transport due to diffusion within the boundary layer
must also be considered. As in the case of CPG and TPG, the boundary-layer
equations for CNE can be obtained by introducing the boundary-layer assump-
tions described before into the Navier-Stokes system for CNE (equations (2.11a),
(2.11b), (2.11c), (2.11d), (2.28) and (2.26)). The resulting CNE boundary-layer
equations consist of the same simplified momentum equations as for CPG/TPG
(equations (2.35b) and (2.35c)) together with the following simplified energy and
species continuity equations:

ρu
∂h

∂x
+ ρv

∂h

∂y
− u∂p

∂x
− ∂

∂y

(
k
∂T

∂y

)
− ∂

∂y

(
ρ
∑
s

hsDsm
∂cs
∂y

)
− µ

(
∂u

∂y

)2

= 0,
(2.44a)

ρu
∂cs
∂x

+ ρv
∂cs
∂y
− ∂

∂y

(
ρDsm

∂cs
∂y

)
− ẇs = 0. (2.44b)

To cast the previous system of equations into a more convenient form for its
solution, the transformation given by (2.36) can also be applied when considering
chemical non-equilibrium. However, in this case no self-similar solutions exist
in practice. Chemical non-equilibrium processes also affect the conditions at the
boundary-layer edge through the species mass source terms, which modify the
composition of the mixture along the different streamwise stations. The main rea-
son for the lack of similarity lies in the species mass production rates (ẇs), which,
for self-similarity to be respected, must adopt a specific form which is not encoun-
tered in applications of interest. The precise requirements are detailed in appendix
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D of reference [2]. As a result, the computation of solutions to the CNE boundary-
layer equations must be carried out by solving (marching) the associated system
of partial differential equations.

2.5 Modeling of gas properties

This section describes the different models employed in this study for the thermal,
transport and chemical properties of the gas. It is important to emphasize that
the choice of the different models has been partially constrained by the models
available in the CFD++ R© package, which is the software used in this work to
compute the three-dimensional base flow solutions for a flat plate in the presence
of a discrete roughness element.

2.5.1 Thermal properties

The specific heat at constant pressure (cp,s), the static enthalpy (hs) and the Gibbs
free energy per unit mass at atmospheric pressure (gatm

s ) of each individual species
are modeled as a function of temperature by means of fourth-order least-squares
polynomial curve fits developed by Thompson et al. [4] (see also Gupta et al. [11]),
which are based on tabulated data. For a gas in thermal equilibrium, the following
polynomial expressions are employed:

cp,s = Rs
(
a1,s + a2,sT + a3,sT

2 + a4,sT
3 + a5,sT

4
)
, (2.45a)

hs =

∫ T

Tref

cp,s dT + (∆hf )
Tref
s = Rs

[(
a1,s +

a2,s

2
T +

a3,s

3
T 2

+
a4,s

4
T 3 +

a5,s

5
T 4
)
T + b1,s

]
,

(2.45b)

gatm
s = hs − T

[∫ T

Tref

cp,s
T

dT −Rs ln

(
patm

pref

)
+ ss,ref

]
=

Rs

[
a1,sT (1− lnT )− a2,s

2
T 2 − a3,s

6
T 3 − a4,s

12
T 4

−a5,s

20
T 5 + b1,s − b2,sT

]
,

(2.45c)

where Rs is the specific gas constant of species s, patm = 101325 Pa is the at-
mospheric pressure and ss,ref is the species reference entropy associated to the
reference state defined by pref and Tref. The coefficient b1,s is related to the species
enthalpy of formation at the reference temperature, (∆hf )

Tref
s , whereas the coef-

ficient b2,s is associated to the entropy contributions given by ln (patm/pref) and
ss,ref.
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The values of the curve-fit coefficients as1, b1,s, a2,s etc. are obtained from
reference [4] and are summarized for the various species of interest in table 2.1.
It is important to note that these curve fits are divided into five different temper-
ature ranges, leading to a piecewise definition of the functions given in equation
(2.45). The coefficients listed in table 2.1 correspond only to the temperature inter-
val between 1000 and 6000 K, which constitutes the range of temperatures found
within the high-enthalpy cases studied in this work (see chapter 6). When the flow
field features a larger range of temperatures, the use of the coefficients correspond-
ing to other intervals is required. However, since continuity between curve fits is
not assured, this model generally introduces discontinuities in the derivatives of
the thermal properties at the boundaries of each temperature interval. Therefore,
for cases in which more than one temperature range needs to be considered, it is
preferable to employ a different thermal model, such as the rigid-rotor and har-
monic oscillator (RRHO) model, which offers a smooth continuous variation of
the thermal properties (see for example [3]). The choice considered here is jus-
tified for the sake of consistency between the base flow solutions computed by
the CFD++ R© package, which only incorporates the model described by equation
(2.45), and the posterior stability analyses.

The thermal properties of the mixture are obtained from applying a mixing rule
depending on the mass fraction of each species, that is

h =
∑
s∈S

cshs, (2.46)

cp =
∑
s∈S

cscp,s, (2.47)

and analogously for e and cv .

2.5.2 Transport properties

The transport properties of the gas are the viscosity µ, the thermal conductivity
k and the diffusivity D (also known as the diffusion coefficient). The following
transport property models are considered in this dissertation.

2.5.2.1 Sutherland’s law

Sutherland’s law [12] establishes that the dynamic viscosity of the mixture is given
by

µ = µref

(
T

Tref

)3/2
Tref + Sµ
T + Sµ

, (2.48)
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Species a1,s [-] a2,s [K-1] a3,s [K-2] a4,s [K-3]

N 0.24820e+01 0.69258e-04 -0.63065e-07 0.18387e-10

O 0.25421e+01 -0.27551e-04 -0.31028e-08 0.45511e-11

NO 0.32047e+01 0.12705e-02 -0.46603e-06 0.75007e-10

N2 0.32125e+01 0.10137e-02 -0.30467e-06 0.41091e-10

O2 0.35949e+01 0.75213e-03 -0.18732e-06 0.27913e-10

Species a5,s [K-4] b1,s [K] b2,s [-]

N -0.11747e-14 0.56130e+05 0.42618e+01

O -0.43681e-15 0.29150e+05 0.49203e+01

NO -0.42314e-14 0.97640e+04 0.66867e+01

N2 -0.20170e-14 -0.10430e+04 0.43661e+01

O2 -0.15774e-14 -0.10440e+04 0.38353e+01

Table 2.1: Coefficients from Thompson et al. [4] for the polynomial expressions of the
thermal properties in equation (2.45) for 1000 ≤ T ≤ 6000 K. Reference state Tref =
298.15 K and pref = 101325 Pa.

where µref denotes a reference dynamic viscosity at a reference temperature Tref

and Sµ is the Sutherland temperature for µ. This law provides an accurate model
for the variation of viscosity with temperature up to approximately 1500 K, af-
ter which it significantly underpredicts it. This behavior is represented in figure
2.2, where the viscosity provided by Sutherland’s law is compared against the
evolution given by two more accurate transport models, namely, the Gupta-Wilke
model (described in § 2.5.2.2) and the Chapman & Enskog molecular theory of
gases [13]. As it can be observed, the Sutherland viscosity curve progressively
deviates from the other two as temperature increases. Therefore, Sutherland’s law
is not an appropriate model for high-temperature flows. For this reason, here it is
only employed together with the calorically perfect gas assumption, leading to the
acronym CPGS.

The thermal conductivity in CPGS cases is either obtained from fixing a con-
stant value of the Prandtl number, i.e.

k =
cpµ

Pr
, (2.49)

or modeled with a Sutherland-type law for k as well, given by

k = kref

(
T

Tref

)3/2
Tref + Sk
T + Sk

, (2.50)



2-20 CHAPTER 2

µref [kg/(m s)] Tref [K] Sµ [K] kref [W/(m K)] Sk [K]

1.716e-05 273.15 111 2.41e-02 194

Table 2.2: Parameters used in Sutherland’s law for the viscosity and thermal conductivity
of air.

Figure 2.2: Viscosity and thermal conductivity for a two-species air mixture (N2 and O2)
as a function of temperature using three different transport models (p = 101325 Pa, no
dissociated species taken into account). Note that the prediction of k by the Gupta-Wilke
model fails outside its range of applicability (i.e. when T ≤ 1000 K).

where kref is a reference thermal conductivity at Tref and Sk is the Sutherland
temperature for k. The values considered for the different parameters appearing
in equations (2.48) and (2.50) are summarized in table 2.2. As in the case of µ,
Sutherland’s law for k severely underpredicts the value of the thermal conductivity
for temperatures higher than 1500 K (see figure 2.2).

2.5.2.2 Gupta-Wilke model

In this model, the viscosity and the thermal conductivity of each separate species
are modeled as a function of temperature by means of polynomial-logarithmic
expressions of the following form [11, 14]:

µs = exp
[
Aµs (lnT )

2
+Bµs lnT + Cµs

]
, (2.51)
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ks = exp
[
Aks (lnT )

4
+Bks (lnT )

3
+ Cks (lnT )

2
+Dk

s lnT + Eks

]
, (2.52)

where the curve-fit parametersAµs ,Aks ,Bµs etc. are obtained from Gupta et al. [11]
and are summarized in tables 2.3 and 2.4. The properties of the gas mixture are
then obtained from Wilke’s mixing rule [15], given by

µ =
∑
s∈S

Xsµs
φµs

and k =
∑
s∈S

Xsks
φµs

, (2.53)

where Xs is the species mole fraction and

φµs =
∑
`∈S

X`√
8

(
1 +

Ms

M`

)−1/2
[

1 +

(
µs
µ`

)1/2(
M`

Ms

)1/4
]2

, (2.54)

where Ms is the species molar mass. It is important to note that the Gupta-Wilke
model is only valid for thermal equilibrium.

As it can be observed in figure 2.2, inside its range of applicability the Gupta-
Wilke (GW) model is able to reproduce satisfactorily the viscosity and thermal
conductivity evolution given by the Chapman & Enskog theory with an approxi-
mately constant error of about 6%. Chapman & Enskog’s theory constitutes the
most accurate transport model currently available but requires the solution of a
linear matrix system at each point of the domain, hence resulting in a significant
computational cost. Although efficient and more accurate models than GW exist,
such as the Brokaw [16] and Yos’ [17] simplifications of Chapman & Enskog’s the-
ory, the low computational cost and simplicity of the GW transport model make
it a common choice in practice. For example, it is the model embedded in the
CFD++ R© solver and thus it is employed in the high-temperature cases studied in
this work. An evaluation of the accuracy of different transport models for 5 and
11-species air mixtures can be found in [2].

2.5.2.3 Constant Schmidt number diffusion model

The diffusion fluxes appearing in the species continuity equations and in the en-
ergy equation for CNE are modeled by means of a simple and widely used model
(see for example [18, 19]), which consists in employing an effective diffusion co-
efficient identical for all the species in the mixture. The value of such effective
coefficient is then determined through the assumption of a constant Schmidt num-
ber (Sc), that is

Dsm = Deff,s =
µ

Sc ρ
. (2.55)



2-22 CHAPTER 2

Species Aµs Bµs Cµs

N 0.012 0.593 -14.6831

O 0.0205 0.4257 -13.8829

NO 0.0452 -0.0609 -11.7622

N2 0.0203 0.4329 -14.1179

O2 0.0484 -0.1455 -11.2257

Table 2.3: Viscosity coefficients for the Gupta-Wilke (GW) transport model (2.51) proposed
by Gupta et al. [11] for 1000 ≤ T ≤ 30000 K. Note that the values of the coefficient Cµs
have been adapted to yield the viscosity in SI units (kg/(m s)).

Species Aks Bks Cks Dk
s Eks

N 0 0 0.01619 0.55022 -6.8855

O 0 0 0.0331 0.22834 -5.5447

NO 0.02792 -0.87133 10.1797 -52.0347 94.707

N2 0.03607 -1.075 11.9503 -57.9006 99.2543

O2 0.07987 -2.5843 31.2596 -166.7627 327.7346

Table 2.4: Thermal conductivity coefficients for the Gupta-Wilke (GW) transport model
(2.52) proposed by Gupta et al. [11] for 1000 ≤ T ≤ 30000 K. Note that the values of the
coefficient Eks have been adapted to yield the thermal conductivity in SI units (W/(m K)).

In the computations presented along this work, a value of Sc = 0.7 is always
considered. Given that all the species diffusion coefficients are the same and that
the species concentration gradients sum to zero, an important characteristic of this
diffusion model is that it is self-consistent. This guarantees that the sum of the
diffusion fluxes (js) appearing in the governing equations is identically zero.

For an overview of different diffusion models and a discussion on their effect
on boundary-layer stability, see Miró Miró et al. [20].

2.5.3 Chemical properties

The only chemical properties of the gas that require a specific modeling among
the flow assumptions considered are the mass production rates of each species for
a mixture in chemical non-equilibrium (CNE).
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2.5.3.1 Law of mass action

Considering a set of reactionsR between a set of species S:

∑
s∈S

ν′s,r s
kf−⇀↽−
kb

∑
s∈S

ν′′s,r s, ∀ r ∈ R , (2.56)

the net mass production rate of each species can be approximated by the law of
mass action [1, 21], given by

ω̇s = Ms

∑
r∈R

(ν′′s,r − ν′s,r)

[
kf,r

∏
`∈S

(
ρ`
M`

)ν′`,r
− kb,r

∏
`∈S

(
ρ`
M`

)ν′′`,r]
,

(2.57)
where ν′s,r and ν′′s,r represent the stoichiometric mole numbers of the reactants and
products, respectively, and kf,r and kb,r are respectively the forward and back-
ward reaction-rate constants of reaction r. The forward reaction-rate constants
for a given temperature are modeled by means of the Arrhenius equation (see for
instance [1]):

kf,r = AfrT
nfr exp

(
−T fr /T

)
, ∀r ∈ R, (2.58)

where the empirical parametersAfr , nfr and T fr for each reaction are obtained from
Park et al. [22, 23] and Bose & Candler [24, 25], and are summarized in table 2.5.
As introduced before, a five-species air mixture is considered in this investigation
when assuming chemical non-equilibrium, for which the reaction mechanism con-
sists of 17 elementary reactions (listed in table 2.5). The backward reaction-rate
constants are obtained from the equilibrium constant for each reaction by means
of the relation

kb,r =
kf,r
Keq
c,r
, ∀r ∈ R, (2.59)

where Keq
c,r is the equilibrium constant based on concentrations.

2.5.3.2 Calculation of the equilibrium constant

The equilibrium constant based on concentrations (Keq
c,r) is expressed in terms of

the equilibrium pressure constant (Keq
p,r) by means of the equation of state, leading

to the following relationship [1]:

Keq
c,r =

Keq
p,r∏

s (RT )
ν′′s,r−ν′s,r

, ∀r ∈ R. (2.60)
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The pressure-based equilibrium constant is then evaluated from classical thermo-
dynamics as a function of the species Gibbs free energy at atmospheric pressure
(gatm
s , given by equation (2.45c)), that is

Keq
p,r =

(∏
s∈S

p
ν′′s,r−ν

′
s,r

atm

)
exp

[
−
∑
s

(
ν′′s,r − ν′s,r

)
gatm
s Ms

RT

]
, ∀r ∈ R .

(2.61)

Reaction M Afr

[
1

s Kn
f
r

(
m3

mol

)∑
s ν
′
s,r−1

]
nfr [-] T fr [K]

N2 +M −⇀↽− 2N +M N 3.00e+16 -1.6 113200

O 3.00e+16
NO 7.00e+15
N2 7.00e+15
O2 7.00e+15

O2 +M −⇀↽− 2O +M N 1.00e+16 -1.5 59360

O 1.00e+16
NO 2.00e+15
N2 2.00e+15
O2 2.00e+15

NO +M −⇀↽− N + O +M N 1.00e+11 0 75500

O 1.00e+11
NO 1.00e+11
N2 5.00e+09
O2 5.00e+09

O + N2 −⇀↽− N + NO 5.69e+06 0.42 42938

N + O2 −⇀↽− NO + O 2.49e+03 1.18 4005.5

Table 2.5: Empirical constants for the Arrhenius equation (2.58) used to model the forward
reaction-rates of a 5-species air mixture, selected from the data provided by Park et al.
[22, 23] and Bose & Candler [24, 25]. M denotes a collision partner.
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[8] Fernando Miró Miró and Fabio Pinna. Linear Stability Analysis of a Hyper-
sonic Boundary Layer in Equilibrium and Non-Equilibrium. AIAA paper,
2017-4518, 2017.

[9] Frank M. White. Viscous Fluid Flow. McGraw-Hill, 2nd edition, 1991.

[10] Hermann Schlichting and Klaus Gersten. Boundary-Layer Theory. Springer-
Verlag, Berlin Heidelberg, ninth edition, 2017.

[11] Roop N. Gupta, Jerrold M. Yos, Richard A. Thompson, and Kam-Pui Lee. A
review of Reaction Rates and Thermodynamic and Transport Properties for
an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calcu-
lations to 30000K. Technical Report RP-1232, NASA, 1990.



2-26 CHAPTER 2

[12] William Sutherland. The viscosity of gases and molecular force. Philosophi-
cal Magazine Series 5, 36(223):507–531, 1893.

[13] S. Chapman and T.G. Cowling. The Mathematical Theory of Non-uniform
Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction,
and Diffusion in Gases. The University Press, 1939.

[14] F. G. Blottner, M. Johnson, and M. Ellis. Chemically Reacting Viscous Flow
Program For Multi-Component Gas Mixtures. Technical Report SC-RR-70-
754, Sandia Laboratories, 1971.

[15] C. R. Wilke. A Viscosity Equation for Gas Mixtures. The Journal of Chemical
Physics, 18(4):517–519, 1950.

[16] Richard S. Brokaw. Approximate formulas for the viscosity and thermal con-
ductivity of gas mixtures. The Journal of Chemical Physics, 29(2):391–397,
1958.

[17] Jerrold M Yos. Approximate equations for the viscosity and translational
thermal conductivity of gas mixtures. Technical Report AVSSD-0112-67-
RM, Avco Corporation, 1967.

[18] Mary L. Hudson, Ndaona Chokani, and Graham V. Candler. Linear stabil-
ity of hypersonic flow in thermochemical nonequilibrium. AIAA Journal,
35(6):958–964, 1997.

[19] Antonio Di Giovanni and Christian Stemmer. Roughness-Induced Boundary-
Layer Transition on a Hypersonic Capsule-Like Forebody Including
Nonequilibrium. Journal of Spacecraft and Rockets, 56(6):1795–1808, nov
2019.

[20] Fernando Miró Miró, Ethan S. Beyak, Fabio Pinna, and Helen L. Reed. High-
enthalpy models for boundary-layer stability and transition. Physics of Flu-
ids, 31(044101), 2019.

[21] Walter G. Vincenti and Charles H. Kruger. Introduction to physical gas dy-
namics. Huntington, N.Y. : Krieger, 1967.

[22] Chul Park. Review of chemical-kinetic problems of future NASA missions. I
- Earth entries. Journal of Thermophysics and Heat Transfer, 7(3):385–398,
1993.

[23] Chul Park, Richard L. Jaffe, and Harry Partridge. Chemical-Kinetic Parame-
ters of Hyperbolic Earth Entry. Journal of Thermophysics and Heat Transfer,
15(1):76–90, 2001.



GOVERNING EQUATIONS 2-27

[24] Deepak Bose and Graham V. Candler. Thermal rate constants of the N2+O—
NO+N reaction using ab initio 3A” and 3A’ potential energy surfaces. The
Journal of Chemical Physics, 104(8):2825–2833, 1996.

[25] Deepak Bose and Graham V. Candler. Thermal rate constants of the O2+N—
NO+O reaction based on the A2’ and A4’ potential-energy surfaces. The
Journal of Chemical Physics, 107(16):6136–6145, 1997.





3
Hydrodynamic stability

Hydrodynamic stability refers to the study of the stability and the onset of insta-
bility of fluid flows. A fundamental aspect of hydrodynamic stability theory is
the splitting of the instantaneous flow field (described by the vector of indepen-
dent (state) variables q) into a steady1 component (q̄), known as base flow, and an
unsteady perturbation field (q̃) [2]:

q = q̄ + q̃. (3.1)

The base flow is considered a reference flow into which the perturbations de-
velop. A fundamental requirement is that the base flow must satisfy the governing
equations (their steady form in this case). Inserting the splitting given by equa-
tion (3.1) into the Navier-Stokes system (see § 2.2) leads to the most general form
of the governing equations of stability theory, describing the dynamics of all three-
dimensional non-linear perturbations (q̄ = q̄(x, y, z) and q̃ = q̃(x, y, z, t)). These
equations can be found for a calorically perfect gas in the appendix A of refer-
ence [3].

1The stability of time-periodic flows can also be studied by means of stability theory, involving the
use of Floquet analysis. See for example Herbert [1] for details. All the base flows treated in this work
are steady flows.
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3.1 Linearized perturbation equations

As discussed in § 1.2, the most common paths to transition begin with a region
of linear development of the perturbations. In many cases, such as for typical flat
plate conditions as noted by Arnal [4], the streamwise extent of linear amplification
can cover about 75 to 85% of the distance between the leading edge of the flat
plate and the beginning of transition, which highlights the importance of analyzing
linear perturbation growth.

The behavior of the disturbances during the linear stage is described by the lin-
earized perturbation equations, which can be retrieved by assuming infinitesimally
small perturbations, such that equation (3.1) becomes

q = q̄ + εq̃ +O(ε2), (3.2)

with ε � 1. This implies that terms of order O(ε2) or higher in the general
perturbation equations are negligibly small with respect to the linear terms. This
simplification leads to the governing equations of linear stability theory, namely,
the linearized perturbation equations, also known as the linearized Navier-Stokes
equations (LNSE). These equations are reported in appendix A for a calorically
perfect gas and for a base flow depending on y and z, i.e., q̄ = q̄(y, z). The
direct solution of equations (A.1a) to (A.1e) without any further assumption on the
perturbation quantities is usually known as linearized direct numerical simulation
(LDNS).

3.2 Treatment of the perturbations of the dependent
quantities

The dependent quantities appearing in the governing equations are also usually
decomposed into a laminar base flow and a perturbation component following
equation (3.2). Examples of dependent quantities include µ, k or h. Any per-
turbation variable associated to a dependent quantity must be expressed in terms
of the perturbation variables associated to the independent quantities, denoted by
the state vector q̃, which are the unknowns for which the stability equations are
solved. This is achieved by means of a Taylor expansion of the dependent pertur-
bation quantities around zero. Denoting by Q̃ a perturbation quantity depending
on a single independent quantity q̃, the expansion can be written as

Q̃(q̃) =
dQ̄

dq̄
q̃ +

1

2

d2Q̄

dq̄2
q̃2 + · · ·+ 1

n!

dnQ̄

dq̄n
q̃n, (3.3)

where terms of order O(q̃2) or higher are neglected when a linear stability theory
is considered. Equation (3.3) is suitable for dependent quantities in the CPG and
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the TPG thermodynamic flow assumptions, which depend only on temperature.
For CNE, however, the dependent perturbation quantities are not functions of T̃
only, but also of the composition of the mixture, described by the state variables
ρ̃s. Therefore, a multi-variable Taylor expansion is required in this case:

Q̃(q̃1, . . . , q̃d) =

d∑
j=1

∂Q̄

∂q̄j
q̃j +

1

2

d∑
j=1

d∑
l=1

∂2Q̄

∂q̄j∂q̄l
q̃j q̃l + · · ·

+
1

n!

d∑
j1=1

· · ·
d∑

jn=1

∂nQ̄

∂q̄j1 · · · ∂q̄jn
q̃j1 · · · q̃jn, (3.4)

where d denotes the number of independent variables on which Q̃ depends. The
use of this procedure in practice implies that the derivatives of the base-flow depen-
dent quantities with respect to the thermodynamic state quantities must be known.
This is usually a straightforward task for simple thermodynamic flow assumptions
and property models, such as CPG and TPG. However, for more complex de-
scriptions, such as CNE, symbolic expressions for the necessary derivatives are
obtained by means of an automatic derivation tool and are subsequently imple-
mented in different subroutines for their computation by means of an automatic
implementation tool (see § 4.3.1). The reader is referred to reference [5] for de-
tails on the methodology employed for the automatic derivation of thermodynamic
derivatives.

3.3 Fourier transformation of the perturbation quan-
tities

For many applications of interest, the laminar base flows can be assumed to be
two-dimensional in space. This leads to a system with constant coefficients with
respect to the spatial direction of invariance. The same is true for the temporal
dimension, as the base flow is assumed to be independent of time. This invariance
of the system can be exploited given that the general solution to linear differential
equations with constant coefficients can be decomposed into a sum of exponential
functions. For this purpose, the problem can be Fourier-transformed in the direc-
tions of invariance. For example, given a base flow that depends on two arbitrary
spatial dimensions, q̄ = q̄(y, z), the solution of the governing equations, that is,
the perturbations of the independent quantities, can be expressed by means of the
inverse Fourier transform as

q̃(x, y, z, t) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
q̂(y, z;α, ω) ei(αx−ωt) dα dω, (3.5)



3-4 CHAPTER 3

where q̂ denotes the combination of the amplitude function of the perturbation in
y and z and the Fourier transform of q̃ in x and t, α is the wavenumber along x
(streamwise wavenumber) and ω is the angular frequency. The choice of a neg-
ative sign for the angular frequency complex exponential term, exp(−iωt), is a
convention commonly used in stability theory [6].

In addition to expressing the perturbations in terms of the Fourier transform,
the solution is usually further simplified by assuming it to consist of a sum of
discrete modes of the system. This is enforced by making each perturbation
monochromatic in Fourier space or time, depending on whether the temporal or
the spatial dynamics of the problem are considered. In the temporal case, one
forces the solution to be monochromatic in space by fixing the wavenumber along
each direction of invariance (α = α0 in this case), and the problem is solved for
ω. Similarly, in the spatial problem a fixed frequency is imposed (ω = ω0) and the
solution of the system provides the spatial evolution of the perturbations along one
of the directions of invariance, in this case described by α. When there is more
than one spatial direction of invariance, the wavenumber must also be prescribed
along each direction except for the one for which the problem is being solved. The
parameters fixed in each approach are normally chosen to be real, that is, a real
perturbation frequency or a real wavenumber. For a temporal problem with a fixed
streamwise wavenumber α0, the vector q̂ can be written in terms of discrete modes
as [7]:

q̂(y, z;α, ω) =
∑
k

Akq̂k(y, z)δ(α− α0)δ̂(ω −Dk(α)), (3.6)

where Ak, q̂k and Dk are respectively the amplitude, the amplitude function and
the dispersion relation of the discrete mode with index k, δ is the Dirac delta
function and δ̂ is a delta function with similar properties to δ. For the purpose of
this derivation, the behavior of δ̂ is equivalent to that of δ, that is, δ(α − α0) = 1

if α = ±α0 and 0 otherwise and δ̂(ω − Dk(α)) = 1 if ω = ±Dk(α) and 0
otherwise. For the specific properties of δ̂, refer to the appendix A of reference [7].
It is implicitly assumed that Ak and q̂k are generally different for different values
of α0. Inserting equation (3.6) into equation (3.5) yields:

q̃(x, y, z, t) =

1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

[∑
k

Akq̂k(y, z)δ(α− α0)δ̂(ω −Dk(α))

]
ei(αx−ωt) dα dω

=
1

(2π)2

∫ +∞

−∞

[∑
k

Akq̂k(y, z)δ̂(ω −Dk(α0))

]
ei(α0x−ωt) dω + c.c. , (3.7)



HYDRODYNAMIC STABILITY 3-5

where c.c. denotes the complex conjugate. For q̃ to be a solution of the governing
equations, the dispersion relation must be implicitly satisfied, meaning that for
each mode ω = Dk(α0). Therefore:

q̃(x, y, z, t) =
1

(2π)2

∑
k

Akq̂k(y, z) ei[α0x−Dk(α0)t] + c.c.

=
1

(2π)2

∑
k

Akq̃k(x, y, z, t) + c.c. . (3.8)

Equation (3.8) is a form of the solution for the perturbation quantities written in
terms of the discrete modes. Each q̃k is a solution of the governing stability equa-
tions and represents the physical perturbation associated to the discrete mode with
index k. It is important to note that in this formulation each q̃k is independent of
the others. This is very convenient in practice, because it implies that only those
perturbations which are of interest for the physical problem under study can be
considered.

In the literature, the solution is oftentimes presented in terms of the individual
(discrete) modes of the system only, i.e., q̃k, usually formulated using the follow-
ing perturbation ansatz (see for example [8]):

q̃(x, y, z, t) = q̂(y, z) exp [i (αx− ωt)] + c.c. = 2<{q̂(y, z) exp [i (αx− ωt)]}
(3.9)

or the following compact form

q̃(x, y, z, t) = q̂(y, z) exp (iΘ) + c.c. , (3.10)

where Θ denotes the phase function of the perturbation. It is important to empha-
size that these expressions correspond to a single mode only. The subindex k is
dropped and the amplitude Ak and the factor 1/(2π)2 are not considered2. The
usage of an ansatz like the one given by equation (3.9) is convenient for the deriva-
tion of stability equations. Substituting equation (3.9) into the linear perturbation
equations leads to the governing stability equations for a single mode, which in
this case take the form of a two-dimensional generalized eigenvalue problem (see
§ 3.6.1). For this reason, the discrete modes are often also known as eigenmodes
or eigensolutions of the system. For simple incompressible flow configurations,
it has been shown that the eigensolutions form a complete eigenfunction expan-
sion basis, which consists of an infinite number of solutions (modes). For this

2Linear stability theories that lead to an eigenvalue problem are unable to provide an absolute value
for the amplitude of the disturbances, as the computed amplitude functions (eigenvectors) are defined
up to a complex multiplicative constant. Hence, leaving out the amplitude Ak and the factor 1/(2π)2

does not impact the physical meaning of the result.
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reason, linear stability theory might be viewed as a means to obtain a basis for the
eigenfunction expansion method (see the recent summary by Tumin [9]).

It is also important to stress that usually only a few eigensolutions become
unstable and are of physical interest, thus reducing the problem to solving only
for those individual modes which dominate the dynamics of the system. This
clearly highlights one of the main advantages of stability analysis for the study of
transition to turbulence.

3.4 Local linear stability theory

The first theoretical developments in linear stability theory considered base flows
dependent only on a single spatial dimension other than the streamwise flow di-
rection (in the case of a boundary-layer, q̄ = q̄(y) for example, with y being the
wall-normal direction), leading to a one-dimensional local linear stability theory,
also commonly known as linear stability theory or LST. Here, the term local refers
to the fact that the base flow is not dependent on the streamwise direction and the
perturbation solution at the local streamwise position where the analysis is carried
out only depends on the base flow state at that location. As a result, the history of
the perturbations is not taken into account. Only local information is necessary to
solve the eigenvalue problem. This theory considers a perturbation ansatz of the
form:

q̃(x, y, z, t) = q̂(y) exp [i (αx+ βz − ωt)] + c.c. , (3.11)

where β denotes the wavenumber along z (spanwise wavenumber). Introducing
the ansatz (3.11) into the linearized perturbation equations leads to the governing
equations of local linear stability theory, or the LST equations. For the case of a
calorically perfect gas, these equations are reported in appendix C. An excellent
review of local linear stability theory is given by Mack [6], which constitutes one
of the most important reference texts for any reader interested in boundary-layer
stability theory.

3.4.1 Parallel flow assumption

The assumption that the base flow depends only on one spatial direction repre-
sents a flow field that is parallel in two spatial directions and non-parallel in the
third. In this case, the requirement for the base flow to satisfy the governing equa-
tions (the Navier-Stokes equations) brings additional implications on the base flow
quantities. This can be illustrated as follows. The continuity equation governing a
general three dimensional steady base flow can be written as



HYDRODYNAMIC STABILITY 3-7

∂ (ρ̄ū)

∂x
+
∂ (ρ̄v̄)

∂y
+
∂ (ρ̄w̄)

∂z
= 0. (3.12)

Assuming that the base flow depends only on the wall-normal direction, i.e. ρ̄ =

ρ̄(y), ū = ū(y), v̄ = v̄(y) and w̄ = w̄(y), yields

∂ (ρ̄v̄)

∂y
= 0, or ρ̄v̄ = const. . (3.13)

At the wall (y = 0), the no-slip condition dictates that v̄|y=0 = 0, therefore

ρ̄v̄|y=0 = 0 =⇒ ρ̄v̄ = const. = 0 =⇒ v̄ = 0. (3.14)

The assumption that q̄ = q̄(y) implies that the base flow wall-normal velocity
must be zero for the continuity equation to be satisfied. Since v̄ is the velocity
component associated to the non-parallel part of the base flow, this means that
any LST analysis only incorporates the physics associated to the parallel part of
the base flow, and hence the use of ansatz (3.11) is sometimes also referred to
as the parallel flow assumption. In the case of a boundary-layer base flow, for
example, the parallel flow assumption neglects the local growth of the boundary
layer, contained in ρv̄. In other words, LST analyses neglect non-parallel effects.

3.4.2 Temporal stability framework

In the temporal LST framework, both α and β are fixed to be real, that is α =

αr and β = βr, and the problem is solved for ω, which is complex in general
(ω = ωr+ iωi). The real part ωr denotes the angular frequency of the perturbation
and ωi its associated temporal growth rate. A positive value of ωi means that
the perturbation is growing in time at a given location and spatial wavenumber
vector (temporally unstable disturbance), whereas a negative value implies that it
is decaying in time (temporally stable disturbance). Under these considerations,
the following differential generalized eigenvalue problem is obtained:

Aωq̂ = ωBωq̂, (3.15)

where Aω and Bω are matrix operators that contain the coefficients of the system
of governing equations (see appendix C) that respectively multiply the zeroth and
the first powers of the eigenvalue ω.

3.4.3 Spatial stability framework

When the spatial evolution of the perturbations is desired, the frequency is fixed to
be a real quantity (ω = ωr). Since two spatial wavenumbers (α and β) are present
in the LST framework, a further choice needs to be made on which of them is
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fixed. In general, the interest focuses on the spatial growth of the perturbations
along the streamwise direction, that is, β is fixed and the problem is solved for α.
Typically β is fixed to be a real number, however, the problem can generally be
solved for complex β as well. In this work, only cases with β = βr are considered,
leaving α = αr + iαi as the only complex wave parameter. In this case, the real
part of α represents the streamwise wavenumber of the perturbation and −αi its
spatial growth rate. Due to the sign convention adopted in the Fourier transform
of the solution (see § 3.3), αi < 0 denotes spatial growth while αi > 0 indicates
decay in space.

The previous assumptions lead once again to a differential generalized eigen-
value problem that can be expressed as

Aαq̂ = αBαq̂ + α2Cαq̂, (3.16)

where Aα, Bα and Cα are matrix operators that contain the coefficients of the
system of LST equations that respectively multiply the zeroth, first and second
powers of the eigenvalue. It is very important to note that in this case the problem
is non-linear in the eigenvalue α, thus it cannot be solved by standard eigenvalue
solvers. To convert the system to a linear generalized eigenvalue problem, the
matrix companion method [10] is employed, which introduces auxiliary variables
in the vector of amplitude functions of the form αq̂. For example, in the case of
CPG LST with a state vector given by q̂ = [û, v̂, ŵ, T̂ , p̂]T, the necessary auxiliary
variables are αû, αv̂, αŵ and αT̂ , and the system of equations takes the form

A+
α q̂+ = αB+

α q̂+, (3.17)

with

A+
α =

[
Aα −Bû:T̂

α

0 I

]
, B+

α =

[
Bp̂
α Cû:T̂

α

I 0

]
(3.18)

and
q̂+ = [û, v̂, ŵ, T̂ , p̂, αû, αv̂, αŵ, αT̂ ]T, (3.19)

where Bû:T̂
α and Cû:T̂

α are non-square matrices which contain those columns from
the respective matrix operators Bα and Cα that correspond to the variables û, v̂,
ŵ and T̂ . Similarly, Bp̂

α is a square matrix that contains only the columns from
Bα that correspond to the variable p̂. The symbol I denotes the identity matrix.
The auxiliary variable αp̂ is not necessary in this case as the system of LST equa-
tions for a calorically perfect gas does not feature second spatial derivatives of the
pressure perturbation (see appendix C). It is important to emphasize that this pro-
cedure increases significantly the size of the system to be solved (in this particular
case from 5 to 9 unknown variables) and therefore it has a large computational
impact. The matrix companion method is also employed for the TPG and the CNE
thermodynamic flow assumptions.
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Finally, it is worth mentioning that the possibility also exists of fixing a com-
plex wavenumber in the temporal approach or fixing a complex frequency in the
spatial approach while solving for the other respective complex quantity in each
framework. In this case, the approach receives the name of spatio-temporal analy-
sis, which is widely employed in absolute instability studies [8].

3.4.4 Approximate relation between temporal and spatial growth
rates

The perturbations analyzed in this work are waves that travel in a definite direc-
tion as their amplitude evolves downstream. Unstable disturbances of this type are
known as convective instabilities, as opposed to absolute instabilities (see § 3.11).
Each of them propagates at a given finite group velocity cg = ∂ω/∂α which sat-
isfies the dispersion relation dictated by the governing disturbance equations. For
perturbations with cg 6= 0, that is, convective perturbations, there exists an equiva-
lence between temporal and spatial growth. This implies that a wave that features
only a temporal amplification (as described by means of the temporal stability ap-
proach) can be transformed into a wave undergoing only a spatial growth, and vice
versa.

An approximate relation between the temporal and spatial growth rates was
derived by Gaster [11], given by

αi|ωi=0 = −ωi|αi=0

cg
+O(ω2

i |αi=0), (3.20)

where αi|ωi=0 denotes the spatial growth rate in the limit of ωi = 0, that is, for a
wave with spatial growth only (as in the spatial approach), and ωi|αi=0 represents
the temporal growth rate in the limit of αi = 0, i.e. for a wave with temporal
amplification only (as in the temporal approach). Equation (3.20), also known as
the Gaster transformation, allows to convert the solution obtained by means of the
temporal stability framework into an approximate solution of the spatial approach,
and vice versa. The group velocity can be evaluated in either the temporal or the
spatial limits as cg = ∂ωr/∂αr. It is important to note that Gaster’s transformation
is accurate up to second order in ωi, meaning that it offers satisfactory conversions
mainly for small growth rates (close to the neutral stability curve). In practice,
however, the relation has been found to perform very well for a wide range of
applications, including flat-plate boundary layers, secondary crossflow instabilities
[12, 13] and roughness-induced disturbances [14, 15].

Given the increase in computational cost associated with the solution of the
spatial eigenvalue problem, using Gaster’s transformation to obtain spatial growth
rates from the cheaper temporal solution constitutes a very advantageous approach
in practice. Nevertheless, a verification of the validity of the transformation for the
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problem under study is necessary. Section § 5.3.5.3 discusses its validity for some
of the cases studied in this work.

3.5 Non-local linear stability theory: parabolized sta-
bility equations

With the aim of studying the role of non-parallel effects in convectively unstable
flows, the LST parallel flow assumption can be relaxed by allowing a weak vari-
ation of the flow quantities in the streamwise direction. This can be achieved by
means a parabolization of the linearized perturbation equations while introducing
a streamwise dependency in the base flow (q̄ = q̄(x, y)) and in the perturbation
amplitude function (q̂ = q̂(x, y)), giving birth to what is known as parabolized
stability equations (PSE) [16, 17]. The fundamental assumption behind the PSE
theory is a scale separation between the weak (or slow) variation of flow quanti-
ties along the streamwise direction (order O(1/Re) for boundary-layer flows) and
the strong variation along the wall-normal direction (order O(1)). The stream-
wise dependence of the base flow and of the perturbation quantities as well as the
base flow wall-normal velocity component (v̄) are assumed to scale with the small
parameter 1/Re, namely

∂

∂x
, v̄ ≈ O(Re−1), (3.21)

whereas the remaining base flow quantities and their wall-normal derivative are
assumed to be of unit order. Equivalently,

∂

∂x
� ∂

∂y
,

∂

∂z
= 0, (3.22)

and, in turn, the second derivatives of q̄ and q̂ with respect to the streamwise
direction are neglected for being of order 1/Re2.

The ansatz associated to the PSE assumption results from a WKB approxima-
tion and takes the following form

q̃(x, y, z, t) = q̂(x, y) exp

[
i

(∫ x

x0

α(ξ) dξ + βz − ωt
)]

+ c.c. . (3.23)

The parabolized stability equations can then be obtained by means of an order of
magnitude analysis of the linearized disturbance equations, which removes terms
of order 1/Re2, and the substitution of equation (3.23) into the resulting system
of equations. These assumptions do not lead to an eigenvalue problem but to a
streamwise marching problem instead, which can be expressed in matrix form as



HYDRODYNAMIC STABILITY 3-11

Lq̂ + M
∂q̂

∂x
= 0, (3.24)

where L and M are matrix operators that contain the coefficients of the PSE sys-
tem of governing equations (see for instance [3]). The marching nature of the
problem requires the use of upstream information in order to advance the solution
downstream. In other words, the history of the perturbations is taken into account.
In this sense, the PSE theory is non-local due to the fact that the disturbance solu-
tion at a given streamwise location is influenced by local as well as upstream flow
conditions. The marching along the streamwise direction is usually carried out by
means of a first or second-order backward Euler scheme.

The PSE ansatz features a streamwise dependency on both the amplitude func-
tion and the phase function. This introduces an ambiguity that can be resolved
by means of an auxiliary condition, which usually takes the form of the following
normalization condition:

∫ y+

y−
q̂∗
∂q̂

∂x
dy = 0, (3.25)

where y− and y+ respectively denote the lower and upper limits of integration
along the y direction (the limits (boundaries) along y of the domain in which the
analysis is performed) and (·)∗ refers to the complex conjugate. This condition
enforces the variation of the amplitude function to remain small enough to satisfy
the 1/Re scaling of ∂q̂/∂x. Note that the result of equation (3.25) is a scalar
quantity.

It is important to emphasize that the PSE equations are not completely parabolic.
A small ellipticity remains in the governing stability equations which allows for
upstream propagation of information through the streamwise pressure gradient
terms. This introduces oscillations in the marching solution when the streamwise
step size is too small. Li & Malik [18] found the smallest theoretical stable step
size to be

∆xmin =
1

|αr|
=
|λx|
2π

, (3.26)

with λx being the streamwise wavelength. Hence, no more than 6 streamwise
stations should be used for each streamwise wavelength. In practice, however, a
convergence study with respect to ∆x is often necessary to determine the step size
limit for each particular application. On the other hand, stabilization techniques
have also been developed which allow to relax the step size limitations, which
include dropping the streamwise pressure derivative (∂p̂/∂x = 0) or the addition
of a stabilizing term to the system of equations [19].
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3.5.1 Definition of growth rate

Given the non-local character of the PSE theory, the physical growth rate of a
disturbance comes from two contributions, namely, the growth associated to the
exponential part of the disturbance (−αi) and the growth associated to the stream-
wise variation of the amplitude function. Two different quantities are commonly
employed to evaluate the second contribution (see for instance [8]). On the one
hand, the streamwise variation of the amplitude function of any of the components
of q̂ is used, yielding the following definition

σ = −αi + <
{

1

q̂

∂q̂

∂x

}∣∣∣∣
y

, (3.27)

where the second term is usually evaluated at the y coordinate where it reaches its
maximum value. On the other hand, the disturbance kinetic energy ÊK is often
considered instead, leading to the following expression

σ = −αi +
∂

∂x

[
ln

(√
ÊK

)]
, (3.28)

with

ÊK =

∫ y+

y−
ρ̄ (ûû∗ + v̂v̂∗ + ŵŵ∗) dy. (3.29)

3.6 Extensions for base flows with additional inho-
mogeneous directions

In a large number of practical flow fields, the assumptions on the spatial base-flow
dependency imposed by local (LST) or by non-local (PSE) linear stability theory
are too restrictive for such theories to be able to appropriately describe the pertur-
bation dynamics. Therefore, over the last four decades, different extensions have
been developed to deal with flow fields that feature more than one inhomogeneous
spatial direction as well as strong non-parallel effects [20–22]. Examples of such
flows include the wake induced by isolated and/or distributed roughness, cross-
flow vortices in swept-wing boundary layers, laminar separation bubbles, Görtler
vortices and twin jets, among many others. The instability characteristics of these
flow fields are still a state-of-the-art subject. As introduced in § 1.3, the first of
them is the main focus of this work.

The most common theories currently in use for the analysis of base flows with
more than one inhomogeneous direction are described next.
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Figure 3.1: Example of the amplitude function domain (red-dotted line) for the different
theories that consider more than one inhomogeneous direction: (a) 2D-LST; (b) 3D-PSE;
(c) Streamwise BiGlobal; (d) TriGlobal.

3.6.1 Two-dimensional local linear stability theory

Two-dimensional local linear stability theory is a direct generalization of classical
LST theory. It considers base flows and amplitude functions that depend on the
two spatial directions other than the streamwise direction. If x is chosen to be
the streamwise direction, 2D-LST theory assumes q̄ = q̄(y, z), such that the base
flow is no longer required to be parallel along the spanwise direction as in LST
(see figure 3.1(a)). The corresponding perturbation ansatz becomes:

q̃(x, y, z, t) = q̂(y, z) exp[i(αx− ωt)] + c.c. , (3.30)

which was used as an example for the derivation described in § 3.3. Note that
the spanwise wavenumber β is no longer part of the ansatz, reflecting the inho-
mogeneous character along z. The base flow and the perturbation amplitude func-
tion are then contained in a plane oriented perpendicularly to the streamwise flow
direction, that is, a spanwise plane (yz). For this reason, this theory usually re-
ceives the name of spanwise BiGlobal stability theory [20, 21], where the term
BiGlobal refers to the fact that there are two inhomogeneous directions embodied
in the theory assumptions. This is the most common name currently encountered
in the literature as it was the first terminology introduced. Later work by other au-
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thors [23, 24], however, preferred to employ the 2D-LST designation to highlight
its natural extension from classical LST theory and to reflect its local character in
the sense that the solution at a given streamwise station still depends only on infor-
mation at that location (i.e. the perturbation history is not taken into account). This
is the nomenclature adopted in this dissertation. Another equivalent terminology,
less common in the literature but that directly reflects the local behavior of this
theory, is BiLocal stability theory [7]. It is also worth mentioning that, as already
recognized by Theofilis [20], a potential source of confusion exists with respect
to the meaning of the term “global” in the context of flow instability, which arises
from the local/global nomenclature introduced by the high-impact work of Huerre
& Monkewitz [25] to respectively denote the instability of a local profile or that of
the entire flow field.

The ansatz for 2D-LST theory also leads to a (partial) differential generalized
eigenvalue problem, in this case a two-dimensional eigenvalue problem, which
can be stated in matrix form using the same expression as equation (3.15) for a
temporal approach or the same expression as equation (3.16) for a spatial analysis.
The 2D-LST equations for a calorically perfect gas can be found in appendix B.

Two-dimensional local linear stability theory becomes appropriate for flows
which can be assumed to be parallel along the streamwise direction, but which
however feature large variations along the wall-normal and spanwise directions.
This is for instance the case of streamwise vortices, where the flow field in the
yz plane is characterized by a strong vorticity but along x it undergoes a slow
variation. As presented later in chapters 5 and 6, extensive use of 2D-LST theory
is done in this work.

3.6.1.1 Parallel flow assumption revisited

The base flow assumption embedded in 2D-LST only requires the flow to be lo-
cally parallel along the streamwise direction. Recalling the continuity equation for
a steady base flow (3.12), this assumption leads to the following relation:

∂ (ρ̄v̄)

∂y
+
∂ (ρ̄w̄)

∂z
= 0, (3.31)

that is, the base flow momentum in the yz plane must be divergence-free. There-
fore, unlike the case of one-dimensional local linear stability theory (see § 3.4.1),
the parallel flow assumption in 2D-LST does not lead to the condition that v̄ = 0.
This means that 2D-LST allows in principle to incorporate the base flow wall-
normal velocity field into the stability analysis.

It is important to mention that the condition imposed by equation (3.31) on the
base flow field is not directly satisfied in the majority of practical problems of inter-
est, since the solutions obtained from the Navier-Stokes equations do not generally
yield ∂ (ρ̄ū) /∂x = 0 except in very specific cases. As a consequence, employing
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a three-dimensional Navier-Stokes base flow into the governing equations for 2D-
LST introduces a violation of condition (3.31). The impact of this inconsistency
appears to be dependent on the particular problem under investigation. Bonfigli &
Kloker [26] have investigated the effect of using three different representations of
the base flow (primary state) in the case of the secondary instability of crossflow
vortices. The three different descriptions employed consisted in either using the v̄
and w̄ velocity components directly from the solution of the Navier-Stokes equa-
tions, fixing only the v̄ component from the Navier-Stokes solution and computing
a modified w̄ component by satisfying the 2D-LST continuity equation (3.31), or
fixing the w̄ component and obtaining a modified v̄ component by once again satis-
fying the in-plane divergence-free condition. In all three cases, the 2D-LST theory
failed to provide a successful agreement against the amplification rates provided
by DNS, without showing an unequivocal advantage of using one of the three base
flow representations over the others.

Other authors, instead, choose to neglect the base flow wall-normal velocity
component in the 2D-LST calculations as a means to remove the growth of the
flow field along the streamwise direction. Although this approach only leads to the
fulfillment of equation (3.31) in the case that ∂ (ρ̄w̄) /∂z = 0 (such as for example
in a flat plate boundary layer), it has been found for instance to provide a satisfac-
tory agreement between 2D-LST and DNS results by Di Giovanni & Stemmer [24]
in the case of the instabilities developing behind spanwise periodic roughness el-
ements mounted on the forebody of a reentry capsule. This suggests, as noted by
Groot [7], and in contrast to the observations by Bonfigli & Kloker [26], that the
instability in this configuration is mainly governed by the ū component and its re-
spective gradients (∂ū/∂y and ∂ū/∂z), and only to a lesser extent by the in-plane
velocity components v̄ and w̄, which are small in comparison.

At present, there is no consensus on which approach should be adopted in
general. In this work, the assumption of Di Giovanni & Stemmer [24] is also
followed, neglecting the base-flow wall-normal velocity component in the 2D-LST
computations.

3.6.2 Streamwise BiGlobal stability theory

For the case of flow fields that are highly non-parallel along the streamwise di-
rection, that is, which feature strong variations along x, another option considers
base flows and amplitude functions that are inhomogeneous along the streamwise
direction as well as along one of the other two spatial coordinates, while retaining
a homogeneous character in the third. Possibilities for these requirements include
q̄ = q̄(x, y) and q̂ = q̂(x, y) or q̄ = q̄(x, z) and q̂ = q̂(x, z). Such a theory
receives the name of streamwise BiGlobal stability theory [20, 21], as the plane
where the base flow and the amplitude functions live is oriented along the stream-
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wise direction and the flow is non-local (see figure 3.1(c)). The ansatz for this
theory can be written as

q̃(x, y, z, t) = q̂(x, y) exp[i(βz − ωt)] + c.c. . (3.32)

This theory is able to resolve the perturbation dynamics of any strongly non-
parallel flow. Suitable applications include isolated laminar separation bubbles
[27], the detached flow regions respectively located in front of a forward-facing
step or behind a backward-facing step and the instabilities induced by two-dimensi-
onal bumps, gaps or indentations [28].

It is important to mention that in streamwise BiGlobal analyses, the proper
imposition of boundary conditions at the inflow and outflow boundaries of the
streamwise plane is a challenging problem which still remains a state-of-the-art
topic. For details on the mathematical nature of this problem, the reader is referred
to the recent work of Groot [7].

3.6.3 Three-dimensional parabolized stability equations

When weakly non-parallel flows in the streamwise direction are considered, a nat-
ural extension of the linear PSE theory consists in lifting the restriction for the
flow to be inhomogeneous only along a single spatial direction, leading to a more
general PSE theory commonly known as three-dimensional parabolized stability
equations (3D-PSE) [29]. This theory assumes the base flow and the amplitude
functions to be dependent in all three spatial directions but subject to the following
condition

∂

∂x
� ∂

∂y
,
∂

∂z
. (3.33)

In a similar fashion to standard PSE, the ansatz for 3D-PSE becomes

q̃(x, y, z, t) = q̂(x, y, z) exp

[
i

(∫ x

x0

α(ξ) dξ − ωt
)]

+ c.c. . (3.34)

Hence, the flow field is allowed to be strongly inhomogeneous in the spanwise
plane (yz) while retaining a small variation along x (see figure 3.1(b)). The de-
ployment of ansatz (3.34) into the linearized perturbation equations leads to a
marching problem analogous to equation (3.24), but with partial differential ma-
trix operators defined in two spatial directions. The name plane-marching PSE is
also sometimes employed to refer to 3D-PSE, which arises from the process of
marching the solution contained in yz planes along the streamwise direction.

Similarly to classical PSE, a normalization condition is necessary, which for
3D-PSE usually takes the form
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∫ z+

z−

∫ y+

y−
q̂∗
∂q̂

∂x
dy dz = 0, (3.35)

where z− and z+ are the limits (boundaries) of the domain of analysis along the
spanwise direction.

As it is the case between PSE and LST, 3D-PSE constitutes a more general
theory than 2D-LST since it takes into account weak non-parallel effects in the
streamwise direction.

It is also worth mentioning that another variation of the PSE theory exists
which considers a weak evolution of the base-flow quantities along both the stream-
wise and the spanwise directions, which receives the name of surface-marching
PSE [30, 31]. This theory is well suited for instance for the study of crossflow
instabilities in swept wing configurations or the instabilities modulated by three-
dimensional roughness elements with smooth shape variations along the stream-
wise and spanwise directions. It allows to take into account weakly non-parallel
effects in both x and z while keeping only a single inhomogeneous direction, i.e.,
the wall-normal direction. Surface-marching PSE therefore requires a similar com-
putational cost as the standard PSE theory.

Finally, for base flows with strong variations in the streamwise direction but
which are parallel in the spanwise direction (such as the recirculating regions
induced by forward- or backward-facing steps), it is interesting to note the ex-
istence of another methodology known as adaptive harmonic linearized Navier-
Stokes (AHLNS) equations [32, 33]. The AHLNS formulation is also derived
from the PSE approach by removing the assumption of slowly varying flow quan-
tities in the streamwise direction, thus recovering the streamwise-related terms that
are dropped in the PSE derivation and which bring a fully elliptic character to the
equations. This technique is therefore a natural extension of the PSE methodology
that enables the study of convective instabilities in the presence of large stream-
wise gradients. For the analysis of convective instabilities, AHLNS can provide a
more efficient approach than the use of streamwise BiGlobal theory.

3.6.4 TriGlobal stability theory

TriGlobal stability theory deals with flow fields which are strongly inhomogeneous
in all three spatial directions (see figure 3.1(d)). No assumptions are made on the
spatial behavior of the instabilities, they are only assumed to be periodic in time.
The TriGlobal perturbation ansatz reads

q̃(x, y, z, t) = q̂(x, y, z) exp (−iωt) + c.c. . (3.36)

This form of the perturbation ansatz leads to a temporal eigenvalue problem in ω.
Since no spatial wave-like behavior is imposed, the distinction between spatial and
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temporal stability frameworks vanishes for this theory. The computational cost of
solving the TriGlobal eigenvalue problem is prohibitively high except in very sim-
ple and fundamental configurations. In addition, the difficulties associated to the
imposition of inflow/outflow boundary conditions at the streamwise boundaries,
as introduced in § 3.6.2, are also present in this theory. Instead of solving the tem-
poral eigenvalue problem, the application of TriGlobal stability theory to current
practical configurations usually requires the use of time-stepping techniques (see
for instance [22]).

3.7 The eN method for transition prediction

Although linear stability theories describe the correct perturbation dynamics only
during the linear stages of disturbance development, in several applications it is
possible to correlate the linear amplification with the transition onset location ob-
served experimentally. The methodology, introduced by van Ingen [34] and Smith
& Gamberoni [35], is known as the eN method.

The idea behind this method is that, under equivalent disturbance environ-
ments, transition takes place when the natural logarithm of the linearly determined
perturbation amplitude (A) is increased by a given factor, commonly known as the
N -factor, that is:

N(x) =

∫ x

x0

1

A

dA

dξ
dξ = ln

[
A(x)

A(x0)

]
, (3.37)

where x0 is the location at which the disturbance becomes unstable. For linear
stability theories, the quantity inside the integral equals the growth rate of the
perturbation, i.e.

dN

dx
=

1

A

dA

dx
= σ. (3.38)

Therefore, for local linear stability theory (LST and 2D-LST), the N -factor can be
evaluated as

N =

∫ x

x0

−αi dξ, (3.39)

and similarly for PSE by employing equation (3.27) or (3.28).
For a quiet disturbance environment, that is, for a low freestream turbulence

intensity, [34] and [35] observed that transition for typical flat-plate conditions oc-
curs approximately at N = 9. Therefore, when any of the perturbations undergo
a fixed linear amplification that amounts to N = 9, transition onset can be con-
sidered at that location. The key parameter for the eN method to be effective in
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practice is the particular value of N at transition onset for a given disturbance en-
vironment. If correctly calibrated by means of experimental investigations, the eN

method can become a powerful engineering tool for a given application. Under
noisy wind tunnel conditions, smaller transitional values of N are to be expected.
Typical values for noisy wind tunnels range between N = 5 and N = 6 [4].

In the context of flat plate boundary layers, the method has proved a notable
prediction capability [4]. In particular, Mack [36] proposed a correlation for the
transition N -factor in a flat-plate boundary layer as a function of the freestream
turbulence intensity.

3.8 Accounting for non-linearities
Under many flow conditions, accounting for non-linearities is the only way to de-
scribe physical phenomena that lead to the correct computation of transition onset,
which is otherwise not predictable by means of the eN method coupled with lin-
ear theory. Without relying on the high computational cost of DNS simulations,
a cheaper and direct way to model non-linearities in weakly non-parallel flows,
such as flat-plate boundary layers, is to employ a non-linear version of the parab-
olized stability equations. For this purpose, the following perturbation ansatz is
considered [16]:

q̃(x, y, z, t) =

Nm∑
m=−Nm

Nn∑
n=−Nn

A0
m,nq̂m,n(x, y) exp

[
i

(∫ x

x0

αm,n(ξ) dξ

+mβz − nωt)] + c.c. , (3.40)

where A0
m,n denotes the initial amplitude of the mode defined by the mth and

nth harmonics of the fundamental spanwise wavenumber (β) and frequency (ω),
respectively, with Nm and Nn being the total number of harmonics considered.
Upon substitution of equation (3.40) into the system of non-linear perturbation
equations (that is, without neglecting terms of orderO(ε2) or higher), the system of
governing equations for each mode in non-linear PSE (NPSE) theory is obtained,
given by (

Lq̂ + M
∂q̂

∂x

)∣∣∣∣
m,n

= fm,n, (3.41)

where fm,n denotes the forcing vector associated to mode (m,n), which contains
the corresponding Fourier component of the total forcing vector f , which com-
prises the non-linear terms belonging to the system of governing equations. When
the number of modes in consideration is large enough, the computation of fm,n
from f is usually performed numerically by means of a fast Fourier transform
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(FFT). However, if only a few modes are considered, the calculation is sometimes
carried out in Fourier space through the convolution operator.

Finally, the same normalization condition employed for linear PSE theory also
applies for each mode in the non-linear formulation, namely

∫ y+

y−
q̂∗m,n

∂q̂m,n
∂x

dy = 0. (3.42)

An equivalent non-linear extension follows as well for the three-dimensional
parabolized stability equations, leading to 3D-NPSE theory. In this case, the per-
turbation ansatz involves only harmonics of the fundamental frequency (i.e. nω).
See [3, 37] for further details.

The perturbation solution of non-linear PSE theory is then given by a combi-
nation of different modes (harmonics). This theory therefore accounts for the in-
teraction between different modes, allowing to model more advanced stages of the
transition process where linear theory fails to predict the correct dynamics of the
instabilities. An example where non-linear theory succeeds to predict the correct
disturbance behavior while linear theory does not is the case of crossflow instabil-
ities developing in infinite swept-wing boundary layers (see for instance [38]).

3.9 Boundary conditions for the perturbation quan-
tities

To complete the system of stability equations governing the disturbance dynam-
ics for any of the theories introduced previously, appropriate boundary conditions
must be imposed on the perturbation quantities. The nature of the eigenvalue prob-
lems resulting from the theoretical assumptions behind the LST, 2D-LST, stream-
wise BiGlobal and TriGlobal theories requires the imposition of homogeneous
boundary conditions.

In this work, the stability equations are solved over physical domains that
are oriented perpendicularly to the streamwise coordinate of flow development.
Therefore, only boundary conditions along the wall-normal and the spanwise di-
rections are considered here. For the treatment of boundary conditions at stream-
wise boundaries, see the work of Groot [7].

3.9.1 Wall boundary

In the same way as the base flow, perturbations at solid wall boundaries must also
satisfy the no-slip and no-penetration conditions. This implies that, at the wall, all
three components of the velocity perturbation vector must be zero. This condition
is enforced by means of a homogeneous Dirichlet condition, that is
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û = v̂ = ŵ = 0. (3.43)

If the disturbance under consideration is not stationary, i.e. ω > 0, the thermal
inertia of the wall generally prevents it from reacting to the rapid fluctuations asso-
ciated with the temperature perturbation. For this reason, a homogeneous Dirichlet
condition is usually imposed as well for the temperature perturbation at the wall
(T̂ = 0).

The remaining independent perturbation quantities are forced to satisfy com-
patibility conditions at the wall, usually the wall-normal momentum perturbation
equations (see [20, 22]). This ensures that all the quantities imposed at the bound-
ary are compatible with (satisfy) the governing equations. For the CPG and TPG
flow assumptions, wall-compatibility conditions are only required for the second
thermodynamic state variable of the system, usually either ρ̂ or p̂. For example, the
compatibility equation for p̂ is usually derived from the wall-normal momentum
equation (equation (B.2c) for 2D-LST theory). To obtain the associated compat-
ibility condition at the wall, the following conditions are taken into account: the
base flow and the perturbation velocity components are set to zero due to the no-
slip and no-penetration conditions, the temperature perturbation is fixed to zero
due to the reason described above, and the derivatives with respect to the spanwise
direction (tangential to the wall) of the quantities that are zeroed by the homo-
geneous Dirichlet conditions become zero as well. With these considerations, a
2D-LST non-dimensional wall compatibility equation for p̂ reads:

∂p̂

∂y
− 1

Re

[
λ̄

(
iα
∂û

∂y
+
∂2v̂

∂y2
+

∂2ŵ

∂y∂z

)
+ µ̄

(
iα
∂û

∂y
+ 2

∂2v̂

∂y2
+

∂2ŵ

∂y∂z

)
+
dλ̄

dT̄

(
∂T̄

∂y

∂v̂

∂y
+
∂T̂

∂y

∂v̄

∂y

)
+
dµ̄

dT̄

(
2
∂T̄

∂y

∂v̂

∂y
+ 2

∂T̂

∂y

∂v̄

∂y
+
∂T̄

∂z

∂ŵ

∂y

)]
= 0.

(3.44)

It is important to mention that recent work by Theofilis [39] for incompressible
flows has shown that, instead of employing the momentum compatibility equation
at a given boundary, using the linearized pressure Poisson equation to provide a
boundary closure for the pressure perturbation results in the absence of spurious
modes in the stability spectrum, which are otherwise present when the momentum
equation is considered. Therefore, using the Poisson equation for the pressure
perturbation boundary condition is preferred over the momentum compatibility
equation in incompressible flows. For compressible flows, the linearized Poisson
equation derived by [39] might be extended to include the temperature dependency
of the transport properties and employed as a boundary closure as well. Although
the 2D-LST linearized pressure Poisson equation has not been implemented in this
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work, its application to the problem under study deserves attention and should be
investigated, as it is believed that its performance would also be superior than using
the wall-normal momentum equation.

For the case of a mixture of perfect gases in chemical non-equilibrium, wall
compatibility conditions are also required for each of the species density pertur-
bations (ρ̂s). In this work, the approach developed by Miró Miró & Pinna [40]
is followed (see also [5]), which employs the species momentum equation as a
compatibility condition for each species density disturbance. The wall-normal
momentum equation for a single species can be expressed as

ρs
Dv

Dt
+
∂ps
∂y
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τzy

∂z
= 0, (3.45)

where ps denotes the partial pressure of species s, which satisfies Dalton’s law of
partial pressures [41], and the viscous stresses follow the same definitions given
by equations (2.12b), (2.12d) and (2.12f). It is important to note that due to the
lack of an accurate mixture rule for viscosity, the mixture viscosity (µ) is em-
ployed in equation (3.45) instead of the species viscosity. Applying the splitting
and linearization described by equation (3.2) to equation (3.45), and substituting
the ansatz associated with the stability theory in use, the compatibility equations
for the species partial density perturbations are obtained.

From the numerical point of view, it has been shown [42] that using Ns − 1

species wall-normal momentum equations together with the mixture wall-normal
momentum equation (2.11c) improves the conditioning of the system of equations
with respect to the use of Ns species momentum equations. For this purpose,
the bath species is usually chosen to be the one without a dedicated momentum
equation.

3.9.2 Wall-normal far-field boundary

For the majority of boundary-layer base flows, the discrete perturbations of inter-
est decay exponentially to zero when moving far away from the wall. Therefore,
appropriate boundary conditions at the wall-normal far-field boundary usually con-
sist of homogeneous Dirichlet conditions. Similarly to the procedure described in
the previous section for the solid wall boundary, homogeneous Dirichlet condi-
tions are applied at the wall-normal far-field boundary for all three components
of the velocity perturbation vector as well as for the temperature disturbance. To
ensure consistency with the governing equations, the remaining thermodynamic
independent variables that compose the state vector are once again enforced to
follow compatibility conditions also at this boundary. If the far-field boundary
is far enough, the compatibility conditions ensure that the remaining perturbation
quantities vanish as well without explicitly forcing their value to be zero.
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As discussed previously, the linearized pressure Poisson equation might also be
considered as a boundary closure for the pressure perturbation at the wall-normal
far-field boundary.

3.9.3 Periodic spanwise boundaries

For physical problems where the base flow field features a spanwise periodicity, the
perturbations developing in the domain can also be made periodic with respect to
the spanwise direction by means of periodic boundary conditions. This is achieved
by forcing the value of the perturbation quantities and their first derivative normal
to the boundary to be equal at both spanwise boundaries. Therefore, periodic
boundary conditions impose two conditions on q̂, namely

q̂|z− = q̂|z+ , (3.46a)

∂q̂

∂z

∣∣∣∣
z−

=
∂q̂

∂z

∣∣∣∣
z+
. (3.46b)

These conditions are also applicable to base flows which are symmetric (not
periodic) with respect to the spanwise direction, such as in the cases investigated
in this dissertation.

3.9.4 Symmetric spanwise boundaries

In the case of base flows which have a spanwise symmetry, only half of the phys-
ical domain in the spanwise direction can be considered to perform the stability
analysis. Perturbations at the symmetry boundary can be assumed to behave as
symmetric or antisymmetric disturbances by imposing symmetry or antisymmetry
boundary conditions. In the case of symmetry conditions, the first derivative of all
perturbation quantities in the direction normal to the boundary is set to zero except
for the spanwise velocity perturbation, whose value is set to zero at the boundary.
Then, homogeneous Neumann conditions are employed for all the independent
perturbation quantities except for ŵ, for which a homogeneous Dirichlet condi-
tion is imposed. In the case of antisymmetry conditions, these specifications are
inverted, homogeneous Dirichlet conditions are imposed for all quantities except
for ŵ, for which a homogeneous Neumann condition is used. As an example,
symmetric boundary conditions for CPG can be expressed as follows:

∂û

∂z
=
∂v̂

∂z
=
∂T̂

∂z
=
∂p̂

∂z
= 0, ŵ = 0, (3.47)

and antisymmetric boundary conditions as

û = v̂ = T̂ = p̂ = 0,
∂ŵ

∂z
= 0. (3.48)
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At the other spanwise boundary of the domain, appropriate boundary condi-
tions depend on the nature of the disturbance under investigation. If the pertur-
bation develops only in a small, well-defined region of the domain, such as the
disturbances associated with streamwise vortices developing inside a boundary
layer, it can be forced to decay towards zero at the spanwise far-field boundary
by means of homogeneous Dirichlet and compatibility conditions. On the other
hand, if the perturbation is a boundary-layer disturbance, which develops over all
the spanwise domain of analysis, symmetry/antisymmetry conditions should be
employed at both spanwise boundaries.

In practice, the use of symmetry/antisymmetry boundary conditions reduces
the computational effort necessary to obtain a given solution for the perturbation
quantities since only half of the spanwise domain needs to be considered. How-
ever, the imposition of symmetry or antisymmetry conditions at a boundary implies
that only those perturbations which satisfy the imposed symmetry conditions will
be obtained when solving the stability eigenvalue problem. For instance, if both
symmetric and antisymmetric perturbations are desired, two different solutions of
the eigenvalue problem are required, one for symmetric perturbations and another
for antisymmetric ones. On the other hand, with the use of periodic boundary con-
ditions, both types of perturbations can be obtained at once in the same solution, at
the expense of employing the full spanwise domain. Therefore, both options have
advantages and disadvantages, and the most appropriate configuration depends on
the problem under study. As will be shown later (see chapter 5), in the case of
roughness-induced wake instabilities developing on a flat plate, both symmetric
and antisymmetric perturbations as well as wake and boundary-layer disturbances
coexist in the 2D-LST spectrum. As a result, the use of periodic boundary condi-
tions is preferable for this particular problem.

3.10 Disturbance energy evolution equation for a ca-
lorically perfect gas

The analysis of the energy in a disturbance can provide an additional level of un-
derstanding of the energy-exchange mechanisms between the base flow and the
instabilities. The derivation and evaluation of an appropriate disturbance energy
equation therefore constitutes a very attractive tool from the theoretical point of
view. Nowadays, however, no complete consensus exists on which is the most
adequate definition of the energy in a disturbance (see for instance George & Su-
jith [43]).

An evolution equation for the total energy of a disturbance in a calorically
perfect gas was originally derived by Chu [44] for two-dimensional perturbations
developing in base flows that depend only on one spatial dimension (q̄ = q̄(y)
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and q̃ = q̃(x, y, t)). This derivation was recently extended by Tritarelli [45],
Weder [46] and Weder et al. [47] to account also for non-vanishing disturbances
at the domain boundaries, which introduced additional flux terms in the resulting
evolution equation.

The disturbance energy definition resulting from the evolution equation of Chu
is equivalent to the energy norm considered by Mack [48] and Hanifi et al. [49].
This definition of perturbation energy is also adopted in this work, as described in
the following paragraphs.

3.10.1 The disturbance energy definition of Chu

According to Chu [44], a disturbance energy equation can be obtained by adding
all five non-dimensional linearized perturbation equations (equations (A.1a) to
(A.1e)) together, each of them multiplied by a specific factor, and then integrating
the resulting sum over an arbitrary time-dependent domain. The multiplicative fac-
tors selected by Chu for each equation (calorically perfect gas) are: T̄ ρ̃/(γM2ρ̄)

for the continuity equation (A.1a), ũ for the x-momentum equation (A.1b), ṽ for
the y-momentum equation (A.1c), w̃ for the z-momentum equation (A.1d) and
T̃ /T̄ for the energy equation (A.1e).

This formulation leads to a definition of the total disturbance energy which sat-
isfies two fundamental requirements, namely, that the disturbance energy must be
a positive definite quantity, and that in the absence of energy sources, the energy
of the disturbance must be a monotone non-increasing function of time. How-
ever, as Chu [44] points out, it is not obvious whether these two properties are
sufficient to define uniquely the energy in a disturbance. A later work by Hanifi
et al. [49] shows that this formulation of the disturbance energy is actually not
unique, and that the choice of the multiplicative factors for each governing equa-
tion is rather arbitrary as long as the resulting disturbance energy quantity satisfies
the desired properties. A formal proof of the non-uniqueness of Chu’s disturbance
energy norm is provided by George & Sujith [43], who show that Chu’s definition
is only one among a family of positive definite disturbance energy norms that do
not exhibit unphysical growth or decay in the absence of energy sources or sinks.

Depending on the purpose for which this disturbance energy formulation is
employed, it is very important to bear in mind the implications of the inherent non-
uniqueness that arises when defining the disturbance energy in this manner. On the
one hand, if the disturbance energy is used as a measure of the size (amplitude) of
the perturbations to evaluate non-modal disturbance growth, such as done by [49]
(see also § 3.12), then the current formulation is valid. George & Sujith [43, 50]
have shown that Chu’s energy norm does not lead to spurious transient energy
growth when the disturbance amplitude remains constant (or equivalently, in the
absence of energy sources or sinks), which demonstrates its suitability for this
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purpose.
On the other hand, if the objective is to compare different constituting parts

of the total disturbance energy, this formulation is not appropriate. In particular,
it is not meaningful to compare different energy contributions that originate from
different equations of the governing system, since the relative magnitudes of these
contributions depend on the chosen multipliers. For instance, for different choices
of the multiplicative factors, the relative magnitudes of the terms derived from the
momentum equation (kinetic energy) and those derived from the energy equation
(internal energy) are different.

Taking into account the previous considerations, in this dissertation Chu’s dis-
turbance energy definition is employed to gain understanding on which are the
mechanisms with which roughness-induced instabilities extract energy from the
base-flow quantities.

3.10.1.1 Chu’s disturbance energy evolution equation for base flows depend-
ing on y and z

In this study, the derivation of Chu [44] is generalized to three-dimensional pertur-
bations developing in base flows that depend on two spatial directions (q̄ = q̄(y, z)

and q̃ = q̃(x, y, z, t)). This leads to a framework that is compatible with the per-
turbations computed by means of 2D-LST. Let dV = dx dy dz denote an infinites-
imal volume element belonging to the integration domain Ω, and dS denote an
infinitesimal surface element belonging to the integration boundary Γ. According
to the total perturbation energy definition of Chu, the following non-dimensional
power equation, which describes the temporal evolution of the disturbance energy
in base flows depending on y and z, can be retrieved:

dẼ

dt
= −

∫
Ω

ρ̄ũṽ
∂ū

∂y
dV −

∫
Ω

ρ̄ũw̃
∂ū

∂z
dV −

∫
Ω

ρ̄ṽ2 ∂v̄

∂y
dV (3.49a-c)

−
∫

Ω

ρ̄ṽw̃
∂v̄

∂z
dV −

∫
Ω

ρ̄w̃ṽ
∂w̄

∂y
dV −

∫
Ω

ρ̄w̃2 ∂w̄

∂z
dV (3.49d-f)

−
∫

Ω

ρ̃ũv̄
∂ū

∂y
dV −

∫
Ω

ρ̃ũw̄
∂ū

∂z
dV −

∫
Ω

ρ̃ṽv̄
∂v̄

∂y
dV (3.49g-i)

−
∫

Ω

ρ̃ṽw̄
∂v̄

∂z
dV −

∫
Ω

ρ̃w̃v̄
∂w̄

∂y
dV −

∫
Ω

ρ̃w̃w̄
∂w̄

∂z
dV (3.49j-l)

−
∫

Ω

ρ̄ṽs̃
∂T̄

∂y
dV −

∫
Ω

ρ̄w̃s̃
∂T̄

∂z
dV +

∫
Ω

Q̃
T̃

T̄
dV (3.49m-o)

−
∫

Ω

ρ̃ṽ

ρ̄

∂p̄

∂y
dV −

∫
Ω

ρ̃w̃

ρ̄

∂p̄

∂z
dV (3.49p,q)
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−
∫

Ω

p̃T̃

T̄

∂v̄

∂y
dV −

∫
Ω

p̃T̃

T̄

∂w̄

∂z
dV −

∫
Ω

p̄
ρ̃2

ρ̄2

∂v̄

∂y
dV −

∫
Ω

p̄
ρ̃2

ρ̄2

∂w̄

∂z
dV (3.49r-u)

−
∫

Ω

1

γ (γ − 1)M2

v̄

T̄
ρ̃T̃

∂T̄

∂y
dV −

∫
Ω

1

γ (γ − 1)M2

w̄

T̄
ρ̃T̃

∂T̄

∂z
dV (3.49v,w)

−
∫

Ω

[
τ̃xx

∂ũ

∂x
+ τ̃yy

∂ṽ

∂y
+ τ̃zz

∂w̃

∂z
+ τ̃xy

(
∂ũ

∂y
+
∂ṽ

∂x

)
+τ̃xz

(
∂ũ

∂z
+
∂w̃

∂x

)
+ τ̃yz

(
∂ṽ

∂z
+
∂w̃

∂y

)]
dV

(3.49x)

+

∫
Ω

1

T̄

(
q̃x

∂

∂x
+ q̃y

∂

∂y
+ q̃z

∂

∂z

)
T̃ dV (3.49y)

+

∫
Γ

[τ̃xxũnx + τ̃yy ṽny + τ̃zzw̃nz + τ̃xy (ũny + ṽnx)

+τ̃xz (ũnz + w̃nx) + τ̃yz (ṽnz + w̃ny)] dS
(3.49z)

−
∫

Γ

(q̃xnx + q̃yny + q̃znz)
T̃

T̄
dS −

∫
Γ

p̃ (ũnx + ṽny + w̃nz) dS (3.49aa,bb)

+
1

Re

∫
Ω

∂

∂y

(
ũT̃

dµ̄

dT̄

∂ū

∂y

)
dV +

1

Re

∫
Ω

∂

∂z

(
ũT̃

dµ̄

dT̄

∂ū

∂z

)
dV (3.49cc,dd)

+
1

Re

∫
Ω

∂

∂x

(
ṽT̃

dµ̄

dT̄

∂ū

∂y

)
dV +

1

Re

∫
Ω

∂

∂x

(
w̃T̃

dµ̄

dT̄

∂ū

∂z

)
dV (3.49ee,ff)

+
1

Re

∫
Ω

∂

∂z

(
ṽT̃

dµ̄

dT̄

∂v̄

∂z

)
dV +

1

Re

∫
Ω

∂

∂y

(
w̃T̃

dµ̄

dT̄

∂v̄

∂z

)
dV (3.49gg,hh)

+
1

Re

∫
Ω

∂

∂z

(
ṽT̃

dµ̄

dT̄

∂w̄

∂y

)
dV +

1

Re

∫
Ω

∂

∂y

(
w̃T̃

dµ̄

dT̄

∂w̄

∂y

)
dV (3.49ii,jj)

+
2

Re

∫
Ω

∂

∂y

(
ṽT̃

dµ̄

dT̄

∂v̄

∂y

)
dV +

2

Re

∫
Ω

∂

∂z

(
w̃T̃

dµ̄

dT̄

∂w̄

∂z

)
dV (3.49kk,ll)

+
1

Re

∫
Ω

∂

∂x

(
ũT̃

dλ̄

dT̄

∂v̄

∂y

)
dV +

1

Re

∫
Ω

∂

∂y

(
ṽT̃

dλ̄

dT̄

∂v̄

∂y

)
dV (3.49mm,nn)

+
1

Re

∫
Ω

∂

∂z

(
w̃T̃

dλ̄

dT̄

∂v̄

∂y

)
dV +

1

Re

∫
Ω

∂

∂x

(
ũT̃

dλ̄

dT̄

∂w̄

∂z

)
dV (3.49oo,pp)

+
1

Re

∫
Ω

∂

∂y

(
ṽT̃

dλ̄

dT̄

∂w̄

∂z

)
dV +

1

Re

∫
Ω

∂

∂z

(
w̃T̃

dλ̄

dT̄

∂w̄

∂z

)
dV (3.49qq,rr)

−1

2

∫
Ω

∂

∂x

[
ūp̄
ρ̃2

ρ̄2
+

ūp̄

γ − 1

T̃ 2

T̄ 2
+ ūρ̄

(
ũ2 + ṽ2 + w̃2

)]
dV (3.49ss)

−1

2

∫
Ω

[
v̄
p̄

ρ̄2

∂ρ̃2

∂y
+

v̄p̄

(γ − 1)T̄ 2

∂T̃ 2

∂y
+ v̄ρ̄

∂

∂y

(
ũ2 + ṽ2 + w̃2

)]
dV, (3.49tt)
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−1

2

∫
Ω

[
w̄
p̄

ρ̄2

∂ρ̃2

∂z
+

w̄p̄

(γ − 1)T̄ 2

∂T̃ 2

∂z
+ w̄ρ̄

∂

∂z

(
ũ2 + ṽ2 + w̃2

)]
dV, (3.49uu)

where Ẽ is the total disturbance energy, defined as

Ẽ =
1

2

∫
Ω

[
ρ̄
(
ũ2 + ṽ2 + w̃2

)
+

T̄ ρ̃2

γM2ρ̄
+

ρ̄T̃ 2

γ(γ − 1)M2T̄

]
dV. (3.50)

The previous expression for the total perturbation energy (3.50) is directly ob-
tained by collecting all the time derivative terms appearing when building (3.49).
According to [44], the first term inside the integral of equation (3.50) represents
the kinetic energy in the disturbance per unit volume, whereas the second and third
terms together can be interpreted as the generalized potential disturbance energy
per unit volume.

The components of the outward unit vector normal to Γ are denoted by nx,
ny and nz . The quantity s̃ is the specific disturbance entropy, which can be ex-
pressed as a function of the density and temperature of the perturbation through
the following relation:

s̃ =
1

γM2

[
1

γ − 1

(
T̃

T̄

)
− ρ̃

ρ̄

]
. (3.51)

Equation (3.51) can be derived from the thermodynamic relationship that quan-
tifies the non-dimensional change in entropy in a calorically perfect gas (see for
instance [51]), i.e.,

s− sref =
1

γM2

[
1

γ − 1
ln

(
T

Tref

)
+ ln

(
ρref
ρ

)]
, (3.52)

together with the assumption of small perturbations, requiring a Taylor expansion
of ln(1 + T̃ /T̄ ) and ln(1 + ρ̃/ρ̄) around 0. Refer to appendix D.1 for the complete
derivation of equation (3.51).

The disturbance viscous stresses are given by

τ̃xx =
1

Re

[(
2µ̄+ λ̄

) ∂ũ
∂x

+ λ̄

(
∂ṽ

∂y
+
∂w̃

∂z

)]
, (3.53a)

τ̃yy =
1

Re

[(
2µ̄+ λ̄

) ∂ṽ
∂y

+ λ̄

(
∂ũ

∂x
+
∂w̃

∂z

)]
, (3.53b)

τ̃zz =
1

Re

[(
2µ̄+ λ̄

) ∂w̃
∂z

+ λ̄

(
∂ũ

∂x
+
∂ṽ

∂y

)]
, (3.53c)

τ̃xy =
µ̄

Re

(
∂ũ

∂y
+
∂ṽ

∂x

)
, (3.53d)
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τ̃xz =
µ̄

Re

(
∂ũ

∂z
+
∂w̃

∂x

)
, (3.53e)

τ̃yz =
µ̄

Re

(
∂ṽ

∂z
+
∂w̃

∂y

)
, (3.53f)

and the components of the perturbation conductive heat flux vector by

q̃x = − k̄

(γ − 1)RePrM2

∂T̃

∂x
, (3.54a)

q̃y = − k̄

(γ − 1)RePrM2

∂T̃

∂y
, (3.54b)

q̃z = − k̄

(γ − 1)RePrM2

∂T̃

∂z
. (3.54c)

The quantity Q̃ denotes the specific disturbance heat source, expressed as

Q̃ =
1

Re

(
2µ̄− dµ̄

dT̄
T̄

)[
∂ū

∂y

(
∂ũ

∂y
+
∂ṽ

∂x

)
+
∂ū

∂z

(
∂ũ

∂z
+
∂w̃

∂x

)
+2

∂v̄

∂y

∂ṽ

∂y
+

(
∂v̄

∂z
+
∂w̄

∂y

)(
∂ṽ

∂z
+
∂w̃

∂y

)
+ 2

∂w̄

∂z

∂w̃

∂z

]
+

1

Re

(
2λ̄− dλ̄

dT̄
T̄

)(
∂v̄

∂y
+
∂w̄

∂z

)(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
+

1

(γ − 1)RePrM2

k̄

T̄

(
∂T̄

∂y

∂T̃

∂y
+
∂T̄

∂z

∂T̃

∂z

)

+
1

Re
T̃
dµ̄

dT̄

[(
∂ū

∂y

)2

+

(
∂ū

∂z

)2

+ 2

(
∂v̄

∂y

)2

+

(
∂v̄

∂z

)2

+

(
∂w̄

∂y

)2

+2

(
∂w̄

∂z

)2

+ 2
∂v̄

∂z

∂w̄

∂y

]
+

1

Re
T̃
dλ̄

dT̄

[(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2

+ 2
∂v̄

∂y

∂w̄

∂z

]

+
1

(γ − 1)RePrM2

[
∂

∂y

(
T̃
dk̄

dT̄

∂T̄

∂y

)
+

∂

∂z

(
T̃
dk̄

dT̄

∂T̄

∂z

)]
. (3.55)

A considerable amount of intermediate steps are necessary to cast equation
(3.49) into it’s final form. Besides introducing the disturbance entropy (3.51),
integration by parts in space is applied to the terms that contain second derivatives
of the perturbation variables. This procedure introduces the surface terms (3.49z)
and (3.49aa,bb). In addition, unlike [44] and [47], a zero wall-normal pressure
gradient is not assumed, which leads to the presence of the first term in (3.49p,q).
The different steps followed in the derivation of equation (3.49) are described in
appendix D.
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3.10.1.2 Chu’s total disturbance energy definition in terms of p̃ and s̃

As noted by Chu [44], the generalized disturbance potential energy can also be
expressed as a function of the pressure and entropy fluctuations. For this purpose,
the disturbance entropy definition given by equation (3.51) can be expressed in
terms of T̃ and p̃ and in terms of ρ̃ and p̃, yielding the following relationships:

T̃

T̄
=
γ − 1

γ

(
p̃

p̄
+ γM2s̃

)
, (3.56a)

ρ̃

ρ̄
=

1

γ

p̃

p̄
− (γ − 1)M2s̃. (3.56b)

These relations can then be employed to rewrite the generalized potential energy
per unit volume as

1

2

T̄ ρ̃2

γM2ρ̄
+

1

2

ρ̄T̃ 2

γ(γ − 1)M2T̄
=

1

2

ρ̄T̄

M2

(
p̃

γp̄

)2

+
1

2

γ − 1

γ
p̄

(
s̃

R

)2

, (3.57)

where R is given in non-dimensional form by equation (2.20). Therefore, the
disturbance generalized potential energy consists of two contributions, namely,
that resulting from compression work (pressure fluctuations), and that associated
with heat exchange (entropy fluctuations). Hence, an alternative way to express
the total disturbance energy (3.50) is:

Ẽ =
1

2

∫
Ω

[
ρ̄
(
ũ2 + ṽ2 + w̃2

)
+
ρ̄T̄

M2

(
p̃

γp̄

)2

+
γ − 1

γ
p̄

(
s̃

R

)2
]
dV. (3.58)

As it can be deduced from equation (3.58), it is important to stress that entropy
fluctuations lead to a change in the generalized potential energy of the disturbance
rather than to a change in the internal disturbance energy only.

3.10.2 Decomposition of the temporal growth rate for two-di-
mensional local linear stability theory

The substitution of the perturbation ansatz (3.30) into the disturbance energy equa-
tion (3.49) allows to obtain a decomposition of the temporal growth rate [47] into
the different terms that contribute to an increase or decrease in the amplitude of a
perturbation, which are directly linked to the production and the dissipation of dis-
turbance energy. To derive this decomposition, a temporal stability framework is
employed, such that the disturbances are periodic in the streamwise direction (real
streamwise wavenumber α = αr) but allowed to grow or decay in time (complex
angular frequency ω = ωr + iωi).
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It is worth noting that all the integrands in equation (3.49) involve products of
two disturbance quantities. The product of two generic perturbation quantities f̃
and g̃ described by the 2D-LST ansatz (3.30) can be expressed as

f̃ g̃ = 4<
{
f̂ei(αrx−ωt)

}
<
{
ĝei(αrx−ωt)

}
= 4<

{
|f̂ |eiψf̂ eωitei(αrx−ωrt)

}
<
{
|ĝ|eiψĝeωitei(αrx−ωrt)

}
= 4e2ωit|f̂ ||ĝ| cos(αrx− ωrt+ ψf̂ ) cos (αrx− ωrt+ ψĝ)

= 2e2ωit|f̂ ||ĝ|
[
cos(ψf̂ − ψĝ) + cos(2αrx− 2ωrt+ ψf̂ + ψĝ)

]
, (3.59)

where ψf̂ and ψĝ are respectively the arguments of the complex amplitude func-

tions f̂ and ĝ. Following Weder et al. [47], the domain size in the streamwise
direction is chosen to be equal to a single wavelength, that is 2π/αr, which allows
simplifying the streamwise integration of disturbance products (see also [46]) as
follows

∫ 2π/αr

0

f̃ g̃ dx

= 2e2ωit|f̂ ||ĝ|
∫ 2π/αr

0

[
cos(ψf̂ − ψĝ) + cos(2αrx− 2ωrt+ ψf̂ + ψĝ)

]
dx

= 2e2ωit|f̂ ||ĝ|
[
cos(ψf̂ − ψĝ)x+

1

2αr
sin(2αrx− 2ωrt+ ψf̂ + ψĝ)

]2π/αr

0

=
4π

αr
e2ωit|f̂ ||ĝ| cos(ψf̂ − ψĝ) =

4π

αr
exp(2ωit)〈f̂ , ĝ〉, (3.60)

where

〈f̂ , ĝ〉 =
f̂∗ĝ + f̂ ĝ∗

2
= f̂rĝr + f̂iĝi, (3.61)

with f̂r and f̂i being the respective real and imaginary parts of f̂ , and similarly
for ĝ. In addition, due to streamwise periodicity, all the terms with volume inte-
grals of the form

∫
Ω
∂(·)/∂x dV or with surface integrals of the form

∫
Γ
(·)nx dS

become zero. Using (3.60), the disturbance energy can be expressed in terms of
the amplitude function of the primitive variables as

Ẽ =
4π

αr
exp(2ωit)

1

2

∫ z+

z−

∫ y+

y−

[
ρ̄ (〈û, û〉+ 〈v̂, v̂〉+ 〈ŵ, ŵ〉) +

T̄

γM2ρ̄
〈ρ̂, ρ̂〉
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+
ρ̄

γ(γ − 1)M2T̄
〈T̂ , T̂ 〉

]
dy dz =

4π

αr
exp(2ωit)Ê, (3.62)

where Ê denotes the perturbation energy amplitude function. Making use of rela-
tion (3.62), the left-hand side of equation (3.49) becomes

dẼ

dt
=

4π

αr
exp(2ωit)2ωiÊ. (3.63)

Employing (3.60) in all the remaining terms of the disturbance energy equation
(3.49) and noting that the factor 4π/αr exp(2ωit) is common to all terms and
cancels out, the following decomposition of the temporal growth rate is obtained

ωi =
1

2Ê

(
P̂ + D̂ + F̂

)
, (3.64)

where P̂ contains the growth-rate contributions of the energy production terms,
which can be either positive or negative depending on the particular conditions,
D̂ encloses the contributions of the energy dissipation terms, which are always
negative, and F̂ comprises the contributions due to the energy fluxes across the
domain boundary Γ. Here, the following classification of terms is adopted

P̂ = P̂RS + P̂s + P̂Q + P̂mom + P̂∇p + P̂dil + P̂s,T + P̂con, (3.65a)

D̂ = D̂µ + D̂k, (3.65b)

F̂ = F̂p + F̂µ + F̂k + F̂dµ/dT , (3.65c)

with

P̂RS = −
∫ z+

z−

∫ y+

y−
ρ̄〈û, v̂〉∂ū

∂y
dy dz −

∫ z+

z−

∫ y+

y−
ρ̄〈û, ŵ〉∂ū

∂z
dy dz

−
∫ z+

z−

∫ y+

y−
ρ̄〈v̂, v̂〉∂v̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−
ρ̄〈v̂, ŵ〉∂v̄

∂z
dy dz

−
∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, v̂〉∂w̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, ŵ〉∂w̄

∂z
dy dz,

(3.66a)

P̂s = −
∫ z+

z−

∫ y+

y−
ρ̄〈v̂, ŝ〉∂T̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, ŝ〉∂T̄

∂z
dy dz, (3.66b)

P̂Q =

∫ z+

z−

∫ y+

y−

〈Q̂, T̂ 〉
T̄

dy dz, (3.66c)
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P̂mom = −
∫ z+

z−

∫ y+

y−
〈ρ̂, û〉v̄ ∂ū

∂y
dy dz −

∫ z+

z−

∫ y+

y−
〈ρ̂, û〉w̄ ∂ū

∂z
dy dz

−
∫ z+

z−

∫ y+

y−
〈ρ̂, v̂〉v̄ ∂v̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−
〈ρ̂, v̂〉w̄ ∂v̄

∂z
dy dz

−
∫ z+

z−

∫ y+

y−
〈ρ̂, ŵ〉v̄ ∂w̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−
〈ρ̂, ŵ〉w̄ ∂w̄

∂z
dy dz,

(3.66d)

P̂∇p = −
∫ z+

z−

∫ y+

y−

〈ρ̂, v̂〉
ρ̄

∂p̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−

〈ρ̂, ŵ〉
ρ̄

∂p̄

∂z
dy dz, (3.66e)

P̂dil = −
∫ z+

z−

∫ y+

y−

〈p̂, T̂ 〉
T̄

∂v̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−

〈p̂, T̂ 〉
T̄

∂w̄

∂z
dy dz

−
∫ z+

z−

∫ y+

y−

〈ρ̂, ρ̂〉
ρ̄2

p̄
∂v̄

∂y
dy dz −

∫ z+

z−

∫ y+

y−

〈ρ̂, ρ̂〉
ρ̄2

p̄
∂w̄

∂z
dy dz,

(3.66f)

P̂s,T = − 1

γ (γ − 1)M2

∫ z+

z−

∫ y+

y−

〈ρ̂, T̂ 〉
T̄

v̄
∂T̄

∂y
dy dz

− 1

γ (γ − 1)M2

∫ z+

z−

∫ y+

y−

〈ρ̂, T̂ 〉
T̄

w̄
∂T̄

∂z
dy dz,

(3.66g)

P̂con = −
∫ z+

z−

∫ y+

y−

[
v̄p̄

ρ̄2
〈ρ̂, ∂ρ̂/∂y〉+

v̄p̄

(γ − 1)T̄ 2
〈T̂ , ∂T̂ /∂y〉

+v̄ρ̄ (〈û, ∂û/∂y〉+ 〈v̂, ∂v̂/∂y〉+ 〈ŵ, ∂ŵ/∂y〉)] dy dz

−
∫ z+

z−

∫ y+

y−

[
w̄p̄

ρ̄2
〈ρ̂, ∂ρ̂/∂z〉+

w̄p̄

(γ − 1)T̄ 2
〈T̂ , ∂T̂ /∂z〉

+w̄ρ̄ (〈û, ∂û/∂z〉+ 〈v̂, ∂v̂/∂z〉+ 〈ŵ, ∂ŵ/∂z〉)] dy dz,

(3.66h)

D̂µ = −
∫ z+

z−

∫ y+

y−
(〈τ̂xx, iαû〉+ 〈τ̂yy, ∂v̂/∂y〉+ 〈τ̂zz, ∂ŵ/∂z〉

+〈τ̂xy, ∂û/∂y〉+ 〈τ̂xy, iαv̂〉+ 〈τ̂xz, ∂û/∂z〉+ 〈τ̂xz, iαŵ〉
+〈τ̂yz, ∂v̂/∂z〉+ 〈τ̂yz, ∂ŵ/∂y〉) dy dz,

(3.66i)

D̂k =

∫ z+

z−

∫ y+

y−

〈q̂x, iαT̂ 〉+ 〈q̂y, ∂T̂ /∂y〉+ 〈q̂z, ∂T̂ /∂z〉
T̄

dy dz, (3.66j)

F̂p = −
∫ z+

z−
〈p̂, v̂〉|y

+

y− dz −
∫ y+

y−
〈p̂, ŵ〉|z

+

z− dy, (3.66k)

F̂µ =

∫ z+

z−
〈τ̂yy, v̂〉|y

+

y− dz +

∫ y+

y−
〈τ̂zz, ŵ〉|z

+

z− dy +

∫ z+

z−
〈τ̂xy, û〉|y

+

y− dz

+

∫ y+

y−
〈τ̂xz, û〉|z

+

z− dy +

∫ z+

z−
〈τ̂yz, ŵ〉|y

+

y− dz +

∫ y+

y−
〈τ̂yz, v̂〉|z

+

z− dy,

(3.66l)
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F̂k = −
∫ z+

z−

〈q̂y, T̂ 〉
T̄

∣∣∣∣∣
y+

y−

dz −
∫ y+

y−

〈q̂z, T̂ 〉
T̄

∣∣∣∣∣
z+

z−

dy, (3.66m)

F̂dµ/dT =
1

Re

∫ z+

z−
〈û, T̂ 〉 dµ̄

dT̄

∂ū

∂y

∣∣∣∣y+
y−
dz +

1

Re

∫ y+

y−
〈û, T̂ 〉 dµ̄

dT̄

∂ū

∂z

∣∣∣∣z+
z−
dy

+
1

Re

∫ y+

y−
〈v̂, T̂ 〉 dµ̄

dT̄

∂v̄

∂z

∣∣∣∣z+
z−
dy +

1

Re

∫ z+

z−
〈ŵ, T̂ 〉 dµ̄

dT̄

∂v̄

∂z

∣∣∣∣y+
y−
dz

+
1

Re

∫ y+

y−
〈v̂, T̂ 〉 dµ̄

dT̄

∂w̄

∂y

∣∣∣∣z+
z−
dy +

1

Re

∫ z+

z−
〈ŵ, T̂ 〉 dµ̄

dT̄

∂w̄

∂y

∣∣∣∣y+
y−
dz

+
2

Re

∫ z+

z−
〈v̂, T̂ 〉 dµ̄

dT̄

∂v̄

∂y

∣∣∣∣y+
y−
dz +

2

Re

∫ y+

y−
〈ŵ, T̂ 〉 dµ̄

dT̄

∂w̄

∂z

∣∣∣∣z+
z−
dy

+
1

Re

∫ z+

z−
〈v̂, T̂ 〉 dλ̄

dT̄

∂v̄

∂y

∣∣∣∣y
+

y−
dz +

1

Re

∫ y+

y−
〈ŵ, T̂ 〉 dλ̄

dT̄

∂v̄

∂y

∣∣∣∣z
+

z−
dy

+
1

Re

∫ z+

z−
〈v̂, T̂ 〉 dλ̄

dT̄

∂w̄

∂z

∣∣∣∣y
+

y−
dz +

1

Re

∫ y+

y−
〈ŵ, T̂ 〉 dλ̄

dT̄

∂w̄

∂z

∣∣∣∣z
+

z−
dy.

(3.66n)

The production term P̂RS represents the work done by the disturbance Reynolds
stresses against the velocity shear layers present in the base flow. Term P̂s de-
scribes the energy produced due to the transport of entropy spottiness across the
base-flow temperature gradients. The next term, P̂Q, refers to the production of
disturbance energy due to the heat source Q̂, which is generated by transport phe-
nomena, including the variation of the transport properties with temperature. The
contribution denoted by P̂mom encloses the energy produced as a result of the
convection of disturbance momentum across the base flow velocity shear layers.
The presence of a non-negligible pressure gradient in the base flow brings an addi-
tional energy production term, labeled as P̂∇p, which can be interpreted as a form
of pressure work. Another source of energy production arises from the interaction
between pressure and the divergence of the velocity field, which adopts the shape
of a pressure dilatation term, P̂dil. Term P̂s,T results from the material derivative
of the internal energy fluctuation. The last contribution to the disturbance energy
production is comprised inside the term P̂con, which represents a part of the con-
vective derivative of the total disturbance energy.

The dissipation of perturbation energy due to friction and thermal conduction
is contained in the dissipation terms D̂µ and D̂k, respectively. Regarding the dis-
turbance energy flux, term F̂p describes the rate of work done on the domain due
to the disturbance pressure force. The terms F̂µ and F̂k respectively embody the
net flux of mechanical and thermal energy convected across the domain boundary
owing to friction and thermal conduction. Finally, the disturbance energy flux con-
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tribution given by F̂dµ/dT appears as a result of the dependence of viscosity with
temperature.

The term P̂Q is a clear example of how the transport processes of viscous
friction and thermal conduction can also have a destabilizing influence on the
perturbations. Although this is a counter-intuitive result, as friction and thermal
conduction are commonly associated with energy dissipation, it complements the
well-known destabilizing role of the disturbance Reynolds stresses (term P̂RS),
which explained the existence of viscous instabilities (TS waves) in low-speed
flows [52, 53].

3.11 Convective and absolute instabilities

In general, instability waves can grow or decay in both space and in time. De-
pending on its behavior, each unstable wave can be classified as a convective or an
absolute perturbation. The difference between the two can be illustrated by con-
sidering the impulse response of a given base flow field [8]. The impulse response
is the evolution of the wavepacket that results from an impulse that excites every
wave simultaneously at x = 0 and t = 0. For a given flow field, only those waves
that satisfy the dispersion relation dictated by the governing equations are allowed
to propagate. Each wave propagates away from the point of impulse at a different
velocity, defined by its associated group velocity (cg = ∂ω/∂α), and grows or
decays at a different rate, given by its growth rate.

If all the developing waves decay in time, the flow is stable, whereas if any
of the waves grows in time, the flow is unstable. For unstable flows, a further
distinction on the nature of each unstable wave is necessary. For a long time after
the impulse, the only wave that remains at the point of impulse (x = 0) is the
one that features a zero group velocity. If such a wave decays in time, then the
impulse response decays to zero at the point of impulse, and the flow is known
as a convectively unstable flow. All the unstable waves that propagate away from
the impulse location are known as convective instabilities. On the other hand, if
the wave with zero group velocity grows in time, then the impulse response grows
to infinity. In this case, the flow is called absolutely unstable, and the wave with
cg = 0 is known as an absolute instability.

In practice, to determine whether a given flow field is absolutely unstable or
not, a spatio-temporal analysis is employed, in which both spatial and temporal
growth is allowed. Within the framework of local linear stability theory, this is
achieved by letting both ω and α (or β) be complex quantities. The solution of the
eigenvalue problem for a set of different complex wavenumbers and frequencies
allows to identify conditions for which zero group velocity waves exist, known
as saddle points in the complex plane. The Briggs-Bers criterion [25] is then em-
ployed to analyze the behavior of the different saddle points and determine whether
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they correspond to an absolute instability or not.
In this work, only convective instabilities are investigated.

3.12 Non-modal growth

Theoretical research in laminar-turbulent transition has traditionally focused on the
study of small-amplitude disturbances undergoing exponential growth based on
the mechanisms predicted by linear modal stability theory. However, this scenario
of modal growth does not always provide a satisfactory explanation for the oc-
currence of transition encountered in experimental and in-flight observations. As
introduced in § 1.2, different paths to transition exist in which eigenmode growth
does not play a dominant role. Probably, the most notable example of this situa-
tion is the so-called blunt-body paradox, which makes reference to the occurrence
of transition observed in blunt bodies at conditions at which the boundary layer
is stable to modal perturbations, usually corresponding to high freestream Mach
numbers. In view of the need of an alternative explanation, non-modal growth,
also known as transient growth, has emerged as a possible mechanism leading to a
different path to transition [54, 55].

The first application of the theoretical transient-growth framework to com-
pressible flat-plate boundary layers is due to Hanifi et al. [49], who employed a
singular value decomposition of the linearized evolution operator based on tem-
poral local linear stability theory. They showed that a significant transient growth
can take place over a wide range of parameter values for compressible flow, and
that the optimal initial perturbations for the compressible case are found to be
streamwise vortices generated by the lift-up effect. Tumin & Reshotko [56] later
extended the same analysis to spatially growing disturbances. Building upon this
work, Reshotko & Tumin [55] developed a correlation for roughness-induced tran-
sition based on spatial transient growth results which is able to reproduce transition
trends observed experimentally, giving weight to the idea that transient growth
could be a plausible mechanism for early transition due to distributed surface
roughness.

A different theoretical approach was independently developed by Andersson et
al. [57] and Luchini [58] to quantify the spatial transient energy growth in bound-
ary layers including non-parallel effects. This technique is based on the parab-
olized stability equations and consists in an optimization marching procedure in
which the disturbance energy over a given spatial extent is maximized. Recently,
by employing this methodology, Paredes and co-authors [59] have extended the
current body of results for optimal non-modal disturbance growth in boundary-
layer flows to the hypersonic Mach number regime. Additionally, Paredes et
al. [60] have revisited the blunt-body paradox using an improved transient-growth
framework, leading to some modifications of the Reshotko-Tumin correlation but
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at the same time highlighting the need to further investigate the optimal-growth
criterion underlying this correlation. Similarly, Hein et al. [61] have investigated
the disturbance growth in the wake of a roughness patch mounted on the forebody
of a reentry capsule at Mach 5.9, for which the onset of transition is observed ex-
perimentally. Nevertheless, no evidence of important modal or non-modal growth
could be found in that study. Despite these efforts, transient growth is not yet con-
clusively linked to the measured onset of transition over blunt-body configurations.

3.12.1 Formulation according to the 2D-LST initial value prob-
lem

The solution of the eigenvalue problem presented in previous sections describes
the linear disturbance evolution in the limit of t → ∞. To compute the pertur-
bation dynamics at t → 0, the initial value problem represented by the linearized
perturbation equations must be considered (see § 3.1). For this purpose, only a
spatial Fourier transformation of the perturbation quantities is applied for simpli-
fication, that is

q̃(x, y, z, t) = q̌(y, z, t) exp(iαx) + c.c. (3.67)

for the case of two inhomogeneous spatial directions. The initial value problem
(IVP) governing the temporal linear evolution of the disturbances can then be ex-
pressed in matrix form as

B
∂q̌

∂t
= Aq̌, (3.68)

where the matrix operators A and B are associated with the spatial discretization
of the system of governing equations. In general, the matrix B is non-singular,
which allows rewriting equation (3.68) as

∂q̌

∂t
= Cq̌, (3.69)

with C = B−1A. The solution of system (3.69) can be written explicitly as
follows:

q̌(t) = exp (Ct) q̌(0), (3.70)

where q̌(0) = q̌(t = 0) is an initial condition and the matrix exponential exp(Ct)

is usually known as the propagator (or evolution) operator. If this operator features
some degree of non-normality, as it is usually the case in flow fields of interest,
transient algebraic disturbance growth can be experienced even if the system has a
stable asymptotic time response. It can be shown that the optimal transient growth
of disturbance energy (G(t)), optimized for all possible initial conditions, is given
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by the square of the norm of the matrix exponential (see for instance Schmid &
Henningson [2, 62]), that is

G(t) = || exp(Ct)||2E = max
q̌(0)

||q̌(t)||2E
||q̌(0)||2E

, (3.71)

where the subindex E denotes an energy norm. It is important to note that the
definition of an inner product and its associated norm is implicit in equation (3.71).

Following the results obtained from a solution of the eigenvalue problem asso-
ciated with linear stability theory, the quantityG(t) can be computed by evaluating
the orthogonality of the different eigenfunctions that compose the eigenfunction
expansion basis as well as the size of the associated perturbations. The first can
be achieved by the definition of an inner product and the second by an associated
norm.

The first application of this framework to compressible boundary layers is due
to Hanifi et al. [49], who re-derived the disturbance energy definition introduced
by Chu [44] (already presented before as equation (3.50)) to obtain an appropriate
energy norm. In this work, the same norm as [49] is adopted, given by

||q̌||2E = (q̌, q̌)E = 2Ě, (3.72)

with3

Ě =
1

2

∫ z+

z−

∫ y+

y−

[
ρ̄ (ǔ∗ǔ+ v̌∗v̌ + w̌∗w̌) +

T̄

γM2ρ̄
ρ̌∗ρ̌

+
ρ̄

γ (γ − 1)M2T̄
Ť ∗Ť

]
dy dz, (3.73)

where, as in § 3.10.2, the integral along a single streamwise wavelength is consid-
ered without loss of generality. The associated inner product for a given pair of
amplitude functions is therefore expressed as

(q̌f , q̌g)E =

∫ z+

z−

∫ y+

y−
q̌Hf M q̌g dy dz, (3.74)

where the superscript H refers to the Hermitian transpose (conjugate transpose)
and the matrix M is defined as

M = diag
[
ρ̄, ρ̄, ρ̄,

T̄

γM2ρ̄
,

ρ̄

γ (γ − 1)M2T̄

]
. (3.75)

After a choice on the inner product and the associated norm has been made, the
eigenfunction expansion of the time-dependent amplitude function is considered.

3Note that, according to (3.61), 〈ǔ, ǔ〉 = ǔ∗ǔ (and similarly for the other perturbation quantities).
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Denoting the first K eigenvalues and eigenvectors obtained from the solution of
the temporal eigenvalue problem by ωk and q̂k, respectively, the vector q̌ can be
expanded as

q̌(y, z, t) =

K∑
k=1

ak(t)q̂k(y, z) (3.76)

with

ak(t) = ak(0) exp(−iωkt), (3.77)

or in matrix form as

q̌(y, z, t) = Q a(t), (3.78)

with

a(t) = Λ a(0) and Λ = diag [exp(−iω1t), ..., exp(−iωKt)] , (3.79)

where Q is a matrix whose columns contain the eigenvectors q̂k and the vec-
tor a(0) = [a1(0), ..., aK(0)]

T contains the initial expansion coefficients that de-
termine the individual contribution of each eigenmode to the transient response.
By employing the inner product defined by equation (3.74) together with the ex-
pansion in equation (3.78), the following relationship can be found between the
energy-norm inner product and the L2-norm inner product:

(q̌f , q̌g)E = (Q af ,Q ag)E =

∫ z+

z−

∫ y+

y−
aHf QHM Q ag dy dz

= aHf D ag = aHf FHF ag = (F af ,F ag)2 , (3.80)

where the subscript 2 denotes the L2-norm

||q̌||22 = (q̌, q̌)2 = q̌H q̌ (3.81)

and the matrix F is the Cholesky decomposition of the Hermitian and positive-
definite matrix D, that is, D = FHF, which is defined element-wise as

Dfg =

∫ z+

z−

∫ y+

y−
q̂Hf M q̂g dy dz. (3.82)

The relation given by equation (3.80) allows to rewrite the disturbance energy
norm in terms of the L2-norm as follows:



3-40 CHAPTER 3

||q̌(t)||2E = ||F a(t)||22. (3.83)

Inserting equation (3.83) into the definition of the maximum transient energy growth
(equation (3.71)) yields

G(t) = max
q̌(0)

||q̌(t)||2E
||q̌(0)||2E

= max
q̌(0)

||F a(t)||22
||F a(0)||22

= max
q̌(0)

||FΛF−1F a(0)||22
||F a(0)||22

= ||FΛF−1||22. (3.84)

The L2-norm of matrix S = FΛF−1 can be evaluated by means of singular value
decomposition (SVD). The value of G(t) is then given by the square of the largest
singular value of matrix S. The optimal initial conditions giving rise to the maxi-
mum transient growth can be computed via the right singular eigenvector r asso-
ciated to the largest singular value of matrix S, that is

a(0) = F−1r. (3.85)

In practice, the application of the methodology just introduced requires knowl-
edge of a large number of eigenmodes in order to properly describe the eigen-
function expansion basis. Equivalently, this implies that enough modes from the
stability spectrum must be known prior to the evaluation of G. For local linear
stability theory (LST), the size of the eigenvalue problem allows to compute all
the eigenmodes that belong to the spectrum for a given discretization with a very
affordable computational cost. However, this task becomes very expensive from
the computational point of view for theories dealing with more than one inho-
mogeneous spatial direction, such as 2D-LST. For this reason, only few works
exist in literature that employ the formulation presented above to evaluate tran-
sient growth using 2D-LST. Very recently, Quintanilha et al. [63] have performed
temporal transient-growth computations on the HIFiRE-5 elliptic cone model in
hypersonic flow, using two-dimensional linear stability theory. The results show
that a significant amount of transient growth can take place at short times, after
which modal unstable perturbations take the lead and the growth becomes expo-
nential. This suggests the possibility that this configuration follows a transition
scenario like that of path B in figure 1.5.

With the interest of exploring the potential for non-modal growth in the insta-
bilities induced by an isolated roughness element, in this work a transient-growth
solver has been implemented in VESTA toolkit based on LST and 2D-LST eigen-
modes. However, a successful application of the methodology has only been
achieved for a smooth flat-plate boundary layer. Appendix H shows a verification
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of the solver applied to a supersonic flat-plate boundary layer and details difficul-
ties encountered when applying the methodology to the case of roughness-induced
instabilities, providing recommendations for future work in this regard.

3.13 Pseudospectra

As introduced in the previous section, for many relevant problems such as flat
plate boundary layers, the linear evolution operator for infinitesimal disturbances
is of non-normal type, i.e. its associated eigenfunctions are non-orthogonal. This
implies that the information provided by the eigenvalue spectrum is limited to the
behavior of the disturbances for large times. To resolve the short-time, transient
behavior of the non-normal operator, a generalization of the concept of spectra
is usually employed [62], usually known as pseudospectra, as introduced by Tre-
fethen [64, 65].

A complex number z lies in the ε-pseudospectrum of a matrix A if either of
the two following equivalent conditions is satisfied: z is an eigenvalue of A′ =

A + E for some random perturbation matrix E, with ||E|| ≤ ε, or the norm of the
resolvent at z is larger or equal than 1/ε, that is

||(zI−A)|| ≥ ε−1. (3.86)

The norm of the resolvent is continuously defined in the complex plane with
the exception of the spectrum of A. Its computation can be carried out by means of
singular value decomposition in a similar fashion to the calculation ofG presented
in the previous section, requiring a transformation of the resolvent norm into the
L2-norm.

The evaluation of pseudospectra is interesting in practice because it provides a
measure of the sensitivity of the eigenvalues to a small perturbation of the operator
(see [65, 66]). Large transient growth is often associated with a high sensitivity
of the spectrum and can occur even if the spectrum predicts disturbance decay
in the limit of t → ∞. A quantitative link between transient growth and the ε-
pseudospectrum is given by the Hille-Yosida theorem (see [62, 67] for details).

3.14 Data-driven analysis of flow instabilities

When instantaneous flow-field data are available, generally in the form of a time
series of flow snapshots computed by means of DNS or obtained by means of
experimental visualization/measurement techniques such as time-resolved particle
image velocimetry (PIV), some data-driven techniques may be employed to ex-
tract dynamic information that can be used to obtain a description of the coherent
structures present in the flow field.
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The most widely used technique for extracting coherent features from flow
data is known as proper orthogonal decomposition (POD) [68], which provides a
set of deterministic modes that correspond to the most energetic flow structures of
an ensemble of stochastic flow data. In particular, the frequency domain form of
POD, known as spectral POD (SPOD), has been shown to be able to represent the
evolution of coherent flow structures in both space and time [69]. Recent work by
Lefieux [70] constitutes an example of SPOD applied to the analysis of roughness-
induced instabilities in a high-speed boundary layer, based on data originating
from DNS computations. The most energetic modes identified by means of the
SPOD analysis reveal convective shear-layer instabilities that evolve in the central
wake region as well as in the horseshoe vortex system, closely resembling the
global flow instabilities reported in similar literature cases.

Recently, another technique known as dynamic mode decomposition (DMD)
[71] has also been developed as an alternative to POD. In this case, by means of a
direct analysis of a time series of flow snapshots, the flow dynamics are obtained
as a set of dynamic modes, which describe the evolution of the flow from one time
instant to the next. In the case of a linearly perturbed flow, the modes extracted
by means of DMD are equivalent to those resulting from linear stability analysis.
An example of the DMD technique applied to hypersonic roughness-induced tran-
sition can be found in the work of Subbareddy et al. [72], which reported similar
findings as [70].

Although experimental flow fields have also been employed as base flows for
linear stability analysis, see for instance [73], difficulties arise in defining a good
quality base-flow field in this case that can satisfy the governing equations with
satisfactory accuracy. The main advantage of data-driven techniques is that they
can be directly applied to experimental data sets to obtain useful information on the
instability characteristics of a given flow field, without the need of an underlying
flow model such as the governing flow equations. Additionally, the resulting dy-
namical information obtained can be exploited to reduce the degrees of freedom of
the system under analysis, opening the possibility to develop reduced-order mod-
els from the available data [74]. On the other hand, it is important to mention that
the application of the aforementioned data-driven techniques does not generally
provide access to the complete stability spectrum. As a result, not all the rele-
vant information on the flow instability features might be available if the coherent
structures to be expected are not known beforehand. Therefore, for systems whose
instability characteristics are completely unknown, stability theory can still pro-
vide a deeper level of understanding of the dominant amplification mechanisms in
the flow.
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3.15 Modal instabilities evolving in a smooth flat-
plate boundary layer at high speed

The most studied fundamental configuration since the birth of hydrodynamic sta-
bility theory up to the present day is that of a smooth flat plate boundary layer.
Historically, the first studies in flow stability theory were focused on inviscid in-
stabilities only, as the effect of viscosity was believed to always have a stabilizing
(dissipative) effect. The work of Lord Rayleigh [75] was the first to provide a
criterion for the existence of an inviscid instability in an incompressible boundary
layer, known as the inflection-point criterion. However, this criterion was not able
to explain the transition onset observed experimentally in incompressible boundary
layers, which are stable to inviscid instabilities. It was not until some years later
that the destabilizing role of viscosity began to be understood through the investi-
gations of Taylor [76] and Prandtl [77], giving rise to the development of a viscous
theory of boundary-layer instability. The studies of Tollmien [52] and Schlicht-
ing [53] led to the discovery of a viscous instability responsible for transition in
incompressible smooth flat plate boundary layers, known as Tollmien-Schlichting
waves. The most unstable TS waves for an incompressible boundary-layer are
always two-dimensional waves, i.e. they do not present a spanwise wavenumber
(β = 0). Squire proved the previous statement in the form of a theorem [78].

When compressibility effects become important, the boundary-layer becomes
unstable to inviscid instabilities as well. Therefore, compressible boundary lay-
ers are unstable to both viscous and inviscid instabilities. The dominant waves in
compressible flow are usually no longer two-dimensional but three dimensional
(β > 0), see for instance [4]. The extensive work of Mack [6, 48] investigated the
instability of compressible boundary layers ranging from moderate Mach numbers
to supersonic and hypersonic Mach numbers, showing that while in incompress-
ible theory there is a unique relation between the wavenumber and phase velocity,
in the compressible case there is an infinite sequence of wavenumbers for each
phase velocity whenever the base flow relative to the phase velocity is supersonic
(occurring at M > 2.2 for an adiabatic flat plate). Mack named these additional
solutions higher modes, each one of them in the sequence respectively being re-
ferred to as second (Mack) mode, third (Mack) mode etc. With this nomenclature,
the original mode prior to the appearance of higher modes received the name of
first mode or first Mack mode.

First-mode instabilities have a mixed viscous-inviscid nature. At low Mach
numbers, the instability behaves mostly as a viscous disturbance. However, as the
Mach number increases, its nature gradually changes from a viscous to an inviscid
type. When the boundary-layer edge Mach number becomes approximately 4, the
mode becomes completely inviscid in character.

Second-mode instabilities are very important in high-speed boundary layers
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because they become the most unstable disturbances at hypersonic Mach numbers,
usually for M > 4 [6]. For this reason, they have been extensively studied in the
context of hypersonic boundary-layer transition. Unlike the first Mack mode, sec-
ond and higher Mack modes are most unstable when behaving as two-dimensional
waves, owing to the fact that it is in this configuration that the region of relative su-
personic speed is of maximum extent. The two-dimensional second Mack mode is
the responsible for transition onset in most hypersonic smooth flat plate boundary
layers.

It is important to note that, depending on the particular conditions considered,
the dominant boundary-layer instability for a given wavenumber/frequency at a
given streamwise location can manifest itself either as a first Mack mode, a second
Mack mode, a third Mack mode etc. First- and second-mode instabilities do not
coexist as separate modes in the same spectrum. The same is true for the different
higher modes. As pointed out by Fedorov & Tumin [79], it is important to em-
phasize that the first, second and higher Mack modes are not completely separate
instabilities, rather they are different manifestations of the same disturbance, which
changes its properties by means of synchronization processes (energy exchange)
with different fast acoustic modes (see also Ma & Zhong [80]).

3.15.1 Topology of first- and second-mode instabilities in the
2D-LST spectrum

When performing two-dimensional local linear stability analyses of high-speed
flat-plate boundary layers, the resulting stability spectrum contains multiple modes
associated with the boundary-layer instability. It is important to identify the ar-
rangement of these modes in the spectrum for each particular case. The family
of modes associated to the boundary-layer instability corresponds to the different
spanwise wavenumbers that fit within the domain of analysis along the spanwise
direction. Therefore, a first-mode instability or a higher-mode instability always
manifests itself as a branch of modes in the 2D-LST spectrum. The shape of this
branch is different whether the instability behaves as a first Mack mode or as a sec-
ond or higher Mack mode. Recalling the previous discussion, the most unstable
first-mode disturbance is three-dimensional. This means that there is a spanwise
wavenumber different from zero for which the instability features the maximum
growth rate. In this case, the corresponding branch in the 2D-LST spectrum has
a hook-like shape. On the other hand, the most unstable second (or higher) Mack
mode disturbance is the two-dimensional one. This implies that the shape of the
branch becomes a diagonal line.

The two scenarios are illustrated in figure 3.2, which shows an example 2D-
LST spectrum for a boundary layer at Mach 6 at two different streamwise wave-
lengths (λx). Starting at the mode with β = 0 and moving in the direction of
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Figure 3.2: Portion of the temporal 2D-LST stability spectrum containing the boundary
layer instability for an isothermal flat plate at M = 6 at a streamwise distance of x =
0.1 m from the leading edge (freestream static pressure p∞ = 1963.42 Pa, temperature
T∞ = 60.98 K, wall temperature Tw = 300 K): (a) λx = 0.006 m (first-mode instability);
(b) λx = 0.0027 m (second-mode instability). Arrows denote the direction of increasing
spanwise wavenumber.

Figure 3.3: Normalized contours of the magnitude of the streamwise velocity amplitude
function (û = û(y, z)) for the first three modes belonging to the instability branch presented
in figure 3.2: (a, c, e) first-mode instability; (b, d, f) second-mode instability.

increasing spanwise wavenumber (as indicated by the arrows), the branch in each
solution describes a different shape. In the case of the first-mode instability, the
growth rate of the modes belonging to the branch first increases progressively un-
til reaching the value of β for maximum amplification. From there on, the growth
rate of the modes progressively decreases with increasing β. Overall, a hook shape
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is described when following the branch. In the case of the second-mode instabil-
ity, the growth rate is maximum for the first mode of the branch (β = 0) and it
progressively decreases when moving along the direction of increasing spanwise
wavenumber, describing a diagonal line. The shape of the branch can therefore be
used as a qualitative criterion to determine whether the boundary-layer instability
behaves as a first or a second mode. For the sake of clarity, figure 3.3 depicts the
two-dimensional streamwise velocity amplitude functions of the first three modes
located in the branch for each case. The first mode of the branch is constant along
the spanwise direction (β1 = 0), the second one has a spanwise wavelength equal
to the spanwise domain size, denoted by z∞, hence β2 = 2π/z∞, and the third
one features a spanwise wavelength equal to half of the spanwise domain size, that
is β3 = 4π/z∞.
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Escuela Técnica Superior de Ingenieros Aeronáuticos, 2014.
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4
Numerical methodology

This chapter describes the numerical methodology employed to compute the lam-
inar base-flow solutions that serve as a reference state to the stability analysis as
well as the numerical techniques used for the solution of the linearized governing
stability equations.

4.1 Base-flow computation

The main physical problem under study in this work consists of a three-dimensional
isolated roughness element mounted on top of a flat plate inside a hypersonic
freestream. The required base flow fields for the stability analysis of such con-
figuration are laminar and steady solutions of the three-dimensional compressible
Navier-Stokes equations (see § 2.2).

For the analysis of the smooth flat-plate boundary layer, that is, with no rough-
ness element, a laminar solution of the boundary-layer equations (see § 2.4) is
considered instead. The base-flow solution of the smooth flat-plate boundary layer
serves two main purposes. On the one hand, the boundary-layer profiles can be
used as an inflow to the more complex, three-dimensional Navier-Stokes simula-
tion in cases in which the flat-plate leading edge is assumed to be infinitely sharp,
as described in § 5.1. On the other hand, the stability analysis of the smooth con-
figuration is important to understand the instability characteristics of the boundary
layer prior to introducing the roughness element, and allows to quantify the poten-
tial destabilizing effect associated to the obstacle.
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4.1.1 Solution of the boundary-layer equations

Due to their parabolic nature, the general solution of the boundary-layer equations
can be carried out by means of a marching procedure along the streamwise direc-
tion. However, as presented previously in § 2.4, depending on the thermodynamic
flow assumption considered, the boundary-layer equations for the case of a flat-
plate geometry can have a self-similar solution, which simplifies the equations to
be solved to a system of ordinary differential equations (ODE). This is the case for
the CPG and the TPG assumptions, see § 2.4.1.1.

Standard numerical solutions of the self-similar boundary layer equations usu-
ally employ Runge-Kutta schemes of 4th or 5th-order to integrate the system of
ordinary differential equations, together with a shooting technique that iteratively
converges the solution to make it compatible with the desired boundary condi-
tions (see for instance [1]). Marching solutions of the complete boundary-layer
equations often combine Runge-Kutta discretizations along the wall-normal direc-
tion coupled with first or second-order finite difference discretizations along the
streamwise (marching) direction.

In the context of stability analysis, it is important to employ base-flow fields
with a significant degree of accuracy. For this reason, high-order numerical solu-
tions are desirable. It is important to mention that high-order numerical solutions
of the full Navier-Stokes equations in high-speed flows are a state-of-the-art topic,
mainly due to the challenges posed by flow discontinuities such as shock waves [2].
As a consequence, such solutions are not yet common in practice. However, high-
order numerical solutions of the boundary-layer equations, which exclude discon-
tinuities in the flow, are less challenging and can be routinely obtained. In this
work, the solution of the boundary-layer equations for all flow assumptions con-
sidered is carried out by means of the flow solver DEKAF, presented in the next
section.

4.1.2 The DEKAF flow solver

The DEKAF flow solver [3–5] was developed with the objective of computing nu-
merical solutions of the boundary-layer equations with a high degree of accuracy.
This is specially suited for minimizing the numerical errors introduced in stability
computations, owing to the high sensitivity of the disturbances to the smoothness
and the numerical convergence of the base flow field [6].

DEKAF consists of a boundary-layer solver coupled with inviscid solvers for
simple geometries which incorporates a high-fidelity thermophysical modeling,
allowing the computation of boundary-layer profiles in the presence of a wide
range of high-enthalpy effects. At its core lies a Chebyshev spectral collocation
method (see § 4.2.1.1) employed for discretization along the wall-normal direction,
together with a variable-order forward finite-difference scheme for discretization
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along the marching direction. The solution of the system of governing equations
at each marching station is computed iteratively by means of a Newton-Raphson
method built on the linearized boundary-layer equations.

The inviscid solvers incorporated in DEKAF include the shock-jump relations
for wedge and conical surfaces as well as an inviscid non-equilibrium solver in
one dimension. The coupling between the inviscid- and viscous-flow regions is of
0th-order [7]. For further details on the solver, including several verification cases
in different regimes and thermodynamic flow assumptions, the reader is referred
to references [4, 5].

Results presented in chapter 5 employ boundary-layer profiles for a calorically
perfect gas obtained with DEKAF, and results presented in chapter 6 also use pro-
files for a thermally perfect gas and for a mixture of gases in chemical equilibrium
computed by DEKAF as well. Due to the spectral order of the discretization tech-
nique in use, a small number of grid points (collocation points in this case) is
required to obtain a converged boundary-layer solution, usually on the order of
100 points.

4.1.3 Solution of the Navier-Stokes equations

Obtaining base-flow solutions for the flat-plate configuration with a roughness ele-
ment requires the solution of the full compressible Navier-Stokes equations. Since
a laminar solution is required, the equations are directly solved without any tur-
bulence modeling. In this sense, the base-flow solutions obtained are equivalent
to direct numerical simulations. However, it is important to note that no artificial
disturbances are explicitly introduced in the computational domain other than the
flow distortion induced by the presence of the roughness element.

Although a steady base-flow solution is desired, the optimal numerical solution
strategy consists in evolving the time-dependent equations until convergence to
steady state is achieved, starting from a given initial flow field. This remains a
valid approach as long as there are no unsteady physical phenomena taking place
in the flow field, which is the case for all the base-flow solutions studied in this
work.

To carry out the solution of the Navier-Stokes equations, the commercial soft-
ware suite CFD++ R© (see [8, 9]) is employed, which provides a unified physics
framework which enables the solution of compressible flows at different Mach
numbers and at a wide range of temperatures.

4.1.3.1 The Navier-Stokes solver in CFD++ R©

CFD++ R© provides a solver for the numerical solution of the Navier-Stokes equa-
tions which allows to account for different high-enthalpy phenomena, including
the effects considered in this dissertation: vibrational-energy-mode excitation and
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chemical non-equilibrium. The spatial discretization is based on a second-order
upwind finite volume scheme. The scheme employs a limited total variation di-
minishing (TVD) multi-dimensional linear flux interpolation combined with the
Harten-Lax-van Leer contact (HLLC) approximate Riemann solver [10, 11], which
together contribute to minimize numerical oscillations as well as numerical dissi-
pation in the vicinity of flow discontinuities, thus enabling good shock-capturing
capabilities.

The time integration is performed with a point-implicit scheme (backward Eu-
ler) that incorporates multigrid acceleration and residual smoothing. The implicit
nature of the method allows the use of larger time steps to enhance the convergence
to steady state.

In the case of the TPG and CNE thermodynamic frameworks, the thermal,
transport and chemistry models described in § 2.5.1, § 2.5.2 and § 2.5.3 are em-
ployed by the solver.

4.1.3.2 Grid generation

The grids used for computing the Navier-Stokes base flows are block-structured
and consist of hexahedral cells. Due to the rather simple geometrical configuration
studied in this work, namely, a flat plate with a sharp-edged roughness element on
top (see § 5.1), the generation of the grids is performed by means of OpenFOAM’s
blockMesh [12] utility.

The use of blockMesh enables to script the grid generation process, thus allow-
ing to perform quick changes in the geometry and the blocking structure without
the need of a graphical interface, only requiring a change of the mesh generation
script. Additionally, it allows to control precisely the grid stretching applied along
the different directions. For a given block edge, the grading in the grid spacing is
achieved by means of a constant expansion ratio (rE) between consecutive cells,
that is, rE = δj+1/δj , where δj denotes the cell spacing of the jth cell along the
edge. For a given edge with length lE , the expansion ratio can be obtained by
finding the roots of the following polynomial equation:

δ0

NE−1∑
k=0

rkE = lE , (4.1)

where δ0 is the size of the first cell along the edge and NE is the number of cells
along the edge. The roots can be obtained by computing the eigenvalues of the
companion matrix associated to the polynomial. The value of rE is given by the
only real and positive root bigger than zero. Therefore, given a desired first cell
size and a desired number of cells, the relationship expressed by equation (4.1)
uniquely defines the necessary grading to be imposed on the edge so that a constant
expansion ratio in the cell size is achieved.
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The grading law given by equation (4.1) allows to perform a desired continuous
grid stretching in a single direction along the edge. However, in many cases it is
desirable to have different gradings along the same edge, such as for instance a
clustering of grid points towards both ends of an edge. Here, this is achieved
by splitting the edge into different segments for which a single grading is applied
following the relation introduced above. In this case, the number of cells employed
into each segment is carefully adapted to keep the cell spacing as continuous as
possible between the different grading regions.

By fixing the first cell size along a given edge to be the same as the last cell
size of the adjacent edge, the transitions in cell size between different blocks are
kept continuous. This ensures that the cell spacing function along a given direction
is at least of class C0. This requirement is found to be sufficient for the base-flow
computations performed in this work, as they are based on a second-order dis-
cretization scheme. In the case of direct numerical simulations that resolve the
evolution of disturbances and the breakdown to turbulence, high-order discretiza-
tion schemes are usually employed. In these cases, the cell spacing functions might
be required to be continuous up to the fourth derivative (C4) to achieve the desired
quality in the solution, see for instance [13, 14].

Illustrations of some of the base-flow grids employed in this work can be found
in figures 5.5 and 5.18.

An observation that is worth mentioning regarding the behavior of blockMesh
concerns the case of long trapezoidal blocks. When a given edge grading is im-
posed along the vertical edges of a trapezoidal block elongated along the horizon-
tal direction, it has been found that the imposed grid stretching is not perfectly
respected in the interior vertical grid lines of the block. This can lead to small dis-
continuities in the cell spacing between two adjacent blocks. In order to minimize
this issue, the elongated trapezoidal blocks can be split into smaller blocks such
that the aspect ratio of the blocks becomes close to 1.

4.2 Stability analysis

In the following sections, the numerical methods employed for the discretization
and the solution of the generalized eigenvalue problem that originates from local
linear stability theory with one (LST) and two (2D-LST) inhomogeneous direc-
tions is presented.

4.2.1 Spatial discretization techniques

The governing equations for local linear stability theory are partial-differential
equations which lead to a partial-differential eigenvalue problem. Therefore, spa-
tial discretization techniques are required for the numerical solution of the eigen-
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value problem. Given the strong inhomogeneity of the perturbations evolving in
a boundary layer, high-order numerical methods are generally employed for this
purpose. For one-dimensional local linear stability theory, the Chebyshev colloca-
tion method has been widely applied owing to its spectral accuracy. However, for
the analysis of base flows with two inhomogeneous directions, requiring the use of
2D-LST, the Chebyshev collocation method often results in a very high computa-
tional cost. As a result, high-order finite difference methods are usually considered
instead, which still benefit from high accuracy at a reduced computational cost.

The two spatial discretization techniques employed for the stability analysis
performed in this work are briefly described next.

4.2.1.1 Chebyshev collocation method

The Chebyshev collocation method is a spectral discretization technique that em-
ploys a nodal basis consisting of characteristic Lagrange polynomials, which are
defined in a set of pre-established locations (nodes) known as collocation points.
A complete description of the method including its derivation can be found in the
work of Canuto et al. [15] and Trefethen [16], for instance. Here, the attention
is focused on the definition of the coordinates of the collocation points and the
associated differentiation matrices, which are the elements required in practice for
applying the discretization method in the scope of this work.

The coordinates of the collocation points, also commonly known as Chebyshev-
Gauss-Lobatto (CGL) points (among others), are defined by the extrema of Cheby-
shev polynomials in the interval ξ ∈ [−1, 1] (usually referred to as the transformed
or computational space), and are given by

ξj = cos
(j − 1)π

Nξ − 1
, j = 1, ..., Nξ, (4.2)

where Nξ denotes the number of collocation points. This particular distribution of
grid points is found to decrease the error introduced by the discretization thanks
to the clustering of points towards the boundaries of the domain, thus helping to
reduce the problem known as Runge phenomenon [16]. It is important to men-
tion that the coordinates of the resulting points are ordered from right to left (or
in decreasing order), that is, from ξ1 = 1 to ξNξ = −1. Given this set of collo-
cation points, a generic function f can be discretized by means of the Chebyshev
collocation method as follows:

f(ξ) =

Nξ∑
j=1

fjψj(ξ), (4.3)

where fj is the value of the function at the jth collocation point and ψj is the char-
acteristic Lagrange polynomial associated with the jth collocation point, which
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can be expressed as

ψj(ξ) =

Nξ∏
k=1
k 6=j

ξ − ξk
ξj − ξk

, j = 1, ..., Nξ. (4.4)

Equation (4.4) can also be expressed in a more compact way in terms of the Cheby-
shev polynomials, see for example [15]. It is important to mention that the La-
grange polynomials are defined in the entire ξ domain, i.e., they are not piecewise
polynomials. This is what gives a spectral character to this method, in the sense
that all polynomials intervene in the evaluation of the function at a given point.

Once the discrete representation of f has been defined (equation (4.3)), its
derivative can be discretized through the derivative of the basis functions (the La-
grange polynomials in this case), that is

df(ξ)

dξ
=

Nξ∑
j=1

fj
dψj(ξ)

dξ
, (4.5)

where dψj(ξ)/ dξ is known analytically. At this point, it is useful to introduce a
matrix form to express the discretization of the derivative evaluated at the colloca-
tion points, given by

d = Dξf , (4.6)

where d = [df(ξ1)/ dξ, ..., df(ξNξ)/ dξ]
T, f = [f1, ..., fNξ ]

T and Dξ is the so-
called pseudo-spectral differentiation matrix, or simply differentiation matrix, who-
se entries can be written as

Dξ,jk =



2 (Nξ − 1)
2

+ 1

6
if j = k = 1

−2 (Nξ − 1)
2

+ 1

6
if j = k = Nξ

− ξj

2
(
1− ξ2

j

) if j = k = 2, ..., Nξ − 1

cj
ck

(−1)
j+k

(ξj − ξk)
if j 6= k, j, k = 2, ..., Nξ − 1

, (4.7)

with

cj =

{
2 if j = 1, Nξ

1 if j = 2, ..., Nξ − 1
. (4.8)



4-8 CHAPTER 4

Each row of the differentiation matrix can be interpreted as a vector that con-
tains the coefficients of a stencil that is used to evaluate the derivative of the func-
tion at that collocation point. In this method, the resulting stencils employ infor-
mation from all the collocation points, meaning that each row of the differentiation
matrix contains no zeros. As a result, Dξ is a dense matrix. This has direct impli-
cations in the computational cost of the discretization method, as it leads to dense
matrices describing the generalized eigenvalue problem (see § 3.4).

A direct advantage of expressing the discretization of the derivative in ma-
trix form is that the differentiation matrices for higher derivatives can be directly
obtained by computing powers of the first-derivative differentiation matrix. For
instance, the second-derivative differentiation matrix is obtained by squaring the
first-derivative differentiation matrix, i.e., Dξξ = D2

ξ .
In this work, the base flows of interest are inhomogeneous in two spatial di-

mensions. Therefore, the discretization is performed with a two-dimensional col-
location grid defined in the transformed domain (ξ, η) ∈ [−1, 1] × [−1, 1]. In
this method, the discretization given by equation (4.3) is directly extended to two
dimensions as

f(ξ, η) =

Nξ∑
j=1

Nη∑
k=1

fkjψkj(ξ, η), (4.9)

where ψkj(ξ, η) are two-dimensional characteristic Lagrange polynomials, which
can be obtained by multiplying the respective one-dimensional polynomials along
each direction (see for example Groot [17]). For convenience, the discrete function
fkj = f(ξj , ηk) may be represented in matrix form as a matrix of Nη rows by Nξ
columns, such that η is interpreted as the vertical direction of the computational
domain and ξ as the horizontal one. This representation is usually known as a
tensor-product grid [16].

In the context of local linear stability theory, f represents the amplitude func-
tion of a perturbation quantity, which in turn is one of the components of the full
eigenvector q̂ of the system (see for instance equation (3.15)). From the compu-
tational point of view, fkj is generally represented as a single vector instead of a
matrix. Here, this is achieved by stacking all the columns of fkj in its matrix form,
such that a vector of NηNξ elements is obtained, given by

f: = [f11, ..., fNη1, f12, ..., fNη2, ..., f1Nξ , ..., fNηNξ ]
T. (4.10)

Therefore, the computational representation of q̂ consists of a single vector com-
posed of different sub-vectors of size NηNξ, one per state variable in the system.
In practice, the length of the stacked vector q̂ yields the number of rows/columns
of the square matrices that define the discrete generalized eigenvalue problem.
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By extension of equation (4.5), partial derivatives of the two-dimensional func-
tion f(ξ, η) can be obtained by evaluating the partial derivatives of the associated
two-dimensional Lagrange polynomials, that is

∂f(ξ, η)

∂ξ
=

Nξ∑
j=1

Nη∑
k=1

fkj
∂ψkj(ξ, η)

∂ξ
,

∂f(ξ, η)

∂η
=

Nξ∑
j=1

Nη∑
k=1

fkj
∂ψkj(ξ, η)

∂η
.

(4.11)
In matrix form, the calculation of the partial derivatives at the collocation points
can also be achieved by employing the respective differentiation matrix along each
direction, similarly to equation (4.6). However, in this case it is important to em-
phasize that the dimension of the stacked vector f: is no longer the same as the
dimension of the differentiation matrices defined as in equation (4.7). In order to
obtain a differentiation matrix that can be applied to the vector f:, the standard
differentiation matrices Dξ and Dη can be extended by applying the Kronecker
product (⊗) with the identity matrix [16], such that

Dξ: = Dξ ⊗ INη , (4.12a)

Dη: = INξ ⊗Dη, (4.12b)

where INξ and INη are identity matrices of sizeNξ×Nξ andNη×Nη , respectively,
and Dξ: and Dη: are differentiation matrices of size NηNξ × NηNξ, which can
operate on the discrete vector f: to produce a discrete stacked vector of partial
derivatives.

Finally, the second-derivative differentiation matrices for the two-dimensional
case can also be obtained by employing the Kronecker product with the identity
matrix, i.e., Dξξ: = D2

ξ ⊗ INη and Dηη: = INξ ⊗D2
η . Nonetheless, in the mul-

tidimensional case, cross derivatives also need to be discretized. For the purpose
of this work, only the cross-derivative differentiation matrix Dξη: needs to be con-
sidered, which can be obtained as

Dξη: = Dξ ⊗Dη. (4.13)

For further details regarding the computational formation of the discrete matri-
ces that define the LST or the 2D-LST eigenvalue problems, the reader is referred
to [17, 18].

4.2.1.2 High-order finite difference method by Hermanns & Hernández [19]

A high-order finite difference method recently developed by Hermanns & Hernández
[19] has become widely used in hydrodynamic stability studies [20–22] due to its
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excellent trade-off between accuracy and computational cost, specially for prob-
lems which feature more than one inhomogeneous direction. The main idea be-
hind this discretization method is to construct a finite difference scheme on a
non-uniform grid, where the coordinates of the points are defined following the
same philosophy as the Chebyshev-Gauss-Lobatto collocation points, thus allow-
ing to minimize interpolation errors by distributing the grid points in a specific
way. However, in contrast to the Chebyshev collocation technique, this method is
based on a piecewise polynomial interpolation.

For a given distribution of grid points ξj defined in the transformed domain
ξ ∈ [−1, 1], a piecewise polynomial interpolant is constructed so that it matches
the discrete values of a function (fj) at each grid point. Each of the individual
interpolating polynomials (Ij(ξ)) is only valid inside the subdomain comprised
between ξj−1/2 and ξj+1/2. The union of all the subdomains is then equal to
the whole domain of the problem [−1, 1]. Similarly to the Chebyshev colloca-
tion method, the interpolating polynomials are obtained by means of a Lagrange
interpolation formula, which allows to express the piecewise discretization as

Ij(ξ) =

sj+qp∑
k=sj

fkψjk(ξ), ψjk(ξ) =

qp∏
m=0

sj+m 6=k

ξ − ξsj+m
ξk − ξsj+m

, (4.14)

where qp is the polynomial degree, which must satisfy qp ≤ Nξ − 1, with Nξ
being the number of grid points, and sj denotes the index of the leftmost grid
point involved in the construction of the interpolant Ij(ξ). For the case of an even
polynomial degree (which is always the choice throughout this work), a centered
finite difference scheme is obtained, for which sj is given by

sj =


0 if j = 1, ..., qp/2

j − qp/2− 1 if j = qp/2 + 1, ..., Nξ − qp/2
Nξ − qp − 1 if j = Nξ − qp/2 + 1, ..., Nξ

, (4.15)

From equation (4.14), it can be noted that the higher the polynomial degree,
the larger the number of points involved in the construction of each individual
interpolant. This is a very important feature of this discretization method, as it
allows to control the order of the discretization according to the needs of a par-
ticular problem. Following this line of reasoning, the term FD-q was introduced
by Paredes et al. [21] to refer to this discretization technique. The resulting sten-
cils of the individual polynomials lead to centered finite difference formulas for
interior points that are sufficiently far away from the domain boundaries. Close to
the boundaries, however, the stencils become biased to keep using the necessary
number of existing grid points (qp+1 grid points). A visualization of the resulting
stencils can be found in figure 1 from reference [19].
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Having defined the piecewise interpolation, the particular choice of the grid
points for this technique remains to be discussed. As mentioned previously, the
distribution of collocation points in the grid plays an important role in the error of
the interpolation. For a given number of grid points and polynomial degree, Her-
manns & Hernández compute the optimal distribution of grid points that makes
the interpolation error uniform across the domain (the details of the algorithm can
be found in [19]). Therefore, for each pair of Nξ and qp, a different distribution
of grid points is obtained such that the error of the interpolation remains uniform.
As in the case of CGL points, the resulting grids tend to be clustered towards
the domain boundaries to control the interpolation error. This feature constitutes
the key advantage of the FD-q technique over other finite-difference methods,
such as standard centered finite differences, compact finite-difference schemes,
dispersion-relation-preserving finite differences or summation-by-parts operators.
The particular distribution of collocation points for a given order qp enables FD-q
to yield a smaller error than the aforementioned finite-difference methods for the
same discretization order (see [21]).

The discretization of derivatives by means of the FD-q method can be per-
formed in the same way as for the Chebyshev collation technique, namely, by
means of differentiation matrices as described in 4.2.1.1. For the two-dimensional
case, the same expansion of the differentiation matrices by means of the Kronecker
product also applies in this technique. In practice, this is very convenient as it al-
lows to use the same implementation for both discretization techniques, with the
only differences being the coordinates of the collocation points and the elements
of the differentiation matrices. Furthermore, in the limit of qp = Nξ − 1, the FD-q
discretization becomes equivalent to the Chebyshev collocation method, that is,
the CGL collocation points are retrieved. This means that the spectral discretiza-
tion of the Chebyshev collocation method can also be performed with the FD-q
routines.

From the computational point of view, besides its unified implementation with
the Chebyshev collocation technique, a very important advantage of using the FD-
q discretization method lies in the degree of sparsity introduced in the discretized
system matrices when qp � Nξ − 1. This has a large impact on the computational
cost of the solution of the eigenvalue problem, as a decrease in the computational
cost of multiple orders of magnitude can be achieved while maintaining an ex-
cellent accuracy (see the analysis of Paredes et al. [21]). Such a reduction in the
solution cost is of paramount importance for the solution of the 2D-LST eigenvalue
problem, for which the computational cost associated with spectral discretizations
is very high. In the context of local linear stability theory, [20, 21] show the ex-
cellent performance of the FD-q method in resolving the eigenspectrum for a self-
similar boundary layer. For a value of qp on the order of 8, the entire discrete
spectrum is retrieved by the FD-q discretization as reliably as by the Chebyshev
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collocation method. Particularly interesting is their observation that for a given
value of Nξ, there is an optimal value of qp < Nξ − 1 for which the error in the
discretization of the continuous part of the spectrum is minimum.

Owing to the advantages outlined above, the FD-q technique is nowadays em-
ployed in many 2D-LST and 3D-PSE stability analyses, typically using polyno-
mial degrees that range between qp = 6 and qp = 12 (see for example [13, 23–
27]). As shown in chapters 5 and 6, this method is also the choice for most of the
2D-LST computations presented in this work.

4.2.2 Mapping techniques

In the majority of physical problems of interest, the transformed space in which
the discretization techniques described in § 4.2.1 define the collocation grid points
does not coincide with the physical domain of study. As a result, coordinate trans-
formations are necessary to map the computational domain to the physical one.
These transformations generally receive the name of mapping techniques. In the
following, the two mapping methods employed in this work are presented.

4.2.2.1 Mapping proposed by Malik [28]

A widely used mapping technique is the transformation introduced by Malik [28],
which allows to place half of the grid points below a desired coordinate. Con-
sidering the wall-normal direction, for instance, the wall-normal coordinate in the
transformed space (η) is mapped to the physical space (y) as

y =
yiymax(1 + η)

ymax − η(ymax − 2yi)
, (4.16)

where ymax is the maximum wall-normal coordinate (location of the wall-normal
far-field boundary) and yi denotes the coordinate at which the number of grid
points is split into two halves. This mapping technique is very convenient for the
study of boundary layers, as it allows to concentrate a higher number of points near
the wall, hence contributing to increase the accuracy of the discretization in the
region of interest. In the stability analyses performed in this dissertation, equation
(4.16) is always employed along the wall-normal direction. Additionally, when
spanwise symmetry is considered in the stability analysis, as described in § 3.9.4,
this transformation is also employed along the spanwise direction to increase the
grid resolution near the roughness spanwise symmetry plane (see § 5.1). Figure
4.1(a) illustrates an example of a collocation grid mapped using equation (4.16)
in both y and z directions.
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Figure 4.1: Examples of two different collocation grids mapped to the physical domain (FD-
q8): (a) Nη = 41, Nξ = 41, mapping (4.16) applied in both directions, with yi = zi =
0.002 m; (b) Nη = 41, Nξ = 81, mapping (4.16) applied in the wall-normal direction
(yi = 0.002 m) and mapping (4.17) applied along the spanwise direction (zi1 = −0.002
m and zi2 = 0.002 m). The red dashed lines denote a projection of a generic roughness
element shape, behind which the roughness wake would be located.

4.2.2.2 Biquadratic mapping

A generalization of the mapping technique proposed by Malik (see § 4.2.2.1) con-
sists in dividing the domain in three different regions and placing one-third of the
grid points in each of them, thus allowing to increase the grid resolution not only
towards the domain boundaries if desired, but also in a given confined region of in-
terest inside the domain. This transformation, developed together by Esposito [29]
and Groot [17, 30], receives the name of biquadratic mapping. For the spanwise
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direction, for example, the biquadratic transformation is given by

z =
aξ2 + bξ + c

dξ2 + f
, (4.17a)

a = 2zmax(zi2 − 3zi1)− 2zmin(3zi2 − zi1), (4.17b)

b = −3(zi1 − zi2)(zmax − zmin), (4.17c)

c = zi1(3zmax − zmin) + zi2(zmax − 3zmin), (4.17d)

d = 8(zi2 − zi1)− 4(zmax − zmin), (4.17e)

f = 2(zi1 − zi2) + 4(zmax − zmin), (4.17f)

where ξ ∈ [−1, 1] denotes the spanwise coordinate in the collocation grid, zmin
and zmax are respectively the minimum and maximum spanwise coordinates of
the physical domain (location of the spanwise far-field boundaries), and zi,1, zi,2
are the spanwise locations which divide the domain in three different regions. This
transformation concentrates one-third of the grid points in each of the three regions
comprised between zmin < zi1 < zi2 < zmax. It is is important to mention
that to ensure a regular monotonic behavior in the grid spacing, the following
requirements must be satisfied [29]:

zi2 > zi1, (4.18a)

zi2 ≤ 9zi1 + 8zmin, (4.18b)

zi2 ≤
zi1
9

+
8

9
zmax. (4.18c)

In this work, the biquadratic mapping is employed along the spanwise direction
in cases where spanwise symmetry conditions are not applied but the complete
spanwise domain is considered instead, using periodic boundary conditions on
the perturbation variables (see § 3.9.3). This allows to compute symmetric and
antisymmetric perturbations from the solution of the same eigenvalue problem.
Figure 4.1(b) shows an example of a collocation grid mapped using the biquadratic
mapping along the spanwise direction and the mapping given by equation (4.16)
along the wall-normal direction. Note that the grid resolution increases towards the
central region of the domain along the span, where the roughness element wake is
contained.

4.2.2.3 Transformation of the differentiation matrices to the physical do-
main

The mapping of the discretization from the transformed space to the physical space
also requires a transformation of the associated differentiation matrices through the
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corresponding metrics. According to the chain rule, the first and second derivatives
of a function in physical space can be expressed in terms of the respective deriva-
tives in the transformed space as

∂f

∂y
=
∂f

∂η

dη

dy
,

∂2f

∂y2
=
∂2f

∂η2

(
dη

dy

)2

+
∂f

∂η

d2η

dy2
, (4.19)

where the wall-normal direction has been chosen as an example. Since the map-
ping relations are generally expressed as y = y(η), the derivatives of the reciprocal
function η = η(y) can be obtained as

dη

dy
=

1

dy/dη
,

d2η

dy2
= −d

2y

dη2

(
dη

dy

)3

. (4.20)

Making use of these relations, the differentiation matrices can be transformed
to the physical domain by means of diagonal matrices that contain the metrics of
the transformation at each collocation point [31], that is

Dy = Dη diag
(

1

dy(ηj)/dη

)
, j = 1, ..., Nη, (4.21)

Dyy = Dηη diag

(
1

[dy(ηj)/dη]
2

)
−Dη diag

(
d2y(ηj)/dη

2

[dy(ηj)/dη]
3

)
, j = 1, ..., Nη.

(4.22)

An equivalent process can be applied along the spanwise direction. Finally, it
is worth mentioning that the transformed matrices can also be directly extended for
two-dimensional cases by means of the Kronecker products introduced in § 4.2.1.1.

4.2.2.4 Interpolation of base-flow quantities on the mapped collocation grid

Even though the mapping techniques transform the collocation grid to the phys-
ical domain, the mapped grid defined by the Chebyshev collocation or the FD-q
discretization methods does not generally coincide with the mesh employed to ob-
tain the base-flow solutions (see § 4.1.3.2). As a consequence, before evaluating
the coefficients of the governing stability equations according to the chosen high-
order discretization, the necessary base-flow quantities must be interpolated on the
collocation grid. In the computations presented in this dissertation, a cubic spline
interpolation which uses not-a-knot end conditions is employed for this purpose,
see for example [32]. The interpolation is carried out using the built-in MATLAB
functions interp1 (for base-flow quantities depending on a single spatial di-
mension, such in LST) and interp2 (for base-flow quantities depending on two
spatial dimensions, such as in 2D-LST).
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4.2.3 Integration techniques

In order to compute certain quantities of interest, the spatial integration of func-
tions defined in the collocation grid is required. Examples include the evaluation
of the disturbance energy or the computation of the different contributions that
constitute the decomposition of the temporal growth rate given by equation (3.64).
The most straightforward approach to evaluate such integrals is to employ a simple
trapezoidal integration rule. However, this method leads to poor accuracy since the
collocation grids are generally characterized by a small number of points. In order
to integrate a function while keeping the high-order accuracy of the Chebyshev
collocation or the FD-q discretizations, different high-order integration techniques
exist (see for example Trefethen [16]). The two methodologies considered in this
study are described next.

4.2.3.1 Integration by means of Chebyshev integral weight functions

When evaluating the integral of a function discretized with the Chebyshev collo-
cation method, the function can be integrated with spectral accuracy by means of
the Chebyshev integral weight function derived by Hanifi et al. [33]. For example,
to compute the integral of a generic function f along the wall-normal direction,
the following relation can be employed in the transformed space (η):

∫ 1

−1

f(η) dη =

Nη−1∑
j=0

f(ηj)W(ηj), (4.23)

where ηj denotes the coordinates of the Chebyshev-Gauss-Lobatto collocation
points, given by equation (4.2), and W is the Chebyshev weight function in the
transformed space, given by

W(ηj) =
bj

Nη − 1

2 +

Nη−1∑
n=2

cn
[1 + (−1)

n
]

(1− n2)
cos

(
njπ

Nη − 1

) , (4.24)

where b0 = bNη−1 = 1/2, bj = 1 for 0 < j < Nη − 1, c0 = cNη−1 = 1 and
cn = 2 for 0 < n < Nη−1. If a mapping is used to transform the collocation grid
to the physical domain, the integral can be evaluated in the mapped domain as

∫ y+

y−
f(y) dy =

Nη−1∑
j=0

f(yj)W (yj), (4.25)

where W is the Chebyshev weight function in the physical domain, which can be
computed as
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W (yj) =
bj

Nη − 1

Nη−1∑
n=0

cn cos

(
njπ

Nη − 1

)∫ 1

−1

Tn(η)
dy

dη
dη, (4.26)

where dy/ dη is the metric of the chosen mapping transformation (see § 4.2.2.3)
and Tn denotes the nth Chebyshev polynomial, given by

Tn(η) = cos (n arccos (η)) . (4.27)

If the metric dy/ dη is known analytically, as it is usually the case for the majority
of mapping techniques, the integral in equation (4.26) can be evaluated with high
accuracy using equation (4.23) in a fine collocation grid of choice.

By direct extension, surface and volume integrals can be computed with spec-
tral accuracy by employing the respective weight functions along each direction.
For example, integration over the spanwise plane (yz) can be expressed as follows:

∫ z+

z−

∫ y+

y−
f(y, z) dy dz =

Nξ−1∑
k=0

Nη−1∑
j=0

f(yj , zk)W (yj)

W (zk). (4.28)

Here, this integration method has been employed for all the computations per-
formed using the Chebyshev collocation method.

4.2.3.2 Integration using the inverse of part of the differentiation matrices

As described by Trefethen [16], a simple method for computing the integral of a
function discretized in a grid of collocation points (η ∈ [−1, 1]), such as

I =

∫ 1

−1

f(η) dη, (4.29)

arises naturally from the solution of the following ODE-based initial value prob-
lem:

dF (η)

dη
= f(η), F (−1) = 0, η > −1, (4.30)

where I = F (1). The problem (4.30) can then be discretized and solved by
means of the desired collocation method employing the corresponding differen-
tiation matrix (Dη). In order to impose the homogeneous Dirichlet condition at
η = ηNη = −1, the last row and column of the differentiation matrix are removed,
producing a reduced square matrix D̃η . Therefore, the initial value problem can
be expressed in matrix form as
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D̃ηF = f , (4.31)

with F = [F (η1), ..., F (ηNη−1)]T and f = [f(η1), ..., f(ηNη−1)]T. Note that to
compute I = F (1) = F (η1), only the first row of the matrix D̃−1

η is necessary,
denoted by wT. Hence, the integration can be expressed as

I =

∫ 1

−1

f(η) dη = wTf . (4.32)

To compute the integral in the physical domain, the same procedure is directly
applicable, simply exchanging the differentiation matrix by the corresponding one
in the mapped domain, as described in § 4.2.2.3. This integration method also
maintains the order of accuracy of the discretization scheme and it is easy to im-
plement from the computational point of view. Its extension to multi-dimensional
integration is straightforward by making use of the differentiation matrices along
each spatial direction. In this work, this is the integration method employed for all
the computations performed using the FD-q discretization technique.

4.2.4 Calculation of base-flow derivatives

The solution of the governing stability equations requires a significant number of
first and second base-flow derivatives to be known. This presents an additional
challenge specially when employing Navier-Stokes base-flow solutions obtained
by means of low-order discretization schemes, such as the second-order finite vol-
ume methods commonly used in CFD. In general, providing the spatial derivatives
of the flow variables in the solution is usually not a priority in CFD, in particular
second derivatives. As a result, most commercial CFD softwares do not integrate
the functionality to provide all the derivatives required for stability analysis. In the
case of CFD++ R©, the first spatial derivatives of the primitive variables ρ̄, ū, v̄, w̄,
T̄ and p̄ are provided as part of the solution.

In this work, two different methodologies are considered for the computation
of the necessary spatial base-flow derivatives. The first method is based on con-
ventional finite difference stencils which are derived for arbitrarily spaced grids in
one dimension. The derivation of the stencil coefficients (weights) to evaluate the
derivative of a function at a given grid point is based on a Taylor series expansion
of the function at each of the points involved in the stencil. For a given stencil of
Ns points, denoted by s = [s1, ..., sj , ..., sNs ]

T, the coefficients of the finite differ-
ence equations for all derivatives with order d < Ns can be computed by solving
the following linear system:



NUMERICAL METHODOLOGY 4-19

 s0
1 . . . s0

Ns
...

. . .
...

sNs−1
1 . . . sNs−1

Ns


 c1,0 . . . c1,Ns−1

...
. . .

...
cNs,0 . . . cNs,Ns−1

 =


0!

∆y0
. . . 0

...
. . .

...

0 . . .
(Ns − 1)!

∆yNs−1

 ,
(4.33)

where cj,k is the coefficient of the jth stencil point for the finite difference formula
of the kth derivative and ∆y is a reference grid spacing that defines the values of
the stencil, which are given by

sj =
yj − y0

∆y
, j = 1, ..., Ns, (4.34)

where y = [y1, ..., yj , ..., yNs ]
T are the coordinates of the grid points in ascending

order and y0 is the grid point at which the derivative is to be computed. Here, the
value of ∆y is taken to be the minimum distance between two consecutive grid
points.

The second approach considered to compute base-flow derivatives is to employ
the differentiation matrices of the discretization method employed for the solution
of the eigenvalue problem (see § 4.2.1). This requires a previous interpolation of
the base-flow quantities to be differentiated on the collocation grid, as described
in § 4.2.2.4. Due to the fact that the differentiation matrices are already required
for the discretization of the derivatives of the perturbation quantities and that the
interpolation on the collocation grid also needs to be performed for non-derivative
base-flow quantities, this strategy has the advantage of being more efficient and
straightforward to implement than the calculation of derivatives in the base-flow
grid.

When considering a calorically perfect gas, the first spatial derivatives of the
primitive base-flow quantities provided by CFD++ R© are employed for the stabil-
ity analysis. The second and cross spatial derivatives of the primitive quantities
are then evaluated on the base-flow grid by differentiating the first derivative fields
given by CFD++ R©. This is done by means of fourth-order finite differences with
stencil coefficients given according to equation (4.33). To compute the first deriva-
tive of a quantity f at a given point y0 with fourth-order accuracy, a stencil of five
points is considered and the resulting finite difference formula can be expressed as

∂f

∂y
(y0) = c1,1f(y1) + c2,1f(y2) + c3,1f(y3) + c4,1f(y4) + c5,1f(y5). (4.35)

At interior grid points, centered stencils are always considered, while near the
boundaries of the domain, uncentered stencils are employed to adjust the coeffi-
cients while maintaining the order of accuracy of the differentiation. The base-flow
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derivative fields computed following this approach are then interpolated on the col-
location grid used for the discretization of the eigenvalue problem. In this study,
this method was found to yield very similar results to the use of the FD-q differ-
entiation matrices to compute the second derivatives directly on the collocation
grid.

An example that illustrates both methodologies is shown in figure 4.2, which
compares the second derivative obtained from the first derivative provided by
CFD++ R© by using the finite difference stencil of equation (4.35) against those us-
ing the differentiation matrices of the Chebyshev collocation and FD-q discretiza-
tion methods. To show from which profile the second derivative comes from, the
profile considered for this example and its first derivative are also shown in fig-
ure 4.2(a, b). As it can be observed in figure 4.2(d), the use of the 4th-order
finite difference stencil (labeled FD4) and the FD-q method with qp = 8 (labeled
FDq8) yield almost indistinguishable results. However, when the Chebyshev dif-
ferentiation matrices are employed (labeled CGL, see figure 4.2(c)), significant
spurious oscillations are retrieved in the second derivative, which are found to in-
crease near the domain boundaries. These oscillations are also observed using the
FD-q method when the value of qp becomes large, and are seen to increase as qp
approaches the CGL limit (qp = Nη − 1). These oscillations are argued to be the
result of the order of discretization of the function to be differentiated (in this case
a function computed by a second-order finite volume method) being much lower
than that of the discretization method chosen for the stability analysis. Therefore,
the second approach to evaluate CFD base-flow derivatives should only be used
when the stability problem is discretized using qp � Nη , such as shown in figure
4.2(d).

The use of the finite difference stencils defined by equation (4.33) is found
to provide a slightly more consistent discretization with the first derivatives pro-
vided by CFD++ R©. By computing the first derivatives using the fourth-order finite
difference stencil, the resulting values are closer to the actual first derivative pro-
vided by CFD++ R© than when computing it by FD-q. For this reason, although
both methods are equally valid for the purpose of this analysis, the first approach
is chosen in CPG as it leads to a more consistent discretization between first and
second derivatives.

In the case of CPG base flows, the spatial derivatives of the dependent vari-
ables are always expressed in terms of the spatial derivatives of the independent
variables on which they depend upon by means of the chain rule (see equation
(A.4)). In this case, the dependent variables are the transport properties µ̄, λ̄ and
k̄ as well as their first derivative with respect to temperature (dµ̄/dT̄ , dλ̄/dT̄ and
dk̄/dT̄ ), which appear due to the Taylor expansion1 of the perturbation quantities

1It is important to emphasize that dµ̄/dT̄ , dλ̄/dT̄ and dk̄/dT̄ appear in the linearized perturbation
equations even if the chain rule is not applied on the transport properties. They appear due to the lin-
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Figure 4.2: Comparison of different methods to compute the second derivative of a
given streamwise velocity base-flow profile: (a) streamwise velocity profile obtained from
CFD++; (b) first derivative of the profile obtained from CFD++; (c) second derivative of
the profile obtained using a fourth-order finite difference stencil (equation (4.35)) on the
first derivative provided by CFD++ and then interpolated on a CGL grid with Nη = 121
(labeled FD4), compared to the second derivative computed by using the Chebyshev differ-
entiation matrices on the interpolated first derivative provided by CFD++ (labeled CGL);
(d) same as (c) but using a collocation grid based on FD-q (Nη = 121 and qp = 8).
This streamwise velocity profile originates from the central wake region behind an isolated
roughness element. It is used here as an example. It has been extracted from the base-
flow solution presented in § 5.3 for the ramp-shaped roughness element, and corresponds
to x ≈ 0.08 m and z ≈ 10−4 m.
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as described in § 3.2. In CPG all these quantities are themselves a function of
temperature only, and therefore their spatial derivatives can be expressed in terms
of the spatial derivative of temperature, as in the examples given in equation (A.4).
Furthermore, note that since for CPG the variation of the transport properties with
temperature is defined by Sutherland’s law (see § 2.5.2.1), the necessary first and
second derivatives of the transport properties with respect to temperature can be
computed analytically.

When considering the CNE flow assumption, however, the number of depen-
dent variables becomes significantly high. In this case, expanding their derivatives
in terms of the spatial derivatives of the independent quantities through the chain
rule leads to a very large number of derivatives to be evaluated (see Miró Miró [4,
§ 8.1.2]). For this reason, the spatial derivatives of the dependent quantities are
directly computed in this case, i.e., quantities like ∂µ̄/∂y or ∂

(
∂µ̄/∂T̄

)
/∂y are

directly calculated numerically without expressing them in terms of the derivatives
of the independent quantities. Despite this consideration, the number of necessary
derivatives to evaluate remains important due to the significant number of depen-
dent quantities to be treated (about 80 dependent quantities for the formulation
considered here). In these cases, the second approach is employed to compute
the necessary spatial derivatives based on FD-q differentiation matrices. Further-
more, for this flow assumption, all the necessary first derivatives are not provided
by CFD++ R©, as it is otherwise done in CPG. Therefore, for consistency, both
first and second derivatives are computed in the collocation grid by employing the
first and second derivative differentiation matrices, respectively. This proves to be
significantly more efficient than calculating the derivatives on the base-flow grid
by the finite difference stencils, given the large number of derivatives that need
to be evaluated. For the TPG assumption, the same methodology as for the CNE
assumption has been employed in this work. However, in this case the number of
dependent quantities remains similar to the CPG assumption so the two approaches
presented in this section could be applied without major difficulties in practice.

Finally, it is worth mentioning that in the case of base-flows coming from
the solution of the boundary-layer equations, the DEKAF solver provides all the
derivatives required for the stability analysis evaluated in the same collocation grid
in which the boundary-layer solution is computed (see [5]).

4.2.5 Numerical implementation of boundary conditions for the
perturbation quantities

Before carrying out the solution of the stability problem, the algebraic equations
resulting from the discretization of the partial-differential eigenvalue problem must

earized Taylor expansions for µ̃, λ̃ and k̃. For this reason, they are also treated explicitly as dependent
quantities.
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be completed with the necessary boundary conditions. The different boundary
conditions considered for the perturbation quantities are described in § 3.9.

In this work, the implementation of boundary conditions in the system matrices
is carried out through the following steps. First, all the entries of the matrices that
form the discretized eigenvalue problem are computed in the entire domain. Next,
the discretized boundary conditions corresponding to each of the grid points that
belong to the domain boundaries are added to the system as additional rows which
are appended at the end of the original system matrices. Finally, before transferring
the matrices to the eigenvalue solver, all the rows and columns corresponding to
original boundary positions are removed from the system. This leads to a structure
of the matrices where all the boundary conditions are found together in the last
rows. By keeping track of the original position of each boundary point in the
matrices, the complete eigenvector solutions are reconstructed once the eigenvalue
solver has finished.

In the following, the discrete formulation of the different types of boundary
conditions employed in the 2D-LST eigenvalue problem is introduced, considering
a tensor-product grid defined in the yz plane.

4.2.5.1 Homogeneous Dirichlet conditions

The Dirichlet conditions directly impose the value of the solution vector (eigen-
vector) at the designated boundaries. In this case, no specific numerical treatment
is required. The rows and columns of the system matrices that correspond to those
grid points where homogeneous Dirichlet boundary conditions are applied are re-
moved from the system prior to solving the eigenvalue problem.

4.2.5.2 Homogeneous Neumann conditions

The homogeneous Neumann conditions enforce the first derivative of the eigen-
vector to be equal to zero in the direction normal to the boundary. In the discrete
system, this is expressed employing the first derivative differentiation matrix. For
example, in the case of a spanwise boundary aligned with the wall-normal direc-
tion, such as ξ = −1 (z = z−), the homogeneous Neumann condition on û can be
expressed as

Nξ∑
j=1

Dz,jNξ ûkj = 0, k = 1, ..., Nη, (4.36)

where Dz,jNξ denotes the element in the jth row and the Nξth column of the
mapped differentiation matrix Dz (see § 4.2.2.3). An equivalent expression can be
found for a homogeneous Neumann condition imposed on a wall-normal bound-
ary aligned with the spanwise direction, in this case employing the entries of the
differentiation matrix Dy .
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Note that for the computation of the derivative at a given boundary point, such
as the point at yk and zNξ , multiple grid points are involved. This can be in-
terpreted as a stencil resulting from the discretization of the derivative. For the
Chebyshev collocation method, the stencil involves all the grid points, whereas for
the FD-q method the number of points included depends on the value of qp, which
controls the number of non-zero entries in the differentiation matrices.

Given a spanwise boundary at which Neumann conditions are imposed, for
example, Nη rows are appended at the end of the system matrices. Each of these
rows contains the coefficients that multiply the solution vector to evaluate the Neu-
mann condition at the kth boundary point, as given by equation (4.36), for all the
perturbation quantities for which a Neumann condition is applied. A representa-
tion of the position of these coefficients in the structure of a system matrix block of
size NξNη ×NξNη , corresponding to a single perturbation variable, can be found
in [18, § 5.7.2].

4.2.5.3 Periodic conditions

In the case of periodic conditions at spanwise boundaries (ξ = ±1, or z = z−, z+),
the solution values at the grid points corresponding to opposite boundaries as well
as their derivative normal to the boundary are required to be equal. Taking once
again the streamwise velocity perturbation for purposes of illustration, the first
condition can be expressed as follows:

ûkNξ − ûk1 = 0, k = 1, ..., Nη, (4.37)

while the second one, recalling the notation introduced in equation (4.36), is given
by

Nξ∑
j=1

Dz,jNξ ûkj −
Nξ∑
j=1

Dz,j1ûkj = 0, k = 1, ..., Nη. (4.38)

Note that this boundary condition requires two different equations to be satis-
fied for a given pair of grid points. Here, it is chosen to impose condition (4.37)
on the grid points belonging to the boundary at ξ = 1 while condition (4.38) is
applied on the grid points at ξ = −1. This choice does not influence the solution.
Therefore, spanwise periodic conditions are applied by appending 2Nη additional
rows at the end of the system matrices. An illustration of these conditions imposed
on a matrix block of size NξNη ×NξNη is provided in [18, § 5.7.4].

4.2.5.4 Compatibility conditions

The discretization of the equations employed for the compatibility conditions (see
for instance equation (3.44)) follows the same treatment as the discretization of
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the governing stability equations at interior collocation points. In particular, each
of the compatibility conditions are built separately as non-square matrices which
have a size equal to NξNη × NξNηNind, where Nind denotes the number of in-
dependent perturbation variables. Then, these matrices are appended at the end of
the main system matrices.

It is important to mention that when the rows and columns corresponding to
Dirichlet boundary conditions are removed from the system, the corresponding
terms from the compatibility equations that involve perturbation variables which
have a Dirichlet condition imposed are automatically set to zero. This ensures a
consistent application of the two conditions for a given boundary.

4.2.5.5 Treatment at domain corners

At the corner grid points of the two-dimensional collocation grid, an overlap of
two different boundary conditions is encountered. As a consequence, a criterion
should be established on which conditions to keep at those points. At the corner
points located at η = −1 (y = y−), which for the cases studied here correspond
to the flat-plate wall, the wall conditions described in § 3.9.1 are chosen to prevail
over any other boundary condition imposed at the spanwise boundaries. At the
corner points located at η = 1 (y = y+), which correspond to the wall-normal
far-field boundary, the far-field conditions described in § 3.9.2 are given priority
over any other condition imposed at the spanwise boundaries.

4.2.6 Algorithms for the solution of the generalized eigenvalue
problem

When using one- or two-dimensional local linear stability theory, the spatial dis-
cretization of equations (3.15) or (3.16) together with the associated boundary con-
ditions yields an algebraic generalized eigenvalue problem defined by matrices A

and B. For the governing equations considered (see chapter 2), the resulting ma-
trices A and B are generally complex and non-Hermitian. The two algorithms
employed in this work to compute eigenvalues and eigenvectors of the system are
described next.

4.2.6.1 QZ algorithm

The most common method for solving generalized non-Hermitian eigenvalue prob-
lems is the QZ algorithm, originally developed by Moler & Stewart [34]. This
direct method is the analogous of the QR algorithm for generalized eigenvalue
problems. It allows to compute all the eigenvalues of the system as well as the
right and left eigenvectors if desired. For a description of the algorithm, the reader
is referred to Golub & Van Loan [35].
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In this work, the QZ algorithm is performed by means of LAPACK [36] rou-
tines which are called from MATLAB through the built-in function eig. Although
the algorithm allows to obtain the complete stability spectrum, its computational
cost is significantly high. It requires approximately 30n3 floating point opera-
tions to compute the eigenvalues and an additional 16n3 operations to obtain the
right eigenvectors [35, 37], where n denotes the number of rows or columns of
the square matrices that define the problem. This implies a computational cost of
O(n3) floating point operations. In the temporal stability case, n is equal to the
number of grid points times the number of independent variables in the system,
while in the spatial case its value is almost doubled according to the extension of
the system necessary to linearize the eigenvalue problem (see § 3.4.3).

Due to its computational cost, the QZ algorithm is usually employed only for
the solution of the LST eigenvalue problem. For computing eigenvalues of large-
scale problems such as in the case of the 2D-LST system, other techniques are
generally considered, such as the implicitly restarted Arnoldi method, discussed in
the next section. In the 2D-LST eigenvalue problem, the number of rows/columns
of the square matrices that define the generalized eigenvalue problem is given by
NξNηNind, where Nind denotes the number of independent variables in the sys-
tem (number of flow quantities in q̂). As an example, for a typical collocation grid
with Nξ = 181 and Nη = 141 in CPG (Nind = 5), the number of rows/columns
of the matrices that from the temporal stability problem is about 127600, that is
O(105). For such large matrices, the computational cost of the QZ algorithm be-
comes too high to enable its extensive use in practice nowadays.

It is also important to mention that the QZ algorithm does not benefit from the
sparsity introduced by non-spectral discretization methods such as FD-q, hence re-
sulting in a similar computational cost for both the Chebyshev collocation method
and the FD-q technique for the same number of grid points.

4.2.6.2 Implicitly restarted Arnoldi method

Given the expensive computational requirements of the QZ method, a big step
forward in the calculation of eigenvalues for large-scale problems was achieved
with the development of the so-called implicitly restarted Arnoldi method (IRAM)
[38, 39]. The IRAM is an iterative algorithm that allows an efficient computation
of a given set of eigenvalues and eigenvectors of a large system. It is based on the
Arnoldi iteration (see for example Trefethen & Bau [40] and Lehoucq et al. [41]),
also known as Arnoldi factorization, which is an orthogonal projection method
for approximating a subset of the eigensystem of a general square matrix. This
method exploits the information contained in the sequence of vectors produced
by the classical power iteration method (employed to obtain a single eigenvalue-
eigenvector pair [40]) in order to enable convergence to additional eigenvectors.
This is achieved by constructing linear combinations of the vectors that arise dur-
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ing the power sequence, which is formally equivalent to considering a Krylov sub-
space.

When the problem under study has a wide range of eigenvalues but the eigen-
values of interest are clustered in a given region, it is not possible to know in ad-
vance how many iterations would be required for the Arnoldi method to produce
a satisfactory approximation to the desired eigenvalues. If a large number of iter-
ations is required, difficulties arise which hinder the practical use of the standard
Arnoldi factorization (see for instance [41]). On the one hand, the computational
cost of the algorithm becomes significantly high, both in terms of floating point
operations and memory requirements. On the other hand, numerical difficulties
are encountered to maintain the orthogonality of the computed vectors, which can
lead to spurious copies of the approximate eigenvalues produced by the method.

These difficulties motivated the development of restarting schemes for the
Arnoldi iteration, leading, among others, to the implicitly restarting Arnoldi method.
Restarting the algorithm provides a means to extract and exploit interesting infor-
mation from large Krylov subspaces while avoiding the high storage requirements
and numerical difficulties of doing so in the standard Arnoldi method. The phi-
losophy of restarting the method is to employ the information that can be obtained
from a partial application of the algorithm to define a new starting vector enhanced
in the direction of the desired eigenvectors, which is then employed to start a new
run of the Arnoldi iteration, thus accelerating the convergence of the method. A
detailed description of the IRAM algorithm can be found in [35, 37, 41].

The Arnoldi iteration converges first to the eigenvalues of largest magnitude,
which generally correspond to extreme eigenvalues, that is, eigenvalues located
near the boundaries of the spectrum. In the majority of situations, these are not
the eigenvalues of interest. In order to enhance the convergence of the method for
computing eigenvalues in a given region of interest, a spectral transformation of
the eigenvalue problem can be employed. Here, a shift-invert transformation is
applied, given by

(Aω − σBω)
−1

Bωq̂ = νq̂, with ν =
1

ω − σ
, (4.39)

where σ denotes the shift-invert parameter and ν is the eigenvalue of the trans-
formed system. Equation (4.39) is expressed in terms of the matrices that define
the temporal stability problem, however, an identical transformation applies to the
spatial problem. This transformation maps the eigenvalues close to the shift-invert
parameter to the eigenvalues of largest magnitude in the transformed system, thus
allowing the IRAM to converge first to the eigenvalues of interest. It is important
to note that if σ is chosen to be very close to an actual eigenvalue of the system,
the problem can become ill-conditioned. Therefore, care should be taken when
selecting appropriate values of the shift-invert parameter.
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In the case of LST and 2D-LST analyses on compressible boundary-layer base
flows, a good choice for σ is usually a value in the real axis of the spectrum that is
near the merged vertical continuous branch which contains entropy and vorticity
disturbances. These waves travel at a phase speed equal to the freestream velocity
and therefore the continuous branch is located at a non-dimensional value of ωr =

αr (see the treatment of Balakumar & Malik [42]). In this work, typical values
of the shift-invert parameter employed are σ = 0.9αr in the temporal case and
σ = 1.1ωr in the spatial case, where αr and ωr respectively refer to the fixed real
value of the non-dimensional wavenumber and angular frequency.

Another important parameter that influences the convergence of the implicitly
restarted Arnoldi algorithm is the number of linear combinations of the vectors re-
sulting from the power sequence that are considered, that is, the size of the Krylov
subspace. In general, the larger the dimension of the Krylov subspace the higher
the memory requirements and computational cost but also the faster is the conver-
gence of the IRAM. Therefore, in practice, an optimal subspace dimension can be
found for a given problem which provides the best trade-off between the computa-
tional cost per iteration and the number of iterations necessary for the algorithm to
converge to the desired eigenvalues. For the computations performed in this work,
a subspace dimension that is equal to 4 times the number of desired eigenvalues is
used.

For the majority of results presented in this dissertation, the implicitly restarted
Arnoldi method has been performed employing ARPACK [41] routines which are
interfaced through MATLAB’s built-in function eigs. However, for the results
presented in § 5.2, which are based on the Chebyshev collocation method, a par-
allel implementation of the ARPACK routines (see P ARPACK [43])) was used
via an in-house MATLAB-Fortran interface developed by Naddei [44]. This was
necessary due to the high memory requirements of the solver in these cases, owing
to the dense structure of the spectrally discretized matrices. These requirements
could not be met with a high-end desktop workstation and therefore the solution
of the problem was moved to a computer cluster.

As already pointed out by Groot [18], a particular observation in the behav-
ior of the memory requirements of MATLAB’s built-in function eigs deserves
special mention. When executing the IRAM algorithm, one of the first steps per-
formed by the eigs function is a lower-upper (LU) factorization of the matrix
A−σB. In MATLAB, this is carried out by a non-symmetric multifrontal method
based on UMFPACK [45] routines, which are able to exploit any sparsity present
in the system. However, when transferring the LU decomposition from UMF-
PACK routines to ARPACK routines, an important increase in memory usage is
observed to take place, which is on the order of twice the memory required for the
actual LU factorization. This behavior limits considerably the size of the problem
that can be solved by means of the eigs function in a given machine. For this
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reason, here the implicitly restarted Arnoldi iteration of the eigenvalue problem
discretized by means of the Chebyshev collocation method is performed outside
MATLAB with the P ARPACK library, for which the LU factorization is carried
out by means of the ScaLAPACK library [46] (see [44] for additional details). It
is important to note, nevertheless, that the ScaLAPACK routines are designed to
work with dense matrices only, and therefore they do not take advantage of any
sparsity present in the system. This is not a detrimental factor in the solution of
problems discretized with spectral methods, but for problems discretized using for
instance the FD-q technique, where a high degree of sparsity is achieved, the use
of MATLAB’s eigs utility is much more efficient both in terms of memory and
floating point operations.

4.2.7 Algorithms to compute the evolution of a single eigen-
value/eigenvector pair

In order to compute the evolution of a given eigenmode for relatively small changes
in the matrices that form the generalized eigenvalue problem, such as for small
shifts in the disturbance frequency or wavenumber, or small variations in the base-
flow fields, iterative methods also exist that are dedicated to the calculation of a
single eigenvalue-eigenvector pair, given an initial guess for both of them. Al-
though the evolution of a single eigenmode can also be tracked by means of the
implicitly restarted Arnoldi algorithm, these single eigenvalue solvers prove to be
more robust in the majority of situations in which a good initial guess of the eigen-
value is known beforehand, avoiding the need to find an appropriate eigenvalue
shift (σ) to achieve a satisfactory convergence of the IRAM. This is particularly
important in cases where several eigenmodes are close in the spectrum, such as in
the base-flow solutions analyzed in chapter 5. In these situations, it can become
difficult to discern between different eigenmodes and therefore difficult to select a
good shift-invert parameter for the next run of the IRAM. Hence, by performing
a tracking of a particular mode by means of an individual eigenvalue solver, the
difficulties that arise in the presence of multiple modes might be circumvented. To
start the individual tracking, a good initial guess can then be provided by means of
the implicitly restarted Arnoldi algorithm.

Two different iterative algorithms for computing the evolution of a single eigen-
mode are presented next. It is important to mention that these individual eigenvalue
algorithms still require the solution of a linear system of equations at each itera-
tion, whose dimension is of the same order as the size of the matrices defining the
eigenvalue problem. As a result, these iterative methods are in general not faster
than the IRAM when the latter is performed for a small number of eigenmodes.
Their main advantage lies in their ability to keep track of the same eigenvalue-
eigenvector pair without the need to define a search region.
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4.2.7.1 Newton-Raphson iteration

An iterative method to compute an eigenvalue and its associated eigenvector when
a sufficiently close initial guess is known can be built by means of a Newton-
Raphson method, as implemented by Pinna [31]. The problem for which a root is
sought in this case can be expressed as a system of two equations. For the temporal
stability approach, for example, it can be written as

F(ω, q̂) =

[
(Aω − ωBω) q̂

q̂H q̂− 1

]
, (4.40)

where the relation q̂H q̂ − 1 = 0 is a normalization condition on the eigenvector.
Therefore, the roots of the system are the eigenvalue ω and the eigenvector q̂. The
Newton-Raphson iteration is then given by

sj+1 = sj − J−1
F (ωj , q̂j)F(ωj , q̂j), (4.41)

where s = [q̂, ω]T and JF is the Jacobian of the system, which in this case can be
determined analytically, resulting in the following expression:

JF (ω, q̂) =

[
Aω − ωBω −Bωq̂

q̂H 0

]
. (4.42)

At every iteration, the correction c = [∆q̂,∆ω]T = J−1
F (ωj , q̂j)F(ωj , q̂j)

has to be computed. Nonetheless, it is important to note that the inverse of JF does
not need to be calculated explicitly. Instead, the correction can be obtained from
the numerical solution of the following linear system of size n+ 1× n+ 1 (with
n being the number of rows/columns of the matrices that define the eigenvalue
problem):

JF (ωj , q̂j) c = F(ωj , q̂j). (4.43)

This method, being based on a Newton-Raphson iteration, has a quadratic con-
vergence, so typically only a small number of iterations (less than 10) suffices to
achieve a good degree of convergence. The convergence criterion considered in
this work to stop the iteration is based on the infinity norm of the correction, that
is ||c||∞ = max (|c|). In the case of a spatial stability analysis, the same iterative
method can be applied by replacing the eigenvalue by α, the eigenvector by q̂+

and the system matrices by A+
α and B+

α (see § 3.4.3).

4.2.7.2 Generalized Rayleigh quotient iteration

A well-known iterative eigenvalue algorithm is the Rayleigh quotient iteration
(RQI), see for instance Trefethen & Bau [40]. This algorithm combines the in-
verse power method, usually employed to obtain an eigenvector estimate when an
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approximation to the associated eigenvalue is known, with the Rayleigh quotient,
usually employed to obtain an eigenvalue estimate when an approximation to the
associated eigenvector is known. The result is an iterative method that allows to
obtain an approximation to both an eigenvalue and a corresponding eigenvector
with a single algorithm.

The RQI algorithm computes an increasingly accurate approximation to the
eigenvector-eigenvalue pair by means of two steps in each iteration. For the case
of the temporal stability approach, the steps of the algorithm can be expressed as
follows. First, the next estimate to the eigenvector (q̂j+1) is computed by solving
the linear system

(Aω − ωjBω) q̂j+1 = Bωq̂j (4.44)

for q̂j+1 and normalizing it with respect to its L2 norm, that is

q̂j+1 =
(Aω − ωjBω)

−1
Bωq̂j

|| (Aω − ωjBω)
−1

Bωq̂j ||2
. (4.45)

Second, the next approximation to the eigenvalue is obtained by means of the
Rayleigh quotient. For linear stability theory, a generalized form of the Rayleigh
quotient is employed [47], given by

ωj+1 =
q̂Hj+1B

H
ω Aωq̂j+1

q̂Hj+1B
H
ω Bωq̂j+1

. (4.46)

Equations (4.45) and (4.46) are iterated until a desired degree of convergence
is achieved. In this work, the convergence criterion chosen for this algorithm is
based on the relative error in the eigenvalue, i.e., εr = |ωj+1 − ωj |/|ωj+1|. If a
spatial stability framework is considered, the same algorithmic steps are applied,
once again replacing the eigenvalue by α, the eigenvector by q̂+ and the system
matrices by A+

α and B+
α .

The Rayleigh quotient iteration is specially well suited for Hermitian or sym-
metric matrices, for which a cubic convergence is guaranteed if the initial eigen-
vector-eigenvalue pair is sufficiently close to an actual pair of the system [40].
Nevertheless, the matrices originating from the governing equations of the linear
stability problem do not satisfy this property, and as a result cubic convergence
is usually not achieved in this case. Despite this fact, the performance of the al-
gorithm for the cases studied in this work has been found to be very satisfactory,
typically requiring one less iteration than the Newton-Raphson algorithm intro-
duced previously. On average, 5 iterations were found to be sufficient to achieve
a convergence tolerance of 10−10 with the generalized RQI. Therefore, this algo-
rithm has been employed for the 2D-LST analyses presented in this dissertation.
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4.3 VESTA toolkit

The stability analyses presented in this work have been performed by means of
the VKI Extensible Stability and Transition Analysis (VESTA) toolkit, originally
developed by Pinna [48]. VESTA is a set of computational tools for the derivation,
implementation and solution of the governing equations originating from different
hydrodynamic stability theories, for different thermodynamic flow assumptions
and coordinate systems. At present, VESTA mainly supports the derivation, imple-
mentation and solution of the equations for LST, 2D-LST, streamwise BiGlobal,
PSE and NPSE theories for a wide range of flow assumptions, which include CPG,
TPG, LTE, CNE and thermo-chemical non-equilibrium (TCNE), among others
(see [4, Chapter 8] for a complete description). A preliminary implementation of
the 3D-PSE theory in CPG is also available [49].

Three different main solvers are available for the respective solution of the
LST [4, 31, 50–54], the 2D-LST/BiGlobal [18, 44, 55–57] and the PSE/NPSE
problems [58–61], which share a unified data structure and a common module for
the implementation of the discretized governing equations (see § 4.3.1) and the
associated boundary conditions. These solvers are complemented with numerous
pre- and post-processing tools. Pre-processing functionalities comprise structured
mesh generation for CFD base-flow computations in simple geometries, the ex-
traction of base-flow data from CFD solutions and the manipulation of base-flow
fields to make them suitable for stability analysis, involving the computation of
necessary base-flow derivatives as described in § 4.2.4. Post-processing utilities
enable the analysis of absolute instabilities [62, 63], transition prediction by means
of the eN method or skin friction deviation in NPSE computations, the evaluation
of non-modal growth by means of singular value decomposition of the (2D)LST
operator [64] and the analysis of the production and dissipation mechanisms of the
total disturbance energy in a calorically perfect gas [56]. In addition, a module to
estimate N -factor envelope curves in high-speed boundary layers by means of a
neural network is also available (see [65]).

A summary of different problems on which VESTA toolkit has recently been
applied to study the stability of hypersonic and high-enthalpy shear flows can be
found in the work of Pinna et al. [66].

4.3.1 Automatic derivation and implementation tool (ADIT)

At the heart of VESTA solvers lies a database of scripts that build the matrices of
the stability problem for a given stability theory, thermodynamic flow assumption
and coordinate system. These scripts, referred to as build scripts, are automat-
ically generated by means of a module known as the Automatic Derivation and
Implementation Tool (ADIT).

When deriving the governing stability equations in the compressible regime,
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the number of resulting terms becomes significant. This can be appreciated from
the CPG equations listed in appendices B and C. As a consequence, the manual
derivation and posterior implementation of such equations is subject to human er-
ror. For this reason, having a computational tool that is able to perform these tasks
automatically is highly desirable. This motivated the development of the original
ADIT module in VESTA (see [18, 31, 67]). When more elaborated flow assump-
tions such as CNE are considered, the equation complexity significantly increases,
and the resulting number of terms in a given equation can increase by multiple
orders of magnitude. For example, the 2D-LST energy equation for CPG has
51 terms (B.1e), while the 2D-LST energy equation in CNE features about 3000

terms. In these cases, an automatic derivation and implementation of the equations
is a necessity. For this reason, a generalization of the tool was performed by Miró
Miró [4] to include a complete derivation of the governing stability equations in
multiple flow assumptions, which was further extended by Zanus [60, 68, 69] for
the case of non-linear equations (NPSE).

The derivation side of the tool is based on the computer algebra system (CAS)
known as Maxima [70], which provides a powerful framework for the symbolic
manipulation of the governing equations. The steps followed during the derivation
process of the stability equations are detailed in [4, Chapter 8]. They are essen-
tially the same steps that are required for a manual derivation of the equations.
In addition to the derivation of the governing stability equations, the ADIT mod-
ule was also extended by Miró Miró [4] to allow for the automatic derivation of
the thermodynamic derivatives of the base-flow properties (i.e., quantities such as
∂µ̄/∂T̄ ) for all the different thermodynamic flow assumptions available. As intro-
duced in § 4.2.4, these derivatives are required in the stability equations because of
the Taylor expansion of the perturbation variables associated to the dependent flow
quantities. In the case of thermodynamic assumptions such as CNE or TCNE, ob-
taining analytical expressions for the large number of thermodynamic derivatives
that need to be evaluated is a challenging task, in part owing to the complex ex-
pressions resulting from many of the thermal, transport and chemical models that
are usually employed in practice. Therefore, a manual derivation of the necessary
expressions becomes an error-prone process once again. For this reason, a sym-
bolic differentiation of the required functions is also performed automatically by
means of Maxima.

The implementation part of the tool translates the symbolic expressions derived
by Maxima into MATLAB scripts (build scripts) that are then used to evaluate
those expressions when building the matrices of the stability problem. In the case
of the stability equations, this is achieved by means of the following process. First,
once the derivation of the equations is complete, the various terms appearing in
the equations are grouped according to the independent perturbation quantity they
involve as well as the wave parameters (α, β, ω). This associates the terms to the
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different matrices and submatrices of the system. Next, the expressions inside each
of these groups are written by Maxima into text files that can be read by MATLAB.
Then, specific MATLAB functions read the text files and write the expressions into
the build scripts, translating the symbolic variable names into the names of the data
structures employed by the VESTA solvers.

In the case of the expressions for the thermodynamic derivatives, the imple-
mentation process follows the same philosophy, ultimately generating a set of
build scripts containing MATLAB functions that evaluate the necessary deriva-
tives required by the stability equations. However, in this case the translation of
the symbolic expressions into MATLAB functions is more complex, as summa-
tions and products are involved (which need to be translated into loops) and, in
some cases, the solution of linear systems of equations are required by the mod-
els. The reader is referred to [4, Chapter 8] for a more detailed description of the
implementation procedure.

All the build scripts generated by the ADIT module employ the same unified
data structure which is shared among the different VESTA solvers. For a given
combination of stability theory, thermodynamic flow assumption, coordinate sys-
tem and thermodynamic- and transport-property models, the solvers search for the
necessary build scripts in a common database. As a result, all solvers build the ma-
trices of the stability problem in the same manner, using a unified implementation
of build scripts for any desired configuration.

4.3.2 The 2D-LST/BiGlobal solver

This work makes extensive use of the 2D-LST/BiGlobal solver implemented in
VESTA toolkit. This solver was originally developed by Groot [18] for incom-
pressible and compressible CPG flows in different coordinate systems. By the
choice of the two spatial directions in which the base flow is assumed to be inho-
mogeneous, the solver implements the respective equations that lead either to the
2D-LST formulation or the streamwise BiGlobal formulation (see § 3.6.2) in the
chosen coordinate system.

The original solver was based on a discretization by means of the Chebyshev
collocation method, which was found to limit considerably the size of the two-
dimensional collocation grid that could be employed in practice, owing to the as-
sociated computational cost to be handled by the MATLAB implementation. Later
on, Naddei [44] introduced a MATLAB-Fortran interface for a parallel implemen-
tation of the implicitly restarted Arnoldi algorithm, to allow for the solution of the
resulting dense, large-scale eigenvalue problem outside MATLAB, as described in
§ 4.2.6.2.

In this work, the original solver has been significantly modified to allow for
a more efficient solution of the two-dimensional generalized eigenvalue problem
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and to extend its capabilities to the analysis of high-enthalpy flows. On the one
hand, the solver has been adapted to use the FD-q discretization technique (see
§ 4.2.1.2). Most importantly, it has been modified to exploit the sparsity introduced
in the system matrices when this method is applied, which has reduced dramati-
cally the computational cost of solving the 2D-LST eigenvalue problem. On the
other hand, the data structure of the solver has been made consistent with the other
VESTA solvers in order to benefit from the unified build script database, directly
extending the capabilities of the solver to other thermodynamic flow assumptions.
In addition, the boundary-condition implementation has also been updated accord-
ing to the description given in § 4.2.5, allowing also a unified treatment of bound-
ary conditions with the other solvers. These modifications have enabled the 2D-
LST analyses presented in § 5.3, which require a significant grid resolution in the
spanwise direction, and the 2D-LST computations in TPG and CNE presented in
chapter 6.

Verifications of the original solver in CPG smooth boundary-layer flows are
available in the work of Groot [18]. A verification of the solver for the insta-
bilities evolving behind a discrete roughness element is presented in appendix F,
which shows a comparison of the stability spectrum obtained by the VESTA solver
against the DLR solver of Theiss et al. [24, 71]. Finally, a verification of the 2D-
LST solver in the case of the TPG and CNE flow assumptions is provided in § 6.3,
which is performed against the extensively verified LST solver in VESTA [4].
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5
Stability analysis of the wake behind

an isolated roughness element in a
calorically perfect gas

5.1 Problem description

The first problem analyzed in this work consists of a sharp-edged roughness el-
ement mounted on top of a flat plate inside a cold hypersonic freestream. The
freestream values considered correspond to the high-Reynolds number test condi-
tions of the von Karman Institute H3 hypersonic wind tunnel (see for example the
work of Tirtey [1]), which are summarized in table 5.1. The total temperature as-
sociated to these conditions is T0 = T∞

[
1 +M2

∞ (γ − 1) /2
]

= 500 K. For this
range of temperatures, no significant excitation of the vibrational molecular energy
mode is expected in the flow field1, hence the assumption of a calorically perfect
gas for these conditions is an appropriate choice. Depending on the case, the flat
plate wall is considered to be either isothermal, with a fixed wall temperature of
Tw = 300 K, or adiabatic. The former option is a more reasonable approximation
of the situation encountered in the wind tunnel owing to its short operating times.

The geometrical configuration studied in this chapter is represented in figure
5.1. The roughness element is mounted on top of a flat plate and is located inside

1The temperature at which vibrational excitation becomes important in air is practically not influ-
enced by pressure [2]. According to figure 2.1, vibrational excitation can be neglected for temperatures
below 800 K.
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Figure 5.1: Geometrical configuration considered to study the instabilities induced by an
isolated roughness element in a calorically perfect gas. The dashed lines represent a slice
along the xy roughness symmetry plane (z = 0) of the computational domain used for
obtaining the base-flow solutions. Not to scale.

M∞ u∞ [m/s] T∞ [K] p∞ [Pa] ρ∞ [kg/m3] Re∞/l [1/m]

6 939.45 60.98 1963.42 0.1121 2.61e+07

Table 5.1: Summary of the freestream conditions used in the calorically perfect gas analyses
(VKI H3 wind tunnel [1]).

the laminar boundary layer developing along the plate. Unless otherwise stated,
the flat plate is assumed to be infinitely sharp. Due to a hypersonic viscous-inviscid
interaction at the flat-plate leading edge, a weak shock wave is induced at the lead-
ing edge. The computational domain is located inside the shock layer established
between the surface and the weak shock wave originating at the flat-plate lead-
ing edge. This approach reduces the computational effort necessary to obtain a
base-flow solution while adding flexibility to test different inflow conditions on
the same grid. For these reasons, it has already been employed in similar studies
in the literature (see for example [3–6]). The top boundary of the domain has an
angle to prevent roughness-induced compression waves and weak shock waves to
impinge on it, thus avoiding potential spurious reflections back into the boundary
layer.

The primitive flow variables are prescribed at the inlet and the top boundaries
of the domain, using quantities that are either obtained from a Navier-Stokes so-
lution in a bigger domain without the roughness element, or from a self-similar
boundary-layer computation. Note that when no roughness is present, the flow
field is constant along the spanwise direction and the problem becomes two-dim-
ensional, so that the values to prescribe can be computed through a 2D Navier-
Stokes simulation. This is an additional advantage of using a subdomain with
prescribed inflow data. At the roughness symmetry plane (z = 0) and at the
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Figure 5.2: Roughness geometries considered. Not to scale.

xy far-field plane (z = z∞), symmetry conditions are specified. At the wall, a
no-slip condition is enforced. The wall thermal boundary condition depends on
each particular case, and is defined in the following sections. Finally, at the outlet
boundary, a supersonic outflow condition is specified, in which all the primitive
flow variables are extrapolated from the interior of the domain. For a description
of these boundary conditions, see § 2.3.

With respect to the initial conditions, the flow field is initialized with the
freestream values and the system is integrated in time until a decrease of at least
eight orders of magnitude in the averaged system residual is achieved.

5.1.1 Roughness geometries

Two different roughness geometries are considered in this chapter, which are de-
picted in figure 5.2. The first geometry is a sharp-edged cuboidal element with
a square planform shape. The second one consists in a three-dimensional sharp-
edged ramp geometry, which is inspired by popular passive flow control devices
employed to promote boundary layer transition. An example is the design devel-
oped by the Hypersonic Airbreathing Propulsion Branch at NASA Langley Re-
search Center (see for instance [7]), who explored the possibility of using wall-
mounted ramp fuel injectors in scramjet combustors. Ramp-shaped injectors shed
vortices and produce local flow separation which can enhance mixing and flame
holding.

The spanwise symmetry of these roughness geometries is exploited in the base-
flow computations by considering only half of the roughness element width, and
therefore only half of the computational domain width.

5.2 Instabilities induced by a cuboidal roughness el-
ement at a fixed streamwise location and freq-
uency

The first analysis presented in this chapter focuses on the wake instabilities behind
a sharp-edged cuboidal roughness geometry such as the one illustrated in figure
5.2. The wake instabilities are examined by means of 2D-LST theory at a given
streamwise position (yz plane) and at a given frequency.
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xin [mm] xout [mm] yin [mm] yout [mm] z∞ [mm]
20.28 67.59 1.26 9.60 6.31

Table 5.2: Dimensions of the first computational domain considered in this chapter. The
origin is located at the flat-plate leading edge.

5.2.1 Geometrical parameters and definition of different test
cases

The height and location of the roughness element in this case are determined
following the approach presented by De Tullio et al. [3] and De Tullio & Sand-
ham [4]. In this approach, the roughness has a height (h) equal to the displacement
thickness (δ1) of the flat-plate self-similar boundary layer at a given reference posi-
tion, denoted by xδ1 . This reference location is defined by fixing the displacement
thickness Reynolds number,Reδ1 = ρ∞u∞δ1/µ∞, and the freestream conditions,
so that δ1 is uniquely determined. The value of Reδ1 employed here is the same
one used by De Tullio & Sandham [4], namely Reδ1 = 8200. This value, together
with the freestream parameters considered in this chapter (see table 5.1) and the
assumption of an isothermal flat-plate wall with Tw = 300 K, results in a rough-
ness height of h = δ1 = 0.315 mm and a reference position of xδ1 = 15.24 mm
with respect to the flat-plate leading edge. The planform shape of the roughness
element is a square with edge length d = 6h.

Following De Tullio & Sandham [4], the inlet of the computational domain is
located at a streamwise distance of 16h downstream of xδ1 , that is xin = 20.28

mm with respect to the flat-plate leading edge. The leading edge of the roughness
element is placed at a streamwise distance of 34h downstream of the inlet of the
computational domain. Therefore, the roughness element is placed at a streamwise
position of xh = 31 mm with respect to the flat-plate leading edge.

Regarding the size of the computational domain, table 5.2 lists the x and y
coordinates (streamwise position and height) of the inflow and outflow planes of
the domain as well as half of the domain width, denoted by z∞. Note that owing to
spanwise symmetry, only half of the span is considered (0 ≤ z ≤ z∞). Therefore,
z∞ is the actual spanwise size of the computational domain employed for the base-
flow calculations. The angle of the top boundary of the domain with respect to the
flat-plate wall is 10 degrees.

A summary of the different cases investigated in this set-up is provided in
table 5.3. All these cases assume a constant value of the Prandtl number equal to
Pr = 0.72. The parameter Reh denotes the roughness Reynolds number, defined
as
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Case Thermal BCa Reh Reh,w h/δ99 Inflow profile

1 Isothermal 324 278 0.54 Self-similar boundary layer

2 Isothermal 352 301 0.54 NSb sharp leading edge

3 Isothermal 290 273 0.36
NS circular leading edge
(r = 0.5 mm)

4 Adiabatic 137 119 0.44 Self-similar boundary layer
aBC stands for boundary condition
bNS stands for Navier-Stokes

Table 5.3: Summary of the different cases analyzed. Isothermal cases have a fixed wall
temperature of Tw = 300 K.

Reh =
ρhuhh

µh
, (5.1)

where ρh, uh and µh are the density, streamwise velocity and dynamic viscosity
of the fluid evaluated at the streamwise location of the roughness leading edge and
at a height of y = h in the corresponding smooth flat-plate boundary layer (i.e.
without roughness element). The quantity Reh,w refers to the modified roughness
Reynolds number definition of Bernardini et al. [8, 9], which also accounts for
wall-temperature effects by evaluating the dynamic viscosity at the wall, that is

Reh,w =
ρhuhh

µw
. (5.2)

The value of h/δ99 describes the ratio between the roughness height and the local
boundary layer thickness at the streamwise position of the leading edge of the
roughness element, denoted by δ99. The value of δ99 is determined by means of
the total enthalpy criterion h0/h0,∞ = 0.995 [10], using once again the smooth
flat-plate boundary layer profiles associated to each particular case. This criterion
is well suited for high Mach number flows and can also provide a good estimation
of the boundary-layer thickness in cases where an entropy layer is present.

Typical values of Reh reported in literature above which transition occurs
shortly after the roughness element (usually known as the critical roughness Rey-
nolds number) at the Mach number under study range between Reh ≈ 300–600

(see Redford et al. [11]). Redford and coworkers found the line MhT∞/Tw =

3(Reh − 300)/700 to successfully divide transitional and non-transitional cases
in their database, therefore proposing it as a critical roughness Reynolds number
correlation which takes into account compressibility effects. It is important to
mention, however, that this correlation does not take into account the roughness
shape, the wall temperature or the disturbance environment, but it constitutes a
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good starting reference for calibrating the design of a particular case in terms of
roughness position and height. The modified roughness Reynolds number defini-
tion of Bernardini et al. [9] was found to provide a critical value of the roughness
Reynolds number that was independent of the parameter MhT∞/Tw for a given
roughness shape and disturbance environment, therefore providing a further sim-
plified correlation. According to [9], the critical value of Reh,w ranges between
Reh,w ≈ 400–700 depending on the shape of the obstacle. For a cube-shaped
roughness element, [9, 12] report a critical value of Reh,w = 460.

In supercritical cases (cases with a roughness Reynolds number above the crit-
ical value), transition is to be expected in a very short distance downstream of
the roughness element, in many cases bypassing any linear growth mechanisms
and triggering bypass transition (see for instance [13, 14]). On the other hand,
in subcritical cases, the onset of transition is no longer completely governed by
roughness-induced perturbations. Nonetheless, it is important to note that this
does not imply that transition is not accelerated by the presence of the roughness
element anymore, or that the roughness element no longer influences transition.
In particular, for values of the roughness Reynolds number which are not too far
under the critical value, the roughness element is still expected to play an impor-
tant role on the transition process, in such a way that there is an extensive region
of roughness-induced linear disturbance amplification. These cases are the main
focus of this dissertation, where linear stability theory can provide additional phys-
ical understanding.

Figure 5.3 shows where the current cases fall in the criteria provided by [11]
and [9]. As it can be noticed, all four cases lie in the subcritical regime. For
cases 1 and 2, the chosen configuration yields a value of the roughness Reynolds
number that is slightly under the critical Reh threshold, and further below the
critical Reh,w value. This allows to investigate the growth of roughness-induced
instabilities in a transition scenario governed by significant linear amplification. In
addition, these values of the roughness Reynolds number are low enough so that
global instabilities are not present in the flow field (see [3, 4, 15]), allowing to
focus the analysis on purely convective instabilities and enabling the use of a local
linear stability theory. For the analysis of three-dimensional global instabilities
induced by an isolated roughness element, see the works of Loiseau et al. [16] and
Bucci et al. [17].

Cases 1, 2 and 3 are used to study the effect of the flat plate leading edge on
the instability of the wake. The only difference between them is the inflow data
that is prescribed at the inlet and the top boundaries of the domain, namely, a self-
similar boundary-layer profile in case 1, the boundary-layer resulting from a two-
dimensional Navier-Stokes simulation considering a flat plate with a sharp leading
edge (thus accounting for the viscous-inviscid interaction at the flat plate leading
edge) in case 2, and the boundary-layer resulting from another two-dimensional
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Figure 5.3: Critical roughness Reynolds number criteria of Redford et al. [11] (a) and
Bernardini et al. [9] (b) applied to the cases studied in this chapter. Supercritical cases are
located at the right side of the dashed line; subcritical cases at the left side. The symbol
labeled Case § 5.3 refers to the set-up analyzed in § 5.3.

Navier-Stokes computation assuming a flat plate with a circular leading edge of
radius r = 0.5 mm in case 3. On the other hand, case 4 is used to assess the in-
fluence of the thermal wall boundary condition on the instability characteristics of
the roughness wake. In case 4, the wall is assumed to be adiabatic while keeping
the rest of the parameters identical to those of case 1. The adiabatic wall tem-
perature of the self-similar boundary layer can be estimated through the following
approximate relation [2]:

Tad
T∞

= 1 + Pr1/2 [(γ − 1)/2]M2
∞. (5.3)

With the freestream parameters considered here, equation (5.3) yields a value of
Tad ≈ 434 K. Therefore, the use of the temperature Tw = 300 K in the other three
cases corresponds to a cold wall boundary condition.

The difference between the roughness Reynolds number in cases 1 and 2 is
mainly due to differences in the density profile, which arise as a consequence of as-
suming that the pressure at the boundary-layer edge (pe) is equal to the freestream
pressure in case 1 (similarity solution). In case 2, the boundary-layer profile em-
ployed to estimate the roughness Reynolds number comes from a solution of the
Navier-Stokes equations. Therefore, it accounts for the weak shock wave that
originates at the sharp flat-plate leading edge due to a hypersonic viscous-inviscid
interaction. In case 1, the self-similar boundary-layer profile is considered instead,
which neglects the leading edge shock wave and as a result assumes that pe = p∞.
This simplification results in a 6% difference in the static pressure level across the
boundary layer, which translates into a deviation in the density profile that leads to
the observed difference in Reh.
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Figure 5.4: Inflow boundary-layer profiles for each of the cases presented in table 5.3:
(a) complete streamwise velocity profiles; (b) complete temperature profiles; (c) detail of
streamwise velocity profiles near the wall; (d) detail of temperature profiles near the wall.

The inflow boundary-layer profiles employed for each case are represented
in figure 5.4. The differences between cases 1 and 2 are small, as the viscous-
inviscid interaction taking place at the sharp flat-plate leading edge is weak and
is mostly significant near the leading edge. Nevertheless, the effect of the lead-
ing edge shock wave is still noticeable in the inflow profiles (see the small jump
at y ≈ 4 mm depicted in the inserts in figures 5.4(a, b)), which reflects the pres-
ence of a small entropy layer in the flow field. A much larger difference is found
for case 3. In this case, the blunt leading edge induces a strong bow shock that
generates a large entropy layer over the flat plate, which persists a long distance
downstream. At the domain inflow, the profiles still display a significant jump
due to the bow shock propagating from the leading edge, and feature important
velocity and temperature variations outside of the boundary layer. Such variations
are a consequence of the entropy layer established between the bow shock and the
flat-plate wall. Finally, the adiabatic wall condition imposed in case 4 leads to a
thicker inflow boundary layer as a result of the higher wall-temperature. The larger
boundary-layer thickness combined with the higher temperature at the roughness
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Figure 5.5: Detail of the computational grid used to obtain the base-flow solutions in the
region near the roughness element: (a) xy plane at z = 0; (b) xz plane at y = 0. Only
every four grid points in the streamwise and spanwise directions and every six in the wall-
normal direction are shown.

height result in a much smaller roughness Reynolds number for case 4 with respect
to the other cases.

5.2.2 Computational grid employed for the base flow calcula-
tions

An overview of the numerical grid employed to calculate the base-flow solutions
in this analysis is represented in figure 5.5, which shows the region surrounding
the roughness element. In order to maintain a reasonable computational effort, the
mesh is clustered towards the element in all directions. The cell spacing is uni-
form up to the roughness height in the wall-normal direction and up to the rough-
ness width in the spanwise coordinate. From then on, a constant expansion ratio is
applied until the domain boundary, always keeping a continuity in the cell sizes be-
tween the uniform and the expansion regions. In the streamwise direction, the grid
is respectively clustered towards the leading and trailing edges of the roughness,
also employing a constant expansion ratio. The ratios are uniquely defined by the
number of cells desired on a given edge and the length of that edge, according to
the bunching law given by equation (4.1). The number of grid points employed
along the streamwise, wall-normal and spanwise directions in this configuration is
561, 341 and 241, respectively, yielding a total count of approximately 43 million
points.
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Figure 5.6: Comparison of the base flow obtained for case 1 employing the designed grid
and a finer grid with a 25% increase in the number of cells in the streamwise and wall-
normal directions: (a, b) boundary-layer velocity and temperature profiles at the roughness
centerline (z = 0) and at the domain outlet (x = 0.0676 m); contours of streamwise
velocity (c) and temperature (d) at the outlet yz plane.

In order to check the grid convergence of the base-flow solution, an additional
computation has been carried out on a finer mesh generated by increasing the num-
ber of points in the streamwise and wall-normal directions by 25%, reaching a
total of 70 million grid points. For case 1, figure 5.6 shows a comparison of the
boundary-layer profiles at the roughness centerline and the streamwise velocity
and temperature contours on a spanwise plane, all of them evaluated at the domain
outlet for the two different meshes. It can be seen that both grids deliver the same
base-flow solution. As a result, the coarser mesh has been employed for the other
three cases reported in this set-up.

5.2.3 Base-flow solutions

The main features of the base flow are depicted in figure 5.7, which shows results
for case 1. The cuboidal roughness element generates two regions of separated
flow, located immediately upstream and downstream of it. The flow in these re-
gions is similar to the recirculation bubbles induced by a forward and a backward
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Figure 5.7: Base flow results for case 1: (a) Mach number contours on the streamwise
(xy) plane at the roughness centerline (z = 0), showing the roughness-induced shock
and expansion waves; (b) streamwise velocity contours at the roughness center plane; (c)
streamwise velocity contours on a xz plane at y = 0.5h. The white lines represent isolines
of ū = 0, delimiting regions of separated flow.

facing steps, respectively. The non-homogeneous shape of the upstream recircula-
tion bubble, as it can be observed in figure 5.7(c), indicates the presence of a pair
of horseshoe vortices wrapped around the roughness.

The Mach number contours shown in figure 5.7(a) illustrate that the roughness
element induces a displacement of the boundary layer which leads to a viscous-
inviscid interaction and generates a set of compression waves. The oblique shock
wave relations (see for example [18]) reveal that, in the current configuration, this
upstream compression is not strong enough to form an oblique shock wave. As
the flow reaches the trailing edge of the roughness element, it turns and detaches,
giving rise to an expansion fan that accelerates the flow above the boundary-layer
edge. This expansion fan can be satisfactorily modeled as a Prandtl-Meyer expan-
sion wave. Shortly after, the separated trailing-edge flow progressively reattaches
downstream of the obstacle, in this case generating an actual oblique shock wave.
Note that such an oblique shock is weak because of the small effective deflection
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angle experienced by the flow (approximately 3 degrees), which results in a wave
angle of about 9 degrees. The resulting jump in Mach number across the shock in
this case is M2/M1 ≈ 0.94, with M1 denoting the Mach number upstream of the
shock wave and M2 denoting the Mach number downstream.

Figure 5.7(c) depicts the topology of the streamwise velocity streaks that char-
acterize the wake behind the roughness element. A pair of strong counter-rotating
streamwise vortices is generated at the side edges of the element, due to a pressure
gradient between the top and the lateral surfaces (see the similar analysis of De
Tullio & Sandham [19]). These vortices lift up low-momentum fluid near the flat
plate wall at the roughness symmetry plane and pull down high-momentum fluid
located above the boundary-layer edge towards the sides of the roughness wake. In
this process, a low-velocity streak is induced at the center of the wake, surrounded
by two high-velocity streaks at the sides.

A more detailed representation of the separated-flow regions can be obtained
by looking at the skin friction coefficient (cf ) and the Stanton number (St) distri-
butions along the flat-plate wall. Here, the following definitions are employed [2]:

cf =
τ̄w

1
2ρ∞u

2
∞
, (5.4)

St =
q̄w

u∞ρ∞cp(Tad − Tw)
, (5.5)

where τ̄w and q̄w are respectively the viscous shear stress and the magnitude of the
heat flux at the flat-plate wall. Note that at the flat-plate wall, only the wall-normal
derivatives are different from zero in the current configuration. Therefore:

τ̄w = µ̄w
∂ū

∂y

∣∣∣∣
w

and q̄w = k̄w
∂T̄

∂y

∣∣∣∣
w

. (5.6)

The value of the adiabatic wall temperature (Tad) employed here to evaluate the
Stanton number is that given by equation (5.3).

Figure 5.8 represents the skin friction coefficient and Stanton number distri-
butions along the flat-plate wall and at the roughness centerline for the different
cases under consideration. Negative values of the skin friction coefficient delimit
the extent of the upstream and downstream detached flow regions. Both quantities
feature a strong peak in the upstream recirculation bubble generated in front of
the roughness, which is a consequence of the significant blockage produced by the
element and denotes a region of strong viscous dissipation. The downstream recir-
culation bubble, on the other hand, presents much lower values of skin friction as
well as the lowest values of the Stanton number.

By comparing the skin friction coefficient curves for the different cases, it can
be observed that the negative peak in cf in front of the element is significantly
smaller for cases 3 and 4 than for cases 1 and 2. This is a consequence of the
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Figure 5.8: Skin friction coefficient (a) and Stanton number (b) distributions along the
flat-plate wall at the roughness centerline (z = 0) for each case. The Stanton number dis-
tribution is only represented for the cases with an isothermal wall. The shaded rectangular
bands represent the position and streamwise extent of the roughness element.

smaller blockage introduced by the obstacle owing to the smaller ratio h/δ99 (see
table 5.3) in cases 3 and 4. This is also reflected in the smaller size of the upstream
recirculation bubble for cases 3 and 4. In regard to the downstream recirculation
region, its size is also smaller for case 4 with respect to the other three cases, for
which it features a very similar length. Owing to the similarities in the conditions
between cases 1 and 2, the evolution of the skin friction coefficient is also very
similar for the two cases along the entire streamwise range. Comparing the Stanton
number evolution for the different isothermal-wall cases, it is worth mentioning
that case 3 shows a smaller heat transfer for all the streamwise region considered.
The decrease is specially significant at the peak in front of the roughness element,
similarly to what is observed for the skin friction coefficient.

To better illustrate the flow structure inside the wake behind the elements, two
additional quantities are represented in cross-flow (y-z) planes in figures 5.9 and
5.10. Figure 5.9 shows contour plots of the streamwise shear magnitude, defined
as
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Figure 5.9: Contours of streamwise shear magnitude (equation (5.7)) in a spanwise plane
located at x = 0.0643 m. The white dashed lines represent a projection of the roughness
element.

Figure 5.10: Contours of streamwise vorticity (equation (5.8)) in a spanwise plane located
at x = 0.0643 m. The white dashed lines represent a projection of the roughness element.

ūs =

√(
∂ū

∂y

)2

+

(
∂ū

∂z

)2

, (5.7)

on a plane located at a distance of x = 0.0643 m with respect to the flat-plate lead-
ing edge, which is equivalent to a distance of 100h downstream of the roughness
trailing edge. Similarly, figure 5.10 displays contours of the streamwise vorticity
at the same streamwise location, given by

ξ̄x =
∂w̄

∂y
− ∂v̄

∂z
. (5.8)
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Two regions of large shear magnitude can be identified near the flat plate-wall at
the side edges of the roughness element (see figure 5.9). These regions are located
between the wall and the high-velocity streaks established in the roughness wake.
The large shear values attained at these locations can be explained due to the big
velocity gradient that exists between the high-velocity fluid traveling inside the
streaks and the zero-velocity fluid at the flat plate wall. In between these two areas,
another region of low shear is found, which corresponds to the origin of the central
low-velocity streak where the lift-up effect takes place. The low-momentum fluid
that is pulled up in this region gives rise to the mushroom-shaped structure that
characterizes the central part of the wake. Owing to the large velocity gradient
established between the low-velocity fluid inside the central streak and the outer
flow-field above the boundary layer, the region surrounding the low-velocity streak
features a layer of high shear magnitude. The streamwise vorticity contours (see
figure 5.10) clearly illustrate the location and shape of the counter-rotating vortex
pair. These contours also reveal that two additional small and opposite vortices are
respectively induced at each side of the counter-rotating pair.

Cases 1 and 2 display very similar shear magnitude and streamwise vorticity
signatures, with case 2 showing slightly larger values of ūs at the top of the cen-
tral streak. Cases 3 and 4 feature significantly smaller values for both quantities
compared to cases 1 and 2 for the same streamwise location behind the element.
For case 4, this is attributed to the higher boundary-layer thickness associated to
this configuration, which leads to weaker counter-rotating vortices as reflected in
figure 5.10(d). The larger boundary-layer thickness is a result of the higher tem-
perature inside the boundary layer (see figure 5.4). Because the pressure is the
same in both the adiabatic and isothermal wall cases, the density of the fluid in the
boundary layer is much lower in the adiabatic solution. Therefore, a larger vol-
ume of fluid is required to accommodate the same mass flow within the boundary
layer [18, Chapter 18], resulting in a thickening of the boundary layer. In case 3,
although the thicker boundary layer also leads to a weaker counter-rotating vor-
tex pair, the main reason for the reduced shear in this case is the smaller velocity
present in the inviscid flow region above the boundary-layer (see figure 5.4), which
is due to the presence of the large entropy layer that characterizes the flow field in
this configuration.

5.2.4 Spatial stability spectrum

This section presents the results of a spatial stability analysis performed in the
wake behind the roughness element at given streamwise location and frequency.
All the calculations are performed at a frequency f = 417.1 kHz, which corre-
sponds to a non-dimensional frequency of F = fh/u∞ = 0.14, and at a stream-
wise location of x = 0.0643 m, which is equivalent to a distance of 140h down-
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stream of the domain inflow (100h downstream of the roughness trailing edge).
These values have been chosen following the DNS results of De Tullio & Sand-
ham [4] for a very similar configuration, for which this frequency is the one featur-
ing the highest linear disturbance growth and the plane is located at a streamwise
distance where a significant linear development of the dominant instability modes
has been attained (see also the 2D-LST analysis of Paredes et al. [20]).

The Chebyshev collocation method is employed for the discretization of the
2D-LST eigenvalue problem. Symmetry/antisymmetry boundary conditions are
imposed along the spanwise direction in order to resolve only half of the domain
width in each computation. Therefore, all the spectra shown in this section con-
tain the merged results from the solution of two different eigenvalue problems for
each case, namely, the eigenvalues obtained with symmetry boundary conditions
at both spanwise boundaries and the eigenvalues obtained with the antisymmetric
counterpart. The collocation grid is mapped to the physical domain employing
the transformation given by equation (4.16) along each spatial direction, consid-
ering the following mapping parameters: ymax = 16h, zmax = 10h, yi = 2.5h

and zi = 2h. The implicitly restarted Arnoldi algorithm is employed for comput-
ing 200 eigenmodes for each spanwise boundary condition specification (symme-
try/antisymmetry), using a non-dimensional shift-invert parameter of σ = 0.95.

Results of the stability calculation for case 1 are mainly presented in figures
5.11 and 5.12. Figure 5.11 shows the spatial 2D-LST spectrum and figure 5.12
illustrates the two-dimensional streamwise velocity amplitude functions of the
most unstable discrete modes obtained at the specified streamwise location and
frequency. In addition, to provide an idea of the approximate three-dimensional
shape of the most relevant perturbations under analysis, figures 5.13 and 5.14 dis-
play contour plots of the streamwise velocity perturbation (ũ) on xy and xz planes
along a streamwise region comprised between x ≈ 0.061 m and x ≈ 0.067 m. It
is very important to emphasize that these two figures were produced by employing
the information obtained from the 2D-LST computation at x = 0.0643 m only.
The three-dimensional function ũ = ũ(x, y, z, t) for each instability was obtained
by evaluating the perturbation ansatz defined by equation (3.30), using the respec-
tive values of α and û computed by means of the 2D-LST solution at the selected
location and frequency and for t = 0 s. The actual shape of the perturbations is
slightly different because their growth rate and wavenumber are different at each
streamwise station.

Different grids have been tested in order to check the convergence of the spec-
trum with respect to the number of collocation points in both the spanwise (Nz)
and the wall-normal (Ny) directions, providing at the same time a direct visualiza-
tion of the location of continuous, discrete and spurious numerical modes in the
stability spectrum (see figure 5.11). A discretized vertical continuous branch lo-
cated at αr = ωr/ū∞ can be observed, which is composed of modes that represent
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Figure 5.11: Spatial 2D-LST spectrum for case 1 at f = 417.1 kHz and x = 0.0643 m.
The letters between parentheses label the different discrete unstable modes present in the
spectrum and associate each of them with the corresponding amplitude function represented
in figure 5.12.

entropy and vorticity waves and travel with a phase speed equal to the freestream
velocity (see Balakumar & Malik [21]). Although not shown in the figure, two
additional horizontal continuous branches located in the real axis respectively at
the right and left of the vertical branch can also be found in the spectrum. These
branches are associated to the supersonic nature of the flow, and in this case rep-
resent acoustic waves. It has been checked that such branches can actually be
retrieved when changing the shift of the transformed GEVP and/or solving for a
larger number of eigenvalues. Several spurious modes appear scattered along the
imaginary axis at a nearly constant wavenumber of about αr = 2880 m-1, which
do not show any grid convergence. Their unphysical nature has been further con-
firmed by looking at the associated amplitude functions. The discrete, and phys-
ically interesting, eigenvalues are located at the right of the continuous branch,
spanning different wavenumbers in the range approximately between αr = 2900

m-1 and αr = 3200 m-1. These modes are completely converged with respect
to Nz , while convergence is close with respect to Ny , specially for the unstable
eigenvalues. In the remaining stability calculations shown in this section, a grid
resolution of Nz ×Ny = 100× 110 is employed.

Nine unstable discrete modes are identified in the spectrum, labeled with letters
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Figure 5.12: Contours of the normalized magnitude of the streamwise velocity eigenfunc-
tions for case 1 (f = 417.1 kHz and x = 0.0643 m). The letters inside parentheses denote
the corresponding discrete instability mode in the spectrum (figure 5.11). The eigenfunc-
tions represented correspond to a grid resolution of 100× 110 collocation points.
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Figure 5.13: Contours of the normalized streamwise velocity perturbation on streamwise
(xy) and wall-normal (xz) planes for the instabilities associated to the Mack-mode family
in case 1. The letters inside parentheses indicate the corresponding mode according to
figure 5.11. The xz plots correspond to a height of y = 2.44h = 7.69 × 10−4 m. Note
that these contours are generated by evaluating the three-dimensional perturbation function
given by the 2D-LST ansatz (3.30) at t = 0 s, using the amplitude function and growth rate
computed for each mode at x = 0.0643 m only.
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Figure 5.14: Contours of the normalized streamwise velocity perturbation on streamwise
(xy) and wall-normal (xz) planes for the most unstable sinuous and varicose wake insta-
bilities in case 1. The letters inside parentheses indicate the corresponding mode according
to figure 5.11. The xy plots correspond to a cut at z = 2.50h = 7.88× 10−4 m and the xz
plots to y = 2.69h = 8.48×10−4 m. Note that these contours are generated by evaluating
the three-dimensional perturbation function given by the 2D-LST ansatz (3.30) at t = 0 s,
using the amplitude function and growth rate computed for each mode at x = 0.0643 m
only.

ranging from (a) to (i). These letters are respectively associated to the contour
plots of the streamwise velocity amplitude functions displayed in figures 5.12, 5.13
and 5.14. For the particular conditions considered, the leading instability mode
(a) is the two-dimensional Mack mode, which mainly develops in the boundary
layer starting at the sides of the roughness element and spanning the complete
computational domain in the spanwise direction. The nature of this boundary-
layer mode is not associated to the presence of the roughness and therefore it can
also be retrieved both by means of LST or 2D-LST considering a smooth flat plate,
i.e., without the roughness element. Nevertheless, in this case the wake induced by
the obstacle strongly modulates the Mack-mode perturbation, as can be observed
in the xz plots and in the cut plane at z/h = 2.50 in figure 5.13.

The second dominant instability mode (b) also peaks at the sides of the ele-
ment, with an antisymmetric shape function showing a similar amplitude distri-
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bution to that of the Mack mode. The same is true for modes (e) and (f). It is
argued that modes (b), (e) and (f) are oblique perturbations of the same family as
the Mack mode, with an increasing spanwise wavenumber β (β(b) < β(e) < β(f)).
Their diagonal-like distribution along the spectrum and the perturbation functions
shown in figure 5.13 further support this argument. On the other hand, modes (c)
and (d) respectively correspond to the most unstable varicose and sinuous defor-
mations of the low-velocity streak, whose amplitude functions are maximum in the
high-shear layer surrounding the mushroom-shaped structure. These are the most
unstable perturbations developing inside the wake behind the roughness element,
with the varicose mode showing a slightly higher growth rate in this case. Figure
5.14 shows the even and odd perturbation functions respectively associated with
the varicose and sinuous instabilities. Their region of development is concentrated
inside the roughness wake and in the shear layer around the central streak.

The wake of the element also sustains the growth of two additional modes, de-
noted by (h) and (i), which have very small growth rates and their amplitude peaks
are located at the interface between the streamwise counter-rotating vortices and
the boundary layer at the sides of the roughness element. It is worth noting that, as
could be expected, the regions where the amplitude functions of the wake modes
are higher mainly correspond to the areas with larger shear magnitude gradients.
Finally, mode (g) is argued to be related to the leading wake fluctuations (c) and
(d). Similarly to perturbations (b), (e) and (f) in the case of the Mack mode, this
mode seems to correspond to an instability of the same family as the varicose and
sinuous modes, featuring additional peak and valley regions distributed along the
high-shear layer that surrounds the low-velocity streak, as can be observed by its
amplitude function. The remaining discrete stable modes located in the diagonal
line at the right of the vertical continuous branch are oblique variations belonging
to the Mack-mode family, with increasing β when moving towards lower growth
rates (see § 3.15.1).

These results agree qualitatively well with the 2D-LST analysis of Paredes et
al. [20], performed at the same frequency and streamwise position on a base flow
with the same roughness geometry and size but at different freestream and wall-
temperature conditions. In that study, the Mack mode is also the most unstable
disturbance at the particular conditions considered, followed by the same antisym-
metric perturbation here denoted by mode (b) and the varicose mode, although no
sinuous instability is reported. In this work, the relationship between Mack-mode
instabilities and the wake sinuous and varicose modes induced by the roughness is
elaborated in § 5.3.
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Figure 5.15: Spatial 2D-LST spectra for f = 417.1 kHz at x = 0.0643 m: (a) comparison
between cases 1 and 2; (b) spectrum for case 3. For clarity, spurious numerical modes are
not shown.

5.2.4.1 Effect of the self-similar boundary-layer assumption at the domain
inflow

The self-similar boundary-layer profile imposed at the domain inflow in case 1 ne-
glects the viscous-inviscid interaction that takes place at the sharp flat-plate leading
edge, which induces a weak curved shock wake (see for example [2, Chapter 7]).
Although small, the influence of this shock wave is still noticeable at the location
of the domain inflow, as shown in the boundary-layer profiles for case 2 repre-
sented in figure 5.4. As discussed previously, figures 5.9 and 5.10 reveal that the
base flow behind the roughness element is very similar for cases 1 and 2, but small
differences can nonetheless be observed, with case 2 resulting in a slightly higher
local boundary-layer thickness.

In order to examine the effect of the viscous-inviscid interaction that takes
place at the sharp flat-plate leading edge on the stability of the roughness wake, the
spatial stability spectra obtained for cases 1 and 2 are compared in figure 5.15(a).
It can be seen that the weak shock induced at the flat-plate leading edge leads to
a mild stabilization of the boundary layer as well as a small shift towards higher
wavenumbers. Although the topology of the spectrum remains the same in both
cases, all the discrete modes in case 2 have a lower growth rate than in case 1.
Therefore, even if the leading-edge shock is weak, it induces a small entropy gra-
dient that has a non-negligible impact on the stability of the flow field far down-
stream of the roughness element.
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5.2.4.2 Effect of the flat plate leading-edge bluntness

A local analysis of the wake instability for case 3 allows to have a preliminary
assessment of the influence of considering a blunt flat-plate leading edge. In
this case, a large entropy layer is present in the flow field, which extends for
a long distance downstream and severely affects the inviscid flow region above
the boundary-layer edge (see the inflow profile represented in figure 5.4). Fig-
ure 5.15(b) presents the resulting spectrum obtained from the 2D-LST analysis at
f = 417.1 kHz and x = 0.0643 m for case 3. No unstable modes have been
retrieved for this particular configuration. As can be noticed in figures 5.9(c) and
5.10(c), the streamwise shear and the streamwise vorticity found behind the ele-
ment in case 3 are signicantly smaller than in the other cases, already suggesting
that the wake instability mechanisms might be considerably weaker. In order to
confirm this result, on one side, a larger area of the 2D-LST spectrum has been
scanned by performing stability computations with different shifts at a smaller res-
olution. On the other side, a LST analysis has been carried out for the boundary-
layer profile far away from the roughness wake. None of the calculations have
revealed unstable modes, so it is argued that the flow field is stable for this case at
the particular frequency and streamwise position considered.

It is important to note that in order to characterize the effect of leading edge
bluntness on the roughness wake instability, a complete study considering the
streamwise and frequency evolution of the growth rate of the wake and boundary-
layer modes would be necessary. This analysis has been left out of the scope of
this work. The effect of the entropy layer on the linear stability of supersonic
boundary layers over smooth blunt flat plates and wedges has been investigated
for example by Balakumar [22]. The reported findings show that the entropy layer
that induced by the bow shock generated in front of the blunt leading edge persists
for a long distance downstream and leads to a strong stabilization of the bound-
ary layer. For large nose-tip bluntness, however, experiments on blunt cones at
high speed reveal an upstream movement of the transition location with increasing
nose-tip radius (see Stetson [23]), known as transition reversal. The reasons for
this behavior are not yet fully understood, and the study of transition mechanisms
that could explain the early breakdown to turbulence observed in experimental in-
vestigations on blunt cones at hypersonic speeds remains a state-of-the-art topic,
see for instance Paredes et al. [24].

5.2.4.3 Effect of the thermal wall boundary condition

The base flow obtained when considering an adiabatic flat plate (case 4) presents
substantial differences with respect to the isothermal solution (case 1). As de-
scribed before, the boundary layer is considerably thicker when the wall is as-
sumed to be adiabatic (see figures 5.9(d) and 5.10(d)), leading to a smaller ratio
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Figure 5.16: Comparison of the spatial 2D-LST spectra between case 1 and case 4 (f =
417.1 kHz, x = 0.0643 m). The letters inside parentheses label the different discrete
unstable modes present in the spectrum and associate each of them with the corresponding
amplitude function shown in figures 5.12 and 5.17. Letters in grey refer to case 1 whereas
letters in black label the equivalent instability modes for case 4. Spurious numerical modes
are not shown.

of roughness height to boundary-layer thickness as well as to a smaller roughness
Reynolds number. The resulting shear magnitude and vorticity found within the
roughness wake are significantly reduced with respect to the isothermal wall case.
These differences are expected to yield a more stable wake with respect to case 1.

The results of the stability analysis performed for case 4 at f = 417. kHz and
x = 0.0643 m are displayed in figures 5.16 and 5.17, which respectively show a
comparison of the spectra between cases 1 and 4 and the amplitude functions of
the different unstable discrete modes obtained for case 4. As before, the letters in
parenthesis identify the different unstable disturbances. The topology of the spec-
trum for the adiabatic wall configuration is similar to the isothermal case, but the
relative importance between the dominant instability modes presents some differ-
ences. In general terms, the boundary layer is more stable in case 4, as expected
owing to the smaller shear present in the wake, and there is a shift to smaller
wavenumbers for almost all the instabilities. Focusing on the individual distur-
bances, the Mack mode (a) is once again the dominant perturbation, although with
a lower growth rate than in case 1. This is consistent with the results of linear
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Figure 5.17: Contours of the normalized magnitude of the streamwise velocity eigenfunc-
tions for case 4 (f = 417.1 kHz, x = 0.0643 m). The letters inside parentheses indicate the
corresponding instability mode in the spectrum, as illustrated by the black labels in figure
5.16.

stability theory in smooth flat-plate configurations, see for instance Mack [25],
for which it is well known that boundary-layer heating has a stabilizing effect on
Mack’s second mode.

The varicose mode (c), however, is found to be more unstable than in the
isothermal case, this time featuring a very similar growth rate to that of the Mack
mode, making it the second most unstable disturbance for this particular config-
uration. This behavior of the varicose mode is argued to be correlated with its
region of amplitude development near the wall, as can be observed in figure 5.17.
As suggested by De Tullio & Sandham [4] and further reported by Groskopf &
Kloker [15], two distinct frequency ranges in which the varicose instability un-
dergoes large amplification can be found in the roughness wake, which seem to
respectively correlate with the frequency bands associated to the amplification of



5-26 CHAPTER 5

Mack’s first- and second-mode instabilities. When the amplitude function of the
varicose mode features a region of high amplitude near the flat-plate wall, its range
of amplification is found to be similar to that of Mack’s second mode. In particular,
the varicose mode at these conditions is found to be tuned with the boundary-layer
thickness (see the behavior of mode VC (varicose-central) reported in [4]), in the
same manner as Mack’s second mode evolving in the flat plate boundary layer.
Therefore, the thickening of the boundary layer when assuming adiabatic wall con-
ditions has a significant impact on the varicose disturbance for the frequency under
consideration. Nevertheless, it is important to mention that the varicose instability
is found to behave in the opposite way to the second Mack mode with respect to
base-flow heating, i.e., it becomes destabilized for higher boundary-layer temper-
atures. This is the same behavior observed by De Tullio & Sandham [4] for the
varicose-central mode found in their analysis. In this work, the two different fre-
quency ranges of development of the varicose mode are identified and discussed
in § 5.3.

In contrast to the varicose perturbation, the sinuous mode (d) becomes less
unstable than when considering an isothermal wall, following a similar trend to
the majority of the instabilities found in the spectrum. Modes (b), (e) and (f) once
again correspond to oblique disturbances of increasing spanwise number that are
associated to the Mack mode. The last mode (i) is of the same kind as modes
(h) and (i) in case 1, namely, a disturbance peaking at the interface between the
streak, the roughness-induced vortices and the boundary layer at the sides of the
roughness wake.

It is important to mention that the adiabatic wall configuration considered here
does not employ a scaled roughness element height to maintain a constantReh. As
a result, a considerably smaller Reh is obtained in this case (see table 5.3), leading
to a lower amplification of the instabilities. This means that in the comparison of
cases 1 and 4, two different effects are present, namely, the influence of the wall-
temperature condition and the effect of a lower roughness Reynolds number. To
have an assessment of pure wall-temperature effects, the roughness size should be
increased to keep Reh constant, as done for instance by De Tullio & Sandham [4].
Nonetheless, the effect of decreasing Reh is believed to be purely stabilizing for
the disturbances, while the effect of using a different wall-temperature condition
is the responsible for the varicose-mode destabilization described above. The ef-
fect of the boundary-layer heating on the other wake modes, such as the sinuous
mode (d) cannot be distinguished from the effect of having a different Reh in this
analysis.
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5.3 Streamwise evolution of the instabilities induced
by a cuboidal and a ramp-shaped roughness ele-
ment

The second analysis presented in this chapter considers the streamwise evolution
of instabilities along the wake induced by an isolated roughness element. Although
the same geometrical configuration as in the previous cases is considered, differ-
ent dimensions and roughness location are used here, yielding a slightly different
roughness Reynolds number. The previously described analysis constitutes a test
case for establishing and verifying the methodology for performing 2D-LST stabil-
ity computations behind a discrete roughness element, and describes the topology
of the instabilities and their sensitivity to different factors at a fixed streamwise
station and frequency. However, it does not allow to issue concluding remarks on
which are the instabilities governing the transition process in terms of integrated
amplification factors. The study presented in the following discusses the evolu-
tion of the leading disturbances in the roughness wake and examines the energy
extraction mechanisms that lead to their excitation.

5.3.1 Geometrical parameters and case definition

For this analysis, the two different roughness geometries presented in figure 5.2
are considered and compared, namely, a cuboidal roughness element and a ramp-
shaped roughness element. The dimensions of the computational domain are the
same for both roughness geometries and are summarized in table 5.4, which lists
the streamwise coordinate and height of the inlet (xin, yin) and outlet (xout, yout)
planes of the domain, as well as the spanwise domain size (z∞), which is constant.
Both roughness elements have a height of h = 0.4 mm and their leading edge is
located at a streamwise distance of xh = 60 mm from the flat-plate leading edge.
Their length is determined according to the ramp angle θ as d = h/ tan(θ), with
θ = 10 degrees. The resulting roughness Reynolds number for this configuration,
based on a self-similar boundary-layer profile at xh, isReh = 330 (Reh,w = 300).
The corresponding ratio of roughness height to local boundary layer thickness is
h/δ99 = 0.59, where δ99 is once again estimated by applying the total enthalpy cri-
terion (h0/h0,∞ = 0.995) in the self-similar boundary-layer profile. The Reynolds
number based on the displacement thickness of the boundary layer at the domain
inflow is Reδ1 = 14847.

The chosen roughness Reynolds number is almost identical to the one used in
the DNS analysis of De Tullio & Sandham [4], which considers a cuboidal rough-
ness. The present cuboid configuration is therefore very similar to that of [4], the
main difference being the freestream and wall-temperature employed. In the cur-
rent case, the wall is chosen to be isothermal with Tw = 300 K, whereas in De
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xin [mm] xout [mm] yin [mm] yout [mm] z∞ [mm]
50 400 7.69 88.49 15

Table 5.4: Dimensions of the second computational domain considered in this chapter. The
origin is located at the flat-plate leading edge.

Figure 5.18: Computational grid employed for the ramp roughness geometry: (a) xy plane
at z = 0; (b) xz plane at y = 0. For representation purposes, only every eight grid points
are shown along the wall-normal direction, and every two points along the streamwise and
spanwise directions.

Tullio & Sandham [4] it is fixed to Tw = Tad = 1942 K, which corresponds to
the adiabatic wall temperature according to the conditions chosen in their work.
Despite the different thermal wall boundary condition, the similarity in the rough-
ness geometry and roughness Reynolds number allows for qualitative comparison
between both cases, similarly to the results presented in § 5.2.

The base flows studied in the remaining part of this chapter employ a non-
constant Prandtl number, which is obtained as a result of applying Sutherland’s
law for both viscosity and thermal conductivity as described in § 2.5.2.1.

5.3.2 Computational grids

The computational grids used to obtain the base-flow solutions in the current con-
figuration are also block-structured and consist of hexahedral cells. As in the pre-
vious cases analyzed, for both roughness geometries the grid is clustered towards
the element in all directions as well as towards the flat plate wall. The reference
grid resolution employed for each case in every direction is summarized in ta-
ble 5.5, resulting in a total number of 65 million cells for the cuboid element and
76 million cells for the ramp geometry. The grid near the cuboidal roughness is
almost identical to the one shown in figure 5.5. The grid in the vicinity of the
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Roughness geometry Reference Coarse
Nx Ny Nz Nx Ny Nz

Cuboid 1001 351 191 751 264 144
Ramp 841 421 231 632 316 174

Table 5.5: Grid resolution employed for the base-flow computations. The quantities Nx,
Ny and Nz denote the number of grid points along each spatial direction.

ramp element is illustrated in figure 5.18. It important to emphasize that the side
surface of the ramp geometry is a triangle. In order to mesh this surface employing
quadrilaterals, the triangle is split into three quadrilaterals at its centroid.

In order to check for grid convergence, the numerical base-flow solutions are
also computed on coarser grids generated by reducing by one-fourth the number
of points in each direction (along every edge of the block structure). The coarser
grid resolution is also reported in table 5.5. Results for both grid resolutions are
compared in figure 5.19. A very good agreement is obtained between the quantities
computed with both grids for each roughness geometry, indicating a satisfactory
grid convergence of the base-flow solutions. The analyses presented further below
have been carried out employing the Navier-Stokes solutions obtained in the finer
(reference) grid for each roughness.

5.3.3 Base-flow solutions

The main features of the base-flow solutions computed for each roughness geom-
etry are displayed in figure 5.20. These flow fields bear strong resemblance to
those presented in § 5.2.3, therefore most of their relevant physical characteristics
have already been described. In this section, the attention is mainly focused on the
differences between both roughness geometries.

Owing to the planform shape of the ramp geometry (see figure 5.2), the rough-
ness width at the trailing edge is one-fourth of that at the leading edge. This varia-
tion results in a small region of recirculating fluid downstream of the obstacle and,
as a consequence, the size of the downstream recirculation bubble is much larger
for the cuboid geometry than for the ramp. Upstream of the roughness element,
only the cuboidal geometry induces a separation region. The ramp-shaped element
leads to a much weaker compression of the flow and no upstream detachment oc-
curs.

The Mach number contours shown in figures 5.20(a, c) illustrate that both
elements generate a very similar system of compression and expansion waves.
The oblique shock relations confirm once again that the reattachment compressive
wave induced downstream of the elements is an actual weak oblique shock for
both roughness geometries. Figures 5.20(b, d) depict the topology of the stream-
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Figure 5.19: Convergence of results with respect to the base-flow grid resolution: temper-
ature profiles at x = 0.1 m and at the roughness symmetry plane (z = 0) for (a) the
cuboid and (b) the ramp roughness geometries; (c) temporal growth rate as a function
of the streamwise direction for a sinuous wake instability of wavelength λx = 0.325 cm
(cuboid) and λx = 0.86 cm (ramp); shape of the recirculation bubbles induced by (d) the
cuboid and (e) the ramp element at the roughness symmetry plane, represented as isolines
of ū = 0.

wise velocity streaks that characterize the wake behind the roughness elements.
Comparing both roughness shapes, the lateral angle of the ramp geometry leads
to a narrower low-velocity streak as compared with that of the cuboid. The two
high-velocity streaks originating at the sides of the elements become very close to
each other in the case of the ramp configuration.

To better illustrate the differences in the flow structure inside the wake behind
the elements, the streamwise shear magnitude, defined in equation (5.7), and the
streamwise vorticity, given by equation (5.8), are also examined in cross-flow (y-z)
planes. Figures 5.21 and 5.22 respectively display contour plots of these two pa-
rameters at three different streamwise locations for each roughness geometry. Both
geometries induce a counter-rotating vortex pair that generates a three-dimensional
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Figure 5.20: Main features of the laminar base-flow solution obtained for each roughness
element: (a, c) Mach number contours at the roughness symmetry plane (z = 0); (b, d)
streamwise velocity contours in the x-z plane located at half of the roughness element
height (y = h/2). The white solid lines indicate isolines of ū = 0, which delimit regions of
separated flow.
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Figure 5.21: Contours of base-flow streamwise shear magnitude for the cuboid (a, c, e)
and the ramp (b, d, f) roughness geometries at three different streamwise locations: (a, b)
x = 0.07 m; (c, d) x = 0.1 m; (e, f) x = 0.2 m. The dashed lines represent a projection
of the roughness element and the dotted lines denote the local boundary-layer thickness.

high-shear layer that surrounds the central, low-velocity streak, as described in
§ 5.2.3. The thickness of the low-velocity streak is found to grow with the bound-
ary layer. As a consequence, the shear that surrounds it progressively decreases
in magnitude downstream, as the vortices lose strength due to dissipation and the
differences in velocity between the streaks and the outer flow become smaller. At
a streamwise station of x = 0.2 m, the shear in the layer surrounding the central
streak has already become approximately of the same magnitude as the shear de-
veloping in the boundary layer outside of the roughness wake for both roughness
geometries (see figures 5.21(e, f)).

An important observation is that the ramp element induces a three-dimensional
shear layer around the central streak which features the same shear magnitude as
the high-shear regions near the wall (see figures 5.21(b, d)). This is in contrast to
the cuboidal geometry, for which the shear enclosing the low-velocity streak is of
smaller magnitude than that close to the wall, as illustrated in figures 5.21(a, c, e),
despite the maximum values of ūs being higher for the cuboid configuration. This
suggests that the lift-up effect is stronger for the ramp case, which could be ex-
plained by the fact that the counter-rotating vortices are closer to each other due
to the smaller spanwise extent of the ramp geometry. The regions of development
of streamwise vorticity shown in figure 5.22 further support this argument, i.e., for
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Figure 5.22: Contours of base-flow streamwise vorticity for the cuboid (a, c, e) and the
ramp (b, d, f) roughness geometries at three different streamwise locations: (a, b) x =
0.07 m; (c, d) x = 0.1 m; (e, f) x = 0.2 m. The dashed lines represent a projection of the
roughness element and the dotted lines denote the local boundary-layer thickness.

the ramp case these regions are concentrated in a narrower area, and the vortical
structures are more elongated.

A comparison of the strength of the roughness wake along the streamwise di-
rection for both obstacle geometries is provided in figure 5.23, which shows the
evolution of the local in-plane maxima of relevant flow quantities. The maximum
streamwise vorticity, represented in figure 5.23(a), decreases very fast in the vicin-
ity of the roughness elements and then follows an exponential decay. In line with
the contour plots represented in figure 5.22, the counter-rotating vortex pair in-
duced by the cuboid geometry features a higher streamwise vorticity than that of
the ramp. Figure 5.23(b) shows the evolution of the streak amplitude, which is a
measure of the strength of the low-velocity streak developing in the wake. In the
figure, the same definition used by [4] is employed, given by

∆ūst(x) = max
y

[ū(x, y, z∞)− ū(x, y, 0)]. (5.9)

For the cuboidal roughness, it can be noticed that although the wake streamwise
vorticity decreases monotonically, the streak amplitude undergoes an increase right
after the trailing edge separation bubble. This behavior could be interpreted ac-
cording to the development of the lift-up effect. As the streamwise counter-rotating



5-34 CHAPTER 5

Figure 5.23: Streamwise evolution of different base-flow quantities along the wake for both
roughness geometries: (a) maximum streamwise vorticity at each y-z plane; (b) streak am-
plitude as given by equation (5.9); (c, d) maximum wall-normal and spanwise gradients of
the streamwise velocity at every cross-flow plane; (e, f) maximum wall-normal and span-
wise temperature gradients at each y-z plane. The initial streamwise location corresponds
to the trailing edge of the roughness elements.

vortices are forming, the lift-up progressively increases until reaching a maximum
strength. Then, as the dissipation of the vortex intensity becomes more signifi-
cant, its effect is progressively reduced and the streak amplitude starts to decrease
at a nearly constant rate. For the ramp geometry, the streak amplitude begins to
decay almost immediately after the roughness trailing edge and does not feature
the transient-growth behavior observed for the cuboid. Using this definition of the
streak amplitude, the resulting streak strength for the ramp obstacle is higher than
for the cuboid up to a streamwise distance of x ≈ 0.1 m. The ∆ūst signature
obtained for the cuboid geometry features a strong similarity with that reported by
De Tullio & Sandham [4]. Note, however, that the curve reported in [4] covers a
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Figure 5.24: Streamwise evolution of the streak amplitude for the cuboid (a) and the ramp
(b) roughness geometries using the three different definitions given by equations (5.9),
(5.10) and (5.11).

much smaller streamwise range (approximately 18 times the roughness length, i.e.
up to x ≈ 0.1 m) than the one shown in figure 5.23(b).

The maximum wall-normal shear, displayed in figure 5.23(c), also decreases
monotonically downstream of the trailing edge recirculation bubble for both ele-
ments, progressively adopting an exponential decay rate as the wake evolves down-
stream. The cuboid shape features larger values than the ramp in this case. On the
other hand, the maximum spanwise shear (figure 5.23(d)) is initially larger for
the ramp element but undergoes a faster decrease than the cuboid. The maxi-
mum wall-normal temperature gradient follows the same trend as the wall-normal
shear, as shown in figure 5.23(e). The maximum spanwise temperature gradient
(figure 5.23(f)) features an algebraic growth immediately behind the roughness
trailing edge in both cases and once again adopts an exponential decrease further
downstream, remaining larger for the cuboid element along all the wake region
investigated. It is worth noting that for the ramp obstacle, the maximum spanwise
gradients decay at a higher rate than the respective wall-normal derivatives.

Other authors employ different definitions for ∆ūst, which are based on the
difference between the local maximum and minimum deviations of ū instead of
considering only the maximum deviation. For instance, De Tullio et al. [3] eval-
uate the streak amplitude according to the difference between the local maximum
and minimum in ū with respect to the roughness symmetry plane, that is
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∆ūst(x) =
1

2

{
max
y,z

[ū(x, y, z)− ū(x, y, 0)]−min
y,z

[ū(x, y, z)− ū(x, y, 0)]

}
.

(5.10)
Similarly, the definition used by Theiss et al. [5] and Stemmer et al. [26] relies
on the difference between local maxima and minima compared to the undisturbed
flow, which in this case can be assumed to be the flow far outside of the roughness
wake, i.e.,

∆ūst(x) =
1

2

{
max
y,z

[ū(x, y, z)− ū(x, y, z∞)]

−min
y,z

[ū(x, y, z)− ū(x, y, z∞)]

}
. (5.11)

The resulting streak amplitudes using each of the three different definitions pre-
sented are compared for each roughness geometry in figure 5.24. The definition
given by equation (5.10) leads to a smaller streak amplitude over all the domain
for both roughness geometries, but the trend of the curves is preserved with respect
to the results obtained with the definition (5.9). On the other hand, equation (5.11)
leads to a very similar signature as equation (5.9) for the cuboid but to a smaller
streak strength for the ramp, once again preserving the same trend. The magnitude
of the streak amplitude for the ramp case using (5.11) lies between that provided
by the other two definitions.

5.3.4 Temporal stability spectrum

This section and the remaining ones in this chapter present the results obtained
from the stability analysis and the temporal growth-rate decomposition of the
instabilities developing in the wake induced behind the two isolated roughness
element geometries considered. All the stability results shown in the following
have been computed employing the FD-q discretization technique introduced in
§ 4.2.1.2, using a polynomial order of qp = 8, which is deemed to provide an
appropriate trade-off between accuracy and computational cost for the problem
under consideration (see for instance [3, 5]). For this study, periodic boundary
conditions are imposed on the spanwise domain boundaries to allow for the com-
putation of symmetric and antisymmetric disturbances from the solution of the
same eigenvalue problem. Therefore, the complete spanwise domain is considered
in the 2D-LST calculations.

Along the spanwise direction, the biquadratic mapping presented in § 4.2.2.2
is employed, whereas along the wall-normal coordinate the transformation intro-
duced by Malik (see equation (4.16)) is used. According to the obtained base-flow
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Figure 5.25: Most relevant region of the temporal 2D-LST spectrum for the cuboid rough-
ness geometry at x = 0.1 m for three different streamwise wavelengths: (a) λx = 0.325
cm; (b) λx = 0.5 cm; (c) λx = 1 cm.

solutions, the following mapping parameters are selected for the stability analyses:
ymax = y∞ and yi = 20l for both roughness geometries, zmax = −zmin = 25h

and zi2 = −zi1 = 10h for the cuboid configuration and zmax = −zmin = 17.64h

and zi2 = −zi1 = 7.05h for the ramp element. The quantity y∞ denotes the
domain height of the computational domain used to obtain the base-flow solution
at each streamwise location. Since the width of the roughness wake remains con-
stant along the entire domain length, the spanwise parameters are kept fixed along
the streamwise direction. On the other hand, the parameter yi is set to be propor-
tional to the length scale l (see equation (2.16)) in the wall-normal direction to
account for the boundary-layer growth along x. The value of ymax also evolves
along the streamwise direction, and ranges between ymax = 28.45h at the first
location analysed behind the roughness elements and ymax = 92.94h at the end
of the domain.

The temporal spectra shown in this section have been obtained by means of the
implicitly restarted Arnoldi algorithm, computing 50 eigenmodes for each case
and using non-dimensional values of the shift-invert parameter ranging between
σ = 0.85αr and σ = 0.95αr.

In the first place, the temporal stability characteristics of the base flow are
studied. Temporal 2D-LST computations have been carried out along the wake in-
duced behind each roughness element for different streamwise wavelengths (λx =

2π/αr). Figures 5.25 and 5.26 show the most relevant portion of the temporal
stability spectrum for each roughness shape obtained at a streamwise location of
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Figure 5.26: Most relevant region of the temporal 2D-LST spectrum for the ramp roughness
geometry at x = 0.1 m for three different streamwise wavelengths: (a) λx = 0.35 cm; (b)
λx = 0.56 cm; (c) λx = 0.86 cm.

x = 0.1 m and for three different streamwise wavelengths. The results for three
different grid resolutions are included to illustrate grid convergence of discrete
modes. For both roughness geometries, two dominant converged discrete instabil-
ity modes can be identified, labelled as VCOS1 and SIN1. These modes respec-
tively correspond to the most unstable varicose and sinuous instabilities develop-
ing in the roughness wake. The three different streamwise wavelengths chosen for
each geometry cover the range of largest temporal amplification for modes VCOS1
and SIN1 at x = 0.1 m, presented in figure 5.27 for x = 0.1 m. Their values were
selected in order to provide an adequate description of the topology of the spec-
trum and of the associated amplitude functions at the most relevant wavelengths
for each instability. As shown in figure 5.27(a), the varicose perturbation related
to the cuboidal element features a higher growth rate than the sinuous one for most
of the studied wavelengths. For the ramp-shaped roughness, however, the vari-
cose mode dominates only for the smaller wavelengths (λx < 0.4 cm), while the
sinuous disturbance becomes the leading instability for higher ones. Similarly to
figure 5.27, figure 5.28 represents the growth rate of modes SIN1 and VCOS1 as a
function of the resulting temporal frequency, obtained as a solution of the temporal
eigenvalue problem. This figure provides a quantitative point of view on the mag-
nitude of the frequencies at which the wake instabilities are excited in the problem
under study, which helps to visualize the relationship between the temporal and
the spatial stability results presented later on.

The two-dimensional streamwise velocity amplitude function associated to
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Figure 5.27: Temporal growth-rate evolution of the most unstable wake modes for each
roughness geometry as a function of the streamwise wavenumber at x = 0.1 m: (a) cuboid;
(b) ramp.

Figure 5.28: Temporal growth-rate evolution of the most unstable wake modes for each
roughness geometry as a function of the resulting frequency at x = 0.1 m: (a) cuboid; (b)
ramp.

each of these disturbances is displayed in figure 5.29 for the cuboid element and
in figure 5.30 for the ramp. As described in § 5.2.4, both instabilities mainly
develop within the high-shear layer surrounding the low-velocity streak that char-
acterizes the wake flow structure. The sinuous mode can be distinguished by its
antisymmetric amplitude function with respect to the roughness mid-plane, which
translates in a zero magnitude of the amplitude at z = 0, while the varicose mode
is characterized by a symmetric eigenfunction. For both roughness geometries,
the biggest amplitude magnitude of the sinuous mode is concentrated in the up-
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Figure 5.29: Normalized magnitude of the streamwise velocity amplitude function for
the most unstable varicose and sinuous modes (VCOS1 and SIN1) developing behind the
cuboidal roughness element at x = 0.1 m, for three different streamwise wavelengths:
(a, d) λx = 0.325 cm; (b, e) λx = 0.5 cm; (c, f) λx = 1 cm; (a, b, c) VCOS1 mode;
(d, e, f) SIN1 mode.

Figure 5.30: Normalized magnitude of the streamwise velocity amplitude function for the
most unstable varicose and sinuous modes (VCOS1 and SIN1) developing behind the ramp
roughness element at x = 0.1 m, for three different streamwise wavelengths: (a, d) λx =
0.35 cm; (b, e) λx = 0.56 cm; (c, f) λx = 0.86 cm; (a, b, c) VCOS1 mode; (d, e, f) SIN1
mode.

per regions of the low-velocity streak that are located right above the core of each
counter-rotating vortex, as indicated by the streamwise vorticity contours in fig-
ure 5.22. According to figure 5.21, these regions are associated with the highest
shear magnitude within the central streak. A second peak in amplitude is also
found at the outward side of each vortex, which coincides with the interface be-
tween the high-shear regions near the wall and the sides of the low-velocity streak,
where a sudden decrease in shear magnitude is encountered. Similarly, the vari-
cose instability features the main region of amplification in the upper central region
of the streak, located above and between the vortex pair and strongly correlating
with the region of high-shear magnitude surrounding the central streak. Secondary
amplitude peaks are once again visible at each side of the vortex cores, associated
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as well to the strong shear gradients established a the sides of the low-velocity
streak. These observations are in good agreement with the disturbance shapes re-
ported by other authors in similar configurations, both employing DNS and linear
stability theory (see for instance [3, 4, 27, 28]).

For the cuboid configuration at λx = 0.325 cm, besides evolving in the three-
dimensional shear layer, the varicose perturbation also grows significantly inside
the low-velocity streak in a region close to the flat-plate wall. The amplitude func-
tion of this mode shows strong similarities with that of mode VC (varicose-central)
reported by De Tullio & Sandham [4] through DNS computations in a very similar
set-up, as discussed in § 5.2.4.3. This difference in the region of development of
the varicose mode between the results obtained at λx = 0.325 cm (figure 5.29(a))
and those obtained for λx = 0.5 cm or λx = 1 cm (figure 5.29(b, c)) correlates
with the two distinct peaks in growth rate that can be observed in figure 5.27(a).
This behavior, already reported by Groskopf & Kloker [15], can be attributed to
two different manifestations of the varicose mode instability depending on whether
the instability modes evolving in the flat plate boundary-layer, which also interact
with the roughness wake, behave as first or second Mack-mode instabilities, as
discussed further below. Therefore, as introduced by [15], a distinction can also
be made between varicose first- and second-mode disturbances in this case. This
distinction is the responsible for the two varicose instabilities observed in the DNS
analysis of De Tullio & Sandham [4], respectively labeled as modes VL and VC
in their work.

Alongside the varicose and sinuous perturbations, several other unstable modes
are found in the obtained spectra. Most of these modes are distributed in an ordered
fashion along the complex plane. In fact, such instabilities belong to the family of
Mack modes (first or second modes) developing in the flat-plate boundary layer,
which are modulated by the presence of the roughness element. These disturbances
are part of a continuous branch consisting of Mack modes representing the infinite
spanwise wavenumbers (β) that are part of the 2D-LST spectrum (see § 3.15.1).
Only those spanwise wavenumbers that can be resolved by the discretization of the
eigenvalue problem along the spanwise direction (mainly defined by the domain
size and grid resolution) are retrieved by the current numerical solution. The shape
of this branch is different depending on the streamwise wavelength considered.
The initial mode of the family is always a mode with spanwise wavenumber β =

0, denoted by M2D, followed by oblique modes with a progressively increasing
spanwise wavenumber. Depending on the conditions analysed, the shape of the
branch in the 2D-LST spectrum tells whether it manifests itself as Mack’s first
or second mode. In the case of Mack’s first mode, the most unstable mode in
the family is oblique for the flow conditions under study. As a result, the growth
rate of the modes along the branch first increases progressively until reaching the
spanwise wavenumber for maximum growth and then progressively decreases for
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Figure 5.31: Normalized magnitude of the streamwise velocity amplitude function for dif-
ferent Mack modes developing behind each roughness geometry at x = 0.1 m: (a, b) two-
dimensional Mack mode (M2D); (c, d) oblique Mack mode MO3; (e, f) oblique Mack mode
MO4; (g, h) oblique Mack mode MO7; (a, c, e, g) λx = 0.5 cm; (b, d, f, h) λx = 0.56
cm.

higher values of β. This behavior leads to the hook-shaped branch that can be
observed in figures 5.25(b, c) and 5.26(b, c). For conditions at which the branch
behaves as Mack’s second mode, the most unstable mode in the family is the two-
dimensional one (M2D), and the growth rate of the oblique modes progressively
decreases as β increases. The shape of the branch in this case becomes a diagonal
line, similar to the one shown in figure 5.25(a). Figure 5.26(a) corresponds to
conditions in which the branch shape is transitioning from first to second mode.

To illustrate the topology of the instabilities along the Mack-mode branch, fig-
ure 5.31 shows the streamwise velocity amplitude function of the two-dimensional
Mack mode (M2D) and of three oblique Mack modes for the cuboid geometry at
λx = 0.5 cm and for the ramp element at λx = 0.56 cm. The oblique modes are
respectively denoted by MO3, MO4 and MO7 according to their position along
the branch (see figures 5.25(b) and 5.26(b)). As it can be observed, the amplitude
function of these modes is highly modulated by the roughness wake. Far away
from the wake along the z direction (approximately z > 0.005 m), the amplitude
of mode M2D becomes approximately constant with respect to the spanwise di-
rection, whereas in the wall-normal direction it adopts the shape of the classical
Mack instability mode as predicted by one-dimensional local linear stability the-
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Figure 5.32: Normalized magnitude of the streamwise velocity amplitude function for dif-
ferent oblique Mack modes developing in the cuboid wake at x = 0.1 m: (a) oblique Mack
mode MO3; (b) oblique Mack mode MO4; (c) oblique Mack mode MO5; (d) oblique Mack
mode MO6; (e) oblique Mack mode MO7. The spanwise wavelength for each case is indi-
cated by the arrows, together with the fractions of the spanwise period associated to each
of the spanwise structures present inside the domain.

ory in a smooth flat plate boundary-layer. Therefore, the eigenfunction of mode
M2D consists of a blend between an eigenfunction that evolves exclusively inside
the roughness wake and the eigenfunction of a classical two-dimensional Mack
mode.

Similarly, the oblique modes MO3, MO4 and MO7 adopt a periodic spanwise
evolution outside of the roughness wake. The spanwise wavelength (λz = 2π/β)
associated to this periodicity is different for each mode. According to the peri-
odic boundary conditions enforced in the eigenvalue problem and the spanwise
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symmetry of the base flow, the values of λz that can be resolved by the discretiza-
tion are constrained by the distance between the edge of the roughness wake (in
this case located approximately at z = ±0.002 m for the cuboid geometry and at
z = ±0.001 m for the ramp, see figures 5.21(c, d)) and the spanwise boundary
of the domain. For instance, mode MO3 adopts a spanwise wavelength that is
precisely equal to the distance between the edge of the roughness wake and the
spanwise boundary. Therefore, it contains one spanwise period within each half
of the span of the computational domain. Similarly, the next mode (MO4) adopts
a spanwise wavelength that is 4/5 times the distance between the wake edge and
the spanwise boundary, thus allowing one plus one-fourth of a period inside each
half of the domain span. Finally, mode MO7, which is the most unstable Mack
mode found in the spectrum at the current conditions for both obstacle shapes,
contains two spanwise periods within each half of the domain width, with a span-
wise wavelength equal to half of the allowed distance. As in the case of modes
MO3 and MO4, each of the oblique modes resolved along the Mack-mode branch
differs in 1/4 of a period with respect to the previous one. For example, mode
MO5 contains one and a half periods, mode MO6 contains one plus 3/4 of a pe-
riod, and so on. For the sake of clarity, figure 5.32 displays five different oblique
Mack modes (MO3 to MO7) which develop behind the cuboidal roughness ele-
ment, including labels which denote the spanwise wavelength associated to each
of them as well as the size of the spanwise structures that are contained inside the
domain width.

The remaining discrete unstable modes found in the spectra are also sinuous
and varicose deformations of the low-velocity streak, presenting different peak-
trough regions of amplitude development located around the three-dimensional
shear layer. For the cases investigated in this analysis, these modes are found to
grow at a smaller rate than the leading wake instabilities (VCOS1 and SIN1). The
shape of the amplitude function for this kind of disturbances is discussed in § 5.2.4
(see also [29]). The group of modes distributed along the real axis in the left part of
the spectrum of figures 5.25(c) and 5.26(c) belong to the slow acoustic continuous
branch.

5.3.4.1 Convergence of the growth rate with respect to grid resolution

A grid convergence analysis on the growth rate of modes SIN1, VCOS1, M2D and
MO7 for each roughness geometry is presented in figure 5.33 for a streamwise sta-
tion at x = 0.1 m. This figure shows contour plots of the relative error in the tem-
poral growth rate of each mode as a function of the grid resolution in each direc-
tion. The relative error (εr) for each mode is evaluated with respect to the growth
rate obtained at the finest grid resolution, which corresponds to Nz = Ny = 201

points, so that εr = |ωi − ωi,201×201|/|ωi,201×201|. The results indicate that all
instabilities are more sensitive to the spanwise grid resolution (Nz), owing to the
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Figure 5.33: Contours of relative error in the temporal growth rate of different unstable
modes for each roughness geometry at x = 0.1 m as a function of the grid resolution
in each direction: (a, b, c, d) cuboid, λx = 0.5 cm; (e, f, g, h) ramp, λx = 0.56 cm;
(a, e) mode SIN1; (b, f) mode VCOS1; (c, g) mode M2D; (d, h) mode MO7. The relative
error is evaluated with respect to the growth rate obtained with the finest grid resolution
(Nz = Ny = 201) for each mode: εr = |ωi − ωi,201×201|/|ωi,201×201|. The star symbol
indicates the position of the reference grid resolution employed for the results presented in
this work (Nz = 181, Ny = 141 points).

fact that the amplitude functions undergo changes along the spanwise direction
over a longer distance than along the wall-normal direction. For the computa-
tional domain employed for each roughness geometry, a larger grid resolution is
required in the spanwise direction to achieve the same degree of convergence as in
the wall-normal direction.

Besides ensuring a fine grid resolution in the roughness wake, the discretization
of oblique Mack modes modulated by the roughness wake also requires enough
spanwise grid points within the boundary layer at the sides of the roughness el-
ement in order to resolve the associated desired spanwise wavenumbers. In this
study, Nz = 181 is chosen as a reference spanwise resolution since it provides a
good degree of convergence for the wake instabilities as well as for a substantial
number of oblique Mack modes, allowing to describe the most relevant region of
the continuous Mack mode branch. Along the wall-normal direction, a reference
resolution of Ny = 141 points is selected as it provides an appropriate trade-off
between convergence and computational cost for the different cases investigated.
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Figure 5.34: Most relevant region of the temporal stability spectrum for each roughness
shape at x = 0.1 m for three different spanwise domain sizes: (a) cuboid, λx = 0.5 cm;
(b) ramp, λx = 0.56 cm.

5.3.4.2 Effect of the domain size on the stability spectrum

To emphasize the continuous nature of the Mack mode branch obtained in the sta-
bility spectra, figure 5.34 illustrates the effect of changing the spanwise size of the
computational domain employed for the stability analysis (zmax) on the results
obtained for the cuboid configuration at λx = 0.5 cm and for the ramp geome-
try at λx = 0.56 cm. Since the regions of development of the wake instability
modes at these conditions are contained within the roughness wake, the effect of
changing zmax is negligible on these modes. On the other hand, a change in the
spanwise domain size modifies the spanwise wavenumbers that can be resolved by
the discretization. As a result, for each particular value of zmax, different oblique
Mack modes are obtained in the spectrum. Nevertheless, the shape of the con-
tinuous Mack mode branch must remain the same independently of the spanwise
domain size considered. In other words, different values of zmax resolve a differ-
ent set of modes from the infinite number that compose the branch. This behavior
is demonstrated by the spectra presented in figure 5.34.

Figure 5.35 represents the sensitivity of the spectrum to the wall-normal size
of the computational domain employed for the stability calculations (ymax), il-
lustrated for three different wall-normal domain sizes at x = 0.1 m. As it can
be observed, the influence of the upper boundary of the domain on the discrete
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Figure 5.35: Most relevant region of the temporal stability spectrum at x = 0.1 m for three
different wall-normal domain sizes (ymax): (a) cuboid, λx = 0.5 cm; (b) ramp, λx = 0.56
cm.

modes of the stability spectrum is negligible. The only sensitive modes are those
located at the real axis in figure 5.35(b), which correspond to the slow acoustic
continuous branch and therefore their eigenfunctions do not decay to zero towards
the upper boundary of the domain. The value ymax = 300l = 46.50h is the ac-
tual wall-normal size employed in the results shown for x = 0.1 m in the current
configuration.

5.3.5 Streamwise evolution of the growth rate of the instabili-
ties evolving in the roughness wake

Next, the streamwise evolution of the growth rate of the different instabilities iden-
tified in the roughness wake is discussed and compared for the two roughness ge-
ometries.

5.3.5.1 Evolution of Mack-mode instabilities modulated by the roughness
wake

First, the streamwise variation of the Mack-mode instabilities modulated by the
roughness wake is described. Figure 5.36 shows the growth rate of modes M2D,
MO3, MO4 and MO7 as a function of x for the cuboid configuration at λx = 0.5
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Figure 5.36: Temporal growth rate as a function of the streamwise location for different
Mack-mode instabilities evolving in the cuboidal roughness wake at λx = 0.5 cm. Curves
obtained from one-dimensional local linear stability theory (LST) at the equivalent span-
wise wavenumbers (β) are also shown for comparison. The estimated spanwise wavelengths
(from figure 5.32) are: λz,MO3 = 0.85 cm, λz,MO4 = 0.66 cm and λz,MO7 = 0.39 cm.

cm. The first streamwise location considered corresponds to the end of the down-
stream recirculation bubble induced at the trailing edge of the roughness element2

(see figures 5.19 and 5.20), located at xb,TE = 0.0667 m for the cuboid geome-
try. Included in the figure are also the growth-rate curves obtained with LST by
fixing a value of β according to the spanwise wavelength observed in the ampli-
tude function of each mode (see figure 5.32). The comparison between the curves
obtained with 2D-LST and those computed by means of LST allows to assess the
impact of the roughness wake on the Mack-mode disturbances. As it can be no-
ticed, such impact is not strong, and and as result the Mack modes evolving in the
roughness wake still feature a growth-rate signature which is similar to that of the
ones evolving in the smooth flat plate boundary-layer (LST). In particular, the 2D-
LST modes still preserve the inherent properties that characterize the growth rate
of a classical Mack mode at the hypersonic freestream conditions under analysis,
namely, that the Mack mode is most unstable when behaving as a two-dimensional
second mode (in this case mode M2D for x > 0.22 m, approximately), and that

2This location is assumed to be the first one at which the parallel flow assumption inherent to 2D-
LST theory is satisfactory. The recirculating fluid encountered inside the separation bubble induced at
the roughness trailing edge renders the base flow in this region to be very inhomogeneous in all three
spatial directions.
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Figure 5.37: Frequency as a function of the streamwise location for different Mack-mode
instabilities evolving in the cuboidal roughness wake at λx = 0.5 cm. Curves obtained from
one-dimensional local linear stability theory (LST) at the equivalent spanwise wavenumbers
(β) are also shown for comparison.

when behaving as a first mode it is most unstable for β > 0 (in this case modes
MO3, MO4 and MO7 for x < 0.2 m, approximately). These observations suggest
that the roughness element does not act as an effective amplifier of boundary-layer
disturbances in this case.

For completeness, the resulting streamwise evolution of the frequency of modes
M2D, MO3, MO4 and MO7 is also depicted in comparison with that of the respec-
tive LST modes for λx = 0.5 cm in figure 5.37. Similarly to the growth rate, no
strong deviations in the disturbance frequency of the boundary-layer instabilities
are introduced by the presence of the roughness element wake.

5.3.5.2 Evolution of the leading sinuous and varicose instabilities

The streamwise evolution of the two leading instabilities along the wake induced
by each roughness geometry is assessed next. Figure 5.38 displays the evolu-
tion of the temporal growth rate of the SIN1 and VCOS1 modes for five differ-
ent wavelengths that span the range of amplification shown in figure 5.27. The
first streamwise location considered for all cases corresponds once again to the
end of the roughness trailing-edge separation region, located at xb,TE = 0.0667

m and xb,TE = 0.0633 m for the cuboid and ramp elements, respectively. The
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Figure 5.38: Temporal growth-rate evolution of the most unstable wake modes for each
roughness geometry as a function of the streamwise coordinate for five different wave-
lengths: (a, c) SIN1 mode; (b, d) VCOS1 mode; (a, b) cuboid; (c, d) ramp.

growth rate of both wake instabilities increases very rapidly immediately behind
the trailing-edge recirculation bubble, reaching its maximum in a very short dis-
tance downstream, after which it starts to decrease progressively. The distance
at which the maximum growth rate is attained depends on the streamwise wave-
length.

In the vicinity of the cuboidal roughness trailing edge, the magnitude of the
growth rate is significantly higher for the varicose mode than for the sinuous one
for most of the streamwise wavelengths considered. On the contrary, near the
ramp roughness element the sinuous instability reaches higher amplification rates
than the varicose one for λx ≥ 0.56 cm. Specifically, the maximum growth rate
attained by mode SIN1 at the illustrated wavelengths is ωi ≈ 7.2 × 104 rad/s
for the ramp configuration and ωi ≈ 4.3 × 104 rad/s for the cuboid one. In the
case of the varicose disturbance, however, mode VCOS1 reaches a maximum of
ωi ≈ 7.2 × 104 rad/s for the cuboid geometry and ωi ≈ 5.5 × 104 rad/s for the
ramp case. This constitutes a 67% increase in the peak growth rate achieved by the
ramp-induced sinuous disturbance with respect to that excited by the cuboid, and a
31% increase in the maximum growth rate attained by the cuboid-induced varicose
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instability with respect to the ramp counterpart. Of particular interest is the evolu-
tion of the varicose mode for the cuboid geometry at λx = 0.28 cm. As shown in
figure 5.27(a), this wavelength is located within the region of development of the
varicose “second” mode. This range of wavelengths exhibits the highest temporal
amplification for the varicose disturbance evolving in the cuboid wake.

The rate of decay in growth rate after the location of maximum amplification is
also found to be significantly dependent on the streamwise wavelength considered.
For the cuboid configuration, the growth rate of both instabilities for λx ≤ 0.325

cm decreases continuously until the end of the domain at a very similar rate. For
these wavelengths, the varicose mode is the leading instability along all the do-
main investigated. On the other hand, for λx ≥ 0.5 cm, the amplification rate
approaches a nearly constant value after a given distance downstream. This dis-
tance is found to decrease as the streamwise wavelength increases, and it is found
to be significantly shorter for the sinuous mode than for the varicose one. This
makes the sinuous disturbance the dominant wake instability for approximately
x > 0.2 m at this range of wavelengths.

Regarding the ramp roughness wake, the streamwise evolution of the sinu-
ous perturbation for λx ≥ 0.56 cm undergoes first a rapid decay followed by a
slower monotonic decrease downstream, in all cases with a very similar slope. For
λx = 0.35 cm and λx = 0.42 cm, however, a deviation in this growth-rate behav-
ior is encountered starting respectively at x = 0.15 m and x = 0.18 m, where the
disturbance shows an important destabilization. For the varicose perturbation de-
veloping in the wake behind the ramp geometry, a rapid decay is also found in the
first portion of the streamwise domain under consideration for all the studied wave-
lengths. However, in this case the rate of decrease is more pronounced than for the
sinuous counterpart and extends over a longer streamwise distance. This strong
stabilization brings the growth rate of mode VCOS1 below 104 rad/s. Fluctuations
in the growth rate of this mode are also found, in this case for λx = 0.35 cm and
λx = 0.56 cm. These observations, together with the results for the cuboidal ge-
ometry described before, suggest that there is a mechanism in the roughness wake
which, for a certain range of streamwise wavelengths, energizes the wake instabil-
ities, preventing their growth rate to decay monotonically downstream as would be
expected from the continuous dissipation of the base-flow quantities displayed in
figure 5.23. A plausible explanation for this behaviour resorts to a continuous syn-
chronization between the wake instability modes and the boundary-layer modes
that interact with the roughness wake. A further discussion on this phenomenon is
provided in § 5.3.6 and § 5.3.7.

For the ramp-induced varicose mode at λx = 0.56 cm, the rise in the ampli-
fication rate that can be observed towards the end of the domain is very similar
to the growth-rate evolution inherent to Mack’s second mode instability. When
tracking the streamwise evolution of this wake mode, it is found that it progres-
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Figure 5.39: Spatial growth-rate evolution of the most unstable wake modes obtained by
means of the Gaster transformation (3.20) (lines) and by solving the spatial eigenvalue
problem (symbols): (a) cuboid; (b) ramp.

sively approaches the continuous branch associated to the Mack-mode family and
becomes absorbed by it after a given distance downstream. At this location, the
amplitude function of mode VCOS1 strongly resembles the one of the other modes
comprised in this branch, and it becomes difficult to distinguish its evolution from
the other Mack-mode instabilities by looking at the computed 2D-LST spectra.
The curve shown in figure 5.38(d) corresponds to the evolution obtained by means
of a Rayleigh quotient iteration (see § 4.2.7.2). Two possible scenarios can be de-
vised to explain the rise in growth rate obtained for x > 0.33 m at λx = 0.56 cm.
On the one hand, as the varicose mode becomes close to the Mack-mode branch,
the mode tracked by the algorithm could possibly switch to a different one, in this
case corresponding to a particular Mack-mode disturbance. On the other hand,
since the varicose mode disturbance becomes absorbed by the Mack mode branch
at these conditions, another possibility is that the behavior of the varicose mode
is so strongly affected by an interaction with the boundary-layer instability modes
that its evolution becomes very similar to that of Mack’s second mode. The results
of the temporal growth-rate decomposition presented in § 5.3.6 give more support
to the second scenario.
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5.3.5.3 Integrated amplification factors of the wake instabilities obtained by
means of the Gaster transformation

For the roughness Reynolds number considered in this study, the instabilities grow-
ing in the roughness wake have a purely convective nature [4, 15]. Therefore, it is
appropriate to track the evolution of their growth in space in order to assess which
is the dominant disturbance excited by each geometry in terms of the integrated
amplification factor (N -factor). To avoid the significant computational cost asso-
ciated with solving the spatial eigenvalue problem (3.16), the approximate relation
between the temporal and the spatial growth rates (3.20) originally developed by
Gaster [30] is employed (see § 3.4.4). Although, in general, this transformation
is only accurate for convective instabilities with small temporal growth rates, it
has been successfully applied by previous authors to the analysis of roughness-
induced instabilities in high-speed flows (see [15, 31]). To verify its applicability
to the temporal results presented here, figure 5.39 shows a comparison between
spatial growth rates obtained by means of the Gaster transformation and spatial
growth rates computed by solving the spatial eigenvalue problem for the leading
wake instabilities. A good overall agreement is found for both roughness geome-
tries, which renders the use of the Gaster transformation a legitimate assumption
for the purpose of this analysis. The biggest discrepancies are encountered for
the cuboid varicose mode at λx = 0.28 cm, corresponding to its particular region
of development associated to small streamwise wavenumbers (high frequencies),
according to figures 5.27(a) and 5.28(a).

Temporal stability computations allow to construct a stability diagram of the
form ωi = ωi(αr, x), or ωi = ωi(λx, x). By means of the Gaster transforma-
tion, the function αi = αi(λx, x) can then be obtained. However, a meaningful
evaluation of the integrated amplification factors requires a surface of the type
αi = αi(f, x), where f = ωr/(2π) is the frequency of the disturbance, so that
curves of αi as a function of x for a constant frequency can be integrated to ob-
tain the evolution of N associated to that frequency. Since ωr is a solution of the
temporal eigenvalue problem, it cannot be fixed constant a priori from the tem-
poral results. Therefore, to obtain αi = αi(f, x), an interpolation of the stability
diagram αi = αi(λx, x) must be employed. From the temporal stability calcu-
lations, the resulting frequency of the disturbances is found to be approximately
proportional to αr. In addition, in the unstable region of the stability diagram, the
range of frequencies spanned by each of the αi = αi(x) curves for a constant λx
is very small in comparison with the range of frequencies over which the instabili-
ties grow. These conditions favor the accuracy of the interpolation process. In this
study, this procedure is performed by means of a cubic Hermite interpolation.

The spatial stability diagrams (αi = αi(f, x)) obtained by means of the Gaster
transformation for modes SIN1 and VCOS1 and for each of the roughness geome-
tries under study are displayed in figures 5.40(c-f). The shaded contours represent
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Figure 5.40: Shaded contours of spatial growth rate (−αi) and contour lines ofN -factor as
a function of frequency and streamwise position for: (a) two-dimensional Mack mode evolv-
ing in the smooth flat plate boundary layer; (b) oblique Mack mode (λz = 0.4 cm) evolving
in the smooth flat plate boundary layer; (c) cuboid, SIN1 mode; (d) cuboid, VCOS1 mode;
(e) ramp, SIN1 mode; (f) ramp, VCOS1 mode. Results for (c-f) were obtained by means
of the Gaster transformation (3.20).

the spatial growth rate and the contour lines superimposed illustrate the associ-
ated N -factor evolution. For comparison purposes, the diagrams shown in figures
5.40(a, b) correspond to the instabilities developing in the smooth flat-plate bound-
ary layer, which are obtained by means of LST for a given spanwise wavenumber.
Figure 5.40(a) depicts contours for the two-dimensional Mack-mode instability
(β = 0), which is fully governed by high frequencies corresponding to second
mode behaviour, whereas figure 5.40(b) shows contours for an oblique Mack-
mode instability with a spanwise wavelength of λz = 0.4 cm, for which both
Mack’s first and second mode regions of development can be observed, respec-
tively associated to the low- and high-frequency ranges. The integration of N is
started at the first streamwise station at which the modes become unstable. In the
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Figure 5.41: (a) Streamwise evolution of the N -factor envelope (Nmax) of the most
unstable wake modes for each roughness geometry, obtained by employing the Gaster-
transformed spatial growth rates; (b) frequency associated to Nmax at each streamwise
location for each of the curves shown in (a).

case of the wake instabilities, it is found that for certain frequencies the distur-
bances are already unstable at the first streamwise location analyzed, that is, at the
end of the trailing edge separation bubble. Under these circumstances, a value of
N = 0 is assumed at that location. This is a common procedure employed by other
authors in similar analyses, see for instance [3, 5, 28]. In addition, figure 5.41(a)

presents the streamwise evolution of the N -factor envelope (Nmax) curves for
each of the wake modes investigated. Here, Nmax denotes the maximum N -factor
obtained at each streamwise position for all the different frequencies analyzed.
The particular frequency associated with Nmax at each location is shown in figure
5.41(b).

These results complete the observations introduced before based on the tem-
poral growth-rate evolution. The N -factor envelopes confirm that the cuboid ge-
ometry favours the development of a varicose wake instability over a sinuous one,
whereas the ramp configuration excites a sinuous disturbance more effectively than
a varicose one. Close to the roughness element, the cuboidal geometry is more ef-
fective in promoting the linear growth of the dominant wake instability than the
ramp-shaped one. However, further downstream (x > 0.2 m), the ramp element
leads to a higher disturbance amplitude.

As shown in figure 5.40(d), two distinct regions of development for the cuboid-
induced varicose instability can be identified. The frequency range for each of
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these regions is found to correlate well with that of Mack’s first- and second-mode
instabilities developing in the smooth flat plate. Although the biggest growth rates
for this disturbance are located within the high-frequency band, the decay in this
range is more accentuated than for the lower frequencies. As a result, the frequen-
cies that govern the N -factor envelope for this mode are first located in the upper
range (f ≈ 280 kHz) and further downstream in the lower band (f ≈ 160 kHz),
as shown in figure 5.41(b). This leads to the abrupt change in the slope of the
envelope curve at x ≈ 0.28 m. In accordance with the temporal stability results
described above, this is the only instability for which two such different regions of
excitation can be clearly observed in the stability diagram.

Regarding the ramp-induced sinuous disturbance (see figure 5.40(e)), its re-
gion of maximum growth is concentrated in the range of f ≈ 100 kHz to 160

kHz. This frequency band is associated with Mack’s first mode instabilities for
the entire domain length. For higher frequencies (f ≈ 230 kHz to 270 kHz), a
small enhancement of the spatial growth rates is observed starting at x ≈ 0.15

m. The same phenomenon is visible in the temporal growth rate curves shown
in figure 5.38(c) for λx = 0.35 cm and λx = 0.42 cm. This behaviour corre-
lates with the region of the stability diagram that overlaps with the development of
Mack’s second-mode instability in the flat plate boundary layer. Such observation
further supports the argument of an interaction between the wake modes and the
boundary-layer disturbances. In this case, however, this interaction does not have
an impact on the N -factor envelope of the wake instability.

Although less relevant in terms of Nmax, the cuboid-induced sinuous distur-
bance and the ramp-induced varicose perturbation also show the influence of an
interaction with boundary-layer instabilities. As in the ramp configuration, the
sinuous mode associated to the cuboid geometry also features its maximum N

in the low-frequency band. For x > 0.2 m, its spatial growth becomes approx-
imately constant with respect to the streamwise position for f < 130 kHz (see
figure 5.40(c)). This feature can also be observed in the temporal growth curves
shown in figure 5.38(a) for λx = 0.7 cm and λx = 1 cm. This reduction in the
decay of the growth rate of the instability is attributed to an interaction between the
sinuous disturbance and Mack’s first-mode instability. It has a significant impact
in the evolution of the associated N -factor envelope, which shows a clear increase
in slope in this region. Mode VCOS1 excited by the ramp roughness element is
found to be rapidly stabilized at high frequencies, as shown in figure 5.40(f). To
the contrary, its growth rate is found to be influenced by both the first and second
boundary-layer disturbances in the range of f ≈ 100 kHz to 200 kHz. The interac-
tion with Mack’s first mode is noticeable starting at x ≈ 0.18 m and with Mack’s
second mode starting at x ≈ 0.33 m (see also figure 5.38(d)).
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5.3.6 Temporal growth-rate decomposition of the instabilities
behind the roughness elements

This section describes the application of the temporal growth-rate decomposition
introduced in § 3.10.2 to the evolution of the Mack-mode instabilities and the lead-
ing wake perturbations (modes VCOS1 and SIN1) that are present in the wake be-
hind each roughness shape. Although the decomposition given by equation (3.64)
consists of a significant number of terms, not all of them play an important role in
the problem under investigation. To illustrate which are the most relevant contri-
butions to the energy (and consequently to the growth rate) of the studied distur-
bances, figure 5.42 presents the complete temporal growth-rate decomposition of
modes M2D, SIN1 and VCOS1 obtained at x = 0.1 m for the cuboid (λx = 0.5

cm) and the ramp (λx = 0.56 cm) roughness geometries. The first five terms,
namely P̂RS , P̂mom, D̂µ, F̂µ and F̂dµ/dT , are contributions that originate from the
momentum equation only, and therefore they can be compared against each other
within the disturbance energy formulation of Chu (see § 3.10.1). It can be observed
that the most important contributions that stem from the momentum equation for
both roughness geometries and for all three different modes are the work done by
the disturbance Reynolds stresses (P̂RS) and the viscous dissipation (D̂µ). For the
cases investigated here, the production term P̂mom is negligible and the flux terms
F̂µ and F̂dµ/dT are zero due to the chosen perturbation boundary conditions and
the spanwise symmetry of the base flow.

The terms P̂s,T , D̂k and F̂k emerge exclusively from the governing energy
equation. In this case, the only important contribution to consider from this group
is the dissipation due to thermal conduction (D̂k). The production term P̂s,T fea-
tures small values that are not significant and the flux quantity F̂k is zero, once
again owing to the boundary conditions employed in the disturbance quantities.
Next, the terms P̂s, P̂dil and F̂p are considered, which arise from a combination of
the continuity and the energy equations, and as a result they can be interpreted as
contributions to the generalized potential energy of the disturbance (see § 3.10.1.2).
As it can be observed, the energy produced by the transport of entropy spottiness
(P̂s) constitutes an important contribution, whereas P̂dil is negligible and F̂p van-
ishes for the same reasons stated above for the other flux terms. The term P̂∇p
results from a combination of the momentum and the continuity equations, but it
features a very small magnitude for the current cases and is therefore deemed to be
not important. The disturbance heat source P̂Q is built with contributions from the
momentum and energy equations. In this analysis, it is characterized by small val-
ues that are approximately one order of magnitude smaller than the other relevant
terms, in good agreement with the findings of Chu [32]. Finally, the production
due to the convective derivative of the disturbance energy (P̂con) is composed of
contributions from all the governing equations. It’s magnitude is also small in the
present configurations and as a result it is not taken into account in the following
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Figure 5.42: Different contributions of the temporal growth-rate decomposition resulting
from the disturbance energy formulation of Chu for modes SIN1, VCOS1 and M2D at x =
0.1 m: (a) cuboid, λx = 0.5 cm; (b) ramp, λx = 0.56 cm. Although not shown in the
figure labels, each contribution is divided by the factor 2Ê (see equation (3.64)).

analyses.
In summary, only the terms P̂RS , P̂s, D̂µ and D̂k constitute important contri-

butions to the disturbance energy for the problem under consideration in this work.
The attention is thus focused on these terms. The term P̂RS constitutes the most
important contribution to the disturbance kinetic energy, whereas P̂s represents the
major contribution to the generalized potential energy of the disturbance.

The terms P̂RS and P̂s can be further split into the different contributions as-
sociated to each particular base-flow gradient by defining the following quantities:

P̂s,2 = −
∫ z+

z−

∫ y+

y−
ρ̄〈v̂, ŝ〉∂T̄

∂y
dy dz, (5.12a)
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P̂s,3 = −
∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, ŝ〉∂T̄

∂z
dy dz, (5.12b)

and

P̂RS,12 = −
∫ z+

z−

∫ y+

y−
ρ̄〈û, v̂〉∂ū

∂y
dy dz, (5.13a)

P̂RS,13 = −
∫ z+

z−

∫ y+

y−
ρ̄〈û, ŵ〉∂ū

∂z
dy dz, (5.13b)

P̂RS,22 = −
∫ z+

z−

∫ y+

y−
ρ̄〈v̂, v̂〉∂v̄

∂y
dy dz, (5.13c)

P̂RS,23 = −
∫ z+

z−

∫ y+

y−
ρ̄〈v̂, ŵ〉∂v̄

∂z
dy dz, (5.13d)

P̂RS,32 = −
∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, v̂〉∂w̄

∂y
dy dz, (5.13e)

P̂RS,33 = −
∫ z+

z−

∫ y+

y−
ρ̄〈ŵ, ŵ〉∂w̄

∂z
dy dz. (5.13f)

The terms denoted by P̂s,2 and P̂s,3 respectively refer to the wall-normal and the
spanwise contributions that constitute P̂s. Similarly, terms P̂RS,12, P̂RS,22 and
P̂RS,32 are the parts of the total Reynolds stress production term P̂RS that respec-
tively correspond to the Reynolds stress components that work against the veloc-
ity gradients along the wall-normal direction, while P̂RS,13, P̂RS,23 and P̂RS,33

represent the work against the velocity gradients in the spanwise direction. To
examine which of these terms are important contributions to the disturbance en-
ergy, figure 5.43 depicts their value for the same instabilities represented in figure
5.42. These results indicate that the disturbance kinetic energy is mainly produced
by the interaction between the disturbance Reynolds stress components ρ̄ũṽ and
ρ̄ũw̃ and the streamwise velocity gradients along the wall-normal and spanwise
directions (∂ū/∂y and ∂ū/∂z), as represented by P̂RS,12 and P̂RS,13. The terms
P̂RS,32 and P̂RS,33, in turn, have a negligible magnitude, meaning that the gra-
dients of the spanwise velocity component do not play a significant role in the
growth of instabilities in the roughness wake. Note that terms P̂RS,22 and P̂RS,23

are not represented in figure 5.43 since the wall-normal velocity component is set
to zero in the calculations reported here, hence P̂RS,22 = P̂RS,23 = 0. However,
for long streamwise streaks such as the ones characterizing the roughness wake,
these terms are known to be of the same order as P̂RS,32 and P̂RS,33 (see for in-
stance their evaluation in the 2D-LST analyses of Malik et al. [33] or Theiss et
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Figure 5.43: Different constituents of the leading production terms P̂RS and P̂s for modes
SIN1, VCOS1 and M2D at x = 0.1 m: (a) cuboid, λx = 0.5 cm; (b) ramp, λx = 0.56 cm.
Although not shown in the figure labels, each contribution is divided by the factor 2Ê (see
equation (3.64)).

al. [5]). Therefore, their contributions are also not important for the excitation of
roughness-wake instabilities.

On the other hand, it is found that terms P̂s,2 and P̂s,3 are both major con-
tributions to the generalized disturbance potential energy, which reveals the im-
portant role of the wall-normal and spanwise base-flow temperature gradients on
the disturbance evolution in the configurations under study. To the best of the
author’s knowledge, previous analyses found in the literature for isolated rough-
ness elements in high-speed flow have only examined the evolution of the kinetic
energy production terms due to the disturbance Reynolds stresses. However, the
current results show that the energy production terms associated with the trans-
port of entropy fluctuations across the base-flow temperature gradients constitute
an important contribution to the generalized potential energy of the disturbance.
As a result, although their relative magnitude with respect to the production of
kinetic energy due to the disturbance Reynolds stresses cannot be concluded from
Chu’s formulation of the perturbation energy (see the reasons stated in § 3.10.1),
these findings strongly suggest that P̂s might also play a major role in high-speed
roughness-induced transition.

It is important to emphasize that within the disturbance energy definition of
Chu, the largest destabilizing (positive) contributions to the temporal growth rate
of the modes evolving behind the roughness elements are P̂s,2 and P̂s,3, while the
biggest stabilizing (negative) contribution is the dissipation of disturbance energy
due to thermal conduction (D̂k). Nevertheless, since terms P̂s,2, P̂s,3 and D̂k

originate from different governing equations than terms P̂RS,12, P̂RS,13 and D̂µ,
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Figure 5.44: Values of the most important contributions to the temporal growth-rate de-
composition (3.64) for modes SIN1 and VCOS1 at x = 0.1 m in the cuboid wake: (a)
λx = 0.325 cm; (b) λx = 0.5 cm; (c) λx = 1 cm. Each contribution is divided by the
factor 2Ê (see equation (3.64)).

it is not possible to conclude which contributions are actually larger in practice,
since different choices of the multipliers that constitute the disturbance energy
formulation alter the relative magnitude of these sets of terms.

According to figure 5.42, no significant differences can be noticed between
the two roughness geometries in terms of the complete growth-rate decomposi-
tion of the excited perturbations. Nevertheless, differences for mode SIN1 can be
observed in figure 5.43. In particular, at the streamwise station and wavelength
considered, the cuboid-induced sinuous mode extracts most of its energy from the
spanwise base-flow gradients (P̂RS,13 and P̂s,3), whereas for the ramp geometry it
draws it from the wall-normal counterpart (P̂RS,12 and P̂s,2). This is a significant
observation, which suggests that a given type of wake instability, such as the sin-
uous mode, does not extract most of its energy from the same base-flow gradients
in all cases. This finding is further discussed in § 5.3.6.1.

To assess whether the constituents of the leading production terms P̂RS and
P̂s are the same for other streamwise wavelengths, figures 5.44 and 5.45 present
the most relevant terms of the decomposition of the wake instabilities obtained
at x = 0.1 m for the same three different streamwise wavelengths considered in
figures 5.25 and 5.26 for the cuboid and ramp configurations, respectively. As it
can be observed, in the cuboid case the sinuous mode is governed by the spanwise
production terms for λx = 0.325 cm and λx = 0.5 cm, whereas for λx = 1 cm the
wall-normal terms are dominant. Similarly, the decomposition also reveals a dif-
ference in the main source of disturbance energy for the cuboid-induced varicose
mode at λx = 0.325 cm with respect to the other two wavelengths. At λx = 0.325
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Figure 5.45: Values of the most important contributions to the temporal growth-rate decom-
position (3.64) for modes SIN1 and VCOS1 at x = 0.1 m in the ramp wake: (a) λx = 0.35
cm; (b) λx = 0.56 cm; (c) λx = 0.86 cm. Each contribution is divided by the factor 2Ê
(see equation (3.64)).

cm, the growth rate of mode VCOS1 is dominated by the wall-normal production
terms, whereas for λx = 0.5 cm and λx = 1 cm it is governed by the spanwise
production contributions. In this case, this observation correlates with the occur-
rence of the two different manifestations of the varicose disturbance depending
on the streamwise wavelength (or frequency in the spatial case), as discussed pre-
viously. Regarding the ramp-shaped element, the same terms are leading for all
three different streamwise wavelengths, namely, wall-normal terms for SIN1 and
spanwise terms for VCOS1.

The different behavior of the disturbance energy terms depending on the stream-
wise wavelength considered, as found in the cuboid configuration, implies that the
growth-rate decomposition at a single streamwise station does not provide a con-
clusive picture of the different energy extraction mechanisms associated to the
studied instabilities. For this reason, in the next section the streamwise evolution
of the growth-rate decomposition of the different disturbances is assessed.

Another interesting quantity to examine is the integrand of the different terms
that constitute the decomposition. The integrand of a particular term at a given
streamwise position can be represented as a two-dimensional contour plot that
highlights the regions of the yz plane on which most of the disturbance energy is
being produced and/or dissipated. Figure 5.46 shows such a plot for the cuboid-
induced sinuous mode at λx = 0.5 cm and x = 0.1 m. Integrands P̂ ′RS,12, P̂ ′RS,13,
P̂ ′s,2 and P̂ ′s,3 illustrate the regions where the disturbance energy is produced (pos-
itive values only), while integrands D̂′µ and D̂′k depict the areas where the per-
turbation energy is dissipated. Note that negative regions in the production-term
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Figure 5.46: Integrands of the most relevant terms of the temporal growth-rate decomposi-
tion for the cuboid-induced SIN1 mode at x = 0.1 m and λx = 0.5 cm. The prime symbol
in this case denotes the integrand associated to a given term from the growth-rate decom-
position. Light grey lines represent contours of base flow streamwise velocity (ū) for the
case of P̂ ′RS,12 and P̂ ′RS,13, and contours of base flow temperature (T̄ ) in the case of P̂ ′s,2
and P̂ ′s,3. The integrands are normalized with respect to their maximum value since their
magnitude does not have a meaning in this case (recall that the eigenvectors resulting from
the eigenvalue problem are defined up to a complex constant).

integrands also contribute to a decrease of the perturbation energy, and therefore
to stabilize the disturbance. The production of disturbance energy associated with
terms P̂RS,12 and P̂s,2 takes place in the upper part of the low-velocity streak,
where the base-flow fields ū and T̄ feature large wall-normal gradients, as indi-
cated by the contour lines. This correlates with the high-shear region visible at the
top of the central streak in figure 5.21(c). Immediately adjacent to these two pos-
itive regions, two negative regions are encountered, respectively located at each
side edge of the streak. These areas of negative P̂ ′RS,12 and P̂ ′s,2 coincide with
locations where the wall-normal gradients become small. The magnitude of these
production integrands is similar in both positive and negative regions. Nonethe-
less, the size of the positive regions is slightly larger than that of the negative ones,
resulting in small positive values of P̂RS,12 and P̂s,2 after integration, as shown in
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Figure 5.47: Integrands of the most relevant terms of the temporal growth-rate decompo-
sition for the cuboid-induced VCOS1 mode at x = 0.1 m and λx = 0.5 cm, denoted by
primed quantities. Light grey lines represent contours of base flow streamwise velocity (ū)
for the case of P̂ ′RS,12 and P̂ ′RS,13, and contours of base flow temperature (T̄ ) in the case
of P̂ ′s,2 and P̂ ′s,3.

figure 5.43(a).

The production of disturbance energy due to the interaction with spanwise
base-flow gradients originates mainly at the side edges of the central low-speed
streak, as illustrated in the contour plots for P̂ ′RS,13 and P̂ ′s,3. These are the re-
gions where the strongest spanwise gradients of ū and T̄ are found. In this case,
no significant negative values are present, resulting in a larger magnitude upon in-
tegration, which explains why P̂RS,13 and P̂s,3 are significantly bigger than their
wall-normal counterpart at these conditions. Regarding the dissipation terms, the
integrands D̂′µ and D̂′k reveal that the dissipation of disturbance energy due to
friction takes place over all the region surrounding the central streak, whereas the
dissipation due to thermal conduction is mainly localized in a narrow region at the
top of the low-velocity streak.

The integrands for mode VCOS1 developing in the cuboid wake, shown in
figure 5.47, display the same features as those for mode SIN1. A notable difference
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Figure 5.48: Integrands of the most relevant terms of the temporal growth-rate decomposi-
tion for the cuboid-induced M2D mode at x = 0.1 m and λx = 0.5 cm, denoted by primed
quantities.

lies in the size of the negative regions in the wall-normal production integrands
P̂ ′RS,12 and P̂ ′s,2, which are larger for this disturbance and become of the same
size as the positive regions. This results in a small negative value of P̂s,2 and a
negligible value of P̂RS,12 in this case (see figure 5.43(a)).

Finally, figures 5.48 and 5.49 respectively describe the shape of the integrands
for the two-dimensional Mack mode (M2D) and the third oblique Mack mode
(MO3) found in the cuboid wake at x = 0.1 m and λx = 0.5 cm. As expected,
the integrand signature for the Mack modes is fundamentally different from that
of the wake instabilities described above. In the Mack-mode case, a large portion
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Figure 5.49: Integrands of the most relevant terms of the temporal growth-rate decomposi-
tion for the cuboid-induced MO3 mode at x = 0.1 m and λx = 0.5 cm, denoted by primed
quantities.

of the disturbance energy is extracted from the wall-normal base-flow gradients
in the boundary layer far outside the roughness wake. This is indicated by the
(positive) production regions located near the boundary-layer edge when z → z∞
for P̂ ′RS,12 and P̂ ′s,2. Since their nature is related to the flat-plate boundary layer,
the spanwise production of modes M2D and MO3 is only induced by the presence
of the roughness wake. In a smooth flat-plate boundary layer without spanwise
base-flow gradients, only the wall-normal production terms would play a role in
the disturbance energy of Mack modes. In this regard, it is important to emphasize
that the obliqueness of the mode (such as mode MO3) does not involve any energy
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Figure 5.50: Streamwise evolution of all the different terms constituting the temporal growth
rate decomposition of mode M2D for the cuboid roughness element (λx = 0.5 cm). Note
that every term is divided by 2Ê.

contribution related to spanwise base-flow gradients. The energy dissipation of
modes M2D and MO3 also takes place both at the roughness wake and at the
boundary layer outside of it, following a very similar signature to that of P̂ ′RS,12

and P̂ ′s,2.
The integrands for the ramp roughness geometry (not shown) are found to

have very similar features as those already described for the cuboid configuration.
The accuracy of the temporal growth-rate decomposition in the roughness wake is
discussed in appendix G.

5.3.6.1 Streamwise evolution of the temporal growth-rate decomposition

With the aim of investigating the particular features found in the growth-rate evolu-
tion of the different instabilities under analysis, described in § 5.3.5, the streamwise
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Figure 5.51: Streamwise evolution of all the different terms constituting the temporal growth
rate decomposition of mode SIN1 for the cuboid roughness element (λx = 0.5 cm). Note
that every term is divided by 2Ê.

variation of the temporal growth-rate decomposition for each of the disturbances
is considered. On first place, the evolution of all the terms in the decomposition
is presented in order to illustrate that only those terms selected as relevant in the
previous section remain the important ones also for all the range of streamwise
locations studied. For the cuboidal element at λx = 0.5 cm, figures 5.50, 5.51 and
5.52 depict the streamwise evolution of all the terms of the decomposition given
by equation (3.64) for modes M2D, SIN1 and VCOS1, respectively. As it can
be observed, for all three disturbances the important contributions to consider are
P̂RS , P̂s, D̂µ and Dk along the entire streamwise range. As a result, the attention
is focused on those particular terms in the present section as well, including the
split contributions given by P̂s,2 and P̂s,3 (see equation (5.12)) and P̂RS,12 and
P̂RS,13 (see equations (5.13a) and (5.13b)).
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Figure 5.52: Streamwise evolution of all the different terms constituting the temporal growth
rate decomposition of mode VCOS1 for the cuboid roughness element (λx = 0.5 cm). Note
that every term is divided by 2Ê.

The relevant terms of the temporal growth-rate budget of mode M2D are rep-
resented in figure 5.53 as a function of the streamwise position in the cuboid
wake at λx = 0.5 cm. For comparison purposes, the decomposition based on
one-dimensional local linear stability theory (LST) for the two-dimensional Mack
mode (β = 0) developing in a smooth flat-plate boundary layer is also included.
In the LST case, the decomposition (3.64) is retrieved by setting all base-flow
spanwise derivatives to zero, so that only those production terms related to the
wall-normal gradients remain (see appendix E for the LST formulation of Chu’s
disturbance energy equation). As it can be observed, the energy of the 2D-LST
Mack mode (mode M2D) is also governed by the wall-normal production terms.
Despite its amplitude function being strongly modulated by the presence of the
roughness wake, the energy signature of the 2D-LST Mack mode is close to the
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Figure 5.53: Streamwise evolution of the temporal growth-rate decomposition for the two-
dimensional Mack-mode instability (M2D) found in the cuboidal roughness element wake
for λx = 0.5 cm: (a) most important production terms; (b) dissipation terms. Results for
the two-dimensional Mack mode (β = 0) developing in the corresponding smooth flat plate
boundary-layer are also included for comparison, obtained by means of LST.

LST one, for which no spanwise production is present. As a result, mode M2D still
extracts most of its energy from the boundary-layer outside of the roughness wake.
This is an important observation, which explains why the streamwise growth-rate
evolution of mode M2D, as shown in figure 5.36, is similar to that of a standard
two-dimensional Mack mode (LST with β = 0).

The same behavior is also found for the oblique Mack modes encountered in
the roughness wake (modes MO3, MO4 etc.). It is important to recognize that
since the streamwise growth-rate evolution of the 2D-LST oblique Mack modes
can also be described reasonably well by LST (see figure 5.36), their energy bud-
get is also expected to be governed by wall-normal contributions as in LST. This
is confirmed by the curves shown in figure 5.54, which compares the main dis-
turbance energy contributions of modes M2D, MO3 and MO4. Terms Ps,2 and
PRS,12 are clearly the most important contributions to the disturbance potential
and kinetic energies, respectively, highlighting the dominant role of wall-normal
gradients for all three different modes.

Focusing on the growth-rate variation of the SIN1 and VCOS1 modes, the
streamwise evolution of the temporal growth-rate decomposition for each of the
two disturbances is presented in figures 5.55 and 5.56 for the cuboid configuration
and in figures 5.57 and 5.58 for the ramp. Regarding the cuboidal geometry, it
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Figure 5.54: Comparison of the streamwise evolution of the production terms P̂RS,12,
P̂RS,13, P̂s,2 and P̂s,3 for three different Mack-mode instabilities (M2D, MO3 and MO4)
found behind the cuboidal roughness element for λx = 0.5 cm.

is observed that immediately behind the trailing-edge recirculation bubble, the en-
ergy of both instabilities is governed by the wall-normal production terms P̂s,2 and
P̂RS,12. This implies that in this region the modes extract their energy from the
wall-normal base-flow gradients. A short distance further downstream, depending
on the streamwise wavelength, the wall-normal production terms rapidly decrease
and the disturbance energy is transferred to the spanwise production contributions
P̂s,3 and P̂RS,13, bringing the wall-normal terms to a negative (stabilizing) energy
contribution for most of the studied wavelengths. After this first exchange of en-
ergy from the wall-normal to the spanwise contributions, the leading term P̂s,3
reaches a maximum and begins to decrease at an approximately constant rate. In
parallel, the wall-normal terms continue to decrease, enhancing their stabilizing
effect. However, after a given distance downstream, the wall-normal production
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Figure 5.55: Streamwise evolution of the main production (a, b, c) and dissipation (d, e, f)
terms for mode SIN1 developing in the cuboidal roughness wake at three different wave-
lengths: (a, d) λx = 0.325 cm; (b, e) λx = 0.5 cm; (c, f) λx = 1 cm.

terms start to rise again in most of the cases. This rise is accompanied with an
acceleration in the rate of decrease of the spanwise terms, such that there is a re-
ciprocal evolution between P̂s,2 and P̂s,3 and between P̂RS,12 and P̂RS,13. This
implies that another energy transfer begins to take place along the roughness wake,
in this case from spanwise to wall-normal production terms, at a slower pace than
the first one. This second exchange can be observed for the sinuous mode for all
three wavelengths. For λx = 0.325 cm and λx = 0.5 cm, starting at x ≈ 0.18 m
and continuing until the end of the domain. For λx = 1 cm, starting immediately
after the first exchange (x ≈ 0.13 m). In the case of the varicose mode, it can also
be observed for λx = 0.5 cm (starting at x ≈ 0.35 m) and for λx = 1 cm (starting
at x ≈ 0.14 m) within the studied domain length.

From the energy signature of both cuboid-induced modes at λx = 1 cm, it is
clear that this second energy transfer mechanism brings the spanwise production
terms asymptotically to approximately zero. Hence, it does not lead to stabilizing
contributions associated to the work done through the spanwise base-flow gradi-
ents. This implies that the wake instabilities in this condition become governed
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Figure 5.56: Streamwise evolution of the main production (a, b, c) and dissipation (d, e, f)
terms for mode VCOS1 developing in the cuboidal roughness wake at three different wave-
lengths: (a, d) λx = 0.325 cm; (b, e) λx = 0.5 cm; (c, f) λx = 1 cm.

only by the energy production processes linked to the wall-normal base-flow gra-
dients. As discussed above (see figure 5.53), this is an inherent characteristic of the
energy budget of boundary-layer modes that develop in a smooth flat-plate bound-
ary layer in which no spanwise base-flow gradients exist. In accordance with this
observation, it has been found that the occurrence of the second energy exchange
correlates with streamwise stations at which the amplitude of the eigenfunctions
associated with the wake instabilities VCOS1 and SIN1 begins to increase also
in the boundary layer outside of the roughness wake, with amplitude distributions
that are equivalent to the Mack-mode instabilities shown in figure 5.31. This pro-
vides evidence that there is an interaction between the wake instabilities and the
boundary-layer modes which influences the growth-rate evolution of the wake dis-
turbances. As described later in § 5.3.7, this interaction can be interpreted as a con-
tinuous synchronization between the wake modes and the boundary-layer modes
(i.e., the Mack-mode family).

For the ramp-induced instabilities (see figures 5.57 and 5.58), the disturbance



5-74 CHAPTER 5

Figure 5.57: Streamwise evolution of the main production (a, b, c) and dissipation (d, e, f)
terms for mode SIN1 corresponding to the ramp geometry at three different wavelengths:
(a, d) λx = 0.35 cm; (b, e) λx = 0.56 cm; (c, f) λx = 0.86 cm.

energy near the roughness trailing edge is also governed by the wall-normal energy
production quantities (P̂s,2 and P̂RS,12). A clear difference between the energy
signature of mode SIN1 for both roughness geometries is that, for the ramp ele-
ment, the first transfer of energy from the wall-normal to the spanwise production
terms takes place over a longer streamwise distance. This is particularly evident
for the cases with λx = 0.56 cm and λx = 0.86 cm, for which the spanwise
term P̂s,3 does not become the dominant contribution until approximately half of
the domain length. Therefore, the wall-normal base-flow gradients remain respon-
sible for the excitation of the leading disturbance in the ramp-induced wake for a
long distance downstream. Additionally, for λx = 0.35 cm, the disturbance energy
evolution confirms that the sinuous mode is strongly influenced by the presence of
Mack-mode instabilities starting at x ≈ 0.15 m, as evidenced by the sharp rise in
term P̂s,2 and the sharp decrease in term P̂s,3. This explains the rise in growth
rate that can be observed in figure 5.38(c) for this wavelength. In this case, how-
ever, the effect of the synchronization does not last until the end of the domain.
Downstream of x ≈ 0.2 m, a third energy exchange takes place and the mode re-
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Figure 5.58: Streamwise evolution of the main production (a, b, c) and dissipation (d, e, f)
terms for mode VCOS1 corresponding to the ramp geometry at three different wavelengths:
(a, d) λx = 0.35 cm; (b, e) λx = 0.56 cm; (c, f) λx = 0.86 cm.

covers the behaviour of a pure wake instability, eventually becoming governed by
the spanwise base-flow gradients in a similar way to the other two cases, for which
no sign of a synchronization is present.

Significant differences in the energy balance of the varicose mode are also
found between both roughness configurations. For the ramp geometry, the first en-
ergy transfer between wall-normal and spanwise terms occurs at a much shorter
distance behind the roughness trailing edge. Similarly, the second energy ex-
change, which leads to a transformation of the instability towards a hybrid wake-
boundary-layer disturbance, takes place further upstream and is encountered within
the domain length for all three streamwise wavelengths analyzed. For λx = 0.35

cm, it begins to occur at x ≈ 0.17 m, for λx = 0.56 cm at x ≈ 0.12 m and for
λx = 0.86 cm at x ≈ 0.09 m. This explains the fluctuations in the growth rate
encountered for λx = 0.35 cm and λx = 0.56 cm, as shown in figure 5.38(d).
Furthermore, since for λx = 0.86 cm the synchronization with the boundary-layer
modes begins upstream of x = 0.1 m, the amplitude function of the varicose mode
at these conditions (displayed in figure 5.30(c)) already shows a non-zero ampli-
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tude in the boundary layer at the sides of the roughness wake.
The contribution of the disturbance energy dissipation terms follows a simi-

lar trend for all the different cases analyzed for each roughness geometry. The
magnitude of the dissipative energy terms is maximum immediately behind the
roughness trailing edge separation region, and undergoes a very rapid decrease in
a very short distance downstream. This decrease defines the streamwise location
of maximum growth rate for each streamwise wavelength. Further downstream,
both dissipation terms progressively decrease in magnitude. Their evolution is
also found to be sensitive to the interaction with boundary-layer disturbances.

Finally, it is important to note that no significant differences are observed in
the disturbance energy extraction mechanisms between both types of wake insta-
bilities, only in the streamwise range over which the energy exchanges occur. The
same finding is reported by Theiss et al. [5] for the streamwise evolution of the
Reynolds stress production terms P̂RS,12 and P̂RS,13 near the trailing edge of dif-
ferent roughness geometries mounted on the forebody of a reentry capsule. For all
the cases analyzed by [5], the wall-normal contribution (P̂RS,12) was also found
to be larger than the spanwise one for both wake instabilities in the immediate
vicinity of the roughness elements. In addition, the current results show that the
streamwise evolution of the growth rate of the varicose and sinuous instabilities is
not uniquely governed by the energy production terms associated to the base-flow
gradients along a single spatial direction. Rather, the production terms linked to
the gradients along y are the leading contributions for certain streamwise regions
whereas the terms related to the gradients along z are the most important contri-
butions for other regions. It is observed that base-flow gradients along both the
wall-normal and spanwise directions play an important role in the evolution of
both varicose and sinuous disturbances.

5.3.7 Synchronism between wake instabilities and boundary-
layer modes

This section is devoted to illustrate a synchronization process between the wake-
induced disturbances and the boundary-layer instabilities. Figure 5.59 depicts the
magnitude of the streamwise velocity amplitude function of the SIN1 and VCOS1
instabilities excited by the cuboid roughness element at four different streamwise
locations for λx = 0.5 cm. As it can be observed, after a given streamwise dis-
tance, the amplitude of the wake modes begins to increase in the regions located at
the undisturbed boundary layer outside of the roughness wake, displaying a very
similar signature to the oblique Mack-mode instabilities shown in figure 5.31 (the
same behavior is observed for the ramp geometry, not shown here). This provides
evidence of an interaction between the wake instability modes and Mack’s mode
family. For the same configuration, figure 5.60 shows the streamwise evolution
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Figure 5.59: Normalized magnitude of the streamwise velocity amplitude function of modes
SIN1 (a, c, e, g) and VCOS1 (b, d, f, h) for the cuboid geometry at λx = 0.5 cm and at
four different streamwise locations: (a, b) x = 0.15 m; (c, d) x = 0.2 m; (e, f) x = 0.27
m; (g, h) x = 0.38 m. Contour levels range between 0 and 0.5|û|/max(|û|) to favor the
visualization of structures developing at the sides of the roughness wake.

of the non-dimensional phase speed (cph = ωr/αr) of the leading sinuous and
varicose modes as well as of different instabilities located along the Mack-mode
branch, namely, modes M2D, MO3, MO4 and MO7, already described in fig-
ure 5.31. The phase speed of mode SIN1 begins to match the phase speed of the
Mack-mode instabilities starting at x ≈ 0.2 m. This coincides with the location at
which the eigenfunction of the sinuous disturbance starts to grow in amplitude in
the boundary layer at the sides of the roughness wake. The same is encountered
for the varicose mode, for which the match in phase speeds begins significantly
further downstream, approximately at x = 0.35 m, once again in good agreement
with the location of the change in its amplitude function according to figure 5.59.
Since the Mack-mode instability manifests itself as a continuous branch in the 2D-
LST spectrum, it means that there is a continuous synchronization between the
wake instability modes and the Mack modes. Such a synchronization mechanism
was suggested by De Tullio & Sandham [4] for the excitation of varicose modes,
according to DNS results based on a very similar cuboidal roughness configura-
tion. In this work, this phenomenon is observed for both sinuous and varicose
disturbances and for the two different roughness geometries investigated, bringing
further weight to the importance of this mechanism in roughness-induced transi-
tion.
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Figure 5.60: Streamwise evolution of the non-dimensional phase speed of different insta-
bility modes developing behind the cuboid roughness element for λx = 0.5 cm. Solid and
dashed lines denote the leading wake instability modes (VCOS1 and SIN1) and dash-dot
lines with symbols correspond to different Mack instability modes (M2D, MO3, MO4 and
MO7).

Under the synchronization process, the wake instabilities progressively trans-
form into hybrid modes that develop in the roughness wake as well as at the sur-
rounding boundary layer, in the same way as the instabilities belonging to the
Mack-mode family that are modulated by the roughness wake. This transformation
is reflected in the energy decomposition of the sinuous and varicose modes. Re-
calling the streamwise evolution of the temporal growth-rate decomposition terms
(figures 5.55 and 5.56), it can be noticed that there is a close relation between the
location at which the synchronization starts and the position at which the leading
production terms change their behavior. For λx = 0.5 cm, the location at which
term P̂s,2 starts to grow after the first energy exchange is approximately x = 0.2 m
for mode SIN1 and x = 0.35 m for mode VCOS1, which precisely coincide with
the locations at which their respective phase speeds match those of the Mack-mode
branch. Therefore, when the synchronization starts, the disturbance energy decom-
position of modes SIN1 and VCOS1 begins to approach the energy signature of the
Mack-mode instabilities (see figures 5.53 and 5.54), namely, spanwise terms (P̂s,3
and P̂RS,13) decreasing towards zero and wall-normal terms (P̂s,2 and P̂RS,12) ris-
ing. As the wake perturbations begin to develop amplitude in the boundary layer
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Figure 5.61: Integrands of the disturbance entropy production term associated to the wall-
normal temperature gradient (P̂s,2) for the cuboid-induced SIN1 (a, c, e, g) and VCOS1
(b, d, f, h) modes at λx = 0.5 cm: (a, b) x = 0.15 m; (c, d) x = 0.2 m; (e, f) x = 0.27 m;
(g, h) x = 0.38 m. Contour levels range between −0.05 and 0.05 times P̂ ′s,2/max(P̂ ′s,2)
to favor the visualization of production regions at the sides of the roughness wake.

outside of the roughness wake, there is a redistribution of the disturbance energy
from the spanwise components to the wall-normal ones. This shift in the energy
production of the sinuous and varicose modes is also illustrated in figures 5.61 and
5.62, which respectively display contour plots of the integrands P̂ ′s,2 and P̂ ′s,3 of
both wake perturbations at the same four different streamwise stations shown in
figure 5.59. Clearly, when a synchronism between wake modes and Mack modes
exists, P̂ ′s,2 production regions appear at the boundary-layer outside of the rough-
ness wake, indicating energy extraction from the wall-normal base-flow gradients
in the undisturbed portion of the flat plate. As it can be observed in figure 5.62,
this is not the case for P̂ ′s,3, which originates only from the spanwise gradients in
the wake.

This synchronism is one mechanism by which the wake instabilities change
their properties along the wake, and which has a direct impact on their amplifica-
tion rates. It is therefore important to account for this phenomenon in the model-
ing of the linear stages of roughness-induced transition in conditions where wake
and boundary-layer instabilities coexist. In this regard, an interesting point for
future analysis would be to study the roughness wake using the 3D-PSE theory
(see § 3.6.3). The PSE approach can contain contributions from different local
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Figure 5.62: Integrands of the disturbance entropy production term associated to the
spanwise temperature gradient (P̂s,3) for the cuboid-induced SIN1 (a, c, e, g) and VCOS1
(b, d, f, h) modes at λx = 0.5 cm: (a, b) x = 0.15 m; (c, d) x = 0.2 m; (e, f) x = 0.27 m;
(g, h) x = 0.38 m. Contour levels range between −0.05 and 0.05 times P̂ ′s,3/max(P̂ ′s,3)
to favor the visualization of production regions at the sides of the roughness wake.

linear stability eigenmodes with different wavenumbers, even though only one of
them is selected as the initial disturbance. Hence, the PSE technique should a
priori be capable of capturing the complete downstream response to the initial
perturbation while accounting for weakly non-parallel effects at the same time,
providing a closer solution to what could be achieved using DNS. Nevertheless,
in situations where more than one unstable mode is present, with wavenumbers
that are different from that of the initial disturbance being tracked (such as in the
cases investigated in this work), Towne et al. [34] have shown that the regulariza-
tion techniques needed to stabilize the PSE marching can introduce errors in the
solution predicted by PSE. In particular, the implicit Euler technique and the ex-
plicit damping stabilization techniques can introduce errors in the wavelength and
growth rate of the response, while the pressure-gradient relaxation technique can
introduce an error in the amplitude function as well. As a consequence, this issue
should be taken into account in practice if 3D-PSE is to be applied to the current
problem. In this regard, 3D-PSE analyses should be accompanied by DNS studies
in order to asses the magnitude of the errors introduced by the PSE approach and
determine whether they can be detrimental for the analysis of the problem or not.
The one-way marching technique developed by Towne & Colonius [35] could also
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be a path to explore since it has shown the capability of accurately capturing the
full downstream response at a lower computational cost than linearized DNS.

An interesting study is the one performed by De Tullio et al. [3] for an isolated
roughness element in a supersonic flat-plate boundary layer at Mach 2.5. Growth-
rate predictions performed with 3D-PSE were found to agree well with DNS (see
figure 9(b) in that study) for certain streamwise locations in the roughness wake but
a small disagreement was reported for others. De Tullio and coauthors argue that
the differences are probably related to the fact that multiple modes with different
growth rates contribute to the growth of the DNS disturbance energy response. On
the other hand, it is worth mentioning that 3D-PSE has been successfully applied
to the instabilities developing in the wake behind an isolated roughness element
in the forebody of a reentry capsule (see [5, 6]), showing very good agreement
against DNS. However, in this configuration, the boundary-layer modes are highly
stabilized and therefore they are not believed to have a significant influence in PSE
response.

The current observations regarding the synchronism between boundary-layer
and wake disturbances bear resemblance with the findings reported in the numer-
ical analysis of Görtler vortices performed by Chen et al. [36, 37]. Since Görtler
vortices are also characterized by streamwise streaks developing in the boundary
layer, an interaction between Mack modes and streak modes also appears to be
present in this case.

5.4 Summary of results

In this chapter, the instabilities induced by an isolated roughness element in a CPG
Mach 6 flat-plate boundary layer have been investigated using two-dimensional
local linear stability theory (2D-LST). The decomposition of the temporal growth
rate introduced in § 3.10.2 based on the disturbance energy formulation of Chu [32]
has been applied to the instabilities developing in the wake behind a roughness
element.

Two different roughness geometries have been considered with heights that
lead to subcritical roughness Reynolds numbers. The first one is a sharp-edged
cuboidal element with a square planform shape and the second is a three-dimensio-
nal sharp-edged ramp geometry. In consistency with the flow fields already de-
scribed in the literature, the base-flow solutions obtained from the compressible
Navier-Stokes equations have shown that the roughness elements induce a pair of
counter-rotating streamwise vortices which, through the lift-up mechanism, gen-
erate a wake flow structure consisting of a central low-velocity streak surrounded
by two high-velocity streaks. The strong velocity gradient established at the inter-
face between the low-velocity streak and the outer, inviscid flow leads to a three-
dimensional high-shear layer that surrounds the central streak. The evolution of the
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streamwise vorticity along the roughness wake indicates that the cuboidal element
induces a stronger counter-rotating vortex pair than the ramp geometry. However,
the smaller spanwise extent and the lateral angle present in the ramp geometry re-
sult in counter-rotating vortices that are closer to each other, generating a narrower
and taller low-velocity streak.

Spatial stability analyses performed at a fixed streamwise location and fre-
quency in the cuboidal roughness wake have shown that the streak system sup-
ports the growth of different instabilities, which manifest themselves as sinuous
and varicose deformations of the low-velocity streak. The obtained spectra have
illustrated that these wake instabilities coexist with the boundary-layer instabili-
ties (Mack’s first or second modes) that evolve in the flat-plate boundary layer,
and which become modulated by the presence of the roughness wake. These re-
sults are in good qualitative agreement with similar configurations investigated in
the literature, hence confirming the validity of the numerical methodology and the
stability solver employed for the computations shown in this work. A preliminary
assessment of the influence of the thermal wall boundary condition has shown that
boundary-layer heating or cooling has an important impact on the growth rate of
both wake and boundary-layer modes. The use of an adiabatic wall in contrast to
a cold isothermal wall leads to a significant thickening of the boundary layer due
to base-flow heating. This thickening, which is the responsible for the well-known
stabilization of the second Mack mode, is nevertheless found to destabilize the
varicose wake perturbation, in good agreement with the findings of De Tullio &
Sandham [4].

Extensive temporal 2D-LST computations have been performed along the rou-
ghness wake for the range of most unstable streamwise wavelengths for each
roughness geometry. Two leading instability modes have been distinguished for
each case, respectively corresponding to the most unstable sinuous (SIN1) and
varicose (VCOS1) instabilities. Integrated amplification factors obtained by means
of a Gaster transformation of the temporal stability results show that the cuboidal
roughness element excites the varicose instability more strongly than the sinuous
one, whereas the ramp geometry is found to favor the growth of the sinuous mode
over the varicose one. Near the roughness element, the cuboidal configuration is
more effective in promoting the linear growth of the dominant wake instability
mode than the ramp-shaped obstacle. Further downstream, however, the ramp-
induced wake leads to a higher disturbance amplitude.

The decomposition of the temporal growth rate of the instabilities evolving
in the roughness wake has revealed that the most important contributions to the
generalized disturbance potential energy come from the transport of disturbance
entropy across the base-flow temperature gradients (P̂s), while the largest con-
tributions to the disturbance kinetic energy are produced by the work done by the
Reynolds stresses against the base-flow velocity shear layers (P̂RS). Previous stud-
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ies in high-speed roughness-induced transition have mainly analyzed production
of disturbance kinetic energy due to the perturbation Reynolds stresses. However,
the current results have indicated that the production of potential energy due to
entropy fluctuations might also play a significant role in high-speed flows. In addi-
tion, the obtained decompositions have shown that in practice, for the disturbance
energy analysis of roughness wake instabilities developing in a configuration like
the one presented in this work, it is sufficient to pay attention to the production
terms P̂s and P̂RS , and to the dissipation terms D̂µ and D̂k. The remaining terms
bring small contributions which are not significant.

The streamwise evolution of the disturbance energy decomposition has illus-
trated that both wake instabilities are dominated by the wall-normal production
terms in the vicinity of the roughness element and that the energy is progres-
sively transferred to the spanwise production terms further downstream. The rate
at which this transfer takes place has been found to be faster for the cuboidal el-
ement. A relevant finding is that no significant differences are observed in the
energy extraction mechanisms between both types of wake instability, only in the
range over which the energy transfer occurs. Therefore, both wall-normal and
spanwise base-flow gradients appear to play a major role in the excitation of both
sinuous and varicose instabilities.

For many of the conditions investigated, the amplitude of the wake modes has
been found to grow in the boundary layer at the sides of the roughness wake, re-
sembling the amplitude function of Mack-mode instabilities. This behavior has
been observed to correlate with changes in the evolution of the energy production
terms, more specifically, with downstream locations at which the wall-normal pro-
duction terms begin to rise and the spanwise terms accelerate their rate of decrease.
An analysis of the phase speed evolution of different instabilities has shown that
this behavior also correlates with the location at which the phase speed of the wake
modes matches that of the Mack-mode instabilities. These observations provide
evidence that there is a continuous synchronization between the wake instabilities
and the boundary-layer modes. When this synchronization begins to take place,
the energy signature of the wake modes changes its behavior and starts to become
similar to that of Mack-mode disturbances. This phenomenon has important impli-
cations in the growth-rate evolution of the wake instabilities, contributing in some
cases to enhance their amplification rate or to decrease the rate of decay of the per-
turbations. Such a mechanism for the excitation of wake modes was suggested by
De Tullio & Sandham [4] for the case of varicose disturbances behind a cuboidal
roughness element, according to DNS-based analyses. Here, this phenomenon has
been observed for both sinuous and varicose instabilities induced by two different
roughness geometries, which brings further proof that this mechanism could play
a crucial role in roughness-induced transition.
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6
Influence of vibrational excitation and

chemical non-equilibrium on the
roughness wake instability

6.1 Problem description and methodology

This chapter presents the analysis of the instabilities induced by an isolated rough-
ness element in a high-temperature boundary layer in which the effects of the exci-
tation of the vibrational internal energy mode, dissociation and molecular diffusion
become relevant. The geometrical configuration considered, depicted in figure 6.1,
consists of a cuboidal roughness element placed on the surface of a wedge inside
a hypersonic freestream. The wedge half-angle is θ = 20 degrees and its lead-
ing edge is assumed to be infinitely sharp. The freestream conditions considered
are summarized in table 6.1. These values have been chosen to be representative
of a point in the reentry trajectory of a vehicle like the Space Shuttle orbiter at
an altitude of 65 km, where chemical non-equilibrium effects are known to play
a non-negligible role (see figure 1.2). The Knudsen number for these freestream
conditions, considering a body length of 10 cm (representative of the size of dis-
crete roughness element found on the surface of the Space Shuttle orbiter, such as
the protuberance installed for the BLTFE experiment [1]), is Kn = 0.005. For
this value of the Knudsen number, the flow can be assumed to be in the continuum
regime (Kn < 0.03) [2].

The leading edge of the roughness element is located inside the laminar bound-
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Figure 6.1: Representation of the geometrical configuration of the problem under study and
the computational domain employed for the base flow calculations (not to scale).

M∞ u∞ [m/s] T∞ [K] p∞ [Pa] ρ∞ [kg/m3] Re∞/l [1/m]

18 5490.93 231.45 10 1.504e-04 5.50e+04

Table 6.1: Freestream conditions considered in this chapter.

ary layer at a streamwise distance of xh = 1.2 m from the wedge leading edge
and is centered along the spanwise direction at z = 0 (streamwise symmetry
plane). The roughness height is fixed to be h = 1.62 cm, and its planform shape is
square with length and width equal to 6h. These dimensions were chosen to yield
a ratio of roughness height to the local unperturbed boundary-layer thickness of
h/δ99 ≈ 0.45 and a roughness Reynolds number of Reh ≈ 300-400, depending
on the flow assumption. This range of Reh is similar to that of the cases studied in
chapter 5.

The computational domain employed for the base flow calculations is also rep-
resented in figure 6.1 and its dimensions are listed in table 6.2, where (xin, yin)
and (xout, yout) respectively denote the streamwise coordinate and height of the
inlet and the outlet planes and z∞ denotes the spanwise size, which is constant.
The domain is located inside the shock layer established between the shock wave
induced at the wedge leading edge and the wedge surface. This requires imposing
a boundary-layer profile at the inflow boundary. The top boundary has initially a
constant slope and after a streamwise distance of 7 m downstream of the wedge
leading edge it becomes flat. This is done to reduce the height of the computational
domain in the region surrounding the roughness element, where a higher grid res-
olution is required, and to avoid that roughness-induced shock waves impinge on
the upper boundary before they are far away from the boundary layer.

Three different thermodynamic flow assumptions are considered to analyze the
roughness-wake instability, namely, a calorically perfect gas, a thermally perfect
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xin [m] xout [m] yin [m] yout [m] z∞ [m]

0.5 60 0.49 1.87 0.65

Table 6.2: Dimensions of the computational domain. The origin is located at the wedge
leading edge.

Flow h/δ99 Reh Reh,w

CPGS 0.44 348 547

CPGGW 0.37 305 538

TPG 0.45 382 613

CNE 0.45 384 615

Table 6.3: Ratio of roughness height to the local boundary-layer thickness at the roughness
leading edge (x = 1.2 m) and roughness Reynolds number for the different flow assump-
tions. See equations (5.1) and (5.2) for the definition of Reh and Reh,w.

gas and a mixture of five perfect-gas species in chemical non-equilibrium (see
chapter 2 for their respective definitions). A comparison between the instabili-
ties computed by means of CPG and TPG allows to assess the influence of vibra-
tional excitation, while the differences between the TPG and the CNE results high-
light the effect of chemical reactions. The TPG and the CNE assumptions employ
the thermal model described in § 2.5.1 and the Gupta-Wilke transport model (see
§ 2.5.2.2). For CNE, the chemical reactions are modeled as described in § 2.5.3.
For the CPG assumption, two different transport models are considered, namely,
Sutherland’s law1 and the Gupta-Wilke model. This is done to examine the pure
effect that the transport property modeling has on the roughness-wake instabilities.
The distinction between the CPG assumption using each of these transport models
is denoted as CPGS (Sutherland) and CPGGW (Gupta-Wilke). These considera-
tions lead to a total of four different cases for this study, respectively designated as
CPGS, CPGGW, TPG and CNE.

The values of the parameters h/δ99, Reh and Reh,w for each case are reported
in table 6.3. The boundary-layer thickness is estimated using the total enthalpy
(h0) criterion defined as h0/h0,e = 0.995 in a boundary-layer profile obtained
by solving the boundary-layer equations at the location of the roughness element.
For the CPG and the TPG assumptions, the boundary-layer profile is self-similar,
whereas for CNE it is obtained by marching the boundary-layer equations (see
§ 2.4). The boundary-layer profiles imposed at the inflow of the computational do-

1In this chapter, for the CPG assumption with Sutherland’s law, the latter is employed for viscosity
only. The thermal conductivity is computed from the assumption of a constant Prandtl number with
value Pr = 0.7.
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Figure 6.2: Boundary-layer profiles imposed at the inflow of the computational domain
(x = 0.5 m) for each flow assumption: (a) streamwise velocity profiles; (b) temperature
profiles; (c) mass fractions of the species produced as a result of chemical reactions in the
CNE case.

main for each case are represented in figure 6.2, which were obtained by means of
the DEKAF solver (see § 4.1.2). As it can be observed by comparing the CPGGW
profile against the TPG or the CNE profiles, the excitation of the vibrational inter-
nal energy mode results in a significant cooling of the boundary layer, which is also
associated with a reduction in the boundary-layer thickness. This effect translates
in a larger h/δ99 as well as a larger roughness Reynolds number for TPG/CNE
with respect to CPGGW. On the other hand, the differences between the TPG and
the CNE cases at this location are very small, reflecting that, at x = 0.5 m, the in-
fluence of chemical reactions is not yet relevant. The mass-fraction profiles shown
in figure 6.2(c) illustrate the concentration of the species produced by chemical
reactions. As expected for the range of temperatures found in the boundary layer
(see figure 2.1), atomic oxygen (O) features the highest mass fraction, followed by
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Flow Me ue [m/s] Te [K] pe [Pa]

CPGS/CPGGW 4.73 5000.95 2780.66 662.66

TPG 5.40 5037.13 2331.77 642.30

CNE 5.40 5037.13 2331.77 642.30

Table 6.4: Flow conditions at the boundary-layer edge, denoted by the subscript e, for the
different flow assumptions. These conditions are equivalent to the flow quantities down-
stream of the wedge shock wave, computed according to inviscid theory [2]. For CNE, the
boundary-layer edge values depend slightly on the streamwise direction because the com-
position of the gas is different at each station. The values shown in the table for the CNE
case correspond to the location of the computational domain inflow (x = 0.5 m). How-
ever, their variation along the entire streamwise domain length for the configuration under
analysis is below 0.1%.

very small concentrations of nitric oxide (NO) and nitrogen (N). As shown later
in § 6.2, the impact of chemical non-equilibrium becomes more important further
downstream as the flow progressively undergoes increasing levels of dissociation.

Regarding case CPGS, the use of Sutherland’s law leads to a severe underpre-
diction of viscosity (see figure 2.2), which in turn results in a higher boundary-
layer temperature and a smaller boundary-layer thickness. Note that the CPGS
profile happens to have a similar boundary-layer height as the TPG and CNE pro-
files. Nevertheless, as emphasized as well by Miró Miró [3], it is important to
mention that this fact is simply due to a serendipitous cancellation between the in-
crease in boundary-layer thickness associated with not taking into account vibra-
tional excitation, as shown by case CPGGW, and the reduction of the boundary-
layer height associated with the use of Sutherland’s law. The right prediction of
the boundary-layer thickness for CPGS cannot be attributed to a sound modeling
of the aforementioned high-temperature effects.

The base-flow solutions for the different flow assumptions considered are ob-
tained by means of CFD++ R© (see § 4.1.3.1). The base-flow boundary conditions
are labeled in figure 6.1. At the inflow boundary, the boundary-layer profiles dis-
played in figure 6.2 are prescribed. Similarly, at the part of the top boundary that
has a slope, the boundary-layer edge conditions are prescribed, which are identical
to the post-shock conditions listed in table 6.4. These values are computed from
inviscid theory through the Rankine-Hugoniot relationships [2]. In order to avoid
a mismatch between the boundary-layer edge properties and the actual boundary-
layer profile at the top of the inflow boundary, the wall-normal velocity component
of the inflow profile is set to zero. At the flat portion of the top boundary and at the
outflow boundary, the primitive flow variables are extrapolated from the interior
of the domain, which is equivalent to a supersonic outflow boundary condition.
At the spanwise domain boundaries (z = 0 and z = z∞), symmetry conditions
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are specified. Finally, at the wall, a no-slip, non-catalytic isothermal condition is
enforced, with a wall temperature of Tw = 1900 K. This value is chosen as a rep-
resentative temperature for the decomposition of a conventional thermal protection
system [4]. A more detailed description of these boundary conditions can be found
in § 2.3.

The grid used for the base-flow calculations is generated using OpenFOAM’s
utility blockMesh, see § 4.1.3.2. The same grid is employed for all four cases, with
a resolution along each spatial direction of Nx × Ny × Nz = 830 × 320 × 190,
resulting in 50 million cells.

The 2D-LST eigenvalue problem is discretized using the FD-q technique with
a polynomial order qp = 8. Periodic boundary conditions are considered for the
perturbations at the spanwise boundaries, such that the complete spanwise domain
is included in the discretization. Note that in the case of CNE, the vector of state
variables contains nine independent quantities, namely, ρ̃N, ρ̃O, ρ̃NO, ρ̃N2 and ρ̃O2 ,
ũ, ṽ, w̃ and T̃ . At the wall-normal boundaries, ρ̃N, ρ̃O, ρ̃NO and ρ̃N2 are forced
to obey the individual species wall-normal momentum equations, whereas ρ̃O2 is
forced to satisfy the mixture wall-normal momentum equation. The remaining
boundary conditions on the perturbation quantities follow the description given in
§ 3.9.

The mapping introduced by Malik (see § 4.2.2.1) is applied along the wall-
normal direction, whereas along the spanwise direction the biquadratic mapping
described in § 4.2.2.2 is used. The implicitly restarted Arnoldi algorithm is em-
ployed to compute a small number of eigenvalues and eigenvectors for each case.
Note that the CNE spatial eigenvalue problem is two times bigger than the CPG or
the TPG ones, which significantly increases the computational cost.

Finally, it is emphasized that the present configuration constitutes an academic
test case used to evaluate the effect of some high-temperature phenomena on the
instability of a simple boundary layer with discrete roughness. Realistic config-
urations would rather incorporate blunt-body geometries as well. In addition, al-
though the freestream Knudsen number associated to the conditions analyzed in
this chapter (Kn = 0.005 for a body length of 10 cm) is within the continuum
regime according to the commonly assumed threshold (see for instance [2]), the
DSMC simulations of Lofthouse et al. [5] have shown that for values of Kn in
this range, small continuum breakdown effects might be present in certain regions
of the flow field, such as in shock waves or in the wedge boundary layer. These
effects can introduce a small velocity slip and a small temperature jump at the wall
boundary. According to [5], differences of approximately 1% should be expected
in the surface base-flow quantities when comparing Navier-Stokes simulations us-
ing no-slip boundary conditions and DSMC simulations for the conditions under
study.

The aforementioned rarefied-gas effects have not been considered in the in-
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vestigations performed in this work. However, it is important to emphasize that,
although small, the finite slip velocity and temperature jump at the wall might
have an impact on the flow instability. The influence of this phenomena could be
evaluated by employing slip boundary conditions in the Navier-Stokes simulations
used to obtain the base-flow field, such as the conditions derived by Lockerby et
al. [6] or Gökçen and MacCormack [7]. Similarly, the equations that define the
slip boundary conditions could be linearized and applied to the perturbations in
linear stability analyses.

6.2 Stability analysis of the smooth wedge configu-
ration

Before studying the three-dimensional base-flow field induced by the presence of
the roughness element, the boundary-layer stability of the smooth wedge configu-
ration (i.e., without the obstacle) is examined. For this purpose, spatial LST com-
putations are performed along the wedge surface, employing base flows based on
boundary-layer computations obtained with DEKAF. As it is known from hyper-
sonic boundary-layer stability theory, the instability of the smooth boundary layer
at the conditions under study is governed by second Mack-mode disturbances,
which feature the highest growth rate as two-dimensional waves (β = 0).

Figure 6.3 illustrates the integrated amplification factor (N -factor) envelope
curves for Mack’s second mode obtained for the different flow assumptions under
consideration, as a function of the streamwise distance along the wedge surface.
A frequency range of f = 4 kHz to f = 25 kHz is covered by the envelope curve
for each case. As it can be observed, the second Mack mode is destabilized when
accounting for internal-energy-mode excitation (TPG and CNE) and dissociation
(CNE). This is a consequence of the reduction of the boundary-layer thickness due
to base-flow cooling, resulting from the lower temperature field obtained when
modeling these phenomena. The largest difference arises between the CPG and
the TPG thermodynamic assumptions, as it would be expected due to the fact that
the CPG model does not take into account the excitation of the vibrational internal
energy mode and therefore it is far from representing the actual thermodynamic
behavior of the flow at the high-temperatures under study.

On the other hand, sufficiently far away from the wedge leading edge (ap-
proximately for x > 10 m), the influence of chemical non-equilibrium on the
amplification factor becomes significant, which is clearly visible by comparing the
evolution of the TPG and the CNE curves. Taking into account the dissociation
of O2 and the other chemical reactions active between the five species considered
within the boundary layer (see table 2.5), as well as the diffusion transport between
the species, leads to a further cooling of the boundary layer, which is then trans-
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Figure 6.3: Second Mack mode LST N -factor envelope curves as a function of the stream-
wise coordinate for the smooth wedge boundary layer for the four different flow assumptions
considered. The spanwise wavenumber β is fixed to 0. Curves labeled as BL employ base-
flow solutions of the boundary-layer equations (obtained using DEKAF) whereas curves
labeled as NS use base-flow solutions of the full Navier-Stokes equations (obtained using
CFD++ R©).

lated into an increased second-Mack-mode growth. This behavior is well known
from previous studies of hypersonic boundary-layer stability in the presence of
non-equilibrium effects, see [8, 9].

The comparison between theN -factors predicted by the CPGS and the CPGGW
flow assumptions provides a measure of the error associated to an inaccurate mod-
eling of the transport properties, which is not negligible in this case. Because the
boundary-layer thickness predicted by CPGS is smaller than that of CPGGW, the
first case yields a higher growth rate. It is important to stress, however, that an ap-
propriate evaluation of the internal-energy-excitation and chemical non-equilibri-
um effects on the instabilities can only be performed between flow assumptions
with an equivalent and consistent set of transport models, that is, CPGGW, TPG
and CNE. Lastly, it is also interesting to note that for the conditions under in-
vestigation, the second-mode instability needs a long distance (in the order of 30
meters) to reach an amplification factor that is in the transitional range according
to other studies at similar conditions [10].

6.2.1 Effect of the boundary-layer assumption

Since the freestream Mach number for the conditions under study is very high, the
shock layer over the wedge surface is thin and can become fully viscous, specially
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for short distances downstream of the leading edge. This fact can make the use of
the boundary-layer equations a questionable approximation, as the wedge shock
can be located below the boundary-layer edge. If this is the case, the post-shock
conditions predicted by the Rankine-Hugoniot jump relations cannot be assumed
to be accurate any more, since they are derived in the context of inviscid flow
theory. This, in turn, introduces an error in the boundary-layer edge properties
imposed in the boundary-layer solver.

To assess the influence of using the boundary-layer equations instead of the
Navier-Stokes equations for the calculation of the base-flow solution for the smooth
wedge case, additionalN -factor envelopes have also been computed using bounda-
ry-layer profiles obtained from the full Navier-Stokes equations. The resulting
curves are also shown in figure 6.3, labeled as NS. As it can be seen, the effect of
using the boundary-layer equations does not lead to important differences in the
present case. For this reason, the boundary-layer profiles obtained from DEKAF
are imposed at the inflow boundary of the computational domain. This avoids
the need of resolving the wedge shock wave in the three-dimensional base-flow
computation including the roughness element.

6.3 Verification of the 2D-LST solver for TPG and
CNE in the smooth-wedge configuration

In order to verify the implementation of the 2D-LST equations within VESTA
toolkit for the TPG and CNE flow assumptions, 2D-LST computations are also
performed for the smooth-wedge configuration and compared against the result of
the LST calculations. Since the two stability theories are based on the same as-
sumptions, except that in the 2D-LST case there is an additional non-homogeneous
direction, all the instability modes that are solution of the LST eigenvalue problem
must also be a solution of the 2D-LST one. This can be exploited to setup a veri-
fication test case for the 2D-LST implementation. For this purpose, the previously
computed boundary-layer profiles are replicated along the spanwise direction to
generate a base-flow plane in y and z that is then used for the 2D-LST solver.

For verification purposes, a streamwise location of x = 5.06 m from the wedge
leading edge and a frequency of 22.85 kHz are considered. The results of the
comparison are presented in figure 6.4. Note that a relatively low resolution is
employed along the wall-normal direction (Ny = 101) owing to the large compu-
tational cost of the QZ algorithm in the CNE 2D-LST case. For each LST mode,
there is a corresponding family of Nz − 2 modes that are obtained from the 2D-
LST problem, with Nz being the number of grid points in the spanwise direction.
The verification for both flow assumptions is certified by the excellent agreement
of the first 2D-LST mode of each family, which corresponds to β = 0, with the



6-10 CHAPTER 6

Figure 6.4: Comparison between the spatial stability spectrum obtained by means of the
LST solver and the one obtained by the 2D-LST in the smooth wedge boundary layer at
x = 5.06 m and f = 22.85 kHz: (a) TPG flow assumption; (b) CNE flow assumption.

LST one, where β = 0 is explicitly imposed. The LST solver inside VESTA has
been extensively verified against other authors in the past for boundary layers in
the presence of different high-enthalpy phenomena [3, 11, 12].

In the CNE case, due to the chosen mapping parameters and the resolution em-
ployed, the number of collocation points available in the upper portion of the do-
main is very small. As a consequence, most of the modes belonging to the acoustic
continuous branches, whose eigenfunctions do not decay to zero towards the wall-
normal far field boundary, are poorly resolved in this region. This originates the
opening of the horizontal continuous branches that is visible in figure 6.4(b). It is
important to emphasize that this behavior does not have a physical nature, rather it
has a numerical origin associated to the chosen discretization parameters.

6.4 Stability analysis in the roughness wake

This section describes the base-flow solution for the wedge configuration with a
roughness element as well as the stability characteristics of the roughness-induced
wake for each case, as obtained by means of 2D-LST theory.

6.4.1 Description of the base flow

The main physical features of the computed base-flow solutions share strong sim-
ilarities with those solutions described in chapter 5. Here, the attention is focused
on the differences between the multiple flow assumptions considered. Figure 6.5
displays contours of the base-flow temperature obtained for each case on a plane
located at half of the roughness element height. For all flow assumptions, the
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Figure 6.5: Contours of base-flow temperature near the roughness element for each flow
assumption, on a xz plane located at half of the roughness element height: (a) CPGS;
(b) CPGGW; (c) TPG; (d) CNE. The white solid lines represent isolines of ū = 0, which
delimit regions of separated flow.

Figure 6.6: Contours of the mass fraction of atomic oxygen (c̄O) in the CNE base flow on a
xz plane located at half of the roughness element height.

topology of the flow field is essentially the same, with the roughness wake being
characterized by a pair of strong counter-rotating vortices that lead to a streak sys-
tem. The most relevant differences between the base-flow solutions presented for
each case lie in the temperature values obtained for each of the flow assumptions.

The higher viscosity predicted by the Gupta-Wilke transport model leads to a
smaller temperature for case CPGGW compared against CPGS, which also results
in a smaller downstream recirculation bubble, as represented by the white solid
lines shown in figure 6.5.

The excitation of the vibrational internal energy mode is the responsible for
the important decrease in the temperature of cases TPG and CNE with respect
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Figure 6.7: Comparison of the temperature base-flow field between the TPG and CNE flow
assumptions at x = 2 m: (a) temperature contours for TPG; (b) temperature contours for
CNE; (c) temperature difference between the TPG and the CNE cases (∆T̄ = T̄TPG−T̄CNE);
(d) Mass fraction of atomic oxygen for CNE. The white dashed lines represent a projection
of the roughness element.

to CPGGW. The TPG temperature contours are indistinguishable from the CNE
case, reflecting that, at the location of the roughness element, the flow has not
yet undergone sufficient dissociation to affect the flow field in a significant way.
To illustrate the presence of the main dissociated species in the roughness wake,
figure 6.6 depicts contours of the mass fraction of atomic oxygen (c̄O = ρ̄O/ρ̄)
on the same xz plane located at y = h/2. As it can be observed, a higher mass
fraction of O is found in the central wake region as well as in front of the roughness
element, where a small region of high-temperature recirculating fluid is present.
Note that the concentration of O is higher in the low-velocity streak at the center
of the wake than in the surrounding boundary-layer, suggesting that the effects of
dissociation might be stronger for instabilities evolving in the roughness wake than
for instabilities evolving outside of it.

The small differences between the TPG and the CNE flow assumptions are
highlighted in figure 6.7. Figures 6.7(a, b) display temperature contours on a
cross-flow plane located at x = 2 m for the TPG and the CNE cases, respectively.
The highest temperatures are located at the center of the wake slightly above the
roughness element height. Figure 6.7(c) shows the actual difference between the
TPG and CNE temperature fields, which at this location remains below 55 K. Note
that the highest difference in temperature is found at the center of the wake, coin-
ciding with the location of maximum temperature in the plane according to figures
6.7(a, b). This region is also found to correlate well with the location of the highest
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Figure 6.8: Contours of base-flow streamwise shear magnitude (equation (5.7)) on a cross-
flow (zy) plane located at x = 2 m: (a) CPGS; (b) CPGGW; (c) TPG; (d) CNE.

Figure 6.9: Contours of base-flow streamwise vorticity (equation (5.8)) on a cross-flow (zy)
plane located at x = 2 m: (a) CPGS; (b) CPGGW; (c) TPG; (d) CNE.

mass fraction of atomic oxygen, represented in figure 6.7(d). It is also worth not-
ing that ∆T̄ = T̄TPG−T̄CNE is positive, which reflects the cooling effect introduced
by chemical reactions and diffusion transport on the roughness wake.

Figures 6.8 and 6.9 illustrate the streamwise shear magnitude and the stream-
wise vorticity for each case on a plane located at x = 2 m. The highest shear
regions are found between the high-velocity streaks, which are located at the side
edges of the roughness element, and the wall, where a large velocity gradient is
encountered. As opposed to the configurations analyzed in chapter 5, the shear
values attained at the top of the streak are much smaller than in the regions near
the wall, denoting a weaker lift-up effect in the cases analyzed here. Case CPGS
features larger shear values at the top of the low-velocity streak compared to the
other three cases, while no significant differences are observed between CPGGW,
TPG and CNE. Similarly, the streamwise vorticity contours shown in figure 6.9
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Figure 6.10: Portion of the spatial 2D-LST spectrum obtained for the CNE case at x = 2
m and f = 3 kHz. The two unstable modes respectively correspond to the most unstable
sinuous (SIN1) and varicose (VCOS1) instabilities.

show that the counter-rotating vortex pair is considerably weaker in these cases
compared to the previously analyzed configurations. These observations suggest
that the wake instability modes might experience a smaller amplification in the
current set-up.

6.4.2 Results of the 2D-LST computations

Spatial 2D-LST computations have been performed in the wake behind the rough-
ness element for the four different cases under study2. All the calculations have
been performed considering the following mapping parameters: ymax = y∞,
yi = 20l, zmax = −zmin = 30h, zi2 = −zi1 = 3h. For each case, 50 eigen-
modes are computed by means of the IRAM using a non-dimensional shift-invert
parameter of σ = 1.3ωr.

On first place, figure 6.10 shows the spatial stability spectrum obtained for the
CNE case at a streamwise distance of x = 2 m from the wedge leading edge and
at a frequency of f = 3 kHz. Different discrete modes are found in the spectrum,
which show convergence with respect to grid resolution. Two unstable modes can

2Most of the results shown in this chapter have been published in reference [13]. However, the
author would like to note that the CNE results reported in reference [13] are affected by an error in the
calculation of the mass production rate of each species (ẇs) in the base-flow solution. In this section,
the corrected CNE results are reported. The differences introduced by this error were found to be small
for all the investigated conditions. The CNE results shown here remain very similar to the ones reported
in [13].
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Figure 6.11: Normalized two-dimensional amplitude functions of the streamwise velocity
and temperature perturbations associated to the most unstable sinuous and varicose modes
for the CNE case at x = 2 m and f = 3 kHz: (a, b) streamwise velocity amplitude func-
tions; (c, d) temperature amplitude functions; (a, c) mode SIN1; (b, d) mode VCOS1.

be identified at these particular conditions, labeled as SIN1 and VCOS1, whose
amplitude functions for the streamwise velocity and temperature perturbations are
represented in figure 6.11. These two instabilities are, respectively, the most unsta-
ble sinuous and varicose disturbances that develop in the wake behind the rough-
ness element in the current configuration. Their regions of development are mainly
concentrated inside the central low-velocity streak that characterizes the wake flow
structure. Note that the sinuous mode in this case features a much larger growth
rate than the varicose one. Very similar amplitude functions are also obtained for
the other flow assumptions, not shown here.

Figure 6.12 represents the evolution of the growth rate of the two most unstable
wake modes as a function of frequency for each flow assumption, at a particular
streamwise location of x = 2 m. In their unstable frequency range, the sinuous
and varicose instabilities at this location are found to follow opposite trends when
the excitation of the vibrational energy mode is taken into account. While the sinu-
ous mode is more stable for TPG/CNE than for CPGGW, the varicose disturbance
is significantly destabilized. The same behavior is also observed with respect to
the effect of chemical reactions, i.e., the sinuous mode in CNE is slightly sta-
bilized with respect to TPG while the CNE varicose mode is destabilized with
respect to TPG. For all the analyzed frequencies, the differences between TPG and
CNE remain small, which indicates that at the location considered, the influence
of chemical non-equilibrium on the wake instabilities is not yet important.

Comparing the two CPG cases, it can be observed that the growth rate of both
the sinuous and varicose instabilities is higher for CPGS than for CPGGW for all
the frequencies. This is the same behavior observed for the second-Mack-mode
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Figure 6.12: Evolution of the growth rate of the most unstable sinuous and varicose insta-
bilities as a function of frequency for each flow assumption (x = 2 m): (a) SIN1 mode; (b)
VCOS1 mode.

amplification reported in § 6.2. The frequency evolution of the growth rate of
the varicose mode for CPGS happens to be in close agreement with that of the
TPG and CNE cases. Although there is no reason to attribute this fact to a proper
modeling of the vibrational excitation, this behavior can be correlated with the ob-
servation that the boundary-layer height for case CPGS is coincidentally similar to
that of TPG and CNE, as discussed in § 6.1. This suggests that the evolution of the
varicose mode at this location is strongly linked to the boundary-layer thickness.
In particular, it is destabilized by a reduction in the boundary-layer thickness as a
consequence of base-flow cooling, precisely as the second-Mack mode evolving in
the smooth boundary layer (see § 6.2). This explains why the varicose mode under-
goes a stabilization in CPGGW, which features a higher boundary-layer thickness
than in TPG and CNE (see figure 6.2), and why the growth rate predicted in CPGS
is similar to the one predicted in TPG or CNE. It is important to emphasize that this
behavior is not observed for the sinuous instability, which highlights an important
difference in the nature of both disturbances at these conditions.

A relation between the boundary-layer thickness and the evolution of a vari-
cose disturbance has been already recognized by previous authors. The varicose-
central instability found in the DNS analysis of De Tullio & Sandham [14] was
seen to be strongly tuned with the boundary-layer thickness, in a similar fashion
to what is observed for the second Mack mode. As it can be seen in figure 6.11,
the amplitude function of the varicose mode developing in the current cases also
features the highest region of amplification in the central wake region.

Figure 6.13 displays the streamwise evolution of the sinuous and varicose in-
stabilities for the different flow assumptions, both in terms of growth rate and
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Figure 6.13: Streamwise evolution of the growth rate and associatedN -factor curves of the
most unstable wake instabilities for each flow assumption: (a, c) SIN1 mode; (b, d) VCOS1
mode. The frequency for each curve corresponds to the most unstable frequency at x = 2
m, according to figure 6.12.

N -factor. The frequency associated to each curve corresponds to the respective
most unstable frequency retrieved from the results shown in figure 6.12. The first
streamwise location at which the 2D-LST analysis is performed in each case cor-
responds to the end of the separation bubble induced at the trailing edge of the
roughness element.

Close to the roughness element, the growth rate of the sinuous mode is smaller
for CNE than for TPG, which is likewise smaller than for CPGGW. This illus-
trates a stabilizing influence of both vibrational excitation and chemical reactions
on the sinuous mode in this region. Nevertheless, this trend is inverted further
downstream. For approximately x > 2.5 m, the mode becomes significantly more
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unstable for TPG and CNE than for CPGGW, as well as becoming slightly more
unstable for CNE than for TPG, denoting a destabilizing effect of both vibrational
excitation and chemical non-equilibrium in this streamwise range. The CPGGW
sinuous instability decays significantly faster than in TPG and CNE cases. This
is strongly reflected in the N -factor evolution for each of these cases (see figure
6.13(c)).

The streamwise evolution of the varicose mode features an opposite behavior to
the sinuous disturbance. In the vicinity of the roughness element, it is destabilized
in the CNE case with respect to TPG, which is likewise destabilized with respect to
CPGGW. Further downstream (approximately x > 0.3), however, these effects are
inverted and accounting for vibrational excitation and chemical non-equilibrium
subsequently stabilize the disturbance (see figures 6.13(b, d)). As it can be noticed,
the streamwise range for which the varicose perturbation is unstable is small in all
cases, resulting in small integrated amplification factors.

The comparison between the TPG and the CNE flow assumptions shows that
the effect of chemical reactions and diffusion transport is small for the wake modes
at the streamwise region under study. This is due to the fact that the geometrical
configuration considered in this study does not feature a stagnation point, so that no
chemical reactions take place at the wedge leading edge. The dissociation of O2,
for instance, which is the most relevant reaction at the temperature values obtained
for the CNE case (see figure 2.1), starts to occur downstream of the leading edge.
Because of this configuration, the flow did not have enough time to undergo a
sufficient amount of dissociation at the location of the roughness element, and
therefore no significant changes are encountered in the base-flow field with respect
to the TPG flow assumption. The influence of chemistry effects is much more
noticeable for longer distances downstream, as it can be observed in the Mack
mode N -factor envelopes of figure 6.3.

Finally, it is also worth emphasizing that, for the conditions under investiga-
tion, the maximum N -factor values obtained for both wake instability modes are
still far from being relevant for triggering boundary-layer transition.

6.4.3 Effect of inconsistent modeling assumptions between the
base flow and the perturbations on the roughness wake
instabilities

Owing to the complexity of the resulting stability equations in some flow assump-
tions such as CNE, it is desirable to know whether employing the governing stabil-
ity equations for a simplified thermodynamic hypothesis on a given base flow can
have a significant impact on the roughness wake instability. For this purpose, the
following tests can be performed using inconsistent thermodynamic assumptions
between the base flow and the perturbations:
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Figure 6.14: Comparison of 2D-LST spectra obtained for the three different inconsistent
assumptions listed against the consistent assumptions for each case (x = 2 m, f = 3 kHz):
(a) effect of TPG-CPG; (b) effect of CNE-CPG; (c) effect of CNE-TPG.

• TPG-CPG: using the CPG 2D-LST equations on a base flow obtained as-
suming TPG.

• CNE-CPG: using the CPG 2D-LST equations on a base flow obtained as-
suming CNE.

• CNE-TPG: using the TPG 2D-LST equations on a base flow obtained as-
suming CNE.

The first test allows to evaluate which is the impact of neglecting vibrational
excitation on the perturbation quantities. The second case quantifies the error in-
troduced by neglecting vibrational excitation, chemical reactions and diffusion ef-
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Figure 6.15: Comparison of the streamwise growth-rate evolution for modes SIN1 (a, c)
and VCOS1 (b, d) for the different inconsistent assumptions considered. SIN1 mode at
f = 3 kHz and VCOS1 mode at f = 9 kHz.

fects on the perturbations. The third test exposes the pure effect of neglecting the
action of chemical reactions and diffusion on the perturbations. The result of these
tests applied to the roughness wake in the configuration studied in this chapter is
illustrated in figure 6.14, which shows comparisons of the spatial stability spectra
obtained at x = 2 m and f = 3 kHz, and figure 6.15, which depicts comparisons
of the streamwise growth-rate evolution of modes SIN1 and VCOS1.

The use of the CPG governing stability equations on a TPG base flow (see
figures 6.14(a) and 6.15(a, b)) illustrates that accounting for vibrational excitation
on the perturbations has a noticeable stabilizing effect on the wake instabilities in
the vicinity of the roughness element. This effect is more accentuated for the sin-
uous perturbation, which is the dominant one in the problem under study. For this
instability, it is important to note that the error in growth rate introduced by ne-
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glecting the excitation of the vibrational internal energy mode on the perturbations
(TPG-TPG compared to TPG-CPG) is of the same order as the error introduced by
neglecting it on the base flow (CPGGW-CPG compared to TPG-CPG), as it can
be observed in figure 6.14(a). Both errors add up to yield the differences between
the consistent computations in CPGGW and TPG (CPGGW-CPG compared to
TPG-TPG). The relative error in the maximum growth rate obtained between the
TPG-TPG and the TPG-CPG assumptions is 11.2% for the SIN1 mode (located at
x ≈ 1.59 m), and 4.4% for the VCOS1 mode (at x ≈ 1.72 m). Note that far down-
stream of the roughness the difference between both sets of assumptions becomes
negligible.

Similarly, assuming perturbations that behave as a calorically perfect gas in a
CNE base flow (see figures 6.14(b) and 6.15(c, d)) shows that, in addition to the
stabilizing influence of modeling vibrational excitation in the perturbations, mod-
eling chemical reactions and diffusion transport on the disturbances also brings
a further stabilization of the instabilities near the obstacle. This can be directly
observed in figure 6.14(b), where the combination of the stabilizing effects associ-
ated to accounting for vibrational excitation as well as chemical non-equilibrium
on the disturbances leads to a higher degree of stabilization for the CNE-CNE case
than for the TPG-TPG case when respectively compared to CPGGW-CPG. By us-
ing the TPG stability equations on the CNE base-flow field (see figures 6.14(c)

and 6.15(c, d)), such an additional stabilizing effect of the diffusion fluxes and
the chemical source terms on the perturbations is directly exposed. From these
comparisons, the error introduced in the peak growth rate when using CNE-CPG
relative to CNE-CNE is 31.5% for the sinuous instability and 3.9% for the varicose
perturbation. Finally, the relative error in the maximum growth rate between the
CNE-TPG and the CNE-CNE assumptions is 18.5% for the sinuous disturbance
and 2.3% for the varicose mode.

The previously reported trends are in good agreement with the findings of Miró
Miró [3] for the case of Mack’s second-mode instability. It is important to remark
that the errors introduced by employing simplified thermodynamic assumptions
on the perturbations are not negligible near the roughness element for the con-
figuration studied here, specially for the dominant wake instability. In particular,
an important overprediction of the growth rate of mode SIN1 is obtained when
employing the CPG or the TPG stability equations on a CNE base flow.

6.5 Summary of results

This analysis constitutes the first 2D-LST implementation that incorporates a mod-
eling of chemical non-equilibrium effects into the perturbation equations. This
capability is of paramount importance for the study of roughness-induced transi-
tion on hypersonic vehicles. Two-dimensional local linear stability theory (2D-
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LST) has been employed to study the influence of the excitation of the vibrational
internal energy mode as well as of chemical non-equilibrium on the instability
characteristics of the wake behind a cuboidal roughness element inside a high-
temperature boundary layer developing on a sharp wedge.

The implementation of the TPG and CNE 2D-LST solvers within VESTA
toolkit has been verified against LST for the smooth wedge boundary layer. Spa-
tial 2D-LST stability analyses have been carried out along the roughness wake for
a calorically perfect gas, a thermally perfect gas and mixture of gases in chem-
ical nonequilibrium. These computations have allowed the identification of the
well-known sinuous and varicose instabilities also in the presence of vibrational-
energy-mode excitation and chemical reactions. The investigation has shown that
the two types of wake instability feature an opposite behavior with regard to the
studied high-enthalpy effects. In the vicinity of the roughness element, while the
sinuous mode is subsequently stabilized when vibrational excitation, molecular
dissociation and diffusion are taken into account, the varicose perturbation under-
goes a significant destabilization. In this region, the varicose mode has been found
to behave in the same way as the second Mack mode in the presence of base-flow
cooling, showing a strong sensitivity to the boundary-layer thickness.

Further away from the roughness element, however, the sinuous disturbance
decays at a slower rate when vibrational excitation is accounted for, reaching a
higher integrated amplification factor for the TPG and CNE flow assumptions than
for CPGGW. Additionally, in this streamwise range, chemical non-equilibrium
effects have been found to play a small destabilizing role on the sinuous instability.
As in the region close to the obstacle, these trends have also been found to be
inverted for the varicose disturbance. Despite the sinuous instability undergoing
a much higher amplification than the varicose one, both modes are still far from
reaching N -factor values that are relevant for triggering transition.

Only minor differences in the stability of the wake modes have been obtained
between the TPG and the CNE flow assumptions, revealing that the influence of
chemical reactions and diffusion is not strong on the roughness wake instability
for the conditions investigated. This is attributed to the lack of a stagnation point
in the problem geometry, such that chemical reactions are not active at the wedge
leading edge. As a result, at the streamwise position of the roughness element, the
flow has not yet undergone sufficient dissociation so as to affect the propagation
of the instabilities.

The CPG solutions computed using Sutherland’s law (CPGS) and Gupta-Wilke’s
model (CPGGW) have allowed to assess the effect of the transport modeling on
the roughness-induced disturbances. Similarly to the findings of Miró Miró [3] for
the case of the second Mack mode evolving in a smooth flat-plate boundary layer,
the use of CPG with Sutherland’s law has been observed to yield a closer pre-
diction of the TPG/CNE varicose mode evolution than the use of CPGGW. This
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has been found to be the consequence of a fortuitous cancellation of the errors
introduced by the use of an inaccurate thermal model (CPG) and the use of an
inaccurate transport model (Sutherland’s law) for this high-enthalpy case, result-
ing in a boundary-layer thickness in CPGS which is similar to that of the TPG
and CNE cases. Therefore, the fact that the CPGS assumption can predict a more
accurate growth rate for the varicose instability than the CPGGW assumption is
a mere coincidence rather than a behavior attributed to a sound modeling of the
thermal and transport properties.

The influence of employing inconsistent thermodynamic flow assumptions be-
tween the base flow and the perturbation quantities has been assessed by compar-
ing different spectra at a given streamwise location downstream of the roughness
element and the streamwise growth-rate evolution of the dominant sinuous and
varicose instabilities. The results have revealed two main physical effects acting
exclusively on the perturbations, which affect the development of wake instabili-
ties in the vicinity of the roughness element for the studied high-enthalpy environ-
ment:

• A stabilization of the wake modes due to the action of vibrational excitation
on the perturbations.

• A stabilization of the wake instabilities due to the action of chemical reac-
tions and diffusion fluxes on the perturbations.

These effects have been found to be non-negligible in the current problem,
yielding an error of up to 31% on the peak growth rate of the dominant instability
when the CPG 2D-LST equations are used to analyze a CNE base flow.
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7
Conclusions

This doctoral thesis constitutes one step forward towards the understanding of
boundary-layer transition in the presence of discrete roughness. In particular, it
contributes to the fundamental understanding of the mechanisms that lead to the
generation and the linear growth of roughness-induced instabilities in hypersonic
flow. In this dissertation, these phenomena are investigated exclusively by means
of hydrodynamic stability theory.

An overview of available studies in the field was provided, with an emphasis
on theoretical investigations based on stability theory and direct numerical simu-
lations. This served to highlight the main features that characterize the flow fields
induced by three-dimensional roughness elements and the instabilities that are
known to develop in simple configurations. The governing equations considered
for different thermodynamic flow assumptions were laid out and a brief review of
hydrodynamic stability theory was provided, with particular focus on those stabil-
ity theories commonly applied to study roughness-induced disturbances. The theo-
retical framework was complemented with a description of the numerical method-
ology employed for the computations presented along this work.

The instabilities induced by isolated roughness elements in a high-speed flat-
plate boundary layer were investigated using two-dimensional local linear stability
theory (2D-LST) on base-flow solutions obtained by means of the compressible
Navier-Stokes equations. The main disturbances evolving in the wake behind the
elements were successfully identified and their frequency and streamwise evolu-
tion was analyzed.

The disturbance energy evolution equation developed by Chu [1] was gener-
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alized for the first time to base flows that depend on two spatial directions. The
decomposition of the temporal growth rate that results from this formulation was
extended to three-dimensional perturbations evolving in base flows with two in-
homogeneous directions and was successfully applied to the instabilities develop-
ing in the wake behind a discrete roughness element in a calorically perfect gas.
Through this decomposition, the most relevant energy exchange mechanisms be-
tween the disturbances evolving in the roughness wake and the laminar base flow
were identified.

The governing stability equations for 2D-LST under a thermally perfect gas
assumption and, for the first time, for a mixture of perfect gases in chemical non-
equilibrium were automatically derived and implemented by means of VESTA’s
Automatic Derivation and Implementation Tool (ADIT) [2, Chapter 8], and were
successfully applied to compute the instabilities induced by an isolated roughness
element in a high-temperature boundary layer. The 2D-LST stability solver for
TPG and CNE was verified against LST for the case of a smooth flat-plate bound-
ary layer.

These investigations contributed to address the questions posed in § 1.3 as
described below.

Which are the physical processes by which the roughness-induced instabilities
extract their energy along the roughness wake?

Stability calculations were performed along the wake behind two different isolated
roughness geometries mounted on a flat plate in a calorically perfect gas. Different
varicose and sinuous wake instability modes were found to coexist together with
the family of Mack-mode instabilities that evolve in the flat-plate boundary layer,
and which become modulated by the presence of the roughness wake. Extensive
temporal 2D-LST computations were performed along the roughness wake for the
range of most unstable streamwise wavelengths for each roughness geometry. Two
leading instability modes were distinguished for each case in terms of the highest
integrated amplification factors, respectively corresponding to the most unstable
sinuous (SIN1) and varicose (VCOS1) instabilities.

The novel extension of the disturbance energy formulation provided an ad-
ditional layer of information for understanding the energy exchange mechanisms
between the base flow and the roughness-induced perturbations. The decompo-
sition of the temporal growth rate of the instabilities evolving in the roughness
wake revealed that the most important contributions to the generalized disturbance
potential energy come from the transport of disturbance entropy across the base-
flow temperature gradients (terms P̂s,2 and P̂s,3), while the largest contributions
to the disturbance kinetic energy are produced by the work done by the Reynolds
stresses against the base-flow velocity shear layers (terms P̂RS,12 and P̂RS,13).
Although previous studies in roughness-induced instabilities have already iden-
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tified the importance of the production of disturbance kinetic energy due to the
perturbation Reynolds stresses, the current results indicated that the production of
potential energy due to entropy fluctuations might also play a crucial role in high-
speed flows. In addition, the obtained decompositions showed that, in practice,
for the disturbance energy analysis of roughness-wake instabilities developing in
a configuration like the one presented in this work, it is sufficient to pay attention
to the production terms P̂s and P̂RS , and to the dissipation terms D̂µ and D̂k. The
remaining terms were found to bring small contributions which are not significant.

The streamwise evolution of the disturbance energy decomposition illustrated
that the energy of both sinuous and varicose wake instabilities is dominated by the
production terms associated to the wall-normal base-flow gradients in the vicinity
of the roughness elements, and that the energy is progressively transferred to the
spanwise production terms further downstream. The rate at which this transfer
takes place was found to depend on the roughness geometry and the streamwise
wavelength. A relevant finding is that no significant differences were observed in
the energy extraction mechanisms between both types of wake instability, only in
the streamwise range over which the energy transfer occurs. Therefore, both wall-
normal and spanwise base-flow gradients appear to play an important role in the
excitation of both sinuous and varicose instabilities. In other words, the evolution
of a given type of wake instability was not found to be linked to the evolution of
the base-flow gradients along a single direction only.

Is there a constructive interaction between the Mack-mode instabilities evolv-
ing in a flat-plate boundary layer and the roughness-induced wake instabili-
ties?

The growth rate of the wake instabilities was found to be strongly influenced by
the boundary-layer disturbances (Mack-mode instabilities) developing on the flat
plate, which become modulated by the presence of the roughness element. For
many of the conditions investigated, the amplitude of the wake modes was ob-
served to grow in the boundary layer at the sides of the roughness wake, resembling
the amplitude function of Mack-mode instabilities. This behavior was found to
correlate with changes in the evolution of the disturbance energy production con-
tributions, more specifically, with downstream locations at which the wall-normal
production terms begin to rise and the spanwise terms accelerate their rate of de-
crease. An analysis of the phase speed evolution of different instabilities showed
that this behavior also correlates with the location at which the phase speed of the
wake modes matches that of the Mack-mode instabilities.

These observations provided evidence that there is a continuous synchroniza-
tion between the wake instabilities and the boundary-layer modes. When this syn-
chronization begins to take place, the energy signature of the wake modes changes
its behavior and starts to become similar to that of Mack-mode disturbances, trans-
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forming the wake instabilities into hybrid disturbances whose amplitude evolves
both in the streak system that characterizes the roughness wake and in the flat-
plate boundary layer outside of the wake. This phenomenon was found to have
important implications in the growth-rate evolution of the wake instabilities, con-
tributing in some cases to enhance their amplification rate or to decrease their rate
of decay, ultimately increasing the associated integrated amplification factors for
some of the investigated conditions.

Previous work by De Tullio & Sandham [3] hypothesized this mechanism for
the excitation of a varicose disturbance behind a cuboidal roughness element,
according to DNS-based analyses. The current work confirmed the presence of
this phenomenon not only for the excitation of varicose disturbances, but also for
sinuous perturbations developing in the two different roughness geometries ana-
lyzed, bringing further evidence that this mechanism could play a critical role in
roughness-induced transition.

This unprecedented analysis highlighted the importance of resolving the dif-
ferent types of instabilities that are present in the 2D-LST spectrum in these con-
figurations. In particular, sufficient spanwise domain size and resolution should be
employed in the calculations such that the most unstable portion of the continuous
Mack-mode branch present in the spectra can be resolved adequately.

What is the effect of vibrational excitation and dissociation on the instabilities
evolving in the wake behind an isolated roughness element?

Spatial 2D-LST calculations were performed in the wake behind a cuboidal rough-
ness element mounted on a sharp wedge at a high freestream Mach number. The
strong compression induced by the wedge shock wave leads to a high-temperature,
chemically-reacting boundary layer where vibrational-internal-energy-mode exci-
tation plays an important role and chemical non-equilibrium has a noticeable ef-
fect. For this configuration, the base-flow field in the roughness wake undergoes
a substantial cooling when vibrational excitation is accounted for. This cooling
is further enhanced when modeling chemical reactions and diffusion transport, as
demonstrated by the base-flow solutions computed under the TPG and CNE flow
assumptions.

The impact of such high-temperature phenomena on the instabilities induced
by the roughness element was examined through the original development of 2D-
LST TPG and CNE solvers, ensuring a complete consistency between the base
flow and the perturbation modeling hypotheses. Using the 2D-LST stability equa-
tions derived for the TPG and the CNE flow assumptions, unstable sinuous and
varicose instabilities were also found to evolve in the roughness wake in this con-
figuration.

The base-flow cooling occurring due to the excitation of the vibrational molec-
ular energy mode was found to have an important impact on the growth rate of the
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wake instabilities. An interesting observation is that, for the investigated configu-
ration, both wake modes were not seen to behave in the same manner with respect
to vibrational excitation. Near the roughness element, the associated base-flow
cooling was found to destabilize the varicose mode, similarly to what is observed
for the second Mack mode, while it was observed to stabilize the sinuous distur-
bance. However, further downstream these trends were found to be inverted.

The roughness-induced instabilities were seen to be sensitive to small changes
in the flow field due to dissociation and diffusion effects, as illustrated by the dif-
ferences between the TPG and CNE assumptions. The additional base-flow cool-
ing induced by chemical non-equilibrium effects was found to further enhance the
same trends observed when accounting for vibrational excitation. The sensitivity
of the sinuous mode to chemical non-equilibrium was observed to be particularly
strong in the vicinity of the roughness element.

From the modeling point of view, how important is it to be consistent be-
tween the modeling assumptions introduced in the governing base-flow equa-
tions and those introduced in the governing stability equations for the case of
roughness-induced instabilities?

A small investigation was carried out on the effect of using inconsistent thermo-
dynamic modeling assumptions respectively in the base flow and the perturbations
for the sharp wedge configuration. The use of the CPG governing stability equa-
tions on a TPG base flow revealed that accounting for vibrational excitation on the
perturbations has a noticeable stabilizing effect on the wake instabilities, specially
for the sinuous perturbation, which is the dominant one in this case.

Similarly, assuming perturbations that behave as a calorically perfect gas in a
CNE base flow showed that, in addition to the stabilizing influence of modeling vi-
brational excitation in the perturbations, accounting for chemical non-equilibrium
in the linearized disturbance equations induces a further stabilization of the wake
modes. By using the TPG stability equations on the CNE base-flow field, such
stabilizing effect of the diffusion fluxes and the chemical source terms on the per-
turbations was quantified. These observations were found to be in agreement with
the findings of Miró Miró [2] for Mack’s second-mode instability.

These analyses highlighted two main physical effects acting exclusively on the
perturbations which affect the development of wake instabilities near the obstacle:

• A stabilization of the wake modes due to the action of molecular vibrational
excitation on the perturbations.

• A stabilization of the wake disturbances due to the action of chemical reac-
tions and diffusion transport on the perturbations.

The errors introduced by employing inconsistent thermodynamic assumptions
in the base flow and perturbation quantities were found to be not negligible for the
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investigated configuration. The most important deviation was found to be a relative
error of 31% in the maximum growth rate of the sinuous instability, induced when
using the CPG stability equations on a CNE base flow. A significant overprediction
of the growth rate of mode SIN1 was observed when employing the CPG or the
TPG stability equations on a CNE base flow.

7.1 Outlook

Boundary-layer transition is a critical design driver in the development of more
efficient and safer atmospheric entry vehicles. The ability to obtain accurate tran-
sition predictions at any point in the trajectory of these vehicles is therefore of
paramount importance, and justifies the continued interest in improving the mod-
eling and understanding of the influence of surface roughness.

The accomplishments listed in the previous section constitute an advancement
in the state of the art of discrete roughness-induced instability mechanisms. The
new tools developed in order to study the production processes of disturbance en-
ergy offer the possibility to gain a deeper understanding of the instability mecha-
nisms underlying transition in a wide range of complex flow fields, and motivate
the development of parametric studies in the future. Similarly, the preliminary
results presented for roughness-induced perturbations in high-enthalpy environ-
ments constitute a reference for future investigations on more realistic configura-
tions, and provide a confirmation that fully consistent 2D-LST stability analyses
which model chemical non-equilibrium effects are nowadays feasible.

With the aim to continue improving the current knowledge of roughness-indu-
ced transition in high-speed flow, the following investigations can be proposed
after the findings achieved in this work:

• An analysis of the roughness wake instability by means of 3D-PSE would be
useful to assess whether the interaction between wake modes and boundary-
layer disturbances can lead to a significantly different growth-rate evolution
in 3D-PSE with respect to 2D-LST, such as observed by Paredes et al. [4].
For this purpose, it would be important to distinguish this effect from the
influence of non-parallel effects. This could be achieved by means of 3D-
PSE analyses at conditions in which wake and boundary-layer modes are
in synchronism and at conditions in which they are not. The analyses per-
formed by Theiss et al. [5] and Di Giovanni & Stemmer [6] have shown a
good agreement between the trend of the growth-rate evolution of roughness
wake instabilities using 3D-PSE and 2D-LST for the case of a blunt reentry
capsule, in which boundary-layer disturbances are highly stabilized. The
results from these studies suggest that, although non-parallel effects are not
negligible, they do not appear to be so important so as to be considered re-
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sponsible for the growth-rate deviations illustrated in the flat-plate analysis
of Paredes et al. [4]. Therefore, it seems reasonable to suggest that the dif-
ferences observed in the latter work might be due to an interaction between
wake and boundary-layer modes being captured by the 3D-PSE response.
Complementary DNS analyses could further evaluate this idea.

• The analysis of the most important contributions that lead to the production
and dissipation of disturbance energy has a lot of potential to improve the
physical understanding of the mechanisms for disturbance growth in many
different applications. An automatic derivation of the disturbance energy
evolution equation for different stability theories and coordinate systems is
therefore highly desirable, specially owing to the large number of terms that
need to be manipulated, which makes the derivation prone to human error.
The extension of the disturbance energy formulation to more complex ther-
modynamic flow assumptions would first require an appropriate definition
of the disturbance energy for each hypothesis.

• Roughness-induced instabilities in blunt flat-plate and wedge configurations
have been significantly less investigated than in sharp leading edge geome-
tries. Since nose bluntness plays an important role on vehicles capable of
atmospheric entry, its effect on the roughness wake instabilities should be
better characterized. Moderate bluntness is known to have an important
stabilizing effect on boundary-layer disturbances and this also seems to be
the case for roughness-induced instabilities. The analysis of the disturbance
energy budget in these configurations could provide insight on the interac-
tion between the entropy and boundary layers and the perturbations devel-
oping in the roughness wake. A potential synchronism between boundary-
layer modes and wake modes is expected to have a smaller impact in these
cases. Blunt-nose configurations would also provide representative high-
temperature flow fields which can be employed to study the influence of
strong chemical non-equilibrium effects in roughness-induced disturbances.

• The study of the dominant contributions to the disturbance energy could pro-
vide additional understanding on the wall-temperature effects on roughness-
induced instabilities. In particular, it could lead to an explanation of the
destabilization observed for wake instabilities in the presence of boundary-
layer heating, specially for the varicose disturbance [3], see also § 5.2.4.3.
Base-flow heating is also expected to have an impact on the interaction be-
tween the boundary-layer modes and the wake instabilities through a stabi-
lization of the second Mack mode.

• The higher complexity of the governing equations for high-enthalpy flow
fields results in stability equations that feature a large number of terms, spe-
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cially when more than one inhomogeneous direction is considered. Since
manual comparison of the derived stability equations from different sources
is not feasible in these cases, the development of an automatic verification
process based on computer algebra systems is highly desirable for this pur-
pose. Additionally, reproducible verification test cases should be devised
which activate as many terms as possible in the stability equations such that
verifications between different solvers could be achieved.

Despite the challenges embedded in the accurate prediction of boundary-layer
transition, important advancements have been achieved in recent years and will
continue to take place in the future. Hand-in-hand with experimental investiga-
tions, the analysis of transition following physics-based approaches such as stabil-
ity theory is undoubtedly a right path towards safer atmospheric entry flight and
will ultimately contribute to expand the human frontiers of space exploration.
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A
Linearized perturbation equations for a

calorically perfect gas

These are the linearized disturbance equations for a steady and streamwise parallel
base flow (q̄ = q̄(y, z)) and a three-dimensional unsteady perturbation (q̃ =

q̃(x, y, z, t)) under the calorically perfect gas assumption.
Continuity:
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+ ṽ

∂ρ̄

∂y
+ w̃

∂ρ̄

∂z
= 0, (A.1a)

x-Momentum:

ρ̄

(
∂ũ

∂t
+ ū

∂ũ

∂x
+ v̄

∂ũ

∂y
+ w̄

∂ũ

∂z
+ ṽ

∂ū

∂y
+ w̃

∂ū

∂z

)
+ ρ̃

(
v̄
∂ū

∂y
+ w̄

∂ū

∂z

)
+

1

γM2

(
T̄
∂ρ̃

∂x
+ ρ̄

∂T̃

∂x

)
− 1

Re

{
λ̄

(
∂2ũ

∂x2
+

∂2ṽ

∂x∂y
+

∂2w̃

∂x∂z

)
+ µ̄

(
2
∂2ũ

∂x2
+

∂2ṽ

∂x∂y
+
∂2ũ

∂y2
+
∂2ũ

∂z2
+

∂2w̃

∂x∂z

)
+
dλ̄

dT̄

∂T̃

∂x

(
∂v̄

∂y
+
∂w̄

∂z

)
+
dµ̄

dT̄

[
T̃

(
∂2ū

∂y2
+
∂2ū

∂z2

)
+
∂T̄

∂y

(
∂ṽ

∂x
+
∂ũ

∂y

)
+
∂T̃

∂y

∂ū

∂y
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+
∂T̄

∂z

(
∂ũ

∂z
+
∂w̃

∂x

)
+
∂T̃

∂z

∂ū

∂z

]
+
d2µ̄

dT̄ 2
T̃

(
∂T̄

∂y

∂ū

∂y
+
∂T̄

∂z

∂ū

∂z

)}
= 0, (A.1b)

y-Momentum:

ρ̄

(
∂ṽ

∂t
+ ū

∂ṽ

∂x
+ v̄

∂ṽ

∂y
+ w̄

∂ṽ

∂z
+ ṽ

∂v̄

∂y
+ w̃

∂v̄

∂z

)
+ ρ̃

(
v̄
∂v̄

∂y
+ w̄

∂v̄

∂z

)
+

1

γM2

(
T̄
∂ρ̃

∂y
+ T̃

∂ρ̄

∂y
+ ρ̄

∂T̃

∂y
+ ρ̃

∂T̄

∂y

)
− 1

Re

{
λ̄

(
∂2ũ

∂x∂y
+
∂2ṽ

∂y2
+

∂2w̃

∂y∂z

)
+ µ̄

(
∂2ũ

∂x∂y
+
∂2ṽ

∂x2
+ 2

∂2ṽ

∂y2
+
∂2ṽ

∂z2
+

∂2w̃

∂y∂z

)
+
dλ̄

dT̄

[
∂T̄

∂y

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
+
∂T̃

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̃

(
∂2v̄

∂y2
+

∂2w̄

∂y∂z

)]
+
dµ̄

dT̄

[
2
∂T̄

∂y

∂ṽ

∂y
+ 2

∂T̃

∂y

∂v̄

∂y

+T̃

(
2
∂2v̄

∂y2
+
∂2v̄

∂z2
+

∂2w̄

∂y∂z

)
+
∂T̃

∂x

∂ū

∂y
+
∂T̄

∂z

(
∂ṽ

∂z
+
∂w̃

∂y

)
+
∂T̃

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]

+
d2λ̄

dT̄ 2
T̃
∂T̄

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̃

[
2
∂T̄

∂y

∂v̄

∂y
+
∂T̄

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(A.1c)

z-Momentum:

ρ̄

(
∂w̃

∂t
+ ū

∂w̃

∂x
+ v̄

∂w̃

∂y
+ w̄

∂w̃

∂z
+ ṽ

∂w̄

∂y
+ w̃

∂w̄

∂z

)
+ ρ̃

(
v̄
∂w̄

∂y
+ w̄

∂w̄

∂z

)
+

1

γM2

(
T̄
∂ρ̃

∂z
+ T̃

∂ρ̄

∂z
+ ρ̄

∂T̃

∂z
+ ρ̃

∂T̄

∂z

)
− 1

Re

{
λ̄

(
∂2ũ

∂x∂z
+

∂2ṽ

∂y∂z
+
∂2w̃

∂z2

)
+µ̄

(
∂2ũ

∂x∂z
+

∂2ṽ

∂y∂z
+
∂2w̃

∂x2
+
∂2w̃

∂y2
+ 2

∂2w̃

∂z2

)
+
dλ̄

dT̄

[
∂T̄

∂z

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
+
∂T̃

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̃

(
∂2v̄

∂y∂z
+
∂2w̄

∂z2

)]
+
dµ̄

dT̄

[
2
∂T̄

∂z

∂w̃

∂z
+ 2

∂T̃

∂z

∂w̄

∂z

+T̃

(
∂2v̄

∂y∂z
+
∂2w̄

∂y2
+ 2

∂2w̄

∂z2

)
+
∂T̃

∂x

∂ū

∂z
+
∂T̄

∂y

(
∂ṽ

∂z
+
∂w̃

∂y

)
+
∂T̃

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]

+
d2λ̄

dT̄ 2
T̃
∂T̄

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̃

[
2
∂T̄

∂z

∂w̄

∂z
+
∂T̄

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(A.1d)

Energy:

1

γ(γ − 1)M2

[
ρ̄

(
∂T̃

∂t
+ ū

∂T̃

∂x
+ v̄

∂T̃

∂y
+ w̄

∂T̃

∂z
+ ṽ

∂T̄

∂y
+ w̃

∂T̄

∂z

)
+ ρ̃

(
v̄
∂T̄

∂y



LINEARIZED PERTURBATION EQUATIONS IN CPG A-3

+w̄
∂T̄

∂z

)]
+

1

γM2

[
ρ̄T̄

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
+
(
ρ̄T̃ + ρ̃T̄

)(∂v̄
∂y

+
∂w̄

∂z

)]
− 1

(γ − 1)RePrM2

{
k̄

(
∂2T̃

∂x2
+
∂2T̃

∂y2
+
∂2T̃

∂z2

)
+
dk̄

dT̄

[
2
∂T̄

∂y

∂T̃

∂y
+ 2

∂T̄

∂z

∂T̃

∂z

+T̃

(
∂2T̄

∂y2
+
∂2T̄

∂z2

)]
+
d2k̄

dT̄ 2
T̃

[(
∂T̄

∂y

)2

+

(
∂T̄

∂z

)2
]}

− 1

Re

{
2λ̄

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)(
∂v̄

∂y
+
∂w̄

∂z

)
+ 2µ̄

[
∂ũ

∂y

∂ū

∂y
+
∂ũ

∂z

∂ū

∂z
+
∂ṽ

∂x

∂ū

∂y

+2
∂ṽ

∂y

∂v̄

∂y
+
∂w̃

∂x

∂ū

∂z
+ 2

∂w̃

∂z

∂w̄

∂z
+

(
∂ṽ

∂z
+
∂w̃

∂y

)(
∂v̄

∂z
+
∂w̄

∂y

)]
+
dλ̄

dT̄
T̃

[
2
∂v̄

∂y

∂w̄

∂z
+

(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2
]

+
dµ̄

dT̄
T̃

[
2
∂v̄

∂z

∂w̄

∂y
+

(
∂ū

∂y

)2

+

(
∂ū

∂z

)2

+ 2

(
∂v̄

∂y

)2

+

(
∂v̄

∂z

)2

+

(
∂w̄

∂y

)2

+ 2

(
∂w̄

∂z

)2
]}

= 0, (A.1e)

The following considerations are important for the derivation of these equa-
tions. The pressure perturbation p̃ is substituted by the linearized perturbation
equation of state:

p̃ =
1

γM2

(
ρ̃T̄ + ρ̄T̃

)
. (A.2)

The perturbations associated to the dependent variables (transport properties in
this case) are expressed in terms of the temperature perturbation by means of a
linearized Taylor expansion (see § 3.2):

µ̃ =
dµ̄

dT̄
T̃ , λ̃ =

dλ̄

dT̄
T̃ , k̃ =

dk̄

dT̄
T̃ . (A.3)

The spatial derivatives of the base-flow dependent quantities are expressed in terms
of the spatial derivatives of temperature by means of the chain rule, for example:

∂µ̄

∂y
=
dµ̄

dT̄

∂T̄

∂y
,

∂

∂y

(
dµ̄

dT̄

)
=
d2µ̄

dT̄ 2

∂T̄

∂y
, (A.4)

and the spatial derivatives of the perturbation quantities associated to the dependent
variables are also expanded by means of the chain rule, for instance:

∂µ̃

∂y
=

∂

∂y

(
dµ̄

dT̄

)
T̃ +

dµ̄

dT̄

∂T̃

∂y
=
d2µ̄

dT̄ 2

∂T̄

∂y
T̃ +

dµ̄

dT̄

∂T̃

∂y
. (A.5)





B
Two-dimensional local linear stability

theory (2D-LST) equations for a
calorically perfect gas

Inserting the perturbation ansatz (3.30) into the linearized perturbation equations
(equations (A.1a) to (A.1e)), the 2D-LST equations for a calorically perfect gas
are obtained, listed below.

B.1 2D-LST equations in terms of ρ and T
The 2D-LST equations for q = [ρ, u, v, w, T ]T can be expressed as follows.
Continuity:

− iωρ̂+ ρ̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+ ρ̂

(
∂v̄

∂y
+
∂w̄

∂z

)
+ ūiαρ̂+ v̄

∂ρ̂

∂y
+ w̄

∂ρ̂

∂z

+ v̂
∂ρ̄

∂y
+ ŵ

∂ρ̄

∂z
= 0, (B.1a)

x-Momentum:

ρ̄

(
−iωû+ ūiαû+ v̄

∂û

∂y
+ w̄

∂û

∂z
+ v̂

∂ū

∂y
+ ŵ

∂ū

∂z

)
+ ρ̂

(
v̄
∂ū

∂y
+ w̄

∂ū

∂z

)
+

1

γM2

(
T̄ iαρ̂+ ρ̄iαT̂

)
− 1

Re

{
λ̄

(
−α2û+ iα

∂v̂

∂y
+ iα

∂ŵ

∂z

)
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+ µ̄

(
−2α2û+ iα

∂v̂

∂y
+
∂2û

∂y2
+
∂2û

∂z2
+ iα

∂ŵ

∂z

)
+
dλ̄

dT̄
iαT̂

(
∂v̄

∂y
+
∂w̄

∂z

)
+
dµ̄

dT̄

[
T̂

(
∂2ū

∂y2
+
∂2ū

∂z2

)
+
∂T̄

∂y

(
iαv̂ +

∂û

∂y

)
+
∂T̂

∂y

∂ū

∂y

+
∂T̄

∂z

(
∂û

∂z
+ iαŵ

)
+
∂T̂

∂z

∂ū

∂z

]
+
d2µ̄

dT̄ 2
T̂

(
∂T̄

∂y

∂ū

∂y
+
∂T̄

∂z

∂ū

∂z

)}
= 0, (B.1b)

y-Momentum:

ρ̄

(
−iωv̂ + ūiαv̂ + v̄

∂v̂

∂y
+ w̄

∂v̂

∂z
+ v̂

∂v̄

∂y
+ ŵ

∂v̄

∂z

)
+ ρ̂

(
v̄
∂v̄

∂y
+ w̄

∂v̄

∂z

)
+

1

γM2

(
T̄
∂ρ̂

∂y
+ T̂

∂ρ̄

∂y
+ ρ̄

∂T̂

∂y
+ ρ̂

∂T̄

∂y

)
− 1

Re

{
λ̄

(
iα
∂û

∂y
+
∂2v̂

∂y2
+

∂2ŵ

∂y∂z

)
+ µ̄

(
iα
∂û

∂y
− α2v̂ + 2

∂2v̂

∂y2
+
∂2v̂

∂z2
+

∂2ŵ

∂y∂z

)
+
dλ̄

dT̄

[
∂T̄

∂y

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+
∂T̂

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̂

(
∂2v̄

∂y2
+

∂2w̄

∂y∂z

)]
+
dµ̄

dT̄

[
2
∂T̄

∂y

∂v̂

∂y
+ 2

∂T̂

∂y

∂v̄

∂y

+T̂

(
2
∂2v̄

∂y2
+
∂2v̄

∂z2
+

∂2w̄

∂y∂z

)
+ iαT̂

∂ū

∂y
+
∂T̄

∂z

(
∂v̂

∂z
+
∂ŵ

∂y

)
+
∂T̂

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]

+
d2λ̄

dT̄ 2
T̂
∂T̄

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̂

[
2
∂T̄

∂y

∂v̄

∂y
+
∂T̄

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(B.1c)

z-Momentum:

ρ̄

(
−iωŵ + ūiαŵ + v̄

∂ŵ

∂y
+ w̄

∂ŵ

∂z
+ v̂

∂w̄

∂y
+ ŵ

∂w̄

∂z

)
+ ρ̂

(
v̄
∂w̄

∂y
+ w̄

∂w̄

∂z

)
+

1

γM2

(
T̄
∂ρ̂

∂z
+ T̂

∂ρ̄

∂z
+ ρ̄

∂T̂

∂z
+ ρ̂

∂T̄

∂z

)
− 1

Re

{
λ̄

(
iα
∂û

∂z
+

∂2v̂

∂y∂z
+
∂2ŵ

∂z2

)
+ µ̄

(
iα
∂û

∂z
+

∂2v̂

∂y∂z
− α2ŵ +

∂2ŵ

∂y2
+ 2

∂2ŵ

∂z2

)
+
dλ̄

dT̄

[
∂T̄

∂z

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+
∂T̂

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̂

(
∂2v̄

∂y∂z
+
∂2w̄

∂z2

)]
+
dµ̄

dT̄

[
2
∂T̄

∂z

∂ŵ

∂z
+ 2

∂T̂

∂z

∂w̄

∂z

+T̂

(
∂2v̄

∂y∂z
+
∂2w̄

∂y2
+ 2

∂2w̄

∂z2

)
+ iαT̂

∂ū

∂z
+
∂T̄

∂y

(
∂v̂

∂z
+
∂ŵ

∂y

)
+
∂T̂

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]

+
d2λ̄

dT̄ 2
T̂
∂T̄

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̂

[
2
∂T̄

∂z

∂w̄

∂z
+
∂T̄

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(B.1d)
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Energy:

1

γ(γ − 1)M2

[
ρ̄

(
−iωT̂ + ūiαT̂ + v̄

∂T̂

∂y
+ w̄

∂T̂

∂z
+ v̂

∂T̄

∂y
+ ŵ

∂T̄

∂z

)
+ ρ̂

(
v̄
∂T̄

∂y

+w̄
∂T̄

∂z

)]
+

1

γM2

[
ρ̄T̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+
(
ρ̄T̂ + ρ̂T̄

)(∂v̄
∂y

+
∂w̄

∂z

)]
− 1

(γ − 1)RePrM2

{
k̄

(
−α2T̂ +

∂2T̂

∂y2
+
∂2T̂

∂z2

)
+
dk̄

dT̄

[
2
∂T̄

∂y

∂T̂

∂y
+ 2

∂T̄

∂z

∂T̂

∂z

+T̂

(
∂2T̄

∂y2
+
∂2T̄

∂z2

)]
+
d2k̄

dT̄ 2
T̂
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∂T̄

∂y

)2

+

(
∂T̄

∂z

)2
]}

− 1

Re

{
2λ̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)(
∂v̄

∂y
+
∂w̄

∂z

)
+ 2µ̄

[
∂û

∂y

∂ū

∂y
+
∂û

∂z

∂ū

∂z
+ iαv̂

∂ū

∂y

+2
∂v̂

∂y

∂v̄

∂y
+ iαŵ

∂ū

∂z
+ 2

∂ŵ

∂z

∂w̄

∂z
+

(
∂v̂

∂z
+
∂ŵ

∂y

)(
∂v̄

∂z
+
∂w̄

∂y

)]
+
dλ̄

dT̄
T̂

[
2
∂v̄

∂y

∂w̄

∂z
+

(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2
]

+
dµ̄

dT̄
T̂

[
2
∂v̄

∂z

∂w̄

∂y
+

(
∂ū

∂y

)2

+

(
∂ū

∂z

)2

+ 2

(
∂v̄

∂y

)2

+

(
∂v̄

∂z

)2

+

(
∂w̄

∂y

)2

+ 2

(
∂w̄

∂z

)2
]}

= 0, (B.1e)

B.2 2D-LST equations in terms of p and T

The 2D-LST equations for q = [u, v, w, T, p]T can be written as follows.
Continuity:

− iω

(
p̂− p̄T̂

T̄

)
+ p̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+

(
p̂− p̄T̂

T̄

)(
∂v̄

∂y
+
∂w̄

∂z

)

+ ūiα

(
p̂− p̄T̂

T̄

)
+ v̄

[
∂p̂

∂y
− T̂

T̄

∂p̄

∂y
− p̄

T̄

∂T̂

∂y
+

(
2
p̄T̂

T̄ 2
− p̂

T̄

)
∂T̄

∂y

]

+ w̄

[
∂p̂

∂z
− T̂

T̄

∂p̄

∂z
− p̄

T̄

∂T̂

∂z
+

(
2
p̄T̂

T̄ 2
− p̂

T̄

)
∂T̄

∂z

]
+ v̂

(
∂p̄

∂y
− p̄

T̄

∂T̄

∂y

)
+ ŵ

(
∂p̄

∂z
− p̄

T̄

∂T̄

∂z

)
= 0, (B.2a)

x-Momentum:

γM2

T̄

[
p̄

(
−iωû+ ūiαû+ v̄

∂û

∂y
+ w̄

∂û

∂z
+ v̂

∂ū

∂y
+ ŵ

∂ū

∂z

)
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+

(
p̂− p̄T̂

T̄

)(
v̄
∂ū

∂y
+ w̄

∂ū

∂z

)]
+ iαp̂− 1

Re

{
λ̄

(
−α2û+ iα

∂v̂

∂y
+ iα

∂ŵ

∂z

)
+ µ̄

(
−2α2û+ iα

∂v̂

∂y
+
∂2û

∂y2
+
∂2û

∂z2
+ iα

∂ŵ

∂z

)
+
dλ̄

dT̄
iαT̂

(
∂v̄

∂y
+
∂w̄

∂z

)
+
dµ̄

dT̄

[
T̂

(
∂2ū

∂y2
+
∂2ū

∂z2

)
+
∂T̄

∂y

(
iαv̂ +

∂û

∂y

)
+
∂T̂

∂y

∂ū

∂y

+
∂T̄

∂z

(
∂û

∂z
+ iαŵ

)
+
∂T̂

∂z

∂ū

∂z

]
+
d2µ̄

dT̄ 2
T̂

(
∂T̄

∂y

∂ū

∂y
+
∂T̄

∂z

∂ū

∂z

)}
= 0, (B.2b)

y-Momentum:

γM2

T̄

[
p̄

(
−iωv̂ + ūiαv̂ + v̄

∂v̂

∂y
+ w̄

∂v̂

∂z
+ v̂

∂v̄

∂y
+ ŵ

∂v̄

∂z

)
+

(
p̂− p̄T̂

T̄

)(
v̄
∂v̄

∂y
+ w̄

∂v̄

∂z

)]
+
∂p̂

∂y
− 1

Re

{
λ̄

(
iα
∂û

∂y
+
∂2v̂

∂y2
+

∂2ŵ

∂y∂z

)
+ µ̄

(
iα
∂û

∂y
− α2v̂ + 2

∂2v̂

∂y2
+
∂2v̂

∂z2
+

∂2ŵ

∂y∂z

)
+
dλ̄

dT̄

[
∂T̄

∂y

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+
∂T̂

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̂

(
∂2v̄

∂y2
+

∂2w̄

∂y∂z

)]
+
dµ̄

dT̄

[
2
∂T̄

∂y

∂v̂

∂y
+ 2

∂T̂

∂y

∂v̄

∂y

+T̂

(
2
∂2v̄

∂y2
+
∂2v̄

∂z2
+

∂2w̄

∂y∂z

)
+ iαT̂

∂ū

∂y
+
∂T̄

∂z

(
∂v̂

∂z
+
∂ŵ

∂y

)
+
∂T̂

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]

+
d2λ̄

dT̄ 2
T̂
∂T̄

∂y

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̂

[
2
∂T̄

∂y

∂v̄

∂y
+
∂T̄

∂z

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(B.2c)

z-Momentum:

γM2

T̄

[
p̄

(
−iωŵ + ūiαŵ + v̄

∂ŵ

∂y
+ w̄

∂ŵ

∂z
+ v̂

∂w̄

∂y
+ ŵ

∂w̄

∂z

)
+

(
p̂− p̄T̂

T̄

)(
v̄
∂w̄

∂y
+ w̄

∂w̄

∂z

)]
+
∂p̂

∂z
− 1

Re

{
λ̄

(
iα
∂û

∂z
+

∂2v̂

∂y∂z
+
∂2ŵ

∂z2

)
+ µ̄

(
iα
∂û

∂z
+

∂2v̂

∂y∂z
− α2ŵ +

∂2ŵ

∂y2
+ 2

∂2ŵ

∂z2

)
+
dλ̄

dT̄

[
∂T̄

∂z

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+
∂T̂

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+ T̂

(
∂2v̄

∂y∂z
+
∂2w̄

∂z2

)]
+
dµ̄

dT̄

[
2
∂T̄

∂z

∂ŵ

∂z
+ 2

∂T̂

∂z

∂w̄

∂z

+T̂

(
∂2v̄

∂y∂z
+
∂2w̄

∂y2
+ 2

∂2w̄

∂z2

)
+ iαT̂

∂ū

∂z
+
∂T̄

∂y

(
∂v̂

∂z
+
∂ŵ

∂y

)
+
∂T̂

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]
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+
d2λ̄

dT̄ 2
T̂
∂T̄

∂z

(
∂v̄

∂y
+
∂w̄

∂z

)
+
d2µ̄

dT̄ 2
T̂

[
2
∂T̄

∂z

∂w̄

∂z
+
∂T̄

∂y

(
∂v̄

∂z
+
∂w̄

∂y

)]}
= 0,

(B.2d)

Energy:

1

(γ − 1)T̄

[
p̄

(
−iωT̂ + ūiαT̂ + v̄

∂T̂

∂y
+ w̄

∂T̂

∂z
+ v̂

∂T̄

∂y
+ ŵ

∂T̄

∂z

)

+

(
p̂− p̄T̂

T̄

)(
v̄
∂T̄

∂y
+ w̄

∂T̄

∂z

)]
+ p̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)
+ p̂

(
∂v̄

∂y
+
∂w̄

∂z

)

− 1

(γ − 1)RePrM2

{
k̄

(
−α2T̂ +

∂2T̂

∂y2
+
∂2T̂

∂z2

)
+
dk̄

dT̄

[
2
∂T̄

∂y

∂T̂

∂y
+ 2

∂T̄

∂z

∂T̂

∂z

+T̂

(
∂2T̄

∂y2
+
∂2T̄

∂z2

)]
+
d2k̄

dT̄ 2
T̂

[(
∂T̄

∂y

)2

+

(
∂T̄

∂z

)2
]}

− 1

Re

{
2λ̄

(
iαû+

∂v̂

∂y
+
∂ŵ

∂z

)(
∂v̄

∂y
+
∂w̄

∂z

)
+ 2µ̄

[
∂û

∂y

∂ū

∂y
+
∂û

∂z

∂ū

∂z
+ iαv̂

∂ū

∂y

+2
∂v̂

∂y

∂v̄

∂y
+ iαŵ

∂ū

∂z
+ 2

∂ŵ

∂z

∂w̄

∂z
+

(
∂v̂

∂z
+
∂ŵ

∂y

)(
∂v̄

∂z
+
∂w̄

∂y

)]
+
dλ̄

dT̄
T̂

[
2
∂v̄

∂y

∂w̄

∂z
+

(
∂v̄

∂y

)2

+

(
∂w̄

∂z

)2
]

+
dµ̄

dT̄
T̂

[
2
∂v̄

∂z

∂w̄

∂y
+

(
∂ū

∂y

)2

+

(
∂ū

∂z

)2

+ 2

(
∂v̄

∂y

)2

+

(
∂v̄

∂z

)2

+

(
∂w̄

∂y

)2

+ 2

(
∂w̄

∂z

)2
]}

= 0, (B.2e)





C
One-dimensional local linear stability

theory (LST) equations for a
calorically perfect gas

Inserting the perturbation ansatz (3.11) into the linearized perturbation equations
(equations (A.1a) to (A.1e)) and neglecting all base-flow derivatives with respect
to z (q̄ = q̄(y)), the LST equations for a calorically perfect gas are obtained, listed
below.

C.1 LST equations in terms of ρ and T

The LST equations for q = [ρ, u, v, w, T ]T can be expressed as follows.
Continuity:

− iωρ̂ + ρ̄

(
iαû+

∂v̂

∂y
+ iβŵ

)
+ ūiαρ̂ + w̄iβρ̂ + v̂

∂ρ̄

∂y
= 0, (C.1a)

x-Momentum:

ρ̄

(
−iωû+ ūiαû+ w̄iβû+ v̂

∂ū

∂y

)
+

1

γM2

(
T̄ iαρ̂+ ρ̄iαT̂

)
− 1

Re

{
λ̄

(
−α2û+ iα

∂v̂

∂y
− αβŵ

)
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+ µ̄

(
−2α2û+ iα

∂v̂

∂y
+
∂2û

∂y2
− β2û− αβŵ

)
+
dµ̄

dT̄

[
T̂
∂2ū

∂y2
+
∂T̄

∂y

(
iαv̂ +

∂û

∂y

)
+
∂T̂

∂y

∂ū

∂y

]
+
d2µ̄

dT̄ 2
T̂
∂T̄

∂y

∂ū

∂y

}
= 0, (C.1b)

y-Momentum:

ρ̄ (−iωv̂ + ūiαv̂ + w̄iβv̂) +
1

γM2

(
T̄
∂ρ̂

∂y
+ T̂

∂ρ̄

∂y
+ ρ̄

∂T̂

∂y
+ ρ̂

∂T̄

∂y

)

− 1

Re

[
λ̄

(
iα
∂û

∂y
+
∂2v̂

∂y2
+ iβ

∂ŵ

∂y

)
+ µ̄

(
iα
∂û

∂y
− α2v̂ + 2

∂2v̂

∂y2
− β2v̂ + iβ

∂ŵ

∂y

)
+
dλ̄

dT̄

∂T̄

∂y

(
iαû+

∂v̂

∂y
+ iβŵ

)
+
dµ̄

dT̄

(
2
∂T̄

∂y

∂v̂

∂y
+ iαT̂

∂ū

∂y
+ iβT̂

∂w̄

∂y

)]
= 0, (C.1c)

z-Momentum:

ρ̄

(
−iωŵ + ūiαŵ + w̄iβŵ + v̂

∂w̄

∂y

)
+

1

γM2

(
T̄ iβρ̂+ ρ̄iβT̂

)
− 1

Re

{
λ̄

(
−αβû+ iβ

∂v̂

∂y
− β2ŵ

)
+ µ̄

(
−αβû+ iβ

∂v̂

∂y
− α2ŵ +

∂2ŵ

∂y2
− 2β2ŵ

)
+
dµ̄

dT̄

[
T̂
∂2w̄

∂y2
+
∂T̄

∂y

(
iβv̂ +

∂ŵ

∂y

)
+
∂T̂

∂y

∂w̄

∂y

]
+
d2µ̄

dT̄ 2
T̂
∂T̄

∂y

∂w̄

∂y

}
= 0,

(C.1d)

Energy:

ρ̄

γ(γ − 1)M2

(
−iωT̂ + ūiαT̂ + w̄iβT̂ + v̂

∂T̄

∂y

)
+

ρ̄T̄

γM2

(
iαû+

∂v̂

∂y
+ iβŵ

)
− 1

(γ − 1)RePrM2

[
k̄

(
−α2T̂ +

∂2T̂

∂y2
− β2T̂

)

+
dk̄

dT̄

(
2
∂T̄

∂y

∂T̂

∂y
+ T̂

∂2T̄

∂y2

)
+
d2k̄

dT̄ 2
T̂

(
∂T̄

∂y

)2
]

− 1

Re

{
2µ̄

[
∂û

∂y

∂ū

∂y
+ iαv̂

∂ū

∂y
+

(
iβv̂ +

∂ŵ

∂y

)
∂w̄

∂y

]
+
dµ̄

dT̄
T̂

[(
∂ū

∂y

)2

+

(
∂w̄

∂y

)2
]}

= 0, (C.1e)
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C.2 LST equations in terms of p and T
The LST equations for q = [u, v, w, T, p]T can be expressed as follows.
Continuity:

− iω

(
p̂− p̄T̂

T̄

)
+ p̄

(
iαû+

∂v̂

∂y
+ iβŵ

)
+ ūiα

(
p̂− p̄T̂

T̄

)

+ w̄
(
iβp̂− p̄

T̄
iβT̂

)
+ v̂

(
∂p̄

∂y
− p̄

T̄

∂T̄

∂y

)
= 0, (C.2a)

x-Momentum:

γM2p̄

T̄

(
−iωû+ ūiαû+ w̄iβû+ v̂

∂ū

∂y

)
+ iαp̂

− 1

Re

{
λ̄

(
−α2û+ iα

∂v̂

∂y
− αβŵ

)
+ µ̄

(
−2α2û+ iα

∂v̂

∂y
+
∂2û

∂y2
− β2û− αβŵ

)
+
dµ̄

dT̄

[
T̂
∂2ū

∂y2
+
∂T̄

∂y

(
iαv̂ +

∂û

∂y

)
+
∂T̂

∂y

∂ū

∂y

]
+
d2µ̄

dT̄ 2
T̂
∂T̄

∂y

∂ū

∂y

}
= 0, (C.2b)

y-Momentum:

γM2p̄

T̄
(−iωv̂ + ūiαv̂ + w̄iβv̂) +

∂p̂

∂y
− 1

Re

[
λ̄

(
iα
∂û

∂y
+
∂2v̂

∂y2
+ iβ

∂ŵ

∂y

)
+ µ̄

(
iα
∂û

∂y
− α2v̂ + 2

∂2v̂

∂y2
− β2v̂ + iβ

∂ŵ

∂y

)
+
dλ̄

dT̄

∂T̄

∂y

(
iαû+

∂v̂

∂y
+ iβŵ

)
+
dµ̄

dT̄

(
2
∂T̄

∂y

∂v̂

∂y
+ iαT̂

∂ū

∂y
+ iβT̂

∂w̄

∂y

)]
= 0, (C.2c)

z-Momentum:

γM2p̄

T̄

(
−iωŵ + ūiαŵ + w̄iβŵ + v̂

∂w̄

∂y

)
+ iβp̂

− 1

Re

{
λ̄

(
−αβû+ iβ

∂v̂

∂y
− β2ŵ

)
+ µ̄

(
−αβû+ iβ

∂v̂

∂y
− α2ŵ +

∂2ŵ

∂y2
− 2β2ŵ

)
+
dµ̄

dT̄

[
T̂
∂2w̄

∂y2
+
∂T̄

∂y

(
iβv̂ +

∂ŵ

∂y

)
+
∂T̂

∂y

∂w̄

∂y

]
+
d2µ̄

dT̄ 2
T̂
∂T̄

∂y

∂w̄

∂y

}
= 0,

(C.2d)
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Energy:

p̄

(γ − 1)T̄

(
−iωT̂ + ūiαT̂ + w̄iβT̂ + v̂

∂T̄

∂y

)
+ p̄

(
iαû+

∂v̂

∂y
+ iβŵ

)
− 1

(γ − 1)RePrM2

[
k̄

(
−α2T̂ +

∂2T̂

∂y2
− β2T̂

)

+
dk̄

dT̄

(
2
∂T̄

∂y

∂T̂

∂y
+ T̂

∂2T̄

∂y2

)
+
d2k̄

dT̄ 2
T̂

(
∂T̄

∂y

)2
]

− 1

Re

{
2µ̄

[
∂û

∂y

∂ū

∂y
+ iαv̂

∂ū

∂y
+

(
iβv̂ +

∂ŵ

∂y

)
∂w̄

∂y

]
+
dµ̄

dT̄
T̂

[(
∂ū

∂y

)2

+

(
∂w̄

∂y

)2
]}

= 0, (C.2e)



D
Guidelines for the derivation of the

disturbance energy evolution equation
for 2D-LST

D.1 Linearized entropy perturbation for a calorically
perfect gas

The change in the entropy of a calorically perfect gas with respect to a thermo-
dynamic reference state (subscript 1) can be expressed, in non-dimensional form,
as [1]:

s− s1 =
1

γM2

[
1

γ − 1
ln

(
T

T1

)
+ ln

(
ρ1

ρ

)]
. (D.1)

Decomposing the instantaneous entropy variable into its steady and perturbation
components, that is s = s̄+ s̃, leads to

s̄+ s̃− s1 =
1

γM2

[
1

γ − 1
ln

(
T̄ + T̃

T1

)
+ ln

(
ρ1

ρ̄+ ρ̃

)]
=

=
1

γM2

{
1

γ − 1

[
ln

(
T̄

T1

)
+ ln

(
1 +

T̃

T̄

)]
+ ln

(
ρ1

ρ̄

)
− ln

(
1 +

ρ̃

ρ̄

)}
.

(D.2)
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Equation D.2 can be simplified by considering the Taylor series of ln (1 + x)

around 0, also known as the Mercator series:

ln (1 + x) = x− x2

2
+
x3

3
− x4

4
+ ... =

∞∑
n=1

(−1)
n+1

n
xn, (D.3)

which provides a good approximation in the range −1 < x ≤ 1. Under the
assumption of small perturbations (s̃ � 1), terms of order higher than 1 are ne-
glected, thus allowing the following approximations to be introduced:

ln

(
1 +

T̃

T̄

)
≈ T̃

T̄
, ln

(
1 +

ρ̃

ρ̄

)
≈ ρ̃

ρ̄
. (D.4)

Substituting equation D.4 into equation D.2 and noting that

s̄− s1 =
1

γM2

[
1

γ − 1
ln

(
T̄

T1

)
+ ln

(
ρ1

ρ̄

)]
, (D.5)

the following expression is found for the linearized entropy perturbation:

s̃ =
1

γM2

[
1

γ − 1

(
T̃

T̄

)
− ρ̃

ρ̄

]
. (D.6)

D.2 Derivation of the 2D-LST disturbance energy
equation

This section provides a brief description of different steps followed to cast the
disturbance energy evolution equation in the form of equation (3.49), starting from
the linearized perturbation equations reported in appendix A. Equation (3.49) has
been derived trying to follow as much as possible the same form provided by
Weder et al. [2] for the case of two-dimensional perturbations developing on a
one-dimensional base flow.

Multiplying each of the governing equations of the system of linearized per-
turbation equations given in appendix A by the corresponding factor proposed by
Chu [3], see § 3.10.1, adding all of them together and integrating over the domain
volume, the following expanded disturbance energy equation is obtained:

∫
Ω

∂ρ̃∂t ρ̃T̄

γM2ρ̄︸ ︷︷ ︸
C1

+ ρ̄
∂ũ

∂t
ũ︸ ︷︷ ︸

X1

+ ρ̄
∂ṽ

∂t
ṽ︸ ︷︷ ︸

Y 1

+ ρ̄
∂w̃

∂t
w̃︸ ︷︷ ︸

Z1

+
1

γ(γ − 1)M2
ρ̄
∂T̃

∂t

T̃

T̄︸ ︷︷ ︸
E1

 dV
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=

∫
Ω


−ρ̄

 ∂ũ

∂x︸︷︷︸
C2

+
∂ṽ

∂y︸︷︷︸
C3

+
∂w̃

∂z︸︷︷︸
C4

− ρ̃
 ∂v̄

∂y︸︷︷︸
C5

+
∂w̄

∂z︸︷︷︸
C6

− ū ∂ρ̃∂x︸︷︷︸
C7

− v̄ ∂ρ̃
∂y︸︷︷︸
C8

− w̄ ∂ρ̃
∂z︸ ︷︷ ︸
C9

− ṽ ∂ρ̄
∂y︸︷︷︸
C10

− w̃ ∂ρ̄
∂z︸ ︷︷ ︸

C11

 ρ̃T̄

γM2ρ̄
+

−ρ̄
ū∂ũ∂x︸︷︷︸

X2

+ v̄
∂ũ

∂y︸︷︷︸
X3

+ w̄
∂ũ

∂z︸ ︷︷ ︸
X4

+ ṽ
∂ū

∂y︸︷︷︸
X5

+ w̃
∂ū

∂z︸ ︷︷ ︸
X6

− ρ̃
v̄ ∂ū∂y︸︷︷︸

X7

+ w̄
∂ū

∂z︸ ︷︷ ︸
X8

− 1

γM2

T̄ ∂ρ̃
∂x︸ ︷︷ ︸
X9

+ ρ̄
∂T̃

∂x︸︷︷︸
X10

+
1

Re

λ̄
∂2ũ

∂x2︸︷︷︸
X11

+
∂2ṽ

∂x∂y︸ ︷︷ ︸
X12

+
∂2w̃

∂x∂z︸ ︷︷ ︸
X13

+ µ̄

2
∂2ũ

∂x2︸ ︷︷ ︸
X14

+
∂2ṽ

∂x∂y︸ ︷︷ ︸
X15

+
∂2ũ

∂y2︸︷︷︸
X16

+
∂2ũ

∂z2︸︷︷︸
X17

+
∂2w̃

∂x∂z︸ ︷︷ ︸
X18



+
dλ̄

dT̄

∂T̃

∂x

 ∂v̄

∂y︸︷︷︸
X19

+
∂w̄

∂z︸︷︷︸
X20

+
dµ̄

dT̄

T̃
∂2ū

∂y2︸︷︷︸
X21

+
∂2ū

∂z2︸︷︷︸
X22

+
∂T̄

∂y

 ∂ṽ

∂x︸︷︷︸
X23

+
∂ũ

∂y︸︷︷︸
X24



+
∂T̃

∂y

∂ū

∂y︸ ︷︷ ︸
X25

+
∂T̄

∂z

 ∂ũ

∂z︸︷︷︸
X26

+
∂w̃

∂x︸︷︷︸
X27

+
∂T̃

∂z

∂ū

∂z︸ ︷︷ ︸
X28

+
d2µ̄

dT̄ 2
T̃

∂T̄∂y ∂ū∂y︸ ︷︷ ︸
X29

+
∂T̄

∂z

∂ū

∂z︸ ︷︷ ︸
X30



 ũ

+

−ρ̄
ū ∂ṽ∂x︸︷︷︸

Y 2

+ v̄
∂ṽ

∂y︸︷︷︸
Y 3

+ w̄
∂ṽ

∂z︸ ︷︷ ︸
Y 4

+ ṽ
∂v̄

∂y︸︷︷︸
Y 5

+ w̃
∂v̄

∂z︸ ︷︷ ︸
Y 6

− ρ̃
v̄ ∂v̄∂y︸︷︷︸

Y 7

+ w̄
∂v̄

∂z︸ ︷︷ ︸
Y 8



− 1

γM2

T̄ ∂ρ̃∂y︸ ︷︷ ︸
Y 9

+ T̃
∂ρ̄

∂y︸ ︷︷ ︸
Y 10

+ ρ̄
∂T̃

∂y︸︷︷︸
Y 11

+ ρ̃
∂T̄

∂y︸︷︷︸
Y 12

+
1

Re

λ̄
 ∂2ũ

∂x∂y︸ ︷︷ ︸
Y 13

+
∂2ṽ

∂y2︸︷︷︸
Y 14

+
∂2w̃

∂y∂z︸ ︷︷ ︸
Y 15



+µ̄

 ∂2ũ

∂x∂y︸ ︷︷ ︸
Y 16

+
∂2ṽ

∂x2︸︷︷︸
Y 17

+ 2
∂2ṽ

∂y2︸ ︷︷ ︸
Y 18

+
∂2ṽ

∂z2︸︷︷︸
Y 19

+
∂2w̃

∂y∂z︸ ︷︷ ︸
Y 20

+
dλ̄

dT̄

∂T̄∂y
 ∂ũ

∂x︸︷︷︸
Y 21

+
∂ṽ

∂y︸︷︷︸
Y 22

+
∂w̃

∂z︸︷︷︸
Y 23



+
∂T̃

∂y

 ∂v̄

∂y︸︷︷︸
Y 24

+
∂w̄

∂z︸︷︷︸
Y 25

+ T̃

∂2v̄

∂y2︸︷︷︸
Y 26

+
∂2w̄

∂y∂z︸ ︷︷ ︸
Y 27


+

dµ̄

dT̄

2
∂T̄

∂y

∂ṽ

∂y︸ ︷︷ ︸
Y 28

+ 2
∂T̃

∂y

∂v̄

∂y︸ ︷︷ ︸
Y 29
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+T̃

2
∂2v̄

∂y2︸ ︷︷ ︸
Y 30

+
∂2v̄

∂z2︸︷︷︸
Y 31

+
∂2w̄

∂y∂z︸ ︷︷ ︸
Y 32

+
∂T̃

∂x

∂ū

∂y︸ ︷︷ ︸
Y 33

+
∂T̄

∂z

 ∂ṽ

∂z︸︷︷︸
Y 34

+
∂w̃

∂y︸︷︷︸
Y 35



+
∂T̃

∂z

 ∂v̄

∂z︸︷︷︸
Y 36

+
∂w̄

∂y︸︷︷︸
Y 37


+

d2λ̄

dT̄ 2
T̃
∂T̄

∂y

 ∂v̄

∂y︸︷︷︸
Y 38

+
∂w̄

∂z︸︷︷︸
Y 39



+
d2µ̄

dT̄ 2
T̃

2
∂T̄

∂y

∂v̄

∂y︸ ︷︷ ︸
Y 40

+
∂T̄

∂z

 ∂v̄

∂z︸︷︷︸
Y 41

+
∂w̄

∂y︸︷︷︸
Y 42




 ṽ

+

−ρ̄
ū∂w̃∂x︸ ︷︷ ︸

Z2

+ v̄
∂w̃

∂y︸ ︷︷ ︸
Z3

+ w̄
∂w̃

∂z︸ ︷︷ ︸
Z4

+ ṽ
∂w̄

∂y︸ ︷︷ ︸
Z5

+ w̃
∂w̄

∂z︸ ︷︷ ︸
Z6

− ρ̃
v̄ ∂w̄∂y︸ ︷︷ ︸

Z7

+ w̄
∂w̄

∂z︸ ︷︷ ︸
Z8



− 1

γM2

T̄ ∂ρ̃
∂z︸︷︷︸
Z9

+ T̃
∂ρ̄

∂z︸︷︷︸
Z10

+ ρ̄
∂T̃

∂z︸︷︷︸
Z11

+ ρ̃
∂T̄

∂z︸︷︷︸
Z12

+
1

Re

λ̄
 ∂2ũ

∂x∂z︸ ︷︷ ︸
Z13

+
∂2ṽ

∂y∂z︸ ︷︷ ︸
Z14

+
∂2w̃

∂z2︸︷︷︸
Z15



+µ̄

 ∂2ũ

∂x∂z︸ ︷︷ ︸
Z16

+
∂2ṽ

∂y∂z︸ ︷︷ ︸
Z17

+
∂2w̃

∂x2︸︷︷︸
Z18

+
∂2w̃

∂y2︸︷︷︸
Z19

+ 2
∂2w̃

∂z2︸ ︷︷ ︸
Z20

+
dλ̄

dT̄

∂T̄∂z
 ∂ũ

∂x︸︷︷︸
Z21

+
∂ṽ

∂y︸︷︷︸
Z22

+
∂w̃

∂z︸︷︷︸
Z23



+
∂T̃

∂z

 ∂v̄

∂y︸︷︷︸
Z24

+
∂w̄

∂z︸︷︷︸
Z25

+ T̃

 ∂2v̄

∂y∂z︸ ︷︷ ︸
Z26

+
∂2w̄

∂z2︸︷︷︸
Z27


+

dµ̄

dT̄

2
∂T̄

∂z

∂w̃

∂z︸ ︷︷ ︸
Z28

+ 2
∂T̃

∂z

∂w̄

∂z︸ ︷︷ ︸
Z29

+T̃

 ∂2v̄

∂y∂z︸ ︷︷ ︸
Z30

+
∂2w̄

∂y2︸︷︷︸
Z31

+ 2
∂2w̄

∂z2︸ ︷︷ ︸
Z32

+
∂T̃

∂x

∂ū

∂z︸ ︷︷ ︸
Z33

+
∂T̄

∂y

 ∂ṽ

∂z︸︷︷︸
Z34

+
∂w̃

∂y︸︷︷︸
Z35



+
∂T̃

∂y

 ∂v̄

∂z︸︷︷︸
Z36

+
∂w̄

∂y︸︷︷︸
Z37


+

d2λ̄

dT̄ 2
T̃
∂T̄

∂z

 ∂v̄

∂y︸︷︷︸
Z38

+
∂w̄

∂z︸︷︷︸
Z39



+
d2µ̄

dT̄ 2
T̃

2
∂T̄

∂z

∂w̄

∂z︸ ︷︷ ︸
Z40

+
∂T̄

∂y

 ∂v̄

∂z︸︷︷︸
Z41

+
∂w̄

∂y︸︷︷︸
Z42




 w̃
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+

− 1

γ(γ − 1)M2

ρ̄
ū∂T̃∂x︸ ︷︷ ︸

E2

+ v̄
∂T̃

∂y︸ ︷︷ ︸
E3

+ w̄
∂T̃

∂z︸ ︷︷ ︸
E4

+ ṽ
∂T̄

∂y︸ ︷︷ ︸
E5

+ w̃
∂T̄

∂z︸ ︷︷ ︸
E6



+ρ̃

v̄ ∂T̄∂y︸ ︷︷ ︸
E7

+ w̄
∂T̄

∂z︸ ︷︷ ︸
E8


− 1

γM2

ρ̄T̄
 ∂ũ

∂x︸︷︷︸
E9

+
∂ṽ

∂y︸︷︷︸
E10

+
∂w̃

∂z︸︷︷︸
E11



+ρ̄T̃

 ∂v̄

∂y︸︷︷︸
E12

+
∂w̄

∂z︸︷︷︸
E13

+ ρ̃T̄

 ∂v̄

∂y︸︷︷︸
E14

+
∂w̄

∂z︸︷︷︸
E15




+
1

(γ − 1)RePrM2

k̄
∂2T̃

∂x2︸︷︷︸
E16

+
∂2T̃

∂y2︸︷︷︸
E17

+
∂2T̃

∂z2︸︷︷︸
E18

+
dk̄

dT̄

2
∂T̄

∂y

∂T̃

∂y︸ ︷︷ ︸
E19

+ 2
∂T̄

∂z

∂T̃

∂z︸ ︷︷ ︸
E20

+T̃

∂2T̄

∂y2︸︷︷︸
E21

+
∂2T̄

∂z2︸︷︷︸
E22


+

d2k̄

dT̄ 2
T̃

(∂T̄∂y
)2

︸ ︷︷ ︸
E23

+

(
∂T̄

∂z

)2

︸ ︷︷ ︸
E24




+
1

Re

2λ̄


 ∂ũ

∂x︸︷︷︸
E25

+
∂ṽ

∂y︸︷︷︸
E26

+
∂w̃

∂z︸︷︷︸
E27

 ∂v̄

∂y
+

 ∂ũ

∂x︸︷︷︸
E28

+
∂ṽ

∂y︸︷︷︸
E29

+
∂w̃

∂z︸︷︷︸
E30

 ∂w̄

∂z



+ 2µ̄

∂ũ∂y ∂ū∂y︸ ︷︷ ︸
E31

+
∂ũ

∂z

∂ū

∂z︸ ︷︷ ︸
E32

+
∂ṽ

∂x

∂ū

∂y︸ ︷︷ ︸
E33

+ 2
∂ṽ

∂y

∂v̄

∂y︸ ︷︷ ︸
E34

+
∂w̃

∂x

∂ū

∂z︸ ︷︷ ︸
E35

+ 2
∂w̃

∂z

∂w̄

∂z︸ ︷︷ ︸
E36

+
∂ṽ

∂z

 ∂v̄

∂z︸︷︷︸
E37

+
∂w̄

∂y︸︷︷︸
E38

+
∂w̃

∂y

 ∂v̄

∂z︸︷︷︸
E39

+
∂w̄

∂y︸︷︷︸
E40




+
dλ̄

dT̄
T̃

2
∂v̄

∂y

∂w̄

∂z︸ ︷︷ ︸
E41

+

(
∂v̄

∂y

)2

︸ ︷︷ ︸
E42

+

(
∂w̄

∂z

)2

︸ ︷︷ ︸
E43

+
dµ̄

dT̄
T̃

2
∂v̄

∂z

∂w̄

∂y︸ ︷︷ ︸
E44

+

(
∂ū

∂y

)2

︸ ︷︷ ︸
E45

+

(
∂ū

∂z

)2

︸ ︷︷ ︸
E46

+ 2

(
∂v̄

∂y

)2

︸ ︷︷ ︸
E47

+

(
∂v̄

∂z

)2

︸ ︷︷ ︸
E48

+

(
∂w̄

∂y

)2

︸ ︷︷ ︸
E49

+ 2

(
∂w̄

∂z

)2

︸ ︷︷ ︸
E50



 T̃T̄

 dV. (D.7)
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Subterms1 C1, X1, Y 1, Z1 and E1 combined constitute the time derivative of
the total disturbance energy. Thus, the left-hand side of equation (D.7) can simply
be written as dẼ/dt. Note the use of a total differential because Ẽ is a quantity
integrated over the domain volume, hence Ẽ = Ẽ(t).

Subterms X5, X6, Y 5, Y 6, Z5 and Z6 directly constitute the Reynolds stress
production contributions comprised in the term P̂RS (see equation (3.49a-f) and
(3.66a)). Similarly, subterms X7, X8, Y 7, Y 8, Z7 and Z8 directly yield the six
different contributions included in the term P̂mom, defined by equation (3.66d).
See also equation (3.49g-l).

D.2.1 Disturbance viscous stresses

In order to obtain the dissipation (D̂µ) and flux (F̂µ) terms related to the distur-
bance viscous stresses (see equations (3.49x), (3.49z), (3.66i) and (3.66l)), inte-
gration by parts in space is employed.

First, the normal viscous stresses are treated. The subterms that compose the
disturbance normal viscous stresses are those featuring a second derivative of the
velocity components along the direction aligned with that velocity component,
i.e., ∂2ũ/∂x2, ∂2ṽ/∂y2 and ∂2w̃/∂z2, and those featuring the bulk viscosity co-
efficient multiplied by a cross-derivative of the velocity components. For example,
subterms X11, X12, X13 and X14 are all part of the contributions related to τ̃xx.

Subterms X11 and X14 are integrated by parts as follows:

1

Re

∫
Ω

(
λ̄+ 2µ̄

) ∂2ũ

∂x2
ũ dV =

1

Re

∫
Γ

(
λ̄+ 2µ̄

)
ũ
∂ũ

∂x
nx dS

− 1

Re

∫
Ω

(
λ̄+ 2µ̄

) ∂ũ
∂x

∂ũ

∂x
dV. (D.8)

This yields two contributions, namely, the first term on the right-hand side of equa-
tion (D.8) is part of the group τ̃xxũnx, included in (3.49z), whereas the second
term on the right-hand side of (D.8) is part of τ̃xx∂ũ/∂x, included in (3.49x).

For the cross-derivative subterms, a choice has to be made on the direction
on which the integration by parts is applied. Here, subterms X12 and X13 are
integrated by parts with respect to x, yielding:

1

Re

∫
Ω

λ̄ũ
∂2ṽ

∂x∂y
dV =

1

Re

∫
Γ

λ̄ũ
∂ṽ

∂y
nx dS −

1

Re

∫
Ω

λ̄
∂ũ

∂x

∂ṽ

∂y
dV, (D.9a)

1

Re

∫
Ω

λ̄ũ
∂2w̃

∂x∂z
dV =

1

Re

∫
Γ

λ̄ũ
∂w̃

∂z
nx dS −

1

Re

∫
Ω

λ̄
∂ũ

∂x

∂w̃

∂z
dV. (D.9b)

1The word subterm is employed here to denote each of the individual terms that compose equa-
tion (D.7). This is done to distinguish them from the terms of the final equation (3.49) after all the
manipulations are done.



DERIVATION OF THE DISTURBANCE ENERGY EQUATION FOR 2D-LST D-7

The first term in the right-hand side of equations (D.9a) and (D.9b) is part of
τ̃xxũnx, while the second term is part of τ̃xx∂ũ/∂x. Therefore, the first RHS term
of equations (D.8), (D.9a) and (D.9b) combine into the following contribution

1

Re

∫
Γ

(
λ̄+ 2µ̄

)
ũ
∂ũ

∂x
nx dS +

1

Re

∫
Γ

λ̄ũ
∂ṽ

∂y
nx dS

+
1

Re

∫
Γ

λ̄ũ
∂w̃

∂z
nx dS =

∫
Γ

τ̃xxũnx dS, (D.10)

which is part of (3.49z), and the second RHS terms combine into

− 1

Re

∫
Ω

(
λ̄+ 2µ̄

) ∂ũ
∂x

∂ũ

∂x
dV − 1

Re

∫
Ω

λ̄
∂ũ

∂x

∂ṽ

∂y
dV

− 1

Re

∫
Ω

λ̄
∂ũ

∂x

∂w̃

∂z
dV = −

∫
Ω

τ̃xx
∂ũ

∂x
dV, (D.11)

which is part of (3.49x).
The same approach is then applied for the normal viscous stresses along y

and z, respectively involving subterms Y 13, Y 14, Y 15 and Y 18, and Z13, Z14,
Z15 and Z20. When performing integration by parts on these terms, however,
additional terms appear due to the dependence of base-flow viscosity on tempera-
ture. These additional terms always cancel out with subterms found in (D.7). For
example, for subterms Y 14 and Y 18:

1

Re

∫
Ω

(
λ̄+ 2µ̄

) ∂2ṽ

∂y2
ṽ dV =

1

Re

∫
Γ

(
λ̄+ 2µ̄

)
ṽ
∂ṽ

∂y
ny dS

− 1

Re

∫
Ω

dλ̄

dT̄

dT̄

dy
ṽ
∂ṽ

∂y
dV − 1

Re

∫
Ω

2
dµ̄

dT̄

dT̄

dy
ṽ
∂ṽ

∂y
dV

− 1

Re

∫
Ω

(
λ̄+ 2µ̄

) ∂ũ
∂x

∂ũ

∂x
dV. (D.12)

The second and third RHS terms of equation (D.12) cancel out with terms Y 22 and
Y 28, respectively. The same is encountered for all the remaining contributions to
the viscous stresses.

Next, the treatment for the shear viscous stresses is described. The subterms
that form the shear viscous stresses are those featuring a second derivative of the
velocity components along a direction other than the one aligned with that velocity
component, such as for example ∂2ũ/∂y2, and those featuring the dynamic viscos-
ity multiplied by a cross-derivative of the velocity components. For instance, the
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integration by parts of subterms X15, X16, Y 16 and Y 17 yields the contributions
related to τ̃xy , namely

1

Re

∫
Ω

µ̄ũ
∂2ũ

∂y2
dV =

1

Re

∫
Γ

µ̄ũ
∂ũ

∂y
ny dS

− 1

Re

∫
Ω

dµ̄

dT̄

dT̄

dy
ũ
∂ũ

∂y
dV − 1

Re

∫
Ω

µ̄
∂ũ

∂y

∂ũ

∂y
dV,

(D.13a)

1

Re

∫
Ω

µ̄ṽ
∂2ṽ

∂x2
dV =

1

Re

∫
Γ

µ̄ṽ
∂ṽ

∂x
nx dS −

1

Re

∫
Ω

µ̄
∂ṽ

∂x

∂ṽ

∂x
dV, (D.13b)

1

Re

∫
Ω

µ̄ũ
∂2ṽ

∂x∂y
dV =

1

Re

∫
Γ

µ̄ũ
∂ṽ

∂x
ny dS

− 1

Re

∫
Ω

dµ̄

dT̄

dT̄

dy
ũ
∂ṽ

∂x
dV − 1

Re

∫
Ω

µ̄
∂ũ

∂y

∂ṽ

∂x
dV,

(D.13c)

1

Re

∫
Ω

µ̄ṽ
∂2ũ

∂x∂y
dV =

1

Re

∫
Γ

µ̄ṽ
∂ũ

∂y
nx dS −

1

Re

∫
Ω

µ̄
∂ṽ

∂x

∂ũ

∂y
dV. (D.13d)

Note that subterms X15 and Y 16 are integrated by parts in the opposite direction
as it is done for the normal viscous stresses. Collecting the first RHS term of
equations (D.13), the contribution of τ̃xy to term (3.49z) is obtained, that is

1

Re

∫
Γ

µ̄ũ
∂ũ

∂y
ny dS +

1

Re

∫
Γ

µ̄ũ
∂ṽ

∂x
ny dS

+
1

Re

∫
Γ

µ̄ṽ
∂ũ

∂y
nx dS +

1

Re

∫
Γ

µ̄ṽ
∂ṽ

∂x
nx dS =

∫
Γ

τ̃xy (ũny + ṽnx) dS.

(D.14)

Similarly, combining the last RHS term of equations (D.13), the contribution to
term (3.49x) is retrieved, which reads

− 1

Re

∫
Ω

µ̄
∂ũ

∂y

∂ũ

∂y
dV − 1

Re

∫
Ω

µ̄
∂ṽ

∂x

∂ṽ

∂x
dV

− 1

Re

∫
Ω

µ̄
∂ũ

∂y

∂ṽ

∂x
dV − 1

Re

∫
Ω

µ̄
∂ṽ

∂x

∂ũ

∂y
dV = −

∫
Ω

τ̃xy

(
∂ũ

∂y
+
∂ṽ

∂x

)
dV.

(D.15)

Finally, note that the second RHS term of equations (D.13a) and (D.13c) cancels
out with subterms X24 and X23, respectively.

An analogous procedure applies for the contributions related to τ̃xz and τ̃yz .
This completes the derivation of all the disturbance energy contributions related to
the viscous stresses.
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D.2.2 Disturbance thermal conduction

The dissipation (D̂k) and flux (F̂k) terms associated with thermal conduction result
from the integration by parts of subterms E16, E17 and E18, that is

1

(γ − 1)RePrM2

∫
Ω

k̄

(
∂2T̃

∂x2
+
∂2T̃

∂y2
+
∂2T̃

∂z2

)
T̃

T̄
dV =

1

(γ − 1)RePrM2

{∫
Γ

(
k̄
∂T̃

∂x
nx + k̄

∂T̃

∂y
ny + k̄

∂T̃

∂z
nz

)
T̃

T̄
dS

−
∫

Ω

[
∂

∂x

(
k̄
T̃

T̄

)
∂T̃

∂x
+

∂

∂y

(
k̄
T̃

T̄

)
∂T̃

∂y
+

∂

∂z

(
k̄
T̃

T̄

)
∂T̃

∂z

]
dV

}
. (D.16)

The first RHS term in equation (D.16) directly constitutes the flux term (3.49aa),
see also (3.66m). The constituents of the second RHS term are further expanded
as:

− 1

(γ − 1)RePrM2

∫
Ω

∂

∂x

(
k̄
T̃

T̄

)
∂T̃

∂x
dV =

− 1

(γ − 1)RePrM2

∫
Ω

k̄

T̄

∂T̃

∂x

∂T̃

∂x
dV,

(D.17a)

− 1

(γ − 1)RePrM2

∫
Ω

∂

∂y

(
k̄
T̃

T̄

)
∂T̃

∂y
dV =

− 1

(γ − 1)RePrM2

∫
Ω

(
dk̄

dT̄

∂T̄

∂y

∂T̃

∂y

T̃

T̄
+
k̄

T̄

∂T̃

∂y

∂T̃

∂y
− k̄

T̄

∂T̄

∂y

∂T̃

∂y

T̃

T̄

)
dV,

(D.17b)

− 1

(γ − 1)RePrM2

∫
Ω

∂

∂z

(
k̄
T̃

T̄

)
∂T̃

∂z
dV =

− 1

(γ − 1)RePrM2

∫
Ω

(
dk̄

dT̄

∂T̄

∂z

∂T̃

∂z

T̃

T̄
+
k̄

T̄

∂T̃

∂z

∂T̃

∂z
− k̄

T̄

∂T̄

∂z

∂T̃

∂z

T̃

T̄

)
dV.

(D.17c)

The RHS of equation (D.17a) together with the second RHS term of equations
(D.17b) and (D.17c) constitute the dissipation term (3.49y), see also (3.66j). The
third RHS term of (D.17b) and (D.17c) are contributions that become part of the
disturbance heat source Q̃ (see equation (3.55)), and therefore belong to term
(3.49o) (term (3.66c) in the decomposition). Finally, the first RHS term of equa-
tion (D.17b) combines with subterms E19, E21 and E23 to yield the following
additional contribution to the disturbance heat source production term:
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1

(γ − 1)RePrM2

∫
Ω

[
2
dk̄

dT̄

∂T̄

∂y

∂T̃

∂y
− dk̄

dT̄

∂T̄

∂y

∂T̃

∂y
+
dk̄

dT̄
T̃
∂2T̄

∂y2

+
d2k̄

dT̄ 2
T̃

(
∂T̄

∂y

)2
]
T̃

T̄
dV =

1

(γ − 1)RePrM2

∫
Ω

∂

∂y

(
T̃
dk̄

dT̄

∂T̄

∂y

)
T̃

T̄
dV.

(D.18)

An analogous expression is found in the z direction combining the first RHS term
of equation (D.17c) with subterms E20, E22 and E24. This completes the deriva-
tion of the disturbance energy contributions related to thermal conduction.

D.2.3 Flux terms due to the variation of viscosity with temper-
ature

The flux term F̂dµ/dT (3.66n) (see also the corresponding terms in the distur-
bance energy equation: (3.49cc) to (3.49rr)) is obtained by combining the sub-
terms that involve the derivative of viscosity with temperature. For example, the
term (3.49cc) results from the subterms X21, X29 and X25 as follows:

1

Re

∫
Ω

(
dµ̄

dT̄

∂2ū

∂y2
T̃ ũ+

d2µ̄

dT̄ 2

∂T̄

∂y

∂ū

∂y
T̃ ũ+

dµ̄

dT̄

∂ū

∂y

∂T̃

∂y
ũ

)
dV =

1

Re

∫
Ω

[
∂

∂y

(
ũT̃

dµ̄

dT̄

∂ū

∂y

)
− ∂ũ

∂y
T̃
dµ̄

dT̄

∂ū

∂y

]
dV. (D.19)

The first RHS term in equation (D.19) is directly the contribution in (3.49cc), while
the second RHS term is an additional contribution to the disturbance heat source
production term (see equation (3.55)).

The same approach is followed for the terms (3.49dd) to (3.49rr).

D.2.4 Disturbance heat source

In the previous two sections, some of the terms composing the disturbance heat
source contribution (3.49o) have been derived. However, additional subterms still
remain which also belong to Q̃ (see equation (3.55)). These are directly subterms
E25 to E50, without any further modification.

D.2.5 Convective derivative of the total disturbance energy

Next, the subterms yielding the production term related to the convective deriva-
tive of the total disturbance energy (P̂con) are summarized (see (3.49ss), (3.49tt),
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(3.49uu) and (3.66h)). Subterms C7, C8 and C9, rewritten in terms of the base-
flow pressure, respectively give the first contribution in each of the terms (3.49ss),
(3.49tt) and (3.49uu). Similarly, subtermsE2, E3 andE4 respectively provide the
second contribution to (3.49ss), (3.49tt) and (3.49uu) when expressed in terms of
the base-flow pressure. Subterms X2, Y 2 and Z2 compose the third contribution
to (3.49ss), subterms X3, Y 3 and Z3 constitute the third contribution to (3.49tt)
and subterms X4, Y 4 and Z4 form the third contribution to (3.49uu).

Note that the independence of the base-flow quantities on x allows the x deriva-
tive on the term (3.49ss) to enclose all the constituents. This enables to set the
complete term (3.49ss) to zero once the assumption of integration along a single
streamwise period is introduced (see § 3.10.2).

D.2.6 Base-flow pressure work

Subterms C10 and Y 12 combine to yield the base-flow pressure work production
term (3.49p) as:

−
∫

Ω

∂ρ̄

∂y
ṽ

ρ̃T̄

γM2ρ̄
dV −

∫
Ω

ρ̃

γM2

∂T̄

∂y
ṽ dV =

−
∫

Ω

ρ̃ṽ

γM2ρ̄

(
T̄
∂ρ̄

∂y
+ ρ̄

∂T̄

∂y

)
dV = −

∫
Ω

ρ̃ṽ

ρ̄

∂p̄

∂y
dV. (D.20)

Similarly, subterms C11 and Z12 produce the analogous contribution along the z
direction (3.49q). See (3.66e) for the corresponding production term belonging to
the decomposition of the temporal growth rate.

D.2.7 Disturbance entropy

The production term related to the transport of disturbance entropy (P̂s), (see
(3.49m,n) and (3.66b)) is built from two different contributions along each spatial
direction. The first one comes directly from subterm E5 along the y direction and
from subterm E6 along the z direction. The second contribution requires further
elaboration, as described next.

Using equation (A.2), it can be directly seen that the sum of subterms C2, C3,
C4, E9, E10 and E11 equals the product of the pressure disturbance times the
divergence of the disturbance velocity field, i.e., −p̃∇ · Ṽ. The integration by
parts of this product yields the following:

−
∫

Ω

p̃∇ · Ṽ dV = −
∫

Γ

p̃ (ũnx + ṽny + w̃nz) dS +

∫
Ω

∇p̃ · Ṽ dV. (D.21)



D-12 APPENDIX D

The first RHS term in equation (D.21) is the surface term (3.49bb), which translates
into the disturbance pressure flux term (3.66k). The second RHS term is expanded
as:

∫
Ω

∇p̃ · Ṽ dV =
1

γM2

[∫
Ω

(
ρ̄
∂T̃

∂x
ũ+ T̄

∂ρ̃

∂x
ũ+

∂ρ̄

∂y
T̃ ṽ + ρ̄

∂T̃

∂y
ṽ

+T̄
∂ρ̃

∂y
ṽ + ρ̃

∂T̄

∂y
ṽ +

∂ρ̄

∂z
T̃ w̃ + ρ̄

∂T̃

∂z
w̃ + T̄

∂ρ̃

∂z
w̃ + ρ̃

∂T̄

∂z
w̃

)
dV

]
. (D.22)

All the RHS terms in equation (D.22) cancel with subterms from equation
(D.7) except for the groups ρ̃

(
∂T̄ /∂y

)
ṽ and ρ̃

(
∂T̄ /∂z

)
w̃. These two remaining

terms are the second contributions that complete the disturbance entropy produc-
tion constituents along the y and z directions. Hence, the disturbance entropy
terms (3.49m) and (3.49n) can be obtained as:

∫
Ω

1

γM2
ρ̃
∂T̄

∂y
ṽ dV −

∫
Ω

ρ̄

γ (γ − 1)M2

∂T̄

∂y
ṽ
T̃

T̄
dV =

−
∫

Ω

ρ̄ṽ
∂T̄

∂y

1

γM2

[
1

γ − 1

(
T̃

T̄

)
− ρ̃

ρ̄

]
dV = −

∫
Ω

ρ̄ṽs̃
∂T̄

∂y
dV,

(D.23a)

∫
Ω

1

γM2
ρ̃
∂T̄

∂z
w̃ dV −

∫
Ω

ρ̄

γ (γ − 1)M2

∂T̄

∂z
w̃
T̃

T̄
dV =

−
∫

Ω

ρ̄w̃
∂T̄

∂z

1

γM2

[
1

γ − 1

(
T̃

T̄

)
− ρ̃

ρ̄

]
dV = −

∫
Ω

ρ̄w̃s̃
∂T̄

∂z
dV,

(D.23b)

where use of equation (3.51) has been made.
Note that the derivation of terms (3.49m,n) involves subterms from the conti-

nuity and the energy equations, which reflects the fact that the disturbance entropy
plays a role in the generalized potential energy of the disturbance rather than in the
disturbance internal energy alone (see § 3.10.1.2).

D.2.8 Remaining terms

The remaining subterms in equation (D.7) yield the pressure dilatation terms (3.49r-
u), enclosed in the production contribution P̂dil (3.66f), and the terms (3.49v,w)
which are result from the material derivative of the internal energy perturbation
(see P̂s,T (3.66g)).

The terms (3.49v,w) come directly from subterms E7 and E8, respectively.
The terms (3.49t,u) are respectively obtained from subterms C5 and C6 rewritten
as a function of the base-flow pressure and density. Finally, terms (3.49r,s) arise
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from a combination of subterms E12 and E14, and E13 and E15, respectively,
i.e.,

− 1

γM2

[∫
Ω

(
ρ̄T̃

∂v̄

∂y
+ ρ̃T̄

∂v̄

∂y

)
T̃

T̄
dV

]
= −

∫
Ω

p̃
∂v̄

∂y

T̃

T̄
dV (D.24a)

− 1

γM2

[∫
Ω

(
ρ̄T̃

∂w̄

∂z
+ ρ̃T̄

∂w̄

∂z

)
T̃

T̄
dV

]
= −

∫
Ω

p̃
∂w̄

∂z

T̃

T̄
dV (D.24b)

This completes the derivation of the different contributions appearing in the
2D-LST disturbance energy evolution equation.
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E
Disturbance energy evolution equation

for LST

The disturbance energy evolution equation associated to Chu’s disturbance energy
definition (see § 3.10.1) for q̄ = q̄(y), q̃ = q̃(x, y, z, t) and v̄ = 0, corresponding
to one-dimensional linear stability theory (LST), can be expressed as follows:

dẼ

dt
= −

∫
Ω

ρ̄ũṽ
dū

dy
dV −

∫
Ω

ρ̄ṽw̃
dw̄

dy
dV −

∫
Ω

ρ̄ṽs̃
dT̄

dy
dV

+

∫
Ω

Q̃
T̃

T̄
dV −

∫
Ω

ρ̃ṽ

ρ̄

dp̄

dy
dV −

∫
Ω

[
τ̃xx

∂ũ

∂x
+ τ̃yy

∂ṽ

∂y
+ τ̃zz

∂w̃

∂z

+τ̃xy

(
∂ũ

∂y
+
∂ṽ

∂x

)
+ τ̃xz

(
∂ũ

∂z
+
∂w̃

∂x

)
+ τ̃yz

(
∂ṽ

∂z
+
∂w̃

∂y

)]
dV

+

∫
Ω

1

T̄

(
q̃x

∂

∂x
+ q̃y

∂

∂y
+ q̃z

∂

∂z

)
T̃ dV −

∫
Γ

p̃ (ũnx + ṽny + w̃nz) dS

+

∫
Γ

[τ̃xxũnx + τ̃yy ṽny + τ̃zzw̃nz + τ̃xy (ũny + ṽnx) + τ̃xz (ũnz + w̃nx)

+τ̃yz (ṽnz + w̃ny)] dS −
∫

Γ

(q̃xnx + q̃yny + q̃znz)
T̃

T̄
dS

+
1

Re

∫
Ω

∂

∂y

(
ũT̃

dµ̄

dT̄

dū

dy

)
dV +

1

Re

∫
Ω

∂

∂x

(
ṽT̃

dµ̄

dT̄

dū

dy

)
dV
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+
1

Re

∫
Ω

∂

∂z

(
ṽT̃

dµ̄

dT̄

dw̄

dy

)
dV +

1

Re

∫
Ω

∂

∂y

(
w̃T̃

dµ̄

dT̄

dw̄

dy

)
dV

−
∫

Ω

∂

∂x

[
1

2
ūp̄
ρ̃2

ρ̄2
+

1

2

ūp̄

γ − 1

T̃ 2

T̄ 2
+

1

2
ūρ̄
(
ũ2 + ṽ2 + w̃2

)]
dV

−
∫

Ω

∂

∂z

[
1

2
w̄p̄

ρ̃2

ρ̄2
+

1

2

w̄p̄

γ − 1

T̃ 2

T̄ 2
+

1

2
w̄ρ̄
(
ũ2 + ṽ2 + w̃2

)]
dV, (E.1)

where τ̃xx, τ̃yy, τ̃zz , τ̃xy , τ̃xz and τ̃yz are defined as in equation (3.53), q̃x, q̃y and
q̃z are defined as in equation (3.54), and the LST disturbance heat source takes the
form:

Q̃ =
1

Re

(
2µ̄− dµ̄

dT̄
T̄

)[
dū

dy

(
∂ũ

∂y
+
∂ṽ

∂x

)
+
dw̄

dy

(
∂ṽ

∂z
+
∂w̃

∂y

)]
+

1

(γ − 1)RePrM2

k̄

T̄

dT̄

dy

∂T̃

∂y
+

1

Re
T̃
dµ̄

dT̄

[(
dū

dy

)2

+

(
dw̄

dy

)2
]

+
1

(γ − 1)RePrM2

∂

∂y

(
T̃
dk̄

dT̄

dT̄

dy

)
. (E.2)

The same decomposition introduced in § 3.10.2 can then be applied to equation
(E.1) to obtain the production, dissipation and flux terms that govern the temporal
growth rate in LST.
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Verification of VESTA’s CPG 2D-LST

solver against DLR’s solver

A verification of the 2D-LST solver implemented within VESTA toolkit has been
performed for the case of roughness-induced instabilities in a calorically perfect
gas by means of a comparison against DLR’s 2D-LST solver developed by Theiss
et al. [1, 2]. The test case employed for the verification consists of a smooth
roughness element placed inside a subsonic compressible boundary layer evolving
on a flat plate.

F.1 Case description

A smooth three-dimensional roughness geometry is considered following the def-
inition given by Marxen et al. [3], together with the following freestream con-
ditions: M∞ = 0.5, T∞ = 216.65 K and p∞ = 5992.26 Pa. The center of
the roughness element is placed at a streamwise distance of the flat-plate leading
edge equal to xh = 0.36 m, which corresponds to a local Reynolds number of
Re = 600. The roughness height is chosen to be equal to half of the displacement
thickness of the boundary layer at the location of the center of the roughness ele-
ment, which for the chosen freestream conditions is determined to be h = 0.548

mm. The length and width of the element are chosen to be equal to 4h, and the
steepness parameter that controls the bluntness of the selected roughness shape
(see [3]) has a value of sh = 2000.
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Figure F.1: Surface mesh illustrating the roughness geometry and the surrounding compu-
tational grid employed for the verification case. For clarity, only every three grid points are
shown along each direction.

Figure F.1 shows the surface grid around the smooth roughness shape consid-
ered for the verification case. The base-flow solution was obtained by means of
DLR’s structured CFD solver named FLOWer [4].

F.2 Comparison of 2D-LST results

A comparison of the 2D-LST results obtained in the wake behind the smooth
roughness element using both solvers is presented in figure F.2, which shows a
portion of the spatial stability spectrum at x = 0.364 m and f = 1700 Hz and
the streamwise velocity amplitude function associated to the most unstable dis-
turbance, which is a varicose deformation of the streak induced by the roughness
geometry. As it can be observed, an excellent agreement is obtained between
both solvers, certifying the verification of VESTA’s 2D-LST implementation for
roughness-induced instabilities in a calorically perfect gas.
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roughness element (x = 0.364 m, f = 1700 Hz, Nz = 121, Ny = 141); (b) contours of
the magnitude of the streamwise velocity amplitude function of the most unstable discrete
mode found in the spectrum (marked with a cross symbol in (a)).

[2] Alexander Theiss and Stefan J. Hein. Investigation on the wake flow instability
behind isolated roughness elements on the forebody of a blunt generic reentry
capsule. Progress in Flight Physics, 9:451–480, 2017.

[3] Olaf Marxen, Gianluca Iaccarino, and Eric S. G. Shaqfeh. Numerical simula-
tions of hypersonic boundary-layer instability with localized roughness. AIAA
paper, 2011-567, 2011.

[4] Jochen Raddatz and Jens K. Fassbender. Block structured Navier-Stokes solver



F-4 APPENDIX F

FLOWer. MEGAFLOW - Numerical Flow Simulation for Aircraft Design.
Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM),
89:27–44, 2005.



G
Accuracy of the temporal growth-rate

decomposition

According to equation (3.64), the sum of all the terms in P̂ , D̂ and F̂ is equal to
ωi. Therefore, an approach for evaluating the accuracy of the temporal growth-rate
decomposition is to sum all the contributions and compare the resulting growth
rate against the one obtained from the solution of the temporal eigenvalue problem
(3.15). From a theoretical point of view, both approaches should lead to the same
value of ωi. Additionally, this comparison also serves the purpose of verifying the
derived energy evolution equation.

G.1 Accuracy for a smooth flat-plate boundary layer
First, the accuracy of the decomposition is assessed in the case of a smooth flat-
plate boundary layer, for which the base flow is given by a self-similar boundary-
layer solution. For this purpose, a self-similar boundary-profile at the conditions
described in § 5.1 is employed.

G.1.1 One-dimensional local linear stability theory

The accuracy of the temporal growth-rate decomposition based on LST is pre-
sented first. The disturbance energy evolution equation for this theory is provided
in appendix E. In this case, the complete stability spectrum is computed by means
of the QZ algorithm, considering x = 0.1 m, λx = 0.22 cm and λz = 0.39
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Figure G.1: Portion of the temporal stability spectrum obtained by means of LST for a self-
similar boundary-layer profile at the freestream conditions reported in table 5.1, x = 0.1
m, λx = 0.22 cm, λz = 0.39 cm and Ny = 121. The symbols labeled EVP correspond
to the eigenmodes obtained directly from the solution of the temporal eigenvalue problem,
whereas the symbols labeled Energy correspond to the growth rate computed by means of
the decomposition based on the disturbance energy equation.

cm. The discretization is performed using the Chebyshev collocation method with
Ny = 121 collocation points. Figure G.1 shows a comparison of the most rel-
evant portion of the temporal stability spectrum obtained by means of both the
solution of the LST eigenvalue problem (labeled EVP) and the use of the temporal
growth-rate decomposition (labeled Energy).

As it can be observed, an excellent agreement is obtained between the growth
rates computed by the two approaches for the discrete modes present in the spec-
trum. This certifies the verification of the temporal growth-rate decomposition
derived for LST. For the modes belonging to the continuous branches, the accu-
racy of the decomposition progressively decreases when moving away from the
origin of such branches. In figure G.1, this is particularly visible for the acoustic
(horizontal) continuous branches. This behavior is attributed to the discretization
of these modes, which becomes progressively poorer when moving away from the
origin of a given branch. Therefore, these eigenmodes do not feature a good degree
of grid convergence.
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Figure G.2: Comparison of the temporal stability spectrum between LST (x = 0.1 m,
λx = 0.22 cm, λz = 0.39 cm and Ny = 121) and 2D-LST (x = 0.1 m, λx = 0.22 cm,
Nz = 21 and Ny = 121). For 2D-LST, the spanwise domain size is set to 0.39 cm, i.e., the
value of λz imposed in the LST case.

It is also worth noting that, for the spurious numerical mode located above the
vertical continuous branch, the decomposition does not yield a growth rate that is
close to the value obtained from the solution of the eigenvalue problem. This is a
consequence of the fact that this eigenmode does not have a physical nature.

G.1.2 Two-dimensional local linear stability theory

Next, the accuracy of the temporal-growth rate decomposition for 2D-LST is ex-
amined. This is done by computing the 2D-LST analogue to the LST spectrum
presented in figure G.1, using a spanwise domain size equal to the spanwise wave-
length fixed in the LST computation, i.e., zmax = λz = 0.39 cm. The discretiza-
tion in this case is also performed using the Chebyshev collocation method, em-
ploying a grid resolution of Nz ×Ny = 21 × 121, and the eigenvalue problem is
also solved by means of the QZ method. Figure G.2 shows a comparison of the
temporal stability spectrum obtained by means of the QZ method for the LST and
the 2D-LST computations. Note that the 2D-LST solution resolves all the different
spanwise wavenumbers that can be discretized into the selected domain size. As a
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Figure G.3: Accuracy of the temporal growth-rate decomposition in the 2D-LST spectrum
(x = 0.1 m, λx = 0.22 cm, Nz = 21 and Ny = 121). The spanwise domain size is set to
0.39 cm, i.e., the value of λz imposed in the LST case. The rectangular regions highlighted
correspond to the spectrum regions detailed in figure G.4.

result, for each LST mode, there is a corresponding family of 2D-LST modes. The
first mode in each family corresponds to spanwise-constant disturbances (β = 0),
the second one corresponds to modes with a spanwise wavelength equal to the do-
main span, the third one to perturbations with a spanwise wavelength equal to half
of the domain span, and so on. The second 2D-LST mode in each family there-
fore matches the LST one for λz = 0.39 cm. This is clearly visible in the insert
in figure G.2, which illustrates the region of the spectrum containing the second
Mack-mode instability. Note that in this case, the first mode of the second-Mack-
mode family features the highest growth rate, which reflects the well-known result
that Mack’s second mode is most unstable as a two-dimensional (β = 0) distur-
bance.

Figure G.3 illustrates the accuracy of the decomposition for 2D-LST. For those
families of 2D-LST modes that are associated to a discrete LST mode, a very good
agreement in the growth rates computed by the two approaches is retrieved for
the spanwise-constant modes (the first of each family) and for those modes with a
large spanwise wavelength. However, the accuracy of the decomposition decreases
for smaller spanwise wavelengths, as their discretization along the spanwise direc-
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Figure G.4: Comparison between both methods used to evaluate the temporal growth rate
for the regions highlighted in figure G.3. The circle symbols that do not seem to be asso-
ciated with a dot symbol at the left of the vertical continuous branch in (b) correspond to
the family of spurious numerical modes that can be observed above the vertical continu-
ous branch in figure G.3, whose unphysical growth rate predicted by both methods is very
different.

tion becomes poorer for a given number of collocation points. This behavior is
clearly visible in figure G.4, which shows a detailed view of the regions of the
spectrum marked in figure G.3. As it can be noticed, the agreement is excellent
for the first few modes of each family, but deviations are progressively introduced
as the spanwise wavelength becomes smaller. This reflects the fact that for a given
grid resolution in the spanwise direction, the modes that feature smaller spanwise
wavelengths are also associated with a smaller degree of grid convergence.

In order to quantify the accuracy of the temporal growth-rate decomposition for
the studied case, table G.1 reports the growth rate and the relative error obtained
for the Mack-mode instability for both the LST and the 2D-LST computations. A
remarkable agreement is found between the relative error of both theories, which
certifies the verification of the derived growth-rate decomposition for 2D-LST. A
smaller relative error has been obtained with both theories by using a larger number
of grid points in the wall-normal direction, achieving an error magnitude consistent
with the results reported by Weder [1] for the case of compressible Couette flow.



G-6 APPENDIX G

Theory ωi,EVP [rad/s] ωi,Energy [rad/s] εr

LST 8.42730761973e+03 8.37165817930e+03 0.006603466128

2D-LST 8.42730759844e+03 8.37165816162e+03 0.006603465717

Table G.1: Comparison of the relative error in the temporal growth-rate decomposition
of an oblique Mack mode computed using LST and 2D-LST, as shown in figure G.2. The
relative error is evaluated as εr = |ωi,EVP − ωi,Energy|/|ωi,EVP|.

G.2 Accuracy in the roughness wake

To evaluate the accuracy of the derived disturbance energy equation and the associ-
ated decomposition of the growth rate for the instabilities induced by a roughness
element, the temporal growth rate obtained from the solution of the eigenvalue
problem is compared against the one obtained by adding all the different contri-
butions of the decomposition for the cases studied in § 5.3. Figure G.5 presents
the most relevant part of different 2D-LST spectra obtained in the wake behind
a cuboid and a ramp roughness element geometries. A good overall agreement
is found between both the eigenvalue-problem solution and the decomposition.
However, it can observed that the error introduced by the decomposition is larger
for the wake instabilities than for the Mack-mode disturbances.

Figure G.6 shows the streamwise growth-rate evolution of various disturbances
evolving in the wake behind a cuboid and a ramp-shaped roughness elements. As
it can be observed, in general the agreement between both approaches is satisfac-
tory. Nevertheless, small differences are noticeable for the varicose and sinuous
wake instabilities. As already depicted in figure G.5, the agreement is much closer
for the two-dimensional Mack mode (figure G.6(c)), even though its amplitude
function is also modulated by the roughness wake as in the case of the SIN1 and
VCOS1 modes.

Deviations between the growth rate predicted by the decomposition of the
temporal growth-rate based on a disturbance energy equation and the eigenvalue-
problem solution can also be found in the literature, such as in the work of Malik
et al. [2] on the secondary instability of crossflow vortices in incompressible flow.
Malik et al. [2] employed the Reynolds-Orr equation to compute the production
terms associated to the Reynolds stresses as well as the viscous dissipation, de-
riving a decomposition of the temporal growth rate based on the production and
dissipation of kinetic energy. In figure 9(a) in their article, Malik et al. [2] show
deviations between the growth rate computed from the eigenvalue problem and
that evaluated from the energy balance, which decrease for small wavenumbers.
Nevertheless, to the best of the author’s knowledge, the source of these discrepan-
cies has not yet been described in the literature.
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Figure G.5: Comparison between both methods used to evaluate the temporal growth rate
for different spectra in the wake behind a roughness element for the cases studied in § 5.3
(x = 0.1 m, Nz = 181, Ny = 141): (a) cuboid, λx = 0.325 cm; (b) cuboid, λx = 0.5
cm; (c) ramp, λx = 0.35 cm; (d) ramp, λx = 0.56 cm. The circle symbols that do not
seem to be associated with a dot symbol correspond to spurious numerical modes, whose
unphysical growth rate predicted by both methods is very different.

In this work, the deviation between both approaches has not been found to
decrease to machine precision as the grid is refined. Rather, the error has been
observed to converge to a constant value. To illustrate this behavior, figure G.7
depicts the evolution of the relative error in the growth rate of modes VCOS1 and
SIN1 as a function of the grid resolution for the case shown in figure G.5(b). As
it can be observed, the error of both modes converges to a value near 2% for large
values of Ny and Nz .
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Figure G.6: Comparison of the streamwise growth-rate evolution of different modes ob-
tained from the solution of the eigenvalue problem (labeled EVP) against that obtained from
the temporal growth-rate decomposition (labeled Energy): (a) cuboid VCOS1 at λx = 0.5
cm; (b) cuboid SIN1 at λx = 0.5 cm; (c) cuboid M2D at λx = 0.5 cm; (d) cuboid VCOS1
at λx = 0.28 cm; (e) ramp VCOS1 at λx = 0.56 cm; (f) ramp SIN1 at λx = 0.56 cm.
These disturbances correspond to the analysis performed in § 5.3.
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Figure G.7: Comparison of the relative error in the growth rate predicted by the decompo-
sition of the sinuous and varicose instabilities as a function of grid resolution, for the same
conditions as the spectrum represented in figure G.5(b): (a) relative error in the growth
rate of mode VCOS1; (b) relative error in the growth rate of mode SIN1; (c) growth rate of
mode VCOS1 according to the solution of the eigenvalue problem; (d) growth rate of mode
SIN1 according to the solution of the eigenvalue problem. The relative error for a given
grid resolution is evaluated as εr = |ωi,EVP − ωi,Energy|/|ωi,EVP|.





H
Transient-growth analysis of a

compressible boundary layer using
2D-LST

As part of this dissertation, a transient-growth solver has been implemented in
VESTA toolkit based on the formulation described in § 3.12. In this appendix, the
verification of this solver for the LST and 2D-LST eigenvalue-problem solutions
and its application to a smooth compressible boundary layer are described. In ad-
dition, the difficulties encountered for its application to the wake induced by an
isolated roughness element in high-speed are discussed and a different methodol-
ogy is recommended.

H.1 Verification of the transient-growth solver in a
compressible boundary layer using LST

In order to verify the implementation of the transient-growth analysis methodol-
ogy laid out in § 3.12 within the von Karman Institute stability software (VESTA
toolkit), two test cases investigated by Hanifi et al. [1] are reproduced here based
on local linear stability theory. Both cases employ a base flow obtained by solv-
ing the compressible self-similar boundary-layer equations (see § 2.4.1.1). The
self-similar profiles considered for verification have a boundary-layer edge Mach
number of Me = 2.5, a total temperature of T0 = 333 K and assume an adia-
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Figure H.1: Transient growth in a compressible self-similar boundary layer at two different
conditions. Comparison of the results obtained between VESTA toolkit and Hanifi et al. [1]
using one-dimensional local linear stability theory.

batic wall. The first case evaluates the self-similar profile at a Reynolds number
of Re = 300, with a non-dimensional streamwise wavenumber α = 0 and a non-
dimensional spanwise wavenumber β = 0.1. The second configuration assumes
a Reynolds number of Re = 3000 and non-dimensional wavenumbers α = 0.06

and β = 0.1.
Figure H.1 shows the energy growth as a function of time for each of the two

cases as computed by the current solver. A very good agreement with the reference
results is obtained. At the conditions of the first test case, the boundary layer is
stable to linear modal perturbations. As a result, the energy reaches a maximum
transient growth at a finite time and then progressively decays to zero, without dis-
playing any eigenmode growth. On the contrary, the second configuration features
a linearly unstable mode, and as a result the energy grows exponentially as time
tends to infinity. Nevertheless, for short times the disturbance energy still under-
goes a significant transient growth, showing a faster increase than the exponential
growth associated to the unstable mode. This is a good example of transition path
B as introduced in figure 1.5.

H.2 Transient growth in a compressible boundary
layer using 2D-LST

This section presents results obtained for transient-growth computations using
eigenmodes computed by means of two-dimensional local linear stability theory
and their comparison against the one-dimensional counterpart. The base flows con-
sidered in this analysis have conditions that are similar to the verification test cases
shown in the previous section, namely, a self-similar boundary layer at Me = 2.5,
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Figure H.2: Comparison of transient growth results between LST and 2D-LST for two dif-
ferent spanwise domain lengths at the conditions of case 1.

with a total temperature T0 = 333 K and an adiabatic wall. For comparison pur-
poses between LST and 2D-LST results, the base-flow wall-normal velocity is set
to zero in all the 2D-LST computations.

H.2.1 Case 1: Re = 3000, α = 0.06

The first case considered corresponds to the same Reynolds number and stream-
wise wavenumber as for the second verification test case, that is, Re = 3000 and
α = 0.06. Before proceeding further, it is important to note that for the 2D-LST
computations a choice has to be made regarding the spanwise size of the stability
domain, denoted here by Lz . Together with the use of periodic boundary con-
ditions, this size determines the specific wavenumbers that are resolved by the
computation. For a given value of Lz , only modes with spanwise wavelengths
that are smaller multiples of, or equal to, Lz can be computed. Additionally, the
number of grid points in the spanwise direction, denoted by Nz , limits the number
of spanwise multiple modes that can be retrieved for each LST mode. For a given
discretization, Nz − 2 multiple modes are computed. For instance, if a value of
Lz = 2π/0.1 is chosen, this means that, in addition to all the modes obtained
by the LST operator for β = 0.1, multiple modes with spanwise wavenumbers
β = n0.1, where n = 0, ..., Nz − 3, are also found in the 2D-LST spectrum.

Figure H.2 displays the transient growth results obtained for the current case
by employing two different spanwise domain lengths, namely, Lz = 2π/0.1 and
Lz = 2π/0.05 and a grid resolution of Nz × Ny = 61 × 61 points (a low grid
resolution is employed for the 2D-LST computations given the high computa-
tional cost of the QZ algorithm, see § 4.2.6.1). LST results for different spanwise
wavenumbers are also shown for comparison, which have been computed using
151 collocation points in the wall-normal direction. As it can be observed, the
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Figure H.3: Comparison of the temporal stability spectrum between LST and 2D-LST for
the conditions analyzed in case 1.

transient energy growth predicted by means of 2D-LST is equal to the envelope
of the transient-growth curves associated to each of the LST computations at the
spanwise wavenumbers that can be resolved by the two-dimensional discretization.
In other words, when the domain length of Lz = 2π/0.1 is used, the 2D-LST tran-
sient growth is the envelope of the LST transient growth curves for β = n0.1, with
n = 0, ..., 58 in this case. The four multiple spanwise wavenumbers for which the
LST operator undergoes the highest transient growth are also included in the left
plot of figure H.2 to illustrate this fact. As it can be seen, a linearly unstable wave
is only present at β = 0.1 for this case, so the 2D-LST energy growth converges
to the exponential growth given by the growth rate of this particular mode in the
limit of large times. However, for smaller times, the other wavenumbers exhibit a
larger non-modal growth, and as a result the 2D-LST curve also undergoes a larger
growth accordingly.

When a domain length twice as big is considered, as shown in the right plot of
figure H.2, the spanwise wavenumbers that can be resolved are different. Now, all
modes with β = n0.05 are included, and this results in a different envelope mainly
due to the transient-growth behavior of the LST operator at β = 0.15, for which
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the least stable mode has a growth rate that is very close to 0 and as a result the
energy decays very slowly.

To better illustrate the relationship between the one- and two-dimensional lin-
ear stability analyses, figure H.3 presents a comparison of the LST and the 2D-LST
spectra obtained for the current case. Figure H.3(a) shows an overview of the rel-
evant part of the temporal spectrum as computed with LST for β = 0.1 and Ny =

81 points and with 2D-LST using Nz = 31, Ny = 81 points and Lz = 2π/0.1.
The spectrum contains a vertical continuous branch at ωr = α = 0.06 which con-
sists of entropy and vorticity waves and two horizontal continuous branches which
contain acoustic waves. An additional group of modes is resolved in the posi-
tive imaginary part on top of the vertical continuous branch. These are numerical
spurious modes that appear as part of the numerical discretization. The discrete
physical eigenmodes are found in the diagonal-like structures that emerge from
the vertical continuous branch. A single discrete unstable mode is found at these
conditions, which corresponds to a first-mode disturbance. All the modes present
in this plot are included in the transient growth calculation for both the LST and
the 2D-LST theories, with the exception of the spurious numerical modes.

Figure H.3(b) displays a closer view of the same spectra plotted in (a) where
the difference between the one and two-dimensional computations can be clearly
appreciated. As it can be noticed, for each mode appearing in the LST spectrum,
there are Nz − 2 multiple modes resolved in the 2D-LST spectrum. Figure H.3(c)

is included as a proof of convergence when the number of discretization points in
the spanwise direction is doubled. Finally, figure H.3(d) illustrates the comparison
between the 2D-LST spectra obtained for both spanwise domain sizes considered.
When a domain twice as big is employed, additional discrete modes can be found
in the spectrum, respectively corresponding to the spanwise wavenumbers β =

0.05, 0.15, 0.25 etc., which are not resolved by the other domain length.
When performing 2D-LST transient-growth analyses of more complex boun-

dary-layer flows, care should then be taken to choose an appropriate domain size.
Ideally, a previous analysis based on LST should be performed to identify the span-
wise wavenumbers that produce the higher contributions to the transient growth
envelope.

H.2.2 Case 2: Re = 300, α = 0

A second case is also examined which corresponds to conditions at which the
optimal transient growth is found for a Reynolds number of Re = 300. From
LST-based computations (see Hanifi et al. [1]), the optimal growth is found for
α = 0 and β = 0.235. A comparison of the transient growth results obtained
for this case is depicted in figure H.4. In this case, the LST transient growth
evolution for β = 0.235 dominates for all times. As a result, the 2D-LST curve
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Figure H.4: Comparison of transient growth results between LST and 2D-LST for the con-
ditions of case 2.

Figure H.5: Optimal disturbances at t = tmax computed with LST for the conditions
studied in case 2.

when Lz = 2π/0.235 is identical to the LST one. The advantage of this case
is that it can be used to compare the optimal disturbances computed with both
theories as well. Figure H.5 shows the optimal perturbations evaluated at t =

tmax, where tmax denotes the time at which maximum G is achieved, which for
this case corresponds to t = 980. Reference values for the streamwise velocity
and temperature perturbations from Hanifi et al. [1] are also added for verification,
for which a very good agreement is found with the current implementation.

The initial optimal disturbance for this case corresponds to streamwise vortices
that develop into streamwise streaks as time evolves. The amplitude functions of
the optimal perturbations shown here correspond to the signature of these streak
structures. It is interesting to note that the relative magnitude of the wall-normal
and spanwise velocity perturbations is much smaller compared to the ones associ-
ated to the streamwise velocity and the temperature. Similarly, figure H.6 presents
the optimal perturbations computed by means of the transient growth computation
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Figure H.6: Optimal disturbances at t = tmax computed with 2D-LST for the conditions
studied in case 2.

based on 2D-LST modes. As it can be observed, the shape of the optimal distur-
bances as well as their relative magnitude coincides with the results obtained with
LST. Additionally, they feature a spanwise wavelength equal to the size of the do-
main for the spanwise direction, which means that β = 0.235 also for the optimal
perturbations computed with the two-dimensional eigenmodes.

The results shown in this section constitute a verification of the current transient-
growth implementation based on two-dimensional linear stability theory.

H.3 Recommendations for the study of non-modal
growth in the wake behind an isolated rough-
ness element in high-speed flow

During this doctoral work, an attempt was made to apply the previously described
2D-LST transient-growth framework to the base-flow field in the wake behind an
isolated roughness element in hypersonic flow. However, this methodology gen-
erally requires the computation of a large number of eigenvalues and eigenvectors
in order to obtain a converged solution of G with respect to the number of modes.
For this purpose, the QZ algorithm is usually employed, as the use of the Arnoldi
method for obtaining such a large number of eigenmodes is no longer advanta-
geous. Given the size of the 2D-LST eigenvalue problem, and the grid resolution
required to obtain a satisfactory degree of grid convergence of the discrete modes
evolving in the roughness wake (in the order of 141×141 grid points), the compu-
tational cost of applying the QZ algorithm for this problem is very high. In addi-
tion, the evaluation of matrix D and the singular-value decomposition of matrix S

(see § 3.12) for the large number of modes involved in the 2D-LST spectrum also
have a high computational cost associated. On the other hand, spurious numerical
modes must be removed from the evaluation of G as they introduce non-physical
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information in the computation and can lead to a non-positive definite matrix D.
Given the fact that spurious modes can be scattered across the spectrum, filtering
them out is not a trivial task.

Because of the aforementioned reasons, the use of the methodology outlined
in § 3.12 was not found to be practical for the study of non-modal growth in the
problem considered in this work1. It is therefore recommended to consider alter-
native methods such as the one originally developed by Anderson et al. [3] and
Luchini [4]. This approach employs a variational formulation which consists in an
iterative optimization procedure that maximizes the algebraic disturbance growth.
This is achieved by respectively marching forward and backward the direct and
adjoint parabolized stability equations, together with optimality conditions at the
domain boundaries. This method is appropriate for flows with more than one in-
homogeneous direction as it does not require the calculation of a large number
of eigenvalues from the stability spectrum. Moreover, since it is based on PSE
theory, it also accounts for non-parallel effects in the dynamics of the optimal dis-
turbance growth. This methodology has been successfully applied to the study of
non-modal growth in compressible two- and three-dimensional boundary layers
(see for instance [5–9]).
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