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A B S T R A C T

Wastes have a real potential as being players in the energy mix of tomorrow.
They can have a high heating value depending on their composition, which
makes them good candidates to be converted into liquid fuel via pyrolysis.
Among the different types of wastes, automotive residues are expected to
rocket due to the increasing number of cars and the tendency to build cars
with more and more polymers. Moreover, the existing regulations concerning
the recycling of end-of-life vehicles become more and more stringent.

Unconventional fuels such as those derived from automotive shredder
residues (ASR) have a particular composition which tends to increase the
amount of pollutants comparing with conventional fuels. Relying on alter-
native combustion modes, such as reactivity controlled compression igni-
tion (RCCI), is a solution to cope with these pollutants.

In RCCI, two types of fuels are burned simultaneously, namely a light
fraction with a low reactivity, and a heavy fraction with a high reactivity. The
heavy fraction governs the ignition as it is injected directly in the cylinder
close to the end of compression. A variation of its ignition delay could
impact the quality of the combustion. Nevertheless, this issue can be tackled
by adjusting the injection timing.

As long as the low reactivity fuel is concerned, such a solution cannot be
adopted as its reactivity depends on the initial parameters (equivalence ratio,
inlet temperature, exhaust gas recirculation ratio). However, if the fuel is too
reactive, it could create knock that have a dramatic impact on the engine,
leading to damages. Thus, being able to predict its features is a key aspect
for a safe usage. Predicting methods exist but had never been tested yet with
fuels derived from automotive residues.

With petroleum products, usual prediction methods stand at three different
levels: the chemical composition, the properties, and the reactivity in an
appliance. The fuel is studied at these three levels. First, the structure gives
a good overview of the fuel auto-ignition. For instance, aromatics tend to
have higher ignition delay time (IDT) than paraffins. Second, the octane
numbers are good indicators of the fuel IDT and of the resistance toward
knock. Precisely, the octane numbers depict the resistance of a fuel towards
an end-gas auto-ignition. Last, the IDT was studied in a rapid compression
machine and a surrogate fuel was formulated. Surrogate fuels substitute real
fuels during simulations because real fuels cannot be modelled by kinetic
mechanisms due to their complexity.

The existing methods to estimate the composition were updated to pre-
dict the n-paraffin, iso-paraffin, olefin, napthene, aromatic and oxygenate
(PIONAOx) fractions. A good accuracy was achieved compared with the
literature. This new method requires the measurement of the specific gravity,
of the distillation cut points, of the CHO atom fractions, of the kinematic
viscosity and of the refractive index.

Two methods to predict the octane numbers were developed based on
Bayesian inference, principal component analysis (PCA) and artificial neural
network (ANN). The first is a Bayesian method which modifies the pseudo-
component (PC) method. It introduces a correcting factor which corrects the
existing formulation of the PC method to increase its accuracy. A precision
of more than 2% is achieved. The second method is based on PCA and ANN.



41 properties are studied among which reduced set of principal variables are
selected to predict the octane numbers. 10 properties calculated only with
the distillation cut points, the CHO atom fraction and the specific gravity
were selected to accurately predict the octane numbers.

Measurements of the IDT in a rapid compression machine (RCM) of a
fuel produced from ASR were realized. They are the first measurements in
such a machine ever made. This provide experimental data to the literature.
Moreover, these experimental data were used to formulate a surrogate fuel.
Surrogate fuels can be used to realize simulations under specific conditions.

The current thesis investigates fuels derived from ASR. It was showed
that this fuel can be burnt in engines as long as their properties are carefully
monitored. Among others, the IDT is particularly important. Nevertheless,
additional experimental campaigns and simulations in engine are required
in order to correctly assess all of the combustion features of such a fuel in an
engine.



Science has not yet taught us if madness is or is not the sublimity of intelligence.

— Edgar Allan Poe [1]
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1
I N T R O D U C T I O N

1.1 context

1.1.1 Energy mix

Global warming is one of the most central issues of our century. It is a
consequence of emissions from human activities, which depend mainly on
our energy mix. To control emissions adequate energy policies must be
implemented to limit global warming. To reach this objective a scenario and
an ecological aim must be defined.

One such energy policy is the Paris agreement which is an universal
agreement made during the 21st conference of the parties (COP). Its purpose
is to limit the global temperature from increasing below 2°C in 2100 compared
with the pre-industrial levels.

The world energy outlook (WEO) provides scenarios that assess the con-
sequences of different energy policies. Three scenarios are studied: New
Policies, Current Policies, and Sustainable Development. The New Poli-
cies Scenario takes into account the ambitions of today according to the
Nationally Determined Contribution of the Paris Agreement by including
announced policies. The aim of this scenario is to provide the direction in
which existing policy frameworks and today’s policy ambitions would take
the energy sector out to 2040. In the Current Policies Scenario, the existing
laws and regulations are considered so that there is no change in policies
from today. This scenario gives a picture of how global energy markets
would evolve if governments make no changes to their existing policies. In
the Sustainable Development Scenario, the objective of the Paris Agreement
are considered achievable so then calculations are made to define how this
objective could be achieved. The objective being to outlines a major transfor-
mation of the global energy system to meet goals related to climate change.
More information on the three scenarios are available in the WEO-2018 [35].

The New Policies Scenario and the Sustainable Development Scenario are
particularly interesting as the difference between them corresponds to the
missing part of renewables between the expected policies and the objective,
which is staying well below 2°C. To reach this objective, the energy mix must
allow the greenhouse gas emissions to fall to zero by 2065 [35, 36].

It is evident that the energy mix questions the way we produce energy.
The energy mix between 2010 and 2019 is reported on Figure 1. One of these
potential energy sources, namely wastes, will be further explored.

1



2 1 introduction

Figure 1: Evolution of the fuel share between 2010 and 2019 [2]. The energy mix
remains almost constant although there is a slight increase in renewable
energies.

1.1.2 The potential of wastes

The heating value of wastes ranges between 7300 and 10000 kJ/kg [37] which
makes them a very good candidate to be burnt to recover their energy content.
Although there is a potential in producing energy from waste, only 1.2%
(almost 130 000 GWh [38]) of the electricity was produced from wastes in 2018

in the Organisation for Economic Cooperation and Development (OECD)
countries [39]. The production of energy from wastes, or waste-to-energy,
remains thus marginal.

Managing wastes is one of the key challenges of the Twenty First century
[40]. Wastes come from materials that are considered useless. At first,
the disposal of waste was not an issue as plenty of space was available.
Nevertheless, the population growth and the consumerist society has led to
an increasing amount of waste that has to be handled. In 2016, 2.01 billion
tonnes of municipal wastes were generated in the world of which 242 million
tonnes was plastic wastes [3]. Waste generation is expected to reach 3.40

billion tonnes by 2050. The repartition of wastes by region is reported on
Figure 2.

Samples of garbage can be sorted into categories to define their composi-
tion. While the composition of wastes vary depending on the income level
of the country, food and greens always compose the highest part. Moreover,
it is noteworthy that the plastic content increases with the income level of
the country.

For disposing of wastes, several methods exist such as open dump, landfill,
composting, recycling, anaerobic digestion and incineration. Recycling tends
to be used more in developed countries while open dump is still present in
countries with lower income levels. Wastes contribute about 5 percent to
global warming due to the emission of greenhouse gases (mainly CH4) when
they are disposed of in open dumps or landfills without a gas collection
system.

Today, the field of waste usage is particularly evolving to reuse old matter.
Additionally, biomass and municipal waste are sectors that are particularly
dynamic. Municipal solid waste is a type of biomass which is mainly
composed of food waste, paper, wood, plastics, textiles, metals and glass.
Improper management of municipal wastes causes hazards to inhabitants,
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Figure 2: Waste generation by region[3]. High income countries account for only
16 percent of the population in the world but generate 34 percent of the
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value of 8000 kJ/kg [3]. There is a real potential in exploiting waste as an
energy source.
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which explains the recent interest in this type of wastes. For example,
recent studies evaluate the status and identify the major problems of waste
management in several cities in India [41] and Kenya [42]. As a solution,
these wastes could be turned into fuels by gasification. Mathematical models
were recently developed to simulate the gasifier of municipal wastes to
produce syngas [43].

To conclude, up until now dumping has been the first choice as waste
processing has a high economical and financial cost. Nonetheless, the con-
ventional and conservative perceptions towards wastes are being challenged
as they are synonymous to financial losses, and, moreover, impact the envi-
ronment, leading to subsequent sanitation and financial costs. In addition,
the perceived benefits are numerous, including social, economical and envi-
ronmental security. Thus, waste recycling has promoted an optimistic public
opinion [44–46].

1.1.3 Wastes from automotive residues

Among the different types of wastes, the number of end-of-life vehicle (ELV)
increased over the years until 2012 with a rate estimated at 2.25 %/y [5].
From 2012 to 2015, this number converged and remained nearly constant
with an average of six million units [47]. To limit the environmental impact
of ELV, Europe enforced new policies (European Directive 2000/53/EC [47]).
For example, the reprocessing of wastes into new products and the use of
wastes to replace raw matters are enhanced by the European objectives for
the ELV: the recycling mass rate (85%) and the recovery mass rates (95%),
respectively. Recycling means the reprocessing in a production process of the
waste materials for the original purpose or for other purposes but excluding
energy recovery. A list of recovery operation is summarized in Annex IIB of
Directive 75/442/EEC. Some of these operations are listed thereafter. They
are the use of the waste to produce energy, regeneration of solvent, acids or
bases, recycling of organic substances, metals, inorganic materials, recovery
of components used for pollution abatement, recovery of components from
catalysts, oil re-refining and land treatment. Today, according to the end-
of-life vehicle statistics published by the European Commission, the mean
recycling mass rate in Europe has reached 85.7% but the mean recovery mass
rate has reached only 91.3% [4]. Moreover, some countries do not fulfil their
recycling and recovery rates (Figure 4).

Figure 4: Recovery and recycling rate for end-of-life vehicles, 2016. Countries in red
do not fulfil one of the European Targets. [4]
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There is a need to efficiently recycle ELV. The amount of wastes from cars
has increased due to the number of cars that has grown very rapidly since
the beginning of the 19th century [48]. Some 500 million cars joined the
global car fleet between 2000 and 2017 [35] and approximately 6% reach their
end of life annually. Moreover, we expect a change in the vehicle composition
with the use of lighter materials. This change in the automotive sector will
increase the need to efficiently recycle ELV [48]. The process of recycling cars
will be further examined below.

The amount of ELV has reached more than 40 million units per year [49].
The first step to recycle ELV is the dismantling for direct resale. Over the
total of ELV, approximately 80% goes in a dismantling facility. Then, the
usable parts are removed and refurbished for direct resale and reuse.

Automotive shredders were introduced in the early 1960s [50]. A shredder
is a large hammer mill that tears up the car hulk into chunks of materi-
als. Then, air classification sorts light fractions which is followed by the
recovering of ferrous metals with magnets. Subsequently, trommels are
used to remove small particles and non-ferrous metals are recovered with
eddy-current separators. The ferrous fraction represents around 70-75% of
the total shredded output and non ferrous metals represent about 5%. The
remaining is the so called automotive shredder residues (ASR). This fraction
is expected to increase in the future due to the increasing amount of polymers
to decrease the vehicle weight and consumption.

About 15 million tons of shredder residues are produced each year [48].
Shredder residues are composed of a lot of various materials. Among others,
it is composed of metals, plastics, foam and rubber, fabrics, glass, automotive
fluids, wood, sand, moisture. The composition strongly depends on the raw
matter to produce the residues, which ultimately makes the final residues
different from one another.

However, shredder residues are composed of approximately 40-50% of
material based on hydrocarbons. Plastics and rubber can be recovered via
an appropriate separation technique. The separation technique exploits the
differences in the properties of the materials (size, shape, color, porosity,
density, brittleness, magnetic property, solubility, reactivity, resistivity ...). At
least five operations are required to recover the materials: separation of (1)
the polymers from the residues, (2) plastics and rubber from the polymers,
(3) wood and rubber from the plastics, (4) differentiation of the plastics, (5)
removal of the substance of concerns (SOCs). After separation, the materials
can be recycled into primary products or secondary products.

If the materials are not recycled, incineration is often used. The combustion
of shredder residues for energy recovery, such as incineration, is cost-effective
because of the high heating value of the residues (9000-14000 kJ/kg [48]).
To produce electricity, the residues can also be converted into liquid and
gaseous fuels via pyrolysis, gasification, hydrolysis, selective dissolution,
hydrogenation, and de-polymerization. This is also called chemical recycling.
The current thesis especially focuses on this type of recycling.

Several methods exist to produce fuel from shredder residues. The main
two processes are discussed below: gasification and pyrolysis. Gasifica-
tion is a process where organic content is converted into CO, H2, CO2 and
light hydrocarbons. Air and water are supplied to the reactor in condi-
tions that allows partial oxidation. The fuel studied in the current thesis
is produced by pyrolysis. Pyrolysis is the decomposition of organic con-
tent in an inert atmosphere via the action of high temperatures. It allows
the production of fuel from organic feedstock. In practice, the pyrolysis of
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shredder residues produces oil, gas and a solid residue. The analysis of the
pyrolysis of each product considered separately allows us to estimate the
final product of the pyrolysis. Shredder residues are composed of polymer
such as polyethylene (PE), polyvinyl chloride (PVC), and polystyrene (PS).
The pyrolysis of PE gives hydrogen, benzene, methane, ethylene, propane;
PVC gives benzene, acetylene, styrene and hydrogen chloride; PS gives
styrene, benzene, toluene and methyl-styrene. Several pyrolysis processes
exist [50] such as the Siemens-KWU process where the pyrolysis is followed
by combustion of the products for steam generation. The Batrec Process
combines pyrolysis with a mechanical separation of the metals. The Takuma
process where the pyrolysis is followed by the sorting of the solids. The
citron oxyreducer process consists of a large-scale plant where gases are
produced and the metals are reduced to their elemental state.

1.2 fuels produced from automotive shredder residues

The recycling and the recovery of ELV are the result of a complex process. In
Belgium, the company Comet Traitements and their partners use a chemical
process to increase the recovery rate of ELV (Figure 5). With this innovative
process, Comet Traitements converts ASR from the processing of ELV into a
crude oil-like fuel. After the shredding of ELV, approximately 70-75% of the
matter is recovered as ferrous and 5% as non-ferrous metals [5, 49]. ASR can
reach up to 25% of the ELV with only 15% recovered with the more advanced
processes [49]. As illustrated in Figure 5, some techniques can reach levels
as low as 4.5% [5]. ASR are composed of rubbers and foams (ethylene
propylene diene-monomer EPDM, polyurethane PUR), polyolefins plastics
(polypropylene PP, polyethylene PE), styrenic plastics (acrylonitrile butadiene
styrene ABS, polystyrene PS) and other thermoplastics (polyvinylchloride
PVC, polycarbonate PC) [50], which make them good candidates to be
converted into liquid fuels thanks to pyrolysis. More information on pyrolysis
is available in section 2.4.

Figure 5: Recovery process by the Belgian company Comet Traitements [5].

The process to convert the ASR into liquid fuels will now be described
(Figure 6). First, the ASR are dried (in a drier as the one on Figure 7) and the
dust is removed. After a pyrolysis, the crude-oil like fuel is mixed with 6%
of NaOH. This blend is heated in order to remove the inorganic compounds
which are composed of silica. This first step is of crucial importance as



1 .2 fuels produced from automotive shredder residues 7

Figure 6: Process of purification and distillation

will be shown in the current thesis. Then, a first distillation occurs under
atmospheric pressure in order to extract the light fraction of the crude-oil.
Finally, a second distillation under vacuum pressure results in the extraction
of the heavy fraction. The mass balance is 50kg/h of feedstock resulting in
15kg/h of light hydrocarbon fraction mixed with water, 25kg/h of heavy
hydrocarbon fraction and 10kg/h of heavy residuals.

Figure 7: Drier of the company Technic One (Thimister). The matter is dried at a low
temperature on two rotating disks.

The different types of raw matter and the pyrolysis and distillation pa-
rameters give fuels with a variable set of properties. These differences are
discussed on Table 1 for the light fraction and Table 2 for the heavy fraction.

First, we can observe a big difference in the silica and chlorine concentra-
tions between the different feedstocks. For instance, the samples 801LJ02

(light fraction) and 801LJ03 (heavy fraction) show very low concentration
in contrast with the other fuels. This can be explained by a modification of
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the process which embeds a preprocessing of the fuel with NaOH especially
developed to remove the silica. Secondly, we observe major differences in
the kinematic viscosity between the fuel, especially for the heavy fractions.
As a comparison, the viscosity can be compared with the viscosity of the
regulation NF EN 590 where it should be between 2.00 and 4.50 mm2/s
at 40°C. The process should be further understood in order to avoid such
a variation of the viscosity. The lower heating value is particularly high
which is interesting from an energetic point of view. The composition of the
fuel is expected to change as showed by the carbon, hydrogen and oxygen
fluctuations. Additionally, the calculated cetane index validates high changes
in the fuel composition as it fluctuates from 23 to 37 whereas the diesel
standard requires a calculated cetane index of 46. This shows that the fuel
has a lower reactivity due to a higher share of aromatic components and
substituted molecules. The density is also a good indicator which testifies
that the composition is composed of higher fractions of aromatics for the
fuels with the higher density. This density fluctuates a lot, especially for the
heavy fraction with a minimum of 823.2 kg/m3 and a maximum of 925.6
kg/m3. The density according to the diesel standard has to be between 820

and 845 kg/m3. The density of all the heavy fractions are higher than these
limits, which show the peculiar composition of the fuel with a high fraction
of heavy compounds. The fluctuation of the refractive index is the last prop-
erty that characterizes the composition. Indeed, aromatic compounds have
higher refractive index than aliphatic molecules. Nevertheless, the refractive
index was only measured for two light fractions and two heavy fractions, so
the complete span over all the fuels cannot be observed.

Ref. 504LJ03a 612LJ01 801LJ02

Si (ppm) 788 77

Na (ppm) 28 0

Cl (ppm) 1011 162

Br (ppm) <20 <20

F (ppm) 20.4 <10

S (ppm) 321 900

Kinematic viscosity at 40°C (mm2/s) 0.8477 0.662 0.889

Lower heating value (MJ/kg) 41.110

C %w 82.9 84.7
H %w 11.74 12.37

O %w 1.91

Density at 15°C (kg/m3) 796.1 810.2
Refractive index at 20°C 1.4419 1.4510

Table 1: Properties of three light fractions produced from automotive shredder
residues by the Belgian company Comet Traitements.

The last property discussed in this section is the distillation curve (Figure
8 and Figure 9). We observe wide a span of the points over the distillation.
More particularly, the light fraction exhibit an abrupt raise with very high
temperatures to evaporate the last fractions.

To sum up, the fuel has a kinematic viscosity, a density and a calculated
cetane index that are not in accordance with the regulation of conventional
diesel. In terms of final application, the viscosity and the density are related
to the whole injection system where a particular attention has to be paid
for the high pressure pump and for the common rail. A too high viscosity
may lead to fuel pump damage due to a too high pressure while a too low
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Ref. 504LJ04a sup 604LJ07 801LJ03 805LJ05 C24

Si (ppm) 373 438 1 1742

Na (ppm) 25 <30 0 0

Cl (ppm) 923 841 34 683

Br (ppm) 63.8 186 <20 33

F (ppm) 11.9 5.2 <10 135

S (ppm) 427 486 90 757

Kinematic viscosity at 0°C (mm2/s) 201.4
Kinematic viscosity at 40°C (mm2/s) 4.446 3.407 1.270 1.619 2.287

Kinematic viscosity at 100°C (mm2/s) 1.783 1.16

Lower heating value (MJ/kg) 40.195

C %w 82.5 83.9
H %w 11.89 10.16

O %w 3.94 3.37

Calculated cetane index 36.6 24.6 37.0 33 23

Density at 15°C (kg/m3) 878.9 925.6 823.2 859.4 890.2
Refractive index at 20°C 1.4575 1.4736

Table 2: Properties of five heavy fractions produced from automotive shredder
residues by the Belgian company Comet Traitements.

Figure 8: Distillation curve of three light fractions.

viscosity may lead to a lack of lubrication. Additionally, the viscosity is
related to the fuel injection and to the atomization in the cylinder, so it is
directly linked with the combustion process. Concerning the evaporation
curve, its high value could be problematic, especially to evaporate the light
fraction as being injected via a port fuel injector in the air during the reactivity
controlled compression ignition (RCCI) process. The cetane index is a critical
property which is linked with the auto-ignition delay of the fuel. The higher
is cetane number, the lower is the ignition delay. Here, the calculated cetane
index is too low comparing with conventional diesel. Therefore, relying on
a programmable electronic control unit (ECU) would be needed to adapt
the injection timing by injecting the fuel earlier so that it has enough time
to react. Other important properties could be further studied such as the
enthalpy of vaporization that could have an impact on the ignition delay due
to a different in-cylinder temperature. This is could also lead to cold start
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Figure 9: Distillation curve of five heavy fractions.

problems, which could be solved by starting the engine with a conventional
fuel.

1.3 combustion considerations

Figure 10: The Homogeneous Charge Compression Ignition (HCCI) combustion
mode emits lower levels of pollutant than conventional gasoline and diesel
engines. [6]

As far as ASR are concerned, the fuel production plant is owned by
a recycling company, so small-scale production plants play a role in the
production process. To achieve profitability, small-scale production plants
could require a high energy yield. When the heat demand is low, combining
heat recovery with electric generation, i.e. combined heat and power (CHP),
is the best configuration for ensuring a high energy yield. The production of
electricity often goes with piston engines or turbines. We have studied engine
conditions for the following reasons. First, the current market offers a wide
variety of piston engines, from low (kW) to high (several MW) powers. On
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the other side, the power of turbines is most often higher than piston engine.
Research on micro-turbine is currently increasing [51], but, piston engines
have better efficiency. Second, the properties of the ASR fuels fluctuate over
time when the raw matter is modified. The properties are driven by the
content of the raw materials, by the cracking conditions and by the distillation
parameters which depend on technical and financial constraints [52]. Some
of these properties impact turbines more than engines. For instance, the
viscosity and the evaporation quality affect the fuel atomization [53], which is
more critical for a turbine than an engine. For an engine, this is also important
for fine tuning. Third, the produced quantity of fuel also fluctuates over time.
The input power affects the operating condition more with a turbine than an
engine because the efficiency loss is higher at part load. Similarly, starts and
stops are easier with piston engines, which permits extreme fluctuations if
the production stops. Fourth, engine cylinders are more robust than turbine
blades regarding coating, layer deposits and heteroatom attacks [54]. Last,
advanced combustion engines, such as homogeneous charge compression
ignition (HCCI) or RCCI engines, offer an increased efficiency and reduced
level of pollutants.

1.4 compression ignition and spark ignition

As a light fraction and a heavy fraction are produced after the distillation
process, the two fuels could be burnt separately in a spark ignition (SI) and
in a compression ignition (CI) engine, respectively.

The performance of SI engines will be discussed before moving onto
CI. The first gasoline engine was built in 1876 by Nicolaus Otto. Today,
passenger cars are mostly (>80%) powered by SI engines worldwide, except
in the European Union, India and South Korea where CI engines have a
significant share (39%–52%) [55].

Recent research on spark ignition engines focus on modern fuels and
technologies such as different injection modes, turbocharging and engine
downsizing.

SI engines rely on gasoline although they can also burn other fuel types
such as compressed natural gas (CNG) [56], methanol [57], ethanol, 2,5-
dimethylfuran [58]. For instance, it was shown that brass coated piston
engine allows us to reach higher performance and lower emissions with
methanol blends than conventional engines. Moreover, the optimal methanol
blend was determined to be equal to 20% in volume to increase the efficiency
and decrease the emissions. Lignocellulosic biomass feedstock can also play
a role by substituting gasoline by 2,5-dimethylfuran. It was shown that the
performance and emissions of SI fueld with 2,5-dimethylfuran lay between
gasoline and ethanol, with different types of injection systems [58].

SI engines are most often fuelled with a port-fuel injector. Nevertheless,
recent research concluded that highest combustion heat release rate was
achieved with a direct injection (DI) system. Moreover, DI provides an
increased turbulence in the cylinder, which increases the combustion rate
and has a positive influence on the exhaust emissions [56]. Additionally, DI
can increase the combustion stability at various engine speeds and loads [56]
and DI has a positive impact on exhaust gas emission at low and part load
condition [56]. Finally, various studies in gasoline turbocharged DI engines
found that fuels of higher RON and lower MON (i.e. higher S) showed
higher knock resistance and therefore allowed modern engines to operate
with higher efficiency at high-load conditions [59].
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Interestingly, these recent research show that advanced technologies ap-
plied to SI engines could be adapted to burn unconventional fuels such as
the light fraction produced from automotive shredder residues.

Now moving on to the CI engine, which was invented in 1892 by Rudolf
Diesel. In CI engines a fuel is direclty injected into a combustion chamber
after the compression of air in this chamber [60]. This invention is still one of
the major solutions in automotive, marine and power generation industries.
Diesel has been seen for a long time as a good solution as the fuel is burnt
more efficiently than in gasoline engines.

Diesel engines have high efficiencies because of their high compression
ratios and lack of throttling losses [61] which makes them a good solution
for the energy and the marine industries. Moreover, the NOx emissions is of
lower concern for power generation application where the implementation of
advanced aftertreatment systems is a possibility. This interest in CI engines
caused the development of scientific studies to investigate the combustion of
unconventional or alternative fuels in CI engines. For instance, a recent study
assesses the benefits and limitation of ammonia as an alternative fuel for
compression ignition engines [60]. The paper focuses on the combustion of
ammonia in dual-fuel operation with diesel and other alternative fuels. The
alternative fuels are amyl nitrate, dimethylhydrazine, soy-based biodiesel,
dimethyl ether [60] and 2,5-dimethylfuran [62].

Nevertheless, the future of diesel engines is now questioned. Indeed, these
engines couple high combustion temperature with high air excess, leading
to the production of nitrogen oxides (NOx) compared to SI engines. This
changed the public opinion over the use of diesel engines, supported by
scientific studies [60]. This even resulted in the ban of diesel vehicles in
major cities. The usage of diesel engines became even more questioned in
2015 with the Dieselgate scandal. Automotive manufactures had to provide
falsified tests to meet the emission regulations even if expensive and compli-
cated exhaust-gas after-treatment devices are used [61]. This consequently
impacted the diesel engine market. [60].

That being said, the research on CI engines is still promising, with the
emergence of low temperature chemistry (LTC) modes such as HCCI or
RCCI. With LTC strategies, the combustion temperatures are reduced and
are homogeneous by running the engine with excess air ratio much greater
than one, or by using high amounts of exhaust gas recirculation (EGR). With
these reduced in-cylinder temperatures, very low NOx emissions can be
achieved. Soot formation can also be minimized from the homogeneity of the
air–fuel charge by using multiple injections or EGR to prolong the air–fuel
mixing time. To conclude, LTC combustion modes have the potential to
decrease NOx and soot level while increasing the thermal efficiency.

1.5 homogenous charge compression ignition

Researchers have already studied waste derived fuel (WDF) in conventional
CI engine and all came to the same conclusion: waste-derived fuels emit
high levels of pollutants (nitrogen oxides, partially oxidized products and
soot particle emissions). Mani et al. [63] explained these high concentrations
by the high flame temperature of substituted and cyclic molecules, and by
poor mixing capabilities with the formation of local rich areas in the cylinder.
Kumar et al. [64] observed similar trends and drew the same conclusions.
As previously discussed, RCCI is a low temperature combustion mode that
allows high efficiency and low levels of pollutants (Figure 11) as long as it is
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correctly operated. Therefore, clean combustion modes, such as HCCI and
RCCI have emerged as being the keystone to make lower grade fuels, such
as those derived from ASR, acceptable for society.

The specificities of HCCI combine aspects from conventional SI and CI
engines (Figure 10). In a conventional SI engine, the air and the fuel are
premixed before being ignited by a spark plug. In a conventional CI engine,
the air is compressed and the fuel is injected a few crank angle degrees before
the end of the compression. The compressed air forms a hot environment
where the fuel ignites spontaneously after an ignition delay time (IDT).
With both CI and SI, the combustion zone forms a hot spot with high peak
temperatures. Under HCCI conditions, the fuel is injected with the air during
the admission stroke. Thus, the fuel droplets atomize in the air, and benefit
from a sufficient time to lead to an homogeneous fuel and air mixture. This
mixture preparation is similar to what happen in a conventional SI gasoline
engine. However, no spark ignites the mixture. Moreover, the ignition is
governed by compression, as in a conventional CI diesel engine. Nevertheless,
unlike the diesel CI engine, the air and the fuel are already premixed in SI
gasoline engine when the ignition occurs. This homogeneous mixing leads
to a multipoint simultaneous ignition in the cylinder.

The homogeneous mixture combined with an ignition by compression ex-
plains the pros of the HCCI mode. HCCI leads to low levels of soot particles
and NOx. Moreover, the thermodynamic efficiency is high. First, the low
level of NOx is a consequence of a combustion governed by low tempera-
tures. In contrary, high temperature combustion governs the production of
NOx in a conventional diesel CI engine. A hot flame burns locally, leading
to the production of thermal NOx. In HCCI, the ignition is simultaneous
in the whole cylinder and the reaction is governed by the low temperature
chemistry. Thus, the level of NOx is very low. Second, the level of soot is
low because no fuel rich area exists and the lean mixture is homogeneous.
Third, the thermodynamic efficiency is higher than with a SI engine because
the compression ratio can be increased. Precisely, the compression ratio
of a SI engine is limited by an undesirable and uncontrolled auto-ignition,
called knock, that could occur if the compression ratio is too high. HCCI is a
combustion mode that was tested with alternative fuels, including low-octane
gasolines [65], valeric biofuels [66], syngas [67] and ammonia [68–70].

The pros of HCCI engine are numerous but cons must also be considered.
First, the ignition is simultaneous in the cylinder, so, the combustion is fast.
This leads to high pressure peaks, which are hazardous for the engine and
create a high level of noise [71]. Second, the control of the ignition is more
complex. Specifically, there is no spark plug nor direct injection to trigger
the ignition. Rather, the ignition is governed by the compression whereas the
mixture is created upstream. Thus, the inlet temperature, the compression
ratio, the EGR ratio and the equivalence ratio are the main parameters to
control the ignition. Third, the indicated mean effective pressure (IMEP)
in HCCI engine is limited. The IMEP, i.e. the averaged pressure produced
during a cycle, increases with the equivalence ratio of the mixture. In
HCCI, increasing the fuel content cause pressure oscillation, called ringing,
and an unstable combustion. Specifically, under these conditions, the fuel
quantity is high and inhomogeneities can appear in the cylinder. These
inhomogeneities counterbalance the simultaneity of the combustion and lead
to ringing. Therefore, in HCCI, the equivalence ratio is typically between
0.3 and 0.5. Fourth, with a high fuel concentration, and if the cylinder
walls are too cool, the HCCI combustion mode tend to create high levels of
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unburned hydrocarbons and carbon monoxide (CO) because the combustion
is incomplete near the cylinder walls.

The HCCI combustion mode is attractive due to its high thermal efficiency
and its capacity to reduce NOx and soot. Nevertheless, the controllability
of this combustion mode is challenging, which has prompted researchers to
develop alternative concepts.

1.6 reactivity controlled compression ignition

The RCCI combustion mode is appealing as it offers a control of the combus-
tion thanks to a direct injection system. With this technique, two fuels are
used. The first is a low reactivity fuel and the second has a high reactivity.
The low reactivity fuel is injected early in the engine cycle via an intake port,
allowing a good homogeneity with the air and the recirculated gas. The high
reactivity fuel is then injected directly in the combustion chamber before the
ignition of the premixed fuel to control the ignition timing. The low-reactivity
fuel represent 70-90% of the total mass of fuel. The RCCI combustion mode
has been shown to provide better control than other concepts such as HCCI.
The key feature of this dual fuel approach is the ability to control the combus-
tion process by optimizing the reactivity of the blended fuels. A relationship
between the fraction of premixed fuel and ignition timing can be settled in
RCCI engines, so that the combustion phasing can be controlled [72]. This
led to the terminology “reactivity controlled compression ignition” [73].

The RCCI combustion mode is compared with HCCI below. The combus-
tion duration is higher with RCCI and the peak pressure rise rates are lower,
compared to HCCI. This moderate combustion rate in RCCI combustion can
be explained by staged combustion and reactivity gradient which was ob-
served in optical engines [72]. As with a HCCI, the RCCI combustion mode
offers high thermal efficiency, approaching 60% [73]. The improved efficiency
is largely due to reduced heat transfer losses with lower gas temperatures
compared to conventional diesel combustion. Moreover, low ringing inten-
sity (RI), low NOx and low soot emissions can be achieved over a wide range
of loads [72].

Another advantage of RCCI is its ability to be fuel flexible as long as two
fuels with a different reactivity are used [74]. The use of these different fuels
show that it is possible to rely on RCCI combustion mode with a wide range
of fuels, which makes it particularly interesting for the unconventional fuels
that are studied in the current thesis. We discuss the flexibility offered by this
combustion mode for the light and the heavy fraction in the next paragraphs.

RCCI allows the usage of a variety of low reactivity fuels, including iso-
octane, gasoline, natural gas but also renewable fuels such as E20, E85, [73],
methanol or dimethyl ether (DME) [72]. Additionally, cetane improvers
[72, 73] can also be used to rely on one fuel only. Nevertheless, this type
of approach is not considered in the current thesis as a light fraction and a
heavy fraction are available. Depending on the type of fuel used, we observe
a modification of the combustion properties. For instance, an increase of the
in-cylinder maximum pressure and temperature with more DME, leading to
the improvement of fuel efficiency. Additionally, with E85, it was observed
that the ignition was delayed and the combustion duration was shortened.
Moreover, relying on alcohols rather than gasoline increases the maximum
achievable load during transient operation. A specific behaviour was also
observed with methanol/diesel. The combustion rate of methanol/diesel
is faster than that of gasoline/diesel due to longer ignition delays, leading
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to higher RI. Finally, the introduction of more premixed ethanol resulted
in the reduction of the combustion duration but increased the unburned
hydrocarbon and CO emissions.

Other types of high-reactivity fuels than diesel were also studied, more
particularly n-heptane or biodiesel [72]. It was shown that high fuel efficiency,
low exhaust emissions and moderate combustion rates can be achieved. The
study spotlights the importance of the fuel properties which impact the
combustion behaviour.

The RCCI combustion mode has proven its potential in being fuel flexible.
Indeed, it is possible to handle different types of fuel thanks to several
parameters. The same parameters than with HCCI govern the ignition
timing (initial temperature, EGR ratio). More precisely, it is important to
ensure that knock does not occur with the low-reactivity fuel for a given set
of initial parameters. To reach this objective, we developed predicting models
to estimate the properties of this fuel. In RCCI, other parameters exist due
to the presence of a direct injection. As already discussed, the proportion of
low and high reactivity fuels plays a role and the injection timing must also
be considered. For instance, the injection strategies can be improved with
the use of multiple injections. Relying on this strategy is a way to reduce the
presence of rich-fuel regions in the cylinder, thus decreasing the NOx and
the soot emissions.

Different strategies can be adopted by modifying some key parameters.
To know and understand how to adapt these parameters, the physical and
chemical properties of the fuel can be observed. More precisely, the interme-
diate species such as the hydroxyl radical (OH) give relevant information
to understand the combustion behaviour. For instance, the consumption
rate of OH was slower with E85/diesel than gasoline/diesel. Therefore,
being able to isolate the chemical aspect of the combustion and to study the
intermediate species is a way to understand and optimize the combustion
process. In the current thesis, the reactivity of the light fraction is studied in
a rapid compression machine to understand its behaviour depending on its
composition.

RCCI is a promising technique, but it has several drawbacks. RCCI engines
can be run at medium load but it suffers from high carbon monoxide and
unburned hydrocarbons emissions at low load, and high pressure rise rates at
high loads [74]. Moreover, combustion control of RCCI engines is challenging
during transient operations due to the sensitivity of reaction to thermal and
chemical composition of air-fuel mixtures [74]. Finally, RCCI is a concept
suited for stationary applications but it requires additional research to adapt
it to transient conditions. The lower exhaust temperatures with RCCI is
also challenging for after treatment systems. Developments in oxidation
catalyst after-treatment systems are required to treat HC and CO emissions
at the available exhaust temperature. More research is required for low
temperature catalysts [73].

RCCI combustion is more promising than HCCI to achieve high fuel
efficiency, low RI, low exhaust emissions, and stable operation simultaneously
over a large range of engine loads and speeds [72]. Moreover, this combustion
mode is particularly well fitted for the current study as it relies on two fuels
with different reactivity simultaneously.
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Figure 11: Emission level according to the operating condition with conventional SI,
conventional CI engine and LTC engines. Adapted from [7]

1.7 objectives

It was shown in the previous section that the RCCI combustion mode is suited
for unconventional fuels to reduce the pollutant emissions and enhance the
thermal efficiency. In this combustion mode, two fuels are injected at different
timings. First, the low reactivity fuel is premixed with the air. Then, the high
reactivity fuel is injected to ignite the air-fuel mixture. As a first objective,
we focus on the high reactivity (heavy fraction) fuel to investigate its ignition
characteristics. This study is done in a conventional CI engine and the fuel is
compared with conventional diesel fuel. Moreover, several high reactivity
fuels are compared in order to evaluate the fluctuation of the fuel.

In RCCI, the ignition delay of the fuel with the highest reactivity controls
the overall ignition of the two fuels. Nevertheless, the injection timing can be
adapted to adjust the ignition according to the autoignition delay of the fuel.
The fuel with the lowest reactivity is injected before the compression stroke.
Thus, its reactivity has to be low enough so that knocking does not occur in
the cylinder, whatever are the fuel properties.

The reactivity of the two fuel are important parameters to control the
combustion. The first fuel must resist to knock while the injection timing of
the second fuel must be in phase with the autoignition delay. As it is possible
to adapt the injection timing according to the reactivity of the heavy fraction,
we focus in the next chapters on the light fraction.

Among all the properties of the light fraction, the composition of waste-
derived fuels have to be controlled for several purposes.

First, the composition is a way to understand the properties. For instance,
paraffins have shorter ignition delays than aromatics.

Additionally, knowing the composition is a way to do simulations. In
fact, it is possible to understand the peculiar behaviour of the fuel towards
combustion and to select appropriate molecules to compose a surrogate fuel.

Secondly, the composition has to be determined for health prevention.
Gasoline is traditionally mainly composed of paraffins (30 – 70%) and aro-
matics (20 – 45%), the remaining molecules being alkenes (5 – 20%) [75, 76].
These concentrations respect the European Directive 2009/30/EC [77]. As
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an example, in this directive, the limit for the olefin fraction is due to the
formation of aromatic rings soot particle emissions and butadiene, which is
registered as a toxic substance [78].

Finally, the composition needs to be known to control the pollutants. A
regulation exists to control the pollutants emitted by conventional fuels. ASR
fuels are expected to show high levels of olefins, oxygenate molecules and
aromatic molecules. This unusual composition is due to the peculiar way
the fuel was produced. Conversely to conventional fossil fuels, the double
bonds of the olefins in the ASR-derived fuels did not benefit from a long
decomposition of matter to react and become saturated [8]. Moreover, these
fuels are derived from plastics. Thus, a high amount of olefin could be due
to the straight polymers, such as polyethylene or polypropylene [79, 80].
Then, the oxygenated molecules come from the polymers themselves, like
polyurethane (PUR) and polyamide (PA) [48]. The fuel treatment process,
where the nucleofugic heteroatoms composing the raw matter are substituted
by a nucleophile hydroxyl group, is also responsible for unusual composition.
Last, plastics used in the automotive industry are composed of monomers
with cyclic shapes as in the PS polymer, increasing the aromatic content [48].

Knowing the fuel composition is a first step to understand and monitor
ASR derived fuels. It was shown in the section 1.2 that the fuel properties
can change depending on the production parameters. These differences can
be explained by the fluctuation of the fuel composition. Thus, it is even more
important to determine the fuel composition.

However, unconventional fuels can have an unknown and complex chemi-
cal composition which makes it impossible to identify the whole chemical
group repartition with a one-dimensional gas chromatography (GC) analysis.
More advanced experimental techniques such as comprehensive two dimen-
sional gas chromatography (GC × GC) are time consuming and not always
easily available. As a solution, methods exist to estimate the fuel composition
if it cannot be measured experimentally, but those have many limits and have
never been studied with ASR fuels. As a second objective, the thesis extends
the limits of the existing methods to estimate the composition of ASR fuels.
Knowing the composition is a way to understand the fuel behaviour and
to adapt the composition to get some given properties. Additionally, the
composition can be compared with thresholds to monitor the exhaust gas
composition.

Although the composition of a fuel gives a good overall view of its be-
haviour, going a step further is required to fully predict its behaviour. The
octane numbers (ONs), namely the research octane number (RON) and the
motor octane number (MON), are two important properties that characterize
light petroleum fractions. We focus on the reactivity of the light fraction
more than the one of the heavy fraction because the injection timing can be
adapted according to the reactivity of the heavy fraction. For what concern
the light fraction, we must ensure that it will not react too early to avoid
knock. The RON and the MON are two properties that express reactivity
through the characterization of the resistance of a fuel towards knock in
piston engines. In RCCI, the light fraction has to resist to autoignition as long
as the heavy fraction is not injected, so characterizing the octane numbers
is adequate. More information on the RON and the MON are reported in
section 2.5.2.

As exposed in section 1.5, ASR fuels are produced locally in small-scale
production plants. Nevertheless, the RON and the MON test methods are
not suited for a delocalized production plant nor for a project in the design
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phase. The unknown nature of the fuel creates a high failure risk for the
cooperative fuel research (CFR) engine in which the fuel is tested according
to the standard test methods ASTM D2699 [81] and D2700 [82]. This risk is
mainly due to the presence of heteroatoms that could lead to a premature
failure (saturation of the filters, obstruction of the fuel line due to deposits,
corrosion by sulphur, abrasive wear due to metals or silicon oxides resulting
of the combustion). Moreover, the RON and the MON tests require costly
reagents and a high level of qualification.

As an alternative to RON and MON measurement, estimating methods
exist. Nevertheless, these methods were developed with a reduced training
set, so they are fuel-specific methods. As a second objective, this thesis
extend the existing methods to estimate the octane numbers of ASR fuels.

Methods to predict the composition and the octane numbers of ASR fuels
provide relevant information on the fuel, but, they do not precisely inform
us about the real RCCI operating conditions.

Low-temperature combustion modes have already proven their potential
in reducing the nitrogen oxides and the soot particle emissions in the exhaust
gases thanks to a better mixing between the air and the fuel, thus reducing the
in-cylinder peak temperatures and locally rich areas [72, 73]. It has already
been tested with alternative fuels such as E20, E85, [73], methanol, DME [72]
and biodiesel, so it is fuel flexible. Nonetheless, the low-temperature combus-
tion of fuels derived from ASR is still uncharted. The third objective of the
current thesis aims at providing experimental data under low-temperature
conditions. These data were acquired in a rapid compression machine (RCM)
to investigate the auto-ignition delay time of the low reactivity fuel.

In RCCI, the low-reactivity fuel has to resist auto-ignition as long as the
heavy fraction is not injected. The ignition delay of this low-reactivity fuel is
extremely sensitive to the initial and compressed conditions (the chemical
composition, and the temperature and pressure at top dead center (TDC))
as it is controlled by the kinetics whereas the mixing is homogeneous. It is
possible with a RCM to study the effect of the initial condition on the IDT for
an homogeneous mixture. Thus, studying the low-reactivity fuel in a RCM is
adequate. Additionally, this ignition delay depends on the fuel composition
which fluctuates over time. This fluctuation could be problematic if the fuel
ignites too soon, leading to knock. As a solution, controlling if the fuel is
prompt to auto-ignite for a specific operating condition could be studied
numerically. Performing simulations of a fuel made up of hundreds of
molecules is unfortunately unrealistic in terms of computational complexity.
Instead, a surrogate fuel – mixture of about 2 to 10 molecules traditionally
generated and validated based on experiments [20, 21, 30–32, 83–86] – could
substitute the real one. The last objective of the current thesis aims at
formulating an ASR surrogate fuel.

1.8 thesis outline

• The current chapter 1 is a brief statement of the motivations and objec-
tives, aiming at developing the thesis outline while the chapter 2 will
explain the background in depth with a review of literature. chapter 3

is an overview of the statistical tools used in the current thesis.

chapter 2 gives a historical overview of petroleum products and their
related environmental challenges to better understand the current
stakes for liquid and alternative fuels. This background, coupled with
the European recycling rates targets, enabled us to introduce fuels
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derived from ASR. These unconventional fuels will be discussed with
regards to advanced combustion modes, such as RCCI. This is a
promising engine technology, in terms of pollutant reduction, efficiency
enhancement and fuel flexibility.

Then, chapter 2 recalls the main experimental and numerical fuel char-
acterization techniques. Three different aspects, namely the chemical
composition, the physical properties and the numerical simulation of
the reactivity, are addressed. This chapter will introduce the principal
issues of the current state of the art, introducing the main objective,
which is the adjustment of the current prediction methodologies to
fuels derived from ASR.

chapter 3 explains the tools used in the current thesis. Among others,
latin hypercube sampling (LHS), principal component analysis (PCA),
artificial neural network (ANN) and Bayesian inference are discussed.

• After the introduction, we study separately the light and the heavy
fraction.

In chapter 4, the heavy fraction is studied in a CI engine to investigate
its ignition delay, compared with conventional diesel. As we can adapt
the injection timing of the heavy fraction depending on its auto-ignition
delay, we aim at modifying the current predictive methods to fit with
the light fraction derived from automotive shredder residues.

chapter 5 focuses on the prediction of the major hydrocarbon group
fractions. This chapter contains the results published in the following
proceeding:
Steven Tipler, Alessandro Parente, Steffen H. Symoens, Marko R. Djo-
kic, Kevin M. Van Geem, Francesco Contino, and Axel Coussement.
Prediction of the piona and oxygenate composition of unconventional
fuels with the pseudo-component property estimation (pcpe) method.
application to an automotive shredder residues-derived gasoline. In
WCX World Congress Experience. SAE International, apr 2018

chapter 6 and chapter 7 investigate the prediction of octane numbers,
with gasoline blendstock for oxygenate blending as a case study. The
study embed uncertainty quantification to characterize the precision of
the model. The main results of this chapter were published in:
S. Tipler, M. Fürst, Q. Van Haute, F. Contino, and A. Coussement. Pre-
diction of the octane number: A bayesian pseudo-component method.
Energy & Fuels, 34(10):12598–12605, 2020

chapter 8 focuses on the prediction of the IDT. Specifically, it describes
the experiments carried out in the ULille RCM, with particular atten-
tion dedicated to exploring the reactivity under RCCI conditions and
explaining the ignition delay times based on the major molecules in
the fuel. As a result, a surrogate fuel with similar IDT as the real
fuel was formulated. RCM is particularly interesting to represent the
low-reactivity fuel under the RCCI combustion mode. Indeed, the fuel
is premixed as in RCCI. Nevertheless they are some differences such
as the evaporation or the fluid dynamics aspects. Part of this chapter
has been published in the following scientific article:
S. Tipler, C. S. Mergulhaõ, G. Vanhove, Q. Van Haute, F. Contino, and
A. Coussement. Ignition study of an oxygenated and high-alkene
light petroleum fraction produced from automotive shredder residues.
Energy and Fuels, 33(6):5664–5672, 2019
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• Finally, the thesis conclusions (chapter 9) are put into perspectives by
comparison with final applications, followed by discussions about the
barriers and limits of the current engine technologies and the level of
understanding of reaction kinetics, bringing us to further perspectives
(chapter 10).
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2F R O M C O N V E N T I O N A L F U E L S T O A S R F U E L S

2.1 crude oil and petroleum products

The history of petroleum dates from long time ago. The word petroleum is
derived from the Latin petra and oleum, meaning literally rock oil. The role of
petroleum products has evolved, starting from 3000 before Christ (BC) when
Sumerians used asphalt as an adhesive for making mosaics. Mesopotamians
used bitumen to seal boats and build roads. Egyptians greased chariot
wheels and used asphalt to embalm mummies. Petroleum became more and
more important from 1859. Now, petroleum is the most consumed product.
It is used to produce energy, plastics and other chemicals. The fuels derived
from petroleum supply more than half of the world’s total supply of energy
[91]. Gasoline, kerosene and diesel oil provide fuel for automobiles, trucks,
aircraft and ships. Fuel oil is used to heat homes and commercial buildings,
and to generate electricity. Petroleum products are the basic materials used
for the manufacture of synthetic fibers for clothing and in plastics, paints,
fertilizers, insecticides, soaps, and synthetic rubber.

The main theory behind the formation of petroleum is as follow. Oil is
developed after millions of years from organic materials such as dead plants
and animals. The dead organisms sank to the bottom of water areas, where
the environment tends to be anaerobic. They accumulate, compressing the
organic matter under its weight. There is an increase in temperature (100-
140°C) and pressure due to the continued sediment deposition. With time,
the conditions broke down the organic compounds into shorter hydrocarbon
chains. Oil and natural gas accumulates in a reservoir rock which is a thick
and porous rock. Earth movements trapped the oil and natural gas in the
reservoir rock between layers of impermeable rock, also called oil trap.

The reaction behind the formation of petroleum are described thereafter.
Aquatic plants and animals converts inorganic compounds dissolved in water
to organic compounds with the energy provided by the sun. For instance the
following reaction can occur:

6CO2 + 6H2O + energy→ 6O2 + C6H12O6, (1)

23
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when organic compounds exist in an aquatic environment, they can be
decomposed into hydrocarbons:

(CH2O)n → xCO2 + yCH4. (2)

The conditions to produce hydrocarbon are: geologic time of about one
million years, a maximum pressure of about 17 MPa and temperature of
about 100-140 °C.

Due to its formation, crude oil is a complex mixture composed of hundreds
of different hydrocarbons [92], which are discussed in the current thesis.
With enough time, the different types of hydrocarbons can be converted
in the others according to the geological conditions. This is also called in-
situ alteration. Two oils from different location around the world can be
distinguishes with their composition of hydrocarbon compounds. They are
called hydrocarbon because they are mainly composed of carbon (84-86%)
and hydrogen (11-14%). They are also composed of sulfur, nitrogen, oxygen,
metals and salts. The salts can be removed easily but not the other atoms as
they are linked to the molecules with chemical bonds.

Two-thirds of the world oil reserves are in the Middle East. The quantity
of oil is expected to last 40 years. Nevertheless, undiscovered oil reservoirs
exist offshore and due to the development of other energy sources, the oil
production is expected to continue till the end of the century.

2.2 hydrocarbon compounds

Hydrocarbon are divided into 4 groups: paraffins, olefins, naphthenes and
aromatics. Paraffins and naphthenes are also called saturates, saturates and
olefins can sometimes be called aliphatic. Other hydrocarbon types exist
but are rare in conventional hydrocarbons such as oxygenated compounds.
The composition of hydrocarbon fractions is complex and depends on its
distillation cut points as showed on Figure 12.

Figure 12: Variation of composition of petroleum fractions with boiling point.
Adapted from [8]

2.2.1 Paraffins

Paraffins, or alkanes, have as a raw formula CxH2x+2. The paraffins are
divided into normal paraffins, or n-paraffins, and iso-paraffins. n-paraffins
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and iso-paraffins have the same raw formula but the location of the methyl
groups is different. n-paraffins are straight, while iso-paraffins are branched.
The smallest n-paraffin is methane, while the smallest iso-paraffin is isobu-
tane. Methane is the major constituent of natural gas. Compounds with
different structure but the same formula, such as isobutane and n-butane, are
called isomers (Figure 13). Although isomers have the same formula, they
can have very different properties. The number of isomers increases with
the number of carbon atoms. For instance, octane, with 8 carbon atoms has
18 isomers, while dodecane, with 12 carbon atoms, has 355 isomers. Large
hydrocarbons compose heavy fuels, such as diesel, while small hydrocarbons
compose gasoline. Moreover, the properties of the fuel depends on the types
of isomers. This is why studying diesel is more complex than studying
gasoline. Paraffins from C1 to C40 composes crude oils. Paraffins have no
double bonds (also said saturated) so they are stable in time. Paraffins can
reach up to 20% of a conventional crude-oil.

Figure 13: Comparison of n-butane and iso-butane, two representatives of the n-
paraffins and iso-paraffin groups, respectively.

2.2.2 Olefins

Conversely to paraffins, olefins are composed of one or several double bond
(they are unsaturated). Therefore, they are less stable in time due to their
reactivity and are found in small quantities in conventional hydrocarbon
mixtures. Compounds with one double bond are called monoolefins, or
alkenes. The general formula of alkenes is CxH2x.

Figure 14: (E)-2-butene.

2.2.3 Naphthenes

Naphthenes, also called cycloalkanes, are ring or cyclic saturated hydrocar-
bons. They have the same general formula as the olefins, i.e. CxH2x. As for
the n-paraffins, they compose crude oils. If there is one alkyl group from a
n-paraffin attached to a cyclopentane, they are called n-alkylpentanes. In
heavy oils, multirings attached to each other can be present. Up to 60% of
cycloparaffins can compose a petroleum product.
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Figure 15: Ethylcyclopentane.

2.2.4 Aromatics

Aromatics are unsaturated cyclic molecules composed of double bonds. Ben-
zene, the simplest aromatic molecule with six carbon atoms is known for
inducing cancer. Therefore, its amount is restricted in petroleum products.
Benzene with an alkyl group attached are called alkylbenzenes and have as
a formula CxH2x−6. Aromatics with one benzene ring are called monoaro-
matics while those with two rings are called diaromatics. For aromatics
with a higher number of rings, the term polyaromatic is used. Polyaromatic
molecules can be composed of heteroatoms, such as sulfur. Nevertheless, the
presence of sulfur must be limited as it can damage engine parts.

Figure 16: Comparison of several aromatic compounds.

A crude oil is separated into different petroleum fractions thanks to the
process of distillation. During this process, the compounds are separated
depending on their boiling points. Several types of distillation conditions
exist depending on the final product that is to be separated from the crude oil.
Under atmospheric conditions, the molecules in the crude oil have boiling
point from -160°C (methane) to more than 600°C for heavy compounds.
Nevertheless, the carbon-carbon bond starts to break at around 350°C. This
undesirable process is also called cracking. To avoid it, the distillation occur
under several conditions. First, it occurs under atmospheric conditions,
then, the residuals of this first distillation are removed and sent to a vaccum
distillation column. Thanks to this process, the hydrocarbon can be separated
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under much lower temperatures. A petroleum fraction is constituted of
several molecules that where evaporated under specific conditions. As an
example, the products and composition of Alaska crude oil is given on Figure
17.

2.3 petroleum fractions

Figure 17: Petroleum fractions of Alaska crude oil. Adapted from [8].

The major fuel petroleum products are summarized thereafter.
Liquefied petroleum gases (LPG) is a mixture of propane and butane. It is

used for domestic heating and cooking (50%), industrial fuel (15%), steam
cracking feed stock (25%) and in spark ignition engine (10%).

Gasoline is used as a fuel for cars. It contains hydrocarbons from C4 to
C11. The octane numbers are important properties of gasoline fuels. They
qualify the antiknock characteristic, where knock is an undesirable early
end-gas autoignition. The volatility is another important property as the
fuel has to evaporate correctly before its ignition. A good evaporation
ensures a good efficiency and avoids cylinder wall covering, which creates
unburned hydrocarbons and CO. The density is also an important property
as it is related to its composition, thus it provides a useful information. The
properties of gasoline are given by the regulation EN 228.

Kerosene and jet fuel are used for lighting and jet engines, respectively.
They are characterized mainly by their density and their ignition quality.
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Diesel and heating oil are respectively used for motor compression ignition
(CI) engine and domestic heating. Diesel is characterized by its cetane
number, which characterizes its autoignition. Its volatility and viscosity are
also important. The sulfur content must be monitored to avoid corrosion.
The properties of diesel are given by the regulation EN590.

Residual fuel oil is used for the production of electricity or as a motor fuel
for low speed engines.

Other non-fuel petroleum products exist, such as solvents, lubricants,
waxes, asphalt.

2.4 pyrolysis

Pyrolysis is used to convert wastes into carbonate matter. This is an attractive
thermochemical process to tackle the waste disposal problem with energy
recovery. Pyrolysis is a thermochemical process to break chemical bonds
through the thermal decomposition under non-oxidative conditions. The
feedstock needs to be elevated at higher temperatures than 400°C in the
absence of oxygen, leading to the decomposition of the structures that com-
poses the feedstock. It has been used to produce charcoal from biomass for
thousands of years. Pyrolysis of coal and biomass was used commercially
from the 1700s [9]. Semantically the term thermolysis would be more appro-
priate than pyrolysis since pyro, the Latin word for fire, implies the presence
of oxygen [9].

There are many types of pyrolysis depending on the operating condition.
In general, a simple classification is done to distinguish slow, fast (also
called flash) and catalytic pyrolysis. The slow pyrolysis considers a slow
pyrolytic decomposition at low temperatures. Under slow pyrolysis, the
heating rate is low, yielding mainly in char production. With fast pyrolysis,
the decomposition is rapid with higher heating rates. These high heating
rates coupled with short residence times and rapid quenching favour the
formation of liquid products. The reaction time is of order of milliseconds
to seconds. Longer residence times result in secondary reactions as thermal
cracking. Catalytic pyrolysis is the name given to any pyrolytic process
with a catalytic material in order to favour or upgrade some yield or some
properties of the products. Several catalysts were studied such as zeolite
catalysts, perlite, NaOH, Ru/MCM-41, Ni–Mg–Al (1:1:1) [9].

Additionally to the type of catalyst, the main process parameters influence
the chemical composition and the properties of the resulting products. The
main parameters are the heating rate, the temperature, the pressure, the
residence time, the catalyst type and the resulting products are composed
of gas, liquid and a solid fraction. Additionally to the process parameters,
the composition of the feedstock plays a major role. Although all of these
parameters were not studied with automotive shredder residues (ASR)-
derived fuels, a review of these parameters for other feed types would give a
first overview and a first understanding of the pyrolysis process. The effects
of temperature, pressure, heating rate, carrier gas flow rate and type and
residence time on the liquid, gas and solid yields are discussed below.

• The main variable affecting pyrolysis is temperature. From the conver-
sion point of view, 500°C appears to be the optimum temperature at
atmospheric pressure for pyrolysis as total conversion is achieved. An
increase of the temperature promotes an increase in the gas fraction. A
thermal cracking effect of the liquid fraction can occur when the process
temperature is increased. Moreover, the solid fraction can also increase
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in fluidised bad at very high temperature (900°C) where tar and char
formation are favoured. Figure 18 shows the impact of the temperature
on the pyrolysis yield for different scenario. The properties of the
obtained liquid fraction is also impacted by the temperature. It usually
contains larger quantities of aliphatic compounds at lower temperature
than at higher temperature where aromatic production is promoted.
In contrast, lower temperatures leads to olefinic hydrocarbons which
are undesirable due to their oxidation and polymerisation tendencies,
leading to the formation of gums that could damage the engine fuel
delivery systems. To summarize the effect of temperature on the liquid
fraction, higher temperatures than 450-500°C reduces the liquid yield
in favour of the gas fraction while the aromatic fraction increases in
the liquid part. The modification of the composition will have a direct
impact on the fuel properties such as the calorific value, the H/C ratio,
the boiling point and the octane number [9]. This shows why estimat-
ing the composition of the fuel is important, as it has a direct control
on the fuel properties. The composition (chain length with the number
of carbon atoms, cyclisation) and the properties (calorific value, H/C
fraction, gas volume) of the gas fraction are also impacted by the pyrol-
ysis temperature. In contrast, no major changes on the solid fraction
are observed when the pyrolysis temperature increases. Nevertheless,
the properties of the solid fraction depend on other variables linked
with the occurrence of secondary reactions. The properties of the solid
and gas fractions are not discussed in the current thesis as it deals with
liquid fuels from ASR.

Figure 18: Impact of the temperature on the pyrolysis yield for different scenario.
Adapted from [9].

• The heating rate is a key variable on pyrolysis since it has a role on the
reaction rate and on the temperature profile [9]. The heating rate is
one of the most studied parameter since it affects product yields and
infuences the energy required for the process. The degradation rates
increases with an increase in the heating rate. Moreover, the start and
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the end of the devolatilisation are affected by the heating rate. This
delayed decomposition is attributed to the combined effects of the heat
transfer and the kinetics. Higher heating rates in fast pyrolysis promote
an increase of the volatiles. Additionally, it leads to an increase in
the temperature in comparison with slow pyrolysis. This encourages
secondary reactions and could increase the gas yield. Therefore, the
residence time in fast pyrolysis must be lowered to minimise secondary
reactions and maximise the liquid fraction. There is a high sensitivity
in the appearance of secondary reactions by varying the heating rate.
In order to increase the liquid fraction, the heating rates have to be
increased [9]. The heating rate also impact the composition and the
properties of the obtained products. For instance, the liquid fraction
shows more aliphatic and less aromatic molecules for higher heating
rates. In terms of energy consumption, it has been showed that lower
heating rates require less energy to complete the process even if the
pyrolysis time increases. To conclude, the heating rate have several
effect on the produced fractions and depends on the occurrence of
secondary reactions.

• After having discussed the effect of temperature and heating rate, the
role of pressure is detailed. An increase of the pressure on plastics
feedstock leads to more viscous liquid produce while a vacuum pyrol-
ysis reduces the influence of secondary reactions in the vapour phase
[9]. Moreover, the liquid fraction increases under vacuum while the
yields of char and gas decrease. Some advantages of vacuum pyrolysis
is the reduction of the temperature, and the decrease of the mass flow
rate. Studies showed that pressure does not have a high influence on
the yields of gas, liquid and solid. It is noteworthy that under lower
pressures, the occurrence of secondary reactions decrease but are still
present, leading to deposits or to a higher gas yield.

• The carrier gas also influence the produced fraction. The presence of
an inert gas controls the occurrence of secondary reactions such as
thermal cracking, repolymerisation, recondensation and char formation
[9]. The flow rate of the carrier gas impact the superficial velocity and
the residence time of the produced fractions. Increasing the flow rate
increases the superficial gas velocity, so, it decreases the residence time
of the vapours. As a consequence, the vapours spend lower times
in the reaction zone which minimise secondary reactions. Relying
on low carrier gas flow increases the volatile residence time which
decrease the liquid and char yields. The type of carrier gas is now
discussed. If a non-inert gas is used, the properties of the products
are affected as reactions can take place [9]. It was also showed that
H2 and N2 result in similar products over the conversion although
the H2 pressure influences the composition of the liquid fraction with
more saturates and less aromatics. Moreover, it increases the liquid
yields. Finally, the carrier gas is a variable to control the appearance of
secondary reactions: higher flow rates prevent secondary reactions and
the pressure of the carrier gas impacts the properties of the pyrolysis
products.

• The residence time of the vapours has also to be discussed. It is related
to the carrier gas flow and to the type of reactor. Higher residences
times favour secondary reactions which impact the composition and
the properties of the resulting products. An increase in the gaseous
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products and a decrease of the liquid and char products were observed
with higher residence time of the vapours. A longer contact time be-
tween the volatiles and the chars could favour the Boudouard reaction,
leading to a reduction in the char yield [9]. The type of reactor has also
a role. For instance, a higher liquid fraction and a lower gas fraction
were obtained in a fixed bed reactor than in a auger reactor [9].

• The pyrolysis time, also called residence time or reaction time is the
last parameter discussed. It has a role to scale the industrial system.
The cost of the system decreases with lower reactor volumes allowed
by lower reaction times. Additionally, the particle size has to be con-
sidered to determine the pyrolysis time. Bigger particles need longer
reaction times than small particles. The type of reactor impacts also the
pyrolysis time. For instance, a longer pyrolysis time of a factor 10 was
observed with a fixed bed reactor than in a auger reactor [9]. It was
also shown that the temperature and the pyrolysis time are linked. A
high temperature results in a lower pyrolysis time. It is noteworthy that
longer pyrolysis time and higher temperature increases the quantity of
heat required for the pyrolysis and increases the process efficiency. To
conclude, longer reaction times are required for large waste particles
although an increase in the temperature could lead to shorter pyrolysis
times. Nevertheless, this could have an impact on the final products
with the appearance of secondary reactions.

• The type of raw matter on the produced molecules is discussed below
where additional information on the source of polymer is reported.
polyethylene (PE) (present in car bodies, electrical insulation [93])
and polypropylene (PP) (automotive bumpers, chemical tanks, cable
insulation, battery boxes, bottles, petrol cans, indoor and outdoor car-
pets, carpet fibers [93]) are polyolefin plastics which tend to produce
olefins, polyurethane (PUR) (flexible foam seating, foam insulation
panels, elastomeric wheels and tires, automotive suspension bushings,
cushions, electrical potting compounds, hard plastic parts [93]) and
polyamide (PA) (gears, bushes, cams, bearings, weather proof coatings
[93]) are composed of oxygen atoms so they tend to produce oxy-
genated compounds. PUR induces also high amounts of alkylbenzenes.
polystyrene (PS) (equipment housings, buttons, car fittings, display
bases [93]) and acrylonitrile butadiene styrene (ABS) (automotive body
parts, dashboards, wheel covers manufacture of housings, covers and
linings [93]) are styrenics plastics that will produce aromatics such as
styrene, α-methylstyrene and iso-propylbenzene [94]. ABS decomposi-
tion gives also different types of naphthenes such as alkylcyclohexane
and cyclohexanes substituted by several methyl groups (for instance
1,1-dimethylcyclohexane) [80].

These different parameters could be adjusted with a feedback loop to
obtain different types of liquid hydrocarbons. For instance, the composition
of the row matter could be adjusted in order to decrease the reactivity of
the fuel (higher octane numbers and lower cetane number) by promoting
the presence of plastics giving oxygenates and aromatics. Nevertheless,
the producer of the fuel, the Belgian company Comet Traitements, is not
setting the proportions of the different wastes. Thus, another way to adjust
the production properties could be interesting. For instance, the reactivity
could also be decreased with the following adjustments: higher pyrolysis
temperature, lower heating rate and lower carrier gas pressure. In fact these
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adjustment would increase the aromatic fraction and decrease the aliphatic
content.

As a conclusion, the type of molecules obtained from two different types
of shredder residues coming from two different feedstocks are discussed to
assess the variability of the obtained composition. These data are obtained
from the study done by Jody et al. [48]. The types of plastics which are
nearly constant between the two types of ASR are PUR (3.6 VS 2.1 %), PE
(7.6 VS 8.7 %), PS (1.6 VS 2.7 %), polycarbonate (PC) (3.0 VS 2.9 %), polyvinyl
chloride (PVC) (1.9% VS 3.4%). In contrast, the fractions of PP is much
higher for the second type of shredder residues (8.8% VS 21.2%) and the
ABS fraction is also higher for the second fraction (4.5% VS 7.8%). The
remaining fractions are metals and unknown polymers, which are higher in
the first ASR. Due to the higher difference in the PP than in the ABS fraction,
the second type of ASR is expected to produce a fuel with more aliphatic
compounds than the first type of ASR. Nevertheless, it is noteworthy that the
types of polymers are similar, which will result in the same final molecules
for a given pyrolysis and distillation parameter set.

2.5 experimental characterization techniques

The previous section showed that fuels obtained from pyrolysis are complex
blends composed of a lot of molecules. This complexity is even more chal-
lenging for fuels derived from ASR because they are new and uncharted
fuels. Moreover, if the properties of the fuel are not suited for their final
application, they can damage the appliance in which they are burnt. It
shows that the properties of unconventional fuels must be characterized and
monitored if their production process or their feed is variable. Knowing the
composition is also important as the composition explains the fuel behaviour.

Several characterization methods exist. After having described the ex-
perimental methods to estimate the composition of a fuel, the methods to
characterize their properties are discussed.

2.5.1 Characterization of the composition

Three characterization techniques are studied within the thesis, namely
gas chromatography (GC)-mass spectrometry (MS), nuclear magnetic res-
onance (NMR) and comprehensive two dimensional gas chromatography
(GC × GC).

With GC-MS, the components of a complex mixture are separated based on
their volatility. The components of the complex mixture move in a capillary
column due to a carrier gas. The separation of the components depends on
their affinity with the carrier gas and a stationary phase. The components
are called effluents and their concentrations are given by a detector, the mass
spectrometer. In this detector, the molecules are ionized by collision with
electrons.

However, it is difficult to get a lot of information on the fuel composition
with traditional chromatography techniques due to the complexity of the fuel
composition. Only part of the fuel molecules could be identified with this
method. GC × GC is an advanced analytical method relying on two columns
with two different selectivities. Relying on two columns enables a better
separation of the molecules. GC × GC can be coupled with flame ionization
detector (FID), time of flight (TOF)/MS, nitrogen chemiluminescence detector
(NCD), sulfur chemiluminescence detector (SCD) to determine the chemical
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fractions, to identify the molecules, and to measure the nitrogen and sulphur
content, respectively. A scheme of GC × GC is showed on Figure 19. The gas
passes through a first rtx-1 PONA apolar column, then liquid CO2 is injected,
playing the role of a cryogenic modulator, allowing to stop the effluent until
its relaxation toward the second column. Then, the components can either
go in one of the two polar BPX-50 column. The first, being coupled with FID
to measure the chemical fractions and the second with TOF-MS to identify
them. In practice, the fuel will be injected twice in the system to pass through
the two columns. As an example, a GC × GC chromatogram is reported on
Figure 20. We can see a good distinction of the different hydrocarbons.

Figure 19: Analysis of a fuel by GC × GC. FID gives quantitative results while the
molecules are identified via TOF-MS [10]. The fuel is injected (1) into a
first dimension column (2). CO2 is injected through solenoid valves (5)
towards the two-jet cryogenic CO2 modulator (6). The fuel goes into the
second dimension column (3) to be analysed by FID or TOF-MS depending
on the position of the 4-port 2-way valve (4). (7) is a protective helium
flow.

NMR spectroscopy is a method based on the identification of atoms. The
most common identifiers are carbon 13 and proton 1H. Specifically, a 1HNMR
spectra was obtained and analysed. Each proton H+ emits a signal that
depends on the neighbour protons. Thus, each signal is a consequence of a
specific bound. On a 1HNMR spectra, the peaks intensity corresponds to its
concentration, and the number of peaks in the same region corresponds to the
presence of hydrogen atoms in the same neighbourhood. NMR is powerful
as it has a good selectivity, but identifying components that are similar is
challenging. For instance, a high overlapping occurs in the region from
0.5 ppm to 1.5 ppm, which makes the identification of paraffinic molecules
difficult (Figure 21). The auto-ignition depends on the structure of the fuel,
thus, it is theoretically possible to formulate a surrogate fuel if the NMR
spectra corresponds to the one of the real fuel. To reach this goal, the
chemical signals must be decorrelated to identify the chemical functions.
Nevertheless, the region 0.5 ppm to 1.5 ppm is particularly problematic as
n-paraffins, iso-paraffins, naphthenes and olefins overlap.
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Figure 20: GC × GC – FID chromatogram of a shale oil sample with different hydro-
carbon group types, adapted from [11]

Figure 21: NMR spectrum of a ASR fuel.

2.5.2 Characterization of the octane number

Characterizing properties is important to ensure the safe operation of the
engine in which a fuel is burnt. In the current thesis we specifically study
the ignition delay time (IDT) and its similar properties. For instance, the
octane number (ON), namely the research octane number (RON) and the
motor octane number (MON) are properties that characterize the resistance
to an end-gas autoignition of a light fuel under specific conditions. These
conditions can be linked with the resistance to autoignition of the light frac-
tion before injecting the heavy fraction in reactivity controlled compression
ignition (RCCI). A too early ignition creates knock which is destructive for
the engine. Knocking is characterized by an early ignition which causes a
ringing sound. More importantly, this early ignition damages the engine.
A gasoline with a high octane number provides the following advantages
[76]: it can be used in an engine with a high compression ratio, it enables the
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Table 3: Functional groups in the 1H NMR spectrum.
.

Label Functional group Shift (ppm)
A Aromatics 8 - 6.7
a1 Naphthalene 8 - 7.4
a2 Benzene 7.4 - 7.3
a3 Substituted A 7.3 - 6.7
O Olefin 4.5 - 6.6

Ox Alcohol 3.5 - 3

ox1 Methanol 3.5 - 3

ox2 MTBE 3.2 - 3

αA α-C αa1+αa2+αa1 3 - 2.1
αa1 α-CH 3 - 2.7
αa2 α-CH2 2.7 - 2.5
αa3 α-CH3 2.5 - 2.1
Ov1 Overlapping 1 2.2 - 1.4

N+γo2+γo3+i
Ov2 Overlapping 2 1.85 - 1.4

CH2 Napht+γo3+i
γo1 γ-CH 2.5 - 2.1
γo2 γ-CH2 2.1 - 1.85

γo3 γ-CH3 1.85 - 1.4
N -CH/CH2 Naphthene 2.2 - 1.4
i -CH iso 1.6 - 1.4

Ov3 Overlapping 3 1.4 - 1

p1 +C=C-C-CH2-
+Ph-C-CH3

p1 -CH2 paraffin 1.4 - 1

p2 -CH3 paraffin 1.1 - 0.6

ignition timing to be advanced, resulting in a greater power output, and the
engine efficiency is improved, reducing the fuel consumption.

Conversely, if the octane number is too low comparing with the compres-
sion ratio of the engine, the following disadvantages occur: knocking, power
loss, overheating of the engine.

The ONs are measured in a cooperative fuel research (CFR) engine - an
engine whose compression ratio can be adjusted - according to the regulations
ASTM D2699[81] and ASTM D2700[82] respectively. In these regulations,
the resistance of a fuel towards an end-gas autoignition is compared with a
mixture of iso-octane and n-heptane, also called primary reference fuel (PRF).
For instance, a fuel that behaves similarly than a mixture of 90% of iso-octane
and 10% of n-heptane, called PRF90, has an octane number of 90.

Different operating conditions distinguish the RON and the MON. The
research (RON) method traduces city conditions while the motor (MON) one
characterizes road conditions [8]. The RON (resp. the MON) test conditions
are an intake temperature of 52°C (resp. 149°C), an engine speed of 600 rpm
(resp. 900 rpm) and a spark ignition advance of 13° (resp. 14 to 26°). These
differences in the operating condition explains why the RON is higher than
the MON. The MON operating conditions are more severe than the RON
[95]. RON tends to be higher than the MON by 6-12 points in practical fuels
[8].
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Generally speaking, n-paraffins are characterized by a lower ON than
iso-paraffins. Naphthenes tend to have even higher RONs, while aromatics
and oxygenates have very high RONs. Therefore, the octane number of a
gasoline is strongly correlated with its molecular composition.

The ON of a mixture is often calculated with a linear blending law. Nev-
ertheless, the octane number is non linear regarding to blending, especially
when paraffins are mixed with another hydrocarbon class [96]. For this
reason, the concepts of blending RON (BRON) and blending MON (BMON)
were introduced. These blending ON (BON) are calculated by measuring the
ON of 20% of the studied molecule mixed with 48% of iso-octane and 32%
of n-heptane. This blend is equivalent to a mixture of 20% of the studied
molecule with PRF60. The measured ON is thereafter rescaled as if the
molecule was pure, which is given by the following equation:

BON = 60 +
20

100

(ONmeasured − 60) (3)

Due to the definition of BON, it is recognized that measuring BON leads
to high experimental errors due to the dilution per a factor five [96].

The BRON and the BMON of more than 340 molecules are gathered in the
report of the API project 45 [26]. As an example, the blending ON of major
molecules in hydrocarbons are reported in Table 4.

Table 4: Octane numbers and blending octane number of major molecules in hydro-
carbon fuels

Molecule RON BRON MON BMON

Paraffin
n–Heptane 0 57.6 0 57.6

2–Methyl–hexane 42.4 40 46.4 42

2,2,4-Trimethylpentane 100 61.6 100 61.6
Olefin 2–Methyl–1–hexene 90.7 118 78.8 108

Naphthene Methylcyclohexane 74.8 104 71.1 84

Aromatic Toluene 120.1 124 103.5 112

The molecules in Table 4 are all similar in shape and size so they can be
compared. N–heptane and 2,2,4-Trimethylpentane, i.e. iso-octane, are the
two reference. They frame the octane scale from 0 to 100. For molecules
with a high ON, such as toluene, tetraethyllead (TEL) is added to obtain the
ON. TEL is an antiknock compound, so, it increases the ON, which can be
calculated with the following equation:

ON = 100 +
28.28T

1 + 0.736T + (1 + 1.472T − 0.035216T2)0.5 , (4)

where T is the quantity of TEL in mL per U.S. gal in iso-octane.
In Table 4, 2–methyl–hexane has an intermediate ON, comparing with n–

heptane and iso–octane. First, the number of substitutive –CH3 is higher than
pure n–heptane. Second, iso–octane is hindered whereas 2–methyl–hexane
shows four molecules that can be attacked easily during a chemical reaction.
As showed by the other molecules, cyclic shapes and double bounds tend
to increase the chemical bonding, thus the octane number of naphthene,
olefins and aromatics increases. Moreover, this type of configuration leads to
the formation of stable intermediates, which also contributes to increase the
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ON. For most of the molecules, the MON is lower than the RON because
the condition of the MON test are more sever [81, 82]. Finally, the BON
are higher than ON, except for the paraffins. The chemical origin of this
non-linear blending was studied by Leppard in 1992 [96]. The octane quality
of a molecule is governed by the dynamics of the radical pool, and not only
by the initial shape of the molecule. The high blending octane qualities are
a consequence of the presence of a molecule that act as radical scavengers,
retarding the reactivity of the paraffin. For instance, in a mixture of olefin
and n-heptane, radicals are placed in the olefin non-branching chain that
reacts slower than the paraffin chain [96].

Three additional properties are calculated based on the RON and the
MON. The first is the octane sensitivity (OS), the second is the antiknock
index (AKI) and the third is the octane index (OI).

As previously stated, the RON tends to be higher than the MON. The
difference is known as the OS:

OS = RON − MON. (5)

The sensitivity of PRF is zero, which is the reason why adding another
molecule, such as toluene, is important to represent correctly a real gasoline
fuel. Such a mixture is called toluene reference fuel (TRF).

The AKI is the average between the RON and the MON:

AKI =
RON + MON

2

. (6)

The OI is defined as:

OI = (1 − k)RON + kMON. (7)

This number takes into account the engine’s operating condition via the
introduction of a linear weighting factor k. Thanks to this factor, the OI
indicates if the actual operating conditions are similar to the RON or to the
MON conditions. The values of k evolve from 0 or 1. It has also been showed
that k can reach negative values due to the technologies of modern engines
[97]. As the RON tends to be higher than the MON, a negative k results in
fuels that have an OI higher than the RON and the MON. This means that
the fuel has a better resistance to autoignition.

The method to calculate k follows.

k =
b

a + b
(8)

with a and b the linear coefficients between the RON and the MON. These
parameters are calculated based on the knock limited spark advance (KLSA):

KLSA = c + aRON + bMON (9)

KLSA is the ignition timing at which the average knock intensity is 0.5V in
the engine to be tested under specific operating conditions [98, 99]. With
this definition, the knock intensity was measured with a knock detector
hardware developed in-house. The knock intensity was reported in terms of
the average knock amplitude in volts. KLSA, RON and MON are measured
with different fuels. In their study, Kalghatgi et al.[98] typically measured
the properties of 6 to 13 fuels. To compute k, a simple linear regression is
processed to obtain a, b, c, and k.
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2.5.3 Characterization of the cetane number

To quantify the ignition quality of a diesel fuel, the cetane number (CN) can
be measured according to the standard test method American Society for
Testing and Materials (ASTM) D613 [100]. The CN scale is based on two
PRF. Historically, a CN of 100 was attributed to cetene (1-hexadecene). This
molecule was substituted by cetane (n-hexadecane) due to the change in
reactivity of cetene depending on the location of the double bound. On the
opposite, a CN of 0 was attributed to mesitylene (1,3,5-trimethylbenzene).
Mesitylene was substituted by α-methylnaphthalene which was itself re-
placed by iso-cetane (2,2,4,4,6,8,8-heptamethylnonane) [97]. The fuel to be
tested is burned in a CFR engine and compared with a mixture composed of
the two PRF. A diesel fuel has a cetane of 60 if it behaves like a mixture of
60% cetane and 40% of α− methylnaphthalene.

The shorter the ignition delay, the higher the CN. Fuels with a high CN
ignites shortly after their injection, so, they have enough time to burn. A
high CN promotes an easy cold start-up, increases the fuel economy and
reduce the emissions. In contrast, a low CN leads to a late ignition. Due to
this late ignition, the fuel reacts in a short amount of time, leading to diesel
knock. Moreover, low cetane numbers result in high emissions of smoke and
particulate matter [101]. The minimum rating depends on the final usage as
shown for several standards in Table 5. The product distributed in France
and Europe have CN in the range of 48-55.

Table 5: Cetane number of several specifications

Standard CN
NF EN 590 (road usage) >51

Distillate Marine X (DMX) >45

Distillate Marine A (DMA) >40

Distillate FAME A (DFA) >40

Distillate Marine Z (DMZ) >40

Distillate FAME Z (DFZ) >35

Distillate Marine B (DMB) >35

Distillate FAME B (DFB) >40

The measurement of the RON, MON and CN suffers of a lot of disadvan-
tages. It requires the usage of an expensive CFR engine and a high amount
of fuel.

More recently, the CN was substituted by the derived cetane number
(DCN) as an alternative. This property is measured in an ignition quality
tester (IQT) according to the ASTM standard D6890 [102] rather than in an
engine. An IQT is a constant volume chamber. The uncertainty is equal to
0.7 for a DCN between 33 and 60 [101].

2.5.4 Other properties

The most important properties are listed in this section.
The specific gravity (SG) and the density are reported respectively at 15.5°C

and 20°C at 1atm. SG is defined as the ratio of density of a liquid to the one
of water. This property is important to characterize the petroleum product.
For instance, aromatic molecules are denser than paraffinic ones. Moreover,
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the SG can be used to estimate other properties, such as the composition,
the sulfur content, critical constants, viscosity or thermal conductivity. The
SG and the density can be measured according to ASTM D4052. Another
method exist, simpler, but less accurate: ASTM D1298.

The boiling point and the distillation curve characterizes the volatility of
the fuel. Unlike pure molecule that are characterized by a single boiling
point, fuels are characterized by a range of evaporation. This range is as wide
as the difference in evaporation temperature between the most and the least
volatile molecules. The distillation curve is presented as the temperature of
distillation versus the volume fraction of evaporated mixture. The initial and
the final boiling points are important parameters as they define the boiling
range. The wider the boiling range, the more the number of compounds. In
some cases, the final boiling point will not be achieved, which means that the
heaviest molecules does not evaporate in the studied range of temperatures.
The distillation curve is also used to determine if the petroleum product has
a narrow or a wide boiling range. It is used to estimate other properties
such as the molecular weight, the composition, the vapor pressure, thermal
properties and others. Several methods exist to measure the boiling points of
petroleum fractions. In the current thesis, the method proposed in the ASTM
D86 is used as it is simple and old. Moreover, majority of the distillation
curves reported in the literature was measured with this method.

With this method, a sample of 100mL is evaporated under atmospheric
pressure and the distillation curve is reported at 0, 5, 10, 20, 30, 40, 50, 60, 70,
80, 90, 95 and 100% of the evaporated volume. When the fuel is composed
of heavy molecules, the highest fraction evaporated may not be 100% due
to the risk of cracking the molecules when the temperature is too high.
Similarly, the result may be distorted at high temperatures. The measure of
the distillation curve gives several temperatures.

However, it is of interest to characterize the distillation by a single temper-
ature. For this reason, the distillation profile is averaged. Several average
values exist, the volume average boiling point (VABP), the weight average
boiling point (WABP), the molal average boiling point (MABP) depending
on the type of fraction used to calculate the average (volume, mole, weight).
Correlations reported in [8] can be used to convert the VABP, given by ASTM
D86, to another type of average boiling point. Another important parameter
is the mean average boiling point (MeABP) which is used in the pseudo-
component (PC) method to characterize a petroleum fraction. We relied on
the PC method to develop methods to predict the composition of the studied
unconventional fuel and to predict the ON. In the current thesis, the MeABP
was calculated from the VABP [8] obtained by the volumetric distillation
curve measured experimentally according to the standard test method ASTM
D86 [103]:

VABP =
T10 + T30 + T50 + T70 + T90

5

, (10)

where Tp (expressed in Kelvin) is the temperature at which p% of the fuel is
evaporated. The VABP was converted into MeABP [8]:

MeABP = VABP+∆Me, (11)

where the shifting coefficient ∆Me is defined as [8]:

ln(∆Me) = −1.53181− 0.0128(VAPB− 273.15)0.6667+ 3.646064SL0.333 (12)
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and SL is the 10-90 slope defined by [8]:

SL =
T90 − T10

80

. (13)

A third important property is the molecular weight which is useful for
calculations. For instance, the combustion equations involve molar quantities
while manipulations involves a weight (or a volume). The molecular weight
is also used to characterize the fuel and to predict other properties. It
gives an overview of the size of the molecules. For petroleum fractions,
the molecular weight corresponds to an average over the molecules in the
fuel. Nevertheless, as identifying all the molecules in a petroleum product is
impossible, such a calculation cannot be realized. As an alternative, three
methods exist: cryoscopy, the vapor pressure method, and the size exclusion
chromatography [8]. The most used is the cryoscopy method. The freezing
point of the petroleum product is measured and a relation exist to relate this
property with the molecular weight.

The refractive index at 20°C is another property useful to estimate the
composition of petroleum fractions and additional properties such as the
molecular weight, or transport properties. It is defined as the velocity of
light in vacuum to the velocity of light in the substance. The speed of
light depends on the temperature, so, the refractive index is reported at a
given temperature. What makes it very popular is its relationship with the
molecule type. The refractive index increases from paraffins to naphthenes,
and the maximal values are hold by aromatics. Refractive index up to 1.5
can be measured with refractometers according to ASTM D1218. For values
up to 1.6, ASTM D1747 is used.

Some properties can be combined to create a new property such as the
Watson factor Kw (combination of density and boiling point), m parame-
ter (combination of refractive index and molecular weight), the carbon-to-
hydrogen ratio (combination of carbon and hydrogen weight ratios), the
viscosity gravity constant (VGC) and the viscosity gravity function (VGF)
(combination of the SG and the viscosity). These properties are useful to
characterize the fuel as well as to predict the composition of a petroleum
fraction. Aromatics have a low Kw while paraffins have high values.

Kw =
(1.8Tb)

1/3

SG
, (14)

with Tb the normal boiling point in K and SG the specific gravity. The factor
1.8 is a conversion factor applied because the boiling temperature was initially
defined in degrees Rankine [8]. This factor classifies the hydrocarbons in the
mixture. Aromatics have low values and paraffins have high values.

The m parameter identifies the hydrocarbon type. This parameter m
was defined with the following formula based on the observation that the
refractive index varies linearly with 1/M [104]. Paraffins have low m values
while aromatics have high m values. Paraffinic and naphthenic oils have
negative m values. Moreover, m increases as the number of rings increases
in an aromatic. This parameter is defined by:

m = M(n − 1.475), (15)

with n the refractive index at 20°C and M the molecular weight.
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The VGC and the VGF are other empirical properties which separates well
the hydrocarbon classes. The VGC is defined with the Saybolt viscosity at
two temperatures:

VGC =
10SG − 1.0752log10(V38 − 38)

10 − log10(V38 − 38)
, (16)

VGC =
SG − 0.24 − 0.022log10(V99 − 35.5)

0.755

, (17)

with V38 and V99 the Saybolt viscosities at 38°C and 99°C.
These two equations give similar results and equation 16 is preferred when

the viscosity at 38°C is known. When the viscosity at 40°C is known, another
equation is recommended, given by ASTM D2501:

VGC =
SG − 0.0664 − 0.1154log10(ν40 − 5.5)

0.94 − 0.109log10(ν40−5.5)
(18)

Another equation was reported relying on the kinematic viscosity and the
density at 20°C:

VGC =
d − 0.1384log10(ν20 − 20)

0.1526

(
7.14 − log10(ν20 − 20)

) (19)

with d the density at 20°C and 1 atm in g/cm3 and ν20 the kinematic viscosity
at 20°C in cSt.

When the viscosity is too low, these equation cannot be applied due to the
log10. Thus, the VGF is defined for fuels with a low viscosity:

VGF = −1.816 + 3.484SG − 0.1156ln(ν38) (20)

VGF = −1.948 + 3.535SG − 0.1613ln(ν99) (21)

where ν38 and ν99 are the kinematic viscosities in cSt at 38°C and 99°C.
These two equations give similar results, nevertheless relying on ν38 is to be
favoured when possible. The parameter VGF is defined for light fuels with a
molecular weight lower than 200 g/mol.

These equations are a consequence of the fact that SG versus ln(ν38) is
linear for each hydrocarbon group. The kinematic viscosity is useful for
heavy petroleum products. In fact, for these products the boiling point is
not available due to thermal decomposition during distillation. The viscosity
depends on the temperature. It is generally reported at 37.8°C (100°F) and
98.9°C (210°F). When the viscosity is known at two temperatures, it can be
calculated for other temperatures. The viscosity is measured in a viscometer
and the test method is reported in ASTM D445.

The air-to-fuel ratio under stoichiometric conditions (AFs) is also a good
indicator of the hydrocarbon class fraction. It is defined by the global
equation of complete combustion:

CxHyOzNα +ω(O2 + 3.76N2)→ xCO2 +
y
2

H2O + (3.76ω+
α

2

)N2, (22)

where ω is the needed number of moles of oxygen to burn the fuel under
stoichiometric condition and is defined as:

ω= x +
y − 2z

4

. (23)
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The stoichiometric air to fuel ratio is defined by:

AFs =
1

Mc

1 +
HCW

MC
MH

−2OCw
MC
MO

4
(MO2

+ 3.76MN2
)

1+HCw +OCw +NCw
, (24)

where the weight ratio between atom A and carbon, ACw, is deduced from
the atomic mass fractions:

ACw =
yA

yc
, (25)

where yA refers to atom A and yC refers to carbon.
For what concerns the carbon-to-hydrogen ratio, the formula of paraffins,

naphthenes and aromatics shows that it increases from paraffins to aromatics.
Moreover, the CH changes from low to high carbon number. The CH
value tends towards 5.96 for extremely large molecules. The CH ratio can
be measured via elemental analysis, which also gives the atom fraction
of sulphur, nitrogen and oxygen. Methods exist to analyze each element
individually. Elemental analyzers also exist to measure these elements all
together. For instance, in CHN analyzers a combustion occurs. Carbon is
oxidized into CO2, hydrogen to H2O, and N to nitrogen oxides. The last
are reduced over copper to nitrogen by eliminating oxygen. The mixture of
CO2, H2O and N2 is separated by gas chromatography. Similarly, sulfur is
oxidized to SO2. Oxygen is determined after its conversion to CO.

Metallic compounds can also be found. In conventional petroleum frac-
tions, they can reach a thousand ppm. A small number can have a negative
effect and result in coke formation. Several methods exist to determine the
composition of these metals. For instance ASTM D1026, D1262, D1318 and
D1548.

Many other properties are important design parameters, or are useful to
characterize a petroleum fraction. Nevertheless, they were not used in the
current thesis so they are not described.

A high number of estimation method exist so that different set of properties
can be used to estimate other properties. Thus, measuring the right properties
is important to access to the full property set. A useful method is the pseudo-
component method which requires the distillation curve and the hydrocarbon
class composition to access to other properties. This method is described in
the next section to predict the ON.

2.6 prediction methods applied to liquid fuels

2.6.1 Prediction of the octane numbers

As an alternative to RON and MON measurement, estimating methods
exist. They differ one another by the principles behind the model. Statistical
methods rely on different input quantities. They can either be the chemical
properties [105–110], physical properties [111], or the ignition delay [95, 97,
112, 113]. Composition-based models rely on several methods such as partial
least square (PLS) regression [107, 108], neural networks [106, 109] and
multivariate calibration [105, 110]. Other models rely on physical properties.
Among others, Mendes et al. developed models based on distillation curves
and partial least squares regression [111].

The prediction of the octane number of a fuel can be obtained with a
simple linear blending law. Traditionally, the mixing law is based on a linear
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average weighted by the volume fractions. Nevertheless, Pera et al. [85]
showed that a linear averaging weighted by compound molar fractions is
more precise than a average weighted by volume fractions.

ON =

N∑
i=1

xiONi (26)

where x is the molar fraction of the component i.
Similarly, when an oxygenated molecules is added into the fuel, the fol-

lowing relation can be applied [8]:

ON = xoxONox + (1 − xox)ONclear, (27)

with ONclear, the octane number measured or calculated without the oxy-
genated component.

Nevertheless, this simple formulation does not take the interactions be-
tween the components, also called antagonist and synergistic blending effects,
into account. Nikolaou et al.[22] proposed a non linear blending law with
blending coefficients that depend on the BON, a concept introduced in the
API project 45 [26] and described in Section 2.5.2.

RON =

N∑
i=1

KiRONiyi (28)

where yi are the volume fractions of the components in the studied blend,
RONi is the measured pure RON and Ki is the following factor:

Ki =
RONi

BRONi

∑N
i=1

BRONiyi∑N
i=1

RONiyi
(29)

with BRONi the blending octane number of the component i in the blend.
An example applied to a gasoline fuel is given in Table 6. For this sample

fuel, the sum of the octane numbers weighted by the volume fractions gives
85.1 while 86.9 is obtained with Equation 28.

The previous formula gives an accurate estimation of the octane number,
but is hardly applicable with a real fuel made of hundred of molecules.
Identifying all the molecules and knowing all of their ON is impossible.

The ON of complex fuels can be calculated with the PC method. With
this method, the fuel is divided into PCs. A PC is a virtual molecule that
represents a hydrocarbon class and its properties depending on the boiling
point (the MeABP) of the fuel. Thus, all the molecules in a hydrocarbon
class are substituted by a single molecule as long as the fuel boiling point is
known.

ON =

N∑
i=1

yiONpc
i (30)

where ONpc
i is the octane number of the PC i. This octane number depends

on the fuel boiling point. The dependency law between the PC octane number
and the boiling points are calculated with a regression. This regression is
obtained seeking the best law between the boiling points and the octane
number of pure molecules in the hydrocarbon class. An example of is given
on Figure 22 where the regressions are calculated with Equation 31 and Table
7. The octane number of the pseudocomponent for the iso-paraffins group
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Table 6: Example of calculated weighting factor and effective research octane numbers
[22]

Volume Pure Measured Calculated
Molecule fraction Ki RON BRON BRON

2-methyl-butane 0.4507 0.974 92.3 100 89.9
2,2-dimethyl-butane 0.2342 1.088 91.8 89 99.9

n-pentane 0.1335 1.05 61.7 62 64.8
2-methyl-pentane 0.049 0.944 73.4 82 69.3

2,3-dimethyl-butane 0.027 1.137 103.5 96 117.7
n-hexane 0.026 1.377 24.8 19 34.1

cyclohexane 0.0249 0.796 83 110 66.4
3-methyl-pentane 0.02 0.914 74.5 86 68.1

cyclopentane 0.0116 0.758 101.3 141 76.8
methylcyclopentane 0.0113 0.9 91.3 107 82.2

n-butane 0.0043 0.876 93.8 113 82.1
methyl-cyclo-hexane 0.0039 0.759 74.8 104 56.7

2-methyl-hexane 0.0006 1.118 42.4 40 47.4
3-methyl-hexane 0.0005 0.979 52 56 50.9

2,2-dimethyl-pentane 0.0004 1.1 92.8 89 102.1
2,2-dimethyl-propane 0.0003 0.902 85.5 100 77.1
2,4-dimethylpentane 0.0003 1.153 83.1 76 95.8
2,3-dimethyl-pentane 0.0003 1.102 91.9 88 101.2
3,3-dimethyl-pentane 0.0002 1.015 80.8 84 82

1,1-dimethyl-cyclo-pentane 0.0002 1.014 92.3 96 93.6
1,3-dimethyl-cis-cyclo-pentane 0.0002 0.852 79.2 98 67.5

1,3-dimethyl-trans-cyclo-pentane 0.0002 0.945 80.6 90 76.1
3-E-pentane 0.0002 1.071 65 64 69.6
n-heptane 0.0002 0 0 0

2,2,3-trimethyl-butane 0.0001 1.056 112.1 112 118.4
E-cyclo-pentane 0.0001 1.158 67.2 61.2 77.8

is the average between the 2-methyl-alkane, 3-methyl-alkane, 2,2-dimethyl-
alkane and 2,2-dimethyl-alkane.

RON = a + bT + cT2 + dT3 + eT4 (31)

where T = (Tb − 273.15)/100 where Tb is the boiling temperature in kelvin.
When the RON is known, the MON can be calculated with the following

formula:

MON = 22.5 + 0.83RON − 20.0SG − 0.12%O + 0.5TML + 0.2TEL, (32)

with SG the specific gravity, %O the volume fraction of olefins, TML the
concentration of tetra methyl lead and TEL the concentration of tetra ethyl
lead. The TEL and TML are octane boosters. Moreover, this equation shows
that olefins tend to decrease the MON.

Other predicting laws were proposed for other mixtures. For instance,
Morgan et al. [114] mapped the octane numbers of TRF. Morgan et al.



2 .6 prediction methods applied to liquid fuels 45

Table 7: Coefficients to calculate the octane numbers of pseudocomponents in Equa-
tion 31 according to Riazi [8]

Hydrocarbon family a b c d e
n-paraffins 92.809 -70.97 -53 20 10

isoparaffins
2-methyl-alkane 95.927 -157.53 561 -600 200

3-methyl-alkane 92.069 57.63 -65 0 0

2,2-dimethyl-alkane 109.3 -38.83 -26 0 0

2,3-dimethyl-alkane 97.652 -20.8 58 -200 100

Naphthenes -77.536 471.59 -418 100 0

Aromatics 145.668 -54.336 16.276 0 0

Figure 22: RON of pseudocomponents of several hydrocarbon classes [8]. The dots
refer to the experimental octane numbers of pure molecules.

fitted several forms of response surface to evaluate the RON and the MON.
Specifically, Morgan et al. tried a linear-by-volume model, defined by:

RON = 120xtol + 100xiO + 0xnH (33)

and

MON = 109xtol + 100xiO + 0xnH (34)

Nevertheless, such a simple law cannot correctly predict the octane num-
bers. In fact, synergistic and antagonistic effects exist between the molecules.
For this reason, Morgan et al. proposed second order models with interaction
coefficients [114]. Thanks to these equations, the authors showed that the in-
teractions are especially present when toluene and iso–octane are mixed. The
different equations were also inverted, allowing to calculate the composition
of a TRF to get a predefined octane number.

The interest in ethanol blending has recently increased due to the presence
of bioethanol in fuels. Thus, Aronsson et al. proposed law to correlate the
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octane number of TRF mixed with ethanol with their composition [115]. To
do so, they rely on second order models.

The octane number can also be estimated by the mean of an IQT, a system
traditionally developed to determine the DCN of diesel fuels based on
ASTM D6890 [102]. Recent findings regarding the link between the ignition
delay time and the octane number have led to the estimation of the octane
number with an IQT. In 2015, Badra et al. achieved a good prediction of
the TRF research octane numbers with constant volume ignition delay times
calculated at 850 K and 50 atm [113]. Two years later, Naser et al. defined
the optimal temperature to predict the octane number of TRF and real fuels
[95]. This concept had later been extended in 2018 to introduce the ignition
delay time sensitivity, an equivalent of the octane sensitivity but determined
with ignition quality testers [97].

Other method exist to predict the octane number such as the group con-
tribution method. Albahri proposed the following formula to calculate the
octane number of a pure components [116]:

RON = a + b
(∑

i

ONi
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+ c
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(35)

with
∑

i ONi is the sum of the group contributions listed in Table 8 and 9.
The coefficients a, b, c, d, e and f are constants from Table 10. This formula
is valid for octane numbers from -20 to 120. However, these method lack
generality. They are not capable of predicting non linear interaction between
the functional groups.

A similar method was proposed by Meusinger et al.[117] where the in-
tegral regions obtained with a NMR analysis are used to calculate the ON.
The regions are sorted according to Table 11. The octane numbers can be
calculated with the integrals according to the following equations:

RONcal = 0.0759IA + 0.0747IB + 0.1276(IC + IH) + 0.1307(ID + II) + 0.1239IE

+0.188IF + 0.0204IG + 0.0933IK + 0.0437(IL − 3IF) + 0.1006IM, (36)

MONcal = 0.064IA + 0.034IB + 0.1058(IC + IH) + 0.0759(ID + II) + 0.1019IE

+0.1456IF + 0.0671IG + 0.0743IK + 0.0514(IL − 3IF) + 0.095IM. (37)

The factors that multiply the integrals give an information on the role of
each functional group on the octane number. MTBE (F), methanol (E), the
aromatic rings and methyl substituents (C+H) have the largest influences.
The difference between the RON and the MON informs about the sensitivity.
For instance, the alkyl substituent in the α position (G) have a strong influence
on the sensitivity. NMR methods are appropriate to estimate the octane
number as long as extrapolation is not requested, and as long as there is no
strong interaction coefficient. The methods relying on NMR requires only 30

minutes and 100 µl. Nevertheless, the separation of the olefin, n-paraffins
and iso-paraffins with NMR is a challenge. Therefore, this method may not
be accurate for fuels with a high concentration of olefins and paraffins.
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Table 8: Group Contribution for Estimation of the Octane Number

HC type Group RONi MONi

Paraffins

-CH3 -2.315 -0.202

>CH2 -8.448 -9.082

>CH- -0.176 -1.821

>C< 11.94 11.90

Olefins

=CH- 0.392 -2.293

>C= 8.697 2.703

=CH2 3.623 -0.254

=C= -37.37 -42.43

=CH- (cis) 6.269 2.725

=CH-(trans) 6.449 4.743

≡CH 18.36 21.36

≡C- -7.201 -12.96

Cyclic

>CH2 -4.421 -5.377

>CH- -2.177 -3.631

>C< 8.916 10.52

=CH- 2.879 -4.765

>C= 5.409 5.065

Aromatics

=CH- 3.591 9.725

>C= 2.382 -5.650

>C=(o) -1.768 1.712

>C=(m) 10.24 14.16

>C=(p) 11.51 10.09

2.6.2 Prediction of the cetane number

The cetane number evaluates the propensity for a fuel to autoignite under
the diesel condition. The determination of cetane number is costly because it
requires expensive products and an expensive engine, so, alternative methods
exist. Calculated cetane index (CCI) can be determined with the distillation
curve and the specific gravity:

CCI = 454.74 − 1641.41SG + 774.74SG2 − 0.554T50 + 97.083(log10T50)
2, (38)

with T50 the ASTM D86 temperature at 50%v in °C. This equation may give
bad results if additives are present in the fuel.

The diesel index (DI) is another characteristic parameter of diesel fuels.
It is related to the API gravity and the Aniline point (AP) (in °C) by the
following relation:

DI =
API(1.8AP + 32)

100

, (39)

CCI, DI and AP are empirically correlated as:

CCI = 0.72DI + 10, (40)

and

CCI = AP − 15.5. (41)

The n-paraffin content is also well correlated with CCI:

xP = 1.34CCI − 57.5. (42)
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Table 9: Group Contribution for Estimation of the Octane Number

HC type Group RONi MONi

Paraffins

-CH3 0.459 0.491

>C2H5 0.948 0.517

>CH2- 0.680 0.722

>α->CH- -0.139 -0.430

>β->CH- -0.362 -0.186

>δ->CH- -0.358 -0.768

α>C< -1.357 -1.983

β>C< -1.828 -12.88

Olefins

=CH- -0.078 0.454

=CH- (C#>5) -0.660 -4.438

α− > C ≡ -0.811 -1.542

β− > C ≡ -0.6441 -1.529

=CH2 0.119 -1.603

=C= 2.693 4.691

=CH- (cis) -0.409 -2.414

=CH-(trans) -0.387 -2.378

≡CH -1.267 -8.110

≡C- 0.603 -6.501

Cyclic

>CH2 0.400 -0.105

>CH- 0.122 1.301

>CH-(o) -0.330 1.199

>C< -0.800 -3.878

=CH- -0.064 0.206

>C= -0.356 -9.033

Correction for C3 ring -1.217 -2.521

Correction for C4 ring 1.117 -1.057

Correction for C7 ring 0.75 2.481

Correction for C8 ring -0.468 0.562

Aromatics

=CH- -0.202 -1.859

>C= 0.193 -1.912

>C=(o) -0.337 -3.151

>C=(m) -0.959 -3.141

>C=(p) -0.498 -1.449

Table 10: Group Contribution for Estimation of the Octane Number

ON use with Table a b c d e f
RON 1 103.6 0.231 -0.0226 0.001 1.42E-05 1.58

RON 2 104.8 -5.395 6.532 -5.165 0.6189 -0.0037

MON 1 88.87 0.212 -0.0093 0.00104 9.59E-6 0.339

MON 2 84.04 1.840 -1.452 -0.357 -0.0179 0

The cetane index is another estimation of the CN, given by the four variable
Equation. The four variable equation is known as:

CI = 45.2 + 0.0892T10N + (0.131 + 0.901B)T50N + (0.0523 − 0.42B)T90N

+0.00049(T10N
2 − T90N

2) + 107B + 60B2,
(43)
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Table 11: Chemical shift regions and corresponding structural groups

1H Class Structural Integral
chemical shift (ppm) group regions

8.0-7.4 Aromatics Naphthalene A
7.4-7.3 Benzene B
7.3-6.7 Substituted aromatics C
6.0-5.5 Olefins HHC=CHR D1

5.5-5.25 RCH=CHR D2

5.25-5.05 RRC=CHR D3

5.05-4.8 HHC=CHR D4

4.8-4.6 HHC=CRR D5

3.5-3.3 Oxygenates CH3-OH E
3.2-3.0 CH3-OC(CH3)3 F
3.0-2.7 Aromatics Ph-CH< G1

2.7-2.5 Ph-CH2- G2

2.5-2.1 Ph-CH3 and C=C-CH< H
2.1-1.85 Olefins C=C-CH2- I
1.85-1.4 Saturates and olefins -CH< K

-CH2-(cycl.)
C=C-CH3

1.4-1.1 -CH2- L
C=C-C-CH2-

Ph-C-CH3
1.1-0.5 -CH3 M

where:

T10N = T10 − 215,

T50N = T50 − 260,

T90N = T90 − 310,

(44)

TX is the X% distillation recovery temperature, in degrees Celsius,

B = exp(−0.0035DN) − 1, (45)

with DN = D− 850, where D is the density at 15 °C, in kg/m3.
Group contribution methods were developed to estimate the CN. With

this method, De Fries et al. proposed the following equation [118]:

CN =
∑

i

ficni, (46)

with fi the fraction of group i in the molecule and cni the group contribution
for group i. The groups could for instance be measured by NMR. This
method does no include ringed compounds and carbon-carbon double bonds.
As for the ON, the main issues with group contribution methods is the error
when another molecule than the ones of the training set is tested. In fact, the
predicting laws are especially fitted for the training set. The results are good
when the tested molecule is similar in size and shape to the molecules of
the training set, but the prediction are poor when the model is extrapolated.



50 2 from conventional fuels to asr fuels

One issue with existing group contribution methods is the lack of capacity in
predicting non linear interactions between the functional groups. This is true
for all the group but especially with oxygenated molecules. This is due to
the complexity of such properties that depend on a complex chemical kinetic
mechanism.

Additionally, attempts to create a single model to predict the RON, the
MON and the CN failed [119]. This is due to the difference between these
methods. Even if they all aim at characterising the autoignition, they do so
in largely different conditions.

2.6.3 Prediction of the composition

The composition of a fuel must be monitored because it controls the level of
pollutant thanks to a comparison with predefined threshold, and it gives a
first insight on the combustion behaviour. Models to predict the composition
of olefin-free and oxygenated-free petroleum fractions are reported by Riazi
[8]. Three equations are required to obtain the three unknowns: the fractions
of paraffin, naphthenes and aromatics. A first equation is given by:

xP + xN + xA = 1. (47)

For the two other parameters, two mixing laws can be applied:

θ= xPθP+xNθN+xA, (48)

where θ is a physical property and θP, θN and θA are the values of θ for the
model pseudocomponents from the three groups.

The comparison of four properties on Figure 23 shows that Ri and VGC are
appropriate properties. Average values of these parameters were determined
for each hydrocarbon class. They are listed in Table 12. Applying these
values with Equation 48 gives:

Ri = 1.0482xP + 1.038xN + 1.081xA, (49)

and

VGC = 0.744xP + 0.915xN + 1.04xA. (50)

Table 12: Average values of several properties for the considered hydrocarbon class.

Hydrocarbon class Ri VGC
Paraffin 1.0482 0.744

Naphthene 1.0138 0.915

Aromatics 1.081 1.04

These equations were modified based on a regression of 33 hydrocarbon
mixtures, which gives new constants modified by less than 2% [120, 121]:

Ri = 1.0486xP + 1.022xN + 1.11xA, (51)

and

VGC = 0.742xP + 0.9xN + 1.112xA. (52)
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Figure 23: Comparison of several properties (refractivity intercept, viscosity gravity
function, Watson factor, refractive index parameter) to distinguish the
hydrocarbon class fractions (n-paraffin, napthene and aromatic (PNA))
adapted from [8].

The resolution of Equations 47, 51 and 52 gives for fractions with molecular
weight between 200 and 600:

xP = −9.0 + 12.53Ri − 4.228VGC, (53)

xN = 18.66 − 19.9Ri + 2.973VGC, (54)

xA = −8.66 + 7.37Ri + 1.255VGC. (55)

Similar equations were developed for fuels with a kinematic viscosity less
than 38 SUS with the VGF. Moreover, additional data were added to modify
the Equations 53 to 61 [122]. Finally, the following equation can be used to
estimate the paraffin, naphthene and aromatic fractions in heavy and light
petroleum fractions.

For light fractions with M6200:

xP = −13.359 + 14.4591Ri − 1.413344VGF, (56)

xN = 23.9825 − 23.33304Ri + 0.81517VGF, (57)

xA = 1 − xP − xN. (58)

For light fractions with M>200:

xP = 2.5737 + 1.0133Ri − 3.573VGC, (59)
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xN = 2.464 − 3.6701Ri + 1.96312VGC, (60)

xA = 1 − xP − xN. (61)

These equations can give a negative value for the one of the fractions. In
that case, it should be set to zero. This shows a first limit of this methodology.

If the kinematic viscosity if not available, other correlations were developed
based on other parameters. They are SG, m and CH and the equations are
given thereafter.

For light fractions with M6200:

xP = 2.57 − 2.877SG + 0.02876CH, (62)

xN = 0.52641 − 0.7494xP − 0.021811m, (63)

or:

xP = 3.7387 − 4.0829SG + 0.014772m, (64)

xN = −1.5027 + 2.10152SG − 0.02388m. (65)

Then, the aromatic fraction can be calculated with Equation 61. These
equations were evaluated with the PNA composition of 85 fractions in the
molecular weight range of 78 to 214 and give average deviation of 0.05, 0.08

and 0.07 for xP, xN and xA, respectively with Equations 62 and 63. For
Equations 64 and 65 the average deviations were 0.05, 0.086 and 0.055.

For fractions with M>200:

xP = 1.9842 − 0.27722Ri − 0.15643CH, (66)

xN = 0.5977 − 0.761745Ri + 0.068048CH, (67)

or:

xP = 1.9382 + 0.074855m − 0.1966CH, (68)

xN = −0.4226 − 0.00777m + 0.107625CH. (69)

These equation were evaluated with the PNA composition of 72 fractions in
the molecular weight range of 230 to 570 and give average deviations of 0.06,
0.06 and 0.02 for xP, xN and xA, respectively.

Equations 64 and 65 were expanded for heavier fractions (between 70 and
250) [123]:

xP = 3.2574 − 3.48148SG + 0.011666m, (70)

xN = −1.9571 + 2.63853SG − 0.03992m. (71)
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The aromatic content can also be calculated in another way. When the
aromatic content is high (up to 96%), it may be divided into monoaromatics
and polyaromatics, and relying on the following equations results in the
calculation of the total amount of aromatics [122].

xMA = −62.8245 + 59.90816Ri − 0.0248335m, (72)

xPA = 11.88175 − 11.2213Ri + 0.023745m, (73)

xA = xMA + xPA. (74)

These formula are valid for a molecular weight range from 80 to 250. These
equations give an average deviation of 0.055, 0.065 and 0.063 for xMA, xPA
and xA, respectively.

The formula exposed in the current section give good result but they can
only be applied to fuels with no olefins and no oxygenates. However, it will
be showed in chapter 5 that fuels produced from ASR have high fractions of
these types of molecules.

2.6.4 Definition of surrogate fuels

The RON, the MON and the CN are measurement of ignition delay times
in a specific engine (CFR engine) under predefined conditions. They are
good indicators of the behaviour of a fuel. Thus, simulations are sometimes
required to get a more precise prediction. Nevertheless, doing these simula-
tions with real fuels is impossible because they are too complex, composed
of hundred of molecules. Thus, the complex fuel is usually substituted by
a surrogate fuel, i.e. a blend of a small number of molecules with similar
properties than the complex fuel. Combustion scientists rely on surrogate
fuels to have an a priori insight on a diesel [83, 124], jet fuel [124], naphta
[125] or gasoline [126–128] behaviour through simulations or experiments.

Examples are first given for simulations. Autoignition was studied with a
gasoline surrogate fuel by Andrae et al. thanks to parametric simulations
as the phenomenon depends on the operating conditions [128]. Moreover,
Agbro et al. studied the influence of n-butanol blended with TRF (n-heptane
+ iso-octane + toluene) in a modelled spark-ignition engine with a particular
attention on knock [127].

Surrogate fuels can also be tested experimentally during a pre-design
phase to improve the engine settings. For instance, Andrae et al. discussed
the autoignition of four gasoline surrogate fuel blends depending on intake
temperature and pressure in a homogeneous charge compression ignition
(HCCI) engine [129]. Additionally, the surrogate fuel can be studied in
simple reactors such as jet stirred reactor and shock tube to investigate
the ignition delay [130]. Other properties than the ignition delay can be
studied experimentally. Perez et al. investigated the thermal efficiency,
the combustion phasing and the maximum pressure rise rate of gasoline
surrogate fuels in a Ricardo Hydra single-cylinder engine under HCCI [126].
Similarly, Vallinayagam et al. tested experimentally a surrogate light naphtha
and analysed the ignition delay, the pressure curve, the stratification and the
emission levels [125].

Preliminary conclusions on a surrogate fuel can be applied to the real
fuel as long as the two fuels behave similarly in the final installation. This
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behaviour is a consequence of physical laws applied to the fuel properties.
Thus, the properties of the surrogate fuels are selected and designed accord-
ingly. Specifically, the selection depends on the application. Moreover, their
value matches with the properties of the real fuel. To sum up, the designed
properties are the central point from which the surrogate formulation flows
towards the final usage. For instance, extinction and autoignition in laminar
non premixed flows reproduced some ignition characteristics of JP-8 and
Jet-A [131]. Similarly, Knop et al. validated octane number-based surrogate
fuels in controlled auto-ignition (CAI) combustion engines [85, 132]. To go
further, applications with a direct injection requires the fuel evaporation
characteristics to be matched. As exposed by Pitz et al. and Sarathy et al., a
wide range of properties exist for gasoline [133] and diesel [83] fuels, which
offer different angles of attack to formulate a surrogate fuel, depending on
the final application.

As previously depicted, the properties of a surrogate fuel are designed
to match with the properties of a real fuel, such as the RON and the MON.
This very basic concept raises an issue if the properties cannot be measured
for technical reasons. During their design phase, unconventional fuels are
expensive and scarce. Under these conditions, the RON and the MON cannot
be measured. As an answer, pivot properties substitute the usual properties.
In this recent concept of indirect design, the molecular scale often substitutes
the macroscopic scale. For instance, the functional groups [134], or the carbon
types [86], are pivot properties that have a direct consequence on underlying
properties, for instance the RON and the MON. However, the surrogate
fuel must be validated after its formulation, so, additional tests are required.
Abdul Jameel et al. [134] relied on rapid compression machine (RCM) tests.
We propose an alternative to the ON as target properties in chapter 8. The
results of tests in a RCM are used instead of the RON and the MON.
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The current chapter summarizes the methodologies used to formulate the
models. Samples were generated following latin hypercube sampling (LHS).
Set of variables were selected relying on a principal component analysis
(PCA) and regression were based on artificial neural network (ANN). Finally,
the parameters of a model were determined relying on Bayesian inference.

3.1 latin hypercube sampling

In the current thesis, LHS was used as space filling design. Designs of
experiments were detailed by Iavarone in its introduction of LHS [135].
Designs of experiments can be seen as the design of computer experiments
where a computer experiment can be seen as a blackbox with inputs and
observed outputs (targets). The objective of design of experiments is to
perform the smaller number of experiments with the larger number of
information on the output. LHS is a modern design of experiments statistical
method for generating sample of a parameter and which optimizes the space
covering. LHS can easily be represented into two dimensions but can be
realized in a space of dimension n. A square grid is plotted with hypothetical
sampling positions. Let the studied ranges be [0,1]. They can be divided into
M intervals Ik such as:

Ik = [
k − 1

M
,

k
M

], for k = 1...M. (75)

Then, each line and column must be occupied by a sample point as showed
on Figure 24. This figures show that the space filling may not be optimal
as the first figure is almost diagonal and the middle of the second is almost
empty. As a solution to this, a convergence study was performed with each
carried out LHS and several iterations were performed to ensure the space
to be correctly filled.

A Latin hypercube is the generalization of a Latin square with a number
of dimensions n with n>3. To perform LHS, let’s consider M samples with
N components each. N permutations of the samples are realized randomly
and uniformly among the N! possible permutations. πi being a single
permutation, the i-th component of the j-th sample is obtained by randomly

55
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picking a value in the interval Iπi(j) where πi(j) is the j-th element of the i-th
permutation. An advantage is that random samples can be chosen one at a
time, remembering which samples were used.

Figure 24: Examples of latin hypercube sampling with 4 samples. Each line and each
column are occupied by one sample, which optimizes the space covering.

3.2 principal component analysis

The origin of PCA is associated with the work of Pearson (1901) and Hotelling
(1933). Behind the concept of PCA, we aim at reducing the dimensionality of
a dataset composed of a large number of variables which depends on each
others. The relationship of these variables is sought in order to transform the
initial data into a new set of variables, the principal components, which are
uncorrelated. This way of proceeding reduces the dimensionality but keep
as much as information as possible.

Suppose that X is a matrix of n random variables, each of these variables
being defined by p observations. A way of proceeding these data would be
to look at the variances and covariances. As an alternative, relying on linear
algebra is a way to consider the original data into a new coordinate system.
In this new coordinate system, the original information will be conserved
but the dimensionality of the data will be reduced.

In the original coordinate system, each observed variable x can be written
as

αᵀ
x =

n∑
j=1

α1,jxj (76)

In a new coordinate system, we can consider a linear function αᵀ
x, un-

correlated with αᵀ
x and having maximum variance. This process can be

conducted k times so that αᵀ
kx has maximum variance and is uncorrelated

with αᵀ
x, αᵀ

x, ..., αᵀ
k−1x. The k-th derived variable is the k-th principal

component. We assume that the number of principal components is lower
than the original number of variables n as the variance is limited around
certain dimensions.

To illustrate, let us consider the simple case where n=2. Figure 25 shows
20 observations on two highly correlated variables x1 and x2. If we change
the coordinate system to the principal components, we obtain the plot in
Figure 26. In this new coordinate system, most of the variation is captured
by the first direction z1 while the second z2 contains few information.
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Figure 25: Plot of 20 observation on two variables x1 and x2.

Figure 26: Plot of the 20 observation projected onto their principal components z1

and z2. The variance is almost entirely captured by the first direction.

If we consider a system with p dimensions, where p is large, the projection
of the original data onto the principal components, will concentrate the
information on the firsts principal components while for the lasts principal
components, only a small amount of the variance will be represented.

The data considered until this point must be centered and scaled. This is
particularly important for multivariate data, for instance for data expressed
under different units or scales. This is illustrated by Figure 27. To center the



58 3 methodology

data, each observation is subtracted by the mean of each variable so that we
are considering a variations comparing to a mean. Then, the scaling is the
division of the remaining quantity by a scaling factor.

x̃ =
x − x̄
d

(77)

The scaling factor, d, depends on the method used. In the current thesis,
we consider several scaling methods: Auto, Range, Vast. The scaling factor
for each of these method is respectively the standard deviation, the difference
between the maximum and the minimum of each variable and the product
between the standard deviation and the so-called coefficient of variation,
defined as the standard deviation divided by the mean value.

Figure 27: Illustration of the importance of centering and scaling. Thanks to these
procedures, the data can be compared between each others.

The principal components have been defined, now we detail how to find
them. This is based on the covariance matrix of the data x. This covariance
matrix is composed of (i, j)th elements which are the covariances between
the ith and the jth elements of x and the variance of the ith element of
x when i=j. The kth principal variable is given by zk=αᵀx where αk is
an eigenvector of the covariance matrix corresponding to the kth largest
eigenvalue λk. Moreover, if the eigen vector is chosen to have unit length,
then var(zk) = λk.

The advantage of working with principal components is the possibility to
reduce the dimensionality by selecting a subset of variables. In fact, when the
number of observed variable n is large, there is often a subset m of variables
such as m<<n which contains all the information available in all n variables.
Then, the problem is to define what is the optimal number m and how to
retain the m variables.

In the current thesis, the number of selected variables is defined by
analysing the percentage of the observed variance, defined by:

p =

∑m
i=1

λi∑n
j=1

λj
(78)
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where λ are the eigen values. When this percentage reaches 99%, the number
of eigen vectors was considered to be enough [136].

Then, to select the principal variables, several methods were considered,
the B2 and the Procrustes methods. First, with the B2 method, let us consider
that m variables must be deleted. The last m principal components are
a combination of all the original variables. Each variable has a certain
weight, indicating how much that variable is represented by the principal
component (PC). Then, the variable with the highest weight for the last PC
is deleted. This process is repeated until m variables are deleted.

For the Procrustes method, let us consider X that is to be reduced to
a smaller size. Each variable is deleted from this matrix, which gives p
matrices X̃. PCA is applied to obtain the corresponding Z and Z̃ matrices. A
Procrustes analysis is applied to each of these matrices. This means that p
coefficients M2 are calculated to evaluate the differences between Z and Z̃.
These coefficients are given by:

M2 = Tr(ZZ ′ + Z̃Z̃ ′−2σ) (79)

where σ is the matrix of the values obtained from the decomposition of the
square matrix Z̃ ′Z.

3.3 artificial neural network

ANN is a non linear, multivariate regression model [12]. It is a machine learn-
ing tool based on statistic which can learn complex relationships between
inputs and outputs. They are specifically powerful to capture non-linear
and complex relationships. ANN are computational models consisting of
interconnected nodes that represent features or attributes of the analyzed
dataset, which form a network. An ANN is a directed graph consisting of
multiple layers of interconnected nodes. The nodes are structured in layers.
Each ANN has a single input layer, one or several hidden layers and a single
output layer.

We detail the basic ANN model, which can be described by a series of
functional transformations [12]. Let us consider the input variables x1, ..., xn.
The first transformations are M linear combination of the input variables:

aj =
n∑
i=1

w(1)
ji xi+w(1)

j0 . (80)

The superscript (1) indicates that the corresponding parameters are the first
layer of the network. The parameters wij are the weights and the parameters
wj0 are the biases. The variables aj are called activations. Each of them is
then transformed with a non linear activation function h:

zj = h(aj). (81)

The values zj are called hidden units. The nonlinear functions h are generally
chosen to be sigmoidal functions such as the logistic sigmoid function or the
tanh function. These quantities are again linearly combined to obtain the
output unit activations:

ak =
∑m

j=1

w2

kjzj + w(2)
k0

(82)

with k=1...K, and K is the total number of outputs. This transformation
corresponds to the second layer of the network and the wk0 are the bias
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parameters. Finally, the output unit activations are transformed with an
appropriate activation function to give a set of network outputs yk. The
activation function is set depending on the nature of the data and the
assumed distribution of target variables. For standard regression problems,
the activation function is the identity so that yk = ak. For multiple binary
classification problems, each output unit activation is transformed using a
logistic sigmoid function so that

yk = σ(ak), (83)

where

σ(a) =
1

1 + exp(−a)
. (84)

Combining these various stages gives the overall network function:

yk(x, w) =σ

( M∑
j=1

w(2)
kj h

( D∑
i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

k0

)
(85)

where w is the vector composed of all the weights and biases. Figure 28

shows a graphical representation of Equation 85.

Figure 28: Network diagram for the neural network corresponding to Equation 85.
[12]

3.4 bayesian inference

The last section of the chapter on methodology deals with Bayesian inference.
The methodology described in the present thesis is inspired from the work
of Josephson et al. [137] et al. who themselves refer to Gelman [138].

The objective of applying Bayes’ law is to set the correct values for model
parameters knowing some experimental values.

Bayes’ law is given by

fX|Y(x|y) ∝ fY|X(y|x)fX(x) (86)

where x is a vector of the parameters to be determined of a given model and
y is a vector of experimental data values, f refers to a probability density
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function (PDF). This equation means that the probability of getting a set of
parameters given the experimental data is proportional to the probability of
getting the data given a set of parameters times the probability of getting the
parameters. We aim at calculating the term of the left, also called posterior.
On the right, we have the likelihood fY|X(y|x) and the prior fX(x).

The likelihood fY|X(y|x) represents the probability of the experimental data
y with a set of parameters x. Each data is a matrix of n experiments, each
being separated in p observations. Then, each data point is yz,i with z the
experiment and i the observation. Each data point is compared with the
model value µz,i calculated with a set of parameters x. We compare the
difference between the experiment and the model which give the following
form for the likelihood:

fY|X(y|x) =
ne∏
z=1

nz,i∏
i=1

p(yz,i|µz,i(x)) (87)

where ne is the number of experiments and nz,i the number of observations
in the experiment z. p(yz,i|µz,i(x)) is the probability to get an observation
compared to the evaluated point with a set of parameters x.

p
(

yz,i|µz,i(x)
))

=

1√
2πσ2

exp

(
−

(
yz,i − µz,i(x)

)2
2σ

) (88)

When the uncertainty has been quantified, σ can be calculated in terms of
quantified uncertainty.

The prior fX(x) represents an initial knowledge for the parameter x. This
function can be a result of a first study. If no information is available, the
distribution would be rectangular.
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4.1 introduction

The fuel considered in the current thesis is a new and uncharted fuel. There-
fore, it is important to test it in a simple engine before any further study.
This will provide us a first insight on the fuel behaviour to answer basic
questions such as: does the fuel is able to burn? Does the fuel burn simi-
larly than a conventional diesel? Is the fuel hazardous for the engine? The
current section answers these questions. A particular attention is devoted in
characterizing the ignition delay time (IDT). In fact, in reactivity controlled
compression ignition (RCCI), the high reactivity fuel (the heavy fraction) is
injected directly in the combustion chamber, which trigger the combustion
after a given IDT. Thus, being able to compare this IDT to a conventional
diesel fuel is important to adapt the injection timing accordingly.

4.2 post-processing of experimental data

Before digging further, let us develop the theoretical laws to post-process the
data. For instance, calculations gives the heat release rate (HRR).

The first law of thermodynamics applied to a closed system gives:

dU =δW + δQ, (89)

with δW = −pdV

dU = −pdV+δQ. (90)

We introduce the fraction of burned gas, xb defined by

xb =
mb

mu + mb
, (91)

where mu and mb are respectively the masses of the unburned and burned
gases.

Then, equation 90 can be written as

mcVdT + m(ub − uu)dxb = −PdV+δQ. (92)

m(uu − ub)dxb is the change of energy due to the combustion. Therefore,
the previous equation can be written as:

mcVdT = −pdV+δQ + δQcombustion. (93)
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With the ideal gas law, this equation becomes:

cV

R
(pdV + VdP) = −pdV+δQ + δQcombustion. (94)

Or, written differently, and introducing δQwalls = δQ :

dQcombustion
dθ

= −
dQwalls

dθ
+ (1 +

cV

R
)p

dV
dθ

+
cV

R
V

dp
dθ

. (95)

In this equation, dp
dθ is obtained thanks to the measured pressure and crank

angle. The heat transfer to the walls, dQwalls
dθ is calculated with the Woschni

empirical model for convection and dV
dθ is calculated with a rod/crank kine-

matic model obtained with trigonometry [139–141].

4.3 comparison with conventional diesel

After its production, the crude-oil like fuel is distilled, giving a heavy (diesel-
like fuel) and a light fraction (gasoline-like fuel). In RCCI, the two fuels are
injected in the engine. The light fraction is injected via a port-fuel injector and
the heavy fraction is injected directly in the cylinder. In the current chapter,
we focus on the reactivity of the heavy fraction while the light fraction will be
discussed in the other chapters. In order to get a first insight of ASR-derived
fuels, the heavy fraction was burnt in a compression ignition (CI) engine. In
this section, we compare the combustion of a conventional diesel with the
heavy fuel produced from automotive shredder residues (ASR).

The test bench is presented on Figure 29. The engine is a one cylinder 555cc
Petter AVB Lab engine. This type of engine is a modification of the standard
AV series for research. The AV series equip agricultural machineries, which
makes it very robust. For instance, the injection is provided by a simple
mechanical pump, controlled by a cam. Therefore, no electronic or sensitive
parts could be damaged by the unconventional fuel. A Bosch HFM 5 returns
the air flow and its temperature. The fuel mass flow is measured with a
weighting scale Kern PKS. DHT22 sensors monitor the temperature of the
fuel, the oil and the cooling water. The cylinder head was bored to fit in
a Kistler dynamic pressure sensor 7061C whose signal is amplified by the
amplifier Kistler 5015A. The crank angle is also monitored with an encoder
WDG 58B 4096, which allowed us to obtain the pressure trace in the cylinder
according to the crank angle. The crank angle gives also the engine speed
in revolution per minutes. The sensors are coupled to an acquisition card
National Instrument 6351 which is connected to the computer via USB. The
engine is coupled to a Eddy current brake Zöllner A160. This brake applies
an adjustable load and returns the torque measured on the engine shaft.

The test procedure is the following. The engine is started with conventional
diesel from the fuel station. 200mL of the unconventional fuel from ASR to
be tested fills a beaker. The fuel is heated up to 60°C to avoid any obturation
and overpressurization in the fuel line and in the pump. A manual shift
allows the user to commute from the tank filled with conventional diesel
to the beaker filled with the sample that is to be tested. This sample is
injected when a stationary operation is achieved. After 50 engine cycles (100

crankshaft rotations), the data are saved.
Two different unconventional heavy fuel fractions from ASR are compared

according to this test procedure. Before discussing the results of the tests,
let us compare their properties, specifically their cetane index which are
reported in Table 14. In the same table, the regulations for road diesel,
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Figure 29: Schematic representation of the test bench.

Table 13: Specifications of the Petter AVB Lab engine.

Engine type Diesel, 4 strokes, 1 cylinder
Displacement 555 cm3

Compression ratio 15.3
Fuel injection timing 24° before TDC
Inlet valve opening 4.5 before TDC
Inlet valve closing 35.5 after BDC

Exhaust valve opening 35.5 before BDC
Exhaust valve closing 4.5 after TDC

Bore 80 mm
Stroke 110 mm

distillate marine fuels and distillate fatty acid methyl esters (FAME) fuels
are given. The cetane index are calculated according to ISO 4264 with the so-
called four variable equation (Equation 43). The cetane index is an equivalent
to the cetane number (CN). The CN indicates if a fuel is likely to auto-ignite.
More information on the CN and on the cetane index is reported in sections
2.5.3 and 2.6.2, respectively.

As showed by Tables 14 and 15, the calculated cetane index of the two
ASR fuels are low. This corroborate the ignition delay of Figure 30 which is
higher for the first ASR fuel than for the conventional diesel. The HRR shows
that the combustion of the ASR fuel 1 is faster and more abrupt than the
combustion of the conventional diesel. The peak pressure rise rate (PPRR)
is equal to 3.09 bar/CA° with the conventional diesel against 6.27 bar/CA°
with the ASR fuel. Moreover, the exhaust temperature is 240°C higher with
the ASR fuel. The cetane index of the second ASR fuel is too low, which
makes the ignition delay too high for the fuel to ignite, as shows Figure 31.

4.4 endurance test with silicon oxydes

In Section 1.2, the process to produce the fuel was discussed. It includes a
mixing of the crude oil-like fuel with NaOH to remove inorganic compounds
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Figure 30: The pressure curve and the heat release rate of conventional diesel and
the fuel 1 from ASR present different shapes. The combustion duration is
longer with conventional diesel and more intense with the fuel 1 derived
from ASR. The IDT is also higher with the fuel derived from ASR.

Table 14: Calculated cetane index of two heavy fuel fractions derived from ASR.

Cetane index
ASR fuel 1 36.6
ASR fuel 2 24.6

Table 15: CN of reference fuels.

Lower limit (CN)
NF EN 590(road diesel) 51

Distillate Marine X 45

Distillate Marine A 40

Distillate FAME A 40

Distillate Marine Z 40

Distillate FAME Z 40

Distillate Marine B 35

Distillate FAME B 35
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Figure 31: The fuel 2 from ASR does no ignite because the IDT is too long.

such as silica. This step was not always followed up during the process. The
current section shows why such a step is crucial.

Among the two fuels studied in the previous section, only the first fuel
reacts. This is due to the properties of the fuels measured via the calculated
cetane number. On the opposite, fuel 2 has a too low calculated cetane
number (Table 14). The current section present the results of an endurance
test with the fuel 1. We were previously talking about the importance of
removing the silica. The tested fuel did not receive such a treatment, which
cause the failure of the engine. More information on this failure is given
thereafter.

Before the test, the engine was refurbished with a new piston, a new
cylinder, new liners, a new pump and a new conrod (Figure 32). Moreover, a
complete metrology was accomplished. The metrology was in accordance
with the engine specifications. It shows that the engine was in good state
before the test.

The performance of the engine as represented on Figure 33. This Figure
shows the pressure profiles compared with a reference time when the en-
gine performed well. After twenty minutes, the engine showed an erratic
behaviour. Then, the engine performances declined. To maintain a con-
stant engine speed and torque, the gas potentiometer had been increased.
Moreover, the in-cylinder pressure declined.

We dissembled the engine to diagnose the cause of the failure. The piston
showed a black trace on its side and the cylinder shows vertical scratches
which testify a leak. The cylinder was not tight anymore, which explains
the pressure losses. Moreover, the piston shows black and green particle
deposits.

Particles from the piston were gathered and analysed by thermogravimetric
analysis. With this method, the mass of a substance is monitored as a function
of temperature. The sample showed 85% of organic matter and 15 % of ashes
(Figure 35).

The 15% of ashes were analyzed with Scanning Electron Microscopy
(SEM) with Energy Dispersive X-Ray Analysis (EDX). This is a technique to
determine the elemental composition of a sample. The results of this analysis
shows the high content of oxygen and silica (Figure 36). Thus, silicon oxide
is the solid which damaged the engine during the endurance test.
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Figure 32: New parts of the Petter AVB Lab. The piston was also refurbished.

Figure 33: Decline of the engine behaviour during the endurance test.

4.5 endurance test without silicon oxydes

Combustion tests were carried out in the same engine with four additional
fuels derived from ASR. Conversely to the fuel of the previous section,
the silica was removed from the fuel thanks to the addition of NaOH. A
comparison of the four fuels with conventional diesel is first done. Then, the
results of the endurance test are reported.
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Figure 34: Left: Black trace on the side of the piston. Middle: Vertical scratches in the
cylinder. Right: Cylinder head with black and green deposits.

Figure 35: Thermogravimetric analysis of combustion deposits. Evolution of the mass
depending on the calcination temperature.

Figure 36: SEM-EXD spectrum shows the presence of silica.

4.5.1 Comparison of four fuels derived from ASR

Four fuels produced from ASR were tested in the same piston engine. The
fuels were tested under similar conditions (near 3kW and near 1360rpm),
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except for the fuel 1 for which the rotational speed was slightly low (Figure
37). Keeping the exact same operating conditions was hard due to a manual
setting of a mechanical shaft.

Figure 37: The test conditions for all the fuels were around 3kW at 1360rpm.

The pressure profile and the HRR for all the fuels are compared with the
pressure profile and the HRR obtained with conventional diesel. With the
fuels derived from ASR, the IDT is longer and the combustion is more abrupt
(Figures 38 and 39). The HRR shows that the IDT of the four fuels are similar.
Nevertheless, fuels 2 and fuel 4 have lower HRR than fuels 1 and 3.

Figure 38: Pressure profiles obtained with the four fuels derived from ASR compared
with conventional diesel.
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Figure 39: Heat release rates obtained with the four fuels derived from ASR compared
with conventional diesel.

The production of CO and NO of the four fuels are also compared with
the conventional diesel. The CO tends to decrease while the NO tends to
increase. The increase of NO could be due to an increase of the HRR.

Figure 40: The fuels produced from ASR tend to produce less CO and more NO than
conventional diesel. The uncertainty is 5% for the two molecules.

The pressure profiles and the HRR of these four fuels (obtained in 2020)
are quite similar compared with those of the diesel. Nevertheless, they can be
sorted by pairs as shown by the HRR. They are compared with the pressure
profile and the HRR of the fuel that produced silicon oxides (obtained in
2014) of the previous section on Figures 41 and 42. The pressure raise is
similar although the fuel from 2014 is slightly more reactive.

4.5.2 Endurance test

The four fuels of the previous section were burnt each one after another to
accomplish an endurance test without silica. These four fuels compared in
the previous section gave similar result in terms of combustion. The pressure



72 4 first insight of asr-derived fuels in a compression ignition engine

Figure 41: Pressure profile obtained with the four fuels derived from ASR(2020)
compared with the fuel that produced silicon oxides (2014).

Figure 42: Heat release rates obtained with the four fuels derived from ASR(2020)
compared with the fuel that produced silicon oxides (2014).

curves of each fuel were similar. Thus, a change of fuel has a negligible effect
on the pressure curve. Therefore, if considerable difference in the pressure
curve would be noticeable during the endurance campaign, they must be
inferred to a change in the engine behaviour.

The results of the endurance are shown on Figure 43. The HRR was
computed and is reported on Figure 44.

The engine was hot and in steady state at 10:00 am. This condition is the
reference point. The plots obtained at 10:42 am and 11:02 am correspond
to the fuels 1 and 2. The plot is similar to the ones of the previous section.
The ignition delay, the pressure derivative and the ignition delay are higher
than the reference diesel at 10:00 am. These characteristics were previously
observed.

The plots obtained with the fuel 3 at 11:40 and 12:08 are very different than
the ones obtained with the previous fuel 1. The ignition delay is higher while
the maximal pressure decreased. Moreover, the ignition delay increased.
It was showed in the previous section that the fuels 1, 2, 3 and 4 behave
similarly. Thus, the difference observed is a consequence of the engine
behaviour. As a conclusion, a degradation of the autoignition condition
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Figure 43: Results of the endurance campaign without Si atom in the fuel.

Figure 44: Heat release rates obtained during the endurance campaign without Si
atom in the fuel.

occurred between the fuels 1 and 3. This degradation could be caused by the
pressure peak which is higher than with conventional diesel. The analysis
of the HRR corroborate this hypothesis because the HRR increases abruptly.
Additionally, a leakage at the cylinder-head gasket was observed.

At 12:18, conventional diesel was burnt. We observe a pressure trace
similar than the reference at 10:00 but the ignition delay is slightly higher.
The deterioration of the engine affects more the fuel derived from ASR than
the conventional diesel. This can be explained by the higher ignition delay
of the fuel derived from ASR. In fact, the pressure loss due to the engine
degradation is low, thus it has a negligible effect on the conventional diesel
that has a lower auto-ignition delay that the fuel derived from ASR.

The analysis of the data acquired between 11:02 and 11:40, minute after
minute, allowed us to determine the exact time where the cylinder head
gasket lost its properties. This failure clearly appeared between 11:38 and
11:39 (Figures 45 and 46). The failure is probably due to a combustion too
abrupt, with a too high pressure rise rate.
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Figure 45: Pressure profile between 11:38 am and 11:40 am. The failure appears
between 11:38 am and 11:39 am.

Figure 46: Heat release rates between 11:38 am and 11:40 am. The failure appears
between 11:38 am and 11:39 am.

The analysis of the pollutant also shows the degradation of the cylinder-
head gasket (Figure 47). The CO increase could be due to the fact that oil
was burnt or to a later combustion.

4.6 conclusion

In the current chapter, heavy fuel fractions produced from ASR were studied
in a CI engine. From a technical point of view, it has been showed that
removing the silica is crucial in order to burn safely the fuel. Else, the
formation of silicon oxide may damage the cylinder. Moreover, it was
showed that the heavy fraction from ASR tends to have a higher ignition
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Figure 47: Pollutant emissions during the endurance test without Si atom in the fuel.
The CO concentration increases along the test.

delay than conventional diesel fuel. This observation comes with a more
abrupt heat release with a higher peak pressure raise rate.

It was showed that the high fraction from ASR has a longer ignition delay
than conventional diesel. Relying on a programmable electronic control
unit (ECU) is a solution to modify the ignition timing of the high reactivity
fuel. This will enables the fuel to have enough time to react with an advanced
ignition timing. Moreover, we could cope with the variation of the fuel by
changing the injection timing dynamically. Consequently, the remaining part
of the thesis aims to characterize the low-reactivity fuel.

The second challenge to tackle is the ignition delay of the low-reactivity
fuel. The premixed charge of low-reactivity fuel and air needs to ignite after
the end of the compression so that no knock occurs. The auto-ignition of
the low-reactivity fuel is governed by its chemical behaviour, govern by its
composition and structure. The composition can be used to understand
how the fuel reacts. Thus, being able to predict the composition of the
low-reactivity fuel is important. Moreover, having some information on
the fuel composition enables to set limit in terms of pollutant emissions,
as done for conventional fuels. Knowing the composition is important but
other properties exist to estimate the fuel reactivity. The research octane
number (RON) and the motor octane number (MON) are two interesting
properties of light fractions that traduces the resistance towards an end-gas
auto-ignition.
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The content of this chapter has been published in the following scientific
article:

Steven Tipler, Alessandro Parente, Steffen H. Symoens, Marko R. Djokic,
Kevin M. Van Geem, Francesco Contino, and Axel Coussement. Prediction
of the piona and oxygenate composition of unconventional fuels with the
pseudo-component property estimation (pcpe) method. application to an
automotive shredder residues-derived gasoline. In WCX World Congress
Experience. SAE International, apr 2018

5.1 introduction

Being able to approximate the fuel composition from easy to quantify proper-
ties that are measured anyway for technical needs (like the viscosity) enables
two targets to be hit with one single set of tests. Knowing the composition
enables us to get several information. The other properties (such as the
octane numbers) can be estimated with the pseudo-component method as
long as the composition is known. Knowing all these properties enable
the producer to monitor the fuel and to retrofit the production parameters
according to the fuel properties. Knowing the composition of the fuel is a
way to understand its reactivity. Additionally, from a more theoretical point
of view, the variation of the fuel properties can be explained when a variation
of the composition is observed. Moreover, the composition can be compared
to predefined thresholds in order to quantify its toxicity and the pollutant
emissions, as done in the regulations for conventional fuels.

Methods exist to estimate the fuel composition if it cannot be measured
experimentally but those have many limits. Riazi summarized the American
Petroleum Institute (API) methods [8] based on the weighted average of
the n-paraffin, napthene and aromatic (PNA) group properties. However,
because of the unconventional nature of the fuel which could be composed of
many olefins and oxygenates, the existing methods cannot be applied directly.
This chapter outlines a methodology to build a model for estimating the
n-paraffin, iso-paraffin, olefin, napthene, aromatic and oxygenate (PIONAOx)
composition of any fuel. As an example, a model suited for an ASR-derived
light fraction was established. Using the present method enables the estima-
tion a fuel composition with easy to quantify properties.

The first section explains the methodology, from a general overview to
a more precise description of the experimental tests carried out and of
the numerical database setting. In the second section, the mathematical
formulations behind the pseudo-component properties, and the problem
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resolution are defined. The third section explores the accuracy of the model
compared to the confidence interval of comprehensive two dimensional gas
chromatography (GC × GC) measurements for a fuel composition.

5.2 description of the method

5.2.1 Basis of the method

Since the conventional API (Riazi-Daubert) models [8] were developed to
predict the PNA composition of usual fuels, the current work elaborates an
overall methodology to build a new model especially adapted to predict the
PIONAOx composition of any fuel.

The model was built based on a reference fuel whose composition repre-
sents well the studied type of fuel. If another fuel is to be studied, two cases
have to be considered.

If the studied fuel is an automotive shredder residues (ASR)-derived fuel
with a composition close to the fuel used as a reference in the present chapter
(with molecules similar than the major molecules identified in Table 16),
the proposed model could be applied directly and only the fuel properties
characterized by the American Society for Testing and Materials (ASTM)
standard test methods are mandatory to estimate the PIONAOx composition.
Further work is required to study the achieved accuracy with a deviation of
the reference fuel composition.

For another type of fuel (i.e. a fuel with molecules dissimilar to the
major molecules identified in Table 16), the molecular information of a
reference fuel has to be defined so the experimental PIONAOx composition
and the major components analysed by GC × GC and gas chromatography
(GC)-mass spectrometry (MS) respectively are also mandatory to run the
whole methodology and create a new model. Then, the model estimates the
PIONAOx composition of a fuel similar to the reference with its properties
only. Once again, the achieved precision with a deviation of the reference
fuel composition needs to be evaluated in a separate study.

The next paragraphs report the principle of the model and the last para-
graph refers to the whole methodology. The model is separated in three
steps: retrieving the database, calculating the properties of each hydrocarbon
group and resolving an optimization problem to define the composition
(Figure 48). More details on each step are given hereafter.

First, the molecule database was created thanks to the software Aspen
Properties® and additional relations are used to calculate the missing prop-
erties.

Second, the property values used to characterize each hydrocarbon group
were calculated. Then, the properties of the fuel were equated as a weighted
average depending on the group fractions and on the properties of each
group. As the fuel is composed of many molecules, each group was character-
ized by a single notional molecule, called pseudo-component, to simplify the
calculations and to circumvent the impossible experimental identification of
all the molecules. A pseudo-component is characterized by its boiling point
and by its hydrocarbon group as the properties of the molecules depend on
those two characteristics [8].

Last, an optimization problem was solved to minimize the difference
between the properties of the mixture of the pseudo-components and the
real fuel properties. This resolution gives the hydrocarbon group fractions.
Each property does not have the same impact on the calculated fractions,
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Figure 48: If a model is already set for a studied type of fuel, the fuel properties
measured according to ASTM standards are the only inputs needed to
calculate the fuel composition. Once the molecule database to represent
each hydrocarbon family is set (step 1), the properties of the pseudo-
components representing each group can be calculated thanks to the fuel
boiling point estimated with ASTM D86 (step 2). Then, the resolution
relies of an optimization problem to reduce an objective function based on
the difference between the predicted and the real fuel properties pondered
with weights to calculate the PIONAOx fractions (step 3). If no model
exists for the studied type of fuel, identifying the major molecules present
in the fuel (with GC-MS) and knowing a reference composition (with
GC × GC) enables the creation of a new model suited for the studied type
of unconventional fuel.

therefore, a weight was allocated to each property in the objective function
to change their relative importance. This method offers more flexibility of
resolution than the commonly used linear regression [8].

When a new type of fuel is studied, a new model must be set. A fuel is new
if its composition is not covered by the range of applicability of the model
such as the PIONAOx fractions are badly predicted. To set a new model,
the composition and the major molecules of the reference fuel are required
to run the whole methodology. The structure of the molecules detected
by an analysis method, as GC-MS, defined the database. The database
and the weights were modified until reaching a good match between the
measured and the predicted composition. The group fractions were analyzed
experimentally by GC × GC. The model was set when the accuracy was
considered acceptable.

The first step of the model, i.e. selecting the molecules belonging to the
database is described in the next section.
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5.3 chemical characterization and chemical database

This section first describes the experimental methods and their post-processing
to characterize the fuel, then, it explains the procedure to build a coherent
molecular database to set a model that properly represent the fuel.

5.3.1 Chemical characterization

Experimental tests were carried out to analyze the fuel composition. This fuel
is a light fraction obtained from different types of plastics from ASR. Among
others, the GC × GC enabled the measurement of the PIONAOx composition
of the fuel. However, a post-processing of the results was required to
deal with an overlapping of the oxygenate molecules and to estimate the
confidence interval. The next part describes the tests and explains their
purpose while the second reports the GC × GC post-processing.

5.3.1.1 Experimental methods

The fuel composition must be experimentally characterized for three reasons.
First, the major molecules identified in the fuel by GC-MS define the basis
of the molecule database. The selection of the molecules is only mandatory
to set the model for the first time with a new type of fuel. Secondly, the
elemental composition measured with an elemental analyzer (EA) was used
as an input property of the optimization problem to calculate the PIONAOx
fraction so this analysis is required whenever the model is run. Finally, the
hydrocarbon group fractions measured using GC × GC coupled with flame
ionization detector (FID) must be characterized to enhance the molecule
selection and the objective function by defining the best set of weights. This
characterization is only required to set the model for the first time.

The results of GC-MS, EA, and GC × GC tests realized at the chemical
research center CERTECH and at the Laboratory for Chemical Technology of
Ghent University are described in the next paragraphs.

One-dimensional GC analysis as GC-MS is commonly used in the industry
(ASTM standard test methods D5134 [142], D6729 [143], D6730[144], D6733

[145], D6839 [146]) as well as in the academic area [84, 147, 148]. The
molecules identified by GC-MS were employed to set the molecule database.
Around 0.5 µl was directly injected in an apolar column of dimensions 50

m long, 0.25 mm diameter and 0.5 µm of film thickness. The blend showed
the following typical features regarding the iso-paraffins and the olefins
configuration (Table 16). First, the maximal number of substituting -CH3 is
two. Second, the position of the substituting -CH3 is often located on the
second and on the fourth position of the principal chain. Last, the double
bond is frequently situated on the first position.

One-dimensional GC enabled the identification of the molecules in the
fuel but suffered of a lack of sensitivity due to co-elution because similar
molecules were blended. Then, many constituents were not identified and
the molecules cannot be finely sorted into hydrocarbon groups.

GC × GC is an improvement developed in 1991 by Liu and Phillips [149]
and relies on the GC technique with two capillary columns using different
selectivity [150]. The molecules are disassociated according to two different
axis to increase the post-processing selectivity. Although this method is rare
compared to one-dimensional chromatography, it is now used in research
[11, 151–156] and in industry (standard ASTM UOP990-11 [157]). Jennerwein
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Table 16: Major identified molecules with the GC–MS. The origin of these molecules
is detailed in subsection 5.3.2.

Decane Benzene
4–methyl–Heptane Toluene

2,4–dimethylheptane p–xylene
2–methyl–1–pentene Ethylbenzene

1–heptene 1–methylethylBenzene
1–octene 1,3,5–trimethylBenzene

2,4–dimethyl-1-heptene 1,2,3–trimethylBenzene
1,2,3–trimethylcyclohexane Styrene
1,3,5–trimethylcyclohexane α–Methylstyrene

et al. showed this test method to be more reliable for modern and complex
fuels because of a higher selectivity [155].

The GC × GC analysis was performed using an apolar column (Rxt-1
PONA, 50 m long, 0.25 mm internal diameter, 0.5 µm film thickness) and
a mid-polar column (BPX-50, 2 m long, 0.15 mm internal diameter, 0.15

µm film thickness). Further information as the sample preparation and the
method description are detailed below, more information is available in an
article by Dijkmans et al. [11].

An internal standard was added to each sample for the FID, sulfur chemilu-
minescence detector (SCD) and nitrogen chemiluminescence detector (NCD).
The internal standards for each of the chromatograms were chosen in such a
way that they were properly separated from all other peaks. An additional
pre-requisite is that for the NCD and SCD analysis nitrogen or sulfur also
needs to be present in the internal standards. Therefore for the FID and the
SCD analysis 3-chlorothiophene was chosen, while for the NCD analysis
2-chloropyridine was chosen. The amount of internal standard that is added
is chosen in such a way that the internal standard would have a similar peak
height as the components quantified by the internal standard [11].

The set-up is equipped with a program temperature vaporizer (PTV) in-
jector. The carrier gas was He. A temperature program was applied to the
columns. They were heated from 0°C to 250°C at a heating rate of 3°C/min.
Modulation was carried out on the piece of deactivated column. The mod-
ulation period was optimized to be as low as possible (maximal resolution
in first dimension) without causing wrap-around [11]. A built-in switching
system, i.e. a 4-port 2-way valve (VICI AG International, Switzerland), allows
to switch between FID and MS without the need to cool down and vent the
TOF-MS. With this method, the appliance was used once to obtain qualitative
data with the TOF-MS, and a second time to obtain quantitative data with
the FID.

The mass fraction of each compound on the FID was be calculated using
the mass fraction of the internal standard based on their response factors
which has been demonstrated to be approximated by:

fi =
Mi

MCH4
NC,i

(96)

where Mi is the molar mass of compound i, NC,i is the carbon number of
compound i, and CH4 is the molar mass of methane. This approximation
removes the need to calibrate each compound present in the mixture. Cali-
bration was however carried out for 3-chlorothiophene, since it is used as an
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internal standard and the presence of a halogen atom is expected to influence
the response factor significantly.

Figure 49: After its injection, the fuel reaches a first rtx-1 PONA apolar column, then
liquid CO2 is injected, playing the role of a cryogenic modulator, allowing
to stop the effluent until its relaxation toward the second column. Then,
the substance can either go in one of the two polar BPX-50 column. The
first, being coupled with FID to measure the chemical fractions and the
second with TOF-MS to identify them.

The components were quantified by averaging three GC × GC-FID anal-
yses and their identification was performed via GC × GC-time of flight
(TOF)/MS analysis (see Table 17). The uncertainty was defined based on
the standard deviation obtained with the three measurements. GC × GC
analyzes the whole fuel composition, including naphthenoaromatics, diaro-
matics, nitrogenates and sulfurates whereas the current method only focuses
on the PIONAOx fractions. The calculated and the measured fractions must
be compared on a same basis. Therefore, the whole fuel composition was
simplified into a PIONAOx composition with the following procedure. The
measured naphthenoaromatics were equally distributed between the naph-
thenes and the aromatics, the diaromatics were considered as monoaromatics,
and the nitrogenates and the sulfurates were neglected.

Three GC × GC analyses using NCD and SCD, i.e., GC × GC-NCD and
GC × GC-SCD, were realized to measure an average nitrogen and sulfur
content. An EA was also used to compare and validate the carbon, hydrogen,
and oxygen contents (Table 18).

The oxygen content deduced by an EA was compared with the one cal-
culated from the number of oxygen atoms in the molecules identified by
GC × GC-FID and GC × GC-TOF/MS. A difference was observed, due to
an overlap of the oxygenate molecules. Consequently, a correction, presented
in the next paragraph, was applied. The experimental random error is
also presented in the following part by the mean of a confidence interval
calculation.
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Table 17: Hydrocarbon class repartition

Hydrocarbon class % wt/wt
Olefin 31.09

Monoaromatic 28.39

Mononaphthene 14.18

iso-paraffin 12.38

Oxygenated 6.66

n-paraffin 5.47

Naphthenaromatic 1.11

Nitrogenated 0.66

Diaromatic 0.04

Sulfurate 0.02

Total 100

Table 18: Elemental composition

Atom % wt/wt Method
Carbon 84.58 EA

Hydrogen 12.76 EA
Oxygen 2.34 EA

Nitrogen 0.26 GC × GC-NCD
Sulfur 0.06 GC × GC-SCD

5.3.1.2 GC × GC post-processing

A difference between the amount of oxygen atoms measured by GC × GC
and by the EA was observed. After having explained this difference, a
correcting factor was introduced to estimate a corrected oxygenate fraction.
Then, the whole fuel composition was known which allowed to estimate the
confidence interval.

If a hydrocarbon group is several orders of magnitude more concentrated
than another group whereas their similarity regarding to the columns se-
lectivity is too high, the peak signal of the first group will hide the peak of
the second group. The identification of oxygenates is still a challenge with
GC × GC because oxygenates overlap with monoaromatics, diaromatics, tri-
aromatics, naphthenoaromatics and naphtheneodiaromatics [11, 156]. In the
present study, the oxygenates overlapped with the monoaromatics.

A correction was applied to estimate the amount of overlapped oxygenates
that cannot be identified with GC × GC. This correction relies on an EA to
relate the real amount of oxygen in the fuel with the amount of oxygen in the
identified molecules that did not suffer of the overlapping. The hypothesis
adopted to perform this correction are described in the next paragraph.

The oxygen content analyzed with the EA and the amount of the over-
lapped oxygenate molecules are tied together with the composition of two
types of molecules (oxygen to carbon ratio (O/C) (%w), the hydrogen to
carbon ratio (H/C) (%w) and the molar mass (Mm)). Therefore, the type of
molecules, which drives the OC and HC, and the size of the molecules are
mandatory.
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The types of the molecules is first discussed. Usually, monoaromatics over-
lap with aliphatic ketones [26] so the overlapped oxygenate molecules were
considered as aliphatic ketones. The identified molecules with GC × GC
were mainly ketones and alcohols. They have the same O/C and a similar
H/C so both ratios of the overlapped oxygenates and the identified oxygenate
molecules were considered equal. For instance, pentanone and pentanol
have one hydrogen of difference between their respective compositions.

The number of carbon atoms of the overlapped oxygenate is discussed in a
second step. As no information were available, the molecules were supposed
similar in size with the identified oxygenate fraction.

Then, the O/C, the H/C and the size of the overlapped oxygenate were
esteemed similar with those of the identified oxygenates. Therefore, the
proportionality between the oxygenate molecules and the oxygen atomic
content observed with GC × GC were considered respected with the EA.
Then, under this hypothesis, a corrected response volume defined by the
following equation was introduced to estimate the overlapped volume of
oxygenate molecules:

VOc =
OCEA

OCGC×GC
VO, (97)

where OCEA and OCGC×GC are the O/C measured with the EA and with
the GC × GC respectively. The oxygen content calculated from the molecules
identified by GC × GC-FID and GC × GC-TOF/MS is 56.4% lower than the
oxygen fraction measured with the EA (Table 18). The calculation steps to
obtain the calculated volumes of oxygenates and aromatics are summarized
on Figure 50.

Figure 50: Calculation steps to obtain the corrected volumes.

A corrected volume was also introduced to calculate the overestimated
concentration of aromatic compounds due to the overlapping. However, the
overlapping concerns the measured volume peaks which are not equal to the
real volume peaks reported in equation 97. They were given by a response
factor (RF) defined by:

RFg =
Vg

Vgm

, (98)

where g refers to the group and m to the measurement. This factor RF
is different for each molecule but strongly depends on the group (Table
19). Therefore, an averaged response factor was used for each group. The
overlapped oxygenate being considered as aliphatic ketones, the factor range
of the overlapped oxygenates is equal to the range of aliphatic ketones.
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Table 19: response factor (RF) The RF were obtained in the references [23, 24]. The
RF of the individual molecules were applied to estimate the hydrocarbon
fractions when the molecules were correctly identified. The average value
was only used in order to estimate the fraction of overlapped aliphatic
ketones. This was the only available method to correct the measured
fractions and take into account the overlapping.

Chemical group RF range Averaged RF
Monoaromatics [0.81;0.85] 0.83

Aliphatic ketones [1.00; 1.20] 1.10

Then, the overlapped measured volume of oxygenates VOm,c − VOm was
subtracted to the measured aromatic volume peak VAm , giving the corrected
volume VAm,c :

VAm,c = VAm − (VOm,c − VOm). (99)

Once the corrected real volume peak of the aromatics VAc was deduced
from VAm,c and the averaged response factor RFA (Table 4), the corrected
fractions and the confidence intervals could be evaluated.

Three experimental test runs were realized to calculate a confidence inter-
val at 95% of the PIONAOx averaged values. The standard deviation of the
mean value was given by the standard deviation of the measured values and
by the number of runs led with the GC × GC (3 in this study). The average
fractions were normalized to be expressed in percentage Yg (Table 20). This
last calculation is equivalent of applying a scale factor which was used to get
the standard deviation of the mean value of the normalized fractions. This
deviation gave the confidence interval of the mean value at 95% by applying
the Student’s distribution for an estimated variance and a low number of
run (Table 20).

Table 20: Normalized mean value and confidence intervals (CI) of the PIONAOx
fractions (%wt/wt).

Chemical group Yg CI
n-paraffin 5.4 [5.1;5.7]
iso-paraffin 12.2 [11.6; 12.9]

Olefin 30.8 [28.9;32.6]
Naphthene 14.6 [14.0;15.2]
Aromatic 24.4 [23.4;25.4]

Oxygenate 12.6 [12.5;12.7]

5.3.2 Chemical database

A chemical database was created to calculate the mean properties of each
hydrocarbon group. A new database must only be created if a fuel whose
most representative molecules and whose composition are very different
from the one studied in this chapter. This difference can be observed if
the identified major molecules are different from those listed in Table 14.
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The following criteria must be respected to select molecules representing
correctly each PIONAOx hydrocarbon group in the studied fuel.

1. The ranges of the hydrocarbon group boiling points must contain the
fuel mean average boiling point (MeABP). When several isomer sub-
groups are selected in a single hydrocarbon group to consider isomers,
their boiling point ranges must be similar such as the sub-groups are
all equally represented over the whole boiling point range.

2. For each sub-group of each hydrocarbon family, four molecules were
selected to rely on a smooth group representation.

3. The selected isomer forms must have a quite similar structure to avoid
a too wide distribution of the properties.

4. To rely on a relevant database, the molecules were selected based on
the results of the GC-MS analysis and on the predominant molecules
produced during the decomposition of the most current polymers used
in the automotive industry [48, 94].

The consequences of the four previous rules on the molecules selected to
build the model for an ASR-derived fuel are described in the next paragraphs.
They refer only to the fuel studied in the present chapter but a similar logic
could be applied to any fuel.

5.3.2.1 n-paraffin (P)

As no isomers exist for n-paraffin, only one molecule per number of carbon
atom was selected. The boiling point rules impose the selection of molecules
with a number of carbon atoms from 7 to 11.

5.3.2.2 iso-paraffin (I)

iso-paraffins can be substituted with several -CH3. Primary carbons are
more likely to be present in the ASR fuel because usual polymers used
in the automotive industry present only one substituting -CH3 on each
carbon atom as in polypropylene (PP) or ethylene propylene diene monomer
(EPDM). Based on the GC-MS analysis, molecules with a higher number
of substituting -CH3 than two were not selected. Moreover, the boiling
point range is the same for each sub-group such as the lowest number of
carbons in the principal branch of the bi-substituted alkanes is five. The
position of the substituting -CH3 was set preferentially at the second and
at the fourth position according to the GC-MS analysis. The substitutes
of mono-substituted paraffins are only at the second position because the
database of Aspen Properties® does not include all the paraffins substituted
at the fourth position. Mono and bi-substituted paraffins ranging from C7 to
C10 were selected.

5.3.2.3 Olefin (O)

Olefins can be straight or branched so both sub-groups were considered.
According to the GC-MS analysis, the position of the double bond tends
to be located at the first position and, similarly to the iso-paraffins, one
to two substituted -CH3 can be located at the positions 2 and/or 4, i.e.
alpha and/or gamma position. If the Aspen Properties® database did not
include a requested molecule, another molecule – considered equivalent
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– with a different double bond position and with one or two substituting
-CH3 located at the alpha and gamma positions was selected. As for the iso-
paraffin case, mono-substituted olefins were only substituted at the second
position because the Aspen Properties® database does not include the fourth
position substituted 1-olefins or their equivalents. An exception was made
with the selection of 2,5-dimethyl-4-octene which is the only available bi-
substituted octene-based molecule in Aspen Properties®. No diene olefins
were selected because their properties show major differences and they were
not analyzed by GC-MS (Table 16).

5.3.2.4 Naphthene (N)

According to the results of the GC-MS, naphthenes were selected on a
cyclohexane basis with three substituting -CH3. In order to cover a wider
range of boiling points, molecules with a substituting chain containing 1

to 3 carbon atoms were added. The bi-substituted 1,1-dimethylcyclohexane
was also included in the model to consider the possibility to face a di-
substituted carbon. Those different types of naphthenes were found during
the polystyrene (PS) decomposition [80].

5.3.2.5 Aromatics (A)

acrylonitrile butadiene styrene (ABS) decomposition produces a high quan-
tity of styrene, α-methylstyrene and iso-propylbenzene [94] while polyurethane
(PUR) induces high amounts of alkylbenzenes. The molecules were selected
assuming only mono-substituted carbons. Alkylbenzenes with a number of
carbon atoms ranging from 6 to 10 were selected.

5.3.2.6 Oxygenate (Ox)

The model was based on 1-alcohols and 3-ketones with a number of carbons
from 3 to 6 and from 5 to 8 respectively. The hydroxyl group was set at the
first position because 1-alcohols are usually used in the pseudo-component
technique [8] while 3-ketones are well-described in the software Aspen
Properties®.

The proposed database (Table 21) may be suitable for a wide number of
ASR-derived like fuel but a deeper study investigating the accuracy of the
method with a variation of the reference fuel composition could validate that
hypothesis.

5.4 selection and characterization of the properties

After having described how the properties currently used in other methods
can be adapted to the new methodology, the experimental tests performed
to characterize the properties according to a reproducible ASTM method are
reported, followed by the listing of the property database sources.

5.4.1 Selection of the properties

This section first fixes the needed number of properties and then describes
the properties selected to calculate the PIONAOx fractions. This step is not
mandatory to run or create a model.

Although an optimization problem was solved rather than relying on a
linear resolution as in conventional methods [8], the number of properties
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was determined as if the resolution was depending on a degree of freedom.
Six compositional groups must be predicted, so five properties and one
additional constraint (sum of the fraction equal to one) were first tested.
However, better results were obtained with the same five properties and
constraint, and with the O/C as a sixth property.
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Table 21: Molecular database

Molecule Group Boiling point (C)
n-heptane n-paraffin 98.43

n-octane n-paraffin 125.68

n-nonane n-paraffin 150.82

n-decane n-paraffin 174.16

2-methylhexane iso-paraffin 90.05

2-methylheptane iso-paraffin 117.65

2-methyloctane iso-paraffin 143.30

2-methylnonane iso-paraffin 167.00

2,4-dimethylpentane iso-paraffin 80.49

2,4-dimethylhexane iso-paraffin 90.43

2,4-dimethylheptane iso-paraffin 132.50

2,4-dimethyloctane iso-paraffin 155.90

Methylcyclohexane Naphthene 100.93

Ethylcyclohexane Naphthene 131.79

n-propylcyclohexane Naphthene 156.75

1,1-dimethylcyclohexane Naphthene 119.55

1,2,3-trimethylcyclohexane Naphthene 151.08

1,3,5-trimethylcyclohexane Naphthene 140.55

1-heptene Olefin 93.64

1-octene Olefin 121.26

1-nonene Olefin 146.87

1-decene Olefin 170.60

2-methyl-1-hexene Olefin 91.84

2-methyl-1-heptene Olefin 119.22

2-methyl-1-octene Olefin 144.65

2-methyl-1-nonene Olefin 168.40

2,4-dimethyl-1-pentene Olefin 81.59

2,4-dimethyl-1-hexene Olefin 110.79

4,6-dimethyl-2-heptene Olefin 129.87

2,5-dimethyl-4-octene Olefin 153.48

Benzene Aromatic 80.09

Toluene Aromatic 110.63

n-ethylbenzene Aromatic 136.20

n-propylbenzene Aromatic 159.24

Styrene Aromatic 145.16

α-methylstytene Aromatic 165.50

Propan-1-ol Oxygenate 97.20

Butan-1-ol Oxygenate 118.75

Pentan-1-ol Oxygenate 137.75

Hexan-1-ol Oxygenate 156.75

3-pentanone Oxygenate 101.99

3-hexanone Oxygenate 123.50

3-heptanone Oxygenate 147.40

3-octanone Oxygenate 167.50

Two criteria should be met to select the six properties. First, the values
of the properties included in the model must be strongly dependent on the
hydrocarbon group. Conversely to the existing methods, this criterion was
facilitated in the present study thanks to the pseudo-component method that
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enabled the dependency of the properties on the boiling point to be put aside.
In the existing methods, the measured properties were not always used in the
equations but were included in the calculation of another property - which
was integrated into the system - especially created in purpose. However,
calculations could create error propagations, so the second criterion is the
selection of measured properties instead of calculated properties. The first
criterion prevails. Properties respecting the first criteria are already known
thanks to the existing methods to predict the PNA fractions. The API
(Riazi-Daubert) [8] method proposed several systems of equations operating
with different properties which depend on the hydrocarbon group and are
quite constant over the boiling point range. However, some properties are
the results of a calculation between two other measured properties which
is opposed to the second criteria. In this case, the measured properties
were used as candidates instead of the one resulting of the calculation. A
candidate was accepted if the measured property validates the first criteria.
The upcoming properties were adopted.

5.4.1.1 Specific gravity

The specific gravity (SG) was defined by comparing the fuel and the water
densities at 15.5°C:

SG =
ρfuel,15.5

ρwater,15.5.
(100)

The SG is linked with the length of the intra-molecular bonds in the fuel
blend. This parameter is clearly dependent on the hydrocarbon group and is
a simple property which can be used in this method.

5.4.1.2 Refractive index

Conventional methods rely on the refractivity intercept (Ri) or on the m-
parameter. The Ri was created because the refractive index against density
for each hydrocarbon group is linear [8]:

Ri = n20 −
ρ20,

2

(101)

where n20 and ρ20 are the refractive index and the density of the studied
molecule at 20 °C.

For each type of chemical group, the refractive index is inversely propor-
tional to the Mm. Then, the m-parameter is also a good hydrocarbon group
indicator [5]:

m = Mm(n20 − 1.475) (102)

The refractive index n20 is not the result of a calculation so it respects the
previous condition 2 whereas Ri and m do not. Moreover, the refractive index
allows to separate the group fractions for a given boiling point (condition 1).
Therefore, the refractive index at 20°C was selected.

5.4.1.3 Viscosity gravity function

The viscosity gravity function (VGF) was proposed for fuels with a kinematic
viscosity at 38°C (ν38) lower than 3.6 cSt, which are typically light fractions,
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on the observation that the plot of the SG against ln(ν38) is linear for each
hydrocarbon group [8]:

VGF = −1.816 + 3.484SG − 0.1156ln(ν38). (103)

ln(ν38) and ν38 do not respect the previous condition 1, so, the VGF was
preferred.

5.4.1.4 Watson K factor

The Watson K factor (Kw) defined in Bergamn’s method is widely used to
characterize fuels [8, 158]:

Kw =
1.8Tb

1/3

SG
, (104)

where Tb is the normal boiling point for a pure component and the
MeABP for a mixture. The Kw coefficient was developed to identify the type
of molecules in a fuel blend so it is highly related to the chemical family. The
boiling point and the SG are indeed a consequence of the strength of the
chemical bonds. The MeABP does not respect the previous condition 1 so it
cannot substitute the Kw

5.4.1.5 Air-to-fuel ratio under stoichiometric conditions AFs

.
The H/C ratio used in existing methods [8] represents well the hydrocar-

bon groups but the air-to-fuel ratio under stoichiometric conditions (AFs)
was preferred to consider the oxygen content. It is defined by the global
equation of combustion of the generic fuel CxHyOzNα under stoichiometric
conditions and when the combustion is complete and where nitrogen is
supposed to react into N2:

CxHyOzNα +ω(O2 + 3.76N2)→ xCO2 +
y
2

H2O + (3.76ω+
α

2

)N2, (105)

where ω is the needed number of moles of oxygen to burn the fuel under
stoichiometric condition and is defined as:

ω= x +
y − 2z

4

. (106)

The AFs depends on the stoichiometric mole number of air which can be
calculated from the atomic weight ratio obtained from the atomic weight
fractions:

AFs =
1

Mmc

1 +
HCW

MmC
MmH

−2OCw
MmC
MmO

4
(MmO2

+ 3.76MmN2
)

1+HCw +OCw +NCw
, (107)

where MmA is the Mm of atom A and the weight ratio between atom A and
carbon, ACw, is deduced from the atomic mass fractions:

ACw =
yA

yc
, (108)

where yA refers to atom A and yC refers to carbon.
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5.4.1.6 O/C weight fraction

The O/C was included to handle the oxygen composition because using the
air-to-fuel ratio enabled the oxygen content within the fuel to be considered
but relying on the O/C increases the accuracy of the oxygenate prediction.
Once the relevant properties are selected, the methods to characterize the
properties of the real fuel and of the molecules belonging to the database can
be defined.

5.4.2 Characterization of the properties

The experimental test methods and the calculations to define the real fuel
properties will be presented, followed by the sources and the calculations of
the properties included in the database.

5.4.2.1 Properties of the real fuel

The experimental characterization of the fuel properties is the only mandatory
input to run an existing model to calculate the PIONAOx composition.
However, as the model development is based on a given reference fuel,
the obtained precision must be calculated depending on the variation of
the reference fuel composition. If the model is not yet developed, the
measurements of the properties must be coupled to the chemical analysis
of the reference fuel. In the present study, the properties were characterized
thanks to the ASTM standard test methods listed in Table 22 except for
the nitrogen and sulfur fractions that were measured using GC × GC-NCD
and GC × GC-SCD at Ghent University. Using a GC × GC to analyze the
nitrogen and sulfur content is a special feature of the current work but
the model can be run only relying on analysis lead by standardization
companies, with GC-FID, GC-NCD, GC-SCD or EA. Depending on the type
of fuel, several standard test methods can be applied as, for a light fuel,
ASTM D4808 for hydrogen, ASTM D5623 for a sulfur concentration range
from 0.1 to 100 mg/kg, ASTM D5762 for a nitrogen level of 40 µg/g to 10

000 µg/g, and ASTM D5622 for an oxygen mass content from 1.0% to 5.0%.
ASTM D5291 is not recommended for O, N and S because the results are less
accurate.

The MeABP was calculated from the volume average boiling point (VABP)
[8] obtained by the volumetric distillation curve measured experimentally
according to the standard test method ASTM D86 [103]:

VABP =
T10 + T30 + T50 + T70 + T90

5

, (109)

where Tp (expressed in Kelvin) is the temperature at which p% of the fuel is
evaporated. The VABP was converted into MeABP [8]:

MeABP = VABP+∆Me, (110)

where the shifting coefficient ∆Me is defined as [8]:

ln(∆Me) = −1.53181−0.0128(VAPB−273.15)0.6667+3.646064SL0.333 (111)
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and SL is the 10-90 slope defined by [8]:

SL =
T90 − T10

80

. (112)

The experimental methods to measure all the fuel properties are listed in
Table 22.

Table 22: Fuel properties and methodologies

Property Value Unit Method
ρ at 15.5°C 796.1 kg/m3 ASTM D4052

ν at 40°C 0.6615 cSt ASTM D445

C 84.58 %wt/wt ASTM D5291

H 12.76 %wt/wt ASTM5291

O 2.34 %wt/wt ASTM D5622

N 0.26 %wt/wt GC × GC-NCD
S 0.06 %wt/wt GC × GC-SCD

n at 20°C 1.4419 / ASTM D1218

SG 0.7969 / Equation 4

VGF 1.008 / Equation 7

Kw 11.412 / Equation 8

MeABP 144.9 °C ASTM D86; Equation 14

5.4.2.2 Properties of the molecules belonging to the database

The properties of the real fuel were related with the properties of the
molecules in the hydrocarbon group. A property database, erected from the
library of the software Aspen Properties®, was built to represent each group.
This section first lists the molecules included in the software and then cites
the formulas to estimate the missing properties. Finally, the properties of
each chemical group were plotted to check the distribution over the map.

The Mm, the boiling point, the SG and the refractive index were directly
extracted from the database of Aspen Properties®except for the refractive
index of 2,4-dimethylheptane, 1,2,3-trimethyl-cyclohexane, 1,2-dimethy-1-
pentene, 1,2-dimethyl-1-hexene, 4,6-dimethyl-2-heptene, and 2,5-dimethyl-4-
octene. The refractive indices of the last molecules were calculated thanks to
the refractive index parameter I [8]:

n =
1 + 2I

(1 − I)1/2
, (113)

which can be evaluated with an accuracy of 0.5% for a Mm range from 70 to
300 [8]:

I = 2.34310
−2exp(Tb + 2.468SG − 1.026.10

−3TbSG)Tb
0.0572SG−0.72. (114)

All the missing properties were evaluated with Aspen Properties®using the
PENG-ROB base property method [25]. The Watson K factor was calculated
with equation 104.

Once the database was entirely defined, the property distribution over
the boiling point range was plotted to ensure a good separation between
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the groups (Figure 51). The Watson factor is known to be dependent on the
molecule type, from 9 (aromatics) towards 13 (paraffins). We observe that this
property also differentiate the olefins, the naphthenes and the oxygenates. For
what concerns the specific gravity, the type of bonds drives the volume taken
by the molecules. Conversely to the paraffins, aromatics are characterized by
double bonds that shows a strong link between the atoms. Thus, they have a
high specific gravity. The oxygenates have a relatively high specific gravity
because of the heavy oxygen atom. The n-paraffins and the iso-paraffins
have the same raw formula, so they have an equal stoichiometric ratio. This
is also the case for the olefins and the naphthenes. The viscosity gravity
function is also a good tool to differentiate the molecules. The repartition
is very similar than with the specific gravity. The refractive index is useful
to differentiate the aromatic and the naphthenes. The O/C helps to identify
only the oxygenates as it is the only hydrocarbon class with an O atom.
As a conclusion, the differentiation between the groups is good for all the
properties, except in the following cases.

1. The iso and normal paraffin share part of their ranges.

2. The refractive index of the oxygenate group overlaps with the iso and
normal paraffins.

3. The AFs of olefins and naphthenes are the same over the boiling point
range.

4. The AFs of iso and normal paraffin are the same over the boiling point
range.

These cases are not an issue for almost all the groups because they are well
differentiated with at least one property. Nevertheless the differentiation
may be difficult between the normal and the iso paraffins.

The pseudo-component method helped to distinguish locally the properties
for the first and the second cases and the O/C allowed to estimate the
oxygenate content.

This first section described the methods to build the database to create or
to run a model. The next part will develop the calculations included in the
core of the model.

5.5 mathematical models and resolution

In this section, we present the formulas to build the pseudo-components –
reduced number of theoretical molecules representing a given hydrocarbon
group – thanks to a molecule database that characterizes well the molecules
in the fuel. Then, the section explains the procedure to approximate the
composition of an unconventional fuel thanks to a relation involving its
properties measured by standard test methods.

5.5.1 Pseudo-component definition

A complex fuel composed of hundreds of molecules can be represented
thanks to its pseudo-components. This section develops the equations defin-
ing the properties of the pseudo-components.

A pseudo-component is a notional molecule belonging to a hydrocarbon
group and characterized by its boiling point. Therefore, each hydrocarbon
group in a fuel can be represented by one or several pseudo-components
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Figure 51: Dependency of the six chosen fuel properties on the hydrocarbon group.
The cross refers to the molecules included in the database and the lines are
the results of a second order polynomial regression for each hydrocarbon
group. We selected a second order polynomial as the properties tend to
vary with a power 2 depending on the temperature. Light blue: n-paraffin,
green: iso-paraffin, dark blue: olefin, yellow: naphthene, orange: aromatic,
red: oxygenate.

depending on the 10-90 slope SL (equation 110). If SL is lower than 0.8, the
narrow boiling range hypothesis is respected and one pseudo-component per
group is sufficiently accurate to study the fuel. Otherwise, the fuel boiling
point range is subdivided and several pseudo-components representing each
division must be determined [5]. In the present study, SL = 0.745 so the
narrow boiling range is respected. This simple definition allowed to calculate
the properties of each hydrocarbon group using only two inputs: the MeABP
of the fuel and a database of molecules for each group. The database was
used as a basis to define equations for each studied property.

The equations were built from the observation that the correlation coeffi-
cients (R) between the calculated properties from a second order polynomial
regression and the properties from the database are higher than 0.94, except
for the Watson K factor of the 2-methylakane group (R = 0.83). We selected
a second order polynomial as the properties tend to vary with a power 2

depending on the temperature. Therefore, the property versus the boiling
temperature for a same subgroup of isomers in a chemical group is close
to be quadratic. The properties of the pseudo-components were based on a
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second order regression. The rules to select the molecules belonging to each
hydrocarbon group defined in the first section enabled the different isomers
to not be favored during the polynomial regression. Then, the property of
the fuel can be calculated with:

Pp =
∑
g

ygPp,g, (115)

where Pp,g is the p-th property of the pseudo-component characterizing the
g-th group and yg is the mass fraction of the g-th group.

The pseudo-components helped to decorrelate the fuel properties accord-
ing to the different groups. This enabled the creation of the equations linking
the fuel properties and the group fractions. The resolution relied on an
optimization problem and is described in the next section.

5.5.1.1 Resolution

After explaining the benefits of minimizing an optimization problem com-
pared with the linear resolution adopted in conventional methods [8], the
details on the minimized objective function are reported.

In the present study, n-paraffin, iso-paraffin and olefin showed very simi-
lar ranges of values. Moreover, the boiling point and the properties of the
molecular mixtures of each hydrocarbon group in the fuel will not precisely
be equals to those of their representative pseudo-component. Because the
ranges overlap, these differences of boiling point and properties will propa-
gate an error on the calculated fractions. Consequently, to take into account
the inaccuracies due to the differences between the molecular mixtures and
the pseudo-components, an optimization problem was solved to introduce a
higher flexibility than a simple linear resolution.

If a model already exists for the studied fuel, only one optimization
problem must be solved in order to reduce the difference between the p-th
property of the real fuel, Prf,p, and the p-th property of the mixture of the
pseudo-components, Pp. The p-th decision variable was defined as:

fp =
|Pp − Prf,p|

Prf,p
(116)

The properties of the mixture of the pseudo-components Pp were calcu-
lated according to equation 115.

Weight coefficients were introduced in the objective function to couple the
properties with a relative influence:

Op =
∑
p

wpfp, (117)

where the weight coefficients wp were equal to a power of 10 because an
simple increase by one did not allowed us to observe a significant effect of
the weights.

The objective function Op was reduced thanks to the matlab fmincon
function included into the GlobalSearch object coupled with the MultiStart
algorithm to run several start points uniformly distributed. Two constraints
were also set, the resolution domain [0;1] and:

yp + yi + yn + ya + yOx = 1 (118)
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The weights wp are specific to the studied type of fuel. To build a model
suited for a new type of fuel, a second optimization problem was solved
which gave the values of wp. The best set of weights was obtained when the
difference between the calculated fuel fractions and the measured fractions
of the reference fuel was minimized. The reference fuel must be a good
representative of the studied type of fuel in terms of molecules and group
fractions. The mathematical formulation of the objective function is:

Og =
∑
g

wgfg, (119)

where the decision variables fg are defined as the difference between the
calculated mass fractions yg obtained by minimizing the objective function
Op defined by equation 117 and the normalized average value Yg of the
measured fractions of each group g:

fg = |yg − Yg| (120)

No priority was set such as the weights wg were all set equal to one. The
minimization of Og gave the weights wp. The number of starting points
defined in the GlobalSearch object was fixed by trial and error when the
returned set of weights wp was persistent.

The entire methodology to develop a model which predicts the PIONAOx
composition of an unconventional fuel was proposed. The model depends on
two parameters which are the molecule database (Table 21) and the weights
defining the objective function (equation 117). Those parameters were defined
according to a reference fuel which represents well the type of studied fuel.
Some molecules of the database were removed and several set of weights
were tested to investigate the achieved accuracy with different parameters.
However, although the accuracy was increased when the parameters were
tuned with the reference fuel, it may be decreased for the other studied fuel.
A high parameter tuning is expected to decrease the maximal variation of
composition which is correctly handled. Therefore, the last section aims at
estimating which parameters allow to achieve an acceptable accuracy with
the reference fuel. The precision of the model with other fuels than the
reference one will be investigated in a future study. This will define the
maximal composition variation allowed to rely on the same model than the
one developed with the reference fuel.

5.6 results and discussion

The model depends on two parameters, the first is a molecule database
representing each hydrocarbon group of a reference fuel characterizing the
studied type of fuel. The second is the set of weights impacting the reduction
of the objective function during the resolution step. The accuracy of the
model was investigated for several parameter settings.

5.6.1 Tuning of the molecule database

The molecules listed in Table 21 creates an extended database where the
isomers are equally represented for each boiling point. However, the molec-
ular configuration depends on the production process such as the type of
predominant molecules depends on the boiling point. Tuning the initial
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molecule database listed in Table 21 is a way to match the fuel and increase
the accuracy of the model. The refinement was performed with respect of
the following rules:

1. The selected molecules still cover the PIONAOx groups.

2. The ranges of the hydrocarbon group boiling points must contain the
fuel MeABP. For each hydrocarbon group, at least three molecules
were selected to rely on a second order polynomial regression.

3. For each property and each group, the plot of the second order polyno-
mial function must be located within the property range of the isomer
sub-groups of the original database

To monitor the evolution of the accuracy along the refinement, the molecule
tuning scale is defined as:

Sm =
nrefine
Nrefine

, (121)

where Nrefine is the number of molecules removed from the initial molecule
database listed in Table 21 to reach the highest accuracy with all the weights
equal to one and nrefine is the progress variable until Nrefine and defined by
the number of molecules removed to reach the current studied error. The
molecule tuning scale evolves according to the number of removed molecules
from the initial database.

The molecules were removed in a precise order depending on the following
automatic reduction sequence. The molecules were tested per group in the
following order: aromatic, oxygenate, naphthene, olefin, iso-paraffin. This
order was selected to respect the group repartition order – from higher to
lowest and inversely – of half of the studied properties (the Kw, the SG and
the VGF) that appears when the properties are plotted (see Figure 51). This
avoids a bad interaction between the (n+1)-th removed molecule and the n-th
removed one. For instance, the aromatics have only one neighbor group –
the oxygenate (Figures 51a, 51b, 51d) ) – so these molecules are mostly only
impacted by the oxygenates. Therefore, the deletion of an aromatic molecule
could be inhibited by the first deletion of an oxygenate without any possible
counterbalance by a second group to have a second opportunity to remove
the aromatic. No n-paraffin was deleted because only 4 molecules belong to
the original database. At each step, the selected molecule is the one whose
deletion reduced the most the error of its hydrocarbon group. After one
reduction sequence, 9 molecules were removed, reducing the global error
(Figure 52).

A group-per-group molecule refinement following this order was obtained:
aromatic, naphthene, olefin, iso-paraffin (Table 23). No oxygenates were
removed from the original database.
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Figure 52: Absolute cumulative error along the molecule refinement.

Table 23: Order of the molecular refinement

Iteration Sm Molecule name Hydrocarbon group
1 0.11 Propylbenzene Aromatic
2 0.22 Toluene Aromatic
3 0.33 1,2,3-trimethylcyclohexane Naphthene
4 0.44 1,1-dimethylcyclohexane Naphthene
5 0.55 2-methyl-1-heptene Olefin
6 0.66 2,4-dimethylheptane iso-paraffin
7 0.77 2,4-dimethyloctane iso-paraffin
8 0.88 2-methylnonane iso-paraffin
9 1 2-methyloctane iso-paraffin

The best accuracy was reached at a molecule tuning scale of one with a
cumulative absolute error of 16 % (Figure 52). For each group, the error is
further decreased when the confidence interval is considered (εCI<1% except
for monoaromatics and n-paraffins for which it is still acceptable, Table 24).
The cumulative absolute error reaches 12.6 % when the confidence interval
is considered.

Table 24: Estimated fractions Ye (% wt/wt) and absolute errors from confidence
interval comparison (εCI, %) at a molecule tuning scale equal to 1.

Chemical group Ye (% wt/wt) εCI (%)
n-paraffin 0.3 4.8
iso-paraffin 11.2 0.4

Olefin 30.1 0

Mononaphthene 13.4 0.5
Monoaromatic 32.1 6.7

Oxygenate 12.8 0.1

Increasing the molecule tuning scale has the benefit to improve the accuracy
when the model is being set with the reference fuel. Then, the objective being
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to apply this model to another fuel similar to the reference fuel, the accuracy
may decrease and the range of applicability of the model could drop due
to the differences with the reference fuel. Therefore, to relax this first scale,
the second parameter of the model which is the weight allocated to each
property in the objective function was also included in a feedback loop.

5.6.2 Tuning of the weights

The molecular database is tuned before the weights in order to get a database
whose composition match as much as possible with the fuel. Then, the
weights allocated to each property can be tuned to reach a better result, the
weight tuning scale is defined by:

Sw =
log(w)

log(W)
. (122)

W is the maximal weight over the whole studied sets of weights and w is
the maximal weight of the current set of weights. W is given by the stopping
criterion, achieved when the objective function based on the fraction values,
Og, did not decrease more than 1% during three consecutive iterations. This
criterion could be strengthened to enhance the accuracy but 1% enabled a
good result to be reached within an acceptable computing time. An iteration
corresponds to an increase of the maximal weight value 10

M by a factor 10.
The accuracy of the model depending on the weight tuning scale is dis-

cussed only for a reduced number of molecule tuning scales. To analyze the
effect of improving 0, 1, 2, 3, or 4 hydrocarbon groups, Sm was set equal to 0,
0.22, 0.44, 0.55 and 1 (see Table 23, when Sm is equal to 0.22, 0.44, 0.55 and 1,
all the molecules belonging respectively to the aromatic, naphthene, olefin
and iso-paraffin hydrocarbon class are removed from the database).

Figure 53: Absolute cumulative error along the weight refinement at a molecule
tuning scale equal to 0, 0.22, 0.44, 0.55 and 1 (from darker to lighter grey).

The stopping criteria was respected for all the molecule tuning scales
when the maximal weight W was set at 1.10

3. The cumulative absolute error
is reduced under this condition for all the molecule databases (Figure 53).
The error plunges when the maximal weight evolves from 1 to 10 (weight
tuning scale from 0 to 0.33), thus, relying on a maximal weight of 10 could
be appropriate. The weights do not have a significant impact when the
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best molecule tuning scale (Sm = 1) is considered and the error cannot be
reduced less than approximately 30% with the other molecule tuning scales.
According to the present study, weights are not needed at a molecule tuning
scale of 1 because the error and the compositions are constant along the
weight tuning scale (Table 25).

Table 25: Calculated fractions (% wt/wt) and cumulated absolute error from confi-
dence interval comparison (εCI, %) at a molecule tuning scale equal to 1,
and at a weight tuning scale equal to 0, 0.33, 0.67 and 1.

Sw P I O N A Ox εCI
0 0.3 11.2 30.1 13.4 32.1 12.8 12.6

0.33 0.0 11.2 30.4 13.5 32.0 12.8 12.7
0.67 0.0 11.4 30.0 13.7 32.0 12.9 12.4

1 0.0 11.4 30.0 13.7 32.0 12.9 12.4

Only the reference fuel is studied in the present chapter. The range
of validity of the model can be studied with different compositions. The
accuracy of the model depending on the composition depends on the weights
and on the database. If the weights and the database are especially fitted for
the reference fuel, the accuracy of the model is likely to be impacted with
a different composition. Thus, a trade-off would be necessary. Moreover,
appropriate weights and database could be used to obtain a good accuracy
with different compositions.

The developed methodology has a good accuracy. However, the range
of validity of the method probably decreases when the inputs are tuned to
reach a high accuracy. Therefore, the range of validity could be studied with
an error propagation. The propagation of a variation of the fuel composition
on the calculated fraction is an interesting approach. This would complete
the current results to find an optimal set of parameters (molecule database
and weights) to couple a good range of applicability with a good accuracy.
Then, the key parameter between the molecule tuning, the weight tuning,
or a combination of both, for achieving good results for a wide range of
composition could be determined.

5.7 conclusion

In this chapter, the existing models for predicting the composition of a
classical fuel are extended to a model suited for unconventional fuels. As an
example, a model for ASR- derived fuels was used as case study. The method
relies on the chemical analysis of a reference fuel which characterizes well
the unconventional fuel. Once the model is set according to this reference
fuel, the chemical analysis is not required anymore and the fuel properties
measured according to standard test methods are sufficient. Thereafter, the
approximated fuel fractions can be used for several purposes. First, the
octane numbers can be estimated thanks to the pseudo-component technique
which is relevant as unconventional fuels are often related to constraints
(cost, reliability) and are in general produced locally making it hard to
perform the same kind of quality control as in a large plan like cooperative
fuel research (CFR) tests. Secondly, the unconventional fuel production
can be monitored. Lastly, a variation of the fuel characteristics can be
explained. Therefore, the developed methodology enables the properties of
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an unconventional fuel to be studied during its production, allowing to get
retrofitting information, to make technical choices, to study the production
stability or to tune the process towards better combustion.

Compared to the existing methods, where a linear system of equations
based on two fuel properties is solved to calculate the PNA fractions, this
method uses the pseudo-component technique and six properties simul-
taneously, namely the refractive index (n), the VGF, the Kw, the SG, the
AFs, and the O/C, leading to solve an optimization problem rather than
a direct linear system of equation. This method significantly extends the
existing methods to less traditional fuels and enables a good estimation
of the PIONAOx fuel fractions. The six properties can be easily measured
thanks to ASTM standards. The accuracy depends on the parameters of the
model and is evaluated comparing the calculated fractions to the confidence
intervals of the real fractions estimated from the composition measured with
the GC × GC. The error is low when the model is well-set. For the best
estimated composition, the cumulated error of all the groups was evaluated
at 12.4%

The estimation of the composition is useful to understand the properties
of a fuel. Among others, it is possible to explain how the fuel burns. For
instance, the research octane number (RON) and the motor octane number
(MON) are two important properties that must be high enough to avoid
engine knock and to ensure a high efficiency. Nevertheless, measuring
these properties is not always possible. Thus, estimating method exist for
conventional fuels. The next chapter develop a new estimating method
especially developed for oxygenated fuels.



6P R E D I C T I O N O F T H E O C TA N E N U M B E R S W I T H A
B AY E S I A N I N F E R E N C E A P P R O A C H

The content of this chapter has been published in the following scientific
article:

S. Tipler, M. Fürst, Q. Van Haute, F. Contino, and A. Coussement. Predic-
tion of the octane number: A bayesian pseudo-component method. Energy &
Fuels, 34(10):12598–12605, 2020

6.1 introduction

Straight paraffins tend to ignite with a small ignition delay while it is the
opposite for aromatics. Thus, the prediction of the composition, as performed
in the previous chapter, is useful to get a first insight on the behaviour of
a fuel and to know how to change the properties. Nevertheless, relying on
properties that express this ignition delay provides quantitative data.

Among all the fuel properties, the research octane number (RON) and the
motor octane number (MON) are fundamental. A maximal RON and MON
are required to avoid knocking and to optimize the combustion efficiency. The
RON and the MON test methods are expensive for a decentralized or small
production plant as well as for a project in the design phase because they
require a cooperative fuel research (CFR) engine, relatively costly products (n–
heptane and iso–octane) and high level of qualification [81, 82]. Nevertheless,
unconventional fuels are produced at a small scale, so they are produced
with a limited budget and they must be characterized at a cheap price. As a
comparison, we estimate the price of an on-site laboratory at 40 000€ while
this price would enable the producer to measure the fuel octane numbers
twice a week during one year only. It should be noted that additional
properties such as the density, the CHO atomic fraction, the distillation curve
and the composition would be required as an additional cost. Moreover, the
RON and the MON tests require 1L of material which may not be available
for fuels in early research stage.

RON and MON measurements can be replaced by one of the many predict-
ing methods available. They differ one another by the input quantities to run
the model. The input quantities can either be chemical properties – nuclear
magnetic resonance (NMR) data [109, 110], chemical fractions [8, 106], chro-
matographic data [107, 108] – or physical properties – distillation curves
[8, 111], ignition delay time [95, 113].

Among the different methods, the pseudo-component (PC) method is
based on the fractions of the hydrocarbon class (n-paraffin, iso-paraffin,
naphthene, aromatic) and the distillation cut points. This method, was
summarized by Riazi[8]: a PC is characterized by a boiling point which is
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equal to the mean average boiling point (MeABP) of a fuel. The method
attributes a PC to each hydrocarbon class.

While the pseudo-component method relies on simple input quantities, it
has several limitations.

• It does not cover fuels with olefin and oxygenated molecules so it
cannot be applied to all of the unconventional fuels [20, 33, 89], hence
the method lacks generality.

• Its uncertainty has never been studied.

• It does not differentiate the isomers among each hydrocarbon class. For
instance, the iso-paraffins are considered as a blend of 2-methyl-alkane,
3-methyl-alkane, 2,2-dimethyl-alkane and 2,3-dimethyl-alkane in equal
proportions.

• It was only presented for the RON, so, no model exist to predict the
MON with PCs.

To address these limitations, the current chapter embeds an inductive
probabilistic approach based on a Bayesian tuning. This kind of approach has
already been used to relate bulk properties and the molecular composition
[159].

The pseudo-component method was used in recent publications. For in-
stance, Nguyen et al. [160] proposed a model to predict the viscosity where
n-alkane mixtures are represented by a single pseudo-component. Xu et
al. [161] predicted binary-interaction parameters of cubic equation state
for petroleum fluids represented by pseudo-components. Ramos-Pallares
et al. [162] predicted the thermal conductivity of oils characterized into
pseudocomponents. Liu et al. [46] extended the pseudocomponent repre-
sentation to characterize the molecular information of pseudo-components.
Bulk properties, including the octane numbers, were accurately estimated
even if olefin constituted the fuel. Nevertheless, this method requires a
deep characterization of the petroleum fraction as a pseudo-component is
characterized every 20K. This requires the n-paraffin, iso-paraffin, olefin,
napthene, aromatic (PIONA) analysis of the petroleum product every 20K.

The aim of the current chapter is to formulate a model applicable for
gasoline blendstocks mixed with oxygenated molecules and which is able
to predict the RON and the MON. The goal includes the characterization of
the uncertainty. We focus on gasoline blendstocks mixed with oxygenated
molecules. The oxygenated molecule can be composed of up to four carbon
atoms and it can be produced via fermentation or gasification [27].

After having described the new Bayesian PC method, the results are
discussed and the conclusions are drawn in the last section.

6.2 method

The method section starts with an overview of the original PC method. The
original PC method summarized by Riazi attributes a PC to each hydrocarbon
class [8]. A PC is characterized by a boiling point which is equal to the
MeABP of a fuel. The MeABP depends on the distillation cut points and was
defined in section 2.5.4.

An important assumption in the PC method is that the RON of each PC,
RONpc, correlates with the MeABP of the fuel. The law between RONpc and
MeABP is based on the regression between the boiling point and the octane
numbers of pure molecules. In the original PC method, the database of pure
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molecules does not take the isomer into account. Specifically, the aromatics
are considered as n-alkylbenzenes, the naphthene as n-alkylcyclopentanes
and the iso-paraffins as the average between 2-methyl-alkanes, 3-methyl-
alkanes, 2,2-dimethylalkanes and 2,3-dimethylalkanes. In the current study,
we introduce a correcting factor that modifies the octane number of the PC
according to the type of isomer. In the original PC method, a linear blending
law by volume relates the RON of the fuel of interest with the RON of each
PC:

RON∗Riazi =
[
yRiazi

]ᵀ ×RONpc, (123)

where yRiazi is the vector of the volume fractions of the PCs. These volume
fractions are equal to the volume fractions of the hydrocarbon classes in the
fuel and can be measured by gas chromatography (GC), comprehensive two
dimensional gas chromatography (GC × GC) or with a reformulyzer. Note
that in the current chapter, the letters in bold refer to vectors and matrices
and "×" is the Cartesian product.

Property Min Mean Max
30 Training fuels

RON 85.8 91.7 99.2
MON 80.8 83.9 88.9

MeABP (°C) 79.3 89.9 101.5
Saturate (%) 57.3 66.0 74.0
Olefin (%) 2.1 4.6 7.8

Aromatic (%) 16.3 21.0 28.9
Oxygenate (%) 2.9 8.4 15.3

15 Test fuels
RON 86.9 92.0 98.6
MON 81.0 84.0 88.6

MeABP (°C) 80.5 89.4 99.5
Saturate (%) 59.8 64.9 70.2
Olefin (%) 2.2 4.5 7.4

Aromatic (%) 17.0 20.7 27.4
Oxygenate (%) 7.8 9.9 11.6

Table 26: Properties of the 45 BOB-Ox fuels used to train and to test the new method.
This table defines the ranges where the model can be applied.

Contrary to the one compiled by Riazi, the proposed method is developed
for fuels with olefins and oxygenates. The study of Christensen et al. [27],
who highlighted the properties of 77 fuels, offers a lot of experimental data
to develop the method. Only 45 out of the 77 fuel are selected. This way
of proceeding allows to obtain an equal representation of each oxygenated
molecule, thus, achieving a more accurate model. Specifically, for these 45

fuels, three blendstocks for oxygenate blending (BOB) are mixed at three
different proportions – at a low (3 to 4.1%), an intermediate (7.9 to 11.6%) and
at a high volume fractions (10.6 to 15.3%) – with five oxygenated molecules
– 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol. The
45 fuels are divided in a training set and in a test set. The training set is
composed of the low and the high fractions (30 fuels) and the test set is
composed of the intermediate fractions (15 fuels). Thus, the model is created
with the framing fractions of oxygenates and validated with a fraction which
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is in between. The properties of the studied BOB-Ox fuels are reported in
Table 26. This Table defines the ranges where the model can be applied.

The method proposed here, based on Bayes law allows to assess the un-
certainty, which was not possible with the original PC method. The original
Equation 124 is modified with the expectancy of a correcting factor E

(
K
)

which is calculated applying Bayes’ law. The correcting factor corrects the
octane number of each PC according to the type of isomer in the correspond-
ing hydrocarbon class. With the Bayesian PC method, an unbiased estimator
of the octane number (ON) is proposed as:

ON∗ =
[
y
]ᵀ ×([E(K) ◦ONpc

])
+ σ∗, (124)

with σ∗ the random error, i.e. an unpredictable error due to the measure-
ment method, and "◦" the Hadamard product.

The modifications adopted to the original equation reported by Riazi [8]
are described thereafter.

• y is the vector of the volume fractions of the four PCs (saturate,
olefin, aromatic, oxygenate). Three hydrocarbon classes (n-paraffin,
iso-paraffin, naphthene) are merged in a single hydrocarbon class (sat-
urate) because the saturate class constitutes the training data reported
by Christensen et al. [27]. Moreover, the olefin and the oxygenate
hydrocarbon class are included.

• ONpc is the vector composed of the octane numbers of the four PCs.
The correlations between ONpc and the MeABP are modified to include
more isomers than in the original PC method:

ONpc =rᵀ ×T, (125)

with

T = [
1

MeABP
]. (126)

The vector r is composed of the linear regression coefficients between
the boiling points and the octane numbers of pure molecules from large
databases [8, 25–29]. These databases were completed by measuring
the octane numbers of pentan–3–one and heptan–3–one. Relying on
ketones as well as alcohol allowed us to propose a general methodol-
ogy that can be applied to another type of fuel, for generating another
model. r takes into account the evolution of the octane number de-
pending on the boiling point. Nevertheless, the uncertainty on r does
not need to be estimated to calculate the final uncertainty, according to
Equation 12. The boiling points and the octane numbers are available
in the Appendix C and r is reported in Table 27.

• In equation 124, E
(
K
)

are the expectancies of the correcting factors
K introduced by Bayes’ law. The Bayesian method that calibrates the
probability density functions (PDFs) of K is inspired by the work of
Josephson et al. [137] With this method, we compute the estimated
octane number with an initial guess and we compare the estimation to
the measurement. The better is the match between the estimation and
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Saturate Olefin Aromatic Oxygenate
RON

Intercept 103.07 112.89 142.14 108.80

Slope -0.29143 -0.22733 -0.19927 -0.13568

MON
Intercept 9.4256 90.794 131.09 91.299

Slope -0.24124 -0.12941 -0.19675 -0.08470

Table 27: Coefficients (r) required for Equation 136. The coefficients were obtained
with a linear regression between the octane number and the boiling points
of pure molecules from the literature [8, 25–29]. Additional octane number
measurements were also lead for pentan–3–one and heptan–3–one (available
in the Appendix).

the measurement, the better is the initial guess. When the matching
is satisfactory, the initial guess is set as being the right value for the
parameters of the model. Below are summarized the calculation steps
with a focus on how the work of Josephson et al. is adopted to the cur-
rent study. If the reader requires more information, the main concepts
of the methodology used in the current chapter are explained in depth
in the paper of Josephson et al. [137]

According to Bayes’ law, the conditional knowledge of the experimental
octane number ON allows to estimate the correcting factor. When ON
is known, the PDF of the correcting factor Ki, fKi|ON

(
Ki|ON

)
, for the

hydrocarbon class i is given by the following proportionality:

fKi|ON
(
Ki|ON

)
∝ fKi

(
Ki
)
fON|K

(
ON|K

)
. (127)

The prior PDF, fKi

(
Ki
)
, represents an initial knowledge of the correcting

factor. The prior gives the distribution of Ki before any analysis is
realized. The distribution of the PDF and the limits where Ki is studied
must be defined. As Ki is unknown, we chose an uniform distribution
to avoid any preferred choice in the studied range[137]. Thus, we
chose a rectangular distribution so that the correcting factor Ki has
equal probability across the studied range. Then, the limits where
Ki is studied must be defined. As Ki is a priori unknown, the PDF
called likelihood (fON|K

(
ON|K

)
) informed us on how far the limits of

Ki were from their true value. The likelihood depends on the values
of the correcting factors. Thus, changing the limits of Ki changes the
shape of the likelihood. When Ki is defined in a wrong range, the
value of likelihood tends towards zero. When the prior is defined in
the right range, the likelihood tends towards a Gaussian shape because
of Equations 128 and 129. Thus, we changed the limits of each Ki
iteratively by trial-and-error until getting a well-defined Gaussian shape
that described the likelihood. We discretized each Ki simultaneously
with a latin hypercube sampling (LHS) procedure and 20 000 samples to
balance RAM memory and resolution when visualizing the likelihood.

The likelihood fON|K
(
ON|K

)
represents the probability to get the exper-

imental octane numbers ON with the correcting factors K. Concretely,
the probability of the likelihood is reduced when the octane num-
ber calculated with the chosen parameters does not correspond to
experiments. The likelihood is given by the following equation which
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combines the probabilities p
(

ON|ON∗(K)) for all the experimental

ON:

fON|K
(
ON|K

)
=

nexp∏
p
(

ON|ON∗(K)). (128)

p
(

ON|ON∗(K)) is the probability of the measured octane number

when the estimated octane numbers are defined. The estimated octane
numbers are randomly distributed because the parameters K were
randomly sampled with a LHS procedure. Thus, the octane numbers
estimated with the sampled K follow a Gaussian shape. This Gaussian
is centred at a value equal to the measured octane number when the
parameters K are correctly chosen.

p
(

ON|ON∗(K)) =

1√
2πσ2

exp

(
−

(
ON − ON∗(K))2

2 σ

) (129)

Equation 129 gives the probability of getting a measured octane number
relatively to its estimation. This probability depends on the Gaussian
shape, i.e. on the variance σ. The estimation being intrinsically unbi-
ased, this probability depends only on the precision of the experimental
measurements. Consequently, the Gaussian shape, i.e. the variance σ,
depends on the reproducibility of the ON measurement.

The reproducibility of the ON measurement was published in the
ASTM D2699 [81] (RON), ASTM D2700 [82] (MON) and in The Preci-
sion of knock rating – 1936-1938 [163] for RON equal to 50, 80, from 90

to 100, 101, 102, 103 and from 104 to 108 and for MON from 80 to 90

and from 102 to 103. The uncertainty has never been characterized in
the other ranges so we adopted the worst uncertainty of the surround-
ings octane numbers. Moreover, we adopted the same reproducibility
for low and high MON (below 80 and above 103) than the RON. The
uncertainties are summarized in Table 28.

The following procedure explains how to create a new model.

• Initialize the minimal and the maximal values of the correcting factors
with a starting guess.

• Create samples for the correcting factors. We relied on 20000 samples
generated via LHS.

• For each sample, calculate the octane number with Equation 124. The
input parameters, namely the hydrocarbon class fractions and the
MeABP are used.

• For each sample, calculate its probability with Equation 129. σ in
Equation 129 is calculated with the reproducibility reported in Table 28.
The objective parameters, namely, the experimental octane numbers
are used.
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ON Half-width Confidence
RON

]0 - 50[ 2 95

50 2 99.9
]50 - 90[ 2 95

[90 - 100] 0.7 95

]100 - 101] 1 95

]101 - 102] 1.4 95

]102 - 103] 1.7 95

]103 - 104] 2 95

]104 - 120] 3.5 95

MON
]0 - 80[ 2 95

[80 - 90] 0.9 95

]90 - 103] 2 95

]103 - 120] 3.5 95

Table 28: Confidence interval of the experimental octane numbers (Reproducibility).
The level of confidence of the measured octane number is given in the
interval = ON ± half-width.

• Calculate the likelihood with Equation 128.

• Plot the likelihood as a function of the sampled correcting factor to
visualize the likelihood.

• Go back to the first step and change the minimal and maximal values of
the correcting factor so that the plotted likelihood look like a Gaussian
function.

• Once the likelihood looks like a Gaussian function, calculate the ex-
pectancy and the variance-covariance matrix of the correcting factors.

6.2.1 Example

This section shows how to compute the octane number once the model
is created. As an example, we rely on the first fuel of the spreadsheet
TestData provided in the Appendix D. We show how to calculate the RON,
the MON and their uncertainties. The properties of this fuel are reported in
the following table. The MeABP is first calculated with equation 18.

MeABP 80.46

Saturate (%) 66.1
Olefin (%) 7.3

Aromatic (%) 18.1
Oxygenate (%) 8.4

Table 29: Properties of the fuel used as an example.

Then, the octane numbers of the pseudo-components are calculated with
Equation 125 with the coefficients from Table 27. The result is reported in
the following table.

Thereafter, the expectancy of correcting factors are applied. The expectan-
cies of the correcting factors are reported on Figure 54 for the RON and
figure 55 for the MON. The following table reports the result.
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RONPC MONPC
Saturate 79.62 74.85

Olefin 94.60 80.38

Aromatic 126.11 115.26

Oxygenate 97.90 84.48

Table 30: Octane numbers of the pseudo-components.

RON MON
Saturate 89.97 90.56

Olefin -28.38 -45.82

Aromatic 131.15 99.12

Oxygenate 106.71 91.24

Table 31: Corrected octane numbers of the pseudo-components.

Finally, the corrected octane numbers are weighted by the hydrocarbon
class fractions (in Table 29) of the fuel of interest to obtain the predicted
octane number. The result and the measurement are reported in the following
table.

RON MON
Estimated 91.1 82.1
Measured 89.9 82.0

Table 32: Estimated octane numbers compared with the measurements.

As showed by Equation 130, the uncertainty depends on the variance-
covariance matrix and on the sensitivities. The variance-covariance matrix
is reported in Table 34 and Table 35 while the sensitivities are governed by
Equation 131.

RON MON
Saturate (%) 52.63 49.47

Olefin (%) 6.91 5.87

Aromatic (%) 22.83 20.86

Oxygenate (%) 8.22 7.10

Table 33: Sensitivities

5.4738E-03 -2.1470E-02 -6.2724E-03 -1.3167E-03

-2.1470E-02 1.1514E-01 2.3462E-02 -2.2847E-03

-6.2724E-03 2.3462E-02 7.7526E-03 6.0008E-04

-1.3167E-03 -2.2847E-03 6.0008E-04 5.9258E-03

Table 34: Variance covariance matrix for the RON

Finally, the variance-covariance matrix and the sensitivities give the stan-
dard uncertainty, u. The expanded uncertainty at 95%, U, is obtained by
multiplying u by 1.96 [19].

Therefore, for the studied fuel, the RON and the MON are evaluated at
95% being equal to 91.10±1.57 and to 82.12±1.60, respectively.
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6.5583E-03 -2.7241E-02 -7.7192E-03 -3.0927E-03

-2.7241E-02 1.7442E-01 2.8304E-02 -8.0773E-04

-7.7192E-03 2.8304E-02 1.1941E-02 -1.9105E-03

-3.0927E-03 -8.0773E-04 -1.9105E-03 2.3562E-02

Table 35: Variance covariance matrix for the MON

RON MON
u 0.80 0.82

U 1.57 1.60

Table 36: Standard and expanded uncertainty at 95% of confidence interval

6.3 results and discussion

After having reported the values of the correcting factors, this section presents
the precision of the method. Finally, it discusses the uncertainty and the
sensitivity of the method.

Analysing the correcting factors enables us to understand the role of each
hydrocarbon class while the covariances inform us about the interactions
between the hydrocarbon classes. Figures 54 and 55 summarize the cor-
recting factors K and their covariances for the RON and the MON models,
respectively. The expectancies of the correcting factors, which are required
in Equation 124 are also reported on Figures 54 and 55.

Figure 54: Visual representation of the symmetric variance-covariance matrix of the
RON correcting factors. The three variance-covariance error ellipses repre-
sent the 99%, 95% and 68% confidence intervals. The ellipses represents
the domains where the 20 000 samples of the correcting factors are defined.
The directions of the ellipses shows how the correcting factors interact
between each others.

The correcting factors of the saturates, the aromatics, and the oxygenates
is positive. For the olefins, it can either be positive or negative. Therefore,
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Figure 55: Visual representation of the symmetric variance-covariance matrix of the
MON correcting factors. The three variance-covariance error ellipses rep-
resent the 99%, 95% and 68% confidence intervals. The ellipses represents
the domains where the 20 000 samples of the correcting factors are defined.
The directions of the ellipses show how the correcting factors interacts
between each others.

the saturates, the aromatics and the oxygenates tend to increase the octane
number of the mixture.

The covariances inform us about the interactions between the hydrocarbon
classes and the intensity of the covariance, i.e. its slope, shows which
interactions are the stronger.

• The oxygenate class exhibits a negligible covariance, so, the oxygenates
do not covariate with other classes.

• The saturate class has a negative covariance shared with all the other
classes, so, the correcting factors decrease as far as the saturates are
concerned. The saturate class counterweights the fuel octane numbers
of the other classes. Thus, the saturate class controls the antagonist
blending effect [164].

• The covariance between the aromatic and the olefin classes is positive.
Thus, an aromatic molecule mixed with an olefin tends to increase the
octane numbers. Therefore, the aromatic and the olefin classes control
the synergistic blending effect [164].
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• The covariance between the aromatic and the olefin with and the
saturate class is negative. Thus, the octane number decreases when
aromatics and saturates are blended. Therefore, the antagonist blending
effect prevails on the synergistic blending effect.

• The covariances are similar between the RON and the MON except
for the covariance between the saturates and the aromatics. The de-
pendency between the aromatics and the saturates is higher for the
RON. This means that the RON decreases more than the MON when
the correcting factor of the saturates increases.

According to Figures 56 and 57, the Bayesian pseudo-component method
predicts accurately the octane number for the training and the test fuels, with
less than 2% error for all the fuels and less than 1% for most of them. A
small bias appear for the RON lower than 88.5. For these values, the RON is
slightly over-predicted. The test fuels with a RON lower than 88.5 are the
BOB fuels 1 and 2 mixed with 1–butanol. The RON of test fuel BOB 3 mixed
with 1–butanol is also over-predicted. Thus, the octane numbers of fuels
mixed with 1–butanol tend to be over-predicted. This can be explained by
the low octane number of these mixtures, comparing with the other fuels.
This difference shows that 1–butanol have a special interaction with gasoline
blendstocks. A new model especially fitted for this 1–butanol and similar
molecules could be developed after having identified molecules that have
the same feature as 1–butanol.

On Figure 56, the new Bayesian PC method is compared with the one
reported by Riazi. To lead the calculation, the saturate group was considered
as iso-paraffins and the olefins and the oxygenates were neglected. Note that
the original PC method would probably give better results without these
assumptions while the new model would not be as precise for a different type
of fuel than gasoline blendstock for oxygenate blending. The new method
gives better results than the original one.

Figure 56: The new Bayesian pseudo-component method gives a very accurate RON
prediction for the considered BOB-Ox subpopulation. The 68%, 95% and
99% theoretical confidence intervals are reported as well as a deviation
of 2% from the observation. All the points are in accordance with the
model uncertainty. The new method is more precise than the original
PC method reported by Riazi [8]. Nevertheless, it should be pointed
out that the original method was developed for narrow range fractions
and for conventional gasoline or naphtas without oxygenates and olefinic
compounds. This method may give good results with other fuels while
the developed model would not be as precise for a different type of fuel
than gasoline blendstock for oxygenate blending.
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Figure 57: The Bayesian pseudo-component method gives a very accurate MON
prediction for the considered BOB-Ox subpopulation. The 68%, 95% and
99% theoretical confidence intervals are reported as well as a deviation of
2% from the observation. All the points are in accordance with the model
uncertainty.

Figures 56 and 57 reports also the theoretical uncertainties with a confi-
dence interval of 68%, 95% and 99%. All the experimental points fit within
the theoretical model uncertainty. This uncertainty was calculated with the
following formula, from the book Evaluation of measurement data — Guide
to the expression of uncertainty in measurement [19].

u2 = Var
(
σ∗
)
=
nPC∑
i=1

(
si

)2
Var
(

fi

)

+ 2

nPC−1∑
i=1

nPC∑
j=i+1

sisjCov
(

fi, fj

)
,

(130)

where fi = fKi|ON
(
Ki|ON

)
is the PDF of the i-the pseudocomponent correct-

ing factor and nPC is the number of pseudo-components.
According to Equation 130, the sensitivities, si, indicate which variance of

the correcting factor prevails on the combined uncertainty, u.
Owing to Equation 124, the sensitivity for each hydrocarbon class i is given

by

si =
∂ON∗

∂E
(
Ki
) = yiONpci. (131)

The liquid volume fraction of the fuel hydrocarbon class, yi, and the octane
number of PC i, ONpci, govern the sensitivity, si. The sensitivities and yi
depend linearly on each others. For instance, the sensitivity sSaturates is the
highest because the saturate class constitutes the majority in BOB-Ox fuels
(Figure 69). The sensitivity of the saturate group is the highest, so, according
to Equation 130, the variance of the correcting factor of the saturates affects
the combined uncertainty the most. The sensitivities are sorted in the follow-
ing ascending order: olefin, oxygenate, aromatic, saturate. Additionally, the
octane numbers of the PCs impact this linear trend (Equation 131). Specifi-
cally, the octane number of the aromatic pseudo-component is high, thus, it
increases the sensitivities of the aromatic class (Figure 69). In contrast, the
low octane numbers of the saturate class decreases the sensitivities of the
saturate class.
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Figure 58: Estimated sensitivities according to the four correcting factors (attributed
to Saturates S, Olefins O, Aromatics A and Oxygenates Ox). The estimated
octane number is particularly sensitive to the saturate and to the aromatic
correcting factors. This is a direct consequence of the higher concentra-
tions of these species, and to the high octane number of the aromatics.
The sensitivity is proportional to the hydrocarbon class fraction. This
proportionality is impact by the low and the high octane numbers of the
PCs.

6.4 conclusion

The current chapter resulted in showing the power of Bayes law to predict
the octane numbers.

The method includes an uncertainty quantification and it incorporates
the fuel complexity such as the hydrocarbon classes, including olefins and
oxygenates, and the types of isomers. Moreover, relying on Bayes’ law
enabled us to draw the following conclusions for the studied fuels.

• The hydrocarbon class with the higher impact on the uncertainty are
sorted in the following ascending order: olefin, oxygenate, aromatic,
saturate.

• Compared with the base values of the PCs, of the hydrocarbon classes
tend to increase the fuel octane number, except the olefin class.

• The saturate and the aromatic hydrocarbon classes are associated with
an antagonist and a synergistic blending effect [164], respectively.

The computational method show that the fuel is governed by high interac-
tion blending effects, particularly when saturates, olefins and aromatics are
mixed. These blending effects could be the result of an interaction between
the intermediate species playing in the radical pools. This methodology
could be used with simple mixtures composed of a reduced number of
molecules to identify these kind of interactions and provide information on
the chemistry.

The model developed in the current chapter is made to study gasoline
blendstock for oxygenated blending mixed with 1–propanol, 2–propanol, 1–
butanol, 2–butanol, or 2–methyl–1–propanol (BOB-Ox). The model requires
the main hydrocarbon class fractions (Saturate, Olefin, Aromatic, Oxygenate)
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and the distillation cut points. It includes the olefin and oxygenate class
fractions, so, it is promising for unconventional fuels.

Predicting correctly the octane number is useful to have a rapid insight
on a fuel. Nevertheless, it is not a property that enables us to predict how
a fuel behave in real conditions. Real conditions during the compression
stroke in an engine can be defined by a temperature and pressure profile in
time. Under each time step, the auto-ignition delay of a fuel can be defined
via its kinetic characteristics. These characteristics depends on the kinetic
mechanism which contains the information on the chemical behaviour of
the fuel depending on the temperature and pressure. It is noteworthy to
remind that the real fuel is not described by its kinetic mechanism due
to its complexity. Instead, a surrogate fuel (mixture of 2 to 10 molecules)
substitutes the real fuel. The last chapter aims at studying a fuel produced
from automotive shredder residues (ASR) in order to define its ignition
characteristics and to formulate a surrogate fuel.
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The content of this chapter will be proposed for publication as: Steven
Tipler, Giuseppe D’Alessio, Quentin Van Haute, Francesco Contino, and Axel
Coussement. Predicting octane numbers with inexpensive properties relying
on principal component analysis and artificial neural network. To be submitted

7.1 introduction

In the previous chapter, a Bayesian method was developed to predict the
research octane number (RON) and the motor octane number (MON) of
gasoline blendstocks mixed with an oxygenated molecule. This method
has the advantage of being very powerful, in a sense that it can reproduce
experimental data very well. Nevertheless, the required input quantities are
quite expensive. For instance, this Bayesian method rely on the mean average
boiling point (MeABP) and on the saturate, olefin, aromatic, oxygenate
(SOAOx) hydrocarbon class fractions. These hydrocarbon class fractions are
expensive properties compared to the distillation curve, or to the specific
gravity (SG), for example.

In the current chapter, we focus on developing a new octane number
predicting method, based on inexpensive input quantities. To proceed, we
relied on artificial neural network (ANN) to find the inherent link between
the inexpensive properties and the octane numbers of a sample of gasoline
blendstocks mixed with an oxygenated molecule. We also apply principal
component analysis (PCA) to select an optimal subset of input variables, to
work with a reduced number of properties. In the previous chapter, we relied
on physical concept to formulate the predicting law. In contrast, we now
base our model on machine learning. Then, it will be possible to compare
the two methods.

Researchers have already applied ANN to petroleum products. Albahri
[116] predicted the octane number of pure molecules based on their chemical
composition. Pasadakis [106] applied ANN to predict the RON of gasoline
blends from a Greek refinery. To do so, the input data were constituted of
the volumetric concentration of the following refinery streams: streams from
fluidized catalytic cracking, reforming, isomerization, alkylation, dimersol,
butane and Methyl tert-butyl ether (MTBE). Similar work was performed
by Doicin et al. [165] to predict the octane numbers of petroleum mixtures.
More recently, Ibrahim et al. [166] relied on ANN and PCA to predict the
octane numbers based on several chemical features obtained from infrared
spectroscopy. Abdul Jameel et al. [109] also predicted the octane numbers
based on a chemical analysis, relying for instance on paraffinic CH3 groups,
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paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups,
naphthenic CH-CH2 groups, aromatic C-CH groups, and ethanolic OH
groups. Kubic et al. [167] estimated the octane numbers of hydrocarbons and
oxygenated compounds with an ANN relying on the chemical composition
with a group contribution method. vom Lehn et al. [168] also relied on a
group contribution method to predict the octane number (ON).

In the available studies from the literature, ANN generally relies on chem-
ical properties, as volume fraction and group contributions, rather than
physical properties which tends to be less expensive. Moreover, no predic-
tion models based on inexpensive properties exist for gasoline blendstock
mixed with oxygenated molecules. Finally, the methods from the literature
predict the ON of pure molecules and of blends of several petroleum frac-
tions, but, no method investigates single petroleum fractions which are not
blended.

After having described the method to create the sample of fuels, we list
the properties that were investigated. Finally, we detail the PCA and the
ANN methods and we conclude with the precision of the created method.

7.2 composition of the studied fuels

The studied fuels are gasoline blendstock mixed with an oxygenated molecule.
The molecule is one of the following: 1-propanol, 2-propanol, 1-butanol, 2-
butanol and 2-methyl-1-propanol. Such alcohol with a high number of carbon
atoms can be produced via fermentation or gasification. This type of fuel
was studied by Christensen et al. [27]. The studied fuels were simulated, in
a sense that their compositions were chosen numerically and their properties
were calculated with Aspen Plus and with the available methods from the
literature.

Thereafter is explained how the simulated fuels were created.
First, molecules representative of gasoline were selected from the Aspen

Plus database. 238 molecules were selected to represent the gasoline blend-
stock: 9 n-paraffins, 92 iso-paraffins, 83 olefins, 28 naphthenes, 26 aromatics.

Second, the volume fraction of each fuel was calculated. To proceed, the
fuel was divided into three layers: the hydrocarbon class (n-paraffin, iso-
paraffin, olefin, napthene, aromatic and oxygenate (PIONAOx)), the isomer
group, and the mass fraction depending on the carbon number in an isomer
group. More information on each layer is described in each of the following
paragraphs.

The main hydrocarbon class volume fractions (saturate, olefin, aromatic)
were sampled following a latin hypercube sampling (LHS) within the bounds
reported in Table 37. These bounds correspond to the Range of applicability
of the method developed in the previous chapter to predict the octane
numbers of gasoline blendstock mixed with an oxygenated molecule. This
range is also the range of applicability of the model developed in the current
chapter. Once the saturate, olefin and oxygenate class fractions were sampled,
the oxygenate volume fraction was calculated, being 100% subtracted from
the sum of the other class fractions. Thereafter, the samples whose oxygenate
volume fraction that did not match with the requested bounds (Table 40) were
removed. The following approach allowed us to ensure a good distribution of
the volume fractions with a small number of samples. We first evaluated by
convergence the mean and the standard deviation of the six volume fractions
(PIONAOx). From this study, we estimated the minimal number of samples
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to reach convergence. Finally, NSampling
class = 25 samples were generated in a

while loop until reaching the predefined mean and standard deviation.

S O A Ox
Min 57.3 2.1 16.3 2.9
Max 74.0 7.8 28.9 15.3

Table 37: Limits of the hydrocarbon class fractions of the simulated fuels [27]. For
each sample fuel, the oxygenate class is composed of a single molecule
among 1-propanol, 2-propanol, 1-butanol, 2-butanol and 2-methyl-propanol.
These limits define the ranges where the model can be applied.

Different isomer groups differentiate the molecules with the same molec-
ular weight, but with a different number of methyl substituent. In each
hydrocarbon class, a distribution factor defines the percentage of each iso-
mer group. After a convergence study similar to the one realized with the
hydrocarbon class layer, NSampling

molecule = 17 samples were chosen.
A Gamma distribution drove the molecular weight in each hydrocarbon

class, following the method presented by Riazi et al. [8]. The distribution is
given by the function:

f(x,α,β,η) =
(x− η)α−1e−

x−η
β

βαΓ(α)
. (132)

Group η α Mmean
Min Max Min Max

n-paraffin 58 1.5 20 85 115

iso-paraffin 58 1.5 20 82 95

Olefin 70 2.8 10 80 116

Naphthene 70 2 10 80 95

Aromatic 78 2 20 113 128

Table 38: Studied shape and intensity parameters of the gamma function. η is the
minimum molecular weight, Mmean is the investigated mean molecular
weight range and α defines the probability density function shape.

This function requires four input parameters: x, is the molecular weight of
a molecule in an hydrocarbon class, the three others, α, β and η, are design
parameters that characterize the molecular distribution in each hydrocarbon
class. The parameter β can be estimated with the following formula [8]:

β =
Mmean−η

α
. (133)

The parameter η is the molecular weight of the lightest molecule in the
hydrocarbon class. β depends on the function shape, α, and on the mean
molecular weight of the hydrocarbon class, Mmean. These two parameters
were sampled. Their ranges were defined iteratively with the following
procedure.

Sets of 20 parameters were generated iteratively, giving raise to 20 fuels
after each iteration. At each iteration corresponds different ranges of mean
molecular weight, Mmean, and shape parameter, α. For each iteration, the
distillation cut points of the 20 fuels were calculated. These cut points
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were compared with the experimental distillation cut points published by
Christensen et al. [27] (Table 39). This table defines the ranges where the
model can be applied. The best correspondence gave the best range of
parameters (Table 38). The final sample of fuels was generated with LHS
within these ranges. As we did not study the co-variance of the parameters,
part of the final fuels did not match with the experimental cut points. These
fuels were removed, resulting in NSampling

molecule = 14 out of 20 fuels.

T5 T10 T30 T50 T70 T90 SL MeABP
Min 35.85 41.1 58.6 69.9 91.8 163.3 1.21 79.4
Max 62.6 69.8 88.1 103.7 137.25 174.5 1.63 101.5

Table 39: Evaporation characteristics of the studied gasoline blendstocks mixed with
an oxygenated molecule [27]. TX refer to the distillation temperature (°
C) to get X% evaporated, SL is the 10-90 slope (° C / %v) and MeABP is
the mean average boiling point (° C) as defined by Riazi [8]. This table
summarizes the ranges where the model can be applied.

The Gamma distribution is continuous over the molecular weight, so, we
discretized and integrated the Gamma function depending on the molecular
weight of the molecules in the fuel. Moreover, it represents the probability
density function of a molecule depending on its molecular weight. Thus, yk,
is given by:

yk =



yi
rk
Nk

∫(Mk+M+1

k )/2

Mk
f(x,α,β,η)dx

if Mk = Mmin
k

yi
rk
Nk

∫(Mk+M+1

k )/2

(Mk+M−1

k )/2

f(x,α,β,η)dx

if Mk ∈]Mmin
k ; Mmax

k [

yi
rk
Nk

∫Mk
(Mk+M−1

k )/2

f(x,α,β,η)dx

if Mk = Mmax
k .

(134)

Mk is the molecular weight of a molecule k. M−1

k and M+1

k are the molecular
weights of molecules respectively lighter and heavier than the molecule k.
Mmin

k and Mmax
k are the minimal and maximal molecular weights in the

hydrocarbon class of the molecule k. yi is the hydrocarbon class volume
fraction and rk is the isomer distribution factor of the molecule k defined in
the two previous sections. Several molecules have the same molecular weight
in an isomer groups, such as 2-methyl-1-pentene and 4-methyl-1-pentene.
Thus, the isomer factor was divided by Nk, which is the number of molecules
that shares the same molecular weight with the molecule k in its isomer
group.

The number of samples that were simulated is equal to NSampling
class ×

NSampling
molecule ×NSampling

molecule = 5950.

7.3 properties of the studied fuels

The properties of the simulated fuels and their calculation methods were
carefully chosen. Fuel properties have been characterized for many years.
Then, a lot of calculation methods exist. Among all the available references,
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we selected property methods from the Characterization and Properties of
Petroleum Fractions by Riazi [8], the API Technical Data Book - Petroleum Refining
[169], and the Peng-Robinson property package from Aspen HYSYS (HYSPR)
especially developed for hydrocarbon systems [25]. We investigated the
two octane numbers, and 13 thermodynamic, 9 chemical and 7 transport
petroleum properties. Some of these 29 properties were calculated with
several methods, which results in 41 candidate inputs properties. It is
noteworthy that the selected methods are based on a combination of simple
properties such as the specific gravity, which is a measure of the density. The
selected properties are listed thereafter.

7.3.1 Thermodynamic properties

The distillation curve cut points of ASTM D86 at 5, 10, 30, 50, 70 and 90% are
the first properties. They were calculated with the HYSYS Peng-Robinson
EOS package from Aspen Plus. The MeABP was also calculated and included
in the study. The MeABP depends on the distillation cut points and was
developed in section 2.5.4.

The critical volume, pressure, temperature, density and compressibility fac-
tors were also considered. The following relations were adopted to calculate
them from properties that are easily measurable (inexpensive).

The critical volume was calculated with the following formula [8]:

Vc = 1.7842× 10
−4T2.3829

b SG−1.683 (135)

where Vc is in cm3/mol and Tb is the MeABP in kelvin. This formula is
accurate for lower molecular weights such as gasoline blends.

The critical pressure was calculated with two methods. The first is given
by the Riazi-Daubert method:

Pc = 3.1958× 10
5[exp(−8.505× 10

−3Tb − 4.8014SG

+5.749× 10
−3TbSG)]Tb4.0844SG4.0846, (136)

and the second method to calculate the critical pressure is known as the
Cavett method:

log(Pc)= 1.6675956 + (9.412011× 10
−4)(l.8Tb − 459.67)

−(3.047475× 10
−6)(1.8Tb − 459.67)2

−(2.087611× 10
−5)(API)(1.8Tb − 459.67)

+(1.5184103× 10
−9)(1.8Tb − 459.67)3

+(1.1047899× 10
−8)(API)(1.8Tb − 459.67)2

−(4.8271599× 10
−8)(API2)(1.8Tb − 459.67)

+(1.3949619× 10
−10)(API2)(1.8Tb − 459.67)2.

(137)

The critical temperature was calculated also with two methods. The first is
the API method[169]:

Tc = 10.6443[exp(−5.1747× 10
−4Tb − 0.54444S + 3.5995× 10

−4TbS)]

×T0.81067

b S0.53691, (138)
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and the second is the Cavett method[8]:

Tc= 426.7062278 + (9.5187183x10
−1)(1.8Tb − 459.67)

−(6.01889× 10
−4)(1.8Tb − 459.67)2

−(4.95625× 10
−3)(API)(1.8Tb − 459.67)

+(2.160588× 10
−7)(1.8Tb − 459.67)3

+(2.949718× 10
−6)(API)(1.8Tb − 459.67)2

+(1.817311× 10
−8)(API2)(1.8Tb − 459.67)2.

(139)

The critical density was calculated with:

dc =
M
Vc

(140)

where the critical volume is given by Equation 135. The molecular weight
is given by three methods described in the following section dedicated to
chemical properties.

The critical compressibility factor is given by the following relation[8]:

Zc =
PcVc

RTc
(141)

with the critical properties calculated with Equations 135, 136 and 138

The acentric factor given by the Lee-Kesler method [8] is also included in
the study:

ω=
−ln(Pc/1.01325) − 5.92714 + 6.09648/Tbr + 1.28862ln(Tbr) − 0.169347T6

br
15.2518 − 15.6875/Tbr − 13.4721ln(Tbr) + 0.43577T6

br
,

(142)

with

Tbr = Tb/Tc. (143)

The last property of the current section is the Watson K factor:

Kw =
(1.8Tb)

1/3

SG
(144)

7.3.2 Chemical properties

On top of these thermodynamic properties, chemical properties were in-
cluded. The oxygen-to-carbon and the carbon-to-oxygen ratios, the carbon,
hydrogen and oxygen weight ratios were obtained from Aspen Plus by
counting the amounts of atoms.

The molecular weight was estimated with three methods. First, the Lee-
Kelser method[8]:

M= −12272.6 + 9486.4SG + (8.3741 − 5.9917SG)Tb

+(1 − 0.77084SG − 0.02058SG2)

×(0.7465 − 222.466/Tb)10
7/Tb

+(1 − 0.80882SG + 0.02226SG2)

×(0.3228 − 17.335/Tb)10
12/T3

b,

(145)
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second, the Riazi-Daubert method[8]:

M = 1.6607× 10
−4Tb

2.1962SG−1.0164, (146)

third, the API method [169]:

M= 20.486[exp(1.165× 10
−4Tb − 7.78712SG

+1.1582× 10
−3TbSG)]T1.26007

b SG4.98308,
(147)

Other chemical properties were estimated: the SG, the stoichiometric air-
to-fuel ratio, and the aniline point calculated with the API method [169]:

AP = −1253.7 − 0.139MeABP + 107.8Kw + 868.7SG, (148)

and with the Albahri et al. method [8]:

AP = −9805.269Ri + 711.85761SG + 9778.7069, (149)

with Ri the refractivity intercept defined by:

Ri = n −
d
2

(150)

where d and n are respectively the density and the refractive index at 20°C
and at 1 atm.

7.3.3 Transport properties

Finally, transport properties were included in the study.
The refractive index was calculated with:

n = (
1 + 2I
1 − I

)1/2 (151)

where I was calculated with three methods. Firstly with the API method
[169]:

I =2.266× 10
−2exp(3.905× 10

−4MeABP + 2.468SG

−5.704× 10
−4MeABP SG)MeABP0.0572SG−0.720,

(152)

secondly with the Riazi-Daubert method [8]:

I = 0.3773T−0.02269

b SG0.9182 (153)

and last, by the method developed by Riazi and Daubert and included in
the API-TDB method [8]:

I =2.34348× 10
−2[exp(7.029× 10

−4Tb + 2.468SG

−1.0267× 10
−3TbSG)]T0.0572

b SG−0.720.
(154)

The refractivity intercept, previous defined by Equation 150 was also
included.

The m parameter was also considered:

m = M(n − 1.475). (155)

The liquid and gas thermal conductivity were studied. The liquid thermal
conductivity at 20°C was calculated with the API method [169]:

k = MeABP0.2904 × (9.961× 10
−3 − 5.364× 10

−6 × T) (156)
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and with another method developed by the API group [8]:

k = Tb
0.2904 × (2.551× 10

−2 − 1.982× 10
−5T) (157)

where T and Tb are both in Kelvin.
The gas thermal conductivity was calculated with [8]:

k = 1.7307E(1.8Tb)
BSGC (158)

with the constants A, B and C defined as:

A = exp(21.87 − 8.07986t + 1.1298t2 − 0.05309t3), (159)

B = −4.13948 + 1.29924t − 0.17813t2 + 0.00833t3, (160)

C = 0.19876 − 0.0312t − 0.00567t2, (161)

and t is a variable such as

t =
1.8T − 460

100

. (162)

k is given in W/m.K, and the temperatures T and Tb are in kelvin.
Finally the kinematic viscosity and the viscosity gravity function (VGF)

were included in the study. The kinematic viscosity is given by the API
method [8]:

log(ν38) =4.9371 − 1.94733Kw + 0.12769Kw
2

+3.2629× 10
−4API2 − 1.18246× 10

−2KwAPI

+
0.171617Kw

2 + 10.9943(API) + 9.50663× 10
−2(API)2 − 0.860218Kw(API)

API + 50.3642 − 4.78231Kw

(163)

where API is the API gravity.
The VGF was included, calculated with the following relation:

VGF = −1.816 + 3.484SG − 0.1156ln38, (164)

with ν38 in mm2/s.

7.3.4 Octane numbers

For what concern the octane numbers, the Bayesian pseudo-component (PC)
method was adopted. This method was developed in the previous chapter
and allowed us to precisely estimate the octane number with an uncertainty
lower than 2%.

The predicting law is given by the following formulation:

ON∗ =
[
y
]ᵀ ×([E(K) ◦ONpc

])
+ σ∗, (165)

with σ∗ the random error, i.e. an unpredictable error due to the measure-
ment method, "◦" the Hadamard product and "×" the Cartesian product.

y is the volume fraction of each hydrocarbon class (saturate, olefin, aro-
matic, oxygenate), E

(
K
)

represents a correcting factor which corrects the
initial PC method and ONpc are the octane numbers of the PC. More details
about these different terms and the calculation method is described in the
previous chapter.
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7.4 variable selection and structure of the ann

PCA can be applied to reduce the number of variables (the number of
properties in the current study). The main idea behind PCA is to reduce
the dimensionality while keeping most information of the initial dataset.
Among the 41 studied variables (properties), we selected subgroups of
variables relying on PCA to select the principal variables. More information
on PCA reduction is available in the literature [136, 170–175]. With PCA,
the correlations between the variables are analysed. The idea is to identify
the relationship between the variables and to delete redundant information.
Mathematically speaking, the distribution of the data is analysed in order
to define a new coordinate system where the new directions correspond to
the maximal variance. PCA can be separated into 2 steps: 1- centering and
scaling, 2- identifying the principal components

First, for multivariate data, i.e., for data with different units, or different
range, it is mandatory to center and scale, otherwise the predictive model
will not perform well both in the training and testing phase. Centering is
done subtracting the mean value, therefore each matrix row can be seen
as a fluctuation around the mean. Scaling, is done dividing the centered
observation by a factor dj:

x̃j =
(xj − x̄j)

dj
, (166)

with dj the scaling parameter. This scaling parameter depends on the scaling
method (Auto scaling, Range scaling, Vast scaling). These scaling methods
are accurately described in the literature [136] and in section 3.2.

In the second step, we analyse the covariance matrix as it contains the
information of the data. In the current study, we consider a matrix X of Q
variables (Q=41) and n observations (n=5950). With PCA, we project X onto
a rotated basis. This basis is obtained from the eigenvalue decomposition of
the covariance matrix:

S =
1

n − 1

XᵀX = ALAᵀ, (167)

with A and L the eigenvectors and eigenvalues of S. From the rotated
basis defined by the eigenvectors A, a submatrix Aq can be extracted. This
submatrix is the one whose columns of A are associated with the largest
eigenvalues of L. The original data projected on this basis gives the principal
component (PC), Zq:

Zq = XAq. (168)

An approximate reconstruction of the original dimensional sample can be
obtained by inverting Equation 168:

Xq = ZqAq
ᵀ. (169)

Then, the retrieved variance compared with the original one can be as-
sessed in terms of a percentage. The retain eigen values (λi=1...q) are the
biggest while the smallest are deleted (λi=q+1...Q) so that the explained
variance with q eigen vectors can be defined as:

vq =

∑q
i=1

λi∑Q
j=1

λj
(170)
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To compare the four scaling methods, the dimensionality was based on
8 eigen vectors because they allowed us to explain more than 99% of the
variance with the four scaling methods. The number of variables was reduced
to 10, 15 and 20 to compare the performance of the ANN with each of these
number of variables. It is noteworthy that the Vast method is particularly
interesting compared to the other methods because it allows us to reduce
the dimensionality even more, with only 4 eigen vectors. This Vast scaling
method will be studied apart from the others to test the ANN with the lower
dimensions as possible, i.e. 5 properties.

Two variable selection methods were compared: the Procrustes and the B2

methods. The first method is particularly well suited to do a regression such
as the creation of an ANN.

The variable selection methods (B2 and Procrustes) are described in section
3.2 and these methods are discussed in [171, 172, 175]. We predefined the
number of variables to 10, 15 and 20.

The ANN relates the ON with the inexpensive properties included in the
study. More information on the structure of ANN is detailed in Section 3.3.
The activation function used are the standard matlab activation functions:
sigmoid for the hidden layer, and linear for the last layer. A convergence
study was done to determine the size of the hidden layer, starting with 10

and with up to 300 artificial neurons. The scheme of the ANN is drawn on
Figure 59. It consists of one input layer, one hidden layer and one output
layer, each being composed of a variable number of nodes, 42, 20, 15, 10 (up
to 5 for the VAST method) for the input layer and from 10 to 300 for the
hidden layer. The output layer is only composed of the two ON. Over the
5950 samples, 70% train the model, 15% are used for validation and 15% for
testing.

Figure 59: Scheme of the artificial neural network.

7.5 results

In this section, the different methods are compared. First, the variable
selection methods are compared: Procrustes VS B2. Second, the scaling
methods are compared: Auto VS Range VS Vast. Third, the size of the
hidden layer is discussed. Then, the selected variables are compared with
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the best methods and the mean squared error (MSE) obtained with the Vast
method and 4 eigen vectors are discussed. Finally, this ANN method is
compared with the the Bayesian PC method.

First, the Procrustes and the B2 methods are compared. A selection method
has to be selected to do this comparison. We select the Auto method for two
reasons showed by the results below: 1- this method allowed us to reach
a low MSE, 2- conversely with other methods, the MSE does not fluctuate
a lot when the size of the hidden layer increases. The Procrustes and the
B2 methods are compared on Figures 60 and 61. The B2 and the Procrustes
methods give similar performance. Nevertheless, the fluctuations tend to be
higher for the B2 method. Thus, the studies in the current section were done
relying on the Procrustes method.

Figure 60: MSE with the Procrustes and the Auto methods. The MSE decreases with
the size of the hidden layer. Moreover, the MSE is not impacted when the
number of selected variables decreases. Therefore, the Procrustes selection
method is appropriate.

Figure 61: MSE with the B2 and the Auto methods. The MSE decreases with the size
of the hidden layer. Moreover, the MSE increases when the number of
selected variable decreases. Therefore, the variable selection method B2 is
not appropriate.

Second, the scaling methods are compared while the Procrustes method is
active. As the variable selection method was previously selected, this com-
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parison is done with the lower number of variables, i.e. 10. It is noteworthy
that the mean squared error fluctuates with the Vast method. Therefore, the
Auto and the Range method are the better to predict the ON.

Figure 62: Comparison of the scaling methods.

As showed on Figures 60, 61 and 62, the convergence is reached with at
least 100 neurons in the hidden layers. Nevertheless, a high variation is still
present with up to 180. Thus, 180 neurons is appropriate.

Then, we compare the selected properties with the best set of methods:
Procrustes with the Auto method, and Procrustes with the Range method.
The properties shared by the two sets of properties are important. They are
the following ones: the temperature at which 10% of the fuel is evaporated,
the oxygen weight fraction, the Watson K factor. The carbon ratio is also an
important property as it appears in the CH weight fraction and in the OC
weight fraction.

Variable selection Procrustes Procrustes
Scaling Auto Range

Property

T10% T10%
O% T70%

n (Eq. 151 and 153) H%
k (Eq. 157) O%

CH% k (Eq. 158)
MW (Eq. 147) OC%

SG AP (Eq. 148)
Kw Kw

Pc (Eq. 136) Tc (Eq. 139)
Zc dc (Eq. 140 and 147)

Table 40: 10 principal properties with the combination of the best methods.

The correlations between the 10 principal properties obtained with the two
best methods are discussed thanks to the analysis of the covariance matrix of
the scaled variables. These covariance matrices are represented in Figures 63

and 64. From these figures, we can see that some of the properties listed in
Table 40 are correlated within the methods. It shows that similar information
are carried by some properties which are not shared between the method.

This is for instance the case for the following properties when the scaling
is done with the auto method:

• the hydrogen fraction (range method) and the CH ratio (auto method).
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• the oxygen fraction (auto method) and the OC ratio (range method).

• the refractive index (auto method) with dc (range method).

• k (auto method) with Tc (range method).

• Zc (auto method) with Tc (range method).

Figure 63: Covariance matrices obtained with all the scaled variables (with the auto
method). Only the properties listed from Table 40 are reported. Green
refer to high positive correlation (higher than the threshold 0.90. Red refer
to high negative correlation (lower than the threshold -0.9), yellow refer to
correlations equal to 1 or -1.

A similar study was done for the range method. The higher correlations
are find between:

• the hydrogen fraction (range method) with the CH ratio (auto method),
the aniline point (range method), the Watson factor (auto and range
methods) and dc (range method).

• the oxygen fraction (auto method) and the OC ratio (range method).

• the aniline point (range method) with the Watson factor (auto and
range methods) and dc (range method).

Figure 64: Covariance matrices obtained with all the scaled variables (with the range
method). Only the properties listed from Table 40 are reported. Green
refer to high positive correlation (higher than the threshold 0.028. Red
refer to high negative correlation (lower than the threshold -0.028).

The Vast method is discussed alone as it is the only scaling method that
enables to explain 99% of the variance with only 4 eigen vectors. Unfortu-
nately, the Vast method has a low prediction capability when the number of
properties is decreased up to the maximum, i.e. 5 properties (Figure 65).
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Figure 65: MSE with the Procrustes and the Vast methods with the principal variables
selected based on 4 eigen vectors. The MSE decreases with the size of
the hidden layer. Moreover, the MSE decreases when only 5 properties
are considered. Therefore, the Procrustes selection method is not able to
reduce the number of variables to 5.

The estimated octane numbers are plotted against the target octane num-
bers for the combination of the best methods on Figures 66 and 67. Thanks
to this graph, the quality can be assessed by observing the spread over the
x=y line. Most of the points reach a precision lower than 2%. The predic-
tion tends to be over-estimated for the low octane numbers and slightly
under-estimated for the high octane numbers.

Finally, we compared the method coupling PCA and ANN with the
Bayesian PC method. The Bayesian PC method is more precise, with less than
2% of error while some points have more than 2% with the ANN method.
Finally, we did a principal component analysis including the hydrocarbon
fractions to the 43 previous properties to investigate if relying on PCA cap-
tures the physics and retrieve these parameters as principal variables. The
results are summarized in Tables 41 and 42. The range method is better at
retrieving the physical aspect of the Bayesian PC method. For instance, three
properties are retrieved with 9 principal variables against one only for the
auto method.

Variable selection Procrustes
Scaling Range

9 principal variables O, A, Ox
15 principal variables O, A, Ox, MeABP
28 principal variables S, O, A, Ox, MeABP

Table 41: Number of variables required to retrieve the properties (Saturate S, Olefin
O, Aromatic A, Oxygenate Ox, mean average boiling point MeABP) of the
Bayesian PC method with the range scaling method.
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Variable selection Procrustes
Scaling auto

9 principal variables A
11 principal variables O, A
17 principal variables O, A, MeABP
24 principal variables O, A, Ox, MeABP
35 principal variables S, O, A, Ox, MeABP

Table 42: Number of variables required to retrieve the properties (Saturate S, Olefin
O, Aromatic A, Oxygenate Ox, mean average boiling point MeABP) of the
Bayesian PC method with the auto scaling method.

Figure 66: Estimated VS target octane numbers with the Procrustes variable selection
method and the Auto scaling method.
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Figure 67: Estimated VS target octane numbers with the Procrustes variable selection
method and the Range scaling method.

7.6 conclusion

In the current chapter, a prediction method based on ANN was developed
to predict the octane numbers of gasoline blendstocks mixed with a alco-
hol among 1-propanol, 2-propanol, 1-butanol, 2-butanol and 2-methyl-1-
propanol. This kind of heavy alcohol can be produced via fermentation or
gasification. The number of input properties was studied, from 10 to 41,
with a selection method driven by PCA. A large number of properties were
investigated, so, with the results that were collected, the properties useful
for ON prediction were identified. It was showed that the number of input
properties is not correlated with the size of the hidden layer. Hidden layers
of the same size allowed us to reach similar results whatever is the number
of input properties. Additionally, as long as the size of the hidden layer of
the ANN is big enough, 10 properties predict the octane number accurately.
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The 10 properties were calculated only based on the distillation curve, on the
atomic content and on the specific gravity.

A new feature from the applied methodology is the usage of PCA to study
the principal variables in a fuel blend. This kind of study could be done with
the chemical data of fuels obtained with advanced analytical methods such
as nuclear magnetic resonance (NMR) or comprehensive two dimensional
gas chromatography (GC × GC).

The current methodology is only applicable for a given type of fuel: a
gasoline blendstock mixed with an oxygenated molecule. As prospects, it
would be interesting to compare the required properties for ON prediction
with another type of fuel. Moreover, an experimental campaign with a
large number of fuel would be useful to provide data to validate the current
methodology.





8P R E D I C T I O N O F T H E AU T O - I G N I T I O N

Part of the content of this chapter has been published in the following
scientific article:

S. Tipler, C. S. Mergulhaõ, G. Vanhove, Q. Van Haute, F. Contino, and
A. Coussement. Ignition study of an oxygenated and high-alkene light
petroleum fraction produced from automotive shredder residues. Energy and
Fuels, 33(6):5664–5672, 2019

8.1 introduction

In the previous two chapters, we predicted the octane number (ON)s. They
give important information on the fuel reactivity. Nevertheless, these proper-
ties are measured under specific conditions while it would be useful to be
able to obtain some ignition characteristics for different conditions. These
results could be obtained by the mean of simulations. This would allow
us to study if the light fraction from automotive shredder residues (ASR)
would not react during the compression stroke under reactivity controlled
compression ignition (RCCI) conditions. In fact, as discussed in sections
1.2 and 1.6, ASR fuels coupled with RCCI are an answer to mitigate the
environmental impact of fuels produced from ASR.

To do simulations under RCCI conditions, the real fuel must be substituted
by a surrogate fuel due to the complexity of the real fuel. Knowing the octane
numbers to run a RCCI engine is relevant as the reactivity of the light fraction
has to be low enough to ensure that knock does not occur before the heavy
fraction injection. Thus, formulating a surrogate fuel for the light fraction
requires the knowledge of the octane numbers, as explained in section 2.6.4.
Nevertheless, a small quantity of fuel is available, so, the octane numbers
cannot be measured.

We propose an alternative which stems from the work from Mehl et al.
who related the octane numbers with the ignition delay time (IDT)[176].
Similarly, we propose a new method where the IDTs substitutes the octane
numbers as target properties. Thus, the method can be applied if the research
octane number (RON), the motor octane number (MON) are unknown.

In this chapter, the work aims at gathering experimental data to later
formulate a surrogate, together with addressing the lack of information
regarding the reactivity of fuels produced from ASR, which are still un-
charted. RCCI-like conditions were investigated in a rapid compression
machine (RCM) to measure IDTs, defined as the measured time between the
top dead center (TDC) and the maximum pressure derivative value. Studying
the auto-ignition delay time of the light-fraction in a RCM is the way to check
if the fuel would not ignite before the injection of the high-reactivity fuel for a
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specific set of operating conditions. After having described the methodology
to characterize the light fraction derived from ASR, its autoignition will be
discussed with respect to the temperature and the pressure at TDC to point
out the usual and atypical aspects of its ignition characteristics.

This first study will be used as a baseline for formulating a surrogate
fuel to perform numerical investigations and is a step forward the reduction
of pollutant emissions from waste-derived fuels via advanced combustion
modes.

8.2 experimental section

8.2.1 Fuel characterization

Fuel classification is important because similar fuels tend to show similar
characteristics while their differences explain their properties and specificities.
The studied fuel is known as a light fraction but its composition depends on
the raw matter and on the production parameters. The distillation curve was
measured according to the ASTM International standards D86 to compare it
to the typical classes of fuels: gasoline, naphtha, kerosene or diesel.

Figure 68: Typical atmospheric distillation ranges of distillation fractions according
to the ASTM International D86. The studied fuel is comparable to a heavy
naphtha, except for the last 10 volume percent. The distillation curves of
the different classes of fuels were published by Chang et al. [13, 14]

The distillation profile almost coincides with the one of a heavy naph-
tha (see Figure 68), except for the 10 last volume fractions where higher
temperatures are required to reach the same evaporation extent. There-
fore, the molecules are expected to be longer and more saturated than in a
conventional gasoline.

The ONs (RON, ASTM D2699 and MON, ASTM D2700) are important
parameters that denote the resistance of a fuel towards end-gas autoignition.
They provide information on the fuel reactivity under two conditions and
are often used as target properties to formulate a surrogate fuel [30, 85, 86].
ASTM D2699 and D2700 rely on a certified engine but a low volume of
fuel was available so it was not possible to measure the octane numbers.
Correlations to predict the octane rating from ignition delay times exist
[95, 97, 113] but they have never been tested within the ranges of the ASR
fuel chemical fraction and could not be applied in the case of this type of
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fuel which shows long molecules and high concentrations of olefin, alcohols,
ketones and other oxygenates. Therefore these correlations would have lead
to an approximated octane index without the knowledge of a confidence
interval.

From a kinetic point of view, the difference between the RON and the
MON, usually known as the sensitivity, can be assumed to be correlated
with the difference in reactivity in the low-temperature and intermediate-
temperature ranges [177]. However, comparing measurements of ignition
delays with octane number is not straightforward, even though correlations
exist [178].

The separation between both these temperature domains is usually associ-
ated with the negative temperature coefficient (NTC) behaviour, where the
global reactivity towards autoignition decreases as the compressed tempera-
ture increases. It is widely accepted that at low temperatures, the reactivity
is dominated by chain-branching pathways relying on the addition of O2 to
radicals formed from the parent fuel molecules. In the NTC temperature
range, these pathways compete with non-chain branching pathways forming
unsaturated species (i.e. an alkene if the fuel is an alkane) [177, 179–181].
The intensity of the NTC, i.e. the slope of the ignition delay according to
the compressed temperature under intermediate temperature, is of crucial
importance to predict the behaviour of one the light fraction [182]. For this
reason, we focused on this temperature region to formulate a surrogate fuel
for the light fraction derived from ASR.

The ASR fuel was analyzed at Ghent University with comprehensive
two dimensional gas chromatography (GC × GC) coupled with a flame
ionization detector and a time of flight-mass spectrometry to obtain the n-
paraffin, iso-paraffin, olefin, napthene, aromatic and oxygenate (PIONAOx)
distribution [11, 87, 156] (Table 43). The signal of ketones and aromatics
overlapped, so a correction was applied to revise the overestimated aromatics
and underestimated oxygenates [87]. Other hydrocarbon types identified in
minor quantities, namely naphthenaromatics, nitrogenates, diaromatics and
sulfurates, have been neglected in the present work. The whole composition
is available in Appendix A. The GC × GC revealed only 16.5% of paraffins
(normal and iso) in the fuel, where usually, paraffins account for more than
35%. The mean number of carbon atoms was nine for all the groups (C9),
except the aromatics (C8) and the oxygenates (C6), whereas gasoline usually
exhibit from C7 to C8 molecules. It is noteworthy that the gasoline provided
by Haltermann and studied by Lee et al. has a similar composition to the
studied fuel where some olefins are basically substituted by paraffins [33]
(Table 43).

The elemental composition was measured with an elemental analyzer and
GC × GC, associated with a nitrogen chemiluminescence detector and a
sulfur chemiluminescence detector [11, 87, 156]. The low hydrogen to carbon
ratio (H/C) ratio and the high density of the studied fuel indicate the high
quantity of aromatics and saturated compounds, while the high molecular
weight – estimated with the Lee-Kesler method [8, 183] – is a consequence
of long molecules. The molecular weight uncertainty was estimated based
on the literature, as explained thereafter. Riazi compared the errors on the
estimated molecular weights of 5 fuels (from 233 to 523 g/mol) [8]. The
Lee-Kesler method was particularly accurate for the two fuels with the lowest
molecular weights (233g/mol and 267 g/mol estimated with an error of -1.3
g/mol and -0.3g/mol, respectively). Therefore, the uncertainty was estimated
to be ±3g/mol. FACE G is the most similar fuel from the recent literature
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(%mol/mol) P I O N A Ox
Studied fuel 4.86 11.63 29.61 12.95 24.95 16.00

Overall ranges [4.80;55.78] [26.10;83.70] [0.00;11.20] [1.50;15.80] [0.30;33.60] [0.00;16.80]

FACE A 13.20 83.70 0.40 2.40 0.30 0.00

FACE C 28.60 65.10 0.40 1.50 4.40 0.00

FACE F 4.80 61.00 10.00 15.80 8.40 0.00

FACE G 7.90 38.30 7.90 14.10 31.80 0.00

FACE I 14.00 70.00 7.00 4.00 5.00 0.00

FACE J 31.50 32.40 0.60 2.40 30.60 0.00

HSN 36.70 37.80 0.00 15.00 10.50 0.00

SALN 55.40 35.90 0.00 6.70 1.32 0.00

HG fuel 12.20 26.10 6.30 15.60 22.90 16.80

CG fuel 10.10 31.90 11.20 5.00 33.60 8.20

Table 43: n-paraffin, iso-paraffin, Aromatic, Olefin, Naphthene and Oxygenate (PI-
ONAOx) mole fractions of the studied fuel compared to other light fuels
from the literature: Fuels for Advanced Combustion Engine (FACE) A, C, F,
G, I and J, a gasoline provided by Haltermann (HG) and other by Coryton
(CG), a Saudi Aramco Light Naphtha (SALN), and a Haltermann Straight
Naphtha (HSN) [20, 21, 30–33]. Fuels with different features were selected,
including atypical fuels, to show the specificities of the studied fuel. HG
fuel is the most similar fuel to the studied one with a low paraffin fraction
and high olefin and oxygenate fractions.

in terms of properties with a similar HC ratio and a high MW and a high
density (Table 44).

H/C MW (g/mol) Density RON Sensitivity
Studied fuel 1.80[87] 120 ±3[8, 183] 796.1[184] – –

Overall ranges [1.78;2.34] [78.40,100.2] [642,760] [60.00;97.5] [-0.1;11.0]

FACE A 2.29 97.80 685.3 83.5 -0.1
FACE C 2.27 97.20 690.5 84.7 1.1
FACE F 2.13 94.80 707.0 94.4 5.6
FACE G 1.83 99.70 760.0 96.8 11.0
FACE I 2.24 95.50 688.0 70.3 0.7
FACE J 1.91 100.2 741.0 70.8 3.0

HSN 2.15 92.41 705.0 60.0 1.7
SALN 2.34 78.40 642.0 64.5 1.0

HG fuel 1.97 88.80 – 91.0 7.6
CG fuel 1.78 90.60 – 97.5 10.9

Table 44: Properties of the studied fuel compared to other light fuels from the liter-
ature: Fuels for Advanced Combustion Engine (FACE) A, C, F, G, I and
J, a gasoline provided by Haltermann (HG) and other by Coryton (CG), a
Saudi Aramco Light Naphtha (SALN), and a Haltermann Straight Naphtha
(HSN) [20, 21, 30–33]. Fuels with different features were selected, including
atypical fuels, to show the specificities of the studied fuel. FACE G is the
most similar fuel to the studied one with a low HC ratio, a high MW but a
relatively low density compare to FACE G. The density is reported at 15 °C
(kg/m3).

8.2.2 Rapid compression machine

To gain insight on the reactivity of the fuel in both temperature regimes,
ignition delays were measured in the ULille RCM, which had been exten-
sively described in previous studies [181, 185, 186]. The RCM is based on
a right-angle design in which a moving cam imposes the movement of the
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compressing piston, therefore ensuring strictly constant volume of the com-
bustion chamber after the compression, as well as reproducibility of the
compression phase. In this study, the volumetric compression ratio was
10.3:1, and the compression time 45 ms. The end of compression time was
determined with an optocoupler fixed on the moving piston facing a comb
with a 1 mm resolution. A creviced piston is used to mitigate piston corner
vortex formation during the compression phase [187], ensuring temperature
homogeneity during the ignition delay period. The tests were carried out
under pressures ranging from 10 bar to 20 bar at TDC, and at an equivalence
ratio of 0.5 to study lean conditions, which is a feature of the RCCI mode.
In this mode, the equivalence ratio generally ranges from 0.3 [65–70] to 0.8
[188–190] with a high EGR rate. Measurements for stoichiometric mixtures
would not have made sense in the context of RCCI application, while the va-
lidity of kinetic mechanisms for very lean mixtures can sometimes be limited.
Therefore, an equivalence ratio of 0.5 represents a meaningful compromise.

Figure 69: The rapid compression machine of ULille used to do the experimental
campaign.

The compressed temperature is inferred from the measurements of initial
temperature and pressure, and compressed pressure using the isentropic law
under the adiabatic core assumption. It is varied by changing the composition
of the diluent in the mixture, N2, Ar, and CO2 being used. Non-reactive
mixtures were tested as well.

Despite its globally low molecular weight, the fuel was composed of a
small portion of heavy molecules. A GC/MS analysis of the liquid fraction
obtained after evaporation at 85

◦C from 0 to 1.14 kPa revealed molecules
with up to 20 carbon atoms.

These molecules can potentially explain the change of slope corresponding
to the heaviest in the distillation curve (Figure 68). The fraction of heavy
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compounds present in the fuel is likely to be problematic for RCCI appli-
cation however, the fuel production process is still under development so
that the identified heavy molecules will be removed in the future to avoid
evaporation and impingement issues. In order to ensure the repeatability of
the mixture preparation, the initial liquid volume of fuel, mixture preparation
temperature and the evaporation time were kept constant.

The fraction of the fuel that may have been evaporated was estimated
but a precise evaporation simulation with Antoine’s Equation and Raoult’s
law cannot be done due to the complexity of the fuel. To circumvent this
issue, a confidence interval for the quantity of fuel that was evaporated was
estimated. To define a subset of the more volatile molecules that would
have been evaporated, the boiling points under atmospheric conditions of
the molecules detected by comprehensive two-dimensional chromatogra-
phy were compared to a predefined limit to estimate if they were likely to
evaporate. The indicative threshold was chosen equal to 216 °C, the boiling
point of n-dodecane under atmospheric conditions, because this molecule
has a boiling point (86 °C at 8.55 torr) of the same order of magnitude as
the temperature of the mixing chamber (85 °C at 8.55 torr). Each molecule
evaporation being governed by Raoult’s law, the fraction that was effectively
evaporated is assumed to be between the whole fuel and the sum of the
fractions of the molecules that would have been evaporated in the worst case
scenario (93.6% in mass).

The fuel heat capacity was estimated based on the molecules identified
with GC × GC and considering the molecules that may have not been evapo-
rated according to the subsequent procedure. Each molecule being governed
by Raoult’s law, the heat capacity of the fuel that was effectively evaporated
was assumed to be between the heat capacity of the total fuel and the heat
capacity of the mixture where only the more volatile molecules would have
been evaporated. For some species, only the raw formula was determined so
the maximal and the minimal values were selected from a set of molecules
with the same atomic composition to define a confidence interval for the heat
capacity of each fuel. As a result, the heat capacity of the evaporated fuel is
between those of the reduced and total fuels which defines the confidence
interval. The half-width temperature uncertainty was defined based on the
two compressed temperatures calculated with the minimal and the maximal
values of the specific heat. This uncertainty, resulting of the heat capacity
only, remains low (1.5 to 3.5 K) because the mixture heat capacity depends
mainly on the oxygen and diluent concentrations.

The final NASA coefficients under low temperatures (0 - 1000K) and the
compositions of the studied mixtures defining the minimal and the maximal
heat capacities are reported in Appendix B.

The confidence interval is localized between the heat capacity of repre-
sentative molecules of each hydrocarbon groups (Figure 70). This can be
explained by the fact that the PIONAOx is well divided between groups
showing a high and a low heat capacity. The influence from aromatics and
olefin compensates each other because both classes have similar concentra-
tions, this is also true for ketones and naphthenes. It is noteworthy that the
studied fuel shows a rather high heat capacity because two groups out of
six, i.e. aromatics and ketones, have a low heat capacity. A simple primary
reference fuel (PRF) blend composed of iso-octane and n-heptane would not
be able to correctly capture the heat capacity in the studied temperature
range. Adding toluene would decrease the heat capacity, therefore a toluene
reference fuel (TRF) would not improve the representability of the surrogate.
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Figure 70: Confidence interval of the studied fuel heat capacity compared to represen-
tative molecules for each hydrocarbon group. A surrogate fuel composed
of the six plotted molecules blended according to the PIONAOx fraction
reported in Table 1 is also considered.

However, a simple surrogate fuel composed of the selected representative
molecules blended according to the fuel PIONAOx fraction (Table 43) shows
a heat capacity which falls near the confidence interval.

The pressure at TDC was set by controlling the initial pressure of the
mixture. The mixtures were prepared using the partial pressure method in a
mixture preparation facility heated at 85

◦C. The theoretical equivalence ratio
depends on the atomic mass fractions (measured with an elemental analyzer
and GC × GC coupled with a nitrogen chemiluminescence detector and a
sulfur chemiluminescence detector [11, 87]), and on the measured partial
pressures during the mixture preparation.

The propagation of uncertainty (following the Joint Committee for Guides
in Metrology recommendations [19]) leads to the calculation of the accuracy
on the equivalence ratio. The atomic mass fractions and the partial pressure
standard uncertainties were calculated based on their standard deviations,
and the manufacturer’s specifications with a rectangular distribution, respec-
tively. A correction factor of 3 was chosen to obtain an estimation at 99% of
the confidence interval, defined by the expanded uncertainty. As a result,
u(φ) = 0.15%, so φ = 0.5 ± 0.0045.

8.3 theoretical calculations

In this section, the mathematical developments required to do numerical
simulations and to post-process the data are detailed.

First, the calculation of the volume trace of the RCM is detailed. The vol-
ume trace is required to do numerical simulations similar to the experiments
with a predefined volume trace. The first law of thermodynamics can be
written for a close system as the variation of internal energy U equals to the
heat and work exchanged by the system.

dU = ∂Q + ∂W. (171)

The heat term is neglected to follow an approach detailed by Bourgeois et
al [191]. The adiabatic core assumption is applied and the losses during
the compression are modelled with an additional volume term. Under this
assumption, the previous equation can be written as:

nCvdT = −pdV. (172)
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The only information available is the experimental pressure trace while
the volume trace is the quantity of interest. Therefore, the temperature must
be removed from this equation, which can be done with the differential form
of the perfect gas law:

nR̄dT = pdV + Vdp (173)

Equation 172 can be written

Cv

R̄
(Vdp + pdV) = −pdV (174)

With R̄ = Cp − Cv, the previous equation becomes:

dV
V

= (
R̄

Cp
− 1)

dp
p

. (175)

The integration of this equation from t0 to t gives:∫V

V0

dV
V

=

∫ t

t0
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− 1)
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p
dt, (176)

which can also be written:
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Finally:

V(t) = V0 + exp
( ∫ t
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p ′

p
dt
)
. (178)

he volume trace can then be used in order to do the simulations of RCM
in section 7.5.2 and 7.5.3.

Second, the calculation of the temperature in the reaction chamber of the
RCM at TDC is detailed.

The compression is supposed to be isentropic, which means that:

TγP1−γ = C, (179)

with C a constant.
The derivative of this equation gives:

dT
T

=
γ−1

γ

dP

P
, (180)

which can be integrated until the end of the compression:∫TTDC
T0

γ

γ−1

dT
T

=
ln(PTDC)

P0
, (181)

γ depends on the temperature and can be calculated with the NASA coeffi-
cients.
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8.4 numerical simulation

Numerical simulations were carried out to compare the ASR fuel reactivity
to two fuels among those identified in Table 44. FACE G shows a high RON
(RON = 96.8) and a high sensitivity (s = 7.9) conversely to FACE I (RON =
70.3 and s = 0.7) and their ignition delays are dissimilar [20, 21]. FACE G has
a lower reactivity than FACE I. Moreover, they were already tested with the
same kinetic mechanism so the just cited fuels were selected to define a frame
of reference to discuss the ASR fuel ignition delays. The compositions of
FACE G and I surrogates proposed by King Abdullah University of Science
and Technology (KAUST) are listed in Table 45.

(%mol/mol) FGG-KAUST [20] FGI-KAUST [21]
n-butane 7.6 –

n-Heptane – 12

2-Methyl butane 9.5 11

2- Methyl hexane 9.8 27

2,2,4-Trimethyl pentane 18 34

1-Hexene 8.1 6

Cyclopentane 15.3 6

1,2,4-Trimethylbenzene 21.1 4

Toluene 10.6 –

Table 45: Composition of the FACE gasoline G and I multi-component surrogates
proposed by KAUST.

Simulations of a variable volume batch reactor were carried out with
Cantera and the FACE gasoline kinetic mechanism [20]. The volume profile
was inferred from the non-reactive pressure profile with an isentropic law
assumption as described by Bourgeois et al. [191]. With this method, an
additional volume expansion term accounts for the effective heat losses after
the end of compression.

Similarly, simulation were carried out with OpenSMOKE++[192] to com-
pare the experimental ignition delays with a sample of surrogate fuels. This
comparison aims at defining a surrogate fuel that behave has the real fuel.
The surrogate fuels were composed of n-heptane and iso-octane, such mix-
tures are also known as primary reference fuel (PRF). These two species are
included in the Lawrence Livermore detailed mechanism for surrogate gaso-
line [193]. This mechanism performs well over temperatures and pressures
relevant for internal combustion engines. Several PRF were generated follow-
ing a latin hypercube sampling (LHS) procedure. Then, for each sample, the
IDTs at 20 bar from 700 to 875K were calculated. These IDT were compared
with the experimental IDT at 20 bar, which allowed us to define an optimal
surrogate fuel. Then, the surrogate fuel was validated at 20bar and 10bar
thanks to additional simulations. The results are reported in subsection 8.5.3.

8.5 results and discussion

Overall, the results presented below report the investigated conditions, the
ignition limits, the NTC zone characteristics, and discuss the fuel ignition.
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Figure 71: Investigated conditions and measured main-stage IDT. The achieved
temperatures were calculated based on the estimated mean value of the
heat capacity. The range of investigated conditions is wide as shows panel
(c). On the same panel, two illustrative temperature–pressure compression
strokes show a range of operating conditions where a meaningful. These
indicative lines were obtained by calculating the heat losses as advised by
Broekaert et al. [15] and Pochet et al. [16], and the SOC was estimated
based on extrapolated ignition delays and the Knock Integral Model (KIM)
studied by Shahbakhti et al. [17, 18].

8.5.1 Ignition delays

The fuel has a standard behavior governed by the basics of the combustion
chemistry under low, intermediate and high temperatures. To cover these
conditions jointly with the pressure effect, we tested 10 reactive mixtures (one
mixture per temperature) with an equivalence ratio of 0.5 ±0.0045, varying
the pressure and the temperature at TDC from 9.8 ±0.4 bar to 21.4 ±0.2 bar
and from 705.1 ±1.6 K to 878.4 ±3.5 K, respectively (Figure 71).

Two compression strokes were plotted on Figure 71 panel (c), with two
different initial temperatures. These traces show that with a well-chosen
compression ratio, the required range of temperatures does not require a
stringent preheating system to run under an RCCI engine. Moreover, the
studied conditions are relevant and cover the pressure and temperature
achieved during an RCCI compression stroke at an equivalence ratio of 0.5.

The lowest investigated temperature and pressure correspond to the ig-
nition limit, while measuring an IDT at higher temperatures or pressures
would have lead to very short and unmeasurable IDTs. The measured IDTs
(from 5 ms to 155 ms, with a maximum reaching 193.8 ms) show conventional
features.
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First, the IDTs decrease exponentially when the temperature increases and
according to a power law Pn with pressure (Figure 71), with a deviation
from Arrhenius behaviour. This deviation corresponds to a temperature zone
where the temperature coefficient E/R in the Arrhenius law decreases and
can be negative, meaning that the rate at which the reactivity increases with
the temperature is reduced. This NTC is a consequence of a competition
between two different kinetic pathways, i.e. low temperature chain-branching
pathways and intermediate temperature chain-terminating pathways, as
described by Battin-Leclerc et al. [194].

Figure 72: Pressure profiles at 10 bar (9.80±0.4 bar) and at 20 bar (19.75±0.9 bar). The
high temperature chemistry (HTC), NTC and LTC regions were defined
according to the changes of slopes on Figure 73.

Second, two-stage ignition was observed between 705K and 750K, where
a first pressure rise – also known as first-stage ignition – takes place before
the main ignition (Figure 72). Long alkyl-chain molecules can produce keto-
hydroperoxides, the chain-branching agents responsible for the appearance
of first-stage ignition. The chain-branching pathways of alkanes typically
proceed through addition of alkyl radical to O2, and further isomerization to
hydroperoxides, to ultimately yield ketohydroperoxides. By increasing the
temperature in this constant volume experiment, the first-stage of ignition
promotes reactivity and decreases the total ignition delay.

Third, as the pressure increases, the temperature coefficient increases (Fig-
ure 73). This phenomena is explained by the rates of formation and consump-
tion of the intermediates that respectively promotes reactivity in the LTC (hy-
droperoxides) and in the NTC zones. Intermediate temperature chain branch-
ing through decomposition of hydrogen peroxide begins as the temperature
reaches the NTC conditions, consequently, the low-temperature reactivity
weakens. The extent of the NTC behaviour and associated temperature range
is therefore directly correlated to the propensity of a fuel to form hydroper-
oxides and/or hydrogen peroxide. The decrease of the NTC extent with the
pressure that was previously described can be explained by the facilitated
decomposition of hydrogen peroxide into two OH radicals under higher pres-
sures [181]. In the chemical equation H2O2(+M) = OH + OH(+M), where
M is the third body in the reaction expression, any increase in pressure will
lead to a significant increase of the reaction rate.

This fuel displays two-stage ignition behaviour, as well as a deviation from
Arrhenius law. However, the temperature coefficient, i.e. the slope in the
NTC zone, remains positive, probably because of the low paraffin fraction.
This has been observed before in the case of alkane/alkene mixtures [195].
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Figure 73: IDTs at an equivalence ratio of 0.5 ±0.0045 for three pressures: 19.75 ±0.9
bar, 14.55 ±0.6 bar, 9.80 ±0.4 bar, and three types of ignition regimes: the
high temperature, the negative temperature coefficient, and the low tem-
perature zones. The main and the first-stage ignitions are symbolized by
circles and triangles, respectively. The error bars represent the combined
uncertainty extended at 95%, taking into account both the repeatability
and the Cp uncertainties, and calculated following the Guide to the expres-
sion of uncertainty in measurement [19]. The straight lines were drawn
when enough data were available to define the limits between the low
temperature chemistry (LTC), NTC and HTC regions.

8.5.2 Atypical behaviour

In this section, the specificities of the studied fuel reactivity are identified
by comparing the ignition delays to two multi-component surrogate fuels
proposed by KAUST, i.e. FGG-KAUST and FGI-KAUST. Then, the identified
specificities are discussed with regards to the molecular composition. FACE
G (surrogate FGG-KAUST) and FACE I (surrogate FGI-KAUST) define a
good framework because the first has high ignition delays while the second
is a highly reactive gasoline fuel [20, 21].

Figure 74: ASR fuel ignition delays at 20 bar and at an equivalence ratio of 0.5,
compared to the KAUST surrogate fuels for FACE G and FACE I, i.e.
FGG-KAUST and FGI-KAUST [20, 21]. The reactivity in the NTC region is
similar to the one of FGI-KAUST.
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The following observations show that the studied fuel is characterized by a
high reactivity under intermediate temperatures but a very limited one under
low temperatures (Figure 74). First, the ASR fuel shows a reactivity of the
same order of magnitude (ignition delay of about 10 ms) than the one of FGI-
KAUST in the NTC area but it decreases dramatically when the NTC/LTC
ceiling temperature is crossed. At low temperature, the autoignition vanishes
even if the ignition delay is still relatively low compared to the one of FGG-
KAUST (100 ms). Last but not least, conversely to FGI-KAUST, the first
stage ignition is only visible when the compressed temperature is lower
than 750K, which shows that a small number of low-temperature chain-
branching intermediates are formed because they cannot compete with the
NTC reaction pathways. The small number of intermediates are consumed
by the NTC pathways.

This fuel includes a large olefinic portion (29.61% mol/mol Table 44),
molecules that are generally characterized by a low reactivity under low
temperatures [196, 197]. 2,4-dimethyl-1-heptene is the olefinic molecule with
the higher fraction and is likely to display reaction pathways relevant to
alkenes and alkanes because of its double bond yielding a total of 5 allylic
H-abstraction sites, as well as its long alkyl chain. Allylic hydroperoxydes
are not favorable for addition to O2 molecules, even though allylic radicals
can recombine with HO2 radicals to form allylic peroxides [198]. The alkylic
section of this molecule is branched, which will be detrimental to the internal
isomerization of potential RO2 adducts. To sum up, the long molecule
length promotes the reactivity, nevertheless, the limited alkylic isomerization
possibilities and the allylic sites limit the low temperature reactivity.

A large portion of aromatics is also present in the fuel with almost 25%
mol/mol (Table 44), split into three sub-groups: the toluene, the o-xylene, and
the styrene -like groups. Roubaud et al. demonstrated that o-xylene as well
as long-chain aromatics react at low temperatures [34] following two-stage
ignition, under high pressure conditions. Toluene easily forms the resonance-
stabilized benzyl radical, which is an important radical scavenger in the low
temperature region [181]. Because all its C-H bonds are either benzenic or
vinylic with high bond dissociation energies, styrene is likely to combine
ignition resistance characteristics associated with toluene and short-chain
alkenes. The studied fuel is characterized by a higher fraction of aromatics
belonging to the two groups that do not react in the low temperature region,
explaining its low reactivity in this region (Table 46).

Table 46: Distinctive aromatic groups defined by Roubaud et al. [34]
Group Toluene o–Xylene Styrene

Toluene Ethylbenzene Styrene
Molecules 1,3,5–Trimethylbenzene 1,2,3–Trimethylbenzene α–methylstyrene

Xylene (m,p) – –
Mole fraction (%) 5.72 6.34 8.68

The high aromatic fraction can also explain the high difference of reactivity
between the LTC and the NTC. Because of the formation of resonance-
stabilized radicals, abstraction of hydrogen by O2 or HO2 is favored, facilitat-
ing the formation of hydrogen peroxide. Intermediate temperature reactivity
is therefore favored, in accordance with the significant octane sensitivity
usually observed for these fuels.

Finally, a significant portion of this fuel is composed of a high number
of oxygenated molecules (25 molecules and 18 isomers identified). In a
previous study, 6.8% of oxygenates had been detected by GC × GC but 16%



148 8 prediction of the auto-ignition

were estimated after applying a correction [87]. Ketones represent a large
contribution to this group. Short ketones are known to display very low
reactivity in the low temperature regime. This is mostly due to the fact that
addition to O2 by radicals originating from these ketones mostly results in
HO2 elimination to yield unsaturated species, the formation of peroxides
being difficult [199].

8.5.3 Formulation of a surrogate fuel

As explained in section 2.6.4, traditional methods make the octane numbers
of a surrogate fuel match with those of the real fuel [132, 133]. In the present
study, the octane numbers are not available. According to the literature, the
octane numbers can be substituted by the fuel chemical structure (functional
groups [134] or carbon types [86]). With both of these two methods, the sur-
rogate fuel must be validated with an additional test in a RCM to reproduce
the final application. We propose an alternative where the experimental data
from the RCM is directly used to formulate the surrogate fuel. The method
is based on matching experimental with simulated IDT for simple mixtures
of n-heptane and iso-octane (PRF). We selected such a simple mixture as
we observed an interesting linear relationship that has never been exploited
before between the ignition delay and the n-heptane concentration. The
experimental data are the IDTs at 20 bar and the simulation were conducted
under the same operating conditions.

According to the Arrhenius equation, the calculated IDT depends expo-
nentially on the temperature. Specifically:

τ= Ae−
Ea
RT , (182)

where τ is the ignition delay, A is a pre-exponential factor and Ta = Ea
R is the

activation temperature. Relying on the natural logarithm, a linear relation
lies in the previous equation:

ln(τ)= ln(A)−
Ta

T
, (183)

The pre-exponential factor and the activation temperature depend on the
temperature zone (namely the LTC, the NTC and the HTC). In the NTC
region, the coefficients A and Ta depend strongly on the concentration of
n-heptane as shows Figure 75.

Then, an underlying relation between the coefficients ln(A) and Ta, and
the composition of the PRF exist:

ln(A) = 9.0295 − 67.581xn−heptane (184)

Ta = 3.6673 − 45.233xn−heptane, (185)

These two equations were used to calculate the required n-heptane concen-
tration to obtain an accurate surrogate fuel. With the studied ASR fuel, the
parameters ln(A) and Ta are respectively equal to -2.6485 and -4.1098. Finally,
with the two equations 184 and 185, a similar n-heptane concentration was
obtained, 17.3 %mol = 15.7 %vol. Thus, a PRF84.3 was defined as a surrogate
fuel.



8 .6 conclusion 149

Figure 75: Arrhenius parameters ln(A) and Ta in the NTC region of several PRF
according to the n-heptane concentration.

To evaluate the surrogate fuel, the IDTs in the three temperature zones
(LTC, NTC and HTC) at 10 bar and at 20 bar (the non-reactive volume
profile was not available at 14 bar) were plotted on Figure 76. The surrogate
fuel accurately represent the real fuel except for the lowest temperature,
whatever is the pressure, and for the highest temperature at 20 bar. The
lowest temperature is in the LTC zone where the fuel reactivity is very
low, as explained in the previous subsection 8.5.2. This low reactivity is
a consequence of the peculiar fuel composition, with large fractions of
oxygenated molecules, toluene, styrene and 2,4-dimethyl-1-heptene.

Figure 76: Comparison of the simulated IDT of the ASR surrogate fuel, PRF84.3, at
10 and at 20 bar with the experimental IDT.

8.6 conclusion

The experiments presented in the present chapter provides data under Re-
activity Controlled Compression Ignition-like conditions to the combustion
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community for a fuel that had not been studied previously in a Rapid Com-
pression Machine. More experimental data for other equivalence ratios,
typically 0.3 and 0.8 would provide additional information for operating
conditions without exhaust gas recirculation (EGR) and with a high EGR rate.
In comparison with RCCI conditions, simulations in a rapid compression
machine does not suffer from evaporation issues in theory. Moreover, the
fluid dynamic aspects are not considered in the RCM.

The fuel showed common features, such as the decrease of the ignition
delay with the pressure and the temperature, except in a negative tempera-
ture coefficient (NTC) region (725 < T < 825 K). The slope of the NTC region
decreases with the pressure and a first stage ignition was detected near the
ceiling temperature between the low temperature and the NTC regions. A
more specific attribute was observed: a low reactivity under low temperature
chemistry (LTC), explained by the major molecules blended: substituted
olefin, aromatics with a reactivity comparable with the one of toluene, and
oxygenates (ketones, alcohols and benzenoids).

Among the final applications, this study offers a first overview on the
reactivity of ASR fuels which, until now, was unknown. A PRF surrogate
fuel was formulated and validated although further improvement is possible
with additional molecules. The PRF fuel is particularly well suited for
the intermediate region but does not capture correctly the reaction under
low temperature. This low temperature range is important to correctly
estimate the ignition. The surrogate fuel could be improved with additional
molecules. Still, relying on the major constituting molecules of the fuel,
such as 2,4-dimethyl-1-heptene or long oxygenated molecules, is impossible
as they have never been studied in pure form. Such a molecule would be
required to propose an accurate surrogate fuel in the low temperature zone.
Additionally, molecules with a low reactivity in the low temperature region
such as aromatic molecules from the toluene group, ketones or olefins with
a high number of substituants would be required. It was showed during the
surrogate fuel formulation that the parameters of the Arrhenius law depend
linearly on the n-heptane concentration in a PRF mixture. This interesting
behaviour was not observed with more complex surrogate fuels such as
toluene reference fuel (TRF). Nevertheless, a TRF surrogate fuel could be
interested to have a better prediction in the low temperature zone.

As perspective, this study offer the possibility to lead numerical simula-
tions with the surrogate fuel to investigate the potentials of RCCI operating
conditions to reduce the pollutants emitted by waste-derived fuels.
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The current thesis extend the existing predicting laws to cover unconventional
fuels. Specifically, fuels derived from automotive shredder residues (ASR) are
discussed. Coupling these unconventional fuels with advanced combustion
modes such as reactivity controlled compression ignition (RCCI) is a way
to decrease the produced levels of pollutants. In chapter 4, experimental
campaigns with heavy fractions derived from ASR were described and
discussed. It was showed that this unconventional fuel behave differently
than usual fuels, which can result in the failure of the engine. From this
observation, many challenges arise such as:

• Which are the key chemical and physical properties that should be
controlled to ensure a safe combustion in a piston engine?

• If the properties cannot be measured at a low cost, are the existing
predicting methods applicable for unconventional fuels, and, if not,
how can they be adapted?

• To which extent can unconventional fuels be burnt under the RCCI
combustion mode?

Unconventional fuels can safely be burnt in an engine as long as their
properties are monitored. The current thesis proposes methods to predict
the composition and the ignition properties of unconventional fuels. The
knowledge of the composition is important as it gives an insight on the fuel
properties. The composition explains the behaviour of the fuel, nevertheless,
it must be coupled with additional properties such as the octane number (ON)
in order to properly assess the fuel reactivity. However, these octane numbers
are measured under specific conditions, so, they must be combined with
simulations to investigate other operating conditions.

The composition and the octane numbers can be measured with methods
that are expensive. Thus, predicting tools must be used instead. In the
current thesis, existing prediction methods have been updated to be suitable
for unconventional fuels which are oxygenated fuels. First, the composition
of an ASR-derived fuel was estimated based on easy-to-quantified properties.
Second, the octane number of a gasoline blendstock for oxygenate blending
was estimated based on a Bayesian pseudo-component (PC) method. The
uncertainty can be evaluated on the fly thanks to the evaluation of the
covariance matrix. The uncertainty is lower than 1% for most of the samples
and lower than 2% for all of them. The uncertainty is comparable with
real measurements in a cooperative fuel research engine. Nevertheless, real
measurements are still required to develop predicting models for new fuels.
The computational method show that the fuel is governed by high interaction
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blending effects, particularly when saturates, olefins and aromatics are mixed.
Third, the octane number of the same type of fuel was estimated coupling
artificial neural network (ANN) with principal component analysis (PCA).
The achieved uncertainty is near 2%. The uncertainty of the predicting
models is close to the uncertainty obtained with the real octane number
measurements. It is noteworthy that the real measurements are still required
to calibrate the models for a new type of fuels. Finally, an ASR-derived fuel
was tested in a rapid compression machine (RCM), providing experimental
data to the scientific community. This data was also used to formulate a
surrogate fuel. The main conclusions of the previous works are summarized
thereafter, making the link with the three challenges previously raised.

The ignition timing is a key property which is linked with the hydrocarbon
type. For instance, n-paraffins auto-ignite faster than aromatics. Moreover,
controlling the hydrocarbon types is required for health issue prevention.
For these reasons, the models from the literature to predict the composition
were updated to make them suitable for unconventional fuels. With this
new model, the prediction of the composition gives accurate results, with
a precision of about 12% against 87% with conventional methods. These
87% of error are due to an estimation of only the n-paraffin, napthene
and aromatic (PNA) fractions although the fuel is composed of n-paraffin,
iso-paraffin, olefin, napthene, aromatic and oxygenate (PIONAOx). More
specifically, conventional methods estimated the following composition of the
studied light fraction from ASR: P: 31%, N: 45%, A: 24% while the real fuel
composition is as follow P: 5.4%, I: 12.2%, O: 30.8%, N: 14.6%, A: 24.4%, Ox:
12.6%. The new method estimates correctly all the fuel fractions except the
paraffins. This can be easily explained by the similarity between n-paraffins
and iso-paraffins which share very similar properties. Isoparaffins tend
to have a much higher ignition delay. For instance, the octane number of
n-heptane is zero whereas it is 42.2 for 2-methylhexane. Thus, not being able
to dissociate iso and normal paraffins is a real issue.

The second contribution of the current thesis is the development of two
models to predict the octane numbers of gasoline blendstocks mixed with
an oxygenated molecule (1-propanol, 2-propanol, 1-butanol, 2-butanol, or
2-methyl-1-propanol). The octane numbers are two properties that are linked
with the ignition timing. These two models show that statistical and machine
learning tools can be applied to hydrocarbon engineering in order to create
new models as well as analyse large datasets. For instance, the calibration of
a model to predict the ON can provide information on the molecule blended
such as their blending characteristics. Another example is the capability
of PCA to extract the principal features of a fuel to determine which key
properties are linked with the ignition characteristics of the studied fuel. The
first model that was created is based on physical data, with the introduction
of pseudocomponents to describe the fuel. The second model rely on machine
learning tools. It was not possible to retrieve the physical information (mean
average boiling points, hydrocarbon class fractions) of the first method with
the second one.

Finally, studying the ignition delay in a RCM provides experimental data
to characterize the fuel under the RCCI combustion mode. For instance, the
light fraction from ASR was showed to have a high ignition delay time (IDT)
at low temperatures while the IDT is comparable to other fuels at higher
temperatures. An additional result of this study was to show a strong
correlation between the n-heptane concentration in a primary reference fuel
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(PRF) and the parameters of the Arrhenius law. Thanks to this observation, a
PRF surrogate fuel was formulated.
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In this chapter, we discuss the limitations of the current thesis and introduce
perspectives.

First, identifying a property which allows the separation of the normal
and the iso-paraffins would strengthen the method developed to predict the
n-paraffin, iso-paraffin, olefin, napthene, aromatic and oxygenate (PIONAOx)
composition. Indeed, it was showed that the normal and the iso-paraffins
have very similar properties. Additionally to the physical properties, chemi-
cal properties were also tested. It was showed that the normal and iso paraf-
fins could not be distinguish, even with nuclear magnetic resonance (NMR)
data. Therefore, the normal and the iso-paraffin cannot be separated with a
predicting method based on properties.

Secondly, only the properties of the light fractions produced from automotive
shredder residues (ASR) were studied. The injection timing could be adapted
dynamically depending on the reactivity of the heavy fuel. Nevertheless,
methods to predict the composition, the properties, and the ignition char-
acteristics of this heavy fraction could be developed. This heavy fraction
would behave similarly to a diesel, so the properties that characterize diesel
fuels should be used to characterize the heavy fuel. For instance, a property
that would provide important information on how the fuel burns is the
cetane number (CN). Relying on principal component analysis (PCA) and
artificial neural network (ANN) to update the existing laws to predict the CN
would be useful. In addition to the properties studied for the light fraction,
properties especially fitted for diesel fuels could be included in the study, for
instance, the resin and asphalthene content.

Third, additional experimental campaigns should be carried out. Studying
the light fraction in an engine would show how the fuel behave to investigate
if the fuel could cause knock. Knocking occurs when the fuel octane number
(ON) is too low. It was showed in chapter 8 that a good surrogate for the
studied fuel derived from ASR is primary reference fuel (PRF) 84.3 which has
a low octane number compared to conventional gasoline. Thus, experimental
campaigns are mandatory to study if the fuel is prompt to cause knock.
Tests under reactivity controlled compression ignition (RCCI) condition
could also be carried out. Relying on a electronic control unit (ECU) fully
programmable would allow us to control the combustion timing involved
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during the combustion. It would be crucial to determine under which
operating conditions the fuel burns.

To determine these operating conditions, simulations could also be per-
formed to study unconventional fuels by the mean of surrogate fuels. The
fuel behaviour could be studied depending on the inlet temperature, the
compression ratio, the exhaust gas recirculation (EGR) ratio and the equiva-
lence ratio. It would also be interesting to consider some fluctuations in the
fuel composition and properties to determine ranges of operating conditions
allowing to burn the fuel safely, and with a good efficiency.

Finally, the main limitation is related to the low amount of available fuel.
This was due to technical issues which prevent our industrial partner to
produce the fuel. The production facility had to be modified several times,
which took time. For instance, the process to remove the silica from the fuel
had to be implemented. Moreover, the production facility had been damaged.
The reactor in which the reaction with NaOH occurs was destroyed during
operation. For these reasons only a few quantity of fuel was available. As a
consequence, a small number of experiments in piston engine was performed.
Moreover, a small number of fuels were available. The methods created in
chapters 6 and 7 were developed for gasoline blendstock for oxygenate
blending. Similar methods for real ASR-derived fuels could be formulated
when enough experimental fuels are available. The current models could be
validated or extended for real fuels when enough data would be available. To
proceed, the main properties of the fuel would need to be measured: specific
gravity, refractive index, kinematic viscosity, distillation curve, CHON atomic
fractions.
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AA P P E N D I X A : C O M P O S I T I O N O F T H E A S R L I G H T
F R A C T I O N

Molecule HCgroup Number id. Mean molar x Std. Dev.
2.4-Dimethyl-1-Heptene Olefin 3 16.49% 0.52%

Styrene Monoaromatic 3 8.29% 0.24%
Ethylbenzene Monoaromatic 3 6.61% 0.17%

n-C3 Cyclohexane Naphthene 3 5.36% 0.61%
Toluene Monoaromatic 3 5.15% 0.01%

C8 Isoparaffins Iso-paraffin 3 3.10% 0.18%
C9 Isoparaffins Iso-paraffin 3 3.00% 0.05%

C3 Benzene Monoaromatic 3 2.92% 0.08%
Alpha-Methylstyrene Monoaromatic 3 2.59% 0.06%

Ethyl-cyclohexane Naphthene 3 2.35% 0.49%
C10 Isoparaffins Iso-paraffin 3 2.24% 0.13%

Olefins C6 Olefin 3 2.17% 0.17%
Benzene Monoaromatic 3 2.02% 0.10%

Olefins C8 Olefin 3 1.81% 0.18%
C2 Benzene Monoaromatic 3 1.78% 0.08%
Olefins C7 Olefin 3 1.67% 0.70%

Olefins C10 Olefin 3 1.44% 0.60%
C12 Olefins Olefin 3 1.40% 0.04%
Olefins C9 Olefin 3 1.40% 0.09%

C11 Isoparaffins Iso-paraffin 3 1.25% 0.03%
Nonane n-Paraffin 3 1.20% 0.10%
C8H18O Oxygenate 3 1.09% 0.06%
Heptane n-Paraffin 3 0.92% 0.07%
Decane n-Paraffin 3 0.87% 0.07%

C5H10O Isomers Oxygenate 3 0.85% 0.19%
C8 Naphthenics Naphthene 3 0.81% 0.01%

C3H8O2 Oxygenate 2 0.81% 1.11%
C4 Benzene Monoaromatic 3 0.76% 0.16%

Octane n-Paraffin 3 0.74% 0.33%
Aniline Nitrogen 3 0.69% 0.05%

C4H8O2 Isomers Oxygenate 2 0.59% 0.17%
1-Pentene Olefin 3 0.59% 0.11%

C9 Mononaphthenes Naphthene 3 0.55% 0.05%
1-Pentanol Oxygenate 3 0.54% 0.22%

C8H12 Naphthenics Naphthene 3 0.53% 0.07%
C7 Naphthenics Naphthene 3 0.53% 0.19%

3-Hexanone Oxygenate 2 0.50% 0.53%
C8H12 Isomers Naphthene 2 0.49% 0.01%
C7 Isoparaffins Iso-paraffin 1 0.47% 0.00%

2-Pentene Olefin 3 0.47% 0.42%
Hexane n-Paraffin 3 0.46% 0.22%

C6H12O2 Isomers Oxygenate 3 0.45% 0.19%
n-C4 Cyclohexane Naphthene 3 0.45% 0.13%
C11 Naphthenics Naphthene 3 0.42% 0.04%

3-Heptanone Oxygenate 2 0.42% 0.53%
C11 Olefins Olefin 3 0.41% 0.09%

C10 Naphthenics Naphthene 3 0.39% 0.02%
C6H14O Oxygenate 2 0.39% 0.15%

3-Pentanone Oxygenate 1 0.37% 0.00%
Undecane n-Paraffin 3 0.35% 0.01%

2-Methyl-3-Pentanone Oxygenate 3 0.32% 0.02%

Table 47: Composition of the light fraction from automotive shredder residues
(ASR) analyzed by comprehensive two dimensional gas chromatogra-
phy (GC × GC): 1/3
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Molecule HCgroup Number id. Mean molar x Std. Dev.
D-Limonene Naphthene 3 0.31% 0.01%
C5 Benzene Monoaromatic 3 0.30% 0.01%
2-Hexanone Oxygenate 1 0.29% 0.00%
2-Pentanone Oxygenate 3 0.29% 0.10%

C15H30 Isomers Naphthene 3 0.29% 0.01%
Cyclopentanol Oxygenate 2 0.26% 0.34%

C12 Isoparaffins Iso-paraffin 3 0.24% 0.01%
C6H12 Isomers Olefin 3 0.24% 0.03%

Phenol Oxygenate 3 0.24% 0.03%
n-C5 Cyclohexane Naphthene 3 0.23% 0.03%

C7H10 Isomers Naphthenoaromatic 3 0.22% 0.02%
1-Heptyne Olefin 1 0.22% 0.00%

C7H14O Isomers Oxygenate 3 0.22% 0.03%
C13 Isoparaffins Iso-paraffin 3 0.22% 0.02%

6-Dodecene Olefin 3 0.22% 0.03%
1-Heptene Olefin 3 0.21% 0.02%

Methylcyclohexane Naphthene 3 0.20% 0.07%
C7H12O Isomers Oxygenate 3 0.18% 0.03%

2-Hexanol Oxygenate 3 0.17% 0.03%
Cyclopentanone Oxygenate 3 0.16% 0.01%

Dodecane n-Paraffin 3 0.15% 0.00%
C12 Naphthenics Naphthene 3 0.15% 0.02%

1-Undecene Olefin 3 0.15% 0.00%
C6H12O Oxygenate 2 0.14% 0.01%

Cyclopentanol. 2-Methyl-.Trans- Oxygenate 1 0.14% 0.00%
C10 Naphthenoaromatics Naphthenoaromatic 3 0.14% 0.01%
C11 Naphthenoaromatics Naphthenoaromatic 3 0.14% 0.02%

C10H12 Isomers Naphthenoaromatic 3 0.13% 0.01%
C8H14O Oxygenate 3 0.12% 0.10%

C6 Benzene Monoaromatic 3 0.11% 0.01%
C6H10O Isomers Oxygenate 3 0.11% 0.02%
C14 Isoparaffins Iso-paraffin 3 0.10% 0.00%

n-C6 Cyclohexane Naphthene 3 0.10% 0.01%
1-Dodecene Olefin 3 0.10% 0.01%

Indane Naphthenoaromatic 3 0.09% 0.00%
Acetophenone Oxygenate 3 0.09% 0.02%

Thiophene Sulfur 1 0.08% 0.00%
1-Hexanol Oxygenate 1 0.08% 0.00%
1-Propanol Oxygenate 2 0.08% 0.02%
Tridecane n-Paraffin 3 0.07% 0.00%

C13 Naphthenics Naphthene 3 0.07% 0.02%
C6H10O2 Isomers Oxygenate 3 0.07% 0.01%

C12 Naphthenoaromatics Naphthenoaromatic 3 0.07% 0.02%
C15H18 Isomers Naphthenoaromatic 3 0.06% 0.01%

Pentane n-Paraffin 2 0.06% 0.02%
Methylphenol Oxygenate 3 0.06% 0.00%

C15 Isoparaffins Iso-paraffin 3 0.06% 0.00%
C7 Benzene Monoaromatic 3 0.05% 0.02%
2-Butanone Oxygenate 2 0.05% 0.01%
1-Tridecene Olefin 3 0.05% 0.01%
Tetradecane n-Paraffin 3 0.05% 0.00%

1-Tetradecene Olefin 3 0.04% 0.00%
Methylaniline Nitrogen 2 0.04% 0.00%

C6H14O2 Oxygenate 1 0.04% 0.00%
C2 Phenol Oxygenate 3 0.04% 0.01%

C18 Isoparaffins Iso-Paraffin 3 0.04% 0.01%
C17H22 Isomers Naphthenoaromatic 3 0.04% 0.01%

6-Tridecene Olefin 3 0.04% 0.00%
C18 Olefins Olefin 3 0.03% 0.00%

Cycloheptanol Oxygenate 3 0.03% 0.00%
C8H11N Isomers Nitrogen 3 0.03% 0.02%
C7H10O Isomers Oxygenate 2 0.03% 0.01%
C8H10O Isomers Oxygenate 3 0.03% 0.01%
2-Methylpyridine Nitrogen 3 0.03% 0.02%

Pentadecane n-Paraffin 3 0.03% 0.00%
C7H16O Isomers Oxygenate 3 0.03% 0.01%

Indene Naphthenoaromatic 3 0.02% 0.00%
2-Heptanone Oxygenate 1 0.02% 0.00%
Hexadecane n-Paraffin 3 0.02% 0.00%

C14H16 Isomers Naphthenoaromatic 3 0.02% 0.00%

Table 48: Composition of the light fraction from ASR analyzed by GC × GC: 2/3
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Molecule HCgroup Number id. Mean molar x Std. Dev.
Anisole Oxygenate 3 0.02% 0.01%

C16 Isoparaffins Iso-paraffin 3 0.02% 0.00%
C17 Isoparaffins Iso-paraffin 3 0.02% 0.00%
Aminotoluene Nitrogen 2 0.02% 0.00%

C14 Naphthenics Naphthenes 3 0.02% 0.01%
Naphthalene Diaromatic 3 0.02% 0.01%

n-C7 Cyclohexane Naphthene 3 0.02% 0.01%
C5H7N Isomers Nitrogen 3 0.01% 0.01%

N-C8 Cyclohexane Naphthene 3 0.01% 0.01%
P-Cresol Oxygenate 2 0.01% 0.00%

C15 Naphthenics Naphthene 3 0.01% 0.01%
2-Methylbenzofuran Oxygenate 3 0.01% 0.00%

Heptadecane n-Paraffin 3 0.01% 0.00%
Benzofuran Oxygenate 3 0.01% 0.00%
Octadecane n-Paraffin 3 0.01% 0.00%

4-Ethylphenol Oxygenate 1 0.01% 0.00%
Xylene (M.P) Monoaromatic 1 0.01% 0.00%

C19 Isoparaffins Iso-paraffin 3 0.01% 0.00%
C15 Diaromatics Diaromatic 3 0.01% 0.00%
C8H12O Isomers Oxygenate 2 0.01% 0.00%

1-Pentadecene Olefin 3 0.01% 0.00%
1-Butene. 1-(Methylthio)- Sulfur 1 0.01% 0.00%

1-Methylnaphthalene Diaromatic 3 0.01% 0.00%
C18H24 Isomers Naphthenoaromatic 3 0.00% 0.00%

1-Cyclopentylethanone Oxygenate 1 0.00% 0.00%
2-Methylnaphthalene Diaromatic 2 0.00% 0.00%

Icosane n-Paraffin 3 0.00% 0.00%
1.7-Dimethylnaphthalene Diaromatic 2 0.00% 0.00%

C9H12O Oxygenate 3 0.00% 0.00%
Nonadecane n-Paraffin 3 0.00% 0.00%

C8H9N Nitrogen 2 0.00% 0.00%
n-C9 Cyclohexane Naphthene 3 0.00% 0.00%

7-Hexadecene Olefin 3 0.00% 0.00%
Docosane n-Paraffin 3 0.00% 0.00%

1-Heptadecene Olefin 2 0.00% 0.00%
Heneicosane n-Paraffin 3 0.00% 0.00%

C20 Isoparaffins Iso-paraffin 3 0.00% 0.00%
C21 Isoparaffins Iso-paraffin 1 0.00% 0.00%
C22 Isoparaffins Iso-paraffin 1 0.00% 0.00%

Tricosane n-Paraffin 1 0.00% 0.00%

Table 49: Composition of the light fraction from ASR analyzed by GC × GC: 3/3





BA P P E N D I X B : N A S A C O E F F I C I E N T S

Minimal Mean Maximal
1.73049265E-01 -9.64285714E-01 2.56862231E-02

7.00388259E-02 8.05804473E-02 7.64351084E-02

-1.14354978E-05 -2.57575758E-05 -3.59795595E-06

-2.51166128E-08 -1.31313131E-08 -4.00610447E-08

1.20279233E-11 7.57575758E-12 1.81294218E-11

Table 50: NASA coefficients of the light fraction from automotive shredder residues
(ASR)
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CA P P E N D I X C : R E S E A R C H A N D M O T O R O C TA N E
N U M B E R S

Molecule HC class Boiling T.(°C) RON MON RON ref. MON ref.
2,2-Dimethylbutane(D) Saturate 49.73 91.8 93.4 [26] [26]

2,3-Dimethylbutane Saturate 57.98 103.51 94.3 [26] [26]
2,2-Dimethylpentane Saturate 79.19 92.8 95.6 [26] [26]
2,3-Dimethylpentane Saturate 89.781 91.1 88.5 [26] [26]
2,4-Dimethylpentane Saturate 80.494 83.1 83.8 [26] [26]
3,3-Dimethylpentane Saturate 86.06 80.8 86.6 [26] [26]
2,2-Dimethylhexane Saturate 106.84 72.5 77.4 [26] [26]
2,3-Dimethylhexane Saturate 115.61 71.3 78.9 [26] [26]
2,4-Dimethylhexane Saturate 109.43 65.2 69.9 [26] [26]
2,5-Dimethylhexane Saturate 111.97 55.2 55.7 [26] [26]
3,3-Dimethylhexane Saturate 117.73 75.5 83.4 [26] [26]
3,4-Dimethylhexane Saturate 115.65 76.3 81.7 [26] [26]
2,2-Dimethylheptane Saturate 124.09 50.3 60.5 [26] [26]

2-Methylbutane Saturate 27.84 92.3 90.3 [26] [26]
2-Methylpentane Saturate 60.26 73.4 73.5 [26] [26]
3-Methylpentane Saturate 63.27 74.5 74.3 [26] [26]
2-Methylhexane Saturate 90.049 42.4 46.4 [26] [26]
3-Methylhexane Saturate 91.85 52 55.8 [26] [26]
2-Methylheptane Saturate 117.65 21.7 23.8 [26] [26]
3-Methylheptane Saturate 118.93 26.8 35 [26] [26]
4-Methylheptane Saturate 117.71 26.7 39 [26] [26]

n-Butane Saturate -0.5 94 89.1 [26] [26]
n-Pentane Saturate 36.07 61.8 61.9 [26] [26]
n-Hexane Saturate 68.73 24.8 26 [26] [26]
n-Heptane Saturate 98.43 0 0 [26] [26]

2,2,3-Trimethylbutane Saturate 80.88 112.11 101.32 [26] [26]
2,2,3-Trimethylpentane Saturate 99.238 109.61 99.9 [26] [26]
2,2,4-Trimethylpentane Saturate 114.77 100 100 [26] [26]
2,3,3-Trimethylpentane Saturate 113.47 106.04 99.4 [26] [26]
2,3,4-Trimethylpentane Saturate 150.82 102.48 95.9 [26] [26]
3,3,5-Trimethylheptane Saturate 160.31 86.4 88.7 [26] [26]
n-Propylcyclopentane Saturate 130.96 31.2 28.1 [26] [26]
n-Butylcyclopentane Saturate 156.6 -3 -2 [26] [26]
Methylcyclopentane Saturate 71.81 91.3 80 [26] [26]
Ethylcyclopentane Saturate 103.47 67.2 61.2 [26] [26]
Methylcyclohexane Saturate 100.934 74.8 71.1 [26] [26]
Ethylcyclohexane Saturate 131.795 45.6 40.8 [26] [26]

n-Propylcyclohexane Saturate 156.747 17.8 14 [26] [26]
Cyclopentane Saturate 49.25 101.32 85 [26] [26]
Cycloheptane Saturate 118.79 38.9 40.8 [26] [26]
Cyclohexane Saturate 80.72 83 77.2 [26] [26]

Ethylcycloheptane Saturate 164.236 28 30 [26] [26]
1-Methyl-3-ethylcyclopentane Saturate 121.177 57.6 59.8 [26] [26]

iso-Butylcyclopentane Saturate 148.101 33.4 28.2 [26] [26]
Isopropylcyclopropane Saturate 58.314 100.28 88.1 [26] [26]

Vinylcyclopentane Saturate 99.198 69.3 54.3 [26] [26]
Allylcyclopentane Saturate 126.334 52.1 45.6 [26] [26]

Isopropenylcyclopropane Saturate 70.345 94.4 74.9 [26] [26]
1,3-Dimethylcyclopentane(cis) Saturate 90.77 79.2 73.1 [26] [26]

1,3-Dimethylcyclopentane(trans) Saturate 91.73 80.6 72.6 [26] [26]
Vinylcyclohexane Saturate 127 64.3 53.4 [26] [26]

1,3-Dimethylcyclohexane(cis) Saturate 120.09 71.7 71 [26] [26]
1,3-Dimethylcyclohexane(trans) Saturate 124.46 66.9 64.2 [26] [26]

Table 51: Boiling points, research octane number (RON) and motor octane number
(MON). The boiling points were obtained with Aspen Plus®. 1/4
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Molecule HC class Boiling T.(°C) RON MON RON ref. MON ref.
1,4-Dimethylcyclohexane(cis) Saturate 124.322 67.2 68.2 [26] [26]

1,4-Dimethylcyclohexane(trans) Saturate 119.36 68.3 62.2 [26] [26]
iso-Butylcyclohexane Saturate 171.3 33.7 28.9 [26] [26]

1-Methyl-2-n-propylcyclohexane(cis) Saturate 175.233 30.4 38.8 [26] [26]
1-Methyl-2-n-propylcyclohexane(trans) Saturate 175.233 29.4 39.2 [26] [26]

1,1-Dimethylcyclopentane Saturate 87.85 92.3 89.3 [26] [26]
1,1,2,4-Tetramethylcyclopentane Saturate 128.184 96.2 88 [26] [26]

1,1,2-Trimethylcyclohexane Saturate 145.593 95.7 87.7 [26] [26]
Hydrindan(cis) Saturate 167.851 70 64.1 [26] [26]

Pinane Saturate 167.291 77.7 65.9 [26] [26]
1-Methyl-4-isopropylcyclohexane(cis) Saturate 171.514 63.4 62.9 [26] [26]

1-Methyl-4-isopropylcyclohexane(cis-trans) Saturate 175.693 62.3 60.5 [26] [26]
Ethylidenecyclopentane Saturate 111.874 82.4 66.6 [26] [26]
Dicyclopropylmethane Saturate 102.631 95.1 72.1 [26] [26]
iso-Propylcyclopentane Saturate 126.43 81.1 76.2 [26] [26]

Cyclo-octane Saturate 151.14 69.9 57.8 [26] [26]
1,3,5-Trimethylcyclohexane(cis) Saturate 138.734 59.1 56.4 [26] [26]

1,3,5-Trimethyicyclohexane(trans) Saturate 140.55 68.5 70.1 [26] [26]
Ethylidenecyclohexane Saturate 136.944 83 70.6 [26] [26]
iso-Propylcyclohexane Saturate 154.76 62.8 61.1 [26] [26]

1-Methyl-1-ethylcyclohexane Saturate 151.907 68.7 76.7 [26] [26]
Hydrindan(trans) Saturate 161.076 58.5 48.8 [26] [26]

sec-Butylcyclohexane Saturate 179.34 51 55.2 [26] [26]
1,1,3-Trimethylcyclopentane Saturate 104.89 87.7 83.5 [26] [26]

1,2,4-Trimethylcyclopentane(cis,cis,trans) Saturate 116.73 89.2 79.5 [26] [26]
1,1-Dimethylcyclohexane Saturate 119.55 87.3 85.9 [26] [26]

1,2-Dimethylcyclohexane(cis) Saturate 129.79 80.9 78.6 [26] [26]
1,2-Dimethylcyclohexane(trans) Saturate 123.43 80.9 78.7 [26] [26]

1,1,3-Trimethylcyclohexane Saturate 136.63 81.3 82.6 [26] [26]
1,2,3-Trimethylcyclohexane(cis,trans,cis) Saturate 143.332 83.4 81 [26] [26]

1,2,4-Trimethylcyclohexane(cis,trans,trans) Saturate 143.515 73 74.6 [26] [26]
1,1,2-Trimethylcyclopropane Saturate 52.713 110.95 87.8 [26] [26]

1,1,2,2-Tetramethylcyclopropane Saturate 75.829 105.27 90.1 [26] [26]
3-Heptene(cis) Olefin 95.75 90.2 [26]

3-Heptene(trans) Olefin 95.67 89.8 79.3 [26] [26]
3-Octene(trans) Olefin 123.3 72.5 68.1 [26] [26]
4-Octene(trans) Olefin 122.26 73.3 74.3 [26] [26]
3-Hexene(trans) Olefin 67.09 94 80.1 [26] [26]

1-Pentene Olefin 30.07 90.9 77.1 [26] [26]
1-Hexene Olefin 63.48 76.4 63.4 [26] [26]
1-Heptene Olefin 93.64 54.5 50.7 [26] [26]
1-Octene Olefin 121.26 28.7 34.7 [26] [26]

2-Hexene(trans) Olefin 67.87 92.7 80.8 [26] [26]
2-Heptene(trans) Olefin 97.95 73.4 68.8 [26] [26]

2-Octene Olefin 130.592 56.3 56.5 [26] [26]
2,3-Dimethyl-1-butene Olefin 55.61 101.32 82.8 [26] [26]

2,3-Dimethyl-1-pentene Olefin 84.256 99.3 84.2 [26] [26]
2,4-Dimethyl-1-pentene Olefin 81.588 99.2 84.6 [26] [26]
3,4-Dimethyl-1-pentene Olefin 80.774 98.9 80.9 [26] [26]
2,3-Dimethyl-1-hexene Olefin 110.5 96.3 83.6 [26] [26]
2,3-Dimethyl-2-butene Olefin 73.2 97.4 80.5 [26] [26]

2,3-Dimethyl-2-pentene Olefin 96.485 97.5 80 [26] [26]
2,4-Dimethyl-2-pentene Olefin 83.276 100 86 [26] [26]

3,4-Dimethyl-2-pentene(cis) Olefin 89.3 96 82.2 [26] [26]
2,3-Dimethyl-2-hexene Olefin 121.831 93.1 79.3 [26] [26]
2,5-Dimethyl-2-hexene Olefin 112.847 95.2 82.2 [26] [26]

3-Methyl-2-ethyl-1-butene Olefin 86.345 97 82 [26] [26]
2-Methyl-3-ethyl-1-pentene Olefin 109.238 99.5 85.3 [26] [26]
2-Methyl-3-ethyl-2-pentene Olefin 117.077 95.6 82 [26] [26]

3,3-Dimethyl-1-butene Olefin 41.247 111.74 93.3 [26] [26]
3,3-Dimethyl-1-pentene Olefin 77.112 103.51 86.1 [26] [26]
4,4-Dimethyl-1-pentene Olefin 72.495 104.43 85.4 [26] [26]

4,4-Dimethyl-2-pentene(cis) Olefin 80.409 105.27 90.2 [26] [26]
4,4-Dimethyl-2-pentene(trans) Olefin 76.718 105.27 90.9 [26] [26]

2,2-Dimethyl-3-hexene(cis) Olefin 105.421 106.75 88 [26] [26]
2,2-Dimethyl-3-hexene(trans) Olefin 100.875 105.27 89 [26] [26]

2,5-Dimethyl-3-hexene(cis) Olefin 100.686 103.51 87.5 [26] [26]
2,5-Dimethyl-3-hexene(trans) Olefin 102.052 99.8 83.3 [26] [26]

Table 52: Boiling points, RON and MON. The boiling points were obtained with
Aspen Plus®. 2/4
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Molecule HC class Boiling T.(°C) RON MON RON ref. MON ref.
5-Methyl-1-hexene Olefin 85.31 75.5 64 [26] [26]
2-Methyl-1-heptene Olefin 119.22 70.2 66.3 [26] [26]
6-Methyl-1-heptene Olefin 113.2 63.6 62.6 [26] [26]
6-Methyl-2-heptene Olefin 113.228 71.3 65.5 [26] [26]
3-Methyl-1-pentene Olefin 54.18 96 81.2 [26] [26]
4-Methyl-1-pentene Olefin 53.86 95.7 80.9 [26] [26]
3-Methyl-1-hexene Olefin 83.9 82.8 71.5 [26] [26]
4-Methyl-1-hexene Olefin 86.73 86.4 74 [26] [26]
2-Ethyl-1-butene Olefin 64.67 98.3 79.4 [26] [26]

3-Ethyl-1-pentene Olefin 84.11 95.6 81.6 [26] [26]
3-Ethyl-2-pentene Olefin 95.851 93.7 80.6 [26] [26]

5-Methyl-2-hexene(trans) Olefin 87.381 94.3 81.2 [26] [26]
2-Methyl-1-butene Olefin 31.155 102.48 81.9 [26] [26]
2-Methyl-2-butene Olefin 38.555 97.3 84.7 [26] [26]

2-Methyl-1-pentene Olefin 62.1 94.2 81.5 [26] [26]
2-Methyl-2-pentene Olefin 67.3 97.8 83 [26] [26]

3-Methyl-2-pentene(trans) Olefin 70.438 97.2 81 [26] [26]
4-Methyl-2-pentene(cis) Olefin 56.38 99.7 84.5 [26] [26]

4-Methyl-2-pentene(trans) Olefin 58.6 98 82.6 [26] [26]
2-Methyl-1-hexene Olefin 91.84 90.7 78.8 [26] [26]
2-Methyl-2-hexene Olefin 94.777 92.8 78.9 [26] [26]

3-Methyl-2-hexene(cis) Olefin 97.247 92.2 79.9 [26] [26]
3-Methyl-2-hexene(trans) Olefin 94.475 91.4 79.4 [26] [26]

4-Methyl-2-hexene(cis) Olefin 85.952 98.6 [26]
4-Methyl-2-hexene(trans) Olefin 87.598 96.8 83 [26] [26]
2-Methyl-3-hexene(trans) Olefin 85.867 97.9 82 [26] [26]

3-Methyl-3-hexene(cis) Olefin 95.383 96 [26]
3-Methyl-3-hexene(trans) Olefin 93.521 96.4 81.4 [26] [26]

2-Methyl-2-heptene Olefin 122.337 83.6 71 [26] [26]
2-Methyl-3-heptene(trans) Olefin 113.956 94.4 80.4 [26] [26]
6-Methyl-3-heptene(trans) Olefin 113.724 93.4 82 [26] [26]
2,3,3-Trimethyl-1-butene Olefin 77.891 105.27 90.5 [26] [26]

Diisobutylene(J) Olefin 101.44 105.27 88.6 [26] [26]
2,3,3-Trimethyl-1-pentene Olefin 108.212 106.04 85.7 [26] [26]
2,4,4-Trimethyl-1-pentene Olefin 101.44 106.04 86.5 [26] [26]
2,3,4-Trimethyl-2-pentene Olefin 115.925 96.6 80.9 [26] [26]
2,4,4-Trimethyl-2-pentene Olefin 104.91 103.51 86.2 [26] [26]
3,4,4-Trimethyl-2-pentene Olefin 111.809 102.48 85.8 [26] [26]

n-Butylbenzene Aromatic 183.305 104.43 95.3 [26] [26]
1,3-Dimethylbenzene Aromatic 139.12 117.51 115.05 [26] [26]
1,4-Dimethylbenzene Aromatic 138.36 116.38 109.61 [26] [26]

sec-Butylbenzene Aromatic 173.33 106.75 95.7 [26] [26]
Indan Aromatic 177.97 103.51 89.8 [26] [26]

1-Methyl-2-n-propylbenzene Aromatic 184.8 103.51 92.2 [26] [26]
1-Methyl-2-isopropylbenzene Aromatic 178.18 106.04 96 [26] [26]

Propenylbenzene(cis) Aromatic 178.88 104.43 91.7 [26] [26]
Propenylbenzene(trans) Aromatic 178.26 104.43 92.1 [26] [26]

n-Propylbenzene Aromatic 159.241 110.95 98.7 [26] [26]
iso-Propylbenzene Aromatic 152.41 113.11 99.3 [26] [26]
iso-Butylbenzene Aromatic 172.79 111.36 98 [26] [26]

Toluene Aromatic 110.63 120.10 103.51 [26] [26]
1-Phenylpentane Aromatic 205.46 89.2 81.7 [26] [26]

Ethylbenzene Aromatic 136.2 107.40 97.9 [26] [26]
1-Methyl-2-allylbenzene Aromatic 186.52 98.6 86 [26] [26]
1-Methyl-2-ethylbenzene Aromatic 165.18 102.48 92.1 [26] [26]

Allylbenzene Aromatic 157.601 102.48 90.9 [26] [26]
1,2,4-Trimethylbenzene Aromatic 169.38 110.53 108.01 [26] [26]

2-Phenylpropene Aromatic 165.5 113.11 101.32 [26] [26]
1,2,3-Trimethylbenzene Aromatic 176.12 105.27 100.81 [26] [26]

Table 53: Boiling points, RON and MON. The boiling points were obtained with
Aspen Plus®. 3/4
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Molecule HC class Boiling T.(°C) RON MON RON ref. MON ref.
2-Phenylpentane Aromatic 191.943 103.51 92.1 [26] [26]

tert-Amylbenzene Aromatic 190.553 108.01 96.8 [26] [26]
1-Methyl-3-ethylbenzene Aromatic 161.33 112.10 100 [26] [26]

1,4-Diethylbenzene Aromatic 183.787 106.04 96.4 [26] [26]
1,2-Dimethyl-3-ethylbenzene Aromatic 193.96 104.43 91.9 [26] [26]
1,3-Dimethyl-4-ethylbenzene Aromatic 188.44 106.04 95.9 [26] [26]
1,3-Dimethyl-5-ethylbenzene Aromatic 183.78 114.80 102.48 [26] [26]
1,4-Dimethyl-2-ethylbenzene Aromatic 186.83 106.04 96 [26] [26]
1-Methyl-3-n-propylbenzene Aromatic 181.8 112.10 100.55 [26] [26]
1-Methyl-4-isopropylbenzene Aromatic 177.13 110.53 97.7 [26] [26]
1,2,3,4-Tetramethylbenzene Aromatic 205.04 105.27 100.28 [26] [26]
1-Phenyl-2-methylpropene Aromatic 186.904 105.27 91.7 [26] [26]

Indene Aromatic 182.62 113.72 106.75 [26] [26]
1,2,3,4-Tetrahydronaphthalene Aromatic 207.62 96.4 81.9 [26] [26]

Cyclopentanone Oxygenate 130.65 101.32 89.4 [26] [26]
Cyclohexanone Oxygenate 153.43 101.32 87.7 [26] [26]

Methyltert-butylether Oxygenate 55.05 118.33 101.32 [26] [26]
Di-iso-propylether Oxygenate 68.3 102.48 98.9 [26] [26]

Furan Oxygenate 31.35 108.582 91.6 [26] [26]
2-Methylfuran Oxygenate 64.072 102.48 86.1 [26] [26]

2,5-Dimethylfuran Oxygenate 93.618 101.32 88.1 [26] [26]
Tetrahydrofuran Oxygenate 65.97 72.9 64.8 [26] [26]

2-Methyltetrahydrofuran Oxygenate 79.79 86 73 [26] [26]
2,5-Dimethyltetrahydrofuran(cis,trans) Oxygenate 91 92.2 80.2 [26] [26]

Tetrahydropyran Oxygenate 88 52.2 35.4 [26] [26]
Dihydropyran Oxygenate 85.542 66.5 48.7 [26] [26]

Ethanol Oxygenate 78.29 109 90.7 [27] [27]
n-Propanol Oxygenate 97.2 104 89 [27] [27]
n-Butanol Oxygenate 118.75 98 85 [27] [27]
n-Pentanol Oxygenate 137.75 82 76 [29] [29]
n-Hexanol Oxygenate 156.75 69.3 64 [29] [29]
2-Propanol Oxygenate 82.15 106 99 [27] [27]
2-Butanol Oxygenate 99.75 105 93 [27] [27]

iso-Butanol Oxygenate 107.66 105 90 [27] [27]
Pentan-3-one Oxygenate 101.99 106.8 95.4 [28] This study
Hexan-3-one Oxygenate 123.5 101.9 88.5 [28] [28]
Heptan-3-one Oxygenate 147.4 88.5 This study

ETBE Oxygenate 72.8 119 103 [200] [8]

Table 54: Boiling points, RON and MON. The boiling points were obtained with
Aspen Plus®. 4/4
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ID RON MON MeABP(°C) S O A Ox Oxygenated molecule
BOB1-2P1 87.5 81 82.52371029 69.9618 7.752 19.1862 3.1 2-propanol
BOB1-2P3 91.4 82.6 79.35169557 63.897 7.08 17.523 11.5 2-propanol
BOB1-1P1 88 81.1 82.57210849 70.034 7.76 19.206 3 1-propanol
BOB1-1P3 91.2 82.1 79.50679638 64.1858 7.112 17.6022 11.1 1-propanol
BOB1-1B1 87 80.8 84.66949948 69.5286 7.704 19.0674 3.7 1-butanol
BOB1-1B3 88.2 81 86.17636867 61.8754 6.856 16.9686 14.3 1-butanol
BOB1-2B1 87.6 81.1 83.76156035 69.6008 7.712 19.0872 3.6 2-butanol
BOB1-2B3 90.9 82.8 82.02932996 62.0198 6.872 17.0082 14.1 2-butanol

BOB1-2M1P1 87.6 81.3 83.4485665 69.3842 7.688 19.0278 3.9 2-methyl-1-propanol
BOB1-2M1P3 90.3 82.6 84.00493223 61.2256 6.784 16.7904 15.2 2-methyl-1-propanol

BOB2-2P1 86.7 81.1 99.49391112 73.8378 4.4574 18.6048 3.1 2-propanol
BOB2-2P3 90.4 83 93.95110815 67.2084 4.0572 16.9344 11.8 2-propanol
BOB2-1P1 86.9 81.3 99.59959503 73.9902 4.4666 18.6432 2.9 1-propanol
BOB2-1P3 90.6 82.6 96.29571438 68.1228 4.1124 17.1648 10.6 1-propanol
BOB2-1B1 85.8 81 101.0355228 73.3806 4.4298 18.4896 3.7 1-butanol
BOB2-1B3 87.5 81.4 99.53858092 65.3034 3.9422 16.4544 14.3 1-butanol
BOB2-2B1 86.3 81.2 100.8267416 73.4568 4.4344 18.5088 3.6 2-butanol
BOB2-2B3 89.9 83.4 97.36529554 65.2272 3.9376 16.4352 14.4 2-butanol

BOB2-2M1P1 86.5 81.5 101.4873982 73.2282 4.4206 18.4512 3.9 2-methyl-1-propanol
BOB2-2M1P3 90.4 83.1 96.96570623 64.6176 3.9008 16.2816 15.2 2-methyl-1-propanol

BOB3-2P1 97.3 88 88.06886478 65.6013 2.4225 28.8762 3.1 2-propanol
BOB3-2P3 99.2 88.9 84.68070648 59.8468 2.21 26.3432 11.6 2-propanol
BOB3-1P1 97.7 87.9 88.78790395 65.669 2.425 28.906 3 1-propanol
BOB3-1P3 99.1 88.3 87.0886414 59.4406 2.195 26.1644 12.2 1-propanol
BOB3-1B1 97 87.5 89.48814278 65.1951 2.4075 28.6974 3.7 1-butanol
BOB3-1B3 96.9 86.8 89.68974616 57.8835 2.1375 25.479 14.5 1-butanol
BOB3-2B1 97.1 88 88.59461091 64.9243 2.3975 28.5782 4.1 2-butanol
BOB3-2B3 98.9 88.6 86.36584819 57.9512 2.14 25.5088 14.4 2-butanol

BOB3-2M1P1 97.5 88 91.01955032 65.0597 2.4025 28.6378 3.9 2-methyl-1-propanol
BOB3-2M1P3 99 88.1 88.05255447 57.3419 2.1175 25.2406 15.3 2-methyl-1-propanol

Table 55: Training data used to formulate the Bayesian pseudo-component (PC)
method.

ID RON MON MeABP(°C) S O A Ox Oxygenated molecule
BOB1-2P2 89.9 82 80.4566993 66.1352 7.328 18.1368 8.4 2-propanol
BOB1-1P2 89.6 81.7 81.42233611 66.5684 7.376 18.2556 7.8 1-propanol
BOB1-1B2 87.6 81 85.31473991 64.3302 7.128 17.6418 10.9 1-butanol
BOB1-2B2 90 82.3 82.43947087 64.4746 7.144 17.6814 10.7 2-butanol

BOB1-2M1P2 89.7 81.2 83.35329153 64.0414 7.096 17.5626 11.3 2-methyl-1-propanol
BOB2-2P2 88.9 82.4 95.527761 69.7992 4.2136 17.5872 8.4 2-propanol
BOB2-1P2 89 82.2 96.91267019 70.1802 4.2366 17.6832 7.9 1-propanol
BOB2-1B2 86.9 81.3 99.46253877 68.0466 4.1078 17.1456 10.7 1-butanol
BOB2-2B2 88.9 82.7 97.97300198 68.199 4.117 17.184 10.5 2-butanol

BOB2-2M1P2 89.4 82.6 99.02434987 67.5894 4.0802 17.0304 11.3 2-methyl-1-propanol
BOB3-2P2 98.6 88.6 85.53033009 62.2163 2.2975 27.3862 8.1 2-propanol
BOB3-1P2 98.5 88.3 87.22820399 61.8101 2.2825 27.2074 8.7 1-propanol
BOB3-1B2 96.9 87 89.65622866 60.4561 2.2325 26.6114 10.7 1-butanol
BOB3-2B2 98.4 88.3 88.04593674 60.1853 2.2225 26.4922 11.1 2-butanol

BOB3-2M1P2 98.5 88.1 88.8164268 59.8468 2.21 26.3432 11.6 2-methyl-1-propanol

Table 56: Testing data for the Bayesian PC method.
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