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Abstract. In previous studies, several methods have been developed to
synthesise Petri nets from labelled transition systems (LTS), often with
structural constraints on the net and on the LTS. In this paper, we focus
on Weighted Marked Graphs (WMGs) and Choice-Free (CF) Petri nets,
two weighted subclasses of nets in which each place has at most one
output; WMGs have the additional constraint that each place has at
most one input.
We provide new conditions for checking the existence of a WMG whose
reachability graph is isomorphic to a given circular LTS, i.e. forming a
single cycle; we develop two new polynomial-time synthesis algorithms
dedicated to these constraints: the first one is LTS-based (classical syn-
thesis) while the second one is vector-based (weak synthesis) and more
efficient in general. We show that our conditions also apply to CF syn-
thesis in the case of three-letter alphabets, and we discuss the difficulties
in extending them to CF synthesis over arbitrary alphabets.

Keywords: Weighted Petri net, weighted marked graph, choice-free net, syn-
thesis, weak synthesis, labelled transition system, cycle, cyclic word, circular
solvability, polynomial-time algorithm, P-vector, T-vector, Parikh vector.

1 Introduction

Petri nets form a highly expressive and intuitive operational model of discrete
event systems, capturing the mechanisms of synchronisation, conflict and concur-
rency. Many of their fundamental behavioural properties are decidable, allowing
to model and analyse numerous artificial and natural systems. However, most in-
teresting model checking problems are worst-case intractable, and the efficiency
of synthesis algorithms varies widely depending on the constraints imposed on
the desired solution. In this study, we focus on the Petri net synthesis problem
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from a labelled transition system (LTS), which consists in determining the ex-
istence of a Petri net whose reachability graph is isomorphic to the given LTS,
and building such a Petri net solution when it exists.

In previous studies on analysis or synthesis, structural restrictions on nets
encompassed plain nets (each weight equals 1; also called ordinary nets) [1],
homogeneous nets (for each place p, all the output weights of p are equal) [2,
3], free-choice nets (the net is plain, and any two transitions sharing an input
have the same set of inputs) [4, 2], join-free nets (each transition has at most one
input place) [2, 5, 6, 3]. Recently, another kind of restriction has been considered,
limiting the number of distinct labels of the LTS [7–10].

Depending on the constraints on the solution to be constructed, the com-
plexity of the synthesis problem can vary widely: the problem can be solved in
polynomial-time for bounded Petri nets [11], while aiming at elementary net sys-
tems, or at various other Petri net subclasses with fixed marking bound, makes
the problem NP-complete [12, 13].

In this paper, we study the solvability of LTS with weighted marked graphs
(WMGs; each place has at most one output and one input) and choice-free nets
(CF; each place has at most one output). Both classes are important for real-
world applications, and are widely studied in the literature [14–21]. We focus
mainly on finite circular LTS, i.e. strongly connected LTS that contain a unique
cycle4. In this context, we investigate the cyclic solvability of a word w, meaning
the existence of a Petri net solution to the finite circular LTS induced by the
infinite cyclic word w∞. These restrictions appear in practical situations, since
various complex applications can be decomposed into subsystems satisfying such
constraints [22, 7, 9, 23, 19, 24–26].

Contributions. We study further the links between simple LTS structures and
the reachability graph of WMGs and CF nets, as follows. First, we show that
a binary (i.e. over a two-letter alphabet) LTS is CF-solvable if and only if it
is WMG-solvable. Then, we develop new conditions for WMG-solving a cyclic
word over an arbitrary alphabet, with a polynomial-time synthesis algorithm.

We show that a word over a three-letter alphabet is cyclically WMG-solvable
iff it is cyclically CF-solvable, and that this result does not hold with four-letter
alphabets. More generally, we discuss the difficulties of extending these results
to CF synthesis over arbitrary alphabets.

We introduce the notion of weak synthesis, which aims at synthesising a
Petri net from a given transition-vector Υ instead of a sequence: the solution
obtained enables some sequence whose Parikh vector equals Υ . This allows to
be less restrictive on the solution design. Then, we provide a polynomial-time
algorithm for the weak synthesis of WMGs with circular reachability graphs.

4 A set A of k arcs in a LTS G defines a cycle of G if the elements of A can be ordered
as a sequence a1 . . . ak such that, for each i ∈ {1, . . . , k}, ai = (ni, `i, ni+1) and
nk+1 = n1, i.e. the i-th arc ai goes from node ni to node ni+1 until the first node
n1 is reached, closing the path.
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Finally, we show that our weak synthesis algorithm performs generally much
faster than the sequence-based algorithm.

Comparing with [27], we provide more details, we add the equivalence result
on CF nets for three-letter alphabets in Subsection 4.4 and the new Section 5 on
weak synthesis, with a new synthesis algorithm and the study of its complexity.

Organisation of the paper. After recalling classical definitions, notations and
properties in Section 2, we present the equivalence of CF- and WMG-solvability
for 2-letter words in Section 3.

In Section 4, we focus on circular LTS: we give a new characterisation of
WMG-solvability and a dedicated polynomial-time synthesis algorithm.We prove
the equivalence between cyclic WMG and CF synthesis for three-letter alpha-
bets. We also provide a number of examples showing that some of our results
cannot be applied to the class of CF-nets over arbitrary alphabets.

Section 5 contains our study of the weak synthesis problem for WMGs with
a circular reachability graph, with a new polynomial-time synthesis algorithm.
Finally, Section 6 presents our conclusions and perspectives.

2 Classical Definitions, Notations and Properties

LTS, sequences and reachability. A labelled transition system with initial
state, LTS for short, is a quadruple TS = (S,→, T, ι) where S is the set of
states, T is the (finite) set of labels, →⊆ (S × T × S) is the transition relation,
and ι ∈ S is the initial state. A label t is enabled at s ∈ S, written s[t〉, if
∃s′ ∈ S : (s, t, s′) ∈→, in which case s′ is said to be reachable from s by the firing
of t, and we write s[t〉s′. Generalising to any (firing) sequences σ ∈ T ∗, s[ε〉 and
s[ε〉s are always true, with ε being the empty sequence; and s[σt〉s′, i.e., σt is
enabled from state s and leads to s′ if there is some s′′ with s[σ〉s′′ and s′′[t〉s′.
For clarity, in case of long formulas we write brσbsτ bq instead of r[σ〉s[τ〉q, thus
fixing some intermediate states along a firing sequence. A state s′ is reachable
from state s if ∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable from s is noted [s〉.

Petri nets and reachability graphs. A (finite, place-transition) weighted
Petri net, or weighted net, is a tuple N = (P, T,W ) where P is a finite set
of places, T is a finite set of transitions, with P ∩ T = ∅ and W is a weight
function W : ((P ×T )∪ (T ×P ))→ N giving the weight of each arc. A Petri net
system, or system, is a tuple S = (N,M0) where N is a net and M0 is the initial
marking, which is a mapping M0 : P → N (hence a member of NP ) indicating
the initial number of tokens in each place. The incidence matrix I of the net is
the integer P × T -matrix with components I(p, t) =W (t, p)−W (p, t).

A place p ∈ P is enabled by a marking M if M(p) ≥W (p, t) for every transi-
tion t ∈ T . A transition t ∈ T is enabled by a markingM , denoted byM [t〉, if for
all places p ∈ P , M(p) ≥W (p, t). If t is enabled at M , then t can occur (or fire)
in M , leading to the marking M ′ defined by M ′(p) =M(p)−W (p, t) +W (t, p),
denoted M [t〉M ′. A marking M ′ is reachable from M if there is a sequence of
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firings leading from M to M ′. The set of markings reachable from M is denoted
by [M〉. The reachability graph of S is the labelled transition system RG(S)
with the set of vertices [M0〉, the set of labels T , initial state M0 and transitions
{(M, t,M ′) |M,M ′ ∈ [M0〉∧M [t〉M ′}. A system S is bounded if RG(S) is finite.

Vectors. The support of a vector is the set of the indices of its non-null compo-
nents. Consider any net N = (P, T,W ) with its incidence matrix I. A T-vector
(respectively P-vector) is an element of NT (respectively NP ); it is called prime
if the greatest common divisor of its components is one (i.e., it is non-null and
its components do not have a common non-unit factor). A T-semiflow ν of the
net is a non-null T-vector such that I · ν = 0. A T-semiflow is called minimal
when it is prime and its support is not a proper superset of the support of any
other T-semiflow [14].

The Parikh vector P(σ) of a finite transition sequence σ is a T-vector count-
ing the number of occurrences of each transition in σ, and the support of σ is the
support of its Parikh vector, i.e., supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.

Strong connectedness and cycles in LTS. The LTS is said reversible if,
∀s ∈ [ι〉, we have ι ∈ [s〉, i.e., it is always possible to go back to the initial state;
reversibility implies the strong connectedness of the LTS.

A sequence s[σ〉s′ is a cycle, or more precisely a cycle at (or around) state
s, if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-empty
cycle s′[σ′〉s′ in TS with P(σ′) � P(σ) (the definition of Parikh vectors extends
readily to sequences over the set of labels T of the LTS). A cycle s[σ〉s is prime
if P(σ) is prime. TS has the prime cycle property if each small cycle has a prime
Parikh vector.

A circular LTS is a finite, strongly connected LTS that contains a unique
cycle; hence, it has the shape of an oriented circle. The circular LTS induced by
a word w=w1 . . . wk is defined as s0[w1〉s1[w2〉s2 . . . [wk〉s0 with initial state s0.
All notions defined for labelled transition systems apply to Petri nets through
their reachability graphs.

Some Petri net subclasses. A net N = (P, T,W ) is plain if no arc weight
exceeds 1; pure if ∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | W (p, t)>0} and
•p = {t ∈ T |W (t, p)>0}; choice-free (CF) [28, 14] or place-output-nonbranching
(ON) [23] if ∀p ∈ P : |p•| ≤ 1; a weighted marked graph (WMG) if |p•| ≤ 1 and
|•p| ≤ 1 for all places p ∈ P . The WMGs form a subclass of the CF nets and
contain the weighted T-systems (WTSs) of [18], also known as weighted event
graphs (WEGs) in [29], in which ∀p ∈ P , |•p| = 1 and |p•| = 1. Plain WEGs are
also known as marked graphs [17] or T-nets [4].

Isomorphism and solvability. Two LTS TS 1 = (S1,→1, T, s01) and TS 2 =
(S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) =
s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1. If an LTS TS is
isomorphic to RG(S), where S is a net system, we say that S solves TS . Solving

4



a word w = `1 . . . `k amounts to solve the acyclic LTS defined by the single path
ι[`1〉s1 . . . [`k〉sk. A finite word w is cyclically solvable if the circular LTS induced
by w is solvable. An LTS is WMG- (or CF-)solvable if a WMG (or a CF system)
solves it.

Separation problems. Let TS = (S,→, T, s0) be a given labelled transition
system. The theory of regions [30] characterises the solvability of an LTS through
the solvability of a set of separation problems. In case the LTS is finite, we have
to solve 1

2 ·|S|·(|S|−1) states separation problems and up to |S|·|T | event/state
separation problems, as follows:

– A region of (S,→, T, s0) is a triple (R,B,F) ∈ (NS ,NT ,NT ) such that for
all (s, t, s′) ∈→, R(s) ≥ B(t) and R(s′) = R(s) − B(t) + F(t). A region
models a place p, in the sense that R(s) models the token count of p at the
marking corresponding to s, B(t) (for backward) models W (p, t), and F(t)
(for forward) models W (t, p).

– A states separation problem (SSP for short) consists of a set of states {s, s′}
with s 6= s′. It is solved by a region (R,B,F) when R(s) 6= R(s′), meaning
the region allows to discriminate between s and s′.

– An event/state separation problem (ESSP for short) consists of a pair (s, t) ∈
S×T with ¬s[t〉. It is solved by a region (R,B,F) when R(s) < B(t), meaning
the region allows to exclude a forbidden transition from some state.

In the rest of this paper, we interpret these two separation problems in terms
of places of the hoped-for Petri net system as follows:
− For each SSP {s, s′}, s 6= s′, the two states s and s′ must be distinguished by
a place p such that Ms(p) 6= Ms′(p), i.e. p has a different number of tokens in
the markings corresponding to the two states.
− For each ESSP (s, t) with ¬s[t〉, there must exist a place p such that Ms(p) <
W (p, t) for the marking Ms corresponding to state s, where W refers to the arcs
of the hoped-for Petri net system.

Notice that if the LTS is infinite, also the number of separation problems (of
each kind) becomes infinite.

A synthesis procedure does not necessarily lead to a connected solution. How-
ever, the technique of decomposition into prime factors described in [31, 25] can
always be applied first, so as to handle connected partial solutions and recombine
them afterwards. Hence, in the sequel, we focus on connected nets, w.l.o.g. In
the next section, we consider the CF synthesis problem with two distinct labels.

3 Reversible Binary CF Synthesis

In this section, we relate CF- to WMG-solvability for binary reversible LTS.

Lemma 1 (Pure CF-solvability).
If a reversible LTS has a CF solution, it has a pure CF solution.
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Proof. Let TS = (S,→, T, ι) be a reversible LTS. If t ∈ T does not occur in →,
TS is solvable iff TS ′ = (S,→, T \ {t}, ι) is solvable and a possible solution of
TS is obtained by adding to any solution of TS ′ a transition t and a fresh place
p, initially empty, with an arc from p to t (e.g. with weight 1), so that p is not
a side condition5. We can thus assume that each label of T occurs in →.

µ0

p

x

a1

a2...
am k+h

h
k1
k2

km

Fig. 1. A general pure (h = 0) or non-pure (h > 0) choice-free place p with initial
marking µ0. Place p has at most one outgoing transition named x. The set {a1, . . . , am}
comprises all other transitions, i.e., T = {x, a1, . . . , am}, and kj denotes the weight of
the arc from aj to p (which could be zero).

The general form of a place in a CF solution is exhibited in Fig. 1. If h = 0,
we are done, so that we shall assume h > 0. If −h ≤ k < 0, the marking of p
cannot decrease, and since x occurs in →, the system cannot be reversible. If
k = 0, for the same reason all the ki’s must be null too, µ0 ≥ h, and we may
drop p. Hence we assume that k > 0 and ∃i : ki > 0.

Once x occurs, the marking of p is at least h, remains so, and since the system
is reversible, all the reachable markings have at least h tokens in p. But then, if
we replace p by a place p′ with initially µ0 − h tokens, the same ki’s and h = 0,
we get exactly the same reachability graph, but with h tokens less in p′ than in
p. This will wipe out the side condition for p, and repeating this for each side
condition, we get an equivalent pure and choice-free solution. ut

Theorem 1 (Reversible binary CF-solvability).
A binary reversible LTS is CF-solvable iff it is WMG-solvable.

Proof. If we have two labels, from Lemma 1, if there is a CF solution, there will
be one with places of the form exhibited in Fig. 2, hence a WMG solution. ut

µ0

pa,b

a b
m n

Fig. 2. A generic pure CF-place with two labels.

In the next section, the number of letters is no more restricted.

5 A place p is a side condition if •p ∩ p• 6= ∅.
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4 Cyclic WMG- and CF-solvablity

In this section, we recall and extend conditions for WMG-solvability of some
restricted classes of LTS formed by a single circuit, which were developed in [16].

We gradually study the separation problems – SSPs in Subsection 4.1 and ES-
SPs in Subsection 4.2 – for cyclic solvability with WMGs, leading to a language-
theoretical characterisation of cyclically WMG-solvable sequences. The charac-
terisation gives rise to a polynomial-time synthesis algorithm in Subsection 4.3,
which is shown to be more efficient than the classical synthesis approach.

Finally, in Subsection 4.4, we study the extensibility of these results to the CF
case: for three-letter alphabets, we show that a word is cyclically WMG-solvable
iff it is cyclically CF-solvable; unfortunately, for arbitrary alphabets, we show
with the help of examples that the other results cannot be directly extended.

In the following, two distinct labels a and b are called (circularly) adjacent in
a word w if w = (w1abw2) or w = (bw3a) for some w1, w2, w3 ∈ T ∗. We denote
by pa,∗ any place pa,b where b is adjacent to a. Also, if T = {t0, t1, . . . , tm} with
m > 0, at least one label is adjacent to t0, and at each point at least one label
is adjacent to the ones we distinguished so far, until we get the whole set T ; we
can thus start from any label ti instead of t0.

Theorem 2 (Sufficient condition for cyclic WMG-solvability [16]).
Consider any word w over any finite alphabet T such that P(w) is prime. Suppose
the following: ∀u = w t1t2 (i.e., the projection6 of w on {t1, t2}) for some distinct
circularly adjacent labels t1, t2 in w, u = v` for some positive integer ` such that
P(v) is prime, and v is cyclically solvable by a circuit (i.e., a circular Petri net
system). Then, w is cyclically solvable with a WMG.

Theorem 3 (Cyclic WMG-solvability of ternary words [16]).
Consider a ternary word w (with three letters in its alphabet T ) with Parikh
vector (x, x, y) such that gcd(x, y) = 1. Then, w is cyclically solvable with a
WMG if and only if, for any pair t1 6= t2 ∈ T such that w = (w1t1t2w2) or
w = (t2w3t1), u = v` for some positive integer ` with u = w t1t2 , P(v) is prime,
and v is cyclically solvable by a circuit.

For a circular LTS, the solvability of its binary projections by circuits is
a sufficient condition, as specified by Theorem 2, but it turns out not to be
a necessary one. Indeed, for the cyclically solvable sequence w1 = aacbbdabd
(cf. left of Fig. 3), its binary projection on {a, b} is w1 a,b = aabbab which is
not cyclically solvable with a WMG (neither generally solvable). Looking only
at the Parikh vector of the sequence is also not enough to establish its cyclic
(un)solvability. For instance, sequences w2 = abcabdabd and w3 = abcbadabd are
Parikh-equivalent: P(w2) = P(w3) = (3, 3, 1, 2) (and also Parikh-equivalent to

6 The projection of a word w ∈ A∗ on a set A′ ⊆ A of labels, noted w A′ , is the
word obtained by erasing in w all the occurrences of labels belonging to A \A′. For
example, the projection of the word w = `1 `2 `3 `2 on the set {`1, `2} is the word
`1 `2 `2.
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a

2
b

2

c
3 3

d
33

a b

c
3 3

d
33

e
3 3

a

2
b

2

c
3 3

d
33

Fig. 3. The WMG on the left solves aacbbdabd cyclically, and the WMG in the middle
solves aacbbeabd cyclically. On the right, the WMG solves abcabdabd cyclically.

w1), but w2 is cyclically solvable with a WMG (e.g. with the WMG on the right
of Fig. 3) and w3 is not WMG-cyclically solvable.

All the binary projections of w1 and w3 are cyclically WMG-solvable, except
wi a,b. Only the unsolvability of w3 a,b implies the unsolvability of w3. Since
all the wi are Parikh-equivalent, then so are their binary projections. Thus, we
have to analyse the sequences themselves, without abstracting to Parikh vectors.
Since the projections w1 a,b and w3 a,b are equivalent (up to cyclic rotation
and swapping a and b), it is not sufficient to check the ‘problematic’ binary
projections. We then study the conditions for solvability of separation problems.

4.1 SSPs for Prime Cycles

For any word w = t0 . . . tk, for 0 ≤ i, j ≤ k such that i 6= j, we note Pij =
P(titi+1 . . . tj−1) if i < j and Pij = P(titi+1 . . . tk−1tkt0t1 . . . tj−1) if i > j.

Lemma 2 (SSPs are solvable for prime cycles). For a cyclic transition
system TS = (S,→, T, s0) defined by some word w = t0 . . . tk, where S =
{s0, . . . , sk}, →= {(si−1, ti−1, si) | 1 ≤ i ≤ k} ∪ {(sk, tk, s0)}, if P(w) is prime
then all the SSPs are solvable.

Proof. If |T | = 1, then k = 0 and |S| = 1, so that there is no SSP to solve. We
may thus assume |T | > 1.

For each pair of distinct labels a, b ∈ T that are adjacent in TS, construct
places pa,b (and pb,a since adjacency is commutative) as in Fig. 2 with

m =
P(w)(b)

gcd(P(w)(a),P(w)(b))
, n =

P(w)(a)

gcd(P(w)(a),P(w)(b))
, (1)

and µ0 = n ·P(w)(b). Clearly, the markings of pa,b reachable by repeatedly firing
u = w ab are always non-negative, and the initial marking is reproduced after
each repetition of the sequence u. Consider two distinct states si, sj ∈ S (w.l.o.g.
i < j). We now demonstrate that there is at least one place of the form pa,b such
that Mi(pa,b) 6=Mj(pa,b), where Ml denotes the marking corresponding to state
sl for 0 ≤ l ≤ k. If j − i = 1, then any place of the form pti,∗ distinguishes
states si and sj . The same is true if j − i > 1 but ∀l ∈ [i, j − 1] : tl = ti.
Otherwise, choose some letter a from ti . . . tj−1 and an adjacent letter b. Then
Mj(pa,b) =Mi(pa,b) +m ·Pij(a)− n ·Pij(b). If Mi(pa,b) 6=Mj(pa,b), place pa,b
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distinguishes si and sj . Otherwise we have m ·Pij(a) = n ·Pij(b), hence, due to
the choice of m and n:

Pij(a)

P(w)(a)
=

Pij(b)

P(w)(b)

(so that b also belongs to ti . . . tj−1). Consider some other letter c which is
adjacent to a or b. If place pa,c distinguishes si and sj , we are done. Otherwise,
due to the choice of the arc weights for these places, we have

Pij(a)

P(w)(a)
=

Pij(c)

P(w)(c)
=

Pij(b)

P(w)(b)
.

Since ti . . . tj−1 is finite, by progressing along the adjacency relation, either
we find a place which has different markings at si and sj , or for all a, b ∈
supp(ti . . . tj−1) we have

Pij(a)

P(w)(a)
=

Pij(b)

P(w)(b)
.

If supp(ti . . . tj−1) = supp(w), P(w) is proportional to P(ti . . . tj−1), but since
ti . . . tj−1 is smaller than w (otherwise si = sj) this contradicts the primality of
P(w). Hence, there exist adjacent c and d such that c ∈ supp(w)\supp(ti . . . tj−1)
and d ∈ supp(ti . . . tj−1). For the place pc,d we have Mj(pc,d) 6=Mi(pc,d). ut

This property has some similarities with Theorem 4.1 in [32], but the pre-
conditions are different. The reachability graph of any CF system, hence of any
WMG, satisfies the prime cycle property [33, 34]. Thus, primeness of a sequence
avoids solving SSPs when aiming at these two classes of Petri nets.

4.2 ESSPs in Cyclic WMG-Solvability

Now, we develop further conditions for the cyclic WMG-solvability.

Lemma 3 (Special form of WMG solutions for cycles). If w ∈ T ∗ is
cyclically solvable by a WMG, there exists a WMG S = ((P, T,W ),M0), where
P consists of places pa,b, for each pair of distinct circularly adjacent a and b
(i.e., either w = u1abu2 or w = bu3a).

Proof. Consider a sequence w = t0 . . . tk, whereP(w) is prime. Let us assume that
the system ((P, T,W ),M0) is a WMG solving w cyclically. Due to the definition
of WMGs, all the places that we have to consider are of the form schematised
in Fig. 4. The arc weights may differ due to the parameter l > 0, but the ratio
W (a,pa,b)
W (pa,b,b)

= m
n is determined by the Parikh vector of w and its cyclic solvability;

the initial marking is to be defined. Moreover, we have to consider only those
places which are connected to the pairs of circularly adjacent transitions in
w. Indeed, if w = u1bsiabsi+1

b u2, where b 6= a, si is the state reached after
performing u1 and si+1 is the state reached after performing u1a, then any place
that solves the ESSP ¬Mi[b〉 is an input place for b. On the other hand, any
place whose marking at Msi differs from its marking at Msi+1

is connected to a.
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Hence, a place p ∈ P solving ¬Mi[b〉 is of the form pa,b. Since p is only affected
by a and b, it also disables b at all the states between sl and si in w when it
is of the form w = u3bsj tjbsj+1

b+bslu4bsiabu2 with P(u4)(b) = 0 (in the case
there is no b in the prefix between s0 and abu2, sl = s0). Analogously, if tj 6= b,
there must be a place q ∈ P of the form ptj ,b that solves ¬Msj [b〉. Doing so, we
ascertain that the places of the form schematised in Fig. 4 for the adjacent pairs
of transitions are sufficient to handle all the ESSPs.

pa,b
a b

l ·m l · n

Fig. 4. A general place from a to b in a WMG solution of w:m = P(w)(b), n = P(w)(a),
l may be any multiple of 1/ gcd(m,n).

In fact, for each pair of adjacent transitions a and b in w, a single place of
the form pa,b is sufficient. Indeed, assume there are p1, p2 ∈ P of the form pa,b.
If M0(p1)

gcd(W (a,p1),W (p1,b))
≥ M0(p2)

gcd(W (a,p2),W (p2,b))
then for any M ∈ [M0〉, M(p1) <

W (p1, b) implies M(p2) < W (p2, b). Hence, p1 is redundant in the system. It
means we can choose l as we want (among the multiples of 1/ gcd(m,n)) and
only keep the place of the form pa,b in any solution with the smallest initial
marking. Note that it may happen that we need a place pa,b, but not pb,a. ut

The existence of a WMG solution of this special form allows us to establish
a necessary condition for the cyclic solvability of sequences.

Lemma 4 (A necessary condition for cyclic solvability with a WMG).
If w ∈ T ∗ is cyclically solvable by a WMG, then for any adjacent transitions
a and b in w, and any two occurrences of ab in w = u1 bsra b . . . bsq a b u2, the
inequality

Prj(b)− 1

Prj(a)
<
m

n
<

Pjq(b) + 1

Pjq(a)
(2)

holds true, where m,n are as in (1), r ≤ j ≤ q, and the right inequality is omitted
when Pjq(a) = 0 and the left inequality is omitted when Prj(a) = 0.

Proof. Let w be cyclically solvable with a WMG S = ((P, T,W ),M0) as in
Lemma 3, and place p ∈ P be of the form pa,b (as in Fig. 4, with l = 1
and a well chosen initial marking) for an adjacent pair ab. Choose two ab’s
in w = u1 bsra bsr+1

b bsr+2
. . . bsq a bsq+1

b u2 with possibly other letters between
sr+2 and sq (if there is only one ab, apply the argumentation while wrapping
around w circularly, i.e., sr[w〉sq). Since p solves ESSPs ¬sr[b〉 and ¬sq[b〉, the
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next inequalities hold true, where µr denotes the marking of pa,b at state sr:

¬sr[b〉 : µr < n

sr+1[b〉 : µr +m ≥ n
∀j : r ≤ j ≤ q : µr +Prj(a) ·m−Prj(b) · n ≥ 0

¬sq[b〉 : µr +Prq(a) ·m−Prq(b) · n < n

(3)

From the first and the third line of (3) we get Prj(a) ·m−Prj(b) · n > −n.
This implies:

Prj(b)− 1

Prj(a)
<
m

n
when r < j ≤ q. (4)

From the third and the fourth line of (3) we obtain

(Prq(a)−Prj(a)) ·m− (Prq(b)−Prj(b)) · n < n.

If Pjq(a) 6= 0, since Prq = Prj +Pjq this inequality can be written as

m

n
<

Pjq(b) + 1

Pjq(a)
. (5)

Thus, from (4) and (5) we have a necessary condition for solvability. ut

In particular, Lemma 4 explains the cyclic unsolvability of the word w3 =

bsr ab c b bsj a d bsq ab d. Indeed, P(w3)(b) = 3 = P(w3)(a), so that m/n = 1 and
1 ≮ 0+1

1 =
Pjq(b)+1
Pjq(a)

. Moreover, the necessary condition for cyclic sovability from
Lemma 4 extends to a sufficient one in the following sense.

Lemma 5 (A sufficient condition for cyclic solvability by a WMG). If
w ∈ T ∗ has a prime Parikh vector, and for each circularly adjacent ab pair in
w = . . . bsq a b . . . , the inequality

m

n
<

Pjq(b) + 1

Pjq(a)
(6)

holds true for any sj such that Pjq(a) 6= 0, then w is cyclically WMG-solvable.

Proof. We have proved in Lemma 2 that all SSPs are solvable for prime cycles.
Let us consider the ESSPs at states s as in w = . . . bsab . . ., i.e. ¬s[b〉. Since
we are looking for a WMG solution, all the sought places are of the form pa,b
(see Lemma 3 and Fig. 4) with m,n as in (1). To define the initial marking of
pa,b, let us put n ·P(w)(b) tokens on it and fire the sequence w once completely.
Choose some state s′ in w = . . . bs′ a . . . such that the number k of tokens on
pa,b at state s′ is minimal (it may be the case that such an s′ is not unique;
we can choose any such state). Define M0(pa,b) = n ·P(w)(b) − k as the initial
marking of pa,b. By construction, the firing of w reproduces the markings of
pa,b and M0 guarantees their non-negativity. Let us show that the constructed
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place pa,b solves all the ESSPs ¬s[b〉, where w = . . . bsab . . .. Consider such a
state s in w (w.l.o.g. we assume s 6= s′, since s′ certainly disables b). From
w = u1 bs′a . . . bs a b u2 (circularly) and from inequality (6) for sj = s′ and
sq = s, we get Ps′s(a) ·m−Ps′s(b) ·n < n since Ps′s(a) > 0. SinceMs′(pa,b) = 0,
Ms(pa,b) =Ms′(pa,b)+Ps′s(a) ·m−Ps′s(b) ·n < n, i.e., pa,b disables b at state s.

Now, we show that places of the form pa,b also solve the other ESSPs against
b, i.e., at the states where b is not the subsequent transition. Sequence w (up to
rotation) can be written as w = u1 b

x1 u2 b
x2 . . . ul b

xl , 1 ≤ l ≤ P(w)(b), and for
1 ≤ i ≤ l: xi > 0, ui ∈ (T \ {b})+. Transition b has to be disabled at all the
states between successive b-blocks. Consider an arbitrary pair of such blocks bxj

and bxj+1 in w = . . . bxj uj b
xj+1 . . . = . . . bxj bs u

′
j br t b

xj+1 . . ., with uj = u′jt.
Place pt,b does not allow b to fire at state r. We have to check that b is not enabled
at any state between s and r, i.e., it is not enabled ‘inside’ u′j . If u′j is empty, then
s = r, and we are done. Let u′j 6= ε. Due to P(u′j)(b) = P(uj)(b) = 0, the marking
of place pt,b cannot decrease from s to r, i.e., Ms(pt,b) ≤ Ms′′(pt,b) ≤ Mr(pt,b)
for any s′′ ‘inside’ u′j . Since pt,b disables b at r, it then disables b at all states
between s and r, inclusively. ut

From Lemma 4 and Lemma 5 we can deduce the following characterisation.

Theorem 4 (A characterisation of cyclic WMG-solvability). A sequence
w ∈ T ∗ is cyclically solvable with a WMG iff P(w) is prime and, for any pair of
circularly adjacent labels in w, for instance w = . . . bsq ab . . .,

m

n
<

Pjq(b) + 1

Pjq(a)

holds true with m, n as in (1) for any sj such that Pjq(a) 6= 0. A WMG solution
can be found with the places of the form pa,b for every such pair of a and b.

4.3 A Polynomial-time Algorithm for Cyclic WMG-Solvability

From the characterisation given by Theorem 4 and the considerations above,
Algorithm 1 below synthesises a cyclic WMG solution for a given sequence w ∈
T ∗, if one exists.

The algorithm works as follows. Initially, the Parikh vector of the input se-
quence is calculated and checked for primeness in lines 2-3. If the Parikh vector
is prime, we consecutively consider all the pairs of adjacent letters and examine
the inequality from Theorem 4 for them. To achieve it, we take the first two
letters in the sequence (lines 4-11), check if the inequality is satisfied for all the
states (lines 12-18), and if so, construct a new place connecting the two letters
under consideration (19-25). Then, the sequence is cyclically rotated such that
the initial letter goes to the end and the second letter becomes initial (line 8). In
the new sequence, we take again the first two letters (lines 9-11) and repeat the
procedure for them. The algorithm stops after a complete rotation of the initial
sequence, and by this moment all the pairs of adjacent letters have been checked.
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The ordered alphabet is stored in the array T , and the sequence is stored in v.
We use variables a and b to store the letters under consideration in each step, ia
and ib to store their indices in the alphabet, and na and nb are used for counting
their occurrences during the check of the inequality from Theorem 4. Variables
M and Mmin are used to compute the initial marking of the sought place.

Algorithm 1: Synthesis of a WMG solving a cyclic word
input : w ∈ Tn, T = {t0, . . . , tm−1}
output: A WMG system (N,M0) cyclically solving w, if it exists

1 var: T [0 ..m− 1] = (t0, . . . , tm−1), v[0 .. n− 1], a, b, na, nb, ia, ib, M , Mmin;
2 compute the Parikh vector P[0 ..m− 1] of w;
3 if P is not prime then return unsolvable ; // Parikh-primeness
4 b← w[0];
5 for j = 0 to m− 1 do // index of b
6 if b = T [j] then ib← j ;

7 for i = 0 to n− 1 do
8 v ← w[i] . . . w[n− 1]w[0] . . . w[i− 1] ; // rotation of w
9 a← b, b← v[1], ia← ib ; // fix first adjacent pair

10 for j = 0 to m− 1 do
11 if b = T [j] then ib← j ;

12 na← 1, nb← 1 ;
13 if a 6= b then
14 for k = 2 to n− 1 do
15 if P[ib]

P[ia]
≥ P[ib]−nb+1

P[ia]−na then
16 return unsolvable ; // check solvability condition

17 if v[k] = T [ia] then na← na+ 1 ;
18 if v[k] = T [ib] then nb← nb+ 1 ;

19 M ← P[ia] ·P[ib], Mmin←M ;
20 for k = 0 to n− 1 do // find initial marking
21 if w[k] = a then M ←M +P[ib] ;
22 if w[k] = b then M ←M −P[ia] ;
23 if M < Mmin then Mmin←M ;

24 add new place pT [ia],T [ib] to N with
25 W (T [ia], p) = P[ib], W (p, T [ib]) = P[ia], M0 = P[ia] ·P[ib]−Mmin;

26 return (N,M0)

Polynomial-time complexity of Algorithm 1. For a sequence of length n
over an alphabet with m labels, the Parikh vector can be computed in O(n) and
its primeness can be checked using e.g. the Euclidean algorithm, with a running
time in O(m · log22 n). The main for-cycle of Algorithm 1 involves the enumera-
tion of all pairs of distinct states of the cycle. For each pair of adjacent labels, a
run of the for-cycle consists of a lookup for an index in O(m), the verification
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of the inequality in O(n) and the construction of a place in O(n), which sums
up to O(m + n). Thus, the main for-loop requires a runtime in O(n(n +m)).
Taking into account that m ≤ n, and that n growths much faster than log22 n,
the overall running time of the algorithm does not exceed O(n2).

Complexity comparison: the known general approach is less efficient.
For a comparison, solving a cycle of length n overm labels with a WMG amounts
to solve n(n−1) SSPs and n(m−1) ESSPs at most. In the special case of WMG
synthesis from a prime cycle, we know that all the SSPs are solvable (Lemma 2)
and that solving first the other problems avoids to consider the SSPs (see [20]).
Since each of the sought places has at most one input and one output, each of the
separation problems seeks for 3 unknown variables, namely the initial marking of
a place, the input and the output arc weights. For an ESSP, the output transition
is clearly the one which has to be disabled and the input transition is to be found.
So, there are m − 1 possibilities to define a concrete ESSP, which in the worst
case gives us up to n(m− 1)2 systems of inequalities to solve all the ESSPs.

The general region-based synthesis typically uses ILP-solvers, and using e.g.
Karmarkar’s algorithm [35] (which is known to be efficient) for solving an ILP-
problem with k unknowns, we expect a running time ofO(k3.5·L2·logL·log logL)
where L is the length of the input in bits. For the case of a cycle, the input of each
separation problem is the matrix with the range of (n+1)×m and the vector of
right sides with the range of n+1, where each component of the vector and of the
matrix is a natural number not greater than n. Hence, the length of the input
for a single separation problem can be estimated as L = (m+1) · (n+1) · log2 n
bits, implying a runtime of O(n2 ·m2 · log22 n · logL · log logL) for solving a single
separation problem (the number of unknowns being equal to 3, i.e. constant).
Thus the general synthesis approach would need a runtime of O(n3 ·m4 · LF )
with the logarithmic factor LF = log22 n · log((m+1) ·(n+1) · log2 n) · log log((m+
1) ·(n+1) · log2 n). Note that, with this general approach, some redundant places
may be constructed, but they can be wiped out in a post-processing phase.

4.4 CF-solvability vs WMG-solvability of Cycles

Let us now relate cyclic WMG-solvability to cyclic CF-solvability.

Theorem 5. A sequence u ∈ {a, b, c}∗ is cyclically WMG-solvable iff u is cycli-
cally CF-solvable.

Proof. WMGs form a proper subclass of CF nets, hence the direct implication.
Let now TS = (S, T = {a, b, c},→, s0) be a CF-solvable circular LTS obtained
from u and Υ = P(u). By contraposition, assume that TS is not solvable by a
WMG. Then, due to Theorem 4, for some distinct states j, q ∈ S and distinct
labels a, b ∈ T

Υ (a)

Υ (b)
≥ Pjq(a) + 1

Pjq(b)
. (7)

W.l.o.g. we can choose the leftmost j satisfying (7). Then, in TS we have r[a〉j
for some r ∈ S preceding j. Indeed, if this is not the case and either r[b〉j or

14



r[c〉j, then (7) holds true for r and q, contradicting the choice of j. On the other
hand, since Pjq(a)+ 1 = Prq(a) and Pjq(b) = Prq(b), the inequality (7) implies

Υ (a)

Υ (b)
≥ Prq(a)

Prq(b)
. (8)

Consider a place p which is an input place of a in a cyclic CF solution of u.
From Lemma 1, we can assume pureness, i.e., the place has the form illustrated
on the right of Fig. 5 with x = a, y = b, z = c. We must have the following

q

rj

b

a

a

µ0

p

x

y

z
kx

ky

kz

Fig. 5. u (left) is cyclically solvable by a CF system; a CF place over {x, y, z} (right).

constraints for p:

cycle : kb · Υ (b) + kc · Υ (c) = ka · Υ (a)
r[a〉 : Mr(p) ≥ ka
r[a . . .〉q : Mq(p) =Mr(p) + kb ·Prq(b) + kc ·Prq(c)− ka ·Prq(a).

(9)

If Prq(c) ≥ Prq(a) · Υ (c)
Υ (a) , then due to (8) and (9),

Mq(p) = Mr(p) + kb ·Prq(b) + kc ·Prq(c)− ka ·Prq(a)

≥ ka +
(
kb ·

Υ (b)

Υ (a)
+ kc ·

Υ (c)

Υ (a)
− ka

)
·Prq(a) = ka,

implying q[a〉 which contradicts q[b〉. Hence, Prq(c) < Prq(a) · Υ (c)
Υ (a) . Together

with (8), we have
Prq(b)

Υ (b)
≥ Prq(a)

Υ (a)
>

Prq(c)

Υ (c)
.

which is equivalent to

Pqr(b)

Υ (b)
≤ Pqr(a)

Υ (a)
<

Pqr(c)

Υ (c)
. (10)

For an arbitrary input place of b, hence of the form illustrated on the right of
Fig. 5 with x = b, y = a, z = c,

cycle : ka · Υ (a) + kc · Υ (c) = kb · Υ (b)
q[b〉 : Mq(p) ≥ kb
q[b . . .〉r : Mr(p) =Mq(p) + ka ·Pqr(a) + kc ·Pqr(c)− kb ·Pqr(b).

(11)
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Then, due to (10) and (11),

Mr(p) = Mq(p) + ka ·Pqr(a) + kc ·Pqr(c)− kb ·Pqr(b)

≥ kb +
(
ka ·

Υ (a)

Υ (b)
+ kc ·

Υ (c)

Υ (b)
− kb

)
·Pqr(b) = kb

which implies r[b〉, a contradiction. Thus, TS is solvable by some WMG. ut

When the alphabet has more than three elements, the inclusion of WMGs
into CF nets is strict, i.e., there are cyclically CF-solvable sequences that are
not cyclically WMG-solvable: the sequence w = abcbad has a cyclic CF solution
(cf. Fig. 6); for a br b c bq b a d we have P(w)(a)

P(w)(b) = 2
2 ≮ 0+1

1 =
Prq(a)+1
Prq(b)

which, by
Theorem 4, implies the cyclic unsolvability of w by a WMG.

a b c

bad

a
2

3

b

3
2

c
2

2

d

2
2

Fig. 6. Sequence abcbad is cyclically solved by the CF system on the right.

By Lemma 3, using places only between adjacent transitions is sufficient for
cyclic WMG-solvability. For the sequence abcbad in Fig. 6, b follows a and c, and
the input place of b in the CF solution is an output place for both a and c. The
situation is similar for a, which follows b and d. However, this is not always the
case when we are looking for a solution in the class of CF nets. For instance,
the sequence cabdaaab is cyclically solvable by a CF system (see Fig. 7). In this
sequence, b always follows a. But in order to solve ESSPs against b, we need an
output place for c (in addition to a). Indeed, if there is a place pa,b as on the
right of Fig. 7 which solves ESSPs against b, then for ca bs bdaa bq ab we get

s[b〉 : µ0 + 2 ≥ 4

¬q[b〉 : µ0 + 3 · 2− 4 < 4

Subtracting the first inequality from the second one, we get 4− 4 < 0, a contra-
diction. Hence, pa,b cannot solve all ESSPs against b in the cycle cabdaaab.

In a WMG, a place has at most one input. This restriction is relaxed for
CF nets: multiple inputs are allowed. Let us show that a single input place for
each transition is not always sufficient. For instance, consider the cyclically CF-
solvable sequence bcafdeaaabcdaafdcaaa and Fig. 8. Assume we can solve all
ESSPs against transition a with a single place p as on the right of the same
figure; due to Lemma 1, we do not need any side-condition. Then, for p and
w = bs0 b c a f d bs5 e bs6 a a a b c bs11 d bs12 a a f d bs16 c bs17 a a a, the following
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c

a b

d

a

aa

b
a

b
3

c
2

2

d
2 3

µ0

pa,b

a b
2 4

Fig. 7. cabdaaab is cyclically CF-solvable (middle), but is not cyclically WMG-solvable.
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a
2

2
4

b
3

3

9

c
2
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9

3
d

25

3

3

e
3

9 9

f

9

3

3

µ0

p

b

c

d

e

f

a

kbkc

kd

ke

kf

k

Fig. 8. w = bcafdeaaabcdaafdcaaa is cyclically solved by the CF system on the left;
a (pure) place of a CF system with 6 transitions on the right.

system of inequalities must hold true:

cycle : 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf = 9 · k (0)

¬s5[a〉 : µ0 + kb + kc + kd + kf − k < k (1)

s6[aaa〉 : µ0 + kb + kc + kd + ke + kf − k ≥ 3 · k (2)

¬s11[a〉 : µ0 + 2 · kb + 2 · kc + kd + ke + kf − 4 · k < k (3)

s12[aa〉 : µ0 + 2 · kb + 2 · kc + 2 · kd + ke + kf − 4 · k ≥ 2 · k (4)

¬s16[a〉 : µ0 + 2 · kb + 2 · kc + 3 · kd + ke + 2 · kf − 6 · k < k (5)

s17[aaa〉 : µ0 + 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf − 6 · k ≥ 3 · k (6)

From the system above we obtain:

(2)− (1) : ke > 2 · k
(4)− (3) : kd > k

(6)− (5) : kc > 2 · k

which implies 3 · kc + 3 · kd + ke > 11 · k, contradicting the equality (0). Hence,
the ESSPs against a cannot be solved by a single place.

5 Weak Synthesis of WMGs in Polynomial-time

For any given word w over a set of labels T whose support equals T , each system
S = ((P, T,W ),M0) that cyclically WMG-solves w, when it exists, has a unique
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minimal (hence prime) T-semiflow Υ with support T , since it is live (meaning
that for each transition t, from each reachable marking M , a marking M ′ is
reachable from M that enables t) and bounded (see [18]). In some situations, it
might be sufficient to specify only the desired unique minimal T-semiflow, which
leads to what we call a weak synthesis problem. Given such a prime Parikh
vector Υ , the aim is thus to construct a WMG cyclically solving an arbitrary
sequence whose Parikh vector equals Υ . In this section, we provide a method for
constructing a solution in polynomial-time. To achieve it, we first need to recall
known liveness conditions for WMGs and their circuit subclass.

5.1 Previous results on liveness

In [29], a polynomial-time sufficient condition of liveness is developed for the
well-formed, strongly connected weighted event graphs (WEGs), equivalent to
the well-formed, strongly connectedWMGs. Under these assumptions, each place
has exactly one ingoing and one outgoing transitions. Variants of this liveness
condition for other classes of nets are given in [6], Theorems 4.2 and 5.5.

Additional notions. We introduce the following notions for our purpose:
− For any place p, gcdp denotes the gcd of all input and output weights of p.
− A marking M0 satisfies the useful tokens condition if, for each place p, M0(p)
is a multiple of gcdp. Indeed, if M0(p) = k · gcdp+r for some non-negative inte-
gers k and r such that 0 < r < gcdp, then r tokens are never used by any firing
(see [29, 6] for more details).
− A net (P, T,W ) with incidence matrix I is conservative if there is a P-vector
X ≥ 1|P | such that X · I = 0|T |, where 1|P | denotes the vector of size |P | in
which each component has value 1. Such a P-vector X is called a conservative-
ness vector. The net is 1-conservative if 1|P | is a conservativeness vector, i.e. if
for each transition, the sum of its input weights equals the sum of its output
weights.
− A net N is structurally bounded if for each marking M0, (N,M0) is bounded.
− By Theorem 4.11 in [18], a live WTS (N,M0) is bounded iff N is conserva-
tive. We focus on live and bounded WMG solutions (which are WTS), hence on
conservative, thus structurally bounded (see [36]), solutions.
− The scaling operation (Definition 3.1 in [6]): The multiplication of all input
and output weights of a place p together with its marking by a positive rational
number αp is a scaling of the place p if the resulting input and output weights
and marking are integers. If each place p of a system is scaled by a positive
rational αp, the system is said to be scaled by the vector α whose components
are the scaling factors αp.

Recalling Theorem 3.2 in [6], if S = ((P, T,W ),M0) is a system and α is a
vector of |P | positive rational components, then scaling S by α preserves the
feasible sequences of firings. We deduce from it, and from Theorem 3.5 in the
same paper, the following result.
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Lemma 6. Consider a system S, whose scaling by a vector α of positive ratio-
nals yields the system S ′. Then, for each feasible sequence σ, denote by M the
marking reached when firing σ in S and by M ′ the marking reached when firing
σ in S ′; the set of places enabled by M equals the set of places enabled by M ′.

Thus, in conservative systems, we can reason equivalently on feasible se-
quences and enabled places in the system scaled by a conservativeness vector,
yielding a 1-conservative system whose tokens amount remains constant.

The next result is a specialisation of Theorem 4.5 in [6] to circuit Petri nets,
using the fact that the liveness of circuits is monotonic, i.e. preserved upon any
addition of initial tokens (see [18, 5, 6] and Theorem 7.10 in [37] with its proof).

Proposition 1 (Sufficient condition of liveness [29, 6, 37]). Consider a
conservative circuit system S = (N,M0), with N = (P, T,W ). S is live if the
following conditions hold:
− for a place p0, with {t0} = p•0, M0(p0) =W (p0, t0);
− for every place p in P \ {p0}, with p• = {t}, M0(p) =W (p, t)− gcdp.
Moreover, for every marking M ′0 such that M ′0 ≥M0, (N,M ′0) is live.

In the particular case of a binary circuit, i.e. with two transitions, we recall
the next characterisation condition of liveness, given as Theorem 5.2 in [29].

Proposition 2 (Liveness of binary 1-conservative circuits [29]). Con-
sider a 1-conservative binary circuit S = ((P, T,W ),M0) that fulfills the useful
tokens condition, with T = {a, b} and P = {pa,b, pb,a}, where pa,b is the output
of a and pb,a is the output of b. Let m =W (a, pa,b) and n =W (pa,b, b). Then S
is live iff M0(pa,b) +M0(pb,a) > m+ n− 2 · gcd(m,n).

Now, consider any 1-conservative binary circuit system S whose initial mark-
ingM0 marks one place pa,b with its output weightW (pa,b, b) and the other place
pb,a with W (pb,a, a)− gcdpb,a . Each marking reachable from M0 enables exactly
one place; applying Lemma 6, this is also the case for any scaling of S, hence:

Lemma 7 (One enabled place in binary circuits). Consider a conservative
binary circuit system S = (N,M0), with N = (P, T,W ), T = {a, b}, such that
for the place pa,b with output b, M0(pa,b) = W (pa,b, b) and for the other place
pb,a with output a, M0(pb,a) =W (pb,a, a)−gcdpb,a . Then each reachable marking
enables exactly one place.

This lemma will help ensuring that the reachability graph of the synthesised
WMG forms a circle. Fig. 9 illustrates Lemma 7 and Proposition 1.

We recall a liveness characterisation. Since a place with an output and no
input, called a source-place, prevents liveness, we assume there is no such place.

Proposition 3 (Liveness of WMGs [18]). Consider a WMG S without source
places. Then S is live iff each circuit P-subsystem of S is live.
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Fig. 9. These circuits are conservative and fulfill the sufficient condition of liveness of
Proposition 1. On the left, gcdpa,b

= 2 and gcdpb,a = 1. The system in the middle
is obtained from the one on the left by scaling pa,b with 1

2
. In this second system,

gcdpa,b
= 1 and gcdpb,a = 1. On the right, gcdpa,b

= 1, gcdpb,c = 3 and gcdpc,a = 2.

5.2 Weak synthesis of WMGs in polynomial-time

Algorithm 2 below constructs a WMG from a given prime T-vector Υ . We prove
it terminates and computes a WMG cyclically solving some word with Parikh
vector Υ , hence performing weak synthesis. We then show it lies in PTIME.

Algorithm 2: Weak synthesis of a WMG with circular RG.
Data: A prime T-vector Υ with support T = {t1, . . . , tm}.
Result: A WMG cyclically solving a word with Parikh vector Υ .

1 We construct first an unmarked WMG N = (P, T,W ) containing all possible
binary circuits (which we call the complete WMG), as follows:

2 for each pair of distinct labels ti, tj in T do
3 Add two new places pi,j and pj,i forming a binary circuit P-subnet with set

of labels {ti, tj}, such that:
4 W (pi,j , tj) =W (tj , pj,i) =

Υ (ti)
gcd(Υ (ti),Υ (tj))

5 W (pj,i, ti) =W (ti, pi,j) =
Υ (tj)

gcd(Υ (ti),Υ (tj))
.

6 Then, we construct its initial marking M0, visiting the transitions in increasing
order, as follows:

7 for i = 2..m do
8 Mark each output place pi,h of ti that is an input of a transition th of

smaller index, i.e. h < i, with M0(p) =W (pi,h, th);
9 Mark each input place ph,i of ti that is an output of a transition th of

smaller index, i.e. h < i, with
M0(p) =W (ph,i, ti)− gcdph,i

=W (ph,i, ti)− 1;

10 return (N,M0)

Theorem 6 (Weak synthesis of a WMG). For every prime T-vector Υ ,
Algorithm 2 terminates and computes a WMG cyclically solving Υ , i.e. cyclically
solving some word w ∈ T ∗ such that P(w) = Υ .

Proof. The proof is illustrated in Fig. 10, 11 and 12. Consider any prime T-
vector Υ ∈ (N \ {0})m, where m is the number of transitions. In the first loop,
we consider each pair of transitions once. In the second loop, we consider each
place once. Thus, the algorithm terminates. Let us prove its correction.
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If |T | = 1, there is one transition and Υ = (1): the WMG with T = {t1},
P = ∅ and the sequence w = t1 fulfill the claim. Hence, we suppose |T | ≥ 2.

For each place pi,j , we have Υ (tj) ·W (pi,j , tj) = Υ (ti) ·W (ti, pi,j), so that
−W (pi,j , tj) · Υ (tj) + W (ti, pi,j) · Υ (ti) = 0, hence I · Υ = 0, where I is the
incidence matrix of N . Moreover, each circuit P-subnet of N is conservative (by
Corollary 3.6 in [18]).

Now, let us consider the second loop: we prove the next invariant Inv(`) to
be true at the end of each iteration `, for each ` = 1..m− 1, by induction on `:
Inv(`): "At the end of the `-th iteration, the WMG P-subsystem S` defined by
the set of places P` = {pu,v | u, v ∈ {1, . . . , `+1}, u 6= v} is live, and each binary
circuit P-subsystem of S` has exactly one enabled place".

Before entering the loop, i.e. before the first iteration, the WMG in unmarked.
Base case: ` = 1. At the end of the first iteration, P` = P1 = {p1,2, p2,1},

which induces a live binary circuit (by Proposition 1) with exactly one enabled
place, since only one output of t2 is enabled by M0 and the other place is an
output of t1 considered in the second part of the loop.

Inductive case: 1 < ` ≤ m−1. We suppose Inv(`−1) to be true, and we prove
that Inv(`) is true. Thus, at the end of iteration ` − 1, we suppose that the P-
subsystem S`−1 induced by P`−1 is live, and that each binary circuit P-subsystem
of S`−1 has exactly one enabled place. The iteration ` marks only all the input
and output places of t`+1 that are inputs or outputs of transitions in {t1, . . . , t`}.
None of these places has been considered in any previous iteration, since each
iteration considers only places connected to transitions of smaller index. Thus,
these places are newly marked at iteration `, and the only places unmarked at
the end of this iteration are connected to transitions of higher index.

We deduce that, at the end of iteration `:
− each binary circuit of S` has exactly one enabled place: indeed, each such
binary circuit either belongs to S`−1, on which the inductive hypothesis applies,
or to the circuits newly marked at iteration `;
− each circuit P-subsystem of S` with three places or more is live: indeed, con-
sider any such conservative circuit C; either C is a P-subsystem of S`−1, which
is live by the inductive hypothesis, hence Proposition 3 applies and C is live,
or C contains transition t`+1, in which case C contains necessarily an output
p`+1,h of t`+1 with h < `+ 1: since each place pu,v of S` is marked with at least
W (pu,v, tv)− gcdpu,v

and p`+1,h is marked with W (p`+1,h, th), C fulfills the suf-
ficient condition of liveness of Proposition 1, hence is live; we deduce that each
circuit P-subsystem is live, hence S` is live by Proposition 3.

We proved that Inv(`) is true for every integer ` = 1..m− 1. We deduce that
the WMG system Sm−1 = (N,M0) obtained at the end of the last iteration,
which is the system returned, fulfills Inv(m − 1). Suppose that some marking
M reachable in Sn−1 enables two distinct transitions ti and tj . Since Sn−1 is
a complete WMG, there is a binary circuit P-subsystem Ci,j = (Ni,j ,Mi,j)
containing ti and tj , in which exactly one place is enabled, applying Lemma 7
(since M {pi,j ,pj,i} = Mi,j is a marking reachable in (Ni,j ,M0 {pi,j ,pj,i})). We
deduce that M cannot enable both ti and tj , a contradiction.
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Thus the WMG returned is live and each of its reachable markings enables
exactly one transition. It is known that, in each live and bounded WMG, a
sequence σ is feasible such that P(σ) = Υ which is the unique minimal T-
semiflow of the WMG (see [18, 14]). Consequently, its reachability graph is a
circle, i.e. the WMG solves Υ (and σ) cyclically. We get the claim. ut
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w1,2 w2,1
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Fig. 10. Sketching Theorem 6 for 1 and 2 transitions. On the left, the circuit system
S1 has no place and solves Υ = (1). In the circuit system S2 in the middle, the output
of t2 is marked as black and its input as grey. On the right, an instanciation of the
binary case, given Υ = (3, 2). These systems are live, RG(S1) and RG(S2) are circles.
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Fig. 11. Sketching Theorem 6 for 3 and 4 transitions (systems S3, S4). Each black place
pi,j is marked withW (pi,j , tj), each grey place pi,j is marked withW (pi,j , tj)−gcdpi,j .
On the left, in the circuit induced by {p1,2, p2,1}, the output of t2 is black and its input
is grey. Then, each output of t3 is black, each input is grey. Each circuit of S3 is live, S3
is live and RG(S3) is a circle. In S4, we keep the marking of S3 and mark each output
of t4 as black, each of its inputs as grey. Thus, S4 is live and RG(S4) is a circle.

Polynomial-time complexity of Algorithm 2. Let m be the number of
transitions (labels). The initial construction of the net N considers a number of
transition pairs equal tom·(m−1). The computation of gcd(i, j) for any two inte-
gers i, j can be done using the Euclidean algorithm in O(log22(max(i, j))), which
remains polynomial in the size of the input vector binary encoding. Computing
u
v for two integers u, v, v 6= 0, can also be done in O(log22(max(u, v))). Thus, con-
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Fig. 12. Illustration of the proof of Theorem 6 for the prime T-vector Υ = (2, 3, 2, 4).
On the left, a complete WMG S, with all possible binary circuits. Its marking fol-
lows the black and grey places of Fig. 11. Pick any circuit P-subsystem C, e.g. the
one induced by {p4,3, p3,2, p2,4}: it is conservative and fulfills the condition of Propo-
sition 1, hence it is live. On the right, an LTS representing RG(S). The sequence
w = t1 t2 t3 t4 t4 t2 t1 t3 t4 t2 t4, with P(w) = Υ , is cyclically WMG-solvable.

structing N lies in O(m(m−1)3log22(q)) where q is the highest value in Υ . Then,
the algorithm marks all places in O(m(m − 1)), knowing that the gcd of each
place is 1. Hence the algorithm lies in PTIME: O(3m(m−1)log22(q)+m(m−1)),
i.e. O(m(m− 1)(3log22(q) + 1)) where q is the highest value in Υ .

Comparison with sequence-based synthesis. Algorithm 1 uses O(n(m+n))
steps, where m is the number of labels and n is the length of the input sequence
w to be solved cyclically. Since n equals the sum of the components of Υ = P(w),
we get q ≤ n. Also, m ≤ n; depending on the weights, n can be exponentially
larger than m. Hence, log22(q) ∈ O(log22(n)), so that m(m − 1)(3log22(q) + 1) ∈
O(m2 · log22(n)). When n is exponential in m, Algorithm 2 operates in time
polynomial in m while Algorithm 1 operates in time exponential in m.

6 Conclusions and Perspectives

In this work, we specialised previous methods of analysis and synthesis to the
CF nets and their WMG subclass, two useful subclasses of weighted Petri nets
allowing to model various real-world applications.

We highlighted the correspondence between CF- and WMG-solvability for
binary alphabets. We also tackled the case of an LTS formed of a single cycle
with an arbitrary number of letters, for which we developed a characterisation
of WMG-solvability together with a dedicated polynomial-time synthesis algo-
rithm. We showed the equivalence between cyclic WMG- and CF-solvability in
the case of three-letter alphabets, and that it does not extend to four-letter
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alphabets. We also discussed the applicability of our conditions to cyclic CF
synthesis over arbitrary alphabets.

Finally, we introduced the notion of weak synthesis, allowing to be less restric-
tive on the solution design, and provided a polynomial-time algorithm weakly
synthesising a WMG with circular reachability graph. We showed this second
algorithm to often operate much faster than the sequence-based one.

As a natural continuation of the work, we expect extensions of our results
in two directions: generalising the class of goal-nets and relaxing the restrictions
on the LTS under consideration. Also, we plan to investigate applications of our
results, in particular to process mining [38]: the algorithm for synthesising a net
from a transition system can be applied to classical process discovery which is
also a kind of synthesis; and the algorithm for weak synthesis can be employed
in streaming process mining, where only some information about the behaviour
of the modelled system can be stored for a later processing.
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