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ARTICLE INFO ABSTRACT

Introduction: ['7”Lu]Lu-DOTATATE is an effective systemic targeted radionuclide therapy for somatostatin recep-
tor (SSTR) positive metastatic or inoperable neuroendocrine tumours (NET). However, for a given injected activ-
ity, tumour responses are variable. Our aim was to investigate whether SSTR expression/functionality and known
characteristics of intrinsic radiosensitivity, namely proliferation rate, glucose metabolism, cell cycle phase, DNA
repair and antioxidant defences were predictors of sensitivity to ['7’Lu]Lu-DOTATATE in SSTR expressing
human cancer cell lines.
Methods: In six human cancer cell lines and under basal condition, SSTR expression was assessed by qRT-PCR and
immunocytochemistry. Its functionality was evaluated by binding/uptake assays with [*®Ga]Ga- and ['”Lu]Lu-
DOTATATE. The radiosensitivity parameters were evaluated as follows: proliferation rate (cell counting), glucose
metabolism (['®F]FDG uptake), antioxidant defences (qQRT-PCR, colorimetric assay, flow cytometry), DNA repair
(qRT-PCR) and cell cycle (flow cytometry). Effect of ['7”Lu]Lu-DOTATATE on cell viability was assessed 3, 7 and
10 days after 4 h incubation with ['77Lu]Lu-DOTATATE using crystal violet.
Results: Based on cell survival at day 10, cell lines were classified into two groups of sensitivity to ['””Lu]
Lu-DOTATATE. One group with <20% of survival decrease (—14 to —1%) and one group with >20% of survival
decrease (—22 to —33%) compared to the untreated control cell lines. The latter had significantly lower total an-
tioxidant capacity, glutathione (GSH) levels and glucose metabolism (p < 0.05) compared to the first group. SSTR
(p = 0.64), proliferation rate (p = 0.74), cell cycle phase (p = 0.55), DNA repair (p > 0.22), combined catalase
and GSH peroxidase expression (p = 0.42) and superoxide dismutase (SOD) activity (p = 0.41) were not signif-
icantly different between the two groups.
Conclusion: Antioxidant defences may be major determinants in ['”’Lu]Lu-DOTATATE radiosensitivity.
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1. Introduction

Peptide receptor radionuclide therapy (PRRT) is an effective sys-
temic targeted therapy employing radiolabeled peptides designed to
deliver a therapeutic radiation dose to cancer cells overexpressing spe-
cific receptors [1]. The most successful application of PRRT is !”’Lute-
tium-DOTA-[Tyr3]octreotate  ([!”’Lu]Lu-DOTATATE),  targeting
somatostatin receptor sub-type 2 (SSTR2) [2] in neuroendocrine tu-
mours (NET). Currently standardized treatment protocols are applied
based on the NETTER-1 study [3] and ['7’Lu]Lu-DOTATATE is typically
administered in fixed dose of 7.4 GBq, four cycles given eight to twelve
weeks apart. However for a given injected activity, tumour responses
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are variable [4,5], which warrants the search for predictive biomarkers.

["77Lu]Lu-DOTATATE therapy success relies on SSTR expression. The
latter, routinely assessed by the uptake of ®®Gallium-DOTA-peptides
([*8Ga]Ga-DOTA-peptides) on PET/CT images, is a pre-requisite for ther-
apy to ensure the proper delivery of the therapeutic radiotracer in NET
lesions. Higher SSTR density would lead to more internalized activity
of [177Lu]Lu-DOTATATE in tumour cells and consequently to higher sub-
sequent ionizing radiation (IR)-induced damages.

Beyond SSTR expression, tumour sensitivity to IR from ['77Lu]Lu-
DOTATATE may also influence the response. Radiosensitivity has been
extensively investigated in the context of IR from external beam radia-
tion therapy (EBRT). Studies have highlighted the importance of several
key biological factors in the sensitivity to IR, such as DNA repair [6,7], cell
cycle phase [8], proliferation rate, glucose metabolism [9,10] and antiox-
idant defences [11-14]. Their relative importance in PRRT may vary
from EBRT as these two radiation-based therapies are characterized by
fundamental differences [15]. To explore their importance in PRRT sen-
sitivity, understanding '”’Lu radiation biology is essential. '”’Lu, being a
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beta emitter with low linear energy transfer (LET) radiation, mainly re-
sults in indirect effects and consequently the generation of oxidative
damages to not only DNA but also to proteins and lipids [16-18]
(Fig. 1). Oxidative damages occur only if oxidants such as reactive oxy-
gen species (ROS) can exceed the antioxidant defence mechanisms of
the cell, and thus lead to oxidative stress and cell death [19]. Enzymatic
and non-enzymatic antioxidants are crucial in detoxifying ROS and con-
sequently prevent oxidative stress.

The present work investigates the relative influence of basal SSTR ex-
pression and different intrinsic radiosensitivity factors on the IR effect
induced by ['77Lu]Lu-DOTATATE in several human cancer cell lines.

2. Material and methods
2.1. Cell lines

The melanoma cell lines (HBL [20-23] and MM162 [24]) were
established in our laboratory. Multiple myeloma (COLO-677 and EJM),
gastroenteropancreatic (GEP) (pancreas carcinoma, MIA-PACA-2 and
colon adenocarcinoma, HT-29) cell lines were obtained from DSMZ
(Germany). HBL and MM162 were cultured in Ham's F10 medium
(Lonza), COLO-677 and HT-29 were cultured in RPMI-1640 (Sigma),
EJM was cultured in Iscove's MDM (Gibco, Invitrogen, UK) and MIA-
PACA-2 was cultured in DMEM (Sigma). All media were supplemented
with L-glutamine (Sigma), penicillin (Sigma), streptomycin (Gibco,
Invitrogen, UK) and kanamycin (Bio Basic) at standard concentrations
as well as with 10% fetal bovine serum, except EJM cell line with 20%.
Cells were maintained in their respective growth medium at 37 °Cin a
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humidified 95% air and 5% CO, atmosphere. All cell lines were regularly
checked for mycoplasma contamination using MycoAlert® Mycoplasma
Detection Kit (Lonza, Rockland, ME, USA). Cell lines were chosen based
on two characteristics: (1) cell lines derived from malignancies express-
ing SSTR (melanoma [25,26], multiple myeloma [27-30], pancreatic
[31] and colon [32] carcinoma) in order to ensure the presence of the
target, which was verified later on and (2) cell lines derived from malig-
nancies exhibiting a range of intrinsic radiosensitivities (from radiosen-
sitive (myeloma) to radioresistant (melanoma), and intermediate
radiosensitivity (pancreatic and colorectal cancers), classified as such
based on the mean survival at 2 Gy of EBRT [33]), providing us diversi-
fied cell populations valuable for the investigation of the influence of bi-
ological factors in radiosensitivity.

2.2. Radiopharmaceuticals production

[58Ga]Ga-DOTATATE and ['7’Lu]Lu-DOTATATE were produced
within the radiopharmacy facility of the department of nuclear medi-
cine at Institut Jules Bordet, as previously described [34,35]. In brief, la-
belling was performed on a synthesis module with disposable cassettes
(Modular Pharmlab, Eckert & Ziegler, Germany) using non-carrier
added '7’LuCl; (EndolucinBeta, ITG, Germany) or ®8GaCl; (GalliEo, IRE,
Belgium) and DOTATATE (Bachem AG) in sodium ascorbate/acetate
buffer at high temperature (80 °C/95 °C). The obtained raw radioactive
solution was purified by solid phase extraction on a C18 cartridge and
subsequent sterile filtration over a 0.22 pm filter (included in the dispos-
able cassette). All quality controls have been performed according to the
European Pharmacopoeia.
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Fig. 1. Radiation biology of ['7”Lu]Lu-DOTATATE. The therapeutic efficacy of ['””Lu]Lu-DOTATATE relies on IR-induced cell damages. In case of irradiation with a low LET emitter such as
177Ly, the majority of the biological effect is due to indirect effects of IR. Indirect effects are mediated by the generation of ROS (oxidants). If oxidant molecules exceed the antioxidant
capacity of the cell, oxidative stress occurs, resulting in oxidative damages to DNA, proteins and lipids. SSTR = somatostatin receptor; LET = linear energy transfer; SSB = single strand

break; DSB = double strand break; 4HNE = 4-hydoxynonenal.
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2.3. [17"Lu]Lu-DOTATATE treatment

Cells were seeded in 12-well plates (Corning® CellBIND® Multiple
Well Plate, Merck) at different densities (HBL and COLO-677: 1000
cells/well; MM162: 2000 cells/well; EJM: 4000 cells/well; MIA-PACA-2
and HT-29: 200 cells/well). The next day (corresponding to day 0),
5 MBq of [ 177Lu]Lu-DOTATATE was added in each well, with a minimum
of three technical replicates. After 4 h of incubation at 37 °C, the medium
containing [7’Lu]Lu-DOTATATE was removed and replaced with fresh
medium. Three days after treatment, the medium was replaced with
fresh medium. Cells were kept in culture until used for cell survival
assessment.

2.4. Radiopharmaceuticals uptake assay

Cells were seeded in 24-well plates (HBL, MIA-PACA-2 and HT-29: 3
x 10° cells/well; MM162: 1 x 10° cells/well; COLO-677 and EJM: 5 x 10°
cells/well) and the next day adherent cells in monolayer were incubated
at 37 °C with the desired radiopharmaceutical in four technical repli-
cates as follows: 2 h with 100 kBq of [%8Ga]Ga-DOTATATE/['"’Lu]Lu-
DOTATATE for the SSTR-based uptake assay and 1 h with 100 kBq of
['®F]fluorodeoxyglucose ([ '®F]FDG, Hopital Erasme, Brussels, Belgium)
in phosphate-buffered saline (PBS) (Lonza) for the glucose metabolism
assessment. Cells were subsequently washed twice with ice-cold PBS,
lysed with 1 M NaOH and then transferred in tubes to measure the inter-
nalized activity. Measurements were performed with a gamma well
counter 2480 WIZARD2 (Perkin Elmer) with background and decay cor-
rection. Reference activity standards were also quantified in order to
normalize the internalized activity with the added activity.

2.5. RT-qPCR

Total RNA was extracted from cell lines using the RNeasy Mini Kit
(Qiagen) and RNA concentrations and quality were determined by the
NanoDrop® ND-1000 Spectrophotometer. cDNA was synthesized
using a standard reverse transcription method (qScriptTM cDNA Super
Mix (Quanta Biosciences)). Expression of the following genes was
assessed by quantitative PCR using the Power SYBR Green PCR Master
Mix (Applied Biosystems): SSTR2, CAT, GPX1, PARP1, XRCC1, XRC(4,
XRCC5, XRCC6, XRCC7, RPA, RAD51, BRCA2, BRCA1, ATM and 18S rRNA.
PCR reactions were performed in four technical replicates and run on
QuantStudio 3 Real-Time PCR system (ThermoFisher Scientific) at 95
°C for 10 min followed by 40 cycles at 95 °C for 15 s and 60 °C for 1
min. Relative quantification was determined by normalizing the quanti-
fication cycle (Cq) of target genes with the Cq of the reference gene (18S
rRNA) using the 2724 method. Primers sequences have been chosen
from the PrimerBank database. Amplification efficiency was assessed
and only primers with efficiency between 90 and 110% have been se-
lected. Primers were obtained from ThermoFisher Scientific. Primers
characteristics are described in supplemental material.

2.6. Immunocytochemistry

Cell pellets were washed using PBS, then fixed with formaldehyde
for 30 min and embedded in agar. The agar-cell mix was transferred to
a syringe's tube, kept on ice and then transferred in a standard tissue-
processing cassette. All samples were fixed in formaldehyde,
dehydrated and then embedded in paraffin. Immunocytochemistry
was carried out on 4 pm paraffin-embedded slides using the SSTR2 anti-
body (pre-diluted, reference 2-SO088-10, Diagomics) and the iVIEW
DAB detection kit on the BenchMark XT system (Ventana). Briefly, con-
jugation of biotinylated goat-anti-rabbit IgG with streptavidin-HRP
allowed the visualization of the brown colored precipitate at the site
of specific antibody binding after the addition of HRP substrates (DAB
and H,0,). Stained slides were scanned using the scanner Nanozoomer
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NDP (Hamamatsu Photonics). The percentage of SSTR2 positive cells
was determined visually.

2.7. Cell survival assay

Cell survival was assessed by crystal violet. The culture medium was
removed and cells were gently washed with PBS, fixed with 1% glutaral-
dehyde (Merck) in PBS for 15 min and stained with 0.1% crystal violet
(Sigma) in water for 30 min. The plates were washed under running
tap water and subsequently lysed with 0.2% Triton X-100 (Roche) in
water for 90 min. The associated absorbance was measured at 590 nm
using the BioTek® 800™ TS Absorbance Reader.

2.8. Glutathione quantification

Reduced glutathione (GSH) was assessed using the Quantification kit
for oxidized and reduced glutathione (Sigma) according to
manufacturer's instructions. In brief, cells were lysed by repeated
freeze-thaw cycles. The buffer solution was added to samples (in tripli-
cates) in a 96-well plate. After 1 h incubation at 37 °C, the substrate
(5,5’-dithiobis (2-nitrobenzoic acid)) (DTNB), coenzyme and enzyme
(GSH reductase) were added in wells, followed by 10 min incubation
at 37 °C. Absorbance was read at 405 nm using a microplate reader
(Thermo Labsystems Multiskan EX). Total GSH (oxidized and reduced)
and oxidized GSH concentration were determined using calibration
curves. Reduced GSH concentration was determined by subtracting
the amount of oxidized GSH from the total amount of GSH.

2.9. Superoxide dismutase activity measurement

Total superoxide dismutase (SOD) activity was assessed using the
HT Superoxide dismutase assay kit (Trevigen) according to the manu-
facturer's instructions. Briefly, cell pellets were mixed with Cell Extrac-
tion Buffer and kept on ice during 30 min, with periodic vortexing.
Following centrifugation, the pellet was eliminated and protein concen-
tration was determined in the supernatant. Master Mix was added to
cell extracts (in triplicates). Immediately after the addition of xanthine
solution, absorbance measurements were done at 450 nm every minute
for 10 min. The extent of reduction in the appearance of WST-1
formazan is a measure of SOD activity present in the sample. One unit
of SOD reduces the rate of WST-1 formazan formation by 50%.

2.10. ROS measurement

Cells were seeded in Petri dishes (1 million cells/dish). The next day,
cells were treated with 100 uM paraquat dichloride (Sigma) for 24 h. All
cell lines were non-confluent at the time of experiment to avoid any ROS
increase associated with high cell density [36]. The percentage of ROS
negative and ROS positive cells was assessed using the Muse® Oxidative
Stress Kit (Luminex) according to the manufacturer's instructions.
Briefly, cells were harvested and re-suspended in 1x assay buffer. The
cells in suspension were then incubated at 37 °C with the Muse® Oxida-
tive Stress working solution for 30 min. Every sample was then thor-
oughly mixed and run on the Muse® Cell Analyzer (Merck). Kaluza
Flow Cytometry Analysis v2.1 software (Beckman Coulter) was used
for the analysis. Test principle is based on the fluorescence detection
of the oxidized dihydroethidium (DHE) by superoxide anions and al-
lows to distinguish two population of cells: ROS(—) (live cells) and
ROS(+) (cells exhibiting ROS).

2.11. Cell proliferation

Cells were seeded in 6-well plates (HBL, MM162, MIA-PACA-2 and
HT-29: 25000 cells/well; COLO-677 and EJM: 50000 cells/well). At
each time point (day 1, 2, 3, 4 and 7), cells were harvested and mixed
with the Muse® Count & Viability Reagent. After 5 min of incubation,
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every sample was then thoroughly mixed and run on the Muse® Cell
Analyzer (Merck).

2.12. Cell cycle analysis

Cells were seeded in Petri dishes (MM162: 1,5 million cells/dish; HBL,
MIA-PACA-2 and HT-29: 2 million cells/dish; COLO-677 and EJM: 4
million cells/dish). The next day, non-confluent cells were harvested,
washed once with PBS and fixed in 70% ethanol at —20 °C for 2 h. Cells
were then centrifuged for 5 min and washed once with PBS. After another
centrifugation step, cells were resuspended in 400 L of staining solution
per million cells (50 pg/mL propidium iodide (ThermoFisher) in PBS) and
incubated for 10 min at room temperature. Samples were acquired on a
flow cytometer (Navios EX, Beckman Coulter) and results were analyzed
using Kaluza Flow Cytometry Analysis v2.1 software (Beckman Coulter).

2.13. Statistical analysis

Statistical analysis was performed using the GraphPad Prism 7 soft-
ware (GraphPad Software, La Jolla, CA, USA). After normality verification
using the Shapiro-Wilk test, parametric t-test was performed. Signifi-
cance is indicated as: *p < 0.05 - **p £0.01 - ***p < 0.001.

3. Results
3.1. SSTR2 expression and functionality

SSTR2 expression was assessed in all cell lines at the genomic and
proteomic levels as well as its functionality. At the mRNA level, SSTR2
was expressed in all cell lines, with varying levels of expression. The
highest expression levels were observed in the two melanoma cell
lines (HBL and MM162), whereas the lowest was observed in the EJM
multiple myeloma cell line, being 100 times lower than HBL (Fig. 2A).
Immunocytochemistry staining confirmed SSTR2 protein expression in
all cell lines, in >50% of cells (HBL: 86%, MM162: 74%, COLO-677: 65%,
EJM: 60%, MIA-PACA-2: 71%, HT-29: 58%). Staining intensity varied
from strong (HBL) to moderate (MM162, MIA-PACA-2, HT-29) and
low (COLO-677, EJM) (Fig. 2B). To confirm SSTR2 functionality, uptake
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assays using [%®Ga]Ga-DOTATATE and ['”’Lu]Lu-DOTATATE were
performed. Uptake of both radiotracers was similar in all cell lines. Mel-
anoma cell lines (HBL and MM162) had the highest uptake, while mul-
tiple myeloma cell lines (COLO-677 and EJM) had the lowest one, being
about 15 times lower than the melanoma cell lines uptake (Fig. 3). These
results were in line with SSTR2 protein expression.

3.2. Proliferation rate

The proliferation rate of the cell lines was assessed as a parameter for
radiosensitivity. Cell count over time allowed to determine a cell dou-
bling time that reflects the cell proliferation rate under the intended ex-
periment conditions and timing. The most proliferative cell lines were
the GEP ones (MIA-PACA-2 and HT-29) with a doubling time of 27.52
4+ 0.03 and 26.28 + 0.81 h respectively. The lowest proliferative cell
lines were EJM (43.32 + 4.29 h) and MM162 (42.81 + 1.77 h), and
HBL (28.57 4 0.07 h) and COLO-677 (30.60 + 0.64 h) were in between
(Fig. 4A and B).

3.3. Glucose metabolism

In order to evaluate if metabolism could be associated with ['77Lu]
Lu-DOTATATE sensitivity, glucose metabolism was quantified in each
cell line using [ '®F]FDG uptake assay. Cell lines had varying glucose me-
tabolism rates, as represented by varying levels of [ '®F]FDG accumula-
tion in cells. MM162 and HT-29 had the highest glucose metabolism
(respectively 0.430 4 0.018 and 0.449 + 0.035% of added radioactivity
per 10° cells) while multiple myeloma cell lines COLO-677 and E[M
had the lowest (respectively 0.096 + 0.001 and 0.033 + 0.002% of
added radioactivity per 10 cells). HBL and MIA-PACA-2 had similar
and intermediate values (respectively 0.163 4 0.001 and 0.148 +
0.025% of added radioactivity per 10° cells) (Fig. 5).

3.4. DNA repair genes expression
The basal expression of DNA repair genes was analyzed to evaluate if

it could impact the response to ['7’Lu]Lu-DOTATATE in the six cell lines
(Fig. 6). Genes involved in the repair of DNA single- and double-strand

Fig. 2. SSTR2 expression in melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. (A) mRNA relative expression. Results are
represented as mean expression levels + SEM (n = 24 from 6 independant experiments) and are normalized against the reference gene 18S rRNA that was stable among cell lines.
(B) Representative illustration of immunocytochemical staining. Brown staining represents SSTR2. Magnification 40x. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 3. [%®Ga]Ga/['7’Lu]Lu-DOTATATE uptake in melanoma (HBL and MM162), multiple
myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. Results are
represented as mean + SEM (n = 20 from 5 independant experiments) of the
percentage of the added radioactivity, normalized by 10° cells.
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breaks (SSB and DSB), via the base excision repair (BER) and the non-
homologous end joining (NHE]) or homologous recombination (HR)
pathways respectively, were selected. PARP1 expression was the
highest in COLO-677 (0.448 4+ 0.033), followed by EJM (0.135 +
0.004), MIA-PACA-2 (0.117 4 0.002) and HT-29 (0.088 + 0.004). The
expression was the lowest and similar in the HBL and MM162 mela-
noma cell lines, being 0.039 + 0.002 and 0.041 + 0.009 respectively
(Fig. 6A). XRCC1 expression was more than ten times lower compared
to PARP1 expression and ranged from 0.0010 &+ 0.0002 (COLO-677
and MM162) to 0.0030 4 0.0001 (HT-29) (Fig. 6B). Combined expres-
sion of genes involved in the repair of DSB was the highest in COLO-
677 (0.1774 + 0.0051 (NHE] genes) and 0.0334 + 0.0034 (HR genes))
and the lowest in HBL (0.0433 + 0.0013 (NHE] genes) and 0.0103 +
0.0004 (HR genes)) (Fig. 6C and D).

3.5. Cell cycle phases

Cell cycle influences radiosensitivity, which is the highest during mi-
tosis and the lowest during S phase. Therefore, the percentage of cells in
each phase of the cell cycle was assessed, at the moment of exposure to
the treatment (Fig. 7). The percentage of cells in the G2/M phase ranged
from 11.68 4 0.97% (MM162) to 33.49 + 0.52% (MIA-PACA-2), with in-
termediate values for EJM (15.80 + 0.92%), HBL (18.07 + 0.87%), COLO-
677 (24.78 + 2.90%) and HT-29 (27.55 4 4.42%). The percentage of cells
in the S phase was the highest in GEP cell lines (MIA-PACA-2: 15.56 +
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Fig. 5. ['®F]FDG uptake in melanoma (HBL and MM162), multiple myeloma (COLO-
677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. Results are represented
as mean + SEM (n = 24 from 6 independant experiments) of the percentage of the
added radioactivity, normalized by 10° cells.

0.41%; HT-29: 13.01 4 2.56%), followed by multiple myeloma cell lines
(COLO-677:11.20 + 0.83%; EJM: 10.18 + 1.09%) and was the lowest in
melanoma cell lines (HBL: 9.75 4 0.38%; MM162: 7.44 4 1.60%).

3.6. Antioxidant defences

First line antioxidant defences, namely GSH, catalase, GSH peroxi-
dase and SOD, were assessed in all cell lines to evaluate their relation-
ship with ['77Lu]Lu-DOTATATE sensitivity (Fig. 8). Baseline reduced
GSH levels varied among cell lines, with the lowest observed in the mul-
tiple myeloma cell lines (COLO-677: 35.6 & 1.3 umol/L/10%cells; E]M
30.5 + 2.5 pmol/L/10%cells) and the highest observed in the MM162
melanoma (203.4 & 3.2 umol/L/10%cells) and the MIA-PACA-2 pancre-
atic (142.4 + 5.1 pmol/L/10%cells) cell lines. HBL and HT-29 had inter-
mediate value of 954 + 85 and 94.6 + 2.7 pumol/L/10cells
respectively (Fig. 8A). Combined catalase and GSH peroxidase expres-
sion was significantly (p < 0.05) higher in HT-29 compared to all the
other cell lines (Fig. 8B). SOD activity was the highest in COLO-677
(124.1 + 2.4 U/mg protein) and MIA-PACA-2 (119.0 + 8.6 U/mg pro-
tein), and the lowest in HT-29 (48.1 + 2.3 U/mg protein) (Fig. 8C). To
further evaluate antioxidant defences and more precisely the capacity
of cell lines to detoxify ROS, the percentage of ROS positive and negative
cells was assessed following treatment with the ROS inducer paraquat.
The baseline levels of ROS positive cells were about twice higher in
MM162 (27.4%), MIA-PACA-2 (22.4%) and HT-29 (27.9%) cell lines com-

B
Cell line Doubling time (hours)
HBL 28.57 £0.07
MM162 42.81+1.77
COLO-677 30.60 = 0.64
EIM 43.32 +£4.29
MIA-PACA-2 | 27.52 £ 0.03
HT-29 26.28 £0.81

Fig. 4. Proliferation rate of melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. (A) Total cell count over time, normalized to
number of cells plated on day 0, representing mean 4 SEM (n = 3 from 3 independant experiments). (B) Cell lines doubling time calculated from growth curves (mean 4 SEM).
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Fig. 6. mRNA expression of DNA damage repair genes in melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. Base excision
repair genes expression (A) PARP1 and (B) XRCC1. (C) Non-homologous end joining genes expression (D) Homologous recombination genes expression. Results are represented as mean
expression levels + SEM (n = 12 from 3 independant experiments) and normalized against the reference gene 18S rRNA that was stable among cell lines.
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677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. Results are represented as
mean £ SEM (n = 3 from 3 independant experiments).

pared to HBL (8.2%), COLO-677 (13.5%) and EJM (9.7%) (Fig. 9A). The per-
centage of ROS positive cells after paraquat treatment was significantly in-
creased and the highest in both multiple myeloma cell lines COLO-677 (+
59.8 + 17.9%, p = 0.03) and EJM (+ 54.9 4 10.9%, p = 0.01) followed by
the HBL cell line (+ 31.7 4 8.3%, p = 0.02). In the three other cell lines the
percentage of ROS positive cells remained unchanged (MM162: - 4.9 +
2.4%, p = 0.07; HT-29: - 5.9 4 15.2%, p = 0.7) or was non significantly el-
evated (MIA-PACA-2: + 21.6 + 10.7%, p = 0.09) (Fig. 9A and B).

3.7. Cell survival after |17’ LuJLu-DOTATATE treatment

In order to assess the radiosensitivity of the different cell lines to IR
from ['77Lu]Lu-DOTATATE, cell survival was evaluated (Fig. 10).
['77Lu]Lu-DOTATATE induced a time-dependent decrease of cell sur-
vival in all cell lines, except in the colon HT-29 whose survival was not
affected by the treatment (Fig. 10A). At day 10, significant (all p values
<0.001) reduction of cell survival was observed in HBL (—26% 4+ 4%),
MM162 (—13% =+ 3%), COLO-677 (—33% = 2%), EJM (—22% + 2%)
and MIA-PACA-2 (—14% + 3%) (Fig. 10A and B). Based on these results,
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Fig. 8. Expression and activity of main antioxidant defences in melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. (A) GSH
levels. Results are represented as mean =+ SEM (n = 9 from 3 independant experiments) and normalized by 10° cells. (B) Catalase and GSH peroxidase mRNA relative expression. Results are
represented as mean expression levels + SEM (n = 12 from 3 independant experiments) and normalized against the reference gene 18S rRNA that was stable among cell lines. (C) Total
SOD (SOD1 and SOD2) enzymatic activity. Results are represented as mean & SEM (n = 6 from 2 independant experiments).
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Fig. 9. ROS negative/positive cell percentage in melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines after stimulation with 100 uM paraquat for 24 h. (A) Representative flow cytometry
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in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Classification of cell lines into two different groups of sensitivity to ['”’Lu]Lu-DOTATATE
based on the cell survival at day 10.

Sensitivity to ['77Lu]Lu-DOTATATE

High Intermediate/low
HBL (—26 + 4%) MM162 (—13 + 3%)

COLO-677 (—33 + 2%) MIA-PACA-2 (—14 + 3%)
EJM (—22 + 2%) HT-29 (—1 + 2%)

% ROS+ cells/control

50

HBL MM162 COLO-677 EJM MIA-PACA-2 HT-29

Fig. 9 (contiuned).

multiple myeloma (COLO-677 and EJM) as well as the HBL melanoma
cell lines were considered as the most sensitive cell lines, while the
MM162 and the GEP cell lines (MIA-PACA-2 and HT-29) had an inter-
mediate to low sensitivity to ['7’Lu]Lu-DOTATATE (Table 1).

3.8. Relationship between biological factors and sensitivity to ['7"Lu]Lu-
DOTATATE

Basal characteristics of the different cell lines were confronted to the
cell survival results to evaluate if they were associated with ['77Lu]Lu-

DOTATATE sensitivity (Fig. 11). A 20% threshold was chosen as the best cut
off that could separate the six cell lines into two equivalent groups (round
number median). Using this cut off, the six cell lines were separated into
two groups of sensitivity to ['”’Lu]Lu-DOTATATE: COLO-677, HBL and
EJM with a decrease in cell survival of >20%, and MIA-PACA-2, MM162
and HT-29 with a decrease in cell survival of <20%. The total antioxidant
capacity, evaluated by the percentage of ROS production after treatment
with the ROS inducer paraquat, GSH levels and glucose metabolism were
significantly lower (p < 0.05) in the group with a higher sensitivity com-
pared to the group with a lower sensitivity to ['”’Lu]Lu-DOTATATE. SSTR
(p = 0.64), proliferation rate (p = 0.74), cell cycle (p = 0.55), DNA repair
(BER p = 0.22; NHE] p = 0.93; HR p = 0.91), combined catalase and GSH
peroxidase expression (p = 0.42) and SOD activity (p = 0.41) were not
significantly different between the two groups (Fig. 11B).

4. Discussion

The aim of our study was to evaluate the relationship between SSTR
expression/functionality as well as several key parameters of intrinsic
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Fig. 10. Effect of ['”’Lu]Lu-DOTATATE on survival of melanoma (HBL and MM162), multiple myeloma (COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. (A) Cell survival
was assessed 3, 7 and 10 days after 4 h incubation with 5 MBq of [ '7Lu]Lu-DOTATATE. Results are expressed as a percentage of the non-treated control and are represented as mean + SEM
(n = 20 from 5 independant experiments). Black dotted line represents 100% survival. *** p < 0.001. (B) Representative crystal violet staining 10 days after 4 h incubation with 5 MBq of
['77Lu]Lu-DOTATATE. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(COLO-677 and EJM) and GEP (MIA-PACA-2 and HT-29) cell lines. (A) Heat-map and (B) graphical representation of the normalized characteristics in the different cell lines. SSTR2
([%®Ga]Ga-DOTATATE), proliferation rate (inversed doubling time), glucose metabolism, DNA repair genes (BER, NHE] and HR), cell cycle (G2/M phase), antioxidant defences (GSH,
catalase/GSH peroxidase, SOD) and the total antioxidant (AO) capacity (inversed ROS induction). The results for each characteristics have been normalized to the highest obtained
value of each cell line, expressed as 100. Cell lines were separated based on a cut-off value of 20% decrease in cell survival after treatment with ['”’Lu]Lu-DOTATATE (blue dotted line).
(B) Results are expressed as mean of the 3 cell lines 4+ SEM. * p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

radiosensitivity (i.e. proliferation rate, glucose metabolism, DNA repair,
cell cycle and antioxidant defences) and sensitivity to IR from [ !7”Lu]Lu-
DOTATATE in a panel of cancer cell lines. Among all the parameters
assessed under basal condition (i.e. without any treatment), the total
antioxidant capacity of cells, the GSH levels and the glucose metabolism
were significantly lower in cell lines whose survival was reduced by
>20% following treatment with ['”’Lu]Lu-DOTATATE compared to cell
lines whose survival was reduced by <20%. SSTR expression, prolifera-
tion rate, DNA repair, cell cycle phase and other antioxidant defences
evaluated separately (i.e. SOD, catalase and GSH peroxidase) were not
significantly different between the two groups of cell lines (Fig. 11).
SSTR positive disease, visualized by [*3Ga]Ga-DOTA-peptides PET/CT
[37], s a prerequisite for PRRT. The hypothesis that higher receptor den-
sity will lead to greater binding and internalization of the radiolabeled
analogue in tumour cells and thus result in greater IR-induced cell dam-
ages with PRRT has been investigated by several groups. In our study,
SSTR2 functionality, assessed by uptake of [*8Ga]Ga- and [”’Lu]Lu-
DOTATATE, was well reflective of SSTR2 protein expression but could
not predict sensitivity to [!7’Lu]Lu-DOTATATE in our panel of cancer
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cell lines. Our results are in line with other pre-clinical studies showing
that cell lines and even xenograft tumours with the highest SSTR expres-
sion levels are not the most sensitive to PRRT [38,39]. On the other hand,
in the more complex clinical setting, the assessment of the predictive
value of [®8Ga]Ga-DOTA-peptides PET/CT [40-44] for response to PRRT
generated diverging conclusions. These data suggest that a certain up-
take threshold has to be surpassed to consider a therapeutic dose-
effect, however the level of SSTR expression cannot solely determine
the response to PRRT [45]. Furthermore, the same assumption was
raised in the case of another '"’Lu-based therapy, namely ['77Lu]Lu-
PSMA [46]. The response to PRRT with ['7”Lu]Lu-DOTATATE further de-
pends on intrinsic cellular features [47].

ROS generation and subsequent oxidative damages represent the
dominant process associated with low LET radiation such as '"’Lu.
Therefore the antioxidant capacity of cells might impact their sensitivity
to ['77Lu]Lu-DOTATATE. In our study, antioxidant defences (SOD, cata-
lase and GSH peroxidase) evaluated separately could not predict
[Y"7Lu]Lu-DOTATATE sensitivity. The explanation may reside in the
fact that they catalyze only a group of specific reactions [48] while
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oxidative reactions occur extremely rapidly, generating a multitude of
reactive species requiring different defence mechanisms for their detox-
ification. In that respect, the highly abundant GSH, acting as a wide range
oxidant scavenger and as a co-factor of several enzymes such as GSH per-
oxidase [49], was significantly lower in the group of cell lines with a
higher sensitivity to ['7’Lu]Lu-DOTATATE compared to the group with a
lower sensitivity. Accordingly, this was further supported by the assess-
ment of the antioxidant capacity of cells able to scavenge ROS induced
by paraquat in our experiment, which was significantly lower in the
group of cells with >20% survival decrease after ['”7Lu]Lu-DOTATATE
treatment compared to the group of cells with <20% survival decrease.

It has been reported that cancer cells display elevated basal ROS
levels due, notably, to increased metabolism in comparison with normal
cells [50]. They therefore express higher levels of antioxidants to adapt
to this oxidative status. Basal ROS levels could therefore be informative
about the cells antioxidant capacity. This was observed in our study
where the three less sensitive cell lines had the highest ROS basal levels,
being about two folds higher than the three more sensitive cell lines.

Glucose metabolism have been implicated in cancer radioresistance
[51] and can be evaluated by [ *®F]FDG uptake assays. In our study, glu-
cose metabolism was significantly lower in the group of cell lines
whose survival was reduced by >20% following treatment with [7’Lu]
Lu-DOTATATE compared to the group of cell lines whose survival was
reduced by <20%, in line with the literature. Increased glucose metabo-
lism, while providing a growth advantage, also confers a resistance phe-
notype to IR. Indeed, the glucose transporter GLUT1 is frequently
upregulated in radioresistant tumour cells [51]. Glucose, as well as
['8F]FDG, accumulation in cells is mediated by GLUT1 transport through
the cell membrane and subsequent phosphorylation by hexokinase in
the cytoplasm, generating glucose-6-phosphate. The latter is a common
intermediate for glycolysis as well as the pentose phosphate pathway
which generates NADPH by the reduction of NADP+ via the action of
glucose-6-phosphate dehydrogenase and 6-phosphoglyconate dehy-
drogenase. NADPH is a reducing equivalent required for antioxidant
enzymes function, such as glutathione reductase. Therefore, mainte-
nance of cell redox potential is facilitated by high glycolysis [52,53].
Interestingly, correlation between glucose metabolism and oxidative
stress was described, where GLUT1 inhibition enhanced ROS production
[54]. Given the role of oxidative stress in IR, this concept is very relevant
in our study.

Regarding proliferation rate, it is known that cells with a greater re-
productive activity exhibit faster harmful IR-induced effects [9,10].
However, this was not the case for [17’Lu]Lu-DOTATATE-treated cells
in this study, where the most proliferative cell lines, the GEP ones
(MIA-PACA-2 and HT-29), were not the most sensitive to ['”’Lu]Lu-
DOTATATE with HT-29 even being resistant to ['””Lu]Lu-DOTATATE.
Similarly, in two xenografts tumour models with equivalent [*8Ga]Ga-
DOTATATE avidity, the more proliferating tumour model AR42J, was
less sensitive to ['7’Lu]Lu-DOTATATE than the D341 [39]. Taken to-
gether, our results are in line with the literature showing that the prolif-
eration rate seems not to be determinant in predicting sensitivity to
['77Lu]Lu-DOTATATE compared to EBRT.

Radiosensitivity using EBRT was also reported to be variable accord-
ing to the cell cycle phases and is maximal during the G2/M phase [8].
For each cell line, the proportion of cells in the different cell cycle phases
was assessed in our study at the moment of exposure to the treatment.
As expected, the proportion of cells in the G2/M phase was reflective of
the cell proliferation rate. However, sensitivity to ['”7Lu]Lu-DOTATATE
was independent of the percentage of cells in the radiosensitive G2/M
phase in which cells lay before treatment with [!77Lu]Lu-DOTATATE.
This can be explained by the fact that ['”’Lu]Lu-DOTATATE treatment
is characterized by a continuous and protracted exposure of cells to IR
from '7”Lu. Therefore, several cell-division cycles will occur while cells
were exposed to !7’Lu over days, as opposed to EBRT, where the number
of cells in each phase of the cell cycle at the time of the irradiation may
be more relevant given the short irradiation period (minutes). However,
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we cannot totally exclude the possibility that the relative distribution of
cells within cell cycle phases may contribute to [!”7Lu]Lu-DOTATATE
sensitivity, as is the case for EBRT. Indeed, radiosensitivity in the G2/M
phase was attributed to several factors such as insufficient time to repair
DNA damage before dividing, inactivation of DNA DSB repair mecha-
nisms [55] as well as DNA condensation.

Differential efficiencies in DNA repair may lead to variable responses
to IR [6], including ['7”Lu]Lu-DOTATATE since it induces DNA damages
[38,56,57]. In our study, expression of DNA repair genes could not pre-
dict sensitivity to ['”7Lu]Lu-DOTATATE. This result informs us that, in
contrast to Bishay et al. who were able to correlate RAD51 gene expres-
sion with human lymphocytes radiosensitivity to gamma rays [58], this
analysis does not provide any predictive value regarding ['””Lu]Lu-
DOTATATE sensitivity in our six cell lines. Methods that would allow
the evaluation of DNA repair capacity, at a functional level, might be
more informative. Currently the evaluation of the sensitivity to other
DNA damaging agents [59,60] or the evaluation of YH2AX foci after ther-
apy are used as surrogates [61,62]. However, they do not provide predic-
tive information. Sequencing of DNA repair-related genes could also be
considered. The lack of functional analysis is a limitation in our study.

Other limitations include the fact that we have investigated a non-
exhaustive list of six factors, which are obviously more than six. For in-
stance, the P53 status of cells has not been addressed here. Furthermore,
for a thorough evaluation of the contribution of all factors, more cell
lines would have been required, using also more in-depth analyses. In-
vestigating all the parameters under [!”’Lu]Lu-DOTATATE might also
bring additional information.

The hereabove mentioned list of intrinsic factors are based on the ex-
tensive radiobiology of EBRT. However, given that ['7’Lu]Lu-DOTATATE
works on the basis of intravenous injection of a vector, bringing radia-
tion inside of the tumour, one should be cautious when extrapolating
EBRT radiobiology to PRRT. The fact that sensitivity to EBRT does not
correlate linearly with the sensitivity to !7’Lu further emphasizes differ-
ences in these two radiation-based modalities [38]. While DNA damage
related factors have always been considered the key determinants for
EBRT, our results suggest that antioxidant defences may be major deter-
minants for PRRT sensitivity in vitro. In vivo, however, the parameters
assessed might differ and the influence of other parameters on biologi-
cal effects of ['77Lu]Lu-DOTATATE such as the microenvironment, in-
cluding immune infiltrates [63] and hypoxia that plays a key role in
case of low LET radiation, have to be taken into account.

Although recent advances have been made [64,65], there is still a
need to investigate tumour biology to understand which biological fac-
tors might correlate with a good response to ['7’Lu]Lu-DOTATATE in
particular, but with '7’Lu in general [66]. '7”Lu has become a popular ra-
dioisotope due to its numerous advantages and is now also being use for
the therapy of prostate cancers (['”’Lu]Lu-PSMA) with promising re-
sults. Our findings are therefore relevant beyond NET therapy with
PRRT and warrant the investigation of antioxidant defences as a poten-
tial factor influencing !'”’Lu radiosensitivity. To our knowledge, no study
as yet evaluated the role of ROS and antioxidant defences with regards
to '”7Lu-based radionuclide therapy.

In conclusion, our results suggest that antioxidant defences are
major determinants in PRRT sensitivity, acting upfront of DNA damage
repair mechanisms, and might be considered as a radiosensitivity bio-
marker for ['77Lu]Lu-DOTATATE. Furthermore, they pave the way to
new combination treatment strategies that include targeting the antiox-
idant system where the therapeutic effects of [”’Lu]Lu-DOTATATE
might be potentiated.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.nucmedbio.2021.03.006.
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