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Abstract: Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal bio-
materials in hard tissue engineering because of their compositional similarity to bioapatite. However,
the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA
in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D)
printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach
for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing tech-
nologies for the preparation of porous HA-based nanocomposites. In the present review, different
3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are
discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as
porosity, mechanical properties, biodegradability, and antibacterial properties are extensively ex-
plored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue
engineering are discussed.

Keywords: hydroxyapatite; nanocomposites; 3D printing; polymer; hard tissue engineering

1. Introduction

Based on the integration of principles of cell biology, medical science, materials science,
and biological engineering, tissue engineering (TE) aims to develop biological substitutes
for the restoration or replacement of damaged and diseased tissue. TE has been applied in
orthopedics, skin, cartilage, and neurons and organ reconstruction. A scaffold is essential
for hard tissue regeneration. The scaffold needs to provide a suitable surface and space
for the adhesion, proliferation, migration, and differentiation of cells. Hydroxyapatite
(Ca10(PO4)6(OH)2, HA) is one of the essential inorganic components from bones and
teeth. HA has been used as a bone-substitute material in hard TE due to its structural and
functional similarity to human bones and teeth. HA are also widely applied in biomedical
engineering due to their characteristic excellent biocompatibility, bioactivity, osteointegrity
and osteoconductive properties and HA’s similarity to the inorganic component of human
beings [1,2]. Notably, 65% of human bone is composed of HA-like compounds [3]. Crucially
however HA has poor mechanical properties, leading to the need for the development
of suitable HA-composites that retain the aforementioned benefits of HA while having
improved mechanical properties.

These HA-based composites (in combination with other biomaterials such as polymers
or other inorganic materials) have been used to fabricate scaffolds with desired proper-
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ties, including biocompatibility, interconnected porous morphology, adequate mechanical
properties, biodegradability, and appropriate surface chemistry for cell attachment and
proliferation. In addition to the ‘biological’ benefits of the use of such biomaterials, the use
of these biomaterials will reduce the need for synthetics (fossil sourced materials) in the
biomedical industry leading to overall improved environmental outcomes [4,5]. Biomateri-
als based on HA have therefore been under intense study for TE by several researchers in
the last ten years (Figure 1).
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According to the literature there are several methods that may be employed in the
preparation of HA-based composites [6,7]. Some of these techniques include biomimetic
mineralization [8], electrochemical deposition [9], lyophilization [10], electrospinning [11],
self assembling [12], and chemical vapor deposition [13]. These techniques for HA-
composite preparation are summarized and briefly described in Table 1.

Table 1. Some major methods employed in fabricating hydroxyapatite (HA) composites.

HA-Composites Fabrication Methods Brief Description Sources

Biomimetic mineralization

In this approach, the composite material is decorated in a
solution of bioactive substances or simulated electrolyte body
fluid solution (SBF). In such a solution, the increased
concentration of calcium ions induces the nucleation of
hydroxyapatite crystals on the selected composite material.

[14]

Electrochemical deposition

In this method, the hydroxyapatite composite is deposited onto
the surface of a conductor using an electrolysis processes such
that the solution contains the calcium ions and phosphate ions
for (HA) and the relevant composite candidate
(i.e., dissolved chitosan).

[15]

Lyphilisation

The composite materials (i.e., graphene and HA) are dispersed
in an organic solvent after which the mixture is frozen.
Sublimation of the frozen solution is subsequently achieved by
reducing the pressure.

[16]
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Table 1. Cont.

HA-Composites Fabrication Methods Brief Description Sources

Electrospinning

This approach is employed when there is a need to develop
fibrous scaffolds that can mimic the extracellular matrix of
native tissue. Such fibers are prepared by electrospinning a
precursor mixture containing ions (i.e., calcium ions in
Ca(NO3)2·4H2O and phosphate ions in (C2H5O)3PO) and
polymer additive, followed by thermal treatment.

[17,18]

Self-assembling

This is a self-aggregation process that involves the spontaneous
aggregation to form the target composites. During the
self-assembling process, the organic phase (i.e., collagen) is
made to interact with the mineral phase (i.e., hydroxyapatite)
via the use of suitable precursors (i.e., Ca(OH)2 for Ca2+ and
H3PO4 for PO4

3−).

[12]

Chemical vapor deposition
In this method, the film is deposited on the surface of the
substrate through chemical reaction from gas-phase or
vapor-phase precursor (i.e., Fe2O3/HA + H2 as carrier gas).

[13]

Hydrothermal

In this approach, a mixture composed of suitable precursors
containing calcium ions (i.e., calcium nitrate tetrahydrate) and
phosphate ions (diammonium hydrogen phosphate solutions)
is used in dispersing the composite candidate material (i.e.,
graphene) at a high temperature condition (i.e., 180 ◦C).The
hydrothermal method is also employed in the fabrication of
three-dimensional reduced graphene oxide/hydroxyapatite
(HA)/gelatin scaffolds.

[19,20].

Solvothermal Synthesis

HA nanoparticles are crystalized via a two-state solvothermal
method at the high temperature of 180 ◦C. Calcium nitrate
tetrahydrate and diammonium hydrogen phosphate are used as
calcium and phosphate precursors, respectively.

[21]

Hull, a graduate of university of Colorado, USA displayed the first uses of additive
manufacturing (AM) in 1984 [22,23]. AM technologies have been applied in many fields,
including medical devices and TE [24,25]. Nowadays, 3D printing is considered as a
promising technology to fabricate sophisticated biological products, including biological
scaffolds, tissues, organs, and personalized medical devices, via printing biological ma-
terials, living cells, and signaling molecules. This review summarizes the available 3D
printing techniques for the fabrication of HA-based nanocomposites. The different types
of HA-based nanocomposites via 3D printing and their physicochemical and biological
characteristics for tissue regeneration are subsequently discussed. Next, the desired prop-
erties and specific medical applications of HA-based nanocomposites are summarized.
This review seeks to ascertain the primary properties of HA-based nanocomposites and
emerging 3D printing techniques for the next generation of HA-based biomaterials for TE.

2. 3D Printing Technologies for HA-Based Nanocomposites

The procedure employed in 3D printing, based on the deposition of exact layers
using biomaterials, occurs with or without encapsulating cells. The whole process mainly
includes the preparatory phase, printing phase, and post-handling phase [26]. Computer
graphics software (such as CAD/CAM) and the selection of biomaterials are employed
in the preparatory phase. The post-handling process is involved in tissue maturation in
a bioreactor, in vitro transplantation, or animal implantation. Inkjet-based 3D printing,
stereolithography (SLA)-based 3D printing, extrusion-based 3D printing, and laser-based
3D printing are the four commonly used 3D printing strategies [27–29], and the 3D printing
techniques used in the fabrication of HA-based nanocomposites are summarized in the
following subsections.
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2.1. Inkjet-Based 3D Printing

Inkjet-based 3D printing is also known as continuous inkjet and drop-on-demand
inkjet printing. In this printing approach, a nozzle driven by thermal or acoustic forces
is used to eject liquid droplets onto the substrate [26]. Different inkjet printers generate
different droplets. The inkjet-based 3D printing has two different mechanisms, generi-
cally known as continuous inkjet printing (where a continuous stream of liquid drops is
produced) and drop-on-demand inkjet printing (where individual drops are generated),
as shown in Figure 2 [30]. In the drop-on-demand inkjet printing process, two methods
are used to make the pressure pulse and promote droplet formation and ejection: the
thermal and piezoelectric drop-on-demand inkjet printing methods. In the thermal drop-
on-demand inkjet printing method, a small thin-film heater located in the fluid chamber is
employed such that the imposition of a voltage gradient across the heater facilitates the
heating of the fluid in direct contact with the heater. Sustained heating above the boiling
temperature of the fluid will facilitate the formation of small vapor pockets or bubbles [31].
These bubbles collapse rapidly in the absence of the voltage gradient, since heat transfer
from the heater to the fluid ceases. In the piezoelectric drop-on-demand inkjet printing
method, a pressure pulse is generated via mechanical actuation using a piezoelectric trans-
ducer or electrostatic forces [32]. In both methods described above, the liquid phase is
employed during the Inkjet-based 3D printing technique, while the solid is formed after
liquid deposition. Due to the low viscosity (3.5–12 mPa·s) of the liquid utilized in inkjet-
base printing, the delay of curing after the deposit of droplets, and the limited resolution
in the vertical direction, this printing technique is employed in skin [33], bone [34], and
cartilage [35] printings with high printing speed, high precision, and relatively low cost.
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This inkjet-based 3D printing technique has been explored extensively in previous
studies. For instance, Zhou et al. used an inkjet-based 3D printing technique to fabricate
CaSO4/HA/β-TCP (β-tricalcium phosphate) nanocomposites as tissue-engineered bone
scaffolds. In the study, the HA/β-TCP powders were blended with CaSO4-based powder,
and a water-based binder was used to prepare bio-ink, after which solid and porous
constructs were fabricated. Zhou et al. demonstrated that a positive correlation existed
between the compressive strength of the printed scaffold and increasing CaP/CaSO4 ratios.
The ink of HA/CaSO4 powders presented better physicochemical properties compared to
the physicochemical properties of ink of β-TCP/CaSO4 powders [37]. Strobel et al. [38]
generated the porous biphasic calcium phosphate (BCP) scaffolds via indirect 3D printing
of a powder composed of homogenized 35 wt.% HA, 35 wt.% β-TCP, and 30 wt.% of a
modified potato starch powder. Due to starch consolidation, high porosity was achieved.
In addition, osteogenic cells (primary osteoblasts) and growth factor (BMP-2) were seeded
on printed constructs and cultivated in a flow bioreactor for a couple of weeks. According
to the histological and molecular biological analyses, the combination of osteoblasts and
BMP-2 synergistically enhanced bone formation of printed BCP scaffolds [35]. Similarly,
Warnke et al. also printed BCP scaffolds by 3D printing, and the BCP scaffold was seeded
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with human osteoblasts. The printed BCP scaffold displayed superior biocompatibility
compared to the BCP scaffold by traditional fabrication methods [39].

2.2. Stereolithography (SLA)-Based 3D Printing

SLA, developed by Chuck Hull, who is widely regarded as the “father of 3D printing”,
is primarily used to manufacture polymeric structures [40]. SLA is a process where a
photoreactive resin is selectively cured while a platform moves the scaffold after each
new layer is formed [41]. In the SLA-based 3D printing technique, an ultraviolet (UV)
laser beam is used to selectively harden the photopolymer resin, thus facilitating the
construction of 3D models in a layer-wise fashion. Compared with inkjet-based printing,
SLA-based 3D printing has many advantages, including high speed, high resolution, and
reproducibility [41]. This technique employs a digital mirror array to control the light
pattern, facilitating selectively crosslinking in the pre-polymer solution one layer at a
time. SLA-based printing could ensure high cell viability since no external force is applied
on cells during the printing process [42]. Usually, either UV light or near-UV blue light
(405 nm) is employed in SLA-based 3D printing systems [43,44]. Apart from the high cell
viability benefits of the SLA-based printing technique, possibilities exist to enhance the cell
adhesion in the ink. This can be achieved using peroxidase, thus further advancing the
ability of printing with living cells for enhanced cell compatibility [45,46].

Due to the aforementioned benefits of the SLA-based method, the use of the SLA-
based 3D printing technique has been explored extensively. For instance, in the study by
Barry et al. [47], HA-based oligocarbonate dimethacrylate (OCM-2) composite scaffolds
were fabricated using UV light [47]. In comparison to UV or near-UV light, visible light
may reduce the potential risk of carcinogenesis due to over-exposure of UV during printing,
leading to the printed tissue scaffolds having higher cell viability. The printing system
using visible light is shown in Figure 3. Woesz et al. [48] demonstrated the use of printing
systems using visible light. They fabricated microporous HA scaffolds using the SLA
approach with visible light; the scaffold had a strut size of 450 µm, with designed, fully
interconnected macroporosity [48]. In another study undertaken by Chen et al. [49], SLA
was employed in the preparation of a HA composite scaffold, with the biosafety of the
resulting resin assessed. In this study, the investigation of the SLA prepared HA showed
that the scaffold had toxic effects due to the utilization of a photosensitive resin. The study
demonstrated that the photosensitive resin was completely pyrolyzed during the scaffold
preparation process with the prepared HA having micro-holes which had good biosafety
when assessed during pre-experiment of rabbit parietal implantation. While the use of the
SLA technique in 3D printing has been employed, Le Guéhennec et al. [50] affirmed that
the use of SLA in 3D printing of HA composites is limited by several factors. For instance,
the entrapment of unreacted monomers and residuals and the use of phot-initiators and
radicals may compromise the integrity of the bone matrix synthesis in addition to elevating
the risk of cytotoxicity. Despite these challenges, the incorporation of HA via SLA has the
overall effect of promoting bone regeneration due to the increase in osteoblast activity on
HA surface [50].
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2.3. Extrusion-Based 3D Printing

The principle of extrusion-based 3D printing relies on extruding a viscous material
using an extruder that is steered through a mechanical or electromagnetic actuator to
create 3D objects [52,53]. According Derakhshanfar et al. [54], the extrusion-based 3D
printing technique is characterized by different extrusion systems that can be cataloged as
pneumatic pressure, piston, and screw driven systems, as shown in Figure 4. Extrusion-
based 3D printing has many advantages, such as high cell seeding density, high printing
speed, and scalability. This printing technique can also be used in printing continuous
cylindrical filaments using different types of inks, after which the printed constructs may
be crosslinked using ionic, photo, and thermal crosslinking mechanisms [55]. Extrusion-
based processes mainly include direct ink writing (DIW, also called robocasting) and fused
deposition modeling (FDM) in which the raw material is ejected via a nozzle [53]. The
process of FDM is based on heating the material (polymer and polymer-ceramic composites)
prior to squeezing it out of a nozzle, and by moving the nozzle, the material is deposited
on a substrate, layer-by-layer [41]. The resulting printed constructs are subsequently heat-
treated to eliminate the binder and densify the ceramic [56]. Similarly, Michna et al. [57]
employed the extrusion-based 3D printing technique in fabricating HA scaffold using DIW.
In their study, the desired characteristics of the printed HA scaffolds were achieved by
customizing scaffold architecture and sintering conditions [57]. Sun et al. also utilized
the DIW technique in applying silk fibroin ink, filled with HA nanoparticles, to print 3D
scaffolds characterized by gradient pore spacings, ranging from 200 to 750 µm through
the DIW technique [58]. On the other hand, the FDM approach was applied by Khodaei
et al. [59], who fabricated a porous poly-lactic acid scaffold. The study showed that
the elastic modulus and strength of porous polymer scaffolds could be similar to the
surrounding tissue. Indeed, the polymers containing 29%, 49%, and 69% porosity had
elastic coefficients of 502.7, 537.7, and 483.3 MPa, respectively [59].
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can be cataloged into three kinds: pneumatic-based, piston-based, and screw-driven-based 3D printing (b) [61].

2.4. Laser-Assisted 3D Printing

The working principle of laser-assisted 3D printing relies on a pulsed laser beam
for deposition of bio-ink, including cells, onto a substrate to fabricate 3D objects. This
printing device usually includes three elements: a pulsed laser source, a target coated
with the material to be printed (the ribbon), and a receiving substrate (Figure 5) [62,63].
Keriquel et al. [64] reported the application of the laser-assisted 3D printing approach, in
which they printed the nano-HA scaffold in the mouse calvaria defect model in vivo. Their
decalcified sections and X-ray microtomography results demonstrate that laser-assisted 3D
printing was sufficient to treat bone defects [64]. Selective laser sintering (SLS) printing was
invented by Deckard and Beaman in 1986 at the University of Texas at Austin, USA. During
SLS printing, a high-power laser beam is directed onto the powder bed to selectively and
continuously irradiate the surface of powders to fuse them and ultimately create the 3D
construct [65]. Xia et al. fabricated nano-HA/poly-ε-caprolactone (PCL), using the SLS
technology, such that the porosity (78.54–70.31%) and mechanical strength (1.38–3.17 MPa)
of printed scaffold could be regulated by variation of the printing parameters. The in vitro
results indicate that the printed nano-HA/PCL scaffolds were more bioactive than the PCL
scaffolds [66]. Compared to HA, BCP is usually challenging fabricate as a porous scaffold
by SLS printing because of the short sintering time. The sintering ability of BCP ceramics
can be significantly improved via compositing with polymers. Gao et al. [67] fabricated
rectangular and porous BCP scaffold using SLS technique adding poly(L-lactic acid) (PLLA)
(0–1 wt.%) into BCP nanoparticles powder, and the fracture toughness and micro-hardness
of the sintered scaffolds could be adjusted by changing the PLLA content and laser power.

Having described the 3D printing techniques that may be employed in HA-based
composites, with their utilization and benefits highlighted in the text, Table 2 comparatively
summarizes the printing techniques discussed. Table 3 also summarizes the challenges
of the major printing techniques discussed, with the parameters to optimize the printing
technique also highlighted for completeness.
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Table 2. Summary of the major printing techniques.

Materials Cell Type Outcome Techniques Sources

HA/β-TCP
Osteoblasts from femora
and tibiae of male Lewis
rats

Combination of this scaffold with primary
osteoblasts and BMP-2 yielded significant
amounts of newly formed bone in
heterotopic locations and physiological
gene expression patterns.

Inkjet-based 3D printing [38]

HA
The preosteoblastic cell line
MC3T3-E1, derived from
mouse calvariae

The osteoblast-like cells were found to be
present on the external and internal surface
of the scaffold; they were embedded in
collagenous extracellular matrix.

SLA-based 3D printing [48]

Silk/HA

human bone marrow
derived mesenchymal stem
cells (hMSCs) and human
mammary microvascular
endothelial cells
(hMMECs)

By combining HA, a good matrix for
hMSCs osteogenesis, with silk to promote
endothelial cell growth, migration was
observed. The created scaffolds were
capable of supporting both stem cell and
endothelial cell functions to allow for new
tissue formation and bone remodeling with
vascular inputs within a single construct
environment.

Extrusion-based 3D
printing [58]

HA Human bone marrow
stromal cells

Cells were tightly anchored to the surfaces
of all scaffolds and had begun to spread Laser-assisted 3D printing [66]

HA/TCP Rabbit Bone Marrow
Stromal Cells (BMSCs)

the phosphoric acid scaffolds with a
HA/β-TCP weight ratios of 60:40 may be
the best candidate for bone TE applications.

Inkjet-based 3D printing [68]
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Table 2. Cont.

Materials Cell Type Outcome Techniques Sources

HA Human osteoblast cells
(HOBS)

The HOBS are attached to the surface of HA
scaffolds and have high cellular activity. SLA-based 3D printing [47]

HA The preosteoblastic cell line
MC3T3-E1

The osteoblast-like cells were found to cover
the whole external and internal surface of
the scaffold, and they were embedded in
collagenous extracellular matrix.

SLA-based 3D printing [48]

HA L929 cells and rabbit
osteoblast cells

The rabbits had no adverse physiological
reactions such as infection, and the wafer
formed a strong bone connection with the
defect, indicating that the final HAP
samples have good biosafety in vivo.

SLA-based 3D printing [49]

HA/TCP Osteoblast-like MG-63 cells

The histological analysis did not indicate
evidence of inflammation but highlighted
close contacts between newly formed bone
and the experimental biomaterials,
revealing an excellent scaffold
osseointegration.

SLA-based 3D printing [50]

HA
The preosteoblastic cell line
MC3T3-E1, derived from
mouse calvariae

The osteoblast-like cells were found to be
present on the external and internal surface
of the scaffold; they were embedded in a
collagenous extracellular matrix.

SLA-based 3D printing [48]

Silk/HA

Human bone marrow
derived mesenchymal stem
cells (hMSCs) and human
mammary microvascular
endothelial cells
(hMMECs)

By combining HA, a good matrix for
hMSCs osteogenesis, with silk to promote
endothelial cell growth, migration was
observed. The created scaffolds could
support both stem cell and endothelial cell
functions to allow for new tissue formation
and bone remodeling with vascular inputs
within a single construct environment.

Extrusion-based 3D
printing [58]

CHA Rabbit Bone Marrow
Stromal Cells (BMSCs)

The printed CHA scaffolds had the
advantages of promoting BMSCs
proliferation and differentiation and
promoting defect repair compared to the
nonprinted CHA scaffolds

Extrusion-based 3D
printing [69]

Coll/HA Vero cells

It was demonstrated that Coll/HA can be
3D printed, that the scaffold is conducive to
cell proliferation, and that it is suitable for
biomedical applications.

Extrusion-based 3D
printing [70]

HA/SF

Human bone
marrow-derived
mesenchymal stem cells
(hBMSCs)

Cell attachment and penetration into
scaffolds were supported by all the groups.
Increased content of SF/HA led to better
cell proliferation and enhanced ALP
activity.

Extrusion-based 3D
printing [71]

HA/SA Mouse bone mesenchymal
stem cells (mBMSCs)

The sustainable drug release function of the
porous scaffolds aided mouse bone
mesenchymal stem cells (mBMSCs) being
cultured on the porous scaffolds.

Extrusion-based 3D
printing [72]

HA/CH MC3T3-E1 cells

The 3D 10% HAp/CH scaffolds etched with
N2 plasma significantly improved cell
proliferation. The 3D 20% HAp/CH
scaffolds etched with O2 plasma showed
the highest osteoblastic differentiation.

Extrusion-based 3D
printing [73]
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Table 2. Cont.

Materials Cell Type Outcome Techniques Sources

PLA/HA Human MG-63
osteoblast-like cell

PLA-HA scaffolds have proved to be an
excellent composite material with enhanced
surface activity due to the coating of HA
nanoparticles.

Extrusion-based 3D
printing [74]

PCL/PLGA/
HA

Rat bone marrow stem
cells (rBMSCs)

3D printable ink made of PCL/PLGA/HAp
can be a highly useful material for 3D
printing of bone tissue constructs.

Extrusion-based 3D
printing [75]

PMMA/
CNT/HA L929 cells

Biocompatibility analysis indicates that
introducing both HAp and CNT particles
improves cell viability and growth.

Extrusion-based 3D
printing [76]

CH/PVA/HA Mesenchymal stem cells
(ATCC)

The scaffolds have high elastic modulus
and good biocompatibility.

Extrusion-based 3D
printing [77]

PCL/GEL/
BC/HA

Human osteoblast cells
(ATCC)

The PCL/GEL/BC/0.25%HA scaffold
demonstrated good cell viability and cell
adhesion.

Extrusion-based 3D
printing [78]

PLA/HA/Silk MC3T3 osteoblast
precursor cells

3D printed PLA, PLA/HA, and
PLA/HA/Silk composite bone clips were
successfully developed.

Extrusion-based 3D
printing [79]

PCL/HA/
TCP Saos-2 cells

the fabricated hybrid scaffold had high
porosity and excellent microstructural
interconnectivity, and superior cell
proliferation and alkaline phosphatase
assay results for the hybrid scaffold.

Extrusion-based 3D
printing [80]

Sr/HA MC3T3-E1 cells

Sr5-HA promoted cell proliferation,
osteogenic differentiation, and cellular
mineralization more efficiently compared
with the other scaffolds.

Extrusion-based 3D
printing [81]

GEL/HA

Human umbilical cord
blood-derived
mesenchymal stem cells
(hUCB-MSCs)

The scaffold supports the adhesion, growth,
and proliferation of hUCB-MSCs and
induces their chondrogenic differentiation
in vitro.

Extrusion-based 3D
printing [82]

Table 3. Summary of the challenges of major printing techniques.

Printing Technique Parameters to Optimize Technique Challenges

Inkjet-based 3D printing

Nozzle/extrusion temperature, printing
speed, and layer thickness [83]. Specifically
for materials such as ceramics, the solid
loading and formulations of the ink also
need to be considered [84]

The technique requires high temperatures which may
preclude the incorporation of temperature sensitive
bioactive molecules during the 3D printing process of
HA based composites [85]. Additionally, when
employed in printing of materials such as ceramics,
the inks typically have low viscosity (i.e., low solid
loading), to enable the use of the biomaterial.
However, low viscosities lead to longer drying time
and shrinkage. These challenges may also adversely
affect the final accuracy of the printed scaffold [86].
Further concerns associated with the aggregation of
solid particles due to convective macroscopic flow
may lead to the printed structure having defects [86].
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Table 3. Cont.

Printing Technique Parameters to Optimize Technique Challenges

SLA 3D printing

Typically, optimization of this techniques
involves the consideration of the layer
thickness, post curing time and
orientation [87]. Due to issues associated
with shrinkage, it is also crucial that
formulations containing materials such as
ceramics are optimized for proper viscosity
while also avoiding issues of the solid
segregation [86].

The technology can only use photopolymers with the
utilization of a UV light further restricting the
incorporation of living cells in the biomaterials [88].
Another challenge is the effect of light scattering due
to the presence of ceramic particles in the suspensions
since the scattering limits light penetrating.
Furthermore, such scattering increases the curing
width, leading to unfavorable effects on dimensional
accuracy of the printing technique [89]. Furthermore,
materials such as ceramics that absorb or refract
photopolymerization wavelength are very difficult to
process [86,90].

Digital Light Processing
(DLP) 3 D printing

Factors to be considered to optimize the
technique include the viscosity of the
slurry, solid loading, and the specific
operating mechanisms (i.e., top-down,
bottom-up, method for recoating, etc.) [91].

According to the authors of [91], this technique is
characterized by several challenges, with the major
challenge when handling components such as
ceramics related to the length/width ratio of the
fabricated component. It was suggested that the risk
of random fracturing in the fabricated component is
enhanced when the length is ≥2 times the width. This
challenge is presented when the bottom-up approach
is employed. The alternative top-down approach may
also present some limitations when employed in
fabricating structures with large cross-sectional areas,
with 3 mm2 suggested as the preferred upper limit.

Extrusion-based 3D
printing

To optimize the process, variables such as
rod width (i.e., of the fused ceramic
composite filament), layer thickness,
building orientation, and the infill
percentage must be considered [86,92].

Due to the high melting temperature of biomaterials
such as ceramics, its use is not feasible with
thermoplastic binders needed to formulate the
composites such that the ceramic particles is
~60 vol% [86]. When printing materials, particularly
ceramics are used, there is a major concern of there
being an offset between the printed layers such that
layer marks become distinctly visible (i.e., the staircase
effect) [86]. Challenges related to surface roughness of
the scaffold have also be highlighted [86]. Other
challenges of this technique which also affects
materials such as ceramics include the difficulty of
biomolecules incorporation and low resolution [88].

Laser-assisted 3D printing

For this technique, it may be necessary to
optimize the formulation, fabrication
parameters (layer thickness, infill
percentage, and extruder temperature [93]),
position, and orientation for optimal
printing processes [86]

When using materials such as ceramics, there are
challenges of high shrinkage, high porosity, and the
thermal-gradient-induced problem. Additionally,
challenges such as low resolution, poor surface finish,
and porous microstructures within the fabricated parts
also persist when SLS is used [86]. It must also be
stated that generic issues of high cost, difficulty in
printing cells, and long processing times also
negatively affect this technique [88].

FDM 3D printing

The optimization of this technique depends
on several process parameters such as the
rod width of the fused ceramic/polymer
filament, layer thickness, building
orientation, and raster angle [86]

This technique presents the challenge of the staircase
effect when employed in printing ceramic composites
ceramic parts. Significant concerns related to surface
roughness also exist [86].
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3. Hydroxyapatite (HA) and HA-Based Nanocomposites via 3D Printing
3.1. Hydroxyapatite

Hydroxyapatite (HA), (Ca10(PO4)6(OH)2), is characterized with a hexagonal crystallo-
graphic structure, as illustrated in Figure 6a. Figure 6a shows that a unit cell of HA contains
Ca. PO4 moieties are arranged such that four Ca atoms are surrounded by nine O atoms
of the PO4 moieties, while the other six Ca atoms are surrounded by the remaining six O
atoms of the PO4 moieties. Pure HA has the stoichiometric Ca/P ratio of 1.67, with lattice
parameters of a-axis of 0.9422 nm and c-axis of 0.688 nm [94]. The chemical structure of
HA is similar to the mineralized constituents of bone [53]. In addition, HA has excellent
physicochemical properties, including osteoconductivity, bioactivity, re-sorbability, and
slow decaying properties [95,96]. Furthermore, nanometer-sized HA can also increase
intracellular uptake and reduce cell viability in vitro [97].
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and (e) compression test of porous printed scaffolds [99].

Although HA is extensively being considered for hard tissue regeneration because
of its presence in the native extracellular matrix (ECM) of bone tissue, extensive research
has not been undertaken regarding pure-HA printed materials, due to the lack of bonding
and flowability for the printing process [100]. Thus, various types of sacrificial materials
and polymers are used as binders in the process of 3D printing to print neat HA con-
structs. To overcome the poor reactivity between HA powder with standard water-based
ink, Zhou et al. [98] investigated different water-soluble adhesives to increase the 3D
printability of HA powder, such as maltodextrin and polyvinyl alcohol (PVA) (Figure 6b).
Zhou et al. showed that, by using a high molecular weight of PVA at 30 wt.% as adhesive,
the printed formulation could achieve a geometrical accuracy of ~>85% and an excellent
green compressive strength of 5.63 ± 0.27 MPa [98]. The curing, de-binding, and sinter-
ing parameters of the printing process influence the mechanical properties, porosity, and
shrinkage of the sintered samples. Liu et al. [99] fabricated HA bone scaffold using the
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DLP technique; the printed HA bone scaffolds displayed pore sizes of 300–600 µm, the
porosity of around 49.8%, and compressive strength of 15.25 MPa, showing potential for
bone repair applications (Figure 6c–e) [99]. Similarly, Seitz et al. [101] employed modified
HA powder to print scaffolds; the polymer binder was removed after the consolidation of
the printed ceramic green bodies at a temperature of 1250 ◦C in ambient air [101].

3.2. Hydroxyapatite (HA)/Polymer-Based Nanocomposites

The addition of a polymer to HA nanoparticles can enhance the printability of HA
constructs [102–104]. Due to the suitability and compatibility to cellular environments,
various polymers could be used to fabricate (no matter how complex) constructs in ambient
or relatively mild chemical and environmental conditions [105]. Many synthetic and
natural polymers can be used to reinforce HA scaffold via 3D printing for TE applications,
as shown in Figure 7.
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TE [53]. Major nanocomposites which incorporate polymers to HA are discussed below.

3.2.1. HA/Collagen Nanocomposites

Many natural high-weight biomacromolecules can be used as bio-ink network precur-
sors: collagen, fibrin, gelatin, silk, etc. [106,107]. The natural polymers, such as collagen and
gelatin, contain amino-acid sequences (specifically, the adhesion ligand arginine-glycine-
aspartic acid (RGD)) to which cells can readily attach [108]. Collagen refers to a family of
fibrillary proteins with triple-helix structure of polyproline-II (PP-II) type. There are many
types of collagen that differ in their ratios of helical to nonhelical domains, but all share a
characteristic triple α-helix supramolecular structure that results from repeating glycine-X-
Y sequences, where X and Y are typically proline and hydroxyproline, interspersed with
alanine residues. Significantly, collagen type I represents 90% of the collagen present in the
human body, mainly in skin, bones, tendons, and organs [105]. Collagen type I is the major
structural component in the ECM and is widely used as a 3D hydrogel [109,110].

For instance, Lin et al. fabricated collagen/HA (collagen type I) using a low-temperature
robocasting method, as shown in Figure 8 [69]. The printed scaffolds displayed excellent 3D
structure. After the implantation in a rabbit femoral condyle defect model, in vivo results
confirm that the printed scaffolds with interconnecting pores could facilitate cell pene-
tration and mineralization and further enhance bone repair, compared with nonprinted
scaffolds [69]. Ardelean et al. [70] employed a material composed of HA/collagen to print
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using a 3D-Bioplotter Developer Series (Envision TEC) equipped with a 0.42-mm needle
such that the distance between strands was maintained at 1 mm, while the pressure was
set at 0.8 psi and the temperature and printing speed were specified as 4 ◦C and 40 mm/s,
respectively. In vitro studies revealed that the printed HA/collagen constructs elicited
similar cell viability and proliferation potentials with the negative control demonstrating
their suitability for biomedical applications [70]. Montalbano et al. also used rod-like
HA nanoparticles composited with type I collagen, together with an ammonium-based
dispersing agent (Darvan 821-A) to obtain a homogeneous collagen/HA suspension, which
was employed as bio-ink for extrusion 3D printing [111]. The obtained collagen/HA bio-
ink showed that the shear thinning and sol-gel transition upon stimulus-physiological
conditions and the mesh-like constructs could be printed [111].
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cost, thus it can be considered as a sufficient candidate for printing [113]. Gelatin polymers 
with different molecular weights and isoelectric points can be obtained from various ani-
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Figure 8. (a) The collagen/HA (collagen type I) scaffold with a grid-like microstructure was printed
using robocasting approach at 4 ◦C. Scaffolds with different rod widths were obtained, including
300 µm (Group I), 600 µm (Group II), 900 µm (Group III), and nonprinted (Group IV). Scale bar:
5 mm. (b) Micro-CT 3D reconstruction results indicate the new bone formation at different weeks
after in vivo implantation in the rabbit femoral condyle defect model. Scale bar: 1 mm. (c) The
new bone formation was indicated using fluorochrome double-labeling for tetracycline (yellow) and
calcein (green) at eight weeks. Scale bar: 100 µm [69].

3.2.2. Hydroxyapatite (HA)/Gelatin Nanocomposites

Gelatin is a water-soluble protein derived from the chemical, physical, or enzymatic
hydrolysis of collagen type I, extensively used in the food industry. During the hydrolytic
process of collagen, the triple-helix structure is broken, and the single-stranded macro-
molecules are achieved for gelatin. The molecular weight of gelatin ranges from 20 to
100 kDa depending on the product used, and the primary structure of gelatin is mainly
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composed of over twenty different amino acids [112]. Compared to collagen, gelatin
presents no cytotoxicity, good cell adhesion, faster biodegradability, easier preparation,
and low cost, thus it can be considered as a sufficient candidate for printing [113]. Gelatin
polymers with different molecular weights and isoelectric points can be obtained from
various animal tissues, such as porcine, bovine, and fish. The combined use of gelatin
and loaded HA presents an ideal microenvironment for cell adhesion, proliferation, and
differentiation toward an osteogenic phenotype, due to the presence of intrinsically cell-
adhesive motifs of gelatin [53]. The combined use of gelatin and HA was demonstrated in
the study by Samadikuchaksaraei et al. [114] where HA/gelatin scaffold was fabricated
using the layer solvent casting in combination with lamination techniques. The prepared
HA/gelatin scaffold could support osteoblasts’ adhesion and growth, and in vivo results
confirm hat the scaffold could accelerate collagen content during the bone healing [114].
Chiu et al. [115] also obtained a HA/gelatin nanocomposite, modified using siloxane, such
that the composite is easily formable as a scaffold. Similarly, Nosrati et al. [20] fabricated
a HA/gelatin scaffold using a 3D printing method, with reduced graphene oxide (rGO)
nanosheets used to reinforce the printed scaffoldThe addition of rGO/HA could result
in smaller pores and higher 3D accuracy of scaffolds (Figure 9a) [20]. Comeau et al. [116]
prepared a photo-cross-linkable methacrylated gelatin (GelMA)/HA bio-ink, such that the
introduction of CaCl2 or NaCl could be used in regulating the viscosity of GelMA/HA.
The resulting GelMA/HA constructs could be printed by extrusion printing, and the dy-
namic modulus of the printed constructs could be regulated to that of articular cartilage
by adjusting the content of HA (Figure 9b) [116]. While earlier discussion emphasized
the enhanced support of osteoblasts’ adhesion and growth (i.e., enhanced bioactivity)
via the inclusion of gelatin, the introduction of gelatin may also inhibit crystallization of
HA [117]. Notably, it is possible that the genlatin may also applied in drug release, due
to its induction of degradation and deposition on apatite layer [117]. Further work in this
regard is however required.
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Figure 9. (a) Photo shows that the printability was improved while using methacrylated gelatin (GelMA) instead of gelatin,
and the printability of GelMA/HA composite inks was qualitatively assessed [20]. (b) shows the different needle gauges
were used to extrude the inks shown in the left images, and the right pictures show printed grids and tubes [116].

3.2.3. Hydroxyapatite (HA)/Silk Nanocomposites

It is well known that many arthropod species such as wasps, bees, and crickets pro-
duce silk proteins. As a protein fiber, silk fibroin (SF), derived from Bombyx mori cocoons,
has historically been used as a natural polymer in the manufacture of surgical sutures. Due
to its unique structure, which consists of hydrophobic β-sheet crystalline blocks staggered
by hydrophilic amorphous acidic spacers, SF possesses outstanding mechanical properties
and good biocompatibility both in vitro and in vivo [118,119]. SF has also established a
good reputation for bone TE applications due to its many unique properties, including
impressive biocompatibility, strong mechanical behavior, minimal/non-immunogenicity,
tunable biodegradability, and ease of processability [120–123]. The concentration of SF
solution needs to be increased to meet the rheology requirements of bio-ink using addi-
tional SF purification protocol, such as concentrating with a dialysis bag in polyethylene
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glycol (PEG, molecular weight over 20,000 Da) solution, re-dissolving SF in organic sol-
vents (such as formic acid), etc. [124,125]. Furthermore, the silk fibroin scaffolds displayed
improved anticoagulant activity and the ability to support the adhesion and proliferation
of endothelial and smooth muscle cells with high expression levels of phenotype-related
marker genes and proteins, which is a potential use for vascular TE [126]. Liu et al. [127]
confirmed that HA/SF composites could promote bone regeneration via signaling path-
ways associated with cells and biomaterial interaction. Huang et al. [71] also prepared a
HA/SF suspension using in situ precipitation as bio-ink for 3D printing. The obtained 3D
printed scaffolds showed good porosity of 70% with interconnected pores with diameter of
~400 µm and relatively high compressive strength of over 6 MPa [71]. The printed scaffolds
also demonstrated good in vitro biomineralization activity in SBF while maintaining cell
attachment and penetration [71]. Kaplan et al. fabricated 3D HA/silk micro periodic scaf-
folds as bone scaffolds by the direct-write assembly. The viscosity of HA/silk bio-ink was
suitable for printing, with the 3D scaffolds characterized by gradient pore spacings ranging
from 200 to 750 µm. After co-culturing with human bone marrow-derived mesenchymal
stem cells (hMSCs) and human mammary microvascular endothelial cells (hMMECs), the
patterned HA/silk filaments enhanced the osteogenesis and vasculogenesis in one system
(Figure 10) [58].
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Figure 10. (a) The viscosity, elastic (G′), and viscous (G”) moduli of silk fibroin solution, HA suspension, and HA/silk
bio-ink. (b) Optical image of printed 3D HA/silk scaffold by the direct-write assembly. The scaffold showed the gradient
porosity structure confirmed by SEM and AFM investigations. (c) The osteogenesis of HA/silk scaffold cultured with
hMSCs was evaluated by histological analysis, the gross morphology of cells on the printed scaffolds was observed. Scale
bars: 100 µm [58].

3.2.4. Hydroxyapatite (HA)/Alginate Nanocomposites

Alginate is also a wide-used natural polymer for TE [128]. Alginates, as a family of
polysaccharides, also called algin or alginic acid, are obtained from calcium, magnesium,
and sodium alginate salts from the cell walls and intracellular spaces of brown algae [129].
The alginate structure is composed of a linear repetition of (1→4)-linked β-D-mannuronic
acid (M) and α-L-guluronic acid (G) units, with 4C1 ring conformation [53]. Alginate has
a strong affinity for di- and trivalent cations and rapidly forms a gel in the presence of
low concentrations of such ions (Mg2+ being an exception) at a range of pH values and
temperatures [130]. Additionally, alginate is a negatively charged polysaccharide that is a
suitable scaffold for cell growth [131]. Alginate can be modified by incorporating adhesion
ligands (such as RGD) that promote cell attachment and functional groups (such as heparin)
that can bind to and immobilize various growth factors. These modifications enable 3D
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micropatterning of growth factors in the constructs [132]. However, poor cell adhesion
and low osteogenesis ability have limited the capability of alginate for bone regeneration
in vivo [133]. Several studies have also indicated that HA/alginate nanocomposites are
suitable for TE, with enhanced bioactivity [134–136].

Some studies have been undertaken to demonstrate the functionality of such HA/alginate
composites. In a study by Lin et al. [137], HA/alginate scaffold was fabricated and charac-
terized by a well-interconnected porous structure. They showed that the mechanical and
cell-attachment properties of HA/alginate scaffold were improved, compared to pure HA
or alginate scaffolds. In vitro results display that the osteoblastic cell (rat osteosarcoma
UMR106 cells) had a better attachment on HA/alginate composite scaffolds than the pure
alginate scaffold [137]. The HA/alginate nanocomposite could be pre-crosslinked using D-
Gluconic acid δ-lactone (GDL), and then the mechanical properties of printed HA/alginate
scaffold were further improved. The porosity and pore structures of printed HA/alginate
scaffold could be readily regulated by varying the printing conditions. During the printing
process, the anti-inflammatory drug curcumin could be loaded on the printed scaffold to
accomplish sustainable release of a drug. In addition, in vitro results displayed that mouse
bone mesenchymal stem cells (mBMSCs) could have adhered to the porous HA/alginate
scaffolds (Figure 11) [72].
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Figure 11. (a) Schematic illustration of the porous HA/alginate scaffolds fabricated by extrusion-based 3D printing, in
which D-Gluconic acid δ-lactone (GDL) was used as pre-crosslinker. (b) Photographs of HA/alginate suspension and
hydrogels formed using GDL. The viscosity of HA/alginate suspensions were tested over time using a certain shear rate. (c)
SEM images of printed porous scaffold after soaking in calcium chloride solution for different times (0, 5, and 10 h). (d) The
morphology and cell proliferation of BMSCs on printed scaffolds [72].

3.2.5. Hydroxyapatite (HA)/Cellulose Nanocomposites

It is well known that cellulose is the most widespread natural polymeric material in
nature. Due to the high biocompatibility, specific binding sites for protein, and reasonable
mechanical strength, cellulose is applied in TE [138]. The high density of reactive hydroxyl
groups on cellulose fiber can also facilitate cell adhesive proteins such as fibronectin
immobilizing on the surface of cellulose. Cellulose fiber is biocompatible for fabricating
various scaffolds [139]. However, cellulose has certain limitations for bone engineering
construction due to its low ability to induce osteogenesis. Turlybekuly et al. [140] fabricated
HA/bacterial cellulose nanocomposites (Figure 12) by inkjet 3D printing, which could be
applied in bone engineering. Favi et al. [141] prepared HA/bacterial cellulose scaffold with
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well-defined honeycomb pore arrays using a laser patterning technique. The fabricated
scaffold was shown to have a honeycomb pore array with diameter of 300 µm, which was
suitable for bone TE applications. The incorporation of HA with cellulose can provide
good mechanical strength to the nanocomposite scaffold, and the presence of cellulose in
the scaffold can induce the orderly deposition of HA crystals the same as in natural bone.
However, more work regarding the printability of HA/cellulose bio-ink for 3D printing
needs to be undertaken.
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3.2.6. Hydroxyapatite (HA)/Chitosan Nanocomposites

Chitosan is a polysaccharide compound obtained by deacetylation of chitin, and
chitosan displays good biocompatibility, degradability, solubility in dilute acids, and is
nontoxic [142,143]. Chitosan is a linear copolymer of -(1–4) linked 2-acetamido-2-deoxy-D-
glucopyranose and 2-amino-2-deoxy-D-glycopyranose [144]. Due to the presence of amino
and hydroxyl groups, the chitosan molecule is similar to glycosaminoglycans, which are
one of the components of ECM, and chitosan-based materials are widely used in bone, skin,
and cartilage TE [145,146]. Since chitosan is a positively charged polysaccharide, it still
requires chemical modification and/or mixing with other biomaterials to obtain optimal
mechanical and physiological properties for TE [147,148]. There are several reports on HA
reinforced chitosan scaffold fabricated using different methods, including 3D printing [73].
The 3D-printed HA/chitosan scaffolds showed a good attachment between layers, forming
a regular and reproducible macroporous structure, fully interconnected, with pore size
ranging from 200 to 400 µm. The high uniformity of the structure enhanced the mechanical
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strength of printed HA/chitosan scaffold, thus improving its capacity to maintain its shape
during the shrinkage phase of the dispensing medium [53]. HA/chitosan hybrids were
also investigated by Dong et al. [149], who prepared a HA/chitosan hybrid as bio-ink via
the addition of silica, and then the porous scaffold was fabricated by combining the sol-gel
method and 3D plotting technique. The printed scaffolds possessed controllable and inter-
connected porous structures, and, compared with chitosan/silica scaffold, the mechanical
strength of HA/chitosan greatly improved (compressive strengths of 10–13 MPa and elastic
moduli of 21–27 MPa), which could meet the requirements of human trabecular bone
(Figure 13a,b) [149]. Ang et al. [150] described a rapid prototyping robotic dispensing sys-
tem to fabricate HA/chitosan composites. During the fabrication process, the solutions of
HA/chitosan as bio-ink were extruded through a small Teflon-lined nozzle (internal diame-
ter: 150 µm) (Figure 13c–e) [150]. Myung et al. fabricated HA/chitosan scaffolds containing
10% chitosan and 20% HA using an air extrusion-based plotter. The printed HA/chitosan
scaffold showed good porosity and interconnected structure, increased hydrophilicity and
bioactivity, and enhanced proliferation of pre-osteoblast cells on the surface [73]. Zhang
et al. [151] discovered that the mechanical property of HA/chitosan composites could be
regulated by adjusting the weight ratio of HA/chitosan, such that the maximum value
of the compressive strength attains 120 MPa at the mass ratio of 70/30 of HA/chitosan.
Owing to these excellent properties, the printed HA/chitosan nanocomposites scaffold has
extensive potentials in bone TE and will contribute to the guided regeneration of new bone.
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Figure 13. (a) Schematic illustration of HA/chitosan hybrid scaffold fabrication for bone TE; (b) pore size, morphology
and connectivity of printed chitosan and HA/chitosan scaffolds [149]; (c) rapid prototyping robotic dispensing system for
printing HA/chitosan scaffold; (d) the printed HA/chitosan scaffold before and after freeze-drying; and (e) SEM images of
HA/chitosan scaffold [150].

3.2.7. Other Hydroxyapatite (HA)/Natural Polymer-Based Nanocomposites

Apart from collagen, gelatin, silk, alginate, cellulose, and chitosan, many other natural
polymers such as hyaluronic acid (HA), hemicellulose, lignin, fibrin, agarose, decellularized
extracellular matrix (dECM), etc., have been developed as bio-ink for 3D printing [152,153].
Wenz et al. [154] developed a bio-ink consisting of methacrylated hyaluronic acid (HAMA)
and HA for bone printing (microextrusion printing). The primary human adipose-derived
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stem cells could be encapsulated in HA/HAMA gels and had excellent cell viability after
culturing for 28 days. The bio-ink with encapsulating cells showed excellent printability,
and the printed grid structure’s integrity remained intact over 28 days for cell cultur-
ing. The staining of bone matrix components such as collagen I, fibronectin, alkaline
phosphatase, and osteopontin confirmed that the printed cell-laden HA/HAMA scaffolds
were suitable biomaterials for bone regeneration [154]. Compared to a single natural
polymer, multi-natural polymers composited with HA showed superior and improved
properties for 3D printing. Crucially, given chitosan’s primary attractive features of bio-
compatibility, flexibility adhesiveness, and anti-infectivity [155–158] and silk fibroin’s (SF’s)
characteristics of mechanical strength, appreciable bio-affinity, and adequate oxygen per-
meability [159,160], compositing chitosan and SF with HA could significantly improve the
microhardness, formability, and flexibility of HA-based nanocomposites [161,162]. This
was demonstrated by Wang and Li [163], who confirmed that the compressive strength of
HA/SF/chitosan nanocomposites was increased to 180 MPa, which was higher than pure
HA, HA/SF, and HA/chitosan composites. Additionally, Peter et al. [164] also discovered
that the prepared biological and mechanical properties of HA/chitosan/gelatin scaffolds
were improved at the same time compared to that of HA/chitosan and HA/gelatin scaf-
folds [164]. Verma et al. [165] synthesized HA/chitosan/polygalacturonic nanocomposites,
in which the strength was measured to be about 160 MPa. Abouzeid et al. [166] prepared T
TEMPO-oxidized cellulose nanofibril/alginate hydrogel using extrusion-based 3D printing.
Different forms of constructs were obtained, including half bone, the human ear, cubic,
cylinder, and boat. The printed constructs maintained their shape and fidelity without the
collapse of the filaments.

3.2.8. Hydroxyapatite (HA)/Poly (Lactic Acid) Based Nanocomposites

Poly(lactic acid) (PLA) is a nontoxic, bio-absorbable thermoplastic polymer produced
by ring-open polymerization of lactide, and PLA can be acquired from the fermentation of
sugar feedstock [167]. PLA has attractive biodegradable, good biocompatibility, and excel-
lent mechanical properties because of its linear aliphatic structure [168–170]. Furthermore,
the properties of PLA may be regulated by altering the ratio of its D- to L-isomers. For the
above reasons, PLA was widely used as a matrix material in constructing biodegradable
composites for bone repair [171,172], and bone-fixation devices used in orthopedics and
oral surgery applications [173,174]. However, the application range of PLA is still limited
because of the unpredictable hydrolysis and poor hydrophilicity [175]. Such problems
could however be overcome by binding bioactive ceramics such as HA with PLA [176–180].
The HA/PLA composite was considered as a potential biomaterial for bone repair and
replacement in the early years [181]. The degradation rate of PLA could be slowed by the
dispersion of HA nanoparticles, while the mechanical property may also be improved by
increasing the HA nanoparticles distribution [182,183]. The versality of such HA/PLA
composites was also discussed in the literature [184]. The porous HA/PLA scaffold could
be printed using extrusion 3D printing for load-bearing bone tissue applications; the com-
pression strength of printed constructs could be adjusted by employing finite element
modeling and simulation, as shown in Figure 14a (adapted from [74]). According to the
authors of [74], in vitro results show that cells had a better attachment and proliferation
on printed HA/PLA scaffold than PLA scaffold [74]. Corcione et al. [185] fabricated HA
microspheres/PLA scaffold using FDM (Figure 14b,c). The composite filaments were ob-
tained first for 3D printing. Compared to printed PLA scaffold, HA/PLA scaffolds showed
higher porosity and rougher surface. However, the mechanical performances of these
HA/PLA scaffolds decreased [185]. Compared to PLA, poly-L-lactic acid (PLLA) displays
a slower degradation, which is believed to result in a lower rate of inflammatory tissue
reaction [174,186]. Due to the bioresorbable characteristic, HA/PLLA has bone-bonding
potential for bone regeneration. During the new-bone formation, PLLA is resorbed via
metabolization and excretion, and HA is assimilated in the body. Thus, the HA/PLLA
construct has possible prospects for application in restricted-load areas [187,188]. For
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instance, Verheven et al. [189] showed that the HA/PLLA composite at the mass ratio
of 30/70 displayed the highest compressive and tensile strengths, stiffness, and Vickers
hardness number. Further benefits of the HA/PLLA composite were demonstrated by
Furukawa et al. [190], who confirmed that HA/PLLA using 30 wt.% HA presented an
enhanced degradation rate compared to other design ratios.
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3.2.9. Hydroxyapatite (HA)/Poly-ε-Caprolactone Nanocomposites

Poly-ε-caprolactone (PCL) is commonly used as a synthetic biomaterial for bone tissue
and periodontal applications due to its biocompatibility, suitability for various scaffold
fabrication techniques, prolonged degradation rate, and mechanical stability. However,



Crystals 2021, 11, 353 22 of 51

PCL scaffolds can adversely affect bone regeneration because of the slow degradation
rate of PCL, which remains intact for extended periods [191]. The aforementioned issue
may be overcome by compositing with HA, such that the produced bone volume and
the bone contour could be maintained over time after implantation. PCL and PCL-based
scaffolds could be easily fabricated via 3D printing because of their good printability, and
quick solidification after extrusion [75]. Hu et al. [192] fabricated HA/PCL scaffolds with
hierarchical porous structures and tunable multi-functional performance via 3D printing.
Xia et al. [66] also fabricated HA/PCL scaffolds using the SLS technique. The printed
scaffolds had porosity ranging from 78.54% to 70.31%, and the corresponding compressive
strength ranged from 1.38 to 3.17 MPa. SEM images showed that HA/PCL scaffolds
displayed predesigned, well-ordered macropores, and interconnected micropores; the
hMSCs could well attach and proliferate on printed scaffolds. The in vivo results confirm
that the printed HA/PCL scaffolds not only enhanced the formation of new bone but also
fulfilled all the basic requirements of bone TE scaffolds, which showed sizeable potential
use in orthopedic and reconstructive surgery (Figure 15) [66].
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Figure 15. (a) The models of computer-aided design and printed HA/PCL scaffolds using SLS;
(b) SEM images of printed HA/PLC scaffolds; (c) the morphology of hMSCs seeded on HA/PCL
scaffolds; (d) the printed HA/PCL scaffolds were implanted in the femur defect of the rabbit; and (e)
3D reconstruction images of micro-computed tomography (micro-CT) confirmed the new bone was
formed over weeks [66].

3.2.10. Hydroxyapatite (HA)/Polymethyl Methacrylate Nanocomposites

Polymethyl methacrylate (PMMA) is an FDA approved synthetic polymer widely
employed in ophthalmic, orthopedic, and dental applications [193]. PMMA is also used as
bone cement to fill the defects of any shape or size, thus it can be employed in the treatment
of osseous tumors, trauma, disease, and birth defects in the skeletal system [193]. Peters-
mann et al. [194] printed PMMA scaffold with honeycomb structure using fused filament
fabrication (FFF, one of the extrusion-based 3D printing techniques) for the cranial implant.
The properties of the scaffold could be improved by topology optimization. However, there
are several disadvantages for PMMA, such as brittleness and release of heat during poly-
merization, which can lead to necrosis at the bone cement interface. Thus, PMMA needs to
be further modified to improve its formation and ameliorate stress shielding [195]. In an-
other study by Tontowi et al. [195], PMMA powder was blended with methyl methacrylate
(MMA) liquid to obtain PMMA pasta first, such that the PMMA pasta composited with HA
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nanopowder could be used for 3D printing. The solidification time was increased with the
increase of MMA content, but the tensile strength of HA/PMMA composites reduced due
to the addition of HA [195]. Mahammod et al. [196] developed HA/PMMA using solvent
casting particulate leaching technique; computational fluid dynamics (CFD) analysis con-
cluded that HA/PMMA scaffold with 60 wt.% HA content tended to be the most promising
choice for bone TE applications due to the best combination of porosity, permeability, and
compressive strength [196]. The properties of HA/PMMA composites can be significantly
improved using 3D printing in comparison with traditional techniques. Lal et al. [197]
fabricated HA/PMMA scaffold using FDM technology for cranioplasty application, es-
pecially for large cranial defects, which provided a novel, economical, patient-specific
fabrication method compared to traditional titanium and polyether ether ketone (PEEK)
cranioplasty [197]. Since the mechanical properties of HA/PMMA nanocomposites are
lower than those of PMMA, Esmi et al. composited HA/PMMA with carbon nanotubes
(CNTs) as 3D-printing filaments. The nano-indentation results reveal that the modulus
and hardness of HA/PMMA/CNTs were increased compared with those of HA/PMMA,
while the biocompatibility test results confirm the obtained nanocomposites accelerated
cell attachment, growth, and proliferation [76].

3.2.11. Hydroxyapatite (HA)/Polyvinyl Alcohol Nanocomposites

Polyvinyl alcohol (PVA) is a water-soluble thermoplastic that is usually used as a
support material for 3D printing. PVA is commonly used in medical devices because of
its good biocompatibility, high water solubility, and chemical resistance [198]. Mainly,
PVA is widely applied in cartilage TE due to its similar tensile strength to human articular
cartilage [199–201]. However, the non-degradability of PVA still limits its usage as an
implantation scaffold in the body [202]. Notably, compositing PVA with calcium phos-
phate nanoparticles, such as HA, β-TCP, and BCP, showed promising application for the
fabrication of scaffolds in bone TE [203–205]. Several research results confirm that the
osteoconductive HA/PVA scaffold could be achieved for bone replacement [206]. PVA
is sensitive to humidity, and softened PVA might cause air bubbles, thus reducing its
functionality in printing processes. To our knowledge, few reports regarding HA/PVA
scaffold fabrication via 3D printing exist in the literature. For instance, Chai et al. [207] fab-
ricated HA/PVA scaffolds by powder-based 3D printing. The results show that the printed
scaffold with 1.0 wt.% of PVA showed the best compressive strength. In addition, the
printed HA/PVA processed excellent cytocompatibility; the comprehensive performances
of HA/PVA scaffolds were better and much more suitable as bone scaffolds than those of
HA/polyvinyl pyrrolidone (PVP) and HA/polyacryl amide (PAM) scaffolds fabricated by
the same approach [207]. Chua et al. [203] also fabricated HA/PVA scaffolds using SLS
technology, confirming that the printed scaffold has potential for joints and craniofacial
applications. Another study [77] showed that the porous structure of HA/PVA scaffold,
such as pore size, could be regulated by adjusting the content of HA in HA/PVA bio-ink
before printing, as shown in Figure 16. In this study, Ergul et al. printed HA/PVA scaffold
using the extrusion 3D printing technique. The results reveal that the HA/PVA [77] bio-ink
with 15 wt.% of HA demonstrated significantly superior features for extrusion printing,
with the elastic modulus of the printed scaffold being similar to that of natural bone.
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3.2.12. Hydroxyapatite (HA)/Poly(Propylene Fumarate) Nanocomposites

Poly(propylene fumarate) (PPF) is an unsaturated linear polyester that can be crosslinked
through carbon double bonds along its backbone [208]. PLA, PCL, and PPF are consid-
ered as bioresorbable polymers that can degrade enzymatically or via hydrolysis in vivo.
PPF may be degraded into nontoxic products of propylene glycol, poly(acrylic acid-co-
fumaric acid), and fumaric acid [209]. PPF has been widely used in medical applications,
including vascular stents, cartilage, blood vessel engineering, bone TE, etc. [210]. PPF
may be printed into a variety of 3D shapes using extrusion-based printing and SLA3D
printing [211,212]. Besides linear PPF oligomers, Fer et al. [213] developed PPF bio-ink for
continuous DLP, with the printing speed improved. PPF is one of the promising candidate
materials for load-bearing applications due to suitable mechanical properties [214,215].
However, the biomechanical and osteoconductive properties of PPF need to be further
enhanced, e.g., through the addition of ceramic components to PPF [193]. Lee et al. [216]
asserted that the osteoconductive ability of HA/PPF nanocomposites was increased com-
pared with pure PPF. In addition, the hydrophilicity and serum protein adsorption on
the surface of HA/PPF nanocomposites was shown to significantly increase, resulting
in enhanced cell attachment, spreading, and proliferation over time [215]. Trachtenberg
et al. [217] developed complex HA/PPF scaffolds using extrusion-based 3D printing for
bone TE applications. The spatial deposition of HA in 3D nanocomposite scaffold may
be controlled during the printing process. The printed scaffolds displayed well-defined
layers with interconnected pores, which were considered as necessary for a successful bone
implant (Figure 17a–c) [217]. Lee et al. [218] fabricated HA/PPF scaffolds by micro-SLA
(MSTL) technology. During the preparation of the HA/PPF bio-ink, diethyl fumarate
(DEF) was incorporated to reduce the viscosity, and the photo-initiator bis-acylphosphine
oxide (BAPO) and 7 wt.% of HA were designed. The printed scaffolds displayed regular
and connected pores, as shown in Figure 17d,e. Furthermore, in vitro results show that
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MC3T3-E1 cells had a better cell adhesion and proliferation on printed HA/PPF than PPF
scaffolds [218].
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Figure 17. (a) The HA/PPF scaffolds consisted of well-defined layers with interconnected pores were
printed using extrusion-based 3D printing. (b) The mean pore and fiber measurements, porosity, and
compressive mechanical properties of printed HA/PPF scaffold were adjusted by adding sodium
dodecyl sulfate (SDS). (c) Cross-sectional images of HA/PPF scaffold from a 3D reconstruction via
micro-CT [217]. (d) HA/PPF could be printed using micro-SLA (MSTL). Before printing, diethyl
fumarate (DEF) was used to reduce the viscosity. (e) SEM images of printed HA/PPF scaffolds [218].

3.2.13. Other Hydroxyapatite (HA)/Synthetic Polymer-Based Nanocomposites

In addition to the above mentioned synthetic polymers, several other synthetic
polymers such as poly(ethylene glycol) (PEG), Pluronic, poly(acrylic acid) (PAA), and
poly(glycolic acid) (PGA) have been used as composites with HA to print HA-based
constructs for enhanced structural manipulability, flexibility, and versatile mechanical
performances [100,219]. Comparatively, pure HA scaffolds present poorer mechanical
properties compared to HA/synthetic polymer scaffolds [164]. It is however still challeng-
ing to achieve the targeted compressive strength and modulus for load-bearing applications
in such HA/synthetic polymer scaffolds [216,220]. These challenges may be resolved via
the utilization of the integration of multiple synthetic polymers in scaffolds. This is because
such HA/multi-synthetic polymers scaffold systems show unexpected characteristics due
to the synergistic effect of each synthetic polymer network. For example, Park et al. [220]
produced HA/PLLA/PCL composites using surface etching, biomimetic coating, dip coat-
ing, and hot compression molding methods, demonstrating that the mechanical properties
of the scaffolds, including flexural strain, flexural modulus, and compressive strength,
could be regulated to match the mechanical properties of natural bone by manipulating
the HA/PCL ratio and molding temperature. Charles et al. [221] also confirmed that the
fracture toughness and fracture absorbed energy of HA/PLLA/PCL composites were
favorably improved by using 5 wt.% of PCL, and the fracture properties decreased rapidly
when the content of PCL was greater than 10 wt.%. More HA/multi-synthetic polymers
nanocomposites that may be utilized as bio-ink will be developed in the near future; how-
ever, the properties of such nanocomposites and the manufacturing parameters need to be
systematically studied in advance.
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3.2.14. Hydroxyapatite (HA)/Natural Polymer/Synthetic Polymer-Based Nanocomposites

HA/natural polymer/synthetic polymer-based nanocomposites have been widely
used for TE because the mechanical properties of the composite can be enhanced by
synthetic polymers, and the various cellular activities can be enhanced by natural protein-
based polymers, such that osteogenic differentiation is promoted. Ashraf et al. [222]
fabricated porous HA/PVA/collagen (type I) using electrospinning techniques, which
unidirectionally aligned HA nanoparticles to mimic the nanostructure of human bone
tissue. They showed that the pore size and shape of prepared scaffolds could be ad-
justed, and the mechanical properties of scaffolds were improved compared to those of
PVA/collagen scaffolds [222]. Considering the advantages of PLLA, such as good bio-
absorbability, mechanical property, and biocompatibility, it could be composited with
collagen to improve the low viscosity of collagen for 3D printing [223]. Several reports on
HA/PLLA/collagen scaffolds with hierarchical microstructure reveal that not only is the
structure of the scaffold similar to the natural bone, but HA/PLLA/collagen scaffolds also
improve cell attachment and stimulate cell proliferation and differentiation, thus confirm-
ing that the HA/PLLA/collagen construct was suitable as orthopedic implant for bone
TE [224–226]. In addition, there have been many studies on fabricating HA/PMMA/sericin
nanocomposites, due to the excellent biocompatibility of sericin without allergenic activity
and outstanding mechanical performance of PMMA [227–231]. For instance, Chirila et al.
discovered that human corneal limbal epithelial cells could be re-attached and grown on
sericin-based membranes [227]. Tontowi et al. prepared HA/PMMA/sericin nanocom-
posites as bone implants and showed that the mechanical strength was mainly decided by
PMMA, while the diametral tensile strength of nanocomposites was dominantly affected
by HA instead of sericin [232]. In a subsequent study, Tontowi et al. [233] confirmed that
HA/PMMA/sericin nanocomposites could be used as bio-ink for extrusion-based 3D
printing. The disadvantages of chitosan mainly include low bone-bonding bioactivity and
mechanical strength and loosening of structural integrity under wet conditions. These
disadvantages could be avoided in the chitosan/PLA composite, since the PLA serves to
enhance the mechanical strength of the composite with excellent osteoconductivity and
biodegradation for bone remodeling and growth [234–238]. Cai et al. [239] also prepared
HA/PLA/chitosan nanocomposites as scaffold for traditional bone-defect repair. Niu et al.
fabricated HA/PLLA/collagen nanocomposites with hierarchical microstructure; cell pro-
liferation and differentiation on HA/PLLA/collagen scaffolds were improved compared
to on HA/PLLA. However, the HA/PLLA/collagen scaffolds were shown to still lack
osteoinductivity, which is considered a critical factor for bone regeneration [240]. Addition-
ally, Niu et al. [241] fabricated HA/PLLA/collagen/chitosan scaffolds which displayed
excellent osteoinductivity and suitable pore structure as inductive implant scaffold for
bone regeneration [241].

Compared to cellulose, bacterial cellulose nanocrystal (BC) has better mechanical
properties. In addition, BC has remarkable features, such as promoting cellular interactions
and tissue development, bio-absorbable and nontoxicity. Cakmak et al. [78] fabricated
porous HA/PCL/gelatin/BC constructs using the FDM approach. They showed that
the pore structure of printed constructs may be regulated, such that cells could attach
and proliferate on constructs [78]. Lu et al. [242] subsequently fabricated HA/PCL/silk
fibroin constructs as artificial bone scaffolds using 3D printing. The printed scaffolds were
implanted in the bone defect of New Zealand rabbits. The histological observation revealed
that the new bone was apparently formed in 12 weeks, and the new bone volume was
increased while double-transfected BMP-2/VEGF mesenchymal stem cells were loaded in
printed scaffolds [242]. Kim et al. used a core–shell nozzle printing technique to fabricate
HA-based nanocomposites, with PCL in the core region and HA/PVA/gelatin composites
in the shell region. The printed scaffolds were also coated using collagen fibril to increase
cell attachment and proliferation. Physicochemical and biological evaluations, such as
mechanical, swelling, protein absorbing, cell proliferation, alkaline phosphatase (ALP)
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activities, and calcium deposition, concluded that the printed scaffold showed significant
potential for bone TE [243]. Yeon et al. [79] developed HA/PLA/silk nanocomposites
as bone clip type internal fixation device using extrusion-based 3D printing. The results
show that printed HA/PLA/silk constructs as bone clips had similar mechanical proper-
ties and superior biocompatibility compared to traditional bone clips. In addition, Yeon
et al. showed that the HA/PLA/silk bone clip displayed excellent alignment of the bony
segments across the femur fracture site, according to animal model results [79]. More
types of HA/synthetic polymer/natural polymer-based nanocomposites will be developed
using 3D printing in the future due to the printability of such bio-ink and the apparently
improved properties of scaffolds.

3.3. Hydroxyapatite (HA)-Based Ceramics
3.3.1. Hydroxyapatite (HA)/β-Tricalcium Phosphate (BCP) Based Ceramics

β-tricalcium phosphate (β-TCP) is of low mechanical strength and degrades too
quickly in a physiological environment. These properties may however be altered/improved
via its combination with HA [38,50,68]. BCP has been used to fabricate bone graft materials
for 30 years; BCP-based ceramics have proven efficacy in clinical indications [244,245].
Although many 3D printing approaches could be used to fabricate complex BCP-based
ceramics, including inkjet printing, SLA, selective laser sintering, and DLP, the performance
of BCP and BCP-based ceramics and their printable properties as bio-inks need to be further
viewed [246]. Huang et al. [247] fabricated porous BCP ceramics using extrusion-based
3D printing with a motor-assisted micro-syringe (MAM) system; the morphology, pore
size, and porosity of printed BCP scaffolds could be precisely controlled to optimize their
mechanical properties [247]. Li et al. [244] obtained BCP scaffolds with a complex geomet-
ric structure using a slurry-based microscale mask image projection SLA. The BCP-based
photocurable suspension with complex geometry was obtained first. After that, the curing
performance and physical properties of BCP suspension were investigated to optimize
the scaffold composite. The printed BCP scaffold presented excellent biocompatibility, as
well as possessed sufficient mechanical strength compared to a long bone for surgery [244].
Wang et al. printed BCP scaffolds using inkjet 3D printing; 0.6 wt.% PVA solution and 0.25
wt.% Tween 80 were used as a binder to prepare BCP bio-ink. The printed BCP scaffold
with HA/β-TCP mass ratio at 60:40 showed the best biocompatibility [68]. It is clear that
the binder used will vary significantly depending on the researcher, printing technique, etc.
Thus, in addition to the binder employed by Wang et al., some other examples of binders
and the associated ceramic 3D printing techniques reported in the literature are highlighted
in Table 4.

Table 4. Some binders employed in major 3D printing technologies.

3D Printing Technology Binder Some Notes Source

DIW writing Polymethylsilsesquioxane

This binder has been shown to be viable in
the fabrication of ceramic matrix composite.
In the study, polymethylsilsesquioxane and
ceramics were used in the preparation of a
preceramic polymer. Using this binder and
3D printing technology, complex ceramic
matrix composite structures with porosity
and compressive strength of ~75% and ~4
MPa were fabricated.

[248]
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Table 4. Cont.

3D Printing Technology Binder Some Notes Source

Inkjet-based 3D printing Polymethylsilsesquioxane

This binder was employed in the 3D
printing with β-TCP and a polysiloxane to
manufacture bulk β-TCP with a silica
coating. The mechanical strength of the
final sintered porous structures was within
the range of that of trabecular bones, in the
order of 0.1–16 MPa.

[249]

Inkjet-based 3D printing Colloidal silica

In this study, the focus was to demonstrate
and assess the possibility of using the
inkjet-based 3D printing technique and the
colloidal silica binder in the fabrication of
porous ceramic-based composite parts.
Information regarding the mechanical
strength of the composite was however not
presented.

[250]

DLP 3D printing Silicon resin

In this work, a DLP-based 3D printing
technique was used in fabricating a
ceramic composite while also employing
silicon resin as the binder. The study
showed that the compressive strength and
elastic modulus values 3D-structured
ceramic based lattice were 5.12 and
2.1 MPa, respectively.

[251]

Extrusion-based 3D printing PVA

In this study, PVA was employed as a
binder in the fabrication of structures of
HA composites. The study showed that, at
7–14% of the polymer, HA composites are
well extruded and presented a mechanical
strength of ~4 MPa after hardening.

[252]

Selective laser sintering Schelofix, Polymeric binder

In this study, water soluble Schelofix was
employed as a binder in the fabrication of
HA based composited for 3D printing of
scaffolds. A structure with mechanical
strength of 22 MPa via the printing
technique was achieved.

[101]

Selective laser sintering Polyvinyl alcohol

In this study, water-soluble PVA was
employed as a binder, in the fabrication of
ceramic based composites. The study
showed that, by using the binder in
conjunction with the selective laser
sintering, the resulting structure has an
average flexural strength of 363.5 MPa and
a relative density of 98%.

[253]

SLA based 3D printing
Photopolymer binder such as
(meth)acrylate
monomer/oligomers

In the study [254] 1,6-hexanediol diacrylate
was used as an acrylate-based monomer as
the photopolymer binder with a ceramic
content of 50 vol% to enable the fabrication
of structures with high relative density of
99.95% and high flexural strength of
1008.5 MPa.

[255]

Zhang et al. printed a BCP scaffold using extrusion-based 3D printing approach. The
physicochemical properties, porosity, and compressive strength of printed BCP scaffolds
could be adjusted by changing HA/β-TCP ratio, and, especially, the degradation rate could
be tailored to match the growth rate of new bone. The printed BCP was further used for
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personalized beagle skull defect repair in vivo, and the histological results confirmed that
the implanted scaffold was highly vascularized and well-combination with surrounding
tissues [256]. Maria Touri et al. fabricated BCP scaffolds (HA/β-TCP ratio at 60:40) using
a direct-write assembly (robocasting) approach. After that, the printed BCP scaffolds
were further treated by coating an oxygen releasing agent consisting of calcium peroxide
(CPO) encapsulated within a PCL matrix. The results demonstrate that the coated BCP
scaffolds could improve osteoblast cells viability and proliferation as well as promote bone
ingrowth under hypoxic conditions [257]. Luis Diaz-Gomez et al. used E-Shell® 300 with
BCP powder (HA/β-TCP ratio at 50:50) to obtain a novel BCP bio-ink with reproducible
printability and storability properties. This bio-ink had a consistent printability over
two weeks. Then, the porous scaffolds were printed using an extrusion-based printing
technique. The printed BCP scaffolds were further sintered at 1200 ◦C. The structure of
BCP scaffolds, such as pore size, porosity, and isotropic dimensions, was not affected
by sintering treatment (Figure 18). The mechanical properties of scaffolds were in the
range of human trabecular bone, proving that the printed constructs could potentially
load-bearing bond TE applications [258]. With the development of 3D printing techniques,
more BCP-based bio-inks and scaffolds will be achieved in the future.
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3.3.2. Hydroxyapatite (HA)/Bioglass Based Ceramics

Bioglass, or bioactive glass, was invented by Hench from the University of Florida,
in 1969. The first bioglass composition consisted of 46.1 mol% SiO2, 24.4 mol% Na2O,
26.9 mol% CaO, and 2.6 mol% P2O5 and was called 45S5 Bioglass [259,260]. The discovery
of bioglass launched the field of bioactive inorganic materials, which can form a bond
with bone tissues [261]. Bioglass has shown great potential in bone regeneration because
of its osteoconductivity and osteo-productivity. Compared to HA, bioglass has a lower
thermal conductive coefficient and better bioactivity. However, due to the high dissolution
rate of bioglass in body fluids, bioglass scaffolds may degrade completely before the
new bone forms [262,263]. Several reports state that HA/bioglass composites can be
applied in bone regeneration due to their excellent bioactivity. Tan et al. [264] indicated
that HA/bioglass could stimulate early osteogenesis and osteointegration at the interface
in the biological environment. In addition, HA/bioglass constructs could improve the
interfacial bonding to surrounding tissue without scar layer formation [265–269]. However,
few reports on the 3D printing of HA/bioglass constructs are found in the literature.
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For instance, Qi et al. [270] fabricated the calcium sulfate hydrate (CSH)/mesoporous
bioactive glass (MBG) scaffolds using inkjet 3D printing approach (4th 3D Bioplotter™,
EnvisionTEC GmbH, Germany). The printed scaffolds had a regular and uniform structure
and excellent apatite mineralization ability, and in vivo results confirm that CSH/MBG
scaffolds could greatly enhance new bone formation in calvarial defects [270]. Seyedmajidi
et al. also obtained HA/bioactive glass as cell scaffolds for rat tibia reconstruction. The
radiological, histopathological, and histomorphometric assessments indicated that the
trabecular thickness and rate of new bone formation were increased [271,272].

3.3.3. HA-Based Composites of Titanium Ceramics

Besides calcium phosphate ceramics, titanium and its alloys, such as titanium dioxide
(TiO2) and titanium alloy (Ti-6Al-4V, Ti64), can be used to fabricate scaffolds for TE. This is
because TiO2 has good biocompatibility, chemical stability, good mechanical properties,
and excellent strength-to-weight ratio. TiO2 is also capable of enhancing the growth of
bone and vascular tissues and osteoconductivity [273]. TiO2 has therefore attracted much
attention as a scaffold for tissue reconstruction, as demonstrated in some studies in the
literature. For instance, Kim et al. fabricated HA/TiO2 nanocomposites using HA doped
TiO2 particles and discovered that the strength and bioactivity of HA/TiO2 nanocomposites
were enhanced compared with TiO2 constructs [274]. Additionally, Ti64, known for its
excellent strength- to-weight ratio, is an α+β alloy that can be employed in fabricating
porous scaffolds [275]. Such porous Ti64 scaffolds can be fabricated using the selective
laser melting (SLM) method [276]. However, since Ti64 lacks some functionalities, such
as blood compatibility and bone conductivity [277], the surface of Ti64 may be coated
using HA to improve its physicochemical properties as demonstrated in the literature.
For instance, Xia et al. [278] used a nanorod structured HA as a coating on the surface
of Ti64 via atmospheric plasma spraying in combination with hydrothermal treatment,
and subsequently showed that the constructed nano-structured surface could enhance
cell responses and osseointegration. Additionally, Habibovic et al. [279] used a two-step
biomimetic procedure (immersing into two types of SBF) to coat HA on Ti64 prostheses
for reconstructing hip and knee joints. Recently, sol-gel coating, electrophoretic method,
and magnetron sputtering coating techniques were developed to coat HA on porous Ti64
scaffold and thus enhance its bioactivity [280,281].

3.3.4. Other HA-Based Composites Containing Metals

In addition, some metals, such as iron (Fe) [282], copper (Cu) [283], zinc (Zn) [284],
magnesium (Mg) [285], strontium (Sr) [286], silver (Ag) [287], gold (Au) [288], and selenium
(Se) [289], have been used to prepare doped or co-doped HA. Sr is an essential trace element
in bone (~0.01 wt.%). This is because these metals present a higher Young’s modulus than
bones, thus may provide stress shielding for the bone. These metals generally therefore
provide beneficial mechanical properties of strength to HA. Some of these metals also
possess unique properties. For instance, Sr is considered an important element that aids
the decrease in bone resorption while also enhancing new bone formation. This is because
of its important characteristic of promoting osteogenic differentiation of mesenchymal
stem cells [290,291]. Sr-doped or -substituted HA can therefore induce osteogenesis, as
demonstrated in several studies. For instance, Xu et al. demonstrated that the Sr/HA
composite containing 5 wt.% of Sr led to optimal activity of osteogenic cells [292]. Yan
et al. [293] also reported that Sr-HA using 20% of Sr displayed good osteoconductivity
and could promote better bone growth for improved bone-implant integration. Li et al.
later designed an Sr-doped HA/PPF scaffold, the in vitro cell results indicating that Sr-
doped HA/PPF scaffold may better support cell adhesion, proliferation, and differentiation
compared to HA/PPF scaffold [290]. Apart from the improved physicochemical properties,
biological properties, mechanical properties, and antibacterial activities of constructs were
improved using metal-doped HA, as reported by Ribeiro et al. [294]. According them,
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Ag/Au/HA/silk fibroin exhibits significant inhibition ability against both Gram-positive
and Gram-negative bacteria [294].

Finally, although methods such as SLS and selective laser melting technique constitute
the most popular 3D printing for plastics and metal [86], these methods are considered
insufficient for printing ceramics because of the enhanced risk of thermal induced stresses
from thermal gradients in ceramics leading to distortions [86]. According to Chen et al. [86],
other printing techniques, such as SLA and DLP, are considered most suitable for ceramic
printing since feature resolution and surface finish can be controlled such that the mechani-
cal properties of ceramic are not compromised. Considering these three major methods, a
review of literature suggests that the SLA printing technique is the most common ceramic
printing approach, as illustrated by the myriad studies on ceramic SLA undertaken in
the literature [295–300]. The interest in ceramic SLA may be due to the high precision
and quality that characterizes the SLA printing technique; ceramic SLA can facilitate the
accurate fabrication of complex ceramic [301] composites. Furthermore, since ceramic SLA
does not require a mold, the fabrication costs may be reduced. Notably, since ceramic SLA
requires the polymerization of an ultraviolet-curable of ceramic particles in a photopolymer,
the effectiveness of the technique will depend on ceramic materials not absorbing UV range
necessary for the photosensitive organic matrix [302].

4. Desired Properties

The printed scaffolds via 3D printing for clinical applications require a series of charac-
teristics, including porous interconnected network, mechanical properties, biocompatibility,
bio-physicochemical properties, controllable degradation and adsorption rate, suitable sur-
face chemistry and morphology, etc. (Figure 19) [303]. In this section, the desired properties
of HA-based nanocomposites as scaffolds using 3D printing for TE are discussed.
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4.1. Porosity

The porous architecture design for scaffold plays a significant role in tissue regen-
eration, and the controllable porosity is one of the main advantages in the 3D printing
approach for the fabrication of scaffold [304,305]. A certain degree of porosity and intercon-
nected porous structure for printed scaffold is needed, since the porous structure enhances
the transport of nutrients, cells, drugs, genes, growth factors, protein, bioactive molecules,
and waste matters and subsequently enhance the formation of new tissue [306–308]. Fur-
thermore, a successful scaffold should balance porosity and mechanical function, with
related properties such as degradation, biocompatibility, and osteogenesis of the scaffold
also affected [304,309]. Lin et al. prepared HA/alginate scaffold with a well-interconnected
porous structure using the traditional method; the scaffold had an average pore size of
150 µm and over 82% porosity [137]. The pore size of HA-based scaffolds may be increased
and adjusted using the 3D printing approach. For instance, Huang et al. [71] fabricated
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HA/silk fibroin nanocomposite using extrusion-based 3D printing. The scaffold had large
interconnected pores of ~400 µm, with a high adjustable porosity [71]. Lee et al. [310] also
fabricated HA/chitosan/gelatin scaffolds using a 3D printing approach, with the scaffold
pore size increasing to 500 µm [310]. Sultan et al. [311] used extrusion-based printing to
obtain sodium alginate/gelatin/cellulose scaffolds with a double crosslinked interpenetrat-
ing polymer network (IPN). The scaffolds displayed a gradient porosity, where the pore
size ranged from 80 to 2123 µm, and the roughness of the pore wall was favorable for cell
interaction [311]. Computational methods, such as finite element analysis, could be used
to design the suitable porous structure of scaffold with minimizing stress shielding and
improving the osseointegration and long-term stability [312,313].

4.2. Mechanical Properties

The mechanical properties are essential for scaffolds, especially applying new tissues
in load-bearing sites. It is essential for clinical success that the mechanical properties of
fabricated scaffolds be consistent with those of the natural environment of tissue, such as
bone [304]. There should also be a balance between the porosity and mechanical strength
of the scaffold. There are many available methods used for adjusting or improving the
mechanical strength of 3D printed constructs, including modifying the chemical/structural
composition, optimizing processing, liquid phase sintering, thermally induced densifica-
tion, microwave sintering, monomer/polymer infiltration, and doping [85,314,315]. Gener-
ally, HA/synthetic polymer-based nanocomposites, as hard matrix-based constructs, have
been preferred as load-bearing replacements due to the excellent mechanical properties of
synthetic polymers, such as PCL, PLA, and PEEK. However, natural polymers, including
gelatin, collagen, alginate, chitosan, silk, etc., and some synthetic polymers, such as PVA,
have been used with HA to fabricate soft matrix-based nanocomposites, which can be se-
lected for load-bearing applications only after further cross-linked treatment [53]. Besides,
the size and distribution of HA nanoparticles in constructs affect the mechanical proper-
ties at the cell level [316,317]. Lee et al. [318] discovered that the pore orientations could
influence the mechanical properties of porous calcium phosphate ceramic scaffolds. They
fabricated three types of porous calcium phosphate scaffolds with different pore orienta-
tions (0◦/90◦, 0◦/45◦/90◦/135◦, and 0◦/30◦/60◦/90◦/120◦/150◦). The scaffold with a pore
orientation of 0◦/90◦ displayed the highest compressive strength and modulus because
some scaffold frameworks were parallel to the loading direction [318]. Senatov et al. [319]
obtained porous HA/PLA scaffolds with an average pore size of 700 µm using FFF. The
printed scaffold had the shape memory effect because the dispersed HA nanoparticles
acted as nucleation centers during the PLA molecular chain ordering. The HA nanopar-
ticles could inhibit the growth of cracks during the compression–heating–compression
cycles [319]. Chen et al. [320] printed HA scaffold with macroporosity (~600 µm) using the
3D printing approach and discovered that the compressive properties of scaffolds mainly
depended on the composition and inter-layer angle. Thus, “balancing” porosity, mechan-
ical properties of scaffolds, and the characteristics of biocompatibility, biodegradability,
antibacterial properties, etc. need to be further considered.

4.3. Biocompatibility

HA-based nanocomposites play the main role in cell seeding, proliferation, and
differentiation for TE applications. It is critical that the materials (polymer or inorganic
part) chosen to composite with HA for 3D printing should be biocompatible. In addition,
the products produced from HA-based nanocomposites should be non-toxic without
adverse reaction and immune rejection from the host [321]. HA-based nanocomposites
made from natural polymers such as collagen, gelatin, silk fibroin, etc. are biocompatible
for supporting cell attachment. However, nanocomposites using synthetic polymer bonded
with covalent or ionic bonds show less biocompatibility compared with those using natural
polymers [322].
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4.4. Biodegradability

The adjustable biodegradation rate for ideal HA-based nanocomposites in TE can
support the role of the scaffold during the tissue repair process. The ceramics have lim-
ited biodegradability, and the polymers have adjustable degradation rates depending on
the molecular design. The available biodegradable polymers used for the fabrication of
HA-based nanocomposites include protein-type polymers, polysaccharide-type polymers,
and polyester-type polymers [323]. Hydrolytic and enzymatic degradation are two main
pathways for the biodegradation and clearance mechanisms of HA/polymer nanocom-
posites. The peptide bonds in protein-type polymers can be degraded in vivo by enzymes;
the polysaccharide-type polymers can be degraded by lysosomes and amylases; and the
synthetic polymers with ester, urea, and urethane linkages can be degraded by hydrolytic
reaction [324,325]. The strategy of compositing nondegradable materials and biodegradable
materials as the binary scaffold while exhibiting bioactivity and biodegradability is still diffi-
cult, and how to exert the biodegradability of such binary scaffold remains a challenge [326].
Feng et al. [327] fabricated polyetheretherketone (PEEK)/PLLA/β-TCP scaffolds via se-
lective laser sintering, and many caverns were formed due to the degradation of PLLA,
which enabled β-TCP contact with body fluid for further ion-exchange. Manavitehrani
et al. [328] introduced a porous biodegradable scaffold based on poly(propylene carbonate)
(PPC) with starch and bioglass particles; benign degradation byproducts were produced
during the biodegradation process. Ma et al. [329] developed a biodegradable piperazine
(PP)-based polyurethane-urea (P-PUU) scaffold using air-driven extrusion 3D printing
technology; the compressive modulus and strength and both in vitro and in vivo biodegra-
dation properties could be moderated by the contents of PP in P-UU scaffolds. Additionally,
the porosity, pore size, and swelling ratio of the scaffold could influence its degradation
rate: scaffolds with smaller pore size and higher porosity had a faster degradation rate due
to a larger surface area [330]. Thus, many factors need to be considered when designing the
scaffold with a suitable biodegradation rate, such as the chemical crosslinking technique,
which may be used to adjust the dissolution of HA-based nanocomposites.

4.5. Other Properties

Besides the properties of scaffold mentioned, several important aspects must be taken
into consideration, such as elasticity, surface parameters, molecular mobility, environmental
responsiveness to pH and temperature, metabolism of degradation products, and chemical
functionality [331]. Many properties have been investigated in recent years to ensure that
the scaffold can repair tissue safely, such as customized mechanical properties, antibac-
terial activity, etc. However, the scaffold potential for specific applications has specific
characteristics related to the biological aspect, structure, and chemical composition [332].
Additional properties of 3D printed HA scaffolds are summarized in Table 5.
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Table 5. Some properties of 3 D printed HA scaffolds.

Materials Pore Size Porosity Compressive
Strength Some Notes Sources

HA/chitosan 200–400 µm No access No access - [53]

Silk/HA 200–750 µm 50–80% - - [58]

HA 300–600 µm 49.8% 15.25 MPa - [99]

HA/SF 400 µm 70% 6 MPa Good in vitro
biomineralization activity [71]

HA/silk 200–750 µm 50–80% - Enhanced the osteogenesis
and vasculogenesis [58]

HA/bacterial
cellulose 300 µm - - Induces the orderly

deposition of HA crystals [141]

HA/chitosan/SiO2 200 µm 53.57 ± 0.35% 10–13 MPa Exactly comparable to
human trabecular bone [333]

HA/PCL 600–800 µm 78.54–70.31% 1.38–3.17 MPa
Satisfies basic

requirements of bone TE
scaffolds

[66]

HA 350 µm 52.26% 16.77 ± 0.38 MPa Can be readily integrated
with the native bone [334]

HA 500 µm 50% - Promotes cell proliferation [48]

HA 500 µm 31–33.5% - formed a strong bone
connection [49]

HA 450–570 µm - 22 MPa - [101]

CHA 400 µm 71.8–82.9% 20 MPa - [69]

HA/SF 400 µm 70% 6 MPa Good in vitro
biomineralization activity [71]

PLA/HA - 47–69% 16–53 MPa - [74]

PCL/PLGA/HA 500 µm - 15.9–20.9 MPa - [75]

HA/TCP 800 µm 50% 2.6 MPa - [68]

HA/TCP 500 µm 70% 23 MPa - [257]

Sr/HA 300–500 µm - 3.8–4.2 MPa Good osteogenesis [81]

5. Applications of HA-Based Nanocomposites

HA-based nanocomposites fabricated using 3D printing serve as 3D templates to
provide support for cells to attach, proliferate, and maintain their differentiated function
in tissue regeneration [335]. HA-based constructs have been used in several applications,
including bone, cartilage, dental, skin, and drug delivery (Figure 20).

The application of these HA-based nanocomposites constructs in bone, cartilage,
dental, skin, and drug delivery are discussed briefly below.
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5.1. HA-Based Nanocomposites Constructs in Bone TE

The HA-based construct constitutes an excellent candidate as an orthopedic implant
during prosthesis revision surgery since natural bone contains 70 wt.% of HA [341]. Com-
pared to autografts and allografts, artificially-engineered bone scaffold with a complex
hierarchical structure can avoid the risk of infection, disease transmission, and immune re-
sponse [335]. The ideal scaffold as an engineered bond scaffold should meet various criteria,
such as biocompatibility, osteoconduction, osteoinduction, mechanical properties, with-
out compromising the interconnected porous structure [303,304,309]. The interconnected
porous pure HA scaffold can be prepared using 3D gel-printing approach. Shao et al. [334]
obtained the HA scaffold with a pore size of over 350 µm, a porosity of 52.26%, and
maximum compressive strength and compressive modulus of the scaffold of 16.77 ± 0.38
and 492 ± 11 MPa, respectively [334]. The incorporation of the HA-based nanocompos-
ites constructs in bone TE can be achieved via the development of hierarchical porous
HA scaffold with micropores and macropores via combining 3D printing and microwave
sintering [342]. These hierarchical HA scaffold can be readily integrated with the native
bone. This approach was demonstrated by Song et al. [343], who reported the fabrication
of hierarchical HA scaffold with interconnected pores by combining freeze-casting and
extrusion-based 3D printing, such that the structure of human bone was mimicked from the
microscopic (below 10 µm) to macroscopic (submillimeter to the millimeter) perspective.

5.2. HA-Based Nanocomposites Constructs in Cartilage TE

HA-based nanocomposites could also be employed in cartilage TE. Articular carti-
lage, covering the bone ends in diarthrodial joints, is viscoelastic connective tissue, which
provides an efficient aqueous lubrication system with high load-bearing and low-friction
properties [344]. Unfortunately, once a lesion or injury of articular cartilage occurs, it is
difficult to heal due to its limited capacity to repair, and artificial cartilage is required in
the clinic [345]. The 3D printing technique can be used to fabricate constructs with high
structural complexity and flexibility, such as hydrogels, which exhibit the advantage of in-
dividualized precision customization, making the construct perfectly fit with the defective
surface in the area of cartilage repair [346]. The application of HA-based nanocomposites
constructs in cartilage TE has been demonstrated. For instance, Yuan et al. [338] pre-
pared a composite hydrogel consisting of bovine serum albumin/sodium alginate and HA
nanowires, and the in vivo results confirm that the hydrogel can promote the generation of
new cartilage. Additionally, Hsieh et al. [347] printed biomimetic scaffolds consisting of
HA/PCL and glycidyl–methacrylate–hyaluronic acid for healing osteochondral defects.
The scaffolds were implanted in the knees of a miniature pig for a period of 12 months.
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The hematoxylin and eosin staining and computer tomography (CT) results indicate that
the cartilage was partially matured, and the hyaline cartilage was regenerated [347].

5.3. HA-Based Nanocomposites Constructs in Dental Applications

In the last few years, 3D printing for dental applications has notably increased, espe-
cially in the areas of oral and maxillofacial surgery, endodontics, orthodontics, prosthodon-
tics, and periodontics. The possibility of individualized dental products drives 3D printing
in this area [348]. Metal-, ceramic-, and polymer-based materials are common in the
fabrication of dental prosthesis and crowns. Indeed, 3D printing is currently utilized to
replace missing teeth [349]. The mechanical properties of constructs for prosthodontics
application needs to be improved and issues with porosity avoided to ensure a denser
and more compact structure. Such denser and more compact structure may be achieved
via ink-jet printing rather than SLS or SLA printing [349]. Furthermore, the development
of 3D printing, has promoted the development of regenerative endodontic procedures
due to the improved precision and accuracy, while simultaneously ameliorating patient
comfort [350]. It is reported that controlling infection is the key to the success of apical
inducing angioplasty in the root canal. However, HA itself lacks bactericidal properties;
HA-based nanocomposites with antibacterial properties can therefore inhibit the growth of
microorganisms in the root canal [351].

5.4. HA-Based Nanocomposites Constructs in Drug Delivery Applications

HA has been used as a composite with biopolymer (e.g., alginate) matrices for a
more precise and sustained drug release. For instance, Venkatasubbu et al. [352] loaded
the drug ciprofloxacin onto a nano-HA composite with alginate. In their study, the drug
was pre-adsorbed onto the ceramic particle before the formation of composite. They
showed that the integration of HA-based nanocomposites prolonged the sustained re-
lease of ciprofloxacin compared to the ciprofloxacin-loaded HA only. HA/sodium algi-
nate/chitosan (HA/SA/CS) composite microspheres were prepared using an emulsion
crosslink technique while using calcium ions as a cross-linking agent [353]. According
to Bi et al. [353], the drug loading and encapsulation efficiency of the HA composite was
improved compared to when only HA nanoparticles were used. Nie et al. explored silver-
doped HA/alginate and HA/β-TCP/alginate microparticles snd micro-clusters, which
had excellent antibacterial properties. The obtained microparticles of the HA composite
were shown to be useful as drug carriers for the controlled release of doxorubicin [354,355].

In summary, the significance of HA-composites cannot be overemphasized. Moreover,
recent studies of 2021 have demonstrated their utilization in human studies. For instance,
Kim and Kim [81] employed 3D strontium-substituted HA (Sr-HA) ceramic scaffolds to
promote rapid cell proliferation, osteogenic differentiation, and cellular mineralization
in human cells. They demonstrated the functionality of Sr-HA scaffold application as
new bone graft substitutes in humans. Krzysztof et al. [356] assessed the manufacture of
PEEK/HA composite via FFF to determine its suitability for orthopedic implants. They
showed that the composite presented comparable mechanical properties to human femoral
cortical bone. Huang et al. [82] also demonstrated the development of gelatin/HA hybrid
materials which were applied in the fabrication of scaffold for human umbilical cord
blood-derived mesenchymal stem cells. The scaffold could effectively support the growth
and proliferation of stem cells as well as their adhesion while also inducing chondrogenic
differentiation in vitro. Based on the reported success, it is anticipated that future work
will further explore the utilization of HA-composites in humans. The next section provides
some future expectations of HA composite applications in TE.

6. Next Generation of Hydroxyapatite (HA)-Based Nanocomposite Application in TE

The authors anticipate that improving the accuracy of printing and the functional
complexities of printed nanoconstructs will enhance the application of HA-based nanocom-
posites in the biomedical industry. This is because the hierarchical complexity of nanocom-
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posites may facilitate multi-material deposition, thus mimicking the heterogeneity of tissues
and organs. Given the applicability of HA-based nanocomposites in drug delivery, the
authors propose that future opportunities may exist for employing HA-based nanocom-
posites in the delivery of gene modifiers and targeted nutrients. Clearly, such applications
will provide the opportunities for advanced and targeted cell and tissue modifications in
the future. In addition, several factors such as printability, suitable mechanical strength,
biodegradation, and biocompatible properties of HA-based composites will facilitate the
use of 3D printing to fabricate on-demand, highly-personalized intricate designs at low
costs in the future.

The physical, chemical, and biological properties of HA could be increased by incor-
porating metal ions into the structure of HA [357]. For instance, Popescu et al. synthesized
lithium-doped HA, which showed remarkable biomineralization capacity in SBF, and stem
cell proliferation on the surface of lithium-doped HA was improved [358]. Yazici et al.
similarly prepared silver-doped HA (Ag-HA) with improved antibacterial properties, while
the prepared Ag-HA was used for coating on magnesium-based alloys via the addition in
SBF. The the morphology of HA formed was related to the Ag-HA content in SBF [359].
Nie et al. developed selenium-doped HA/β-TCP nanoparticles with in-situ incorporation
of silver, which displayed excellent antibacterial properties [289]. They also exploited
silver-doped HA/alginate or HA/β-TCP/alginate microparticles or micro-clusters with
excellent antibacterial properties. The obtained microparticles or micro-clusters could be
used as a drug carrier to control the release profiles of doxorubicin [354,355]. Recogniz-
ing that vascularization is of utmost importance for tissue regeneration, and functional
vascularization of the biological scaffold is difficult to achieve using current 3D printing
technologies, the extrusion-based printing discussed above can be used to obtain the neces-
sary structural integrity of the final product. Crucially, however, the dense environment
still limits the cellular network during the tissue regeneration process. Thus, a new strategy
needs to be developed to address this process. Some researchers have tried to incorporate
sacrificial materials into the scaffold during the fabrication. In addition, these sacrificial
materials could provide initial mechanical support, and, once the constructs are fabricated,
they could be removed [360]. The future development of HA-based nanocomposites using
3D printing is to overcome the aforementioned vascularization challenges. Furthermore,
customized scaffolds using 3D printing technology must be further developed. Finally,
the processing speed of 3D printing needs to be increased, while simultaneously avoiding
mistakes and errors because the printing process is separated into various steps and not
automated. It is predicted that the development of materials and 3D printing techniques
will lead to HA-based nanocomposites for further clinical applications

7. Conclusions

In this paper, different 3D printing techniques for the fabrication of HA-based ma-
terials are reviewed in detail. This review systematically highlights the current state of
HA-based nanocomposites. The desired characteristics and specific applications of HA-
based nanocomposites are also discussed. The 3D printing techniques and HA-based
materials discussed in this review are anticipated to improve strategies for the generation
of functional tissues for replacement and repair in the biomedical industry. The 3D printing
technology promotes a global revolution in the medical sciences, since many encouraging
results have thus been achieved using HA-based nanocomposites in TE.
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