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Abstract

Objectives: This study aims to increase the rate of correctly sexed calcined individ-

uals from archaeological and forensic contexts. This is achieved by evaluating sexual

dimorphism of commonly used and new skeletal elements via uni- and multi-variate

metric trait analyses.

Materials and methods: Twenty-two skeletal traits were evaluated in 86 individuals

from the William M. Bass donated cremated collection of known sex and age-at-

death. Four different predictive models, logistic regression, random forest, neural net-

work, and calculation of population specific cut-off points, were used to determine

the classification accuracy (CA) of each feature and several combinations thereof.

Results: An overall CA of ≥ 80% was obtained for 12 out of 22 features (humerus

trochlea max., and lunate length, humerus head vertical diameter, humerus head

transverse diameter, radius head max., femur head vertical diameter, patella width,

patella thickness, and talus trochlea length) using univariate analysis. Multivariate

analysis showed an increase of CA (≥ 95%) for certain combinations and models

(e.g., humerus trochlea max. and patella thickness). Our study shows metric sexual
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dimorphism to be well preserved in calcined human remains, despite the changes that

occur during burning.

Conclusions: Our study demonstrated the potential of machine learning approaches,

such as neural networks, for multivariate analyses. Using these statistical methods

improves the rate of correct sex estimations in calcined human remains and can be

applied to highly fragmented unburnt individuals from both archaeological and foren-

sic contexts.
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1 | INTRODUCTION

Analysis of burnt human remains from archaeological and forensic

contexts can be challenging due to their fragmentary and often

incomplete nature. The process of burning causes extensive micro-

and macroscopic changes in bones and teeth. Bones may fragment,

shrink, expand, and otherwise deform (Dokladál, 1971; Piontek, 1976;

Rösing, 1977; Shipman et al., 1984; Snoeck et al., 2014; Thompson,

2002). In addition, remains from archaeological settings carry traces of

funerary rituals that can further complicate their understanding.

Funerary practices vary throughout time and space, and depend on

various factors, such as beliefs and customs. Pyre technology

(e.g., temperature, fuel, and duration), handling of the remains during

and after burning (e.g., selective deposition, further fragmentation,

combining remains from different individuals) may influence the final

quality and quantity of the cremated remains (McKinley, 2016;

Oestigaard, 2013; Thompson, 2005). Additionally, post-depositional

processes, such as taphonomic degradation, may further affect the

bones. The intensity of diagenetic alteration depends on the time that

passed since deposition and on how the remains were buried. The

preservation varies depending on whether they were buried in an urn

or organic container, scattered on the ground of a burial pit, or incor-

porated in different features and burial structures at the archaeologi-

cal sites (Williams, 2008). Burning of human remains also occurs in

forensic settings, which may be deliberate or accidental. The degree

of burning will depend on the proximity to the fire, its intensity and

duration, and other contextual circumstances (Mayne Correia &

Beattie, 2002). Usually, burnt human remains are highly fragmented,

regardless of their context, and contain a varying proportion of identi-

fiable bone fragments, with most of them having only limited value in

establishing the biological profile of the deceased.

Due to the variety of processes involved in the preservation of

burnt human remains (Depierre, 2014), establishing a biological profile

may be a challenging task with the currently available sexing methods.

Most researchers working with archaeological cremations use mor-

phological parameters that are routinely used for sex estimation in

unburnt skeletons (Gonçalves & Pires, 2017), such as described in

Buikstra and Ubelaker (1994) and the Workshop of European Anthro-

pologists (1980). However, the fragments of the pelvis and cranium

needed for sex and age estimations are often absent, and even if

these diagnostic elements are present, they tend to be highly frag-

mented and deformed, which diminishes their potential for an accu-

rate estimate. Bones can shrink up to 40% compared to their initial

dimensions (Gonçalves et al., 2013), potentially leading to mis-

classification of some individuals due to morphological and dimen-

sional changes (Thompson, 2002) and sometimes to nonnegligible

disagreements in sex estimation between different scholars

(Welinder, 1989). The degree of shrinkage is unknown when dealing

with archaeological remains and it is closely related to pyre conditions,

such as the type of fuel and temperature, as well as the skills of the

cremators (Oestigaard, 2016). A solution to this issue could be the

application of different correction factors, as suggested by Buikstra

and Swegle (1989), Piontek (1976), and more recently by Gonçalves

et al. (2020) who produced regression equations based on

chemometric indices obtained via FTIR analyses.

These sexing issues are well attested in literature, where sex esti-

mation of archaeological cremated remains is possible for as little as

20% of individuals for certain sites (Holck, 1986; Veselka & Lemmers,

2014). However, sex estimates are a key element of the biological

profile. It is essential in forensic settings for the identification of vic-

tims (Gonçalves et al., 2013). In archaeology, it can be a fundamental

piece of information for the study of palaeodemography and different

social phenomena in the past (Brück, 2009). Over the past decades,

several methods were proposed to improve the rates of sexed cal-

cined individuals, such as assessment of the lateral angle of internal

acoustic meatus (e.g., Gonçalves et al., 2011; Graw et al., 2005;

Masotti et al., 2013), as well as metric analyses of teeth (Godinho

et al., 2019; Gouveia et al., 2017), and bones (Cavazzuti et al., 2019;

Gonçalves et al., 2013; Rösing, 1977; Schutkowski & Herrmann,

1983; Van Vark, 1975; Wahl, 1996). Despite the large number of

studies on the sexually dimorphic potential of the lateral angle of

internal acoustic meatus, the results are contradictory, and classifica-

tion accuracy (CA) ranges from �60% to 80%. This may be due to the

strong correlation between this angle and the age of the individuals

(Afacan et al., 2017; Masotti et al., 2019), implying that the accuracy

would improve by eliminating elderly individuals from the studied

group. However, not only is the estimation of age-at-death

a challenge in highly fragmented and burnt human remains
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(Veselka et al., 2020), but excluding one portion of population to cor-

rectly sex the others is not ideal if the goal is to identify an unknown

individual or have a general idea of a sex ratio in a population.

Several studies confirmed that sexual dimorphism is preserved in

calcined remains; modern populations of known age and sex were

studied in Portugal (Gonçalves et al., 2013), Germany (Wahl, 1996),

and Sweden (Gejvall, 1963; Van Vark, 1975). Archaeological collec-

tions from Poland (Piontek, 1975), Germany (Rösing, 1977), and Late

Iron and Early Bronze Age Italy were sexed with metrics (Cavazzuti

et al., 2019). Metric techniques for sexing bones and teeth yielded

classification accuracies of over 80% for certain traits (Cavazzuti et al.,

2019; Godinho et al., 2019; Gonçalves et al., 2013). However, most

commonly measured and most sexually dimorphic skeletal traits (such

as head of the humerus and femur) are rarely encountered in archaeo-

logical cremated remains. The measurement descriptions for metric

traits that are often found in calcined human remains are not stan-

dardized to the same extent as the most common measurements,

resulting in a larger inter-observer error. Furthermore, metric traits are

population specific, temporally as well as geographically (Albanese,

2008; Gonçalves, 2014), which may be overcome under certain condi-

tions, such as a balanced sex ratio and sufficient number of individuals

(Albanese et al., 2005).

Most of the metric studies in the past were conducted using sta-

tistical predictive modeling such as discriminant function analysis

(DFA) and logistic regression (Baši�c et al., 2013; Gama et al., 2015;

Peckmann & Fisher, 2018; Sulzmann et al., 2008). While DFA is robust

and useful for the purpose of sex estimation, other supervised learn-

ing algorithms showed to outperform it in univariate analysis of metric

traits (Navega et al., 2015). Compared to the DFA, logistic regression

reflects better the nature of sexual dimorphism as a continuous

parameter, instead of dichotomous one, since its classification results

are expressed in terms of probability rather than in a binary form

(Bartholdy et al., 2020). Both random forests and neural networks are

types of models used in machine learning. They have applications in

many different fields and have previously been used to address

archaeological and anthropological questions (Alunni et al., 2015;

Barone et al., 2019). The decision boundaries provided by the

machine learning algorithms are not linear, rather, they base their

decisions directly on patterns in the data (Navega et al., 2015). Neural

networks are inspired by biological nervous systems; they are com-

posed of nodes (artificial neurons), which are linked to one another via

weighed connections. The weight (strength) and direction of these

connections are adjusted as the network is trained via the training

dataset (in the case of sex estimation a reference metric dataset from

individuals of known sex). Once the neural network is trained, a test

dataset (the problem to be solved) can be introduced (Deravignone

and Macchi Janica, 2006). Random forests are composed of multiple

decision trees, which, at the end of the decision process “vote” for

one of the proposed prediction classes. They use resampling mecha-

nisms to grow a forest of decision trees based on the training sample

(Hastie et al., 2009). One of the advantages of logistic regression, neu-

ral networks, and random forests is that they do not require assump-

tions, such as (multivariate) normality, to be met (Alunni et al., 2015).

Since archaeological samples are usually very small, the question of an

appropriate sample size arises for the applications of these predictive

modeling techniques. Studies in the field of archaeology and forensic

anthropology using these methods are still rare and there is so far no

established “rule of thumb” for archaeological datasets in terms of

sample sizes. In previous work, they range from 76 samples (du Jardin

et al., 2009) to as much as 1000 (Bewes et al., 2019). However, based

on previous experimentation, datasets with n ≥ 40 individuals are

considered sufficiently robust (Albanese et al., 2005).

The aim of this study is to improve the rate of correctly sexed cal-

cined human remains. For this purpose, 22 measurements from

13 skeletal elements are taken from individuals of known sex and age-

at-death to evaluate their sexual dimorphism. Four different predic-

tive models are used to obtain the best possible CA from the available

skeletal elements. Univariate and multivariate analyses are conducted,

and a methodological protocol is proposed to make the method

widely applicable. This will facilitate the evaluation of the reference

metric datasets and make it easier to estimate sex of archaeological

and forensic calcined datasets.

2 | MATERIALS AND METHODS

The William M. Bass Donated Skeletal Collection is curated at the

Forensic Anthropology Center at the University of Tennessee, Knox-

ville. Ninety-six cremated individuals of known sex and age-at-death

were available for study, of which 86 individuals were suitable for fur-

ther analysis (contained at least one measurable skeletal element). The

sample consisted of 35 females aged from 32 to 101 years and

51 males, aged from 32 to 85 years. All individuals were of European

ancestry and of various socioeconomic statuses. The average age-at-

death for the sample was 64 years, 65.1 years for females and

63.8 years for males. Elements presenting any kind of macroscopically

observable pathological lesion were excluded from the study. Skeletal

elements used in the study are presented in Figure 1. All cremations

were conducted by commercial crematoria within the United States

and all the measured individuals were completely calcined. Specific

information about the temperature and duration of each individual

cremation was unavailable. In general, the temperatures in commercial

crematoria range from approximately 800 and 1100�C and last for

approximately 1.5 hours (McKinley, 2016). More specifically for one

of the crematoriums in Tennessee where a large part of the studied

individuals was cremated, temperatures range from 870 to 990�C,

where the average duration of each cremation ranges from 2 to 3

hours (Bass & Jantz, 2004).

Measurements were taken with a digital sliding caliper and

reported in millimeters (mm). Only the internal acoustic meatus was

measured with the blunt end of metal drills with increments of

0.1 mm as described by Lynnerup et al. (2006). The drill bits were

inserted in the internal acoustic meatus, and the biggest drill that

could tightly fit in the opening (the blunt end was completely sur-

rounded by bone) was recorded as its dimension. All evaluated mea-

surements were previously published (Table 1), apart from the frontal
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process of the zygomatic bone, which is a new feature that was tested

in this study. This feature was added, because according to our obser-

vations it is often recovered in archaeological cremation burials. All

measurements were performed by three observers with varying levels

of experience. The first and second observer (M and B), had experi-

ence with osteoarchaeogical sexing methods while the third

observer, C, had no experience. B remeasured 90% of individuals and

C 80%. Furthermore, at least 25% of all measurements were repeated

after 10 days by the first observer (M) to enable intra-observer error

evaluation. Measurements were taken from the side that was avail-

able. If both left and right sides were present and because lateraliza-

tion was not always possible, the values were averaged. The dataset is

available in Data S1.

Results from morphological sexing methods of the skull and pelvis

were compared with the metric outcomes. The following traits were

assessed: occipital protuberance, nuchal crest, supraorbital margin,

supraorbital ridge, mastoid process, zygomatic bone, gonial angle, mental

eminence, ischial body, ventral arch, shape of the pubic bone, auricular

surface, subpubic concavity, and subpubic angle (Buikstra & Ubelaker,

1994; Phenice, 1969; Workshop of European Anthropologists, 1980).

Inter- and intra-observer variability was assessed via two methods.

The absolute and relative technical error of measurement, TEM and %

TEM (Lyman & Van Pool, 2009) were calculated to assess the random

measurement error (precision) for each measurement. Next, paired t-tests

signed tests and Wilcoxon's signed tests were performed in IBM SPSS

version 25 to reveal any systematic errors in the measurements between

observers that would indicate that observers systematically measured

one of the features differently. Paired t-test were used when the distri-

bution of the data met the assumptions of normality, was symmetrical

and without outliers. Wilcoxon signed tests were applied when the data

was distributed symmetrically, but not normally. Signed tests were used

if data did not meet the above assumptions, or if the sample size was

F IGURE 1 Pictures of skeletal elements that were measured in this study: (a) zygomatic bone (frontal process); (b) temporal bone (petrous
part); (c) mandible (condyle); (d) axis; (e) humerus (proximal and distal); (f) radius; (g) scaphoid; (h) lunate; (i) hamate (hamulus); (j) patella; (k) femur;
(l) talus; (m) first metatarsal
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below 10 observations. If %TEM was higher than 5% and if the paired t-

tests revealed a systematic bias between the two experienced observers

(p < 0.05), the measurement was excluded from further study, because it

was deemed imprecise and/or not replicable. All features were tested for

their possible correlation with age using Spearman's correlation.

After the assessment of inter-and intra-observer error, the

dataset of the first observer (M) was used in the predictive models.

The measurements were first tested for normal distribution and equal-

ity of variances. The size difference between females and males was

assessed with t-tests, to evaluate the potential of each of the mea-

sured traits for sex estimation, based on the significance of the differ-

ence between females and males. To establish the univariate CA of

each trait, all measurements were further assessed separately. Mea-

surements of each trait were separated in training (70% of female and

male measurements) and test sample (30% of female and male mea-

surements). In each run, four different algorithms were used to predict

sex – logistic regression, random forest, neural network and calcula-

tion of cut-off point as defined by Chakraborty and Majumder (1982).

These algorithms used the training sample to predict the results for

the test sample by means of cross-validation. The overall CA repre-

sents the percentage of all correctly classified individuals. Female CA

represents the percentage of correctly classified females, while

male CA represents the percentage of correctly classified males.

Resampling, training, testing and calculations of CAs were performed

1000 times. Average CAs (total, female and male) were then calcu-

lated for each trait, along with the standard deviations were then

gathered in a table.

To gain more insight into the classification outcomes on the level

of different individuals, an additional calculation was performed. Over

the 1000 runs, every time that the individual was selected as a part of

the testing dataset (see above), the rate of correct classifications for

each individual (number CA correct/number of runs where selected)

was collected in a table and summarized in boxplots.

To assess the potential of supervised machine learning methods

for multivariate analyses, several combinations of two features were

tested via logistic regression, random forest and neural network algo-

rithms. The cut-off point method is not suitable for multivariate analy-

sis. The rest of the procedure was the same as outlined for univariate

traits. Only a small number of combinations was tested in this study

and only two traits were tested simultaneously in each run. This is

because the dataset has a lot of missing values (just under 70% of all

measurements are missing due to fragmentation and/or presence of

pathology), which is why the number of individuals of both sexes with

the same combinations of two traits are rare (even more so for more

than two traits). All the above-mentioned analyses were conducted

with Python programming language version 3.8.2. Logistic regression,

neural network and random forest were used as implemented in the

Orange Data Mining Library (https://orange-data-mining-library.

readthedocs.io/en/latest/#tutorial; Demšar et al., 2013). The Python

source code and protocol are available in the Data S2, and the algo-

rithms are set in the same way they were used to conduct this study.

3 | RESULTS

Based on the results of paired tests, three measurements were

deemed unsuitable for further analysis: mandibular condyle thickness,

capitulum of the humerus and talus trochlea width (Table 2).

3.1 | Sex estimation—Univariate

Most of the traits exhibited a statistically significant difference in size

between males and females. The descriptive and basic inferential sta-

tistics (t-tests results and their p values, and cut-off points) for each

variable are presented in Table 3. Graphs with raw data histogram,

TABLE 1 List of measurements taken in the study with the descriptions and references

Trait Reference, description

Frontal process of zygomatic This study. Find the widest point of the upper half of the frontal process

(toward the suture with the frontal bone) by moving your caliper. Care

needs to be taken to place the caliper perpendicular to the lateral

surface of the process.

Internal acoustic meatus Lynnerup et al., 2006

Mandibular condyle thickness, Mandible in the two cases condyle width,

Axis antero-posterior, Axis transverse, Axis height, Patella height,

Patella width

Van Vark, 1975

Humerus vertical, Humerus transverse, Humerus trochlea max., Femur

head vertical diameter

Martin & Saller, 1957

Humerus capitulum, Humerus trochlea min., First metatarsal dorso-

plantar

Cavazzuti et al., 2019

Scaphoid max. width, Lunate length, Hamulus width Sulzmann et al., 2008

Patella thickness Introna et al., 1998

Radius head max. diameter, Talus max. length, Talus trochlea length,

Talus trochlea width

Buikstra & Ubelaker, 1994

Abbreviations: Max., maximum; min., minimum.
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TABLE 2 Inter and intra-observer error results

Trait Observer N Mean (mm) TEM (mm) %TEM (%) Paired tests

Frontal process of the zygomatic M_B 49 9.82 0.33 3.3 0.073

M_C 43 9.96 0.21 2.2 0.119

intraobserver 18 9.69 0.10 1.0 0.103

Internal acoustic meatus M_B 62 3.55 0.13 3.5 0.575

M_C 55 3.57 0.10 2.8 0.063

intraobserver 20 3.50 0.12 3.5 1.000

Mandible condyle thickness M_B 34 6.52 0.63 9.7 0.007

M_C 43 6.48 0.69 10.6 0.059

intraobserver 11 6.15 0.19 3.0 0.426

Mandible condyle width M_B 17 16.98 0.30 1.7 0.502

M_C 15 16.74 0.30 1.8 0.452

intraobserver 5 17.75 0.06 0.4 0.617

Dens antero-posterior M_B 23 9.87 0.25 2.6 1.000

M_C 21 9.82 0.33 3.3 1.000

intraobserver 7 9.85 0.24 2.5 1.000

Dens height M_B 11 13.17 0.46 3.5 1.000

M_C 9 13.14 0.41 3.1 0.180

intraobserver 4 13.56 0.39 2.9 0.625

Dens transversal M_B 21 9.09 0.16 1.7 0.052

M_C 19 9.46 0.20 2.1 0.143

intraobserver 7 9.52 0.12 1.3 1.000

Humerus vertical M_B 22 42.24 0.39 0.9 0.087

M_C 19 42.91 0.54 1.3 0.707

intraobserver 6 42.58 0.50 1.2 0.192

Humerus transverse M_B 14 38.10 1.24 3.2 0.079

M_C 12 39.56 0.97 2.5 1.000

intraobserver 6 38.57 0.67 1.7 0.068

Humerus trochlea max.. M_B 40 22.84 0.28 1.2 0.203

M_C 37 22.74 0.37 1.6 1.000

intraobserver 12 23.33 0.45 1.9 0.920

Humerus trochlea min. M_B 52 13.84 0.46 3.4 0.791

M_C 48 13.68 0.46 3.4 0.171

intraobserver 13 13.87 0.47 3.4 0.791

Humerus capitulum M_B 49 18.15 0.43 2.4 0.000

M_C 40 18.37 0.54 2.9 0.000

intraobserver 15 18.57 0.59 3.2 0.731

Radius head max. M_B 15 19.50 0.19 1.0 0.853

M_C 14 19.74 0.31 1.6 0.168

intraobserver 5 19.76 0.19 1.0 0.450

Scaphoid M_B 25 13.84 0.32 2.3 0.596

M_C 22 14.01 0.48 3.4 0.678

intraobserver 7 13.86 0.17 1.2 0.453

Lunate length M_B 9 15.91 0.19 1.2 0.125

M_C 7 15.99 0.09 0.5 0.209

intraobserver 3 15.90 0.08 0.5 0.523
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normal density function curve and cut-off points for two traits with

high and two traits with low CA are shown in Figure 2, and all the

remaining graphs are available in Data S3.

Univariate analysis showed that three of the traits - humerus

trochlea max., radius head, and lunate length - had an overall CA

≥ 90%, which was obtained by at least one of the four predictive

models. Ten features had a CA of ≥ 80% by at least one of the four

predictive models: radius head max., femur vertical head diameter,

hamulus width, humerus head vertical diameter, humerus transverse

diameter, dorso-plantar diameter of first metatarsal head, patella

height, patella width, patella thickness, and talus trochlea length. The

two traits that classified both sexes accurately in more than 90% of

the cases were humerus trochlea max. and lunate length. The other

traits that had a precision of ≥ 80% in at least one of the predictive

models in both sexes were: humerus head vertical diameter, humerus

head transverse diameter, radius head max., femur head vertical diam-

eter, patella width, patella thickness, and talus trochlea length. These

results are summarized in Table 4 and Figure 3.

In terms of overall CA, logistic regression, neural network, and the

cut-off point method yielded similar results. Random forest almost

systematically had a lower CA than the three other algorithms. Female

and male CA varied for different models. The CA was generally higher

for males than females. The cut-off point method performed almost

equally well for both sexes for most of the traits. The other three algo-

rithms exhibited large differences between female and male CA.

Based on individual classification (Table S4), different models did

not perform equally well for the same individuals. Neural network and

logistic regression were the most successful in the individual

TABLE 2 (Continued)

Trait Observer N Mean (mm) TEM (mm) %TEM (%) Paired tests

Hamulus width M_B 25 9.97 0.18 1.8 0.074

M_C 22 10.07 0.43 4.2 0.285

intraobserver 14 10.69 0.20 1.9 0.150

Femur head vertical diameter M_B 34 42.19 0.30 0.7 0.378

M_C 30 42.46 0.52 1.2 0.890

intraobserver 10 42.91 0.25 0.6 0.486

Patella height M_B 23 37.29 0.49 1.3 0.825

M_C 20 36.97 0.63 1.7 0.265

intraobserver 8 37.47 0.61 1.6 0.332

Patella width M_B 23 39.08 0.33 0.9 0.307

M_C 20 39.09 0.54 1.4 1.000

intraobserver 8 37.89 0.63 1.7 0.068

Patella thickness M_B 25 17.14 0.56 3.3 0.096

M_C 20 17.16 0.70 4.1 0.178

intraobserver 11 17.19 0.52 3.0 0.227

Talus max. length M_B 16 49.31 1.03 2.1 0.441

M_C 14 49.53 1.28 2.6 0.332

intraobserver 7 48.88 1.34 2.7 0.099

Talus trochlea length M_B 31 32.41 0.84 2.6 0.961

M_C 27 32.52 1.09 3.4 0.655

intraobserver 13 31.42 0.55 1.8 0.101

Talus trochlea width M_B 41 27.13 1.27 4.7 0.000

M_C 31 27.20 1.40 5.1 0.000

intraobserver 16 25.80 0.75 2.9 0.367

First metatarsal dorso-plantar M_B 25 17.25 0.45 2.6 0.859

M_C 23 17.38 0.69 3.9 0.152

intraobserver 10 16.52 0.21 1.3 0.404

First metatarsal medio-lateral M_B 22 17.87 0.30 1.7 1.000

M_C 15 18.20 0.63 3.4 0.035

intraobserver 7 18.76 0.10 0.5 0.125

Note: Results in italics indicate the use non-parametric statistical tests. Significant results are in bold are in bold.

Abbreviations: B, Barbara; C, Christophe; max., maximal; N, number of individuals; M, Marta; min., minimal; %TEM, relative technical error of measurement;

TEM, technical error of measurement.
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classification, closely followed by cut-off point method. Random for-

est performed poorly compared to the other three models (Figure 4).

From the 86 studied individuals, 10 did not have diagnostic ele-

ments available for evaluation. Of the remainder (n = 7), 14 individuals

(18.6%; 14/75) had indeterminate sex, while correct sex was assigned

to 54 individuals (72%; 54/75), and 7 individuals were classified incor-

rectly (9.3%; 7/75). This implies that only around 70% of the observ-

able sample was correctly classified with standard anthropological

methods. These results are reported in Data S4.

3.2 | Sex estimation—Multivariate

The best average CA in multivariate analysis of combinations of two

traits was obtained by the neural network, followed by logistic

regression and random forest. The best combination of traits resulted

in a pooled CA as high as 99.1%, which was the case for the humerus

trochlea max. diameter and patella thickness using the neural network

model. In general, combinations of traits gave better results than each

feature alone. The results for different combinations of traits for

which there were enough individuals available (n ≥ 20) are presented

in Table 5.

For pooled female and male samples, only the measurement of

first metatarsal medio-lateral diameter showed a statistically signifi-

cant positive correlation with age (r = 0.496, p = 0.0221). In the

female sample, significant positive correlations were found for the

following measurements: humerus head vertical diameter, femur

head vertical diameter, and the first metatarsal dorso-plantar diam-

eter (r = 0.833, p = 0.010; r = 0.654, p = 0.029, and r = 0.809,

p = 0.015 respectively).

TABLE 3 Descriptive statistics for each trait and for both sexes in anatomical order

Trait

N

females

Mean

females

SD

females

N

males

Mean

males

SD

males

Cut-off

point D

D

SD t-test

p

value

Frontal process

zygomatic

21 9.3 1.3 33 10.4 1.5 10 0.326 0.13 −2.897 0.0055

Internal acoustic

meatus

28 3.3 0.6 41 3.7 0.7 3.6 0.282 0.12 −2.792 0.0068

Mandible condyle

width

9 16.1 2.2 10 17.5 2.1 16.7 0.265 0.22 −1.392 0.1820

Dens height 6 12.9 2.1 5 14.7 1.4 13.4 0.418 0.26 −1.483 0.1722

Dens antero-posterior 10 9.3 1.0 15 10.6 0.9 9.8 0.506 0.18 −3.227 0.0037

Dens transversal 10 9.3 0.9 13 9.9 0.9 9.7 0.278 0.20 −1.598 0.1249

Humerus head vertical 8 38.8 3.0 16 44.6 2.6 41.7 0.707 0.16 −4.756 0.0001

Humerus head

transverse

7 34.6 2.9 9 41.1 3.0 37.8 0.726 0.17 −4.058 0.0012

Humerus trochlea

max.

17 20.0 1.3 27 24.9 1.9 22.2 0.88 0.07 −9.199 0.0000

Humerus trochlea min. 27 13.0 1.5 36 14.6 1.5 13.7 0.412 0.12 −4.196 0.0001

Radius head max. 8 18.1 0.7 9 21.0 1.1 19.4 0.89 0.11 −5.885 0.0000

Scaphoid 8 12.5 0.8 20 14.4 1.5 13.5 0.612 0.15 −3.320 0.0027

Lunate length 3 13.7 0.2 8 16.2 1.1 14.3 0.955 0.08 −3.565 0.0061

Hamulus width 8 8.8 0.6 20 10.6 1.1 9.6 0.741 0.13 −4.318 0.0002

Femur head vertical 11 38.2 2.5 27 43.8 2.8 41 0.71 0.12 −5.598 0.0000

Patella height 10 34.5 2.3 16 38.1 2.0 36.3 0.607 0.16 −4.109 0.0004

Patella width 7 36.0 2.2 18 40.2 2.1 38.1 0.679 0.17 −4.316 0.0003

Patella thickness 13 14.9 1.4 22 17.6 1.4 16.3 0.668 0.13 −5.429 0.0000

Talus max. Length 7 46.9 1.9 11 51.5 4.3 41.9 0.598 0.18 −2.517 0.0229

Talus trochlea length 13 29.2 2.1 21 34.5 2.7 31.8 0.738 0.12 −5.932 0.0000

First metatarsal dorso-

plantar

8 16.0 1.5 20 18.2 1.5 17.1 0.548 0.18 −3.503 0.0017

First metatarsal

medio-lateral

6 17.0 1.2 16 18.7 1.8 18.2 0.454 0.19 −2.041 0.0546

Note: Both cut-off points and the degree of sexual dimorphism (D) were calculated as defined by Chakraborty and Majumder (1982). Statistically significant

p values are in bold.

Abbreviations: D, degree of sexual dimorphism; max., maximal; min., minimal; SD, standard deviation.

8 HLAD ET AL.



4 | DISCUSSION

Sexual dimorphism appears to be preserved to a large extent in cal-

cined remains, despite the dimensional changes that may occur as a

result of the burning process. This confirms the findings of previous

studies (Cavazzuti et al., 2019; Gonçalves et al., 2013). Most of the

measurements (19/22; 86.4%) in this study were found to be repro-

ducible. The inter-observer errors are similar for both experienced and

inexperienced observers, suggesting that all measurements are rela-

tively easy to learn and apply. However, osteological knowledge is

required to correctly identify the fragments and landmarks of interest.

Confirming the observations of Cavazzuti et al. (2019), the mandible

condyle thickness, one of the three rejected measurements, was

found to be particularly difficult to measure. Humerus capitulum and

talus trochlea width, however, seem to yield good CAs in certain

populations (Cavazzuti et al., 2019; Mahakkanukrauh et al., 2014).

Further evaluation and clearer measurement descriptions are needed

to avoid differences in interpretations between observers. For exten-

sive comparison with published studies, the reader is referred to the

Data S5, where CAs of the present study are compared to those of

two other published calcined human remains datasets and studies on

unburnt remains.

The CA for frontal process of the zygomatic was low in this study

(around 60%). Another study by Hlad et al. (in preparation) tested this

feature on unburnt skeletal material from, Belgium (50 individuals: 25

females, 25 males), which yielded a CA of over 80%. Clearly, more

research is needed to establish the usefulness of this feature in both

unburnt and calcined human remains. Findings concerning the internal

acoustic meatus agree with the conclusion of Lynnerup et al. (2006)

that the feature cannot be used independently for sex estimation. As

for the mandibular condyle width, the results are somewhat contradic-

tory, since it was one of the best features in the Italian protohistoric

populations (Cavazzuti et al., 2019), yet one of the worst in the mod-

ern Swedish population (Van Vark, 1975) and this study, possibly due

to the high average age of the two modern samples (Ishibashi et al.,

1995). However, no significant correlation of this trait with age was

found in the present study. Our results also concur with previous find-

ings concerning the features of the dens axis, concluding that they are

not reliable enough to be used independently for sex classification in

the populations where it was tested (Cavazzuti et al., 2019; Floyd,

2017; Van Vark, 1975). While radius head max. diameter is frequently

used and consistently yields one of the best CAs (Berrizbeitia, 1989;

Cavazzuti et al., 2019; Mall et al., 2001; Van Vark, 1975), the other

two features that had CAs over 90%, humerus trochlea max. and

lunate length, are less commonly assessed. To the knowledge of the

authors, only one other study (Cavazzuti et al., 2019) used the

humerus trochlea max. measurement and obtained much lower CAs

for Italian protohistoric populations. It would be interesting to acquire

more data for this trait in other modern and archaeological

populations to establish whether it is appropriate for the use in fur-

ther work. Lunate length was an extremely efficient trait for sex dis-

crimination in the Tennessee collection (over 95%). It had a CA of

80% in Italian protohistoric collections, as well as in studies on

unburnt skeletal remains from Spitalfields skeletal collection, modern

F IGURE 2 Graphs of female and male data for four traits with the calculated cut-off point (Chakraborty & Majumder, 1982) represented with
a black line parallel to the y axis. The x axis represents the measurements in mm. Dark pink areas are the areas of overlap between male and
female values. Top: Two traits with high classification accuracy. Bottom: Two traits with low classification accuracy. Max., maximal
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TABLE 4 Mean classification accuracy for each model in percent for females, males and overall, and standard deviations of classification
accuracy

Trait Model

Classification

accuracy
females (%)

Classification

accuracy
males (%)

Classification

accuracy
overall (%)

Classification

accuracy overall
SD (%)

Frontal process zygomatic Logistic regression 41 83 66 8

Random forest 32 70 55 10

Neural network 39 83 65 8

Cut-off point 64 61 62 10

Internal acoustic meatus Logistic regression 41 83 66 7

Random forest 48 66 59 9

Neural network 49 78 66 7

Cut-off point 72 58 64 8

Mandible condyle width Logistic regression 62 56 59 17

Random forest 49 56 52 16

Neural network 56 68 62 17

Cut-off point 67 52 59 16

Dens height Logistic regression 67 53 60 17

Random forest 44 43 44 18

Neural network 59 48 53 17

Cut-off point 62 69 66 21

Dens antero-posterior Logistic regression 66 81 75 12

Random forest 56 84 73 13

Neural network 61 85 76 13

Cut-off point 70 77 74 13

Dens transversal Logistic regression 43 71 59 14

Random forest 46 64 56 16

Neural network 40 65 54 14

Cut-off point 56 68 63 15

Humerus head vertical Logistic regression 68 88 81 11

Random forest 54 81 71 13

Neural network 68 87 80 11

Cut-off point 80 83 82 11

Humerus head transverse Logistic regression 81 90 86 13

Random forest 76 82 79 11

Neural network 83 89 86 12

Cut-off point 87 88 88 12

Humerus trochlea max. Logistic regression 91 91 91 6

Random forest 82 93 89 6

Neural network 93 90 91 6

Cut-off point 93 90 91 6

Humerus trochlea min. Logistic regression 59 80 71 8

Random forest 68 79 74 8

Neural network 58 81 70 8

Cut-off point 79 74 76 8

Radius head max. Logistic regression 88 92 90 9

Random forest 87 86 87 9

Neural network 89 89 89 10

Cut-off point 88 92 90 10
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TABLE 4 (Continued)

Trait Model

Classification

accuracy
females (%)

Classification

accuracy
males (%)

Classification

accuracy
overall (%)

Classification

accuracy overall
SD (%)

Scaphoid width Logistic regression 49 89 76 10

Random forest 51 75 67 13

Neural network 50 89 76 10

Cut-off point 76 70 72 11

Lunate length Logistic regression 100 94 95 13

Random forest 100 94 95 15

Neural network 100 83 87 17

Cut-off point 99 98 98 7

Hamulus width Logistic regression 72 91 85 10

Random forest 47 87 74 10

Neural network 75 90 85 10

Cut-off point 77 85 82 11

Femur head vertical Logistic regression 72 92 86 8

Random forest 57 85 76 8

Neural network 76 91 86 8

Cut-off point 82 83 83 9

Patella height Logistic regression 77 88 84 12

Random forest 80 84 83 13

Neural network 76 88 83 12

Cut-off point 90 78 83 12

Patella width Logistic regression 55 90 78 9

Random forest 58 82 74 12

Neural network 66 87 80 10

Cut-off point 82 84 83 10

Patella thickness Logistic regression 69 84 78 10

Random forest 81 85 83 10

Neural network 69 82 77 11

Cut-off point 73 79 77 11

Talus max. length Logistic regression 61 82 73 13

Random forest 56 63 60 13

Neural network 63 78 71 12

Cut-off point 37 80 62 10

Talus trochlea length Logistic regression 80 87 84 9

Random forest 66 88 80 9

Neural network 84 83 84 9

Cut-off point 91 81 85 9

First metatarsal dorso-

plantar

Logistic regression 50 98 82 9

Random forest 62 90 81 11

Neural network 51 98 82 9

Cut-off point 68 70 70 13

First metatarsal medio-

lateral

Logistic regression 23 87 69 11

Random forest 24 69 57 15

Neural network 21 85 67 9

Cut-off point 63 70 68 14

Abbreviations: max., maximal; min., minimal; SD, standard deviation.
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F IGURE 3 Chart showing the female, male and overall classification accuracies for each studied trait and for each of the predictive models.
Black horizontal lines in the right graph are error bars. Max., maximal; min., minimal
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Mexican, and modern Spanish populations (Mastrangelo, De Luca,

Alemán, & Botella, 2011; Mastrangelo, De Luca, & Sánchez-Mejorada,

2011; Sulzmann et al., 2008). However, in our study, the lunate sub-

sample might not be representative of the whole population because

it is very small. The rest of the features had CAs between 70% and

80%. This suggest they may not applicable as independent features

for sex estimation, but they could be of use when incorporated in mul-

tivariate models. Nevertheless, more research is needed on larger and

more complete datasets and with clearer and more standardized mea-

surement instructions.

While logistic regression and neural network methods yielded

similar overall CAs out of all the used algorithms, the cut-off point

method yielded the most balanced CAs for each separate sex. Gener-

ally, the CA was found to be higher for males than for females in the

studied sample, which is related to the fact that the two samples are

not well balanced for most of the traits (males being better represen-

ted), with the sex ratio males: females ranging from 0.75:1 to 3:1. The

neural network yielded better CAs than the random forest. This could

be due to settings that were used to run the algorithms, such as num-

ber of trees for the random forest and the number of neurons and

iterations for the neural network. Another explanation may be related

to sample size. Based on the above, cut-off point method might be

the best choice when dealing with the univariate analyses of small

samples that have an unbalanced sex ratio. The summary of the indi-

vidual classification (Figure 4) underlines that random forest is espe-

cially sensitive to the quality and size of the training sample that is

used. As suggested by Alunni et al. (2015), more research on the appli-

cations of supervised machine learning using different settings is

needed. While a thorough evaluation of the sample size effect for

each of the features is necessary, the sample size guidelines from pre-

vious work (n ≥ 40) are recommended (Albanese et al., 2005). Consid-

eration of the individual classification rates (Data S4) for different

models is promising for a better understanding of their advantages

and limitations and could be used in the future to narrow down their

selection to one or two most appropriate models for the univariate

analysis. The real potential of supervised machine learning techniques

such as neural networks for the purpose of sex estimation lies in the

multivariate analysis, since certain combinations of traits (e.g.,

humerus trochlea max. and patella thickness) correctly classified more

than 98% of the sample. Neural network yielded best CAs in the mul-

tivariate analysis than the two other algorithms tested, which agrees

with previous studies (du Jardin et al., 2009). The major advantage of

the methodology presented in this study is that different metric

datasets can be studied quickly and the most pertinent trait combina-

tions for each population can easily be tested by following the steps

described in the methods section using the Python script provided in

the Data S2. It is, however, necessary to confirm these findings with

larger and more complete datasets.

Another advantage of supervised learning is that it does not

require (multivariate) normality and other common assumptions for

data distribution to be valid. Although most of the population metric

data tends toward a normal distribution (Thompson, 2002), archaeo-

logical, and in particular cremated samples are usually relatively

small and incomplete, which makes many statistical tests, such as

DFA less suitable for this type of samples, especially for multivariate

analyses. Comparisons between metric and morphological sexing

methods are difficult, because of the indeterminate category used in

morphological sexing. This category was not used in this study,

because it would imply to arbitrarily choose indeterminate cut-off

points. It is clear, however, that even if the indeterminate individuals

are ignored, the CA of the morphological methods amount to

around 87%. While this is a good result regarding the fragmentation

and preservation of most of calcined human remains, pelvic frag-

ments are reported to be rare in many cases (Depierre, 2014;

Gonçalves & Pires, 2017). A multivariate supervised machine learn-

ing approach showed that this result can be improved with the mul-

tivariate metric methods. Another issue linked to the fragmentation

of calcined human remains is that both sides are rarely present from

the same individual and often not preserved well enough to mea-

sure. Since there were few individuals with both sides present/mea-

surable, the comparison between left and right elements was not

possible. Averaging of the measurements from both sides or using

either of them may lower the CA. On the other hand, fragments

from both sides can be used.

Body size in different populations is subject to many different

factors, such as environment, genetics, and secular change (Albanese,

F IGURE 4 Left: Boxplot showing the individual classification rate in percent of different models used across all features. Right: Boxplot
showing the individual classification rate in percent of different models used across 12 features that had classification accuracy over 80%. Orange
lines represent median values, green dashed line represent mean values
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2008), which was confirmed when comparing different cremated

datasets with the one collected in this study (Cavazzuti et al., 2019;

Van Vark, 1975). Thus, the metric sexing methods developed on one

population may not be suitable to sex other populations, which is why

it is important to have an easily applicable protocol to establish

population-specific cut-off points, if the universal applicability cannot

be achieved. Once a metric dataset is obtained it can be tested using

the algorithms proposed. This provides a solid basis for sex estimation

in collections of unknown sex.

While the number of individuals in the studied dataset, especially

females, is relatively limited, it is one of the largest datasets that is cur-

rently available for cremations and its findings could be used to help with

identification of individuals of European ancestry from Southeast United-

States in forensic cases. There are different ways in which the applicabil-

ity of the method can be explored in future research in forensic as well as

archaeological contexts. Any metric dataset of known sex can be tested

with the protocol developed for this study and can thus produce refer-

ence datasets for metric sex estimation for similar populations. A dataset

with any number of features can be inserted in the Python script and run

any number of times to obtain population specific results, by following

the workflow in Data S2. Individuals (burnt or unburned) that can be con-

fidently sexed with morphological methods may be used as a reference

for more fragmented individuals and partially preserved individuals from

the same collection. Additional steps are required for the collections or

individuals for which reference populations are not available. Applying

chemosteometric indices, as suggested by Gonçalves et al. (2020), may

solve the problem with the level of shrinkage in cremations, since the

original (unburned) size of bones can be obtained and therefore unburned

reference collections could be used. This, however, involves an additional

step of FTIR analysis. The applicability of the method presented in this

study would be further enhanced by developing a user-friendly interface

where the potential of different combinations of features and algorithm

settings could be tested by scholars for reference skeletal datasets (burnt

or unburnt) relevant to the populations they want to assess.

5 | CONCLUSIONS

More than half of studied metric traits are highly sexually dimorphic,

which makes them suitable for improving sex estimation rates of highly

TABLE 5 Classification accuracy in percent for different combinations of two traits analyzed with logistic regression, random forest, and
neural network algorithms

Traits Model

Classification

accuracy
females

Classification

accuracy
males

Classification

accuracy
pooled

Classification
accuracy SD

Training
set N

Test
set N

Dens transverse, Dens

antero-posterior

Logistic regression 65.7 75.8 71.4 16.8 15 7

Random forest 52.7 78 67.1 14.6 15 7

Neural network 59 80 71 14.4 15 7

Humerus trochlea max.,

Patella thickness

Logistic regression 98.7 95.5 96.9 8.2 13 7

Random forest 99.7 97.5 98.4 5.7 13 7

Neural network 100 98.5 99.1 3.9 13 7

Humerus trochlea max.,

Talus trochlea length

Logistic regression 98.5 91.2 93.3 10.4 13 7

Random forest 100 97.4 98.1 5.2 13 7

Neural network 100 97.6 98.3 5.1 13 7

Humerus trochlea max.,

Femur head vertical

Logistic regression 83.3 98.2 93.2 9 15 9

Random forest 88 93.3 91.6 7.2 15 9

Neural network 87.7 88 87.9 9.4 15 9

Humerus trochlea min,

Internal acoustic

meatus

Logistic regression 71.6 80.6 76.6 8.6 37 16

Random forest 67.3 81.3 75.2 9 37 16

Neural network 69.3 87.7 79.6 9.6 37 16

Talus trochlea length,

Internal acoustic

meatus

Logistic regression 81.5 90.7 87 8.5 22 10

Random forest 82.5 88.8 86.3 9.7 22 10

Neural network 81.3 91.8 87.6 9.8 22 10

Patella thickness,

Internal acoustic

meatus

Logistic regression 66.8 89.5 80.4 11.5 20 10

Random forest 70.8 92 83.5 10.8 20 10

Neural network 73.3 94.2 85.8 8.7 20 10

Patella height, Patella

thickness

Logistic regression 65.3 84.6 77.4 13.2 14 8

Random forest 70 87.8 81.1 11.2 14 8

Neural network 70.3 88.8 81.9 10.7 14 8

Abbreviations: max., maximal; min., minimal; N, number of individuals; SD, standard deviation.
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fragmented and/or calcined individuals. Combinations of different traits

and predictive models showed the potential of raising the CA over 95%

for both sexes when using a multivariate machine learning approach. This

points to the utility of this protocol for the evaluation of the potential of

different combinations of traits for population specific sex estimation of

cremated human remains as proposed in this study. More research and

more data are now needed to further support these findings.

In future work, the emphases should lie on the measurement

standardization of certain traits with strong sexually dimorphic charac-

teristics that are complicated to measure to avoid measurement errors

and increase the choice of useful traits. Additionally, collecting large

quantities of metric data on different populations from different

periods and regions will give a better idea about the potential of dif-

ferent traits in different populations. Lastly, further increasing the

potential of multivariate statistics and different machine learning algo-

rithms for predicting sex is necessary to improve the possibilities of

sex estimation for highly fragmented and calcined human remains

from forensic as well as archaeological contexts.
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Congress Dedicated to Aleš Hrdlička, (pp. 561–568). Prague: Czecho-
slovak Academy of Science.

du Jardin, P., Ponsaillé, J., Alunni-Perret, V., & Quatrehomme, G. (2009). A

comparison between neural network and other metric methods to

determine sex from the upper femur in a modern French population.

Forensic Science International, 192, 127.e1–127.e6. https://doi.org/10.
1016/j.forsciint.2009.07.014

Floyd, E. N. (2017). Sex estimation utilizing dimensions from the occipital

bone, atlas and axis (Unpublished Master's thesis). Middle Tennessee

State University, Murfreesboro.

Gama, I., Navega, D., & Cunha, E. (2015). Sex estimation using the second

cervical vertebra: A morphometric analysis in a documented Portu-

guese skeletal sample. International Journal of Legal Medicine, 129,

365–372. https://doi.org/10.1007/s00414-014-1083-0
Gejvall, N. G. (1963). Cremations. In D. Brothwell & E. Higgs (Eds.), Science

in archaeology (pp. 468–479). London: Thames and Hudson.

Godinho, R. M., Oliveira-Santos, I., Pereira, M. F., Mauricio, A., Valera, A., &

Gonçalves, D. (2019). Is enamel the only reliable hard tissue for sex

metric estimation of burned skeletal remains in biological anthropol-

ogy? Journal of Archaeological Science: Reports, 26(June), 101876.

https://doi.org/10.1016/j.jasrep.2019.101876

Gonçalves, D. (2014). Evaluation of the effect of secular changes in the

reliability of osteometric methods for the sex estimation of Portuguese

individuals. Cadernos Do GEEvH, 3(1), 53–65.

Gonçalves, D., Campanacho, V., & Cardoso, H. F. V. (2011). Reliability of

the lateral angle of the internal auditory canal for sex determination of

subadult skeletal remains. Journal of Forensic and Legal Medicine, 18(3),

121–124. https://doi.org/10.1016/j.jflm.2011.01.008

Gonçalves, D., & Pires, A. E. (2017). Cremation under fire: A review of bio-

archaeological approaches from 1995 to 2015. Archaeological and

Anthropological Sciences, 9, 1677–1688. https://doi.org/10.1007/

s12520-016-0333-0

Gonçalves, D., Thompson, T. J. U., & Cunha, E. (2013). Osteometric sex deter-

mination of burned human skeletal remains. Journal of Forensic and Legal

Medicine, 20(7), 906–911. https://doi.org/10.1016/j.jflm.2013.07.003

Gonçalves, D., Vassalo, A. R., Makhoul, C., Piga, G., Mamede, A. P.,

Parker, S. F., Ferreira, M. T., Cunha, E., Marques, M. P. M., & Batista de

Carvahlo, L. A. E. (2020). Chemosteometric regression models of heat

exposed human bones to determine their pre-burnt metric dimensions.

American Journal of Physical Anthropology, 173(4), 734–747. https://
doi.org/10.1002/ajpa.24104

Gouveia, M. F., Oliveira Santos, I., Santos, A. L., & Gonçalves, D. (2017).

Sample-specific odontometric sex estimation: A method with potential

application to burned remains. Science and Justice, 57(4), 262–269.
https://doi.org/10.1016/j.scijus.2017.03.001

Graw,M.,Wahl, J., & Ahlbrecht, M. (2005). Course of the meatus acusticus inter-

nus as criterion for sex differentiation. Forensic Science International, 147(2-3

SPEC.ISS), 113–117. https://doi.org/10.1016/j.forsciint.2004.08.006
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning. Data mining, inference, and prediction. Springer Series in Statis-

tics, (2nd ed.). New York: Springer.

Holck, P. (1986). Cremated bones. Medical-anthropological study of an

archaeological material on cremation burials. In Antropologiske skrifter

nr. 1c. Anatomisk Institutt Universitetet.

Introna, F., Di Vella, G., & Campobasso, C. P. (1998). Sex determination by

discriminant analysis of patella measurements. Forensic Science Interna-

tional, 95, 39–45. https://doi.org/10.1016/S0379-0738(98)00080-2
Ishibashi, H., Takenoshita, Y., Ishibashi, K., & Oka, M. (1995). Age-related

changes in the human mandibular condyle: A morphologic, radiologic,

and histologic study. Journal of Oral and Maxillofacial Surgery, 53(9),

1016–1023. https://doi.org/10.1016/0278-2391(95)90117-5
Lyman, L. R., & Van Pool, T. L. (2009). Metric data in archaeology: A study of

intra-analyst and inter-analyst variation. Society for American Archaeol-

ogy, 74(3), 485–504. https://doi.org/10.1017/S0002731600048721
Lynnerup, N., Schulz, M., Madelung, A., & Graw, M. (2006). Diameter of

the human internal acoustic meatus and sex determination. Interna-

tional Journal of Osteoarchaeology, 16, 118–123. https://doi.org/10.
1002/oa.811

Mahakkanukrauh, P., Praneatpolgrang, S., Ruengdit, S., Singsuwan, P.,

Duangto, P., & Case, D. T. (2014). Sex estimation from the talus in a

Thai population. Forensic Science International, 240, 152.e1–152.e8.
https://doi.org/10.1016/j.forsciint.2014.04.001

Mall, G., Hubig, M., Büttner, A., Kuznik, J., Penning, R., & Graw, M. (2001).

Sex determination and estimation of stature from the long bones of

the arm. Forensic Science International, 117(1-2), 23–30. https://doi.
org/10.1016/S0379-0738(00)00445-X

Martin, R., & Saller, K. (1957). Lehrbuch der anthropologie, band I. Stuttgart:

Fischer.

Masotti, S., Pasini, A., & Gualdi-Russo, E. (2019). Sex determination in cre-

mated human remains using the lateral angle of the pars petrosa ossis

temporalis: Is old age a limiting factor ? Forensic Science, Medicine and

Pathology, 15, 392–398. https://doi.org/10.1007/s12024-019-

00131-4

Masotti, S., Succi-Leonelli, E., & Gualdi-Russo, E. (2013). Cremated human

remains: Is measurement of the lateral angle of the meatus acusticus

internus a reliable method of sex determination? International Journal

of Legal Medicine, 127(5), 1039–1044. https://doi.org/10.1007/

s00414-013-0822-y

16 HLAD ET AL.

https://doi.org/10.1520/jfs2004002
https://doi.org/10.1520/jfs12754j
https://doi.org/10.1520/jfs12754j
https://doi.org/10.1016/j.jflm.2019.01.004
https://doi.org/10.1016/j.jflm.2019.01.004
https://doi.org/10.1080/00293650902907151
https://doi.org/10.1080/00293650902907151
https://doi.org/10.1371/journal.pone.0209423
https://doi.org/10.1002/ajpa.1330590309
https://doi.org/10.1016/j.forsciint.2009.07.014
https://doi.org/10.1016/j.forsciint.2009.07.014
https://doi.org/10.1007/s00414-014-1083-0
https://doi.org/10.1016/j.jasrep.2019.101876
https://doi.org/10.1016/j.jflm.2011.01.008
https://doi.org/10.1007/s12520-016-0333-0
https://doi.org/10.1007/s12520-016-0333-0
https://doi.org/10.1016/j.jflm.2013.07.003
https://doi.org/10.1002/ajpa.24104
https://doi.org/10.1002/ajpa.24104
https://doi.org/10.1016/j.scijus.2017.03.001
https://doi.org/10.1016/j.forsciint.2004.08.006
https://doi.org/10.1016/S0379-0738(98)00080-2
https://doi.org/10.1016/0278-2391(95)90117-5
https://doi.org/10.1017/S0002731600048721
https://doi.org/10.1002/oa.811
https://doi.org/10.1002/oa.811
https://doi.org/10.1016/j.forsciint.2014.04.001
https://doi.org/10.1016/S0379-0738(00)00445-X
https://doi.org/10.1016/S0379-0738(00)00445-X
https://doi.org/10.1007/s12024-019-00131-4
https://doi.org/10.1007/s12024-019-00131-4
https://doi.org/10.1007/s00414-013-0822-y
https://doi.org/10.1007/s00414-013-0822-y


Mastrangelo, P., De Luca, S., Alemán, I., & Botella, M. C. (2011). Sex assess-

ment from the carpal bones: Discriminant function analysis in a 20th

century Spanish sample. Forensic Science International, 206(1-3), 216.

e1–216.e10. https://doi.org/10.1016/j.forsciint.2011.01.007
Mastrangelo, P., De Luca, S., & Sánchez-Mejorada, G. (2011). Sex assess-

ment from carpal bones: Discriminant function analysis in a contempo-

rary Mexican sample. Forensic Science International, 209(1-3), 196.

e1–196.e15. https://doi.org/10.1016/j.forsciint.2011.04.019
Mayne Correia, P., & Beattie, O. (2002). A critical look at methods for recover-

ing, evaluating, and interpreting cremated human remains. In W. D.

Haglund &M. H. Sorg (Eds.), Advances in forensic Taphonomy. Method, the-

ory and archaeological perspectives (pp. 436–449). CRC Press.

McKinley, J. I. (2016). Complexities of the ancient mortuary rite of cremation:

An Osteoarchaeological conundrum. In G. Grupe & G. C. McGlynn (Eds.),

Isotopic landscapes in bioarchaeology proceedings of the international

workshop “a critical look at the concept of isotopic landscapes and its

application in future bioarchaeological research”, Munich, October 13–15,
2014, (pp. 17–41). Heidelberg: Springer.

Navega, D., Vicente, R., Vieira, D. N., Ross, A. H., & Cunha, E. (2015). Sex

estimation from the tarsal bones in a Portuguese sample: A machine

learning approach. International Journal of Legal Medicine, 129(3),

651–659. https://doi.org/10.1007/s00414-014-1070-5
Oestigaard, T. (2013). Cremations in culture and cosmology. In L. Nilsson

Stutz & S. Tarlow (Eds.), The Oxford handbook of the archaeology of

death and burial (pp. 497–510). Oxford: Oxford University Press.

Oestigaard, T. (2016). Kremasjon. Etnografiske paralleller og arkeologiske

perspektiver. In K. Cassel (Ed.), Socioekonomisk mångfald. Ritualer och

urbanitet (pp. 65–77). Stockholm: Statens Historiska Museer.

Peckmann, T. R., & Fisher, B. (2018). Sex estimation from the patella in an

African American population. Journal of Forensic and Legal Medicine,

54, 1–7. https://doi.org/10.1016/j.jflm.2017.12.002

Phenice, T. W. (1969). A newly developed visual method of sexing the os

pubis. American Journal of Physical Anthropology, 30(2), 297–301.
https://doi.org/10.1002/ajpa.1330300214

Piontek, J. (1975). Polish methods and results of investigations of cre-

mated bones from prehistoric cemeteries. Glasnik Antropološkog
Društva Jugoslavije, 12, 23–34.

Piontek, J. (1976). Proces kremacji i jego wpływ na morfologię ko�sci w
�swietle wyników bada�n eksperymentalnych. Archeologia Polski, 21(1),

247–280.
Rösing, F. (1977). Methoden und Aussagemöglichkeiten der anthropologischen

Leichenbrandbearbeitung. Archäologie Und Naturwissenschaft, 1, 53–80.
Schutkowski, H., & Herrmann, B. (1983). Zur Möglichkeit der metrischen

Geschlechtsdiagnose an der Pars petrosa ossis temporalis. Zeitschrift für

Rechtsmedizin, 90(3), 219–227. https://doi.org/10.1007/BF02116233
Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth:

An experimental study of color, morphology, crystal structure and

shrinkage. Journal of Archaeological Science, 11(4), 307–325. https://
doi.org/10.1016/0305-4403(84)90013-X

Snoeck, C., Lee-Thorp, J., & Schulting, R. (2014). From bone to ash: Com-

positional and structural changes in burned modern and archaeological

bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 55–68.
https://doi.org/10.1016/j.palaeo.2014.08.002

Sulzmann, C. E., Buckberry, J. L., & Pastor, R. F. (2008). The utility of car-

pals for sex assessment: A preliminary study. American Journal of Physi-

cal Anthropology, 135, 252–262. https://doi.org/10.1002/ajpa.20738
Thompson, T. J. U. (2002). The assessment of sex in cremated individuals:

Some cautionary notes. Journal of the Canadian Society of Forensic Science,

35(2), 49–56. https://doi.org/10.1080/00085030.2002.10757535
Thompson, T. J. U. (2005). Heat-induced dimensional changes in bone and

their consequences for forensic anthropology. Journal of Forensic Sci-

ences, 50(5), 1–8. https://doi.org/10.1520/JFS2004297
Van Vark, G. N. (1975). The investigation of human cremated skeletal

material by multivariate statistical methods, II. Measures. Ossa. Interna-

tional Journal of Skeletal Research, 2, 47–68.
Veselka, B., Hlad, M., Steadman, D., Annaert, R., Boudin, M., Capuzzo, G.,

Dalle, S., Kontopulos, I., de Mulder, G., Sabaux, C., Salesse, K.,

Sengeløv, A., Stamataki, E., Vercauteren, M., Tys, D., & Snoeck, C.

(2020). Estimation age-at-death in burnt adult human remains using

the Falys-Prangel method. American Journal of Physical Anthropology,

Early view. https://doi.org/10.1002/ajpa.24210

Veselka, B., & Lemmers, S. A. M. L. (2014). Deliberate selective deposition

of iron age cremations from Oosterhout (prov. Noord-Brabant, The

Netherlands): A ‘pars pro toto’ burial ritual. Lunula, Archaeologia Pro-

tohistorica, 22, 151–158.
Wahl, J. (1996). Erfahrungen zur metrischen geschlechtsdiagnose bei

leichenbränden. HOMO- Journal of Comparative Human Biology, 47

(1–3), 339–359.
Welinder, S. (1989). An experiment with the analysis of sex and gender of

cremated bones. Tor, 22, 29–41.
Williams, H. (2008). Towards an archaeology of cremation. In C. W.

Schmidt & S. A. Symes (Eds.), The analysis of burned human remains

(pp. 239–269). London: Academic Press. https://doi.org/10.1016/

B978-012372510-3.50017-4

Workshop of European Anthropologists. (1980). Recommendations for

age and sex diagnoses of skeletons. Journal of Human Evolution, 9(7),

517–549. https://doi.org/10.1016/0047-2484(80)90061-5

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Hlad M, Veselka B, Steadman DW,

et al. Revisiting metric sex estimation of burnt human remains

via supervised learning using a reference collection of modern

identified cremated individuals (Knoxville, USA). Am J Phys

Anthropol. 2021;1–17. https://doi.org/10.1002/ajpa.24270

HLAD ET AL. 17

https://doi.org/10.1016/j.forsciint.2011.01.007
https://doi.org/10.1016/j.forsciint.2011.04.019
https://doi.org/10.1007/s00414-014-1070-5
https://doi.org/10.1016/j.jflm.2017.12.002
https://doi.org/10.1002/ajpa.1330300214
https://doi.org/10.1007/BF02116233
https://doi.org/10.1016/0305-4403(84)90013-X
https://doi.org/10.1016/0305-4403(84)90013-X
https://doi.org/10.1016/j.palaeo.2014.08.002
https://doi.org/10.1002/ajpa.20738
https://doi.org/10.1080/00085030.2002.10757535
https://doi.org/10.1520/JFS2004297
https://doi.org/10.1002/ajpa.24210
https://doi.org/10.1016/B978-012372510-3.50017-4
https://doi.org/10.1016/B978-012372510-3.50017-4
https://doi.org/10.1016/0047-2484(80)90061-5
https://doi.org/10.1002/ajpa.24270

	Revisiting metric sex estimation of burnt human remains via supervised learning using a reference collection of modern iden...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	3  RESULTS
	3.1  Sex estimation-Univariate
	3.2  Sex estimation-Multivariate

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	  AUTHOR CONTRIBUTIONS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


