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A B S T R A C T   

The Aha! moment– the sudden insight sometimes reached when solving a vexing problem– entails a different 
problem-solving experience than solution retrieval reached by an analytical, multistep strategy (i.e., non- 
insight). To date, the (un)conscious nature of insight remains debated. We addressed this by studying insight 
under cognitive load. If insight and non-insight problem solving rely on conscious, effortful processes, they 
should both be influenced by a concurrent cognitive load. However, if unconscious processes characterize 
insight, cognitive load might not affect it at all. Using a dual-task paradigm, young, healthy adults (N = 106) 
solved 70 word puzzles under different cognitive loads. We confirmed that insight solutions were more often 
correct and received higher solution confidence. Importantly, as cognitive load increased, non-insight solutions 
became less frequent and required more solution time, whereas insightful ones remained mostly unaffected. This 
implies that insight problem solving did not compete for limited cognitive resources.   

1. Introduction 

The “Aha! experience” — that moment when the solution to a vexing 
problem suddenly pops into consciousness — has mesmerized scientists 
and laymen alike (Bowden & Grunewald, 2018; Chein & Weisberg, 
2014). Scientifically, this singular subjective experience is referred to as 
insight (Bowden & Grunewald, 2018). While insight is not rare, most 
problem-solving involves a multistep analytical strategy (Simon & 
Newell, 1970; Weisberg, 2015) through which the problem solver 
searches long-term memory for potential algorithms, schemas, analogies 
or factual knowledge. This process is referred to as analysis or non-insight 
(e.g., Bowden, Jung-Beeman, Fleck, & Kounios, 2005; Fleck & Weisberg, 
2013). It requires the problem solver to monitor his/her progress while 
maintaining the mental representation of the problem and avoiding 
being distracted by irrelevant information (see Shipstead, Harrison, & 
Engle, 2016; Wiley & Jarosz, 2012, for a review). 

In contrast to insight, which feels effortless, non-insight solution- 
finding relies on continuous, effortful processing (e.g., Metcalfe & 
Wiebe, 1987). The difference between effortless and effortful processing 
also forms the core of dual-processing theories (Evans & Stanovich, 
2013; Gilhooly, Ball, & Macchi, 2015; Sowden, Pringle, & Gabora, 
2015). In such theories, Type 1 processes are assumed to be unconscious, 

effortless, and not limited by working memory (WM) limits. Type 2 
processes, on the other hand, are taken to be conscious, effortful, and 
constrained by WM limits (Evans, 2019; Evans & Stanovich, 2013). For 
example, it has been shown that if participants have to make judgments 
while also performing an unrelated secondary task known to deplete 
cognitive resources, intuition-based judgments (Type 1) mainly stay 
unaffected, but deliberate-thought-based judgments are hampered 
(Type 2; De Neys, 2006; Howarth, Handley, & Walsh, 2016). This 
observation indicates that Type 1 processes are relatively independent of 
the cognitive resources needed to consciously manipulate information, 
whereas Type 2 processes depend more on cognitive resources (see 
Evans, 2019 for a review). Although it is intuitively appealing to 
consider insight resulting from Type 1 and non-insight from Type 2 
processes, this is not a widely held claim (Benedek & Fink, 2019). For 
instance, Weisberg (2015) argues that insight, just like non-insight, 
mostly relies on the same effortful (Type 2) processes to retrieve a 
solution. 

Can the conception of Type 1 and Type 2 processes proposed in dual- 
processing theories be translated to insight and non-insight problem 
solving? Dual-processing theories depart from a default-interventionist 
model (Evans, 2019; but also see De Neys, 2021; Mega & Volz, 2014). 
Type 1 processes entail default, automatic intuition-based responses 
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resulting from automated processes (e.g., locating sounds), stereotypes, 
beliefs, or automated skills (e.g., reading; Howarth et al., 2016). 
Therefore, these intuition-based responses have been regarded as heu
ristically driven, helping humans to navigate life efficiently (e.g., 
mindlessly driving to work; Kahneman, 2011). However, sometimes 
cues in the environment can erroneously trigger an intuition-based 
response (e.g., stereotype-based judgments), defying the logic of the 
task at hand (De Neys & Pennycook, 2019). In such cases, it has been 
found that humans tend to make wrong intuition-based choices by 
failing to override them by deliberate thought (Type 2) to solve the task 
(Frey, Johnson, & De Neys, 2018). Humans often opt for the path of least 
resistance and follow their error-prone intuitions by default, even 
though these can be wrong (Evans, 2019). 

At first sight, the conception that Type 1 processes lead to error- 
prone intuitions seems perpendicular to how insight solutions have 
been perceived. For instance, Salvi, Bricolo, Kounios, Bowden, and 
Jung-Beeman (2016) showed across different types of problems that 
insight solutions were more often correct than non-insightful ones. 
Numerous other studies have corroborated this higher solution-accuracy 
effect of insight (e.g., Danek, Fraps, von Müller, Grothe, & Öllinger, 
2014; Hedne, Norman, & Metcalfe, 2016; Webb, Little, & Cropper, 
2016). However, the role of intuitive, yet error-prone, Type 1 processes 
might be different for different phases of the insightful solution search 
(Zander, Öllinger, & Volz, 2016). 

Consistent with representational change theory on insight (Ohlsson, 
1992, 2011), heuristically driven intuitions (Type 1) might initially 
mislead the problem solver to an ill-defined problem representation, 
similar to what is proposed in dual-processing theories (Zander et al., 
2016). This ill-defined problem representation leads the problem solver 
astray as content activated from semantic memory will inevitably be 
insufficient to solve the problem, leading to an impasse (Öllinger & von 
Müller, 2017). This impasse serves a pivotal function as it propagates 
negative feedback through the information processing system, hereby 
decreasing the activation level of the ill-defined problem representation 
and redistributing the unconscious spreading of activation to more 
remote, yet unnoticed concepts in semantic memory (Ohlsson, 2011; 
Öllinger & von Müller, 2017). When this spread of activation converges 
on the vital concept needed to rectify the initial erroneous problem 
representation, the solution pops into consciousness as the complete 
solution path is revealed all at once (i.e., restructuring; Bowden, 1997; 
Ohlsson, 2011; Öllinger & von Müller, 2017). At this final stage, it is 
assumed that the problem solver is consciously puzzled but unaware of 
the unfolding spreading of activation through semantic memory (Ohls
son, 2011). Recently, it has been argued that the problem solver uses the 
Aha! phenomenology (i.e., positive affect, surprise, obviousness, high 
confidence) as a heuristic that signals the quality of a solution emerging 
from the unconscious (Laukkonen, Webb, Salvi, Tangen, & Schooler, 
2018). For example, Laukkonen, Kaveladze, Tangen, and Schooler 
(2020) found that false statements judged on their veracity are consid
ered more true when linked with an Aha! experience than when judged 
without it (see also Laukkonen, Ingledew, Grimmer, Schooler, & Tan
gen, 2021). In that sense, Type 1 processes play a double part in insight 
problem-solving: although they may mislead the problem solver at first, 
in the end, they signal the quality of the solution surfacing from the 
unconscious via an Aha-heuristic (Laukkonen et al., 2018; Zander et al., 
2016). This idea corresponds with recent research showing that Type 1 
processes can culminate into accurate logic-driven intuitions (Bago & De 
Neys, 2019, see also Bowers, Regehr, Balthazard, & Parker, 1990) and 
experts’ intuitions that can be dead right (see Salas, Rosen, & Dia
zGranados, 2010, for a review). These observations indicate that the 
error-proneness of Type 1 intuitions do not need to be irreconcilable 
with insight’s high accuracy, and that Type 1 and Type 2 processes are 
useful concepts when thinking about insight and non-insight problem 
solving, respectively. 

However, not all insight theorists agree with these assumptions 
(Benedek & Fink, 2019, Weisberg, 2015, 2018, see also Chater, 2018). 

Weisberg (2015) assumes that effortful Type 2 processes mainly domi
nate both insight and non-insight solution finding. Insight is assumed to 
arise via the problem solver’s ability to capitalize on repeated failures to 
find the solution non-insightfully. The repeated failures bring forth new 
information to work with, guiding the solution search to new, promising 
directions that unveil ill-held assumptions about the problem. Once 
these ill-held assumptions are rectified (i.e., restructuring), the complete 
solution path is revealed all at once, and the solution is found with 
insight. Although Weisberg (2015) argued that insight might also be 
achieved via unconscious processes, he perceived this as a rare phe
nomenon (Weisberg, 2018). 

As the above-theoretical views indicate, the debate concerning in
sight’s (un)conscious nature is not settled yet. One way of debunking 
whether insight relies on cognitive resources is by assessing how WM 
relates to insight and non-insight problem solving (e.g., DeCaro, Van 
Stockum, & Wieth, 2016). WM is considered a central processing hub 
where information is shortly stored and updated to cope with ongoing 
task demands (Baddeley, 1986; Shipstead et al., 2016); executive func
tions associated with problem solving (e.g., Cooper & Marsh, 2015; De 
Neys, 2006). The capacity of WM is limited (Cowan, 2010). Some have 
defined this limited capacity in terms of the number of informational 
chunks that can be hold in the scope of attention (for a review, see 
Cowan, 2010; Oberauer, Farrell, Jarrold, & Lewandowsky, 2016), 
whereas others have conceived it as being more closely related to the 
limits of attentional control processes (e.g., filtering efficiency; see 
Oberauer, 2019, for an overview). 

Thus, WM capacity imposes limits to our ability to maintain and 
update the mental representations of a problem (Shipstead et al., 2016; 
Wiley & Jarosz, 2012). Such limits should then clearly influence one’s 
ability to solve complex, multistep problems through non-insight. But 
what about Insight? If insight is indeed associated with unconscious, 
Type 1 processes, it should not be bound by the limits of WM capacity 
(Fleck, 2008; Gilhooly & Fioratou, 2009). However, if it depends on 
conscious, effortful Type 2 processes, it should also be constrained by 
WM capacity limitations (Chein & Weisberg, 2014; Chuderski & Jastr
zebski, 2018). One way of testing these assumptions consists of using a 
dual-task paradigm where participants are asked to perform a primary 
problem-solving task while concurrently executing a secondary WM task 
(e.g., retaining a series of digits; De Dreu, Nijstad, Baas, Wolsink, & 
Roskes, 2012). Loading WM in such a way should therefore decrease its 
capacity and hence its availability to executive functions. Thus, if the 
primary task also involves WM, then concurrently executing the WM 
task should hamper performance on the primary task (e.g., Camarda 
et al., 2018). In contrast, if the primary task does not tax WM, then 
concurrently executing a WM task should not impact performance (e.g., 
Abadie, Waroquier, & Terrier, 2013). 

A few studies have already explored the role of WM in problem 
solving. Lavric, Forstmeier, and Rippon (2000) presented participants 
with classical insight and non-insight problems. Single- and dual-task 
conditions were created by adding a concurrent tone-counting task for 
some participants but not for others. The insight problems were 
correctly solved by a comparable number of participants in both con
ditions. However, the non-insight problems were correctly solved by a 
larger number of participants in the single-task conditions, as compared 
to the dual-task condition. This finding is consistent with the assumption 
that insight, unlike non-insight, depends on Type 1 processes. While 
other studies have found similar results (e.g., Korovkin & Savinova, 
2014; Korovkin, Vladimirov, Chistopolskaya, & Savinova, 2018), De 
Dreu et al. (2012), however, found that the number of correctly solved 
insight problems decreased as the concurrent WM load increased. The 
authors concluded that insight problem solving depends on WM and 
hence competes for limited WM capacity. This study and other studies 
(see also Lin & Lien, 2013; Wieth & Burns, 2014 for similar results) 
suggests that insight, like non-insight, relies on Type 2 processes. 

The inconclusive nature of these findings might originate from their 
dependence on classical insight and non-insight problems and on the 
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assumption that these problems reliably index insight and non-insight, 
respectively. However, these two types of problems are very different, 
making it difficult to draw strong conclusions based on their comparison 
(Bowden & Jung-Beeman, 2007; Webb et al., 2016). Moreover, it has 
been shown that insight problems are sometimes solved with non- 
insight and non-insight problems with insight (Danek, Wiley, & 
Öllinger, 2016; Webb et al., 2016). Therefore, studies using classical 
insight problems without a non-insight comparison group might have 
yielded confounding results (e.g., De Dreu et al., 2012). These findings 
indicate that insight and non-insight problem solving are difficult to pin 
down in a specific problem type. Therefore, some have suggested that 
the problem solver is the most designated person to decide how a so
lution was found because what sets insight apart from non-insight re
sides in the problem solver’s phenomenology rather than the nature of 
the problem type (see Bowden & Grunewald, 2018). 

To address these issues, researchers have developed problem types 
that have an almost equal likelihood of being solved with insight and 
non-insight, keeping the type of problems constant across both solution 
types. For example, in the compound remote associates test (CRA; 
Bowden & Jung-Beeman, 2003), participants receive three cue words 
(break/bean/cake) on each trial and are requested to search for a fourth 
compound solution word (coffee break/coffee bean/coffee cake). After 
each solved CRA trial, participants indicate whether they solved the 
problem with insight or non-insight based on their subjective, solution- 
finding experience (e.g., Salvi, Simoncini, Grafman, & Jung-Beeman, 
2020). 

However, this procedure to classify insight and non-insight solutions 
based on the participant’s subjective report has not been without 
critique (Danek & Salvi, 2018; Laukkonen et al., 2021). The finding that 
insight solutions are more often correct, receive higher solution confi
dence, and are solved faster than non-insightful ones (e.g., Cranford & 
Moss, 2012; Hedne et al., 2016) raises the question if those behavioral or 
phenomenological indices do not bias the retrospective insight classifi
cation. However, strong correspondence has been observed between 
participants’ self-reported insights and physiological indices of insight 
(i.e., participants’ squeeze strength on a dynamometer upon solving a 
problem; Laukkonen et al., 2021). Moreover, subjective self-reports of 
insight have been associated with distinct brain-pattern activation (i.e., 
activation burst across right temporal lobe; see Kounios & Jung-Beeman, 
2014), physiological responses (i.e., increased skin conductance, heart 
rate, and pupil dilation; Salvi et al., 2020; Shen et al., 2017), and 
phenomenological qualia (feelings of happiness and relief; Stuyck, Aben, 
Cleeremans, & Van den Bussche, 2021). This body of research provides 
additional support for the validity of self-reports to study insight and 
non-insight problem solving. 

In the current study, we, therefore, used a problem type (the CRA) 
that can be solved with insight and non-insight, which was determined 
based on participants’ self-reports. We manipulated WM load by 
creating no-load, low-load, and high-load conditions. As non-insight 
problem solving is expected to be an effortful, conscious, Type 2 pro
cess, we predicted a detrimental influence of WM load on the perfor
mance of the problems solved with non-insight. If insight problem 
solving relies on an automatic, unconscious, Type 1 process, it should 
not be influenced by WM load. However, if insight relies on WM in the 
same way as non-insight, it should be impacted similarly by the WM 
load. 

2. Method 

2.1. Participants 

A convenience sample of 106 psychology undergraduates of the KU 
Leuven participated in this study. They received course credit for their 
participation. The data of one participant were excluded due to issues 
with data acquisition. The final sample consisted of 105 participants, of 
which 91 were female. The mean age was 18 years (SD = 0.72, range 

17–23). All participants had normal or corrected-to-normal vision. 
Ninety-eight participants had Dutch as their mother tongue, and seven 
were bilingual, with Dutch as their second language. We randomly 
assigned 30 participants to the no-load condition, 35 to the low-load 
condition, and 40 to the high-load condition. Before the start of the 
experiment, all participants provided written informed consent. The 
Social and Societal Ethics Committee of the KU Leuven approved the 
study (i.e., approval code G- 2018 10 1368). 

Given the lack of previous studies using a dual-task paradigm with 
the CRA to study insight and using generalized linear mixed models 
analyses, we used the average effect size found in previous dual-task 
studies on insight to make a well-informed estimate of our required 
sample size. In previous dual-task studies, an average cohen’s d effect 
size has been reported of 0.68 for solution time on the secondary task 
and 0.62 for the number of correctly solved problems as a function of 
solution type and working memory load (Korovkin et al., 2018; Lavric 
et al., 2000). Regarding solution accuracy and solution confidence, we 
could not extract cohen’s d effect sizes due to a lack of previous data. 
Therefore, we a priori assumed a cohen’s d effect size of 0.4, generally 
considered a valid effect size in the research field of cognitive psychol
ogy (Brysbaert & Stevens, 2018). Given those medium-to-large effect 
sizes, we considered the current sample size as sufficient to detect effects 
with comparable size with a statistical power of 80%. 

2.2. Material 

This study used the Dutch version of the compound remote associates 
test (see https://osf.io/snb3k/ for the Dutch CRA and selection pro
cedure; Stuyck et al., 2021). The CRA consists of word puzzles that can 
be solved both with insight and non-insight. On each trial, participants 
are presented with three cue words (e.g., artist, hatch, route) for which 
they have to find a fourth compound solution word that they can attach 
to each of these three cue words (e.g., escape artist, escape hatch, escape 
route). Participants received 75 CRA trials, of which five were practice 
trials. The three cue words of the CRA and a question mark were always 
shown in vertical alignment at the center of a black screen (i.e., the 
upper word was placed at 25% of the screen’s y-axis, each other word 
and finally the question mark were spaced with an additional 15% on 
that same axis). They were presented in white, in “Courier New” font 
with point size 18 and in bold typeface. 

In the low-load and high-load conditions, participants additionally 
had to perform a WM task while solving the word puzzles. Similar to De 
Dreu et al. (2012), we asked participants to retain two digits in the low- 
load (e.g., 24) and four digits in the high-load (e.g., 9861) condition. 
Each two- or four-digit combination was unique and selected randomly. 
These digit combinations never contained zero or a duplication of a digit 
(e.g., 33 or 1244). Participants had to recall the digits in any order. In the 
high-load condition, performance on the WM task was deemed accurate 
if three-out-of-four digits were recalled correctly. The digits were always 
presented sequentially, in white at the center of a black screen, in 
“Courier New” font with point size 25 and in bold typeface. 

2.3. Equipment 

We tested participants in groups of maximum 12. They were seated 
at an individual computer in a quiet, daylight illuminated computer 
room. Sufficient space was created between participants so that they 
could not see each other’s screen. The experiment was programmed with 
E-prime 2.0 (Psychology Software Tools; Schneider, Eschman, & Zuc
colotto, 2002). For more technical information about the equipment, see 
https://osf.io/sc5n7/; www.pstnet.com. 

2.4. Procedure 

Fig. 1 depicts an example of a CRA trial in the low-load condition. 
Participants initiated each trial by pressing the spacebar. In the no-load 
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condition, a fixation cross appeared at the center of the screen for 2 s. 
Subsequently, the CRA word puzzle was presented for a maximum of 
25 s. In the right upper corner of the screen, a countdown timer was 
presented. If the participants found the answer, they were instructed to 
press the spacebar as quickly as possible. They then received a screen 
prompting them to type in their solution. There was a time limit of 10s to 
type in their answer. After providing their answer, participants had to 
indicate their solution confidence (i.e., “please indicate on the scale 
below how confident you are in your solution?”) by selecting a position 
on a horizontal visual analog scale with the cursor of their mouse within 
a time limit of 30s. This scale gradually changed from red (i.e., low 
confidence = 0) to green (i.e., high confidence = 100). The cursor of the 
mouse always started at the center of the scale. Next, participants had to 
indicate whether they had found the solution with insight, with non- 
insight or with another strategy by typing the number one, two, or 
three, respectively, without a time limit. During the instructions, par
ticipants had received the definition of each solution type based on 
previous studies on insight to ensure that participants clearly under
stood what each solution type entailed (see Appendix A; Danek et al., 
2014; Hedne et al., 2016; Jung-Beeman et al., 2004). Moreover, in
structions regarding the solution confidence rating were decoupled from 
the instructions of solution type (see Hedne et al., 2016, for a similar 
procedure) to reduce the likelihood that participants used solution 
confidence as a criterion to make the insight/non-insight classification. 
Participants of the no-load condition automatically continued to the 
next trial after indicating the solution type. If participants could not 
solve the CRA word puzzle within the allotted time, they automatically 
proceeded to the next trial. We presented the participants with five 
practice trials and 70 experimental trials, both in random order. After 

solving half of the experimental trials, a break was provided. 
In the dual-task conditions, the procedure was identical, except for the 

following additions. Before each trial, participants were reminded that 
they first had to perform the WM task. This WM task’s digits were then 
presented sequentially at a pace of 1.5 s per digit (i.e., low-load = two 
digits; high-load = four digits). After solving a word puzzle, participants 
were prompted to type in the digits that had to be remembered on that 
trial. There was no time limit to perform the WM task. 

2.5. Statistical analysis 

For the statistical analysis, we only used the word puzzles that were 
solved with insight or non-insight. The third option, “another strategy”, 
was excluded because it did not contain any information concerning the 
solution types. This omission led to the exclusion of 276 word puzzles 
out of the 4780 solved word puzzles. Furthermore, we only included 
solved CRA trials where the performance on the WM task was correct. 
This to ensure that participants were jointly performing both tasks 
adequately. Consequently, 315 solved CRA trials in the low-load and 
431 in the high-load condition were excluded. The hypotheses and 
statistical analyses of this experiment were preregistered on the OSF 
platform (https://osf.io/2v9yz). Deviations from this preregistration 
can be found in Table 1 of Appendix B. All data and program code (R 
code and E-prime) were placed on the OSF platform (https://osf. 
io/sc5n7/). 

To analyze the data, we used three (generalized) linear mixed models 
(i.e., [G]LMM) and one generalized linear model (GLM) with solution 
type (within-subject variable with two levels: insight and non-insight), 
WM load (between-subject variable with three levels: no-load, low- 

Fig. 1. Example of a CRA trial for the low-load condition. In the high-load condition, participants received four digits instead of two. In the no-load condition, there 
was no WM task. The solution to this word puzzle is “clock”. 
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load and high-load) and their interaction term as fixed effects. A first 
LMM contained the log-transformed solution time (to accommodate the 
non-normality) of the correctly solved word puzzles as a continuous 
outcome variable (Gaussian error distribution; Baayen & Milin, 2010). A 
second GLMM contained solution accuracy (i.e., 0 = incorrect and 
1 = correct) as a binary outcome variable (Binomial error distribution; 
Sommet & Morselli, 2017). A third GLMM contained solution confidence 
of the correctly solved word puzzles as a bounded outcome variable (i.e., 
transformed range .0050 to .9950; see Smithson & Verkuilen, 2006; 
Verkuilen & Smithson, 2012; Xu, Samtani, Yuan, & Nandy, 2014 for an 
in-depth explanation). To analyze the number of correctly solved word 
puzzles, the data were aggregated per participant into one observation 
for insight and one for non-insight per participant. This aggregated data 
had no trial-by-trial variation, contrary to the previous outcome vari
ables. Hence, a GLMM with a complex random structure was unsup
ported (see Bates, Kliegl, Vasishth, & Baayen, 2018; Matuschek, Kliegl, 
Vasishth, Baayen, & Bates, 2017) and a generalized linear model (GLM) 
was used containing the number of correctly solved word puzzles as a 
count outcome variable (Negative Binomial error distribution; Gardner, 
Mulvey, & Shaw, 1995). To account for the non-independence of the 
data (i.e., two observations clustered within each participant), robust 
standard errors were used (for an in-depth explanation, see Zeileis, Köll, 
& Graham, 2020). The statistical significance of the fixed effects for the 
LMM was obtained by using the Satterthwaite approximation method. 
The Wald test assessed the statistical significance of the fixed effects of 
the GLMMs and the GLM. 

The advantage of using (G)LMM is that participants and word puz
zles can be treated as crossed random effects, thereby taking by- 
participant and by-word puzzle variations into account (Baayen, 
Davidson, & Bates, 2008). We included random intercepts for partici
pants and word puzzles in all the (G)LMMs. Furthermore, using (G) 
LMMs, the data analysis can be performed at the observational level 
without the need to aggregate outcome variables by-participants or by- 
word puzzles (e.g., Judd, Westfall, & Kenny, 2012). All estimated 
models (i.e., the(G)LMMs and GLM) are provided in Appendix C. 

The predictor variables solution type and WM load consist of discrete 
levels, namely two and three levels. Therefore we applied sum coding to 
set the contrasts for each estimated model (i.e., orthogonal contrasts; see 
Schad, Vasishth, Hohenstein, & Kliegl, 2020 for an in-depth explana
tion). Using sum coding to set the contrasts, it is possible to assess each 
estimated model’s main effects and interaction effects in the same vein 
as is done in an ANOVA (see Levy, 2018, for an in-depth explanation). 
We examined the main effects and the interaction effect for each esti
mated model by comparing the full model, including all fixed effects, to 
three reduced models. Each reduced model excluded either one of the 
main effects (e.g., solution type or WM load) or the interaction effect. 
Subsequently, a likelihood ratio test for the (G)LMM (χ2) and a Wald test 
for the GLM (χ2) were used to measure if the full model explains more 
residual variance than the reduced models. Hence, finding a statistically 
significant effect implied a main effect or an interaction effect (Levy, 
2018; Zeileis & Hothorn, 2002). 

To explain the significant main and interaction effects of the esti
mated models, we used post-hoc tests. The post-hoc tests derive the 
estimated marginal means from each estimated model. In the case of a 
main effect, a pairwise contrast is made for either solution type (insight 
vs. non-insight) or WM load (all possible pairwise combinations) based 
on the estimated marginal means. If an estimated model contained an 
interaction effect, pairwise contrasts of the estimated marginal means 
for the three levels of WM load were made conditional on the solution 
types (i.e., no-load vs. low-load; no-load vs. high-load; low-load vs. high- 
load within insight and non-insight). The Tukey method was used to 
adjust for multiple comparisons. Cohen’s d effect sizes are reported for 
significant pairwise contrasts. We interpreted the cohen’s d effect size as 
follows: 0–0.09 = negligible, 0.10–0.30 = small, 0.31–0.39 = small-to- 
medium, 0.40–0.60 =medium, 0.61–0.69 =medium-to-large, and 
above 0.70 = large (see Pliatsikas et al., 2019 for a similar procedure). 

We used the open-source R language and environment to perform 
statistical analysis (R Core Team, 2020). The (G)LMMs on solution time 
and solution accuracy were built with the lme4 package (Bates, Mächler, 
Bolker, & Walker, 2015). The GLMM on solution confidence was built 
with the glmmTMB package (Brooks et al., 2017). The GLM on the 
number of correctly solved word puzzles was built with the MASS 
package (Venables & Ripley, 2002), and its robust standard errors were 
obtained with the Sandwich package (Zeileis et al., 2020). Post-hoc tests 
were performed with the emmeans package (Lenth, 2020). 

2.6. Secondary analysis 

A concern related to self-reports for the insight/non-insight classifi
cation is that participants might report having solved a word puzzle with 
insight because they found the solution quickly. It has been argued that 
such solutions result from immediate recognition of the solution rather 
than a problem-solving process (Cranford & Moss, 2012). Therefore, we 
performed a secondary analysis. In this secondary analysis, we reran the 
estimated models with the responses provided within the two first sec
onds excluded (see Salvi et al., 2020, for a similar procedure). This 
exclusion criterium led to the additional omission of 56 observations, of 
which 50 were correctly solved word puzzles. Under the assumption that 
participant’s self-reported insight solutions are independent of these 
immediately recognized solutions, we expected to find a similar pattern 
of results for all estimated models when responses provided within the 
first two seconds are excluded. These results are presented in Appendix D. 

3. Results 

After excluding word puzzles solved with “another strategy” 
(N = 276), with an incorrect solution of the WM task (low-load = 315 
and high-load 431), and with an incorrect CRA solution (N = 664), the 
final sample of correctly solved word puzzles was 3094. Based on this 
final sample, the average number of correctly solved word puzzles with 
insight was 18 (SD = 9, range 1–40) and 12 with non-insight (SD = 9, 
range 1–39).1 The descriptive statistics of the outcome variables and the 
total number of solved word puzzles are depicted in Table 1. 

3.1. Solution time 

An LMM was constructed with the (log-transformed) solution time of 
the correctly solved word puzzles as the outcome variable and solution 
type (two levels: insight and non-insight), WM load (three levels: no- 
load, low-load, and high-load) and their interaction term as fixed ef
fects (see Table 1 in Appendix C for an overview). There was a signifi
cant main effect of solution type, χ2(1) = 15.25, p < .001. Word puzzles 
solved with insight (M = 3.82) were solved significantly faster than 
those solved with non-insight (M = 3.86), t(2935) = − 3.91, p < .001, 
Cohen’s d = 0.17 (95% CI [0.08, 0.25). There was also a trend towards 
an interaction effect, χ2(2) = 5.82, p = .055. Post-hoc tests showed no 
significant differences between the three levels of WM load for insight 
(no-load vs. low-load, p = .889; no-load vs. high-load, p = .523 and low- 

1 The participant sample was not balanced for biological sex with 91 females 
and 14 males. To exclude any influence of biological sex on our results, we 
reconducted all statistical analysis with biological sex as covariate included in 
each estimated model. The pattern of results remained similar as well as the 
direction of the effects. For solution time, only a main effect of solution type 
(p < .001) was found and a trend towards an interaction effect (p = .06). For 
solution accuracy and solution confidence there only was a main effect of so
lution type (p < .001 and p < .001, respectively). For the number of correctly 
solved word puzzles, there was a main effect of solution type (p < .001), WM 
load (p = .001) and a significant interaction effect (p = .006). Therefore, we 
contend that the effect of biological sex is likely to be minimal (see also Wieth & 
Burns, 2006). 
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load vs. high load, p = .802). A similar pattern of results was found for 
non-insight (no-load vs. low-load, p = .791; no-load vs. high-load, 
p = .677 and low-load vs. high load, p = .303). To clarify the interac
tion effect, pairwise comparisons were performed for the solution types 
conditional on the three levels of WM load. These post-hoc tests showed 
that only in the high-load condition, word puzzles solved with insight 
were solved significantly faster than word puzzles solved with non- 
insight (M = 3.80 versus M = 3.88), t(2897) = − 4.10 p < .001, Cohen’s 
d = 0.32 (95% CI [0.16, 0.47]). This was not the case in the no- and low- 
load conditions (p = .131 and p = .261). This result is depicted in Fig. 2. 

3.2. Solution accuracy 

Likewise, a GLMM was constructed with solution accuracy as a bi
nary outcome variable (see Table 2 in Appendix C for an overview). 
There was a significant main effect of solution type, χ2(1) = 197.13, 
p < .001. Word puzzles solved with insight had a significantly higher 
probability of being correct than word puzzles solved with non-insight 
(M = 94% versus M = 77%), Z = 13.47, p < .001, Cohen’s d = − 1.57 
(95% CI [− 1.8, − 1.34]). The main effect of WM load and the interaction 
effect were not significant, p = .146 and p = .337, respectively. 

3.3. Solution confidence 

Similarly, a GLMM was constructed with solution confidence of the 
correctly solved word puzzles as a bounded outcome variable (range 

.005–.995; see Table 3 in Appendix C for an overview). There was a 
significant main effect of solution type, χ2(1) = 243.82, p < .001. The 
word puzzles solved with insight received significantly higher solution 
confidence than word puzzles solved with non-insight (M = .79 versus 
M = .66), t(3085) = 15.96, p < .001, Cohen’s d = − 0.15 (95% CI [− 0.17, 
− 0.13]). The main effect of WM load and the interaction effect were not 
significant, p = .085 and p = .605, respectively. 

3.4. The number of correctly solved word puzzles 

Lastly, a GLM was built with the number of correctly solved word 
puzzles as a count outcome variable (see Table 4 in Appendix C for an 
overview).2 There was a significant main effect of solution type, 
χ2(3) = 27.29, p < .001. Correctly solved word puzzles were more 
frequent for insight than non-insight (M = 18.0 versus M = 11.4), 
Z = 5.04, p < .001, Cohen’s d = − 0.43 (95% CI [− 0.60, − 0.26]). Also, a 
main effect of WM load was observed, χ2(4) = 18.10, p = .001. Post-hoc 
tests demonstrated that correctly solved word puzzles were more 
frequent in the no-load than in the high-load condition (M = 16.7 versus 
M = 12.3), Z = − 2.73, p = .018, Cohen’s d = 0.29 (95% CI [0.08, 0.50]). 
The comparison between the no- and low-load condition and between 
the low- and high-load condition were not significant (p = .378 and 
p = .327, respectively). More importantly, there was a significant 
interaction effect, χ2(2) = 10.09, p = .007. The post-hoc tests illustrated 
that, for insight, there were no significant differences between the three 
levels of WM load (no-load vs. low-load, p = .985; no-load vs. high-load, 
p = .817 and low-load vs. high load, p = .696). However, for non-insight, 
the number of correctly solved word puzzles were more frequent in the 
no- than high-load condition (M = 15.8 versus M = 7.9), Z = − 4.33, 
p < .001, Cohen’s d = 0.66 (95% CI [0.36, 0.97]), and more frequent in 
the low- than high-load condition (M = 12.0 versus M = 7.9), Z = − 2.71, 
p = .019, Cohen’s d = 0.40 (95% CI [0.11, 0.70]). The comparison be
tween the no- and low-load condition was not significant (p = .205). 
Thus, as WM load increased the number of correctly solved word puzzles 
decreased for non-insight but remained unaffected for insight. This 

Table 1 
The descriptive statistics of the outcome variables and the number of solved word puzzles.   

No-Load Low-Load High-Load 

M(SD) Range M(SD) Range M(SD) Range 

Insight Solution time 3.80(0.26) 3.13–4.40 3.78(0.28) 3.11–4.39 3.77(0.25) 3.13–4.40 
Confidence .81(0.19) .16–.995 .80(0.19) .005–.995 .76(0.19) .005–.995 
#solved 18(8) 3–34 17(9) 2–39 19(9) 1–40 
accuracy 88% 91% 90% 
#correct 528 600 772 
#(in)correct 600 662 862 

Non-insight Solution time 3.84(0.27) 3.21–4.40 3.82(0.27) 3.14–4.39 3.84(0.26) 3.26–4.39 
Confidence .65(0.26) .005–.995 .69(0.27) .005–.995 .63(0.25) .005–.995 
#solved 16(9) 2–39 12(10) 1–37 8(7) 1–29 
accuracy 71% 79% 67% 
#correct 474 421 299 
#(in)correct 664 534 436 

Note. Solution time is log-transformed with base 10; confidence = solution confidence; solution confidence is rescaled to range from .005 = low solution confidence to 
.995 = high solution confidence; #solved = the average number of correctly solved word puzzles; accuracy = the mean percentage of correctly solved word puzzles; 
#correct = the total number of correctly solved word puzzles across all participants; #(in)correct = the total number of solved word puzzles regardless of correctness 
across all participants. 

Fig. 2. The interaction between solution type and WM load for solution time. 
Bars represent the 95% confidence intervals. Solution time was log-transformed 
with base 10. 

2 As the total number of correctly solved word puzzles varied among par
ticipants, we took this into account by including an offset in the GLM of the 
number of correctly solved word puzzles. Including this offset transforms the 
outcome variable to a rate (i.e., log(number solved correctly/total number 
solved correctly)) to estimate the model’s parameters (see Hutchinson & 
Holtman, 2005). The results of this adjusted GLM remained similar to the initial 
analysis. Namely, a main effect of solution type (p < .001), a main effect of WM 
load (p < .001), and an interaction effect between solution type and WM load 
(p = .008). The direction of the effects remained similar to the initial analysis. 
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interaction is illustrated in Fig. 3.3 

3.5. Secondary analysis 

To assess whether the participant’s self-reported insight solutions 
were independent of fast solutions, which were likely retrieved via im
mediate recognition, all estimated models described above were rerun, 
with the responses provided within the first two seconds excluded (see 
Appendix D). The pattern of results remained similar when compared to 
those obtained with the responses provided within the first two seconds 
included (see Appendix C). Namely, for solution time, a main effect of 
solution type (χ2(1) = 14.54, p < .001) and an interaction effect between 
solution type and WM load (χ2(2) = 5.84, p = .054) were observed. For 
solution accuracy and solution confidence only a main effect of solution 
type was found (χ2(1) = 193.46, p < .001 and χ2(1) = 240.56, p < .001, 
respectively). For the number of correctly solved word puzzles, main 
effects of solution type (χ2(3) = 27.52, p < .001) and WM load 
(χ2(4) = 18.88, p < .001) and an interaction effect between solution type 
and WM load (χ2(2) = 10.08, p = .007) were observed. All effects 
showed the same direction as the effects reported for the analyses, 
including the fast responses. 

4. Discussion 

In the current study, we aimed to elucidate whether insight problem 
solving, as non-insight problem solving, relies on WM capacity (i.e., Type 
2 process) or whether it is based on an unconscious process that does not 
tax cognitive resources (i.e., Type 1 process). To that end, we conducted a 
CRA experiment where participants solved word puzzles while concur
rently executing a WM task. 

Our results showed that the solution types were differentially influ
enced by limiting the available WM resources. Although correctly solved 
word puzzles with non-insight became less frequent with increasing WM 
loads, the number of correctly solved word puzzles with insight 
remained unaffected. Furthermore, in the high-load condition, solution 
time was longer for non-insight than insight solutions. These findings 

support the dual-processing theory’s topology for each solution type. 
Specifically, the observation that insight problem solving largely 
remained stable under dual-task conditions may indicate that insights’ 
underlying processes operate outside awareness without taxing cogni
tive resources (Type 1 process). On the contrary, non-insight problem 
solving was impacted under dual-task conditions, which corroborates 
non-insights’ dependence on WM resources (Type 2 process). 

The exploratory analysis using a more extreme four-out-of-four 
correct criterium in the high-load condition further substantiated 
these findings. Even under these strenuous WM loads, the pattern of 
results remained similar to the initial analysis with a three-out-of-four 
correct criterium. This finding further strengthens the conception that 
insight depends on Type 1 processes more than non-insight does. 
Notwithstanding these findings, it is not unthinkable that even insight 
might have its limits as the intrinsic nature of problem solving entails 
some form of conscious processing at least. Recent insight theorists 
(Bowden & Grunewald, 2018; Weisberg, 2015) have argued that each 
solution type involves both processes (Type 1 and 2) albeit differentially 
so (see also Korovkin et al., 2018). Therefore, it would be interesting to 
identify under which exact circumstances insight can also be hampered. 
Of note, the exploratory analysis led to a large exclusion of data in the 
high-load condition. Although this confirms the extreme nature of the 
imposed load, the results should be approached cautiously given the 
high and unbalanced data exclusion. 

To our knowledge, this is the first dual-task study on insight that 
addresses methodological issues of previous studies by only using one 
problem type (CRA) that can be solved both with insight and non- 
insight. Our results show that we succeeded in adequately capturing 
the two distinct solution types: insight solutions were more often cor
rect, received higher solution confidence, and were solved more 
frequently than non-insightful ones. This closely mimics other findings 
typecasting insight problem solving (see Danek & Salvi, 2018; Danek & 
Wiley, 2017; Salvi et al., 2016; Webb et al., 2016). Moreover, we showed 
that using self-reports to classify word puzzles as solved with insight was 
not biased by fast responses via immediate recognition (see Cranford & 
Moss, 2012). Our secondary analysis where such fast responses were 
excluded displayed a similar pattern of results than the results where 
they were included. This finding shows that it was not just the fast re
sponses that were identified as solved with insight. This is further sup
ported by the data with the fast responses included, illustrating that in 
the no- and low-load conditions, there was no difference in the time 
needed to solve word puzzles with insight and non-insight. Therefore, 
we argue that our method provided a more reliable investigation of how 
insight and non-insight are (differentially) reliant on WM resources. This 
method should be used in future studies in more heterogeneous samples 
balanced for biological sex to increase the generalizability of the current 
findings. We observed some inter-individual differences in the pro
pensity to solve the CRA puzzles either with insight or non-insight. 
Although most participants showed a balance between puzzles solved 
with insight and non-insight, some participants had a low rate of insight 
or non-insight solutions accompanied by a higher rate of the other so
lution type. Although we maximally accounted for these inter-individual 
differences in the estimated models, this observation poses an inter
esting avenue for further research to expose whether certain people 
indeed show a propensity to use a certain solution type. This would 
require a longitudinal approach where the robustness of the use of both 
strategies can be assessed across time. 

Our findings align with several strands of research evidencing the 
unconscious nature of insight. For instance, studies using nearness-to- 
solution ratings while participants solve problems have shown that 
before finding a solution with insight, participants cannot indicate the 
nearness-to-solution, although, for non-insight, they can (Kizilirmak 
et al., 2018; Laukkonen et al., 2021; Metcalfe & Wiebe, 1987). Also, 
studies presenting subliminal solution cues during the solution search 
showed that this increased the insightful problem-solving performance, 
indicating that unconscious information affects insight (Bowden, 1997; 

Fig. 3. The interaction between solution type and WM load for the number of 
correctly solved word puzzles. Bars represent the 95% confidence intervals. The 
number of solved word puzzles refers to those solved correctly. 

3 The above-depicted results are based on the observations for which par
ticipants had three-out-of-four correct recalled digits in the high load condition. 
The statistical analysis was also performed for the observations where partici
pants had four-out-of-four correct recalled digits in the high-load condition. 
Even under these more strenuous working memory load manipulations, the 
pattern of the results remained similar. The results of this exploratory analysis 
are presented in Appendix E. 
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Grant & Spivey, 2003; Hattori, Sloman, & Orita, 2013; also see Cristo
fori, Salvi, Jung-Beeman, & Grafman, 2018, for a subliminal reward 
priming study). Neuro-imaging and psychophysiological studies have 
likewise corroborated the unconscious nature of insight. For example, it 
has been found that there is a sudden burst of gamma waves over the 
right temporal lobe at roughly the moment of insight. This burst of 
activation is assumably linked to the sudden convergence and integra
tion of solution information as it surfaces consciousness (see Kounios & 
Jung-Beeman, 2014 for a review). On a similar note, Salvi et al. (2020) 
showed that immediately preceding solutions found with insight, but 
not with non-insight, there was a sudden increase in pupil dilation, 
marking the switch into awareness of the insightful solution. 

However, insight might have been preceded by hunches, intuitions, 
or subtle experiences of cognitive conflict, steering the problem-solving 
process to the insight moment consciously (Schooler, 2011; Schooler, 
Jonathan, Ohlsson, & Brooks, 1993; Stuyck et al., 2021; Winkielman & 
Schooler, 2011; Zander et al., 2016). It has been argued that such 
ineffable phenomenological experiences are, like unconscious processes, 
relatively independent of cognitive resources (Schooler, 2011; Win
kielman & Schooler, 2011). Therefore, our results might reflect such 
ineffable processing rather than true unconscious processing. However, 
what makes such experiences hard to put down in words (i.e., the 
ineffable part), is that they represent the felt component of tacit 
problem-related information present at the border of consciousness 
(Norman, Price, & Duff, 2010; see also Bowers et al., 1990). Thus, even 
these ineffable processes, although having a link with a conscious 
experience, still represent implicit processing. In that sense, they do not 
necessarily negate insight’s unconscious nature but perhaps instead 
refer to the involvement of unconscious processes to a different degree 
(i.e., gradual accumulation of intuitions leading to insight; Bowers et al., 
1990, Zhang, Lei, & Li, 2016). Still, recent studies on nearness-to- 
solution ratings demonstrated a discontinuous pattern of these ratings 
for insight and a gradual one for non-insight, especially in the case of 
CRA (e.g., Kizilirmak et al., 2018; Laukkonen et al., 2021). If intuitions 
would play a prominent role in CRA insight solutions, one would also 
expect to find graduality in the nearness-to-solution ratings tapping into 
the insight. One could argue that the relatively short solving times 
observed for CRA puzzles prohibit the reliance on gradual intuitions. In 
more complex problem-solving settings, intermittently working on the 
problem might provide a better context for intuitions to develop as well 
as to act upon them (see Sio & Ormerod, 2009, for a review on incu
bation as a period where no attention is devoted to the problem). 

Furthermore, if both solution types rely differentially on Type 1 and 
Type 2 processes (i.e., insight more on the former and non-insight more 
on the latter), it should be possible to doubly dissociate them. This 
would additionally involve assessing how insightful and non-insightful 
problem-solving performance are hampered differentially when a sec
ondary task depletes the unconscious resources (i.e., Type 1). To our 
knowledge, only one attempt has been made so far to achieve this. Lebed 
and Korovkin (2017) used an implicit learning task (i.e., a classification 
task based on a hidden rule) as a secondary task next to a problem- 
solving task where participants solved an insight problem versus a 
non-insight problem. Their results showed that this secondary task only 
interfered with the insightful solution search. However, they did not 
assess the participant’s awareness of the underlying principle of the 
implicit learning task. Therefore, it remains unclear whether the per
formance on the implicit learning task resulted from an unconscious or 
conscious comprehension of its underlying principles. Although it is an 
interesting study, we argue that it is exactly this awareness manipulation 
check of the secondary task that is crucial to be able to unambiguously 
dissociate the reliance of insight and non-insight on Type 1 and Type 2 
processes, but which poses a challenge that is difficult to surmount (see 
Newell & Shanks, 2014 and Peters, Kentridge, Phillips, & Block, 2017, 
for a discussion). Moreover, they used two distinct problem types to tax 
insight and non-insight problem solving, making an unambiguous 
comparison difficult as these problem types are very different in nature. 

Nevertheless, a double dissociation is an exciting avenue to further 
corroborate that insight depends more on Type 1 processes than non- 
insight. However, such a study would entail theoretical and methodo
logical pitfalls that are difficult to address. 

Unexpectedly, solution accuracy and solution confidence of insight 
versus non-insight solutions were not differentially affected by WM load. 
Furthermore, the observed discrepancy regarding solution time only 
showed a trend towards an interaction effect and had a small effect size. 
One could argue that the WM load manipulation we used was insuffi
cient to elicit stronger effects across all dependent measures. However, it 
is noteworthy that even using a seemingly lenient three-out-of-four 
recalled digits as a criterium to indicate the accuracy of the WM task 
in the high load condition, participants experienced considerable diffi
culty recalling the digits. As a result, this three-out-of-four correctly 
recalled digits criterium already led to a substantial exclusion of the data 
(25%). This indicates that our WM load manipulation was sufficiently 
difficult. Still, we conducted an additional exploratory analysis (see 
Appendix E) using a four-out-of-four correctly recalled digits criterium 
to further increase the WM demands in the high load condition. 
Although this led to an additional reduction of the data of 25% in the 
high load condition (highlighting the difficulty of achieving this crite
rium), the pattern of results for solution accuracy and solution confi
dence remained similar. This indicates that solution accuracy and 
solution confidence, even under a more strenuous WM load condition, 
remained largely unaffected. The observation that solution accuracy 
remained unaffected under a more strenuous WM load condition 
strengthens the finding that the non-insight solution rate deteriorated as 
WM load increased. This is reflected in the fact that, in all analyses, non- 
insight solution accuracy was unaffected by WM load, whereas the 
number of correctly solved word puzzles with non-insight decreased 
over the WM load conditions. This implies that the amount of incorrectly 
solved word puzzles decreased proportionally to the amount of correctly 
solved word puzzles with increasing WM load. This provides further 
evidence that the overall rate of non-insight solutions dropped, 
regardless of how accurate they were. 

Alternatively, the lack of a main effect of WM load on solution ac
curacy (see also Wieth & Burns, 2014) might not be due to a weak WM 
load manipulation, but rather to participants’ strategy to safeguard 
performance effectiveness (i.e., solution accuracy) at the expense of 
processing efficiency (i.e., the effort needed to maintain a particular 
performance effectiveness, often defined as reaction or solution times; 
Derakshan & Eysenck, 2009). For insight, safeguarding performance 
effectiveness may be effortless. However, for non-insight, maintaining 
performance effectiveness under increased WM load might become 
challenging. As such, this increased effort to maintain a certain level of 
solution accuracy might lead to increased solution times under high- 
load, which indeed was the case in both the initial, secondary, and 
exploratory analyses. 

In conclusion, dual-processing theories provide a useful framework 
to approach insight and non-insight problem-solving and their reliance 
on cognitive resources. We showed that insight’s driving mechanisms 
are less dependent on WM resources than those of non-insight. Because 
we circumvented several methodological issues from previous dual-task 
studies on insight, this study provides more convincing evidence that the 
underlying processes of insight are more reminiscent of unconscious, 
Type 1 processes, whereas non-insight depends more on conscious, 
effortful Type 2 processes. 
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Appendix A. Instructions given to participants about the solution types (translated from Dutch and Dutch example word puzzle replaced 
by an English puzzle) 

Thank you for participating in this experiment. 
During the experiment, you will be presented with three words. The goal is to find a word that you can attach to each of these three words so that 

three new meaningful words are created. For example: “cane/daddy /plum” is connected by the word “sugar”, because with the word “sugar” the 
compound words “sugarcane/ sugar daddy/sugarplum” can be formed. For every word puzzle, the solution is always a word that you can only add 
either to the front or to the back of the three words. 

Try to answer as quickly and accurately as possible. You have 25 s to find a solution. Once you have found the solution, press the space bar and 
enter your answer. 

After you have solved a word puzzle, indicate your confidence in your solution. You can do this by using the cursor of the mouse to choose a 
position on a horizontal scale between “low confidence” and “high confidence”. 

Finally, you must indicate whether you have solved this word puzzle “with Aha!” or “without Aha!”. 
With Aha!: with an Aha! experience you become aware of the solution suddenly and clearly. This can be accompanied by a sense of revelation and 

relief. 
Without Aha!: Unlike an Aha! feeling, finding a solution with analysis is characterized by a step-by-step search process. 
Imagine a dark room that is suddenly lit up (with Aha!) or slowly lit with a dimmer switch (without Aha!). We ask you to indicate after each word 

puzzle if you have solved it “with Aha!” or “without Aha!”. 
Before you start solving the word puzzle, we will show you two numbers. The goal is that you try to retain these two numbers. The order is not 

important. 
Immediately after that, you will have the opportunity to solve the word puzzle. 
After you have solved the word puzzle, indicated your confidence in the solution, and whether you have solved this word puzzle “with Aha!” or 

“without Aha!”, we will ask you to enter these two numbers. 
Before the experiment starts, you can practice. 
If something is still not clear, please call the experiment leader. Once all instructions are clear, press the spacebar to continue. 
Of note, these instructions are an example of those presented in the low-load condition (i.e., with two digits). For the high-load condition, the 

number of digits to recall was four. In the no-load condition, no instructions were given with regards to the memory task. 

Appendix B. Deviations from preregistration   

Table 1 
Deviations from preregistration (https://osf.io/2v9yz).  

Preregistration Adjustment 

Only participants were to be included who had an 80% accuracy on the WM tasks to 
ensure that participants jointly performed the CRA and WM tasks adequately. 

Because this inclusion criterium led to a substantial omission of participants in the load- 
conditions (N = 14 in the low-load and N = 19 in the high-load condition), we adjusted 
this criterium so that we were able to include all participants, but only those CRA trials 
for which their WM task performance was correct. 

We specified a secondary analysis to account for the influence of solutions found by 
immediate recognition on the pattern of results (see Cranford & Moss, 2012). To 
identify those types of solutions, we proposed a cut-off of 7470 ms. 

The descriptive statistics of solution time demonstrated that the proposed cut-off was too 
lenient because the average CRA solution time was 7682 ms (SD = 5035). Hence, this 
proposed cut-off would not have reliably identified immediate recognitions and likely 
would also have included solutions found after an actual solution search. Therefore, we 
used a different exclusion criterium to account for the immediate recognition solutions by 
omitting all solutions found within the first 2000 ms (see Salvi et al., 2020). 

An additional exploratory analysis was performed that was not included in the 
preregistration. 

Initially, a three-out-of-four correctly recalled digits criterium was used to index accuracy 
on the WM task in the high-load condition. However, to assess the pattern of results under 
more strenuous WM demands, we increased this criterium in the high-load condition to a 
four-out-of-four correctly recalled digits criterium. Based on this altered criterium all 
statistical analyses were reconducted. 

An additional exploratory analysis was performed that was not included in the 
preregistration. 

The participant sample was not balanced for biological sex with 91 females and 14 males. 
Therefore, we reconducted the statistical analysis with biological sex as a covariate in 
each estimated model to assess the influence of biological sex on the obtained results. 

An additional exploratory analysis was performed that was not included in the 
preregistration 

The total number of correctly solved word puzzles varied among participants. To take this 
into account we reconducted the analysis of the number of correctly solved word puzzles 
with an offset included. Including this offset transforms the outcome variable to a rate (i. 
e., log(number solved correctly/total number solved correctly)) to estimate the model’s 
parameters, after which the outcome variable is back-transformed to represent counts 
again (see Hutchinson & Holtman, 2005).   
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Appendix C. Estimated models   

Table 1 
Linear mixed model on solution time of the CRA.   

β(SE) CI 95% t-value p 

Intercept (grand mean) 3.84(0.01) 3.81, 3.87 269.78 <.001 
solution type 0.04(0.01) 0.02, 0.06 3.91 <.001 
Load1 − 0.01(0.03) − 0.06, 0.04 − 0.41 .686 
Load2 0.007(0.03) − 0.04, 0.06 0.29 .773 
solution type*load1 0.03(0.03) − 0.03, 0.09 1.05 .294 
solution type*load2 0.07(0.03) 0.01, 0.12 2.41 .016 

Note. Load1 = no vs. low; Load2 = low vs. high; p-values were obtained using the Satterthwaite approximation method; Bold
face = significant results; CI = confidence interval. This linear mixed model is based on only the correctly solved word puzzles.   

Table 3 
Generalized linear mixed model on solution confidence of the CRA.   

β(SE) CI 95% Z-value p 

Intercept (grand mean) 0.97(0.09) 0.81, 1.14 11.31 <.001 
solution type − 0.65(0.04) − 0.74, − 0.57 − 15.95 <.001 
Load1 − 0.22(0.18) − 0.58, 0.14 − 1.18 .236 
Load2 − 0.39(0.17) − 0.72, − 0.05 − 2.24 .025 
solution type*load1 − 0.02(0.11) − 0.24, 0.20 − 0.19 .852 
solution type*load2 − 0.11(0.12) − 0.34, 0.12 − 0.95 .343 

Note. Beta coefficients are on the logit scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence 
interval. This generalized linear mixed model is based on only the correctly solved word puzzles.   

Table 4 
Generalized linear model on the number of correctly solved word puzzles of the CRA.   

β(SE) CI 95% Z-value p 

Intercept (grand mean) 2.66(0.03) 2.60, 2.73 78.34 <.001 
solution type − 0.45(0.11) − 0.66, − 0.25 − 4.30 <.001 
Load1 − 0.30(0.08) − 0.46, − 0.14 − 3.66 <.001 
Load2 − 0.30(0.11) − 0.51, − 0.10 − 2.85 .004 
solution type*load1 − 0.69(0.29) − 1.26, − 0.13 − 2.39 .017 
solution type*load2 − 0.89(0.30) − 1.48, − 0.30 − 2.96 .003 

Note. Beta coefficients are on the log scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI, confidence 
interval. Robust standard errors were computed to account for the non-independence of the observations. This generalized linear 
model is only based on the correctly solved word puzzles. 

Table 2 
Generalized linear mixed model on solution accuracy of the CRA.   

β(SE) OR CI 95% Z-value p 

Intercept (grand mean) 1.99(0.16) 7.32 5.34, 10.24 12.22 .001 
solution type − 1.56(0.12) 0.21 0.16, 0.26 − 13.47 <.001 
Load1 0.25(0.31) 1.28 0.69, 2.38 0.79 .429 
Load2 − 0.36(0.29) 0.70 0.39, 1.26 − 1.21 .228 
solution type*load1 − 0.10(0.31) 0.90 0.49, 1.67 − 0.33 .738 
solution type*load2 − 0.46(0.31) 0.63 0.34, 1.18 − 1.46 .144 

Note. Beta coefficients are on the logit scale; OR = odds ratio; An OR of one represents a chance-level classification of correct and 
incorrectly solved word puzzles. An OR above/below one represents the magnitude of increase/decrease in the chance of classifying 
word puzzles as solved correctly; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence interval. 
This generalized linear mixed model is based on the correct and incorrectly solved word puzzles.  
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Appendix D. Estimated models with responses within the two first seconds excluded   

Table 1 
Linear mixed model on solution time of the CRA.   

β(SE) CI 95% t-value p 

Intercept (grand mean) 3.84(0.01) 3.82, 3.87 286.93 <.001 
solution type 0.04(0.01) 0.02, 0.06 3.82 <.001 
Load1 − 0.01(0.03) − 0.06, 0.05 − 0.27 .785 
Load2 0.003(0.02) − 0.05, 0.05 0.12 .909 
solution type*load1 0.02(0.03) − 0.04, 0.08 0.80 .422 
solution type*load2 0.07(0.03) 0.01, 0.13 2.38 .018 

Note. Load1 = no vs. low; Load2 = low vs. high; p-values were obtained using the Satterthwaite approximation method; Bold
face = significant results; CI = confidence interval. This linear mixed model is based on only the correctly solved word puzzles.   

Table 3 
Generalized linear mixed model on solution confidence of the CRA.   

β(SE) CI 95% Z-value p 

Intercept (grand mean) 0.97(0.09) 0.80, 1.14 11.26 <.001 
solution type − 0.65(0.04) − 0.74, − 0.57 − 15.84 <.001 
Load1 − 0.22(0.18) − 0.58, 0.14 − 1.18 .238 
Load2 − 0.39(0.17) − 0.72, − 0.05 − 2.23 .026 
solution type*load1 0.0004(0.11) − 0.22, 0.22 0.004 .997 
solution type*load2 − 0.10(0.12) − 0.33, 0.13 − 0.88 .378 

Note. Beta coefficients are on the logit scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence 
interval. This generalized linear mixed model is based on only the correctly solved word puzzles.   

Table 4 
Generalized linear model on the number of correctly solved word puzzles of the CRA.   

β(SE) CI 95% Z-value p 

Intercept (grand mean) 2.65(0.03) 2.58, 2.71 78.03 <.001 
solution type − 0.45(0.10) − 0.65, − 0.24 − 4.30 <.001 
Load1 − 0.31(0.08) − 0.47, − 0.15 − 3.80 <.001 
Load2 − 0.30(0.11) − 0.50, − 0.09 − 2.79 .005 
solution type*load1 − 0.68(0.29) − 1.24, − 0.12 − 2.37 .018 
solution type*load2 − 0.88(0.30) − 1.46, − 0.30 − 2.97 .003 

Note. Beta coefficients are on the log scale; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI, confidence 
interval. Robust standard errors were computed to account for the non-independence of the observations. This generalized linear 
model is based on only the correctly solved word puzzles. 

Appendix E. The statistical analysis with the four-out-of-four correctly recalled digits criterium 

Solution time 

An LMM was constructed with the (log-transformed) solution time of the correctly solved word puzzles as the outcome variable and solution type 
(two levels: Insight and non-insight), WM load (three levels: no-load, low-load, and high-load) and their interaction term as fixed effects. There was a 
significant main effect of solution type, χ2(1) = 14.82, p < .001. Word puzzles solved with insight (M = 3.81) were solved significantly faster than 

Table 2 
Generalized linear mixed model on solution accuracy of the CRA.   

β(SE) OR CI 95% Z-value p 

Intercept (grand mean) 1.99(0.16) 7.32 5.34, 10.26 12.20 <.001 
solution type − 1.56(0.12) 0.21 0.17, 0.26 − 13.35 <.001 
Load1 0.25(0.31) 1.28 0.69, 2.39 0.80 .423 
Load2 − 0.34(0.29) 0.71 0.39, 1.28 − 1.17 .243 
solution type*load1 − 0.10(0.31) 0.91 0.49, 1.68 − 0.31 .756 
solution type*load2 − 0.50(0.31) 0.61 0.32, 1.13 − 1.61 .108 

Note. Beta coefficients are on the logit scale; OR = odds ratio; An OR of one represents a chance-level classification of correct and 
incorrectly solved word puzzles. An OR above/below one represents the magnitude of increase/decrease in the chance of classifying 
word puzzles as solved correctly; Load1 = no vs. low; Load2 = low vs. high; Boldface = significant results; CI = confidence interval. 
This generalized linear mixed model is based on the correct and incorrectly solved word puzzles.  
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those solved with non-insight (M = 3.86), t(2684) = − 3.85, p < .001, Cohen’s d = 0.18 (95% CI [0.09, 0.27). There also was a significant interaction 
effect, χ2(2) = 5.99, p = .049. Post-hoc tests showed that there were no significant differences between load conditions for insight (no load vs. low load, 
p = .878; no load vs. high load, p = .338; and low load vs. high load, p = .609) nor non-insight (no load vs. low load, p = .793; no load vs. high load, 
p = .748; and low load vs. high load, p = .382). To further clarify the significant interaction effect, a pairwise contrast was made of solution type 
(insight vs. non-insight) conditional on three levels of WM load. These pairwise comparisons showed that only in the high-load condition, word 
puzzles solved with insight were solved significantly faster than word puzzles solved with non-insight (M = 3.79 versus M = 3.88), t(2616) = − 3.83, 
p < .001, Cohen’s d = 0.34 (95% CI [0.17, 0.52]). This was not the case in the no- and low-load conditions (p = .146 and p = .265). The main effect of 
WM load was not significant, p = .809. This result is depicted in Fig. 1.

Fig. 1. The interaction between solution type and WM load for solution time. Bars represent the 95% confidence intervals. Solution time was log-transformed with 
base 10. 

Solution accuracy 

Likewise, a GLMM was constructed with solution accuracy as a binary outcome variable. There was a significant main effect of solution type, 
χ2(1) = 161.9, p < .001. Word puzzles solved with insight had a significantly higher probability of being correct than word puzzles solved with non- 
insight (M = 94% versus M = 78%), Z = 12.28, p < .001, Cohen’s d = − 1.52 (95% CI [− 1.76, − 1.27]). The main effect of WM load and the interaction 
effect were not significant, p = .184 and p = .724, respectively. 

Solution confidence 

Similarly, a GLMM was constructed with solution confidence of the correctly solved word puzzles as a bounded outcome variable (range 
0.005–0.995). There was a significant main effect of solution type, χ2(1) = 194.63, p < .001. The word puzzles solved with insight received signifi
cantly higher solution confidence than word puzzles solved with non-insight (M = 0.78 versus M = 0.66), t(2825) = 14.23, p < .001, Cohen’s 
d = − 0.14 (95% CI [− 0.16, − 0.12]). The main effect of WM load and the interaction effect were not significant, p = .125 and p = .927, respectively. 

The number of correctly solved word puzzles 

Lastly, a GLM was built with the number of correctly solved word puzzles as a count outcome variable.4 There was a significant main effect of 
solution type, χ2(3) = 23.73, p < .001. Correctly solved word puzzles were more frequent for insight than non-insight (M = 16.4 versus M = 10.5), 
Z = 4.89, p < .001, Cohen’s d = − 0.43 (95% CI [− 0.61, − 0.25]). Also, a main effect of WM load was observed, χ2(4) = 36.64, p < .001. Post-hoc tests 
demonstrated that correctly solved word puzzles were more frequent in the no- than high-load condition (M = 16.7 versus M = 9.4), Z = − 5.00, 
p < .001, Cohen’s d = 0.55 (95% CI [0.33, 0.77]) and more frequent in the low- than high load condition (M = 14.4 versus M = 9.4), Z = − 3.82, 
p < .001, Cohen’s d = 0.40 (95% CI [0.19, 0.61]). The comparison between the no- and low-load condition was not significant (p = .389). More 
importantly, there was a significant interaction effect, χ2(2) = 9.03, p = .011. The post-hoc tests illustrated that for insight, there were no significant 
differences between the three levels of WM load (no-load vs. low-load, p = .985; no-load vs. high-load, p = .480 and low-load vs. high load, p = .560). 
However, for non-insight correctly solved word puzzles were more frequent in the no- than high-load condition (M = 15.8 versus M = 6.0, Z = − 5.76, 
p < .001, Cohen’s d = 0.92 (95% CI [0.59, 1.25]), and more frequent in the low- than high-load condition (M = 12.0 versus M = 6.0, Z = − 4.24, 
p < .001, Cohen’s d = 0.66 (95% CI [0.35, 0.97]). The comparison between the no- and low-load condition was not significant (p = .214). Thus, while 
the number of correctly solved word puzzles decreased with increasing WM loads for non-insight, the number of correctly solved word puzzles with 
insight remained unaffected. This result is illustrated in Fig. 2.  

4 As the total number of correctly solved word puzzles varied among participants, we took this into account by including an offset in the GLM of the number of 
correctly solved word puzzles. Including this offset transforms the outcome variable to a rate (i.e., log(number solved correctly/total number solved correctly)) to 
estimate the model’s parameters (see Hutchinson & Holtman, 2005). The results of this adjusted GLM remained similar to the initial analysis. Namely, a main effect of 
solution type (p < .001), a main effect of WM load (p < .001), and an interaction effect between solution type and WM load (p = .008). The direction of the effects 
remained similar to the initial analysis. 
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Fig. 2. The interaction between solution type and WM load for the number of correctly solved word puzzles. Bars represent the 95% confidence intervals. The 
number of solved word puzzles refers to those solved correctly. 
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