
Image-based modelling of complex
heterogeneous microstructures

Application to deformation-induced
permeability alterations in rocks

Thesis presented by Karim EHABMOUSTAFA KAMEL
in fulfilment of the requirements of the PhD Degree in Engineering
Sciences and Technology ("Docteur en Sciences de l’Ingénieur et Tech-
nologie")
Academic Year 2020-2021

Supervisor: Prof. Thierry J. Massart
Co-supervisor: Prof. Pierre Gerard

Thesis jury :

Prof. Alessandro PARENTE (Université libre de Bruxelles, Chair)
Prof. Bertrand FRANÇOIS (Université libre de Bruxelles, Secretary)
Prof. Jean-Baptiste COLLIAT (Université de Lille)
Prof. Patrick SELVADURAI (McGill University)
Prof. Gioacchino VIGGIANI (Université Grenoble Alpes)





To my beloved family...
My parents, my brother, my wife and my lovely son...





Acknowledgements

La thèse est un long chemin qui ne pourrait aboutir sans le soutien continu de
personnes précieuses à qui je ne peux qu’adresser mes sincères remerciements.

Il me tient tout particulièrement à coeur de consacrer mes premiers remerciements
à mon directeur de thèse, Monsieur le Professeur Thierry Massart. Si j’ai pu réaliser
cette thèse, c’est certainement grâce à ces étoiles qui se sont alignées cette soirée
à l’Athénée Léon Lepage, soirée durant laquelle j’ai mobilisé plus de 2h de son
temps pour lui poser moult questions quant à mes choix d’études supérieures. Les
réponses qu’il m’avait apportées à l’époque m’avaient convaincu d’entamer des
études à l’Ecole Polytechnique de Bruxelles. C’est également par son soutien que
j’ai pu obtenir le financement qui m’a permis la réalisation de cette thèse.

Je tiens également à remercier Pierre Gerard pour son encadrement et sa
disponibilité. Cette thèse n’aurait pas pu voir le jour sans son aide et ses conseils
éclairés. Je garde tout particulièrement en mémoire ces voyages à Assise et à Delft.

J’ai retiré beaucoup d’enseignements dans les collaborations scientifiques qui
ont agrémenté ce travail. Je pense tout particulièrement à Monsieur le Professeur
Jean-Baptiste Colliat qui a eu l’amabilité de m’accueillir dans son laboratoire
de l’Université de Lille.

Je remercie également Messieurs les Professeurs Patrick Selvadurai, Cino Vig-
giani, Alessandro Parente et Bertrand François d’avoir accepté de me faire l’honneur
d’être membres du jury de cette thèse.

Au-delà du corps académique, plusieurs personnes ont contribué à faire du
Laboratoire SMC un cadre de travail exceptionnel. Je pense à Monsieur le Professeur
Peter Berke qui a toujours réussi à me motiver et à maintenir une belle cohésion
de groupe, mais également à Guy Paulus pour toute l’aide apportée sur le plan
informatique et pour ces discussions enrichissantes au détour d’un couloir. Merci au
Docteur Bernard Sonon pour m’avoir mis le pied à l’étrier en début de thèse. Une
pensée à tous mes collègues pour les moments partagés ensemble : Alexis, Arash
G., Roland, Batoma, Rohith, Liesbeth, Chaimae, Li, Anqi, Guerrit, Dominique,
Varun, Ygee, Arash M. Ce fut un plaisir de partager tous ces bons moments
en votre compagnie.

Un remerciement particulier à la « team Galère » pour son aide précieuse
dans ce dernier sprint.



Ma famille, mes parents, mon frère, mes soutiens sans faille. Une pensée pour
mon père qui ne peut assister à cet aboutissement. . .

Mon épouse et mon petit bout Adam.



Abstract

The permeability of rocks has a critical influence on their fluid transport response in
critical geo-environmental applications, such as pollutant transport or underground
storage of hazardous nuclear waste. In such processes, the materials microstructure
may be altered as a result of various stimuli, thereby impacting the fluid transfer
properties. Stress or strain state modifications are one of the main causes for such
evolutions. To numerically address this concern, an integrated and automated
numerical tool was developed and illustrated on subsets of microCT scans of a
Vosges sandstone (i) to explore the links between the pore space properties and
the corresponding macroscopic transfer properties, with (ii) an incorporation of
the microstructural alterations associated with stress state variations by using a
realistic image-based representation of the microstructural morphology.

The ductile mechanical deformation behavior under high confining pressures
at the scale of the microstructure, inducing pore closures by local plastifications,
was modelled using finite elements simulations with a non-linear elastoplastic law,
allowing to take into account the redistribution of local stresses. These simulations
require robust discretization tools to capture the complex geometry of the porous
network and the corresponding solid boundaries of the heterogeneous microstructural
geometries. To achieve this, an integrated approach for the conformal discretization
of complex implicit geometries based on signed distance fields was developed,
producing high quality meshes from both imaging techniques and computational
RVE generation methodologies. This conforming discretization approach was
compared with an incompatible mode-based framework using a non conforming
approach. This comparison highlighted the complementarity of both methods,
the former capturing the effect of more detailed geometrical features, while the
latter is more flexible as it allows using the same (non conforming) mesh for
potentially variable geometries.

The evolution of permeability was evaluated at different confining pressure
levels using the Lattice-Bolzmann method. This uncoupled solid-fluid interaction
made it possible to study the combined influence on the permeability, porosity and
the pores size distribution of the pore space morphology and the solid skeleton
constitutive law parameters during loading and unloading conditions. The results
highlight the need to consider elastoplastic laws and heterogeneities in the rock



model to simulate the ductile behavior of rocks at high confining pressures leading
to significant permeability alterations under loading, and irreversible alterations
under loading/unloading cycles induced by progressive pore closures.

The proposed methodology is designed to be flexible thanks to the interfacing
with ’classical’ discretization approaches and can be easily readapted to other
contexts given the block approach.
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1.1 Context

Experts from many fields such as petrochemistry, geology or hydrogeology are
interested in understanding the link between the microstructural morphology of
geomaterials and their transfer properties for many applications, including critical
situations such as the transfer of pollutants or the storage of radioactive hazardous
waste (Rutqvist et al., 2009), gas storage (Katz and Tek, 1981; Teatini et al., 2011;
de Jong, 2015) or the sequestration of CO2 (Delshad et al., 2013). The rock material
is used in such cases as a natural protective barrier limiting fluid migration to the
outside environment. These applications have to consider physical phenomena such
as mechanical, a thermal loading as well as chemical degradation at the pore scale,
leading to changes in the deformability, the strength or the transfer properties. At
this pore scale, a geomaterial is composed by a solid skeleton and a pore space

1
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allowing fluids to flow as illustrated in Figure 1.11. As an example, the construction
of DGRs (Deep Geologic Repositories) requires excavations at significant depths for
building underground infrastructures, that induce stress redistributions. Another
example is the storage of natural gas in underground installations (Katz and Tek,
1981). The gas is stored in the pores of rock materials such as sandstones. On
demand, the gas is injected or extracted, which will induce stress redistribution
around the storage wells (Hu et al., 2018). These stress redistributions can have a
significant impact on the morphology of the solid skeleton and the pore space. Such
a modification of the microstructure can impact the hydraulic transfer properties
of the rock, such as the intrinsic permeability induced by clogging, re-closures,
reopenings, of cracks or pores (Hu et al., 2020b). In this context, it has been shown
in (Bérend et al., 1995) that the intrinsic permeability, a concept introduced by
Darcy (Darcy, 1857) measuring the ability of a porous medium to allow fluids to
pass through it, is mainly controlled by the spatial structure of the geomaterial,
the porous network and the solid/fluid interaction, making it a key parameter in
rock engineering. Historically, a central hypothesis of Biot’s theory (Biot, 1941) is
that the permeability or deformability characteristics remain unchanged during the
coupled interaction of the fluid and the solid skeleton. However, in environmental
geomechanical problems, the microstructure of the considered materials may evolve
as a result of stresses on various scales.

Figure 1.1: Highly magnified thin section of a piece of porous sandstone embedded in
a blue epoxy to show the pore space - taken from 1

1https://www.dartmouth.edu/~iispacs/Education/EARS18/Energy_2012/naturalGas/
form/NaturalGas-formation.html

https://www.dartmouth.edu/~iispacs/Education/EARS18/Energy_2012/naturalGas/form/NaturalGas-formation.html
https://www.dartmouth.edu/~iispacs/Education/EARS18/Energy_2012/naturalGas/form/NaturalGas-formation.html
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1.2 Experimental approaches of rocks mechani-
cal behavior and its influence on the transfer
properties

Over the years, numerous experimental investigations such as in (Kilmer et al., 1987;
Farquhar et al., 1993; Morrow et al., 1984; Kwon et al., 2004; Meng and Li, 2013;
Chalmers et al., 2012; Ghanizadeh et al., 2014; Gensterblum et al., 2015; Selvadurai,
2015; Selvadurai and Głowacki, 2017) have been carried out on different types of
natural rocks and under different mechanical loadings in order to investigate the
influence of the variation of the state of stress on the intrinsic permeability. Such
research efforts have included (but were not limited to) deviatoric loading states
in granites (Souley et al., 2001; Zoback and Byerlee, 1975) or basalts (Jiang et al.,
2010), and isotropic compressive loadings in limestone (Selvadurai and Głowacki,
2008). A decrease of up to 40% of the permeability of a sandstone submitted to a
confining pressure of 20 MPa was also noted by Fatt (Fatt and Davis, 1952). In
the same way, a Vosges sandstone was shown to exhibit a decrease in permeability
of about 50 % (Hu et al., 2018, 2020a) when an isotropic compressive stress state
from 5 MPa to 40 MPa is applied.

Figure 1.2: Permeability evolution induce by a stress state variation : (a) Permeability
increase of granite from Lac du Bonnet induced by the application of a deviatoric
stress - reproduced from (Souley et al., 2001), (b) Irreversible permeability decrease
of Indiana limestone induced by the application of a triaxial compression - reproduced
from (Selvadurai and Głowacki, 2008)

To single out two examples of such contributions within the vast body of literature
on this topic, permeability variations related to cracking under deviatoric loadings
states were obtained by (Souley et al., 2001) are illustrated in Figure 1.2a for a
granite, with an initial decrease (initial crack closure) followed by an increase of the
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permeability by several orders of magnitude. An irreversible decrease in permeability
of a limestone caused by a triaxial isotropic compression was observed without
significant macroscopic permanent deformation by (Selvadurai and Głowacki, 2008),
see Figure 1.2b. Under such stress state variations, such effects can be conjectured
to be associated with a modification of the pore space, potentially linked to local
plastic deformations altering critical fluid flow pathways. In fact, the failure behavior
of geological materials depends heavily on confining pressure and strain rate. Some
rocks can break in the form of localized fractures and loose their cohesion leading
to a quasi-brittle type of failure rupture under a relatively low confining pressure.
Under certain temperature or pressure conditions, the response of rocks can evolve
towards a more ductile behaviour, where the material will permanently deform.
This mode of deformation is adopted in particular in the deep rock layers where
the confining pressure is high (Choo and Sun, 2018). Figure 1.3 illustrates the
transition between failure modes as a function of the confining pressure illustrating
a Hamatsuda sandstone rock changing from a brittle to a ductile failure mode
showing no macroscopic fracture at 49 MPa of confining pressure.

Figure 1.3: Laboratory samples of a Hamatsuda sandstone rock subjected to different
confining pressures showing progressively the brittle–ductile transition : (Left) 0.1 MPa
(Shear fracture), (Center) 20 MPa (Conjugate deformation band), (Right) 49 MPa (No
macroscopic fracture - Bulging failure) repoduced from (Hoshino et al., 1972)

In general, most experimental approaches lead to semi-empirical relationships
fitting the results of the tests such as Kozeny-Carman’s law (Kozeny, 1927; Carman,
1937) linking the porosity to the permeability, or power laws linking permeability
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and porosity to stress sensitivity such as the natural logarithm model (Walsh,
1981),or other phenomenological models as the power law model (Shi and Wang,
1986; Kwon et al., 2004), the exponential function model (Katsube et al., 1991),
or the Two-Part Hooke’s model (Zheng et al., 2015). However, these types of
approaches do not allow a detailed investigation of the phenomena operating on the
fine scale in order to gain insight on how a variation of the stress state way affect
the rock microstructure, leading to a modification of the flow in porous network.

1.3 Numerical approaches of rocks micromechan-
ical behaviors

To complement experimental approaches, the numerical models allowing accounting
for permeability evolutions in connection with the micromechanical aspects have
been developped progressively over the years (Sun et al., 2011). The uncoupled
transfer properties were investigated in relation with the microstructure in several
contributions. These studies have attempted to link the permeability properties
to statistical and global characteristics of the pore space, such as the variance
of the pore size distribution or their connectivity through their coordination
number (Bernabé et al., 2010). Investigations have been conducted out on the
basis of the explicit knowledge of the porous space by experimental methods.
The non-evolving permeability properties were then analyzed on the basis of the
characterization of porosity and tortuosity by tomography, in connection with
Lattice-Boltzman methods (Sun et al., 2011). The relationship between microstruc-
tural evolutions (plastic compaction, dilatancy, thermal microcracking) and the
macroscopic porosity and permeability has also been investigated experimentally
by various authors (Bernabé et al., 2003). Numerical methods allowing to account
for the variations of permeability associated with the variations of stresses were
developed progressively. The evolution of the permeability due to microcracking
was represented by macroscopic models with micromechanical motivation, in order
to reproduce the effect of the anisotropy associated with cracking (Jiang et al.,
2010; Levasseur et al., 2013). Despite the computational performances of these
models, which allow their use in practical applications, their consideration of
the connectivity and percolation aspects remains phenomenological. This has
motivated the development of multi-scale numerical techniques based on the concepts
of homogenization of fluid transport equations (Massart and Selvadurai, 2014;
Narsilio et al., 2009). However, the microstructural geometries in these efforts
remain simplified at this stage relative to the actual microstructures. Numerical
homogenization methods based on explicit representations of microstructures have
recently been developed for multiphysics in materials, for thermal processes and fluid
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transfer couplings with mechanical behavior (Larsson et al., 2010; van den Eijnden
et al., 2016). They are based on the definition of a heterogeneous Representative
Volume Element (RVE), containing the microstructural description of the phase
arrangement; and on the knowledge of their properties. Average theorems are
then used to construct scale transitions, linking the average properties of the RVE
to the microstructural fields.

1.4 Microstructural complexity

A description of the geometry of the phases and their behavior is required to use
the mentionned homogenization approaches. Most of the existing approaches are
based on simplifying hypotheses in terms of the microstructural geometry (Massart
and Selvadurai, 2014; Larsson et al., 2010), or on the restriction to a given type of
microstructural evolution like for instance cracking (Massart and Selvadurai, 2014;
van den Eijnden et al., 2016). However, they are among the few to explicitly take into
account in the upscaling the aspects related to the connectivity in microstructures.
To consider the intricate geometries of complex disordered heterogeneous materials
in finite elements simulations, realistic RVEs incorporating the specific features of
their microstructures need to be obtained or produced. This can be achieved by
exploiting experimental data from modern imaging techniques, such as tomography,
to characterize the spatial organization of the various phases and pore space in
porous/heterogeneous materials ; or by using generation techniques reproducing
available experimental features such as the size distributions of inclusions/voids, their
volume fraction or the tortuosity or the connectivity in the pore space (Sonon et al.,
2012; Roubin et al., 2015). Considering complex heterogeneous microstructures
for mechanical purposes leads to the bottleneck of discretization which might be a
challenging task. Different approaches can be selected depending on the degree of
the geometrical complexity of the microstructures. Techniques based on extended
finite element (XFEM) with level sets enrichment functions (Moës et al., 1999;
Moes et al., 2003; Sukumar et al., 2001), embedded finite elements (Simo et al.,
1993), or embedded discontinuities (Benkemoun et al., 2010) avoid the constraint
associated with complex geometry to have conform meshing. However, they can
become difficult to extend, especially for problems incorporating aspects of finite
deformations. Conforming mesh generation techniques, besides the fact that the
generation processes can be tedious, have the advantage that they allow the use of
any commercial software that incorporates the required constitutive laws. However,
their implementation on complex microstructures remains a challenge.
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1.5 Objectives

Experiments on various rocks have shown a measurable decrease in permeability
potentially related to a modification of the pore space as a result of the deformation
of the solid skeleton. However, an integrated computational tool allowing the
analysis of permeability alterations of rocks induced by a variation of stress states
by taking into account explicitly the geometrical complexity is still lacking. This
motivates the development of a methodology to achieve this. In general, there
is an interest in developing a numerical tool enabling (i) the exploration of the
links between the properties of a porous network and the macroscopic transfer
properties of the corresponding porous material and to (ii) the incorporation of
microstructure evolutions related to variations in stress states.

An adapted answer to this general objective will require the development of an
automated tool integrating, combining and interfacing specific technical approaches
from different fields. Thus, the present work proposes to address the following
necessary ingredients resulting into an image-based modelling methodology:

• a realistic and detailed description of the microstructural morphology (solid
skeleton and porous network)

• the implementation of image processing tools allowing the generation of a
geometrical model suitable for use in an efficient and cost-effective manner in
a discretization process

• an effective and optimized discretization tool for complex microstructures,
efficiently taking into account the interfaces between the different phases, in
order to conduct finite element simulations including geometrical and material
non-linearities in view of multi-scale analysis

• an assessment of advanced discretization methods handling complex mi-
crostructural geometries

• interfacing into FEM approaches able to simulate the non-linear mechanical
behaviour of rocks

• an efficient image-based evaluation of the macroscopic permeability on the
initial microstructure as well as the deformed geometries

The existing approaches available for each of the above-mentioned ingredients
are discussed in more detail in the Computational modelling Section, identifying
the choices and developments needed to set up a complete image-based simulation
procedure. By complete, it is meant on the one hand that it should have the
capacity to analyse the alterations in permeability reported experimentally in the
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literature by explicitly taking into account the microstructural morphology, and
on the other hand that it should be sufficiently flexible to allow testing a series of
hypotheses linking the microstructure to permeability. This would pave the way to
a better understanding of the microscopic scale physical mechanisms that have a
significant impact on the macroscopic transfer properties. To highlight the relevance
of process with an illustrative material, µCT scans of a Vosges sandstone were
provided by the University of Lille from (Hu et al., 2018). The thesis will focus on
the ductile behaviour of highly confined rock generating local plasticity. Therefore,
the brittle behaviour of the rock will not be considered in the modelling as well as
questions related to strain localization phenomena. It should be mentionned that
the long-term goal of the tools developed in the scope of this thesis is to provide
ingredients that would contribute to engineering problems in the build-up of closed
form stress-permeability relationships or in nested multiscale approaches to be used
at the regional scale, such as FE2 methods (Feyel, 2003).

1.6 Outline
In order to address the objectives presented in the previous section, the present
manuscript is structured as follows :

Chapter 2 presents a brief review of the state of the art related to the set of
existing computational models able to capture the mechanical behaviour of rocks
and the influence that a stress state variation can have on macroscopic transfer
properties as well as a justification of the choices of the approaches developed in
the next chapters to answer the three research questions derived from the global
objective of the thesis.

Chapter 3 is devoted to description of the fundamental notions of geometry
representation and numerical tools for geometry processing, and that will be needed
for the developments presented in the following chapters.

Chapter 4 presents an integrated approach for the conformal discretization of
complex inclusion-based RVE geometries described implicitly, based on experimental
techniques or through computational RVE generation methodologies to deal with
complex periodic heterogeneous RVEs.

Chapter 5 presents an assessment of computational techniques enabling auto-
mated simulations of complex porous rocks microstructures based on 3D imaging
techniques. A treated subset of a CT-scanned sandstone sample is used to compare



1. Introduction 9

the results obtained by two advanced discretization frameworks namely the conformal
meshing tools presented in Chapter 4 and a non-conforming method that uses
a kinematic enrichment by incompatible modes to represent the heterogeneous
geometry. Mechanical simulations are conducted on a subset of a scanned sample
of a sandstone under triaxial loading conditions for isotropic compressive loading
and for loading conditions involving a stress deviator.

Chapter 6 presents an integrated approach to investigate the critical mechanical
deformations of the microstructure that generate permeability alterations of a
Vosges sandstone when a stress state variation is applied based on the developments
presented in Chapters 4 and 5. The method developed addresses an automated
computational procedure starting from the processing of representative microstruc-
tures obtained by CT-Scan, and combining the use of finite element simulations
to describe the mechanical deformation and Lattice-Boltzmann simulations for the
evaluation of the changes in permeability under isotropic triaxial loading conditions.

Chapter 7 concludes the work and discusses the perspectives related to the
developments presented in the previous three chapters.
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2.1 Introduction

This chapter provides an essential background for computational modelling of rocks
in order to justify the modelling choices deployed and detailed in the following
chapters. In order to implement an integrated approach able to capture permeability
alterations in rocks induced by a stress state variation using an explicit representation

11
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of the microstructural morphology, the modelling approaches are subdivided into
the three following points:

• Geometrical modelling approaches of the rock microstructure

• Methods for simulating the mechanical behaviour of rock and their underlying
discretizations

• Methods for evaluating the permeability from the microstructures

The literature for each point is clearly far too extensive to provide an exhaustive
review of existing approaches.Therefore, for each of the above-mentioned points,
only a part of these methods will be briefly presented in order to discuss and to
select the most appropriate modelling tools.

2.2 Rock microstructure modelling
Obtaining a representative geometry of a rock microstructure for investigating the
permeability alterations as a function of applied stress states can be done either by
exploiting data from micro-tomographs (Mees et al., 2003; Cnudde and Boone, 2013)
or by virtual reconstruction from fundamental morphological indicators such as
porosity, pore connectivity, pores size distribution, specific surface area or tortuosity.

2.2.1 Exploitation of 3D imaging techniques
Advanced imaging techniques such as X-ray microtomography (Mees et al., 2003;
Cnudde and Boone, 2013; Desrues et al., 2010), FIB-SEM (Song et al., 2015), TEM
(Wiktor et al., 2012), synchrotron (Fusseis et al., 2014) have recently provided high-
performance tools for analysing natural rocks with faster, more accurate and easier
access to the 3D microstructure without being intrusive to the geomaterial (Robinet
et al., 2012; Keller et al., 2013). Such imaging techniques characteristic scales
range from the nanometer to the millimeter scale. This enabled more information
to be extracted related to the morphology of the microstructure, either for the
porous network or for the solid skeleton (Arns et al., 2005b; Andrä et al., 2013a,b;
Andrew et al., 2013; Blunt et al., 2013). In fact, focusing on scanning techniques
allowing to obtain the microstructural phase arrangement, computed tomography
(CT) nowadays allows addressing a variety of scales (micro-tomography or at higher
scales) and of geomaterials such as soils (Hashemi et al., 2014; Viggiani et al., 2004;
Desrues et al., 2010; Andò et al., 2013), rocks (Chen et al., 2006; Andrä et al., 2013b;
Blunt et al., 2013) or mixtures (Li et al., 2016). Such investigations addressed
the mechanical behaviour of geomaterials (Chen et al., 2006; Li et al., 2016), their
transport properties (White et al., 2006; Blunt et al., 2013); or their coupled
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processes (Hashemi et al., 2015). The investigations on the effect of microstructural
features on the overall behaviour fostered the emergence of image-based modelling
in the multiscale modelling community. Such approaches basically consist of the
exploitation of CT scan imaging techniques to obtain geometries for subsequent
modelling efforts. A 3D image is reconstructed from absorption properties (for
X-ray computed tomography for instance), leading to a voxelized representation of
samples. Image processing such as segmentation techniques is then used to allow
identifying the phases to which each voxel belongs as illustrated in Figure 2.1(a) for
a subset of a Vosges sandstone scan (Hu et al., 2018). Image processing adapted
to geomaterials constitutes a full domain of research when complex materials have
to be processed, for instance when three phase materials have to be characterized
(Hashemi et al., 2014). More details about segmentation processes applied in the
scope of this work are provided in Chapter 3.

(a) (b) (c)

Figure 2.1: 3D different complex microstructural geometries : (a) Subset of a scan of a
Vosges sandstone reproduced from (Hu et al., 2018), Representative Volume Elements
(RVEs) virtually generated: (b) RSA controlled by neighboring distance functions - DN-
RSA reproduced from (Sonon et al., 2012), (c) Excursion set of correlated random fields
with morphological control of the porous medium reproduced from (Roubin et al., 2015)

2.2.2 Virtual geometry generation
Virtual generation approaches are methods that seek to reproduce as closely as
possible virtually the real complexity of the morphology of microstructures. In the
scope of rock microstructures, the idea is to be able to use physical parameters
of the porous medium quantified experimentally, such as porosity, specific surface,
grain size distribution or pore size distribution, to generate a geometry as close as
possible to the real morphology. The most common approaches in the literature
generate inclusion-based morphologies via molecular dynamics principles by using
simple geometries such as spheres, ellipsoids or cylinders (Ghossein and Lévesque,
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2012; Ghossein and Lévesque, 2013, 2014). Others use sequential addition (Cooper,
1988) for ease of implementation. Inclusions are placed one by one, and the positions
of previously added inclusions are not influenced by subsequent ones. It consists
of an iterative process that tries adding a new inclusion in the packing at each
step. The position of the new inclusion to be added is randomly chosen, potentially
leading to inter-penetrations with previously positioned inclusions. A process based
on signed distance fields through the use of neighboring maps has significantly
improved this addition process by a priori selecting remaining accessible areas.
Furthermore, the use of implicit descriptions and their manipulations also greatly
increases the morphological complexity of added inclusions leading to the generation
of particularly complex geometries of different types such as inclusion-based media
(see Figure 2.1(b)), porous media, open/closed foams or composite fibers (Sonon
et al., 2012; Sonon and Massart, 2013; Sonon et al., 2015). Others focus on stochastic
approaches allowing the generation of random geometries representing the complexity
of a porous medium such as the generation and thresholding of correlated Gaussian
fields giving them a spatial structure (Adler, 2008) as illustrated in Figure 2.1(c).
In this spirit, the work of (Roubin et al., 2015) allowed the possibility to partially
control the morphological generation by analytically determining correlations
between statistical quantities such as threshold, mean, variance or correlation
length of random fields to morphological properties such as volume, surface or Euler
characteristic, giving a considerable improvement to morphological modelling.

These tools provide a significant degree of flexibility in terms of the possibility of
testing a series of morphological hypotheses based on parametric studies, by isolating
one by one the parameters of the model, whereas experimental methods struggle to
achieve this. Despite the resulting complexity of the generated geometries, these
methods may still suffer from a lack of representativeness of a porous network
or the solid skeleton of rocks.

2.2.3 Selection of geometrical descriptions to consider
Once, the morphological paramaters captured by imaging techniques, the virtual
reconstruction methods based on random sequential addition (Sonon et al., 2012),
excursion sets (Roubin et al., 2015), or even stochastic generation methods (Liang
et al., 2000; Keehm, 2004; Andrä et al., 2013a) have the advantage of overcoming
the systematic and potentially costly use of imaging equipments such as microto-
mographs or synchrotrons. They also offer the possibility of extended parametric
studies through the generation of a large number of virtual samples with equivalent
properties. However, these methods do not provide yet a fully controllable generation
of the precise and complex morphological configuration of the porous network of
a natural rock that an imaging technique would allow. Geometrical descriptions
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obtained by imaging techniques are, among other things, dependent on the type of
material scanned and on the resolution of the extracted images. Thus, depending
on the quality of the images, their resolution, and the intended application, specific
image processing and segmentation techniques are required in order to efficiently
identify the different phases of the material. Yet, whenever data are available,
it should be preferred as it allows more information to be given to the physical
interpretation of the results obtained.

2.3 Mechanical simulations on rocks
From computational viewpoint, the understanding of the mechanical behaviour of
the rock microstructure under variation of stress states requires not only taking
into account the geometrical complexity of the microstructure in the simulations
but also constitutive laws allowing to simulate experimentally identified mechanical
phenomena acting in the rock. Rocks are natural geological materials which are
by nature potentially heterogeneous, discontinuous, brittle, inelastic, and contain
numerous weak zones causing initiation of failures. Two classes of approaches exist
for modelling their behavior, i.e. continuous and discontinuous approaches, each
addressing specific modelling problems. The continuum-based approaches imply that
the domain of interest cannot be separated. The continuity between neighbouring
points must be preserved in order to use constitutive laws involving strains that
are derivatives of the displacement field. On the other hand, the discontinuous
approaches treat elements as separated discrete (potentially deformable) entities
interacting through contact or cohesive laws. Generally, in the continuum-based
approaches, modelling the deformation of the system is the main purpose, while in
discontinuous methods, rigid body motions coming typically with large movements
is the main point of interest. The choice of either class of methods is therfore mainly
a question of physics to be reproduced (Nikolić et al., 2016).

The most widely used continuum-based approach in the computational mechanics
field is the Finite Element Method (FEM) due to its ability of representing
complex geometries with material heterogeneities, boundary conditions and non-
linear behavior such as elastoplasticity (Zienkiewicz et al., 2005). On the other
hand, with the growing need for modelling the discontinuous behavior of rocks,
an alternative to continuum modeling, the discrete element method (DEM) has
emerged. This method directly simulates the interactions between a large number of
particles with parameters such as a particle size distribution and contact parameters
such as stiffness and coefficient of friction (Cundall and Strack, 1979; Cundall,
1988; Nikolić et al., 2016) as illustrated in Figure 2.2(c). The method solves
the equations of motion and allows de-bonding and detaching of elements, thus
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representing real discontinuities. This makes it suitable for problems with large
number of fractures which are dominant in failure process. More details on its
application to geomechanical problems can be found in (Pande et al., 1990). Recent
advances have allowed the use of more complex shapes, with level-set descriptions
coupled to the DEM enabling the geometrical descriptions of particles based on
µCT scans resulting in a more realistic behaviour of the macroscopic behaviour
of sand (Kawamoto et al., 2018).

However, the choice to simulate the deformation of the rock microstructure
and evaluate its impact on the modification of the porous network affecting its
permeability naturally leads to the selection of a FEM approach especially for
cohesive material as the sandstone considered in this work as illustrative material.
This therefore implies the need for an efficient discretization framework to take into
account the interfaces present in the microstructure discussed in the following.

2.3.1 Discretization methods
The literature on mesh generation is way too extensive to offer an exhaustive review
here. The scope of interest within the framework of this work is to be able to
generate high quality meshes able to take into account interfaces and heterogeneities
of the material in an efficient way and be able to consider material and geometrical
non-linearities of the material in simulations. Then, once a description of material
interfaces is obtained, two main discretization approaches can be used, namely
conforming and non conforming approaches.

Conforming methods

The classical approach to discretize geometries for FEM simulations is to build a
mesh with element boundaries conforming with the material interfaces within the
microstructure as illustrated in Figure 2.2(a). Very effective meshing methods exist
(see (Baker, 2005; Shewchuk, 2012) for an introduction to this topic), the most
popular ones being based on Delaunay refinement (Ruppert, 1995; Shewchuk, 2002;
Frey and George, 2000) or advancing front methods (Lo, 1991; Schöberl, 1997).
The former refers to a criterion leading to a specific connectivity associated with a
given set of points that can also be used in the advancing front method. The latter
consists in constructing the mesh by progressively adding elements starting from
the interfaces, and leading to well controlled elements sizes. For both methods, the
initial node placement strategy is critical to obtain a consistent mesh (George, 1997;
George and Borouchaki, 1998; Shewchuk, 2012; Frey and George, 2000). However,
the task of generating such meshes is repeatedly reported as cumbersome by the
community. The reason invoked is twofold. The first one is the fact that some
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particular cases with very intricate geometries are difficult to mesh, in particular
for very close inclusions or sharp edges. The second one is that most efficient
conforming mesh generator softwares like GMSH (Geuzaine and Remacle, 2009),
TetGen (Si, 2015), GHS3D (TetMesh-GHS3D, 2010), Triangle or Netgen (Schöberl,
1997) as well as meshing tools in finite elements packages generally are available
for explicit geometries but not for implicit descriptions on which the image-based
models are based. Explicit formulations describe an interface based on points
explicitly located in an Euclidean space. In implicit descriptions, an interface
is described as a sub-space satisfying a given set of constraints written in terms
of the spatial coordinates. Both these families of geometry descriptions will be
shortly outlined in this section (More details are given in Section 3.2). Therefore
a preprocessing must be developed to provide suitable triangulated surfaces and
allow the generation of usable conforming FE meshes for implicit geometries. In
fact, existing meshing softwares are generally time consuming to use and difficult
to couple with an image-based geometry (whether derived from scans or from
virtual geometry generators), and a finite element solver to yield an automated
pipeline suited for wide parametric studies.

Geometries built from image information are difficult to discretize in computa-
tional models. As a result, a large proportion of contributions using experimental
microstructural information uses the segmented voxel description as a finite element
mesh (Boyd and Müller, 2006; Klaas et al., 2013; Potter et al., 2012). This produces
structured hex-based meshes resulting in jagged phase boundaries with potential
consequences when the non-linear behavior has to be taken into account. The poor
representation of the material interfaces geometry by stair-case surfaces requires
the use of smoothing methods (Boyd and Müller, 2006; Hormann, 2003; Potter
et al., 2012), which leads to inacuracies of fields derived from post-processing of
the computations. This is especially true for materially non linear computations in
which spurious stress concentrations significantly alter the local behavior within the
meshed geometry (Yang et al., 2019; Liu et al., 2017). Efficient meshing methods
dealing with multiple materials were developed using octree-based isocontouring
in the past few years by (Zhang et al., 2005, 2010) with applications in medical
imaging to represent the different tissues (Klaas et al., 2013; Zhang et al., 2005,
2010). However, only few of them addressed finite elements simulations including
periodicity, notably for multi-scale analysis purposes, a non trivial issue for complex
geometries. Some methods presented in (Drach et al., 2014; Fritzen and Böhlke,
2011; Grail et al., 2013; Potter et al., 2012) are available but the presented results
are generally either based on simplified geometries already described explicitly, or
based on voxel meshing (Klaas et al., 2013). This triggered researchers to use non
conforming discretization methods (Legrain et al., 2011a; Moës et al., 1999).



18 2.3. Mechanical simulations on rocks

(a) (b) (c)

Figure 2.2: (a) Conforming FEM mesh and (b) non conforming mesh showing in red
the elements crossing the interface of a subset of Vosges sandstone used for simulations
in Chapter 5, (c) DEM model of sand represented by an assembly of sphere interacting
between each other reproduced from (Kawamoto et al., 2018)

Non-conforming methods

Although being very efficient because they allow the use of well defined existing FEM
packages, the production of conforming discretizations can be particularly intricate
for complex heterogeneous geometries leading, to localized poor quality elements
for intricate geometrical configurations. More importantly, it may be difficult to
consider evolving morphologies resulting of the development of cracks. An alternative
consists of building the approximation from non conforming approaches like the
extended finite element (XFEM) or embedded finite elements (EFEM) (Legrain
et al., 2011b; Moës et al., 1999; Sukumar et al., 2001; Simo et al., 1993; Benkemoun
et al., 2010) as illustrated in Figure 2.2(b). The main difference then lies in the
fact that the nodes are positioned independently of the material interfaces between
the solid phase and the pore space, thus presenting the advantage of uncoupling
the geometrical information from the mesh generation process. This thus avoids
the need for relocating these nodes according to the heterogeneous geometry. As a
result of the use of a non conforming mesh, many elements are, for a given geometry,
cut in two parts by a physical interface between the solid and the pore phase. Each
of the two sub-domains of these elements defined by such an interface is included in
a material phase, the properties of which are assumed to be known and different
from the neighboring one. In order to allow these elements to represent this contrast
of properties, it is necessary to enrich their kinematics. The enrichment concept is
used to introduce specific local features of the solution such as strong discontinuities
in the displacement field and stress singularities linked with growing cracks (Moës
et al., 1999; Dolbow et al., 2000, 2001; Béchet et al., 2005; Moës and Belytschko,
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2002) or weak discontinuities (gradient discontinuities) in the displacement field
linked with material interfaces in heterogeneous microstructures (Sukumar et al.,
2001; Moes et al., 2003). An implicit representation of the input geometry is used
to achieve this localization of enriched elements. It is also used to ensure the mesh
independency using level set functions to identify elements that are cut by an
interface, and to build the enrichment functions for those. The specific case of
the discretization of image based or tomography based data has been also covered
(Lian et al., 2013; Legrain et al., 2011b; Yuan et al., 2014).

2.3.2 Selection of the discretization approach to consider
Non conforming approaches present the advantage to uncouple the geometrical
information from the mesh generation process which can be intricate for complex
geometries. This allows an easier generation of periodic structured meshes, in
particular for multi-scale analysis purposes. However, this is often associated with
the need to re-implement complex constitutive models in inhouse non-conforming
discretization packages added to the fact that these non-conforming methods
are much more difficult to formulate in the case of finite strains. Conversely,
in conforming meshes, the geometrical information is used in the discretization
process making it potentially more complex and costly. The continued use of
classical (commercial) finite element packages motivates the parallel development of
procedures to produce classical conforming discretizations for complex geometries.
This, in part, is also motivated by the wish to benefit from already implemented
complex constitutive models in existing packages and their availability in conjonction
with finite strain formulations. Currently, rather few contributions deal with the
generation of conforming meshes on complex multi-body geometries. In view of
this, it is of interest to develop methods able to easily and robustly mesh conformly
arbitrary complex implicit geometries for various applications in the physics of
materials. This work presents in Chapter 4 an integrated approach for the conformal
discretization of complex heterogeneous RVEs suited for classical finite elements
computations. A methodology using an extended version of the truss analogy
proposed by Persson-Strang (Persson and Strang, 2004; Persson, 2005) in order to
deal with complex (periodic) heterogeneous microstructures. The main advantage of
this generator is the use of distance functions describing the microstructural geometry
to be discretized for producing a conformal and periodic mesh of these complex
geometries with high quality triangle and tetrahedral elements using a dynamic node
repositioning. The information obtained through the distance functions (complex
geometrical description, distance to neighbours, curvatures,etc) allows the process
benefiting from sufficient details to handle particularly complex cases.
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2.4 Permeability evaluation

Permeability measures the capacity of a fluid to flow through a porous medium.
It is part of the proportionality constant in Darcy’s law (see Equation 2.1), the
relationship expressing the flow v in terms of the pressure gradient ∇p. This
phenomenological law is considered valid at low Reynolds numbers when the flow
is laminar without considering gravitational effect. Indeed, under this condition,
permeability is independent of fluid properties such as the density and the viscosity;
and of the pressure gradient (Eshghinejadfard et al., 2016). Darcy’s law reads

v = −K
µ
· ∇p (2.1)

where K represents the permeability tensor, p the pore fluid pressure, v the
velocity vector and µ the dynamic viscosity.

This law is valid regardless of the fluid considered or the saturation conditions. In
Equation (2.1), the permeability K is computed as the product between the intrinsic
permeability Kint and the relative permeability krel (that depends on the degree of
saturation). The intrinsic permeability Kint (expressed in m2) does not depend on
the fluid considered and is mainly controlled by the spatial structure and the porous
network of the geomaterial, as well as the solid/fluid interaction (Bérend et al., 1995).

In this thesis, only water permeability under saturated conditions will be
investigated. Under those conditions, the permeability K is thus similar to the
intrinsic permeability Kint, and both terms will be used indistinctly in the thesis.

Generally, a pore network consists of a system of large chambers (body pores)
interconnected with narrow pores (throat pores). Permeability is mainly controlled
by the percolation into pore throats, while the pore chambers contribute essentially
to the porosity. Thus, a small variation in the throats can induce large variations
in permeability without significantly affecting the porosity (Zheng et al., 2015).

Different strategies exist to compute the permeability of porous media ranging
from (semi)-empirical models to numerical models. Only selected strategies are
presented in the following sections. For the sake of brevity, computational methods
generally compute the permeability using Darcy’s law, by subjecting the porous
medium to a low enough pressure gradient to ensure a slow incompressible flow
assuming small inertial forces between two opposite boundaries. This is done along
the 3 main direction in order to reconstruct the permeability tensor K.
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2.4.1 (Semi)-empirical models
One class of approaches aims at estimating different parameters such as grain/pore
size distributions which are then used in empirical laws derived from experimental
measurements. As an example, one can cite the (semi)-empirical laws linking
porosity to permeability such as Kozeny-Carman’s law (Kozeny, 1927), the power
laws linking permeability and porosity to stress sensitivity such as the natural
logarithm model (Walsh, 1981), the power law model (Shi and Wang, 1986; Kwon
et al., 2004), the exponential function model (Katsube et al., 1991), or the Two-
Part Hooke’s model (Zheng et al., 2015). However, these methods do not provide
indications on how the fluid behaves within the complex porous space.

2.4.2 Traditional Computational Fluid Dynamics
This class of approaches, implementing a direct pore scale modelling, aims at
numerically solving the Navier-Stokes equations for low Reynolds number fluid flows
in the pore space with traditional computational fluid dynamics (CFD). Among
the methods, finite elements (Narsilio et al., 2009; Borujeni et al., 2013; Narváez
et al., 2013), finite volumes (Guibert et al., 2015; Petrasch et al., 2008) and finite
differences schemes (Mostaghimi et al., 2012; Manwart et al., 2002) can be cited.
These traditional mesh-based CFD approaches follow a top-down approach by
discretizing the Stokes or Navier–Stokes equations on a (structured or unstructured)
mesh (Icardi et al., 2014). Due to its naturally volume conserving behavior, the
finite volume method is often preferred as traditional mesh-based CFD methods.
These methods are numerically efficient and can simulate fluid flow with very large
density and viscosity ratios (Meakin and Tartakovsky, 2009). More details about
these methods can be found in (Thijssen, 2007).

2.4.3 Lattice-Boltzmann method
The Lattice-Botzmann method (Sun et al., 2011; Keehm, 2004; Boek and Venturoli,
2010; Ahrenholz et al., 2006; Hyväluoma et al., 2012; Manwart et al., 2002; Narváez
et al., 2013), also belonging to the direct pore scale modelling, is a modern approach
in Computational Fluid Dynamics often used to solve the incompressible, time-
dependent Navier-Stokes equations, numerically in agreement with FEM solutions
(Kandhai et al., 1998; Thijssen, 2007). The method finds its origin in a molecular
description of a fluid. Based on cellular automata theory, it describes the fluid
volume in a complex pore-geometry in terms of the interactions of a massive
number of particles following simple local rules, namely, collision and propagation
which can be understood as a discretization of the behavior of an ideal gas. The
Lattice Boltzmann method solves a discretized Boltzmann equation of fluid-particle
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distributions that move and interact on a regular lattice with very few degrees of
freedom (Ramstad et al., 2010). A particle distribution for each possible particle
velocity vector is defined at each node on a regular lattice. The voxel grid of the
3D image obtained from a micro-CT scan or a virtually generated geometry can
directly be used as lattice, thus the method does not require a complex meshing
procedure. More in-depth details about the Lattice-Boltzmann method applied to
geomaterials can be found in (Sukop and Thorne, 2007).

2.4.4 Pore network modelling
The idea behind pore network modelling (Bultreys et al., 2015, 2016; De Boever
et al., 2016; Dong and Blunt, 2009) is to reduce the complexity of the pore network
by splitting it into a discrete network. The virtual representation of the continuous
pore network is thus reduced to an assembly of pore bodies connected by pore
throats (constrictions) of different sizes as illustrated in Figure 2.3. This way of
modelling a pore space was seen to better correlate experimental properties of
porous media than a bundle of capillary tubes model (Bultreys et al., 2016).

(a) (b)

Figure 2.3: (a) Representation of the simplified pore space with pore bodies as spheres
and pore throats as cylinders from Sheppard et al. (2005) while the black lines represents
the medial axis (b) Pore network model extracted from a micro-CT scan of a sandstone
reproduced from (Bultreys et al., 2015)

2.4.5 Selection of the permeability evaluation approach to
consider

According to the objective of the thesis, strategies taking into account the complexity
of the flow inside the porous network are preferred. Traditional CFD methods



2. Computational modelling 23

such as Finite Elements Methods (Borujeni et al., 2013; Narváez et al., 2013) or
Finite Volume Methods (Guibert et al., 2015; Petrasch et al., 2008) require mesh
refinement levels stronger than the image resolution to ensure mesh convergence
and simulation stability. Consequently, obtaining a accurate permeability estimate
leads to significant computational costs (Guibert et al., 2015; Succi, 2001), in
addition to the complexity of generating a mesh adapted to this type of geometry.
Conversely, the Lattice-Boltzmann method is prone to parallelization (McClure
et al., 2014). Due to their highly parallelizable potential and the possibility to
directly perform simulations on voxellized images, Lattice-Boltzmann simulations
are often a preferred choice to simulate the fluid behaviour in geological materials
for which a geometry can be obtained via X-Ray microtomography (Martys and
Chen, 1996; Cancelliere et al., 1990; Keehm, 2004; Andrä et al., 2013b). In fact, the
voxel grid of the 3D image obtained from a micro-CT scan or a virtually generated
geometry can directly be used as lattice. Consequently, no complicated meshing
procedure is required, making this approach very flexible. Yet, one of the main
disadvantages of the method is its computational inefficiency, even with a massively
parallel implementation. The runtime scales approximately inversely with the real
flow rate (Blunt et al., 2013), which motivated some researchers to use simplifying
methods such as pore network modelling (Bultreys et al., 2015; De Boever et al.,
2016; Dong and Blunt, 2009). However, the need to implement an integrated
and automated methodology tracking the evolution of permeability according to
the mechanical deformation of the solid skeleton motivates here the choice of the
Lattice-Boltzmann method to simulate flows within the complex microstructures.

2.5 Conclusion and methodology adopted
In this chapter, a brief review of the state of the art was carried out, addressing
the different modelling approaches allowing the development of an integrated and
automated approach that reproduces numerically the permeability alterations of
the rock under stress state variations.

Until now, investigations related to this field have been essentially conducted
on the experimental field, mostly without considering the microstructure mor-
phology. The advances in the field of numerical modelling do not yet seem to
consider microstructures with complex geometries in the simultaneous framework
of deformability of the solid skeleton and its impact on the permeability induced
by an evolution of its percolating porous network.

Imaging techniques such as µCT scans are increasingly used to provide an access
to the internal morphology of the solid skeleton and the porous network of the
geomaterials’ microstructure. Their exploitation makes it possible to acquire much
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more realistic morphologies than those obtained by virtual generation, even though
the subsequent geometries become morphologically increasingly complex. This
realistic approach makes it possible to get closer to the behaviour of the considered
rock. However, contributions in geomechanics simulating the deformability of
complex microstructures via conventional FEM simulations by considering on
the one hand non-linear constitutive laws and on the other hand a well-defined
interface between the different phases of the material are uncommon. This is
mainly due to a lack of efficient conformal mesh generation tools able to handle
implicitly defined geometries in a fully automated manner and to produce an
optimized mesh of sufficient quality to ensure the convergence of simulations at
an affordable computation costs.

Finally, concerning permeability evaluation, given the technical limitations
encountered by direct methods such as FEM and FVM when addressing morpho-
logically complex microstructures and the possibility of simulating flows directly on
pore space geometries coming from µCT scans using Lattice-Boltmzann simulations,
the latter method remains a preferred choice for flow simulations in geological
materials.

In order to respond to the need to develop a simulation tool linking the
macroscopic permeability to the evolution of the morphology of a porous space, this
thesis will be subdivided into three main contributions:

Contribution 1 The development of an automated conformal mesh generator
capable of addressing heterogeneous microstructures with implicitly defined complex
geometries in order to mesh them in an approach taking into account interfaces
in a accurate manner. The process is based on an extension of the truss analogy
methodology proposed by Persson-Strang (Persson and Strang, 2004; Persson, 2005).
The optimization is aimed at both the quality of the mesh and the number of
degrees of freedom obtained by selective refinement in the zones of interest without
altering the geometric representation. The integration of periodicity is envisioned
for multi-scale simulations if periodic geometries are available. The developments
are intended to be general and are equally suited to image-based models as to
models obtained virtually. This contribution will be the scope of Chapter 4.

Contribution 2 Is the conformal approach presented in contribution 1
necessarily advantageous when simulating the mechanical behaviour of geometrically
complex microstructures compared to a non-conformal approach such as EFEM?
An assessment of both methods is necessary in order to highlight the advantages
and disadvantages of each method. Tools allowing to segment cleanly and process
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the µCT scans to make them suitable for simulation need to be set up upstream.
This contribution will be the scope of Chapter 5.

Contribution 3 The development of an integrated and automated model
to analyze the effect of changes of permeability under compressive stress states
and its application on a model problem in which the connected pore size becomes
sufficiently small to affect the fluid flow. This should enable to analyze the effects
of the modification of the porous space morphology on the macroscopic properties
of permeability. For this purpose, the simulation framework will combine the use
of (non linear) mechanical simulations via the finite element method and fluid
simulations via the Boltzmann lattice method. The scope of the contribution is
limited to the ductile behaviour of the rock justifying the use of elastoplastic laws.
The combined use of both approaches requires interfacing by revoxellisation of the
deformed mesh obtained using the methodology presented in contribution 1. All
these elements constitute the scope of Chapter 6.

The developments discussed in the following chapters are mainly aimed at
setting up tools to better understand at the microstructural level the link between
deformation and permeability alterations at the macroscopic level. The tools
are designed to test fine scale assumptions based on mechanical and geometrical
parameters. These include the effect on permeability of parameters such as porosity,
pore size distribution, pore connectivity, Young modulus, cohesion, angle of friction,
and the consideration of multiple constituents in the solid skeleton. In order to
respond to this, the last two contributions will be based on the exploitation of a
scan of a Vosges sandstone provided by the University of Lille (Hu et al., 2018).
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"Advanced geometry representations and tools for
microstructural and multiscale modelling" currently
"In Press" for the 53th issue of Advances in Applied
Mechanics (Sonon, Ehab Moustafa Kamel and Mas-
sart., 2021, Volume 53)

3
Computational tools for geometry

representation

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Geometry representation . . . . . . . . . . . . . . . . . . 27

3.2.1 Implicit geometries and level sets . . . . . . . . . . . . . 28
3.2.2 Explicit geometries . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Conversion between implicit and explicit geometries . . 30

3.3 Image processing . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Morphological operators . . . . . . . . . . . . . . . . . . 33
3.3.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Introduction
This thesis makes an extensive use of implicit geometrical descriptions for complex
rock microstrucural geometries. Therefore, a brief summary of the numerical
methods used in this work for geometrical representations and image processing
are provided in the following sections.

3.2 Geometry representation
In order to obtain an optimal representation of complex geometries for subsequent use
in numerical simulations, it is important to realize that their representation strongly
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impacts the way they can be manipulated. Methods for representing geometries are
diverse, and it is crucial to properly select the representation and the corresponding
methods depending on the targeted application. This requires a minimal account
for practical aspects for a proper selection. Here, the case of boundary geometries
is considered. This refers to curves bounding 2D planar domains, or surfaces
bounding 3D volume domains. These terms will be referred to as interfaces to
denote (sub)domain boundaries in arbitrary space dimensions. Closed, orientable,
non branched and non self intersecting interfaces will be considered, except for
the interfaces representing the boundaries of subdomains only partially contained
in RVEs. Such interfaces are considered closed if periodicity is considered for the
RVE. Two geometry descriptions can be considered for manipulations. Explicit
descriptions describe an interface based on points explicitly located in an Euclidean
space. In implicit descriptions, an interface is described as a sub-space satisfying
a given set of constraints written in terms of the spatial coordinates. Both these
families of geometry descriptions will be shortly outlined in this section.

3.2.1 Implicit geometries and level sets
The tools used in implicit representations allow using geometries in computational
methods for physical modelling up to an arbitrary precision. An implicit description
of interfaces can be built on level sets of continuous functions LS(x, . . .), in which x
denotes spatial coordinates. Level sets of 3D functions (respectively 2D functions)
are surfaces (respectively curves) defined implicitly by expressions of the type

LS(x, . . .) = k (3.1)

where k is an iso-value of the function representing the interface as illustrated
in Figure 3.1(a)

Level-set functions used to define geometries can be of different natures and
may depend on various parameters. A well-kown example of level set function
is the gray-scale density map obtained by X-ray (Computed) Tomography (CT)
scans in (many) research fields such as medecine, biology or mechanics. Such a
diversity stems from the ability of this formalism to model and handle geometries
with arbitrarily complex features. Such functions are defined in terms of spatial
coordinates, but their argument can extend to other parameters depending on
their use (e.g. time for evolving interface problems, morphological parameters
for RVE geometry generation (Ghazi et al., 2019)). A particular choice for this
function is the signed distance function. Interfaces represented by level sets are
closed except when they cross the boundary of the domain where LS(x, . . .) is
defined. The smoothness of the geometry representation depends on the continuity
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of LS(x, . . .), leading to well-defined normals and curvatures (if C2 continuity is
enforced), curvature jumps (if C1) or interfaces sharp features (if C0 is considered).
Since the domain of definition of LS(x, . . .) can be partitioned into two distinct
regions in which LS(x, . . .) is respectively larger and lower than k, level sets-based
geometries are always orientable. By convention in this work, the domain with
values lower or equal to k is the included domain. In most examples, the value of k
will be set to zero. Useful properties of the geometries can directly be deduced from
the implicit description based on the spatial derivatives of the level set functions as
the gradient, the second derivatives, the divergence and the Gausssian curvature.
A crucial feature of implicit representations is that they allow handling arbitrarily
complex geometries (Sethian, 1999; Osher and Fedkiw, 2003).

In a computational context, level set functions have to be evaluated and
manipulated using finite sets of values. To this end, they are sampled on regular
grids discretizing the domain under investigation, combined with an interpolation
to recover continuous functions in order to define level sets. The discrete treatment
of level set functions obviously affects the evaluation of its spatial derivatives.

(a) (b)

Figure 3.1: 3D illustration of (a) a signed distance field of a grain with three 2D cutted
views and (b) its corresponding triangulated surface extracted with a marching cube
algorithm

3.2.2 Explicit geometries
The simplest explicit geometry representations for interfaces consist of polygons in
2D and triangulated surfaces in 3D. Such representations will be denoted here as
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discrete geometries. Given the objective of this thesis in terms of microstructural
geometry representations, only such discrete geometries will be considered among
explicit descriptions for their ease of use and their suitability for our needs. They
will be used as a complement to implicit descriptions for tasks that are difficult
or imprecise to perform with the latter.

In 2D, polygons are used to discretize interfaces, consisting of sequences of points
or vertices linked by straight line segments or edges. A polygon is defined by the
ordered list of the coordinates of its vertices. Edges are defined automatically as
the straight segments linking two consecutive vertices. In 3D, discretized interfaces
consist of triangulated surfaces, i.e. assemblies of triangular facets that approximate
the geometry. The minimal set of data to define a triangulated surface is the
(unordered) list of the coordinates of its vertices together with a connectivity table
determining its facets. For triangulated surfaces, the face normals are used to
determine the interface orientation. The faces, edges and vertices of polygons and
triangulated surfaces are called the primitives of a discretized geometry.

While many CAD and advanced drawing softwares nicely handle complex
representations such as NURBSs, simpler tools for scientific data visualization
generally offer polygons and triangulated surfaces rendering. If implicit geometries
are used for the definition of the interfaces, their discretization into polygons and
triangulated surfaces should be addressed. An intensive use of Euclidean distances
and signed distance fields will be made in this work. This can be achieved based
on implicitly or explicitly described geometries. The latter will be used here when
distance fields need to be computed for a matter of convenience. Note however
that Euclidean distance computations are not restricted to explicit geometries.
Several methods, called distance transforms, can be used to approximate the signed
distance field of an implicit geometry through the transformation of its level set
function. Here, an exact evaluation is targeted to allow ruling out any potential
issue related to small uncontrolled errors.

3.2.3 Conversion between implicit and explicit geometries

If level set functions are used as the primary definition of interfaces, complemented
by specific operations applied on discrete geometries, discretized representations of
the geometries should be extracted from the associated level set functions. This
operation is called contouring.
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Contouring

The process of contouring a level set function consists of finding sampling points on
a given level set of this function, and using them as control points of a parametric
formulation or to build polygons in 2D and triangulated surfaces in 3D. For advanced
uses, as Euclidean distance computations, specifically developed tools are available.
The most established contouring technique is the marching cube method (marching
square in 2D) for grid sampled data and extends to the marching tetrahedron (and
triangle in 2D) for mesh based data (Lorensen and Cline, 1987; Cline et al., 1988)
as illustrated in Figure 3.1(b). This algorithm generates a straight segment by
grid square in 2D and up to four triangular faces by grid cube in 3D. Vertices
of those segments and faces are located on grid cell edges and lie exactly on the
considered level set according to a linear interpolation scheme of the level set
function. The algorithm visits each cell of the grid, searching for cells intersected
by the interface, checking how many cell nodes have a negative value of the level set
function. Alternatively, dual contouring methods can be used (Ju et al., 2002). Their
principle is similar to that of the marching cube, except that they use a vertex inside
each intersected cell rather than on each intersected edge. Their main advantage
is to produce higher quality triangulations. However, generally, the triangulated
surface produced by these methods tends to be of poor quality requiring further
processing to make it suitable for use in the finite element meshing process proposed
in Chapter 4. Both marching cube and dual contouring methods fail at extracting
sharp features on loci where the contoured level set function is only C0. This can be
addressed by adding more information, storing the exact derivatives of the level set.
Normals to the level set are then available and sharp features can be detected and
reconstructed approximately (Kobbelt et al., 2001; Ju et al., 2002). However, in
most applications, level set function derivatives are accessible only approximately on
discrete grids and are inaccurately evaluated near sharp features. Exact derivatives
can be accessed using derivatives of a high order polynomial basis that interpolates
level set functions on the grid, but this obviously destroys the sharp features.

Euclidean distance computations

The tools for geometry representations classically make intensive use of distance
fields. The signed distance field of an orientable interface will be denoted here
DS(x) and is defined such that |DS(x)| gives for each position x the distance from
x to the closest point of the interface. By convention in this work, the sign(DS(x))
will be negative inside the domain enclosed by the interface and positive elsewhere,
see Figure 3.2. This function is a particular level set function defining the interface
by its zero level set. As a result, the conversion of an explicit representation into
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an implicit one can be based on the evaluation of the signed distance field of the
considered geometry. As a natural level set function of the interface to which it
gives the distance, the gradient of a distance field is normal its interface, while
its second derivatives reflect the curvature of the interface. Moreover, the norm
of the gradient of a signed distance fields is equal to 1 everywhere, which is not
true for an arbitrary level set function. This property is reflected by the fact that
distance fields are solutions of the Eikonal equation,

|∇DS(x)|= V (x) (3.2)

With V (x) = 1 everywhere and with the boundary condition F (x) = 0
on the interface.

Figure 3.2: (a) Signed distance fields for a 2D arbitrary shaped inclusion (the interface
is represented in black), (b) representation for this inclusion of the medial axis (the
red curves are the inner medial axis while the blue curves are the outer medial axis
representing respectively the local minima and maxima of the signed distance field)

For a proper accuracy matter during the underlying meshing process discussed
in Chapter 4, an exact distance field in 3D needs to be computed. The distance
from a point to a triangulated surface is the minimum of distances between this
point and all the primitives of the geometry. The Euclidean distance from a point
p to a triangle can either be the distance to the plane containing the face, the
distance to a line containing one of the edges or the distance to a vertex. One can
discriminate between those cases by localizing the projection p′ of the point on
the face plane. If p′ lies in the triangle, the distance to the plane must be chosen.
If p′ is outside the triangle but projects orthogonally on an edge, the distance
from this edge must be chosen. In other cases, the distance from a vertex is the
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solution. To compute the distance one can thus first compute the distance to the
plane, and localize the projected point p′ in this plane. Then, the distances to
edges or vertices are computed in the plane, the total distance being computed
as the combination of |p′ − p| and the in plane distance.

The distance field from a triangulated surface requires the distance to all M
triangles and the choice of the minimal value for all N sampled points. A brute force
method to compute such a field is obviously inefficient as a fraction (M − 1)/M of
the computation is useless. Several optimization aspects can be implemented to
decrease the associated computation cost. The most efficient one is to construct a
Voronoï cell for each primitive. If a complete distance field is required this can be
difficult in 3D, but if a maximum distance is set, simple polyhedral characteristics
that contain the corresponding Voronoï cells can be defined.

When evaluating a signed distance field, in addition to the Euclidean distance
values, one should also classify sampled points as being inside or outside the domain
enclosed by the interface and set their sign values accordingly. This requires the
interface to be orientable, which is always the case if its primary definition is a
level set function. In this case, the attribution of a sign to computed distance
values is direct since the sign of the original level set function may be simply copied
on the distance field. On the contrary, if the input geometry is a triangulated
surface, an additional post processing is required, and the nearest primitive to
each point has to be stored. The sign of a distance field from a surface is trivially
computed if one is able to evaluate an outward normal to the surface at the
nearest primitive from each point.

3.3 Image processing
Subsequent developments presented, notably, in Chapters 5 and 6 use experimental
3D images, require tools to process these images efficiently in order to build a
simulable model.

3.3.1 Morphological operators
Mathematical morphology is an image-analysis and processing technique using
the algebra of non-linear operators. It is often applied to binary images and for
applications where shape of objects and efficiency matter. The most common and
basic operators are the erosion and dilation on the basis of which more complex
operations are possible such as opening, closing and geodesic reconstruction. The
section below explains briefly these operations based on details provided by (Sonka
et al., 2007; Glasbey and Horgan, 1995; Ronse, 2008; Soille, 2003).
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Dilation - Erosion

Set theory is the mathematical logic on which the morphology is based. It enables
modelling any real image using point sets. Binary images can be modelled as a 2D
point set. The pixels of interest of the image or the object would have a value equal
to 1 (point set X) while the background is represented by pixels values equal to 0.
For a given morphological operation, a small point set B, called structuring element,
is applied on the points of interest of the image (point set X). The structuring
element is usually defined by a relative pixel reference O which is a current point
moving across the entire the image. Some typical shapes of structuring elements
are shown in Figure 3.3. The results of the morphological operation can be 0 or 1,
and is stored in the output image at the current pixel position.

(a) (b)

Figure 3.3: Common shapes of structuring elements : (a) Octahedron (b) Cube

The dilation is one of the basic morphological operation. As shown in Figure 3.4,
a binary image is defined in which the set X corresponds to the pixels of interest
defined as grey in this example (pixel value equal to 1), while the background is white
(pixel value equal to 0). A simple 3x3 set structuring element E is also considered.
To apply dilation on the grey pixels set X, the reference point of the structuring
element E is placed at any pixel of the object. If any pixels of E comes on the top a
grey pixel of X, the output pixel at the current reference point position of E will be
grey. The dilation thus consists of an operation of extension of the object set. This
is mathematically denoted as follow (where E2 is the 2 dimensional Euclidian space):

X ⊕ E =
{
p ∈ E2 : p = x+ b, x ∈ X and b ∈ E

}
(3.3)

The erosion is the dual operator of dilation and consists on the other hand
to reduce the object set. Considering the same set X and structuring element E,
Erosion is applied after placing the reference point of E at any pixels of the image.
If all the pixels of E are placed on grey pixels of set X, then the output pixel at
the current reference point position of E will be grey. The operation is denoted as
follows (where Ep represents the set E translated by any vector p):

X 	 E =
{
p ∈ E2 : Ep ⊆ X

}
(3.4)

The Figure 3.4 illustrates both the erosion and dilation processes using the 3x3
octahedric structuring element (see figure 3.3(a)) .
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(a) (b) (c)

Figure 3.4: (a) Binary image where the set X is in grey (b) Output image after dilation
(c) Output image after erosion

Opening - Closing

Opening and closing are morphological operations resulting of the combination
of erosion and dilation. When erosion is followed by a dilation, the result is
called opening.

X ◦ E = (X 	 E)⊕ E (3.5)

On the other hand when dilation is followed by erosion the resulting operation
is called closing.

X • E = (X ⊕ E)	 E (3.6)

These operations can filter objects of the desired size in order, for example,
to simplify a porous network, to isolate a certain pore size or to compute a pore
size distribution. Figure 3.5 illustrates the results of both operations using the
same set X and structuring element E than previously.

(a) (b) (c)

Figure 3.5: (a) Binary image where the set X is in grey (b) Output image after opening
(c) Output image after closing using an octahedron as structuring element
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Geodesic reconstruction

Other techniques of interest are the geodesic methods that consist in applying
morphological operations in some part of the image. It uses the same concept
of structuring element while adding a new set called mask and a subset called
markers. The geodesic reconstruction consists in applying consecutive geodesic
dilation on the marker inside the mask until stability of the operation is reached.
The geodesic dilation is based on the conventional dilation as presented in the
previous sections, except that it is applied on a mask, which is a part of the
binary image, that limits the dilation process. Here is the mathematical formalism
which defines geodesic dilation δrE:

δrE = (δE(J)) ∩Y (3.7)
where J is the marker, Y the mask image and δE the basic dilation with

structuring element E.

Equation (3.7) allows defining the geodesic reconstruction Rr
E consisting in N

iterations of geodesic dilation as follows:

Rr
E =

N≥0⋃ {
(δrE)N

}
(3.8)

Figure 3.6 shows such an operation of geodesic reconstruction. When a specific
object is meant to be determined in the binary image, it will be defined as the
marker, while all the remaining objects of the domain are considered as a mask.
Starting from this, the geodesic dilation occurs for several iterations until the desired
object is reconstructed without the unwanted information.

An example of the application of geodesic reconstruction that will be used used
in Chapter 5 and 6 is the identification of the different types of pores involved
in a porous space in order to isolate them and in particular to remove occluded
porosities. As shown in Figure 3.7, an occluded pore is a pore with no connection to
the external boundaries, while a connected pore is a pore with at least one connection
to an external boundary. An interconnected pore is a pore with an interconnection
between two opposite sides of the porous medium. To isolate occluded proposities,
the markers are chosen as the boundary pore pixels in 2D (respectively voxels in
3D) of the domain while the other pores pixel in 2D (respectively voxel in 3D)
are used as a mask (see Figure 3.7). The basic notion that limits the iteration
process of dilation is the geodesic distance. The latter is measured as the shortest
distance between two points within a specific set. It defines the number of steps to
conduct the geometric reconstruction since it represents the path to follow from
the boundary of the domain to the center of it. The connected and interconnected
pores are extracted from the binary image by taking respectively the union and the
intersection of the geodesic Rr

E reconstruction result from each boundary mask.
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Figure 3.6: Geodesic reconstruction process using marker applied on a mask keeping
only the regions of interest

Figure 3.7: Application of geodesic reconstruction on a pore space to discriminate
interconnected, connected or occluded pores

3.3.2 Filters
In the developments of the thesis, a median filter and a gaussian filter will be
applied respectively to reduce the noise on original images and to smoothen the
contours after applying morphological operations on binary images to remove,
for example, occluded pores.

Median filter

The median filter is a non-linear filtering method also usually used for smoothing
and noise reduction (Sonka et al., 2007). This technique provides an output image
where each pixel value is defined by the median value of its original neighborhood.
This is achieved by defining a structuring element that crosses the entire input
image. For each relative pixel position of the structuring element, the neighborhood
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pixel values are sorted in a list and the middle number is selected as the output
pixel value. Compared to the Gaussian filter, the median filter performs better
at preserving edges.

Gaussian filter

The Gaussian filter aims at smoothing the images on which it is applied by
reducing noise. It is a linear filtering image processing technique, consisting in
a convolution between the image function and a Gaussian mask or kernel. The
latter is mathematically defined as follows :

G(x, y) = 1√
2πσ

e−(x2+y2)/2σ2 (3.9)

where x and y are the image co-ordinates and σ the standard deviation of the
associated probability distribution (Sonka et al., 2007). Since the kernel has a
Gaussian distribution it tends to give more importance to the center pixels of the
neighborhood on which it is applied, leaving the most distant pixels with lower
influence. Therefore, the standard deviation σ is the only parameter to adjust
regarding the amplitude of smoothing desired.

3.3.3 Segmentation

Segmentation is an important step of image processing when it comes to discriminate
regions of a given image regarding the correlation of objects of interest contained
in the image. Many segmentation methods exist and can be based on regions,
edges, or the global knowledge of the image. A review of these techniques can
be found in (Sezgin and Sankur, 2004) with a more focused review on advanced
segmentation methods adapted for X-ray micro-CT scans of porous materials in
particular in (Iassonov et al., 2009). Depending on the image quality, segmentation
can often be a bottleneck in the image analysis process, in particular for images
with low contrast-to-noise ratio or which contain certain artifacts. This point
requires particular consideration as it may generate sensitivity on the results of
subsequent simulations which might not be negligible. A common way to perform
segmentation is to use thresholding techniques including the Otsu method or the
hysteresis thresholding. The latter methods allow discriminating objects from
background, especially in gray-levels images. Besides that, the level set method
is also used for segmentation purpose. These techniques used in the following
Chapters are briefly described in the next sections.
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Otsu’s method

Finding a convenient threshold to perform a segmentation on a gray-levels given
image is not an easy task. The a priori knowledge of some properties of the image
such as the image histogram is required for this purpose. The Otsu’s method (Otsu,
1979) is a segmentation technique that tries and tests several possible thresholds
based on the histogram of the image and finds the optimal threshold that maximizes
the inter-class variance and minimize the intra-class variance. In order to exploit
this method efficiently, it is important to denoise the image to clearly reveal the
potential multimodality of the histogram discriminating background and foreground
and thereby facilitate the threshold computation.

Hysteresis thresholding

Hysteresis thresholding also referred to as dual thresholding is an edge-based
segmentation technique (Canny, 1987). This approach is used after edge detection,
knowing that edges are made of pixels where texture, gray-levels or brightness
change abruptly, which allows reducing the sensitivity to residual image noise.
In fact, an upper and a lower threshold for the edge magnitude are set. Then,
an iteration process is used until the optimal threshold is found. Pixels with a
gray value in the first interval are classified belonging to a certain material phase,
while pixels in the second interval are only considered to belong to this phase if
connected to pixels from the first interval.

Level-set-based segmentation

Level-sets-based methods correspond to a class of deformable models in which the
desired shape is obtained by propagating an interface represented by iso-contours in
2D or iso-surfaces in 3D (Caselles et al., 1997; Chan and Vese, 2001; Shi and Karl,
2008; Bernard et al., 2009). It thereby allows obtaining smoothed contours. The
basic principle is to define a prior arbitrary initial boundary shapes represented
in a form of closed curves, i.e. contours. These contours will evolve iteratively
according to shrink/expansion operations related to the constraints of the image
and reach their final state when the desired boundaries minimizing a given energy
functional are met. Level set approaches move contours implicitly as a particular
level of a function (Osher and Fedkiw, 2003).
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This chapter is based on the article titled "An in-
tegrated approach for the conformal discretization
of complex inclusion-based microstructures" which
was published in the March 2019 issue of Computa-
tional Mechanics (Ehab Moustafa Kamel et al., 2019,
Volume 64, pp. 1049–1071)

4
An integrated approach for the conformal
discretization of complex inclusion-based

microstructures

Abstract

Computational homogenization techniques nowadays are extensively
used to gain a better understanding of the links between complex
microstructural features in materials and their corresponding (evolving)
macroscopic properties. This requires robust tools to discretize complex
microstructural geometries and enable simulations. To achieve this, the
present contribution presents an integrated approach for the conformal
discretization of complex inclusion-based RVE geometries defined implic-
itly based on experimental techniques or through computational RVE
generation methodologies. The conforming mesh generator extends the
Persson-Strang truss analogy in order to deal with complex periodic
heterogeneous RVEs. Such an approach, based on signed distance
fields, carries the advantage that the level set information maintained in
previously presented RVE generation methodologies (Sonon et al., 2012)
can seamlessly be used in the discretization procedure. This provides
a natural link between the RVE geometry generation and the mesh
generator to obtain high quality optimized FEM meshes exploitable in
regular codes and softwares.

Keywords: Conforming Meshes, Implicit geometries, Heterogeneous
materials, Multi-scale analysis, Mesh Optimization, FEM

41



42 4.1. Introduction

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Input Geometries . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Implicit Geometries . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Implicitly defined RVEs . . . . . . . . . . . . . . . . . . 47

4.3 Mesh generation for implicit geometry of homogeneous
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Global discretization process . . . . . . . . . . . . . . . 48
4.3.2 Mesh quality optimization . . . . . . . . . . . . . . . . . 49

4.4 Extension to complex heterogeneous RVEs mesh gen-
eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Global meshing strategy . . . . . . . . . . . . . . . . . . 52
4.4.2 Size Function h(x) . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 Initial nodes distribution . . . . . . . . . . . . . . . . . 58
4.4.4 Inclusion boundaries meshing . . . . . . . . . . . . . . . 59
4.4.5 RVE Boundaries meshing . . . . . . . . . . . . . . . . . 64
4.4.6 Volume Meshing . . . . . . . . . . . . . . . . . . . . . . 65
4.4.7 Extended Persson-Strang truss analogy . . . . . . . . . 67
4.4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Introduction
4.1.1 Context
Materials with various degrees of randomness at the microscale are met in many
different engineering problems related for instance to rocks, bones, masonry, concrete
or metallic foams. For instance, heterogeneities strongly affect the permeability
of rocks, thereby influencing the transient fluid transport processes in critical geo-
environmental applications. In such processes, mechanical loading may alter the
material microstructure, thereby impacting the fluid transfer properties (Selvadurai
and Głowacki, 2008; Hemes et al., 2015; Song et al., 2015).

Nowadays, multiscale analysis is used for identifying the microstructural pro-
cesses responsible for a macroscopic effect, or for linking average macroscopic
properties to the material properties of constituents (Kouznetsova et al., 2002;
Massart and Selvadurai, 2014; Masson et al., 2000; Sanchez-Palencia, 1980; Sun et al.,
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2011). Computational homogenization defines a general framework to model the
physics of a microstructural representative volume element (RVE) and to derive the
macroscopic behavior of an heterogeneous material using scale transition rules (der
Sluis et al., 1999; Kouznetsova et al., 2002; Stroeven et al., 2004; Terada et al., 2000).
Many computational contributions based on homogenization with periodic boundary
conditions use simplified geometric microstructural representations, which can induce
strong approximations for the considered materials averaged properties (Kouznetsova
et al., 2001, 2002).

To consider complex geometries in finite elements simulations, two main in-
gredients are required. First, for complex disordered heterogeneous materials,
realistic RVEs incorporating the specific features of their microstructures need to
be obtained or produced. This can be achieved by exploiting experimental data
from modern experimental techniques, such as tomography, to characterize the
spatial organization of the various phases and pore space in porous/heterogeneous
materials ; or by using generation techniques reproducing available experimental
features such as the size distributions of inclusions/voids, their volume fraction
or the tortuosity or the connectivity in the pore space.

Secondly, these complex microstructural geometries have to be discretized by
advanced techniques, able to conform to the internal material boundaries in an
efficient manner. Mesh generation is a critical step in a modelling process, linking
the definition of the geometry to the solution of discretized partial differential
equations. Unlike for models representing the geometry of industrial parts via CAD
tools, a model that aims at representing the physics of heterogeneous materials at
the microscale requires incorporating complex geometries that are often defined
implicitly. Such real geometries are represented by means of simple grids of
points sampling the material density. Over time, idealized (virtually generated)
microstructures have become more and more complex as well, with the enhancement
of generation techniques and can be represented similarly to data obtained with
Computed Tomography scans (Roubin et al., 2015; Sonon et al., 2012). Finally, a
seamless transition between the generation and discretization steps is desirable to
obtain a fully automated computational approach that does require any intervention
of the analyst.

The present contribution focuses on the problematic of mesh generation in the
context of multi-scale analysis of heterogeneous materials with complex microstruc-
tures.
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4.1.2 Related work
The literature on mesh generation is way too extensive to offer an exhaustive review
here. Once a description of material interfaces is obtained, two main discretization
approaches can be used. Non conforming approaches, like XFEM (Legrain et al.,
2011b; Moës et al., 1999; Sukumar et al., 2001) present the advantage to uncouple
the geometrical information from the mesh generation process which can be difficult
for complex geometries. This allows an easier generation of periodic structured
meshes. However, this is often associated with the need to re-implement complex
constitutive models in inhouse non-conforming discretization packages. Conversely,
in conforming meshes, the geometry information is used in the discretization process.
This makes it more complex and costly, but carries the advantage of using standard
FE packages with available constitutive laws.

Most efficient conforming mesh generator softwares like GMSH (Geuzaine and
Remacle, 2009), TetGen (Si, 2015), GHS3D (TetMesh-GHS3D, 2010), Triangle or
Netgen (Schöberl, 1997); as well as meshing tools in finite elements packages generally
are available for explicit geometries but not for implicit descriptions. Therefore
an interface must be developed to provide suitable triangulated surfaces and allow
the generation of usable conforming FE meshes for implicit geometries. In most of
softwares, triangulation is achieved by Delaunay triangulation or by front advancing
methods. The former refers to a criterion leading to a specific connectivity associated
with a given set of points that can also be used in the advancing front method. The
latter consists in constructing the mesh by progressively adding elements starting
from the interfaces, and leading to well controlled elements sizes. For both methods,
the initial node placement strategy is critical to obtain a consistent mesh (George,
1997; George and Borouchaki, 1998; Shewchuk, 2012; Frey and George, 2000).

Realistic geometries are difficult to discretize in computational models. As
a result, a large proportion of contributions using experimental microstructural
information uses voxel-based discretization methods (Boyd and Müller, 2006; Klaas
et al., 2013; Potter et al., 2012). This leads to a poor representation of the
material interfaces geometry by stair-case surfaces that requires the use of smoothing
methods (Boyd and Müller, 2006; Hormann, 2003; Potter et al., 2012), or to
inacuracies of fields derived from post-processing of the computations. This is
especially true for materially non linear computations in which spurious stress
concentrations significantly alter the local behavior within the RVE.

Efficient meshing methods dealing with multiple materials were developed using
octree-based isocontouring in the past few years by (Zhang et al., 2005, 2010) with
applications in medical imaging to represent the different tissues (Klaas et al., 2013;
Zhang et al., 2005, 2010). However, only few of them addressed finite elements
simulations with periodicity, a non trivial issue for complex geometries. Some
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methods presented in (Drach et al., 2014; Fritzen and Böhlke, 2011; Grail et al.,
2013; Potter et al., 2012) are available but the presented results are generally
either based on simplified geometries already described explicitly, or based on voxel
meshing (Klaas et al., 2013). This triggered researchers to use non conforming
mesh (Legrain et al., 2011a; Moës et al., 1999).

In view of this, it is of interest to develop methods able to easily and robustly
mesh arbitrary implicit geometries for various applications in the physics of materials.

4.1.3 Outline
Currently, rather few articles deal with the generation of conforming meshes on
complex multi-body geometries. The present contribution proposes an integrated
approach for the conformal discretization of complex heterogeneous RVEs suited
for classical finite elements computations. It mainly focuses on the discretization
step for geometries provided by RVE geometry generators already developed in
(Roubin et al., 2015; Sonon et al., 2012, 2015; Sonon and Massart, 2013) for
particulate granular media, porous media, foams or woven composites. The meshing
methodology extends the truss analogy of Persson-Strang (Persson and Strang,
2004) in order to deal with complex (periodic) heterogeneous microstructures. The
main advantage of this generator is the use of distance functions describing the
microstructural geometry to be discretized for producing a conformal and periodic
mesh of these complex geometries. The information obtained through the distance
functions (complex geometrical description, distance to neighbours, curvatures,...)
allows the process benefiting from sufficient details to handle particularly complex
cases. The surfaces of the inclusions are meshed and optimized independently,
simplifying the problem before producing a volume triangulation via 3D constrained
Delaunay triangulation after boundary faces meshing. To this end, the mesh
optimization using the extended Persson method makes it possible to generate a
final result that allows to preserve the conformity and ensure periodicity while
producing high-quality elements that open the way for FEM simulation on complex
geometries. The approach, based on signed distance fields, carries also the advantage
that the level set information used during the generation of the microstructural
geometry (Sonon et al., 2012) can seamlessly be used in the discretization procedure,
providing a natural link between RVEs generation and the mesh generation.

The present contribution is structured as follows. Section 4.2 provides an
overview on implicit geometries and on the specific ingredients required to implicitly
define RVEs. The resulting implicit RVE geometry constitutes the input for
the new developed mesh generator. Section 4.3 recalls the truss analogy process
presented by P.O. Persson (Persson and Strang, 2004) to optimally mesh single body
implicit geometries and its adaptation for heterogeneous geometries. It presents how
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boundary conformity at material interfaces can be ensured by forcing nodes to move
only tangentially to these surfaces, and how an optimization algorithm can be built
on the truss analogy based on a repulsive force field, to obtain high quality element
shapes. Section 4.4 presents the extended meshing algorithm by first enlighting the
difficulties related to the conforming meshing of complex periodic heterogeneous
RVEs. Secondly, the meshing and optimization procedures are adressed, focusing
on the issues related to the conformal meshing of materials internal boundaries.
Section 4.5 illustrates some meshing results of complex RVEs. Finally, Section 4.6
discusses the results and potential further improvements of the procedure. The
discretization procedure is available for both 2D and 3D discretizations. Since 3D
meshing requires more specific treatments, the present contribution will focus more
particularly on the 3D implementation, even though some parts are illustrated
for the 2D for the sake of clarity.

4.2 Input Geometries
4.2.1 Implicit Geometries
In a microstructural heterogeneous geometry, interfaces separating phases can be
described either explicitly by means of triangular facets in 3D or implicitly. A
curve or a surface φ can be represented implicitly by means of the level sets
of functions LS(x, ...) :

φ ≡ LS(x, ...) = k (4.1)

where x represents the spatial coordinates and k the iso-value of the function.
In a computational context, level set functions LS(x, ...) are evaluated on finite

regular grids defining the domain of the geometry. The complete definition of
continuous functions from those requires the association of an interpolating scheme.
Due to the discrete nature of LS evaluations, the actual positions of material
interfaces depend on the grid resolution and on the interpolation scheme used to
define the LS function, making them not uniquely defined. Typically, the use of a
linear interpolation requires the grid resolution to be fine enough with respect to
the represented geometry. The same consequences hold for the computation of the
spatial derivatives, the approximation of which can be obtained by finite differences.

The level-set function used to define geometries can be of different nature and may
depend on various parameters. A well-kown example of level set functions is the gray-
scale density map obtained by X-ray (Computed) Tomography (CT) scans in (many)
research fields such as medecine, biology, mechanics or environmental applications;
highlighting their ability to model and handle geometries with arbitrarily complex
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features. LS(x) also gives access to some of their intrinsic properties such as the
direction or curvature of the curve (resp. surface). The gradient of LS(x) is indeed
related to the normal to the level sets of LS(x) as level sets of a function are
perpendicular to its gradient. Moreover, their second derivatives give access to the
local curvatures of the interface, as the divergence of the normalized gradient of
LS furnishes the local mean curvature (Goldman, 2005; Sethian, 1999).

A particular choice for this function is the signed distance function to φ (Osher
and Fedkiw, 2006; Sethian, 1999).

φ ≡ DS (x) = 0 with |grad(DS(x))|= 1 (4.2)

Given an interface φ dividing the RVE domain Ω in two sub-domains Ω+ and Ω−,
the signed distance function of φ is a function DSφ(x) with the value of the signed
euclidian distance from x to φ, with by convention a negative value attributed to
points included in the domain Ω−. These functions can be easily computed from
any level set function using the Fast Marching Method (Osher and Fedkiw, 2006).

4.2.2 Implicitly defined RVEs

In the context of microstructural RVE geometry generation, a combination of level
set functions can be used to represent complex and/or multi-body geometries. In
addition to DS functions defining inclusions, in multi-body situation, such as in
RVE illustrated in Figure 4.1, global distance functions DNk(x) can be used as
global descriptors of the microstructural geometry. The notation DNk denotes
the distance to the kth nearest neighbour. To evaluate properly these functions, a
distance function DSφi

is required to each inclusion i. As a consequence, the CTX
scan of a heterogeneous geometry, grouping the representation of all inclusions in
a single LS function, cannot directly be used to evaluate DNk functions without
specific processes. Conversely, it is possible to reconstruct any DSφi

based on
DNk functions. DN1(x) represents the first nearest neighbor distance function
and can be used strictly as a distance function defining implicitly every inclusion
boundary inside the RVE with a single function.

DN1(x) = min
i

[DSφi
(x)] (4.3)

Further morphological information about the RVE can be obtained from DN2(x),
the second nearest neighbor. More generally, DNk functions partly describe the
morphology of a set of inclusions. These functions will be used in the present
contribution to detect some local configurations requiring a finer mesh.
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Figure 4.1: Left : Global signed distance function DN1(x) for a given RVE - Right :
DN2(x) function, the second nearest neighbor, for the same RVE

4.3 Mesh generation for implicit geometry of ho-
mogeneous structures

A meshing tool called distmesh was developed in MATLAB by P.O. Persson (Persson,
2005; Persson and Strang, 2004). It starts from a non-conformal initial discretization
transformed into a conformal mesh by using an auxiliary structural computation on
a truss network in which the bars correspond to the edges of the mesh elements. This
auxiliary computation makes use of a repulsive force field moving the nodes located
inside the geometry domain towards the interfaces, while being constrained to remain
in the domain based on the level set function that describes the implicit geometry.
The code developed by P.O. Persson (Persson, 2005; Persson and Strang, 2004)
for homogeneous geometries has the aim to remain simple and public. Its central
concept is explained now to allow its extension towards periodic heterogeneous
complex structures in Section 4.4.

4.3.1 Global discretization process

Figure 4.2: Global meshing process of (Persson and Strang, 2004) divided in four
main stages taking as input an implicit geometry. (reproduced from (Persson and Strang,
2004))
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The meshing procedure for homogeneous structures is essentially divided in four
stages as shown in Figure 4.2. The first stage consists in defining a size function h(x)
to be used as a space-dependent target for elements sizes, depending on geometrical
or physical features. More details on this stage can be found in (Persson, 2005) and
further in this paper. The second stage generates an initial node distribution on
which a triangulation is subsequently produced. Persson proposed in (Persson and
Strang, 2004) an efficient generation procedure for the initial node distribution, based
on a probabilistic distribution called rejection method. The last stage optimizes the
nodes positions according to a force equilibrium process using an auxiliary truss
analogy explained in the next section to achieve optimal element shapes.

In finite element simulations, the error upper bounds depend only on the smallest
angle of the mesh elements (Lo, 2015; Persson and Strang, 2004). Accurate numerical
results are therefore obtained if 2D triangles tend to be equilateral (Field, 2000;
Lo, 2015). A commonly used measure to evaluate the quality of tetrahedra is
therefore the ratio based on their largest inscribed and smallest circumscribed
spheres. This ratio tends to a value 1/3 for a regular tetrahedron. An element
quality factor q is then defined by :

q = 3 rinsc
rcirc

(4.4)

Other quantification methods also exist and are addressed in more details
in (Field, 2000; Freitag and Ollivier-Gooch, 1997; Gargallo-Peiró et al., 2015;
Klingner and Shewchuk, 2008).

4.3.2 Mesh quality optimization
The mesh quality optimization is based on an iterative technique that uses a simple
mechanical analogy between the edges of a simplex mesh and the bars of a truss, or
equivalently a structure made of springs (Persson and Strang, 2004). In this analogy,
the edges of tetrahedral elements and the mesh nodes correspond respectively to the
bars and joints of a truss system. By assuming an appropriate force-displacement
relationships for the bars, the final nodes position (p) for a set of forces (F ) can
be found iteratively by solving for static equilibrium according to

F(p) = ∑
i Fint,i(p) + Fext,i(p) = 0 (4.5)

where Fint and Fext are respectively the internal forces present in the bars and
the external forces stemming from boundary constraints (supports). These latter
are introduced by means of the signed distance function to ensure the conformity
of the mesh at an imposed boundary.
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The force vector F(p) depends on the topology of the truss system. In the
present case, F(p) is not continuous accross arbitrary p variations because Delaunay
retriangulations are performed when large node movements occur, thereby inducing
some difficulties to solve the system.

A simple approach was therefore proposed by Persson to solve the system, using
an artificial time-dependence. The following system of ODEs is considered (in non
physical units), with initial condition p(0) = p0 being the initial node distribution :

dp
dt

= F(p), t ≥ 0 (4.6)

Indeed, F(p) = 0 is satisfied if a stationary solution is reached. The latter is
found by integrating (4.6) in time using the forward Euler method.

p(tn+1) = p(tn) + ∆t F(p(tn)) (4.7)

Internal forces Fint(p) allow steering the equilibrium state toward a configuration
matching the size function h(x). To this end, as illustrated in Figure 4.3, a repulsive
force field f(l, l0) is defined on each bar (i.e. each tetrahedral element edge)
depending on its current length l and its prescribed length l0 interpolated from
the size function h(x) according to :

f(l, l0) =
k (l0 − l) if l < l0

0 if l > l0
(4.8)

where k = l + l0
2 l0

≈ 1 (4.9)

Figure 4.3: Left : Repulsive force field in bar smaller than the targeted length l0 -
Right : Boundary constraints of nodes moving outside the implicitly defined boundary
reproduced from (Persson and Strang, 2004)

This repulsive force field tends to move internal nodes towards the boundaries
of the domain. The nodal force vector F (p) of the equivalent truss system thus
contains both the internal forces from the bars (Fint) ensuing from the f(l, l0) field



4. Conformal discretization of complex microstructures 51

and the reactions at the boundary nodes (Fext). Boundary nodes are themselves
prevented to exit the domain based on the level set function that describes the
implicit geometry of the interface. The reactions are oriented along the normal to
the boundary defined by the gradient of the distance field function to this boundary :

Fext(p(tn)) = −DS(p(tn))∇DS(p(tn)) (4.10)

p(tn) = p(tn) + ∆t (Fext(p(tn)) + Fint(p(tn))) (4.11)

The solution is considered to be obtained when the value of the maximum
node movement is below a certain tolerance.

In case node movements between two iterations are too large, a retriangulation
is performed to modify the topology of the mesh and the optimization process
is restarted until a stationnary solution is found (see Figure 4.2) producing very
high quality meshes. There are essentially four stopping criteria in the opti-
mization process:

• A maximum number of iterations

• A maximum number of retriangulations

• A retriangulation criterion implemented in case of significant node move-
ments (see quantification below), and iterations number is reset to 0 after
retriangulation

• A criterion also defined for stopping the optimization process when the
configuration of the mesh is sufficiently stable

The criteria are left to the user discretion since they are modifiable parameters in
the dashboard of the mesh generator. The quantitative input parameters values
for these criteria used in the mesh generations illustrated in the manuscript are as
follows: The maximum numbers of iterations and of retriangulations are set at 50
and 10 respectively. These numbers are selected in order to limit the computation
time in case of non-convergence of the process. If the system does not converge, the
process starts again with a five times smaller time step to make the movement of
the nodes slower. If the system still does not converge, it means that the process
has not found the optimal position of the nodes based on the size map set upstream,
leading to areas where the elements are expected to be of poor quality. In this
case, the process restarts from the beginning by modifying the initial parameters to
reproduce a new more refined size map to better reflect the geometrical complexity.
A retriangulation is applied when the most stressed bar undergoes a contraction or
extension larger than 10% of its length. The optimization process itself is stopped
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when the most stressed bar of the equivalent truss undergoes a contraction or
extension of less than 0.1% of its length. Note that these are parameter values that
the user may want to modify. They will essentially affect the computation time
and the time for the process to converge to get high quality elements according
to the defined stopping criterion.

4.4 Extension to complex heterogeneous RVEs
mesh generation

The Persson-Strang truss analogy for mesh optimization presented in the previous
section is robust and effective for small and medium sized meshes based on single
body geometries. However, many challenges appear in 3D when meshes have
to be produced for complex heterogeneous RVEs. Among them, the presence of
internal boundaries separating the inclusions from the matrix to produce conforming
meshes makes the problem more intricate. Furthermore, multi-scale analysis often
requires the capability to produce periodic meshes, which in 3D configurations
requires specific implementations.

In the following sections, an adapted approach extending the Persson-Strang
truss analogy is outlined in order to deal with complex periodic heterogeneous
microstructures based on signed distance fields.

Figure 4.4: Reference RVE generated by the RVE generation procedure defined in (Sonon
et al., 2012) to illustrate the meshing process of complex heterogeneous microstructures

4.4.1 Global meshing strategy
The mesh generation process for the RVE is subdivided in five steps as follows :
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1. Definition of a size function h(x) based on specific/particular geometrical
features

2. Generation of an initial periodic node distribution based on an octree decom-
position

3. Optimized surface meshing of the internal material interfaces, based on an
initial triangulation obtained by contouring algorithms to enforce conformity

4. Optimized external boundaries meshing for periodicity

5. Optimized volume meshing of inclusions and matrix based on a Constrained
Delaunay Tetrahedralization (CDT) starting from the surface meshes (pro-
duced in 3 and 4)

Figure 4.5: Global meshing strategy based on reference RVE

The procedure starts similarly to the original Person-Strang methodology, i.e.
defining a size function h(x) to control the elements sizes. The amount of nodes
is increased where complex shapes of inclusions require taking into account local
features such as high curvatures, small gaps or wide size distributions of inclusions.
The size function is therefore used in the optimization process and the initial
distribution of nodes detailed in sections 4.4.2 and 4.4.3, in order to refine the
discretization only at the positions of interest.

A key difficulty with Delaunay-based mesh generators remains the enforcement
of mesh conformity at material interfaces. This issue is even more complex in
3D, and still a challenging problem both in theory and practice (Si and Gärtner,
2010). When applying the original Persson-Strang methodology to homogeneous
domains, no specific treatment for internal boundaries is required. Therefore,
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the triangulation of an initial distribution of nodes and its optimization is only
performed once. For heterogeneous structures, the conformity is more difficult
to ensure due to the presence of nodes on both sides of the material interfaces
before triangulation. Furthermore, it is not trivial to ensure periodicity of a 3D
triangulation, even when starting from a periodic nodes configuration. A solution
to ensure conformity and periodicity is to first mesh the inclusion interfaces and
the RVE boundaries to avoid the presence of crossing tetrahedra. Once those
surfaces are meshed, Boundary-conforming tetrahedral meshes are generated with a
constrained Delaunay triangulation to preserve the inclusions surfaces. To do that,
the Delaunay criterion is not strictly applied anymore in the neighbourhood of the
constrained facets (Shewchuk, 2002; Si, 2010). This motivates the decomposition of
the procedure into several steps. Each meshing stage (surface meshing, external
boundary faces meshing and 3D bulk meshing) involves two steps, namely the
triangulation and the optimization process using an extended version of the principle
of the Persson-Strang truss analogy.

The inclusion surfaces are first meshed set by set after extracting their zero-
isosurface from the LS(x) defining them by contouring algorithms. Then, to
ensure periodicity, the RVE external boundary faces are considered as 2D meshes
in which the traces of inclusions cutting the RVE boundary are discretized first,
making the RVE boundary meshing process easier. The periodic enclosing surface
mesh is formed by extracting, meshing, copying, translating and merging the
three non-opposite faces.

Then, the entire volume is meshed by providing the optimized boundary faces and
internal surface meshes as input for the Constrained Delaunay Tetrahedralization
(CDT) module of the well-known meshing software TetGen (Si, 2015), thereby
ensuring periodicity and internal conformity of the final mesh.

Finally, a post-processing step provides mesh corrections if self-intersections
of triangles in the interfaces still appear in the obtained mesh. It also attributes
the elements to the inclusion and the matrix phase, and records information
about external boundary nodes in order to ease the definition of finite elements
boundary conditions.

The following subsections provide detailed information on how to implement
each step of the procedure.

4.4.2 Size Function h(x)
Dealing with 3D complex geometries as sketched in Figure 4.4 with a uniform mesh
size may induce a large numbers of elements, as stress gradient at sharp features
and small gaps between inclusions then prescribe the overall mesh size. A size
function defining spatially variable element sizes therefore becomes critical.
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To take into account local geometrical or physical features in the meshing
procedure, the narrowness between inclusions (nar), the curvature of interfaces (curv)
and the initial interface size (iis) will be used in order to prescribe mesh refinements
where needed, see Figure 4.6 and Figure 4.7. To this end, the size function h(x) is
constructed from the neighboring distance functions DNk defined in Section 4.2 and
readily available if the heterogeneous microstructure was computationally generated.

Figure 4.6: Left: Size function h(x) - Right: Corresponding optimized 2D mesh taking
into account local features (initial interface size, narrownes, curvature) from h(x)

The initial interface size (iis) is taken as the maximum element size allowed
on the interfaces to have a sufficiently accurate representation of the geometry of
the RVE. This value is taken constant on all the interfaces.

hiis(x) = iis (4.12)

The narrowness representing the proximity between two interfaces, is computed
by taking into account the distance to the closest second neighboring inclusion
DN2(x) from interfaces. In an inclusion-based RVE, DN2(x) is always positive since
each inclusion is completely separated from the others in the RVE. To better control
the element size refinement accross the gap between two inclusions, a parameter
nbEL is defined as the number of elements from the considered source point to
its respective second closest neighboring inclusion. A corresponding element size
can be derived according to

hnar(x) = DN2 (x)
nbEL

(4.13)

In 3D, the maximum principal curvature is used in order to evaluate the smallest
radius of curvature of an interface (Persson, 2005). Methods based on triangulated
surfaces are available to evaluate curvatures as presented in (Rusinkiewicz, 2004).
However, for implicit geometries, the curvature can be directly obtained by finite
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differences from the implicit function. Computing the curvature from the first
neighboring distance of the whole RVE (global signed distance function) DN1

is subject to the same limitations as extracting properly the inclusion surfaces
at once. For accuracy reasons, the curvature computation is performed for each
inclusion separately. In practice, the maximum principal curvature κ1 is computed
from the mean and gaussian curvatures KM and KG. KM is computed according
to relationship

KM = −∇ · ∇DN1 (4.14)

while the gaussian curvature is obtained by

KG = ∇DN1 ∗H∗ (DN1) ∗ ∇DNT
1 (4.15)

where H∗ is the adjoint of the hessian matrix. This allows computing prin-
cipal curvatures

κ1,2 = KM ±
√
K2
M −KG (4.16)

A curvature controlled element size hcurv(x) is then obtained by equation (4.17)
where κ is the maximum principal curvatures in absolute value while α is parameter
allowing to adjust the sensitivity to the curvature in the size function.

hcurv(x) = α

|κ(x)| (4.17)

To avoid significant element size variations over short distances in the definition of
the size function that would lead to poor quality elements, the size function h(x) is re-
quired to evolve smoothly by using a gradient limiting size variation (Persson, 2005):

‖∇h(x)‖ = g (4.18)

To meet this constraint, minimum initial imposed size values h0 depending on
the three geometrical parameters iis, nar and curv are first computed on source
points xsp by interpolation from DN1(x) and DN2(x).

h0(xsp) = min({hiis(xsp), hnar(xsp), hcurv(xsp)}) (4.19)

For accuracy, the source points xsp are selected as nodes located on the interfaces
that are extracted using a contouring algorithm at the precision of the initial
regular grid x.
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The values are then propagated smoothly over the spatial coordinates x. In the
case of a bounded convex domain (Persson, 2005), the following equation can be used
:

h(x) = min
sp

(h0(xsp) + g |x− xsp|) (4.20)

where h(x) is the size function evaluated on the regular grid and g is the gradient
limiting factor introduced in equation (4.18).

Figure 4.7: Zoom on frames of Figure 4.6 : Initial interface size (A), Narrowness (B),
Curvature (C )

Figure 4.8 illustrates the resulting size function for the inclusion based mi-
crostructure depicted in Figure 4.4 interpolated on the inclusions surfaces from
the regular grid.

Figure 4.8: Interpolated size function h(x) on interfaces

Following the same methodology, extending h(x) to account for other geometrical
or physical features can be achieved straightforwardly if required.



58 4.4. Extension to complex heterogeneous RVEs mesh generation

4.4.3 Initial nodes distribution
Several methods are available to distribute nodes inside a domain based on regularly
spaced grids or on probabilistic distributions (Lo, 2015). Rejection methods (Persson,
2005) based on probabilistic node distributions as initially proposed by Persson (Pers-
son and Strang, 2004) may be interesting in view of their efficiency. However, for
periodic inclusion-based RVEs enclosed in a cube (or a parallellepiped), more
adapted node distributions can be obtained based on octrees linked to the size
function. A periodic octree (Legrain et al., 2011a; Macri and De, 2008; Paiva
et al., 2006) distribution is therefore used here. The distribution starts from the 8
RVE corners and is refined recursively based on the size function h(x) previously
computed. At each recursion, the size function is interpolated at the cube mid-edges
and at its geometrical center. If one of the interpolated values is smaller than the
cube edges, the cube is divided into eight identical cubes. The new vertices are added
to the node distribution and the process is repeated on the eight new smaller cubes.
The process continues until all cubes have a satisfactory size with respect to h(x).

This defines in a simple way a nodes distribution corresponding at best to the
mesh size function h(x), i.e. providing a higher nodes density near the interfaces and
larger elements further from it, as illustrated for a 2D configuration in Figure 4.9.
In fact, Persson‚s method is effective when the auxiliary truss bars are close to
their equilibrium positions, i.e. the length of the initial bars from the Delaunay
triangulation undergoing extension or contraction are close to the length defined
by the size function. Otherwise, the resolution of the truss by the forward Euler
method may introduce strong oscillations if the initial length of the bars is far from
the desired length, and therefore it may not converge.

Figure 4.9: Left: 2D size function h(x) - Right: Corresponding 2D quadtree node
distribution

Generally, a consequence is then the poor quality of elements generated near
the interfaces by a constrained Delaunay triangulation. However, thanks to the
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distance function, it is possible first to remove nodes too close to the interfaces.
After nodes are moved by the optimization procedure driven by the truss analogy
(see Section 4.4.7), well shaped elements are obtained.

Using Periodic Octree distributions has some additional practical advantages
making it possible to meet three objectives in the proposed generator:

• Obtaining an initial distribution of nodes between which the interdistance is
close to that requested in the size function,

• Obtaining an initial triangulation with good elements quality due to the
strategic positioning of nodes to feed the optimization procedure with a
proper ‘initial guess’,

• Enforcing the same spatial node distribution on opposite external boundaries
to allow periodic meshes generation

These objectives allow minimizing the number of operations required in the opti-
mization process since the nodes are not very far from their equilibrium positions.

4.4.4 Inclusion boundaries meshing
The main meshing steps for the interfaces are illustrated in Figure 4.10 for the
microstructure presented in Figure 4.4. In order to satisfy the size parameters
given in input, the level-set grid LS(x) that geometrically describes the RVE is
reinterpolated on an initial 3D regular grid of points according to the iis parameter
(initial interface size). This reinterpolation allows an adapted (to iis) individual
or set extraction of the zero isosurfaces defining the inclusions boundaries by the
Marching Cubes algorithm (Lorensen and Cline, 1987). Then, these surfaces are
selectively refined according to narrowness and curvatures. This allows conforming
the surfaces mesh size to the size map generated upstream.

In spite of the simplicity, robustness and efficiency of this procedure, the resulting
surface triangulation is of poor quality leading to poor 3D elements (almost-flat
tetrahedra) (Shewchuk, 2012), as illustrated in Figure 4.10.2. This initial surface
triangulation is therefore optimized in surface using the truss analogy and used
subsequently as input for the 3D constrained Delaunay triangulation.

Another issue linked to the use of the marching cube algorithm for the con-
struction of interfaces is the existence of ambiguous cases when the background
regular grid is not refined enough. For inclusion-based RVEs with small gaps
between inclusions, critical issues arise quickly, as very close inclusions tend to
merge spuriously. The refinement of the background regular grid is possible but
is a costly solution as it induces a cubically growing memory consumption for 3D
configurations, and does not strongly solve the problem.
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Figure 4.10: Inclusions surface meshing main steps : (1) Isosurface extraction via
Marching Cubes algorithm; (2) Boundary constraints; (3) Optimization via truss analogy,
edge flipping, local mesh refinement; (4) Adding to the set of meshed inclusions

A solution is therefore to perform an individual extraction of each of the inclusion
surfaces. This is possible if independent signed distance functions are available
or can be built for each inclusion. This allows decreasing memory needs and
computation time by using coarser grids for extraction and increase cache efficiency
as memory chunks that are accessed are smaller.

The surface mesh optimization is analogous to a 2D problem constrained to the
interfaces of inclusions. During the optimization process, the extracted triangulation
is subjected to normal constraints making the movement possible only along the
surfaces (see Figure 4.3). This is achieved using the distance function from which
the interface is extracted. Based on the distance to the surface and computing its
normal at each iteration, nodes moving away from the surface are pushed back to
the surface, thereby allowing only tangential movements by means of Equation 4.10.

The low quality initial triangulation obtained from the marching cube extraction
involves a significant variation in size of the elements edges. The triangulated surface
mesh of inclusions boundaries (material interfaces) is therefore further simultaneously
improved by three different processes consisting of local mesh refinement, local
connectivity update and node relocation by truss analogy.

Local mesh refinement is applied according to the size function h(x). Wherever
necessary with respect to h(x), triangles are divided into four triangles keeping
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the same aspect ratio as shown in Figure 4.11 to avoid increasing the distortion
of newly created triangles. Particular attention is paid to the edges intersecting
the RVE boundaries to keep a periodic mesh upon refinement.

Figure 4.11: Local mesh refinement : Regular division of a triangular element as a
function of h(x)

Starting with bars of very different lengths from the ones desired according to the
size function h(x) in the auxiliary truss computation leads to large displacements.
Therefore, it is possible to improve the topology by modifying the local connectivity
via edge flipping. Considering two adjacent triangles, the edge connectivity is flipped
in order to increase their quality and leave the rest of the triangulation unaffected
(see Figure 4.12). It speeds up the optimization process significantly as it acts locally.
External RVE boundary edges are however not affected to preserve periodicity.

Figure 4.12: Local triangular element update : Edge Flip

Node relocation allows displacing nodes by imposing internal forces in the bars
based on the truss analogy (Persson and Strang, 2004). This method works very well
when the initial length of bars is close to the length targeted by the size function.
If the initial triangulation starts far from the truss equilibrium state and involves
topology changes, movement instabilities can occur leading to self-intersections.
When the implicit geometry of an inclusion described by a distance field is extracted
into an explicit one using the Marching Cube algorithm to produce a facetted
description of the surface of an inclusion, the initial mesh contains not only elements
of poor quality (see Figure 4.13(a)), but also highly variable element sizes that can
induce significant movement during the optimization process. It is clear that the
artificial time parameter used in the resolution of the truss by the forward Euler
method is important and should not be too high to avoid oscillations. On the other
hand, it is possible to find areas where the elements are much too large. This can
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be attenuated by selective refinement illustrated in Figure 4.13(b). They can also
be too small according to the desired size. To avoid these self-intersections, or at
least to reduce them drastically, a coefficient α is introduced to control the weight
of the desired length (l0) in the internal force field.

f(l, l0) = k (α l0 − l) (4.21)

This force field acts similarly to a Laplacian smoothing function (Field, 1988) if
α l0 is taken close to zero in the first iterations unlike in (Persson and Strang, 2004)
where a purely repulsive force field is used. It induces mainly attractive forces in
the bars according to (4.21). The forces applied in the bars are proportional to
their own current length, inducing tension in small bars and compression in longer
bars in such a way that displacement variations are smoothen out. Combined with
the flip edge, this will induce contraction in the long bars and extension in the
small bars, thus reducing the potential risks of self-intersection while increasing
the quality of the elements. Even if not entirely robust, the progressive increase
of the targeted length result in an increase of the initial element shape quality
without inducing self-intersections.

Progressively, as the α parameter is exponentially increased towards 1, the
effective targeted length l0 takes a larger influence in the expression of the force
fields. The choice of the exponential function according to iterations is an arbitrary
choice motivated by the fact that the first movement variations must be the least
influenced by the desired length given by the size map until the bars reach a length
close to the one defined in the size function to avoid strong movements. The
force field thus evolves smoothly from a purely attractive field based only on the
current length of the bars to an attractive/repulsive one based on the size function
h(x) until reaching equilibrium. Figure 4.13 shows on one side (c) the result of
the optimization without using the α parameter and on the other side (d) with
using the α parameter for the same time step (∆t = 0.1). Of course, decreasing
the time step will also reduce the self-intersections shown in Figure 4.13(c) at
the expense of computation time.

To enforce periodicity, there is a need to know which nodes are linked to each
other on the opposite faces. Note that the isosurface extraction of periodic RVEs
gives a periodic node distribution on opposite faces. Then, surface contours and
nodes on the RVE external boundary faces are extracted from the initial surface
triangulation as illustrated in Figure 4.14. These nodes are reordered for each
inclusion in order to easily find them together with their corresponding ones on
opposite faces. This step aims at providing the necessary information for node
movement coordination of periodic nodes to enforce periodicity at each iteration
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(a) (b)

(c) (d)

Figure 4.13: (a) Extracted inclusion with Marching Cubes algorithm, (b) Selective
refinement of inclusion according to size function, (c) Optimization process with α
parameter equals to 1 with yellow circles showing self-intersections, (d) Optimization
process with a smooth increase of parameter α from 0 to 1. Yellow circles showing clean
meshes compared to (c).

of the optimization, and for using it as a starting point to mesh the external
boundaries in the next step (cf. Section 4.4.5).

In the truss analogy process, forces are applied to move nodes. To ensure that
RVE boundary nodes remain on the external faces, the displacement normal to
the direction of the face is prevented. Due to the interactions with adjacent nodes,
the forces applied on a node and its periodic equivalent are not necessarily the
same. The movement coordination ensuring periodicity is enforced by applying
identical forces on both nodes of opposite faces as the average of forces determined
on them separately.

Particular attention is paid on nodes located on the corners and edges of the
RVE for which the displacements are constrained respectively in 3 and 2 directions.

At the end of the inclusions surface optimization process, the nodes and triangular
facets are fixed on the interfaces and are not modified during the rest of the
meshing procedure.
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Figure 4.14: External boundary edge nodes extraction and movement coordination to
ensure periodicity

4.4.5 RVE Boundaries meshing
Three non opposite faces from the parallelepipedic RVE faces are extracted, meshed
and optimized by the truss analogy process.

The three master boundary faces A, B and C are defined respectively in planes
x = 0, y = 0, z = 0. External boundary edges and nodes are extracted from the
optimized surface mesh with octree nodes lying at the external boundaries of the
RVE. The problem is simplified by transforming the 3D boundary nodes on the
three planes to deal with 2D problems as illustrated in Figure 4.15.

Then, the extracted surface contours (intersections of inclusions with the RVE
face) and nodes are constrained together with corner nodes to generate an initial
triangulation using a 2D constrained Delaunay triangulation (see Figure 4.16). The
optimization of this triangulation includes in this case two steps. Iteratively, the
Persson-Strang truss analogy is applied in the three planes (x = 0, y = 0, z = 0)
separately to optimize the surface meshing of the boundary faces until the mean
quality starts stagnating. Then, a retriangulation of the face is performed to update
the topology in order to reach a targeted element quality (see Figure 4.16).

Finally, as illustrated in Figure 4.17, the opposite slave RVE boundary faces
are created by copying the master boundary faces and translating them to their
position. The end of this sub-process merges the 6 RVE boundary faces with the
internal inclusions surfaces meshes. The merged surfaces (internal and external)
constitute the constrained facets to ensure the internal mesh conformity and the
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Figure 4.15: 2D simplification - External boundary faces meshing : Extraction of
external boundary surface edges and nodes and octree nodes lying to the considered face

Figure 4.16: 2D simplification : Left Initial constrained delaunay triangulation - Right
Optimized external boundary face mesh using Persson-Strang truss analogy (Persson and
Strang, 2004)

periodicity of the mesh, by providing a closed surface mesh to the constrained
Delaunay tetrahedralization (CDT) in the next step of volume meshing.

4.4.6 Volume Meshing
The final step in the meshing process consists in the generation of the volume mesh.
Optimized boundary faces and internal surface meshes are used as input to the
constrained Delaunay tetrahedralization while the background grid on which the
CDT is performed originates from the octree nodes distribution. The CDT module of
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Figure 4.17: 3D periodicity : (1) 2D meshing of non-opposite master faces in plan
(x = 0,y = 0,z = 0, (2) Copy and translation of the slave faces, denoted with * to their
corresponding positions, (3) Addition of the internal inclusion surfaces meshes, (4) Merge
of the external boundary faces with the internal inclusions surfaces meshes and removing
duplicated nodes

the well-known and robust mesh generator TetGen (Si, 2015) is used for this purpose.
Due to the complexity of the geometries and the imposed constraints (conformity
and periodicity), the resulting mesh contains low quality elements, especially close
to the interfaces. The truss analogy process is therefore used in order to increase the
volume elements quality. As mentioned in the previous section, this optimization
includes several steps. In addition to the force equilibrium smoothing function
and the retriangulations already explained, a specific treatment to get rid from
very specific bad shaped elements, also called slivers or flat tetrahedra (Lo, 2015)
is performed, as outlined in the next section.
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4.4.7 Extended Persson-Strang truss analogy

To ensure better stability on the node displacements during the mesh optimization
and to get rid from slivers which may cause finite element computation to fail (Frey
and George, 2000; Persson, 2005), the original truss analogy methodology is modified
with an adapted ball-vertex spring method (Bottasso et al., 2005; Lin et al., 2014).
This is achieved by introducing additional (linear) springs on bad-shaped elements
(with quality lower than a certain threshold) as illustrated in Figure 4.18. The role
of these additional springs is to resist the motion of a node towards its opposite
faces. In a given tetrahedron, node a is selected as the node located closest to its
opposite triangular face and is computed as the normal projection e of the node
a on the face bcd. The method is then combined with the size function to apply
repulsive forces on a in the normal direction to get it far enough from bcd. A
consequence is a drastic reduction of bad-shaped elements and avoidance of nodes
crossing triangles during the smoothing process.

Figure 4.18: Left: Tetrahedron collapse mechanism with the edge spring method
generating slivers - Right: Ball-vertex spring method by connecting the closest point a
with its opposite triangular face bcd to ensure stability and get rid from slivers.

Also, faster convergence can be obtained by combining attractive and repulsive
force fields (J. Bossen and Heckbert, 1996; Koko, 2015). Globally, the principle
remains the same as in (Persson and Strang, 2004) except the expression of the force
field in the bars fbars used. While the initial algorithm used exclusively repulsive
forces to push nodes accross the interfaces, in this heterogeneous case, extracted
nodes already lie on the triangulated internal surfaces from the beginning of the 3D
constrained meshing process making the optimization process more stable.
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4.4.8 Summary
The mesh generation times and the parameters on which the subprocesses depend
are summarized in Table 4.1. An initial fine mesh is used for the explanation of
the process (Mesh fine : #366536 nodes,#2178896 elements). A coarser one is also
illustrated in Figure 4.19 (Mesh coarse : #50839 nodes, #305892 elements). In
addition, this Figure shows the effect of iis, respectively 0.05 and 0.03 for coarse
and fine mesh for a cube box of length 1, on the final mesh. The computing times
mentioned here are obtained for mesh generations done on a ThinkPad P50 i7
6700HQ, 32 GB RAM coded in MATLAB.

Figure 4.19: Left - Cut view of coarser Mesh 1 (#50839 nodes, #305892 elements),
Right : Cut view of finer Mesh 2 (#366536 nodes,#2178896 elements)

Considering that the generator was coded in an interpreted language, the
evolution of the computation times should be analysed as a function of the mesh
refinement and among the process relative to each other, rather than according
to their absolute value. It would be easy to obtain much lower computation time
by recoding the critical routines a compiled language. In addition, the surfaces
are meshed and optimized one by one or set by set, which leaves the door open
for easy parallelization of the process and therefore significant time savings. The
routines have been designed to be vectorized and therefore optimized even if it
is an interpreted language. However, optimization processes require looping on
the elements leading to higher computation times.

4.5 Applications
In order to study more realistically the influence of small scale heterogeneities
on the macroscopic behavior of heterogeneous materials, complex microstructural
geometries have to be obtained.
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Mesh coarse Mesh fine
Step Time (s) Time (s) Parameters

Size function 13.71 31.77

Initial interface size
Narrowness
Curvature
Gradient limiting factor

Surface Meshing 17.25 53.07

# Inclusions
Marching Cube extraction at initial interface size
Selective refinement (due to narrowness and curvature)
Self-intersections check
Periodicity constraints
Optimization process

Octree node distribution 1.26 6.19 Size function (iis,curv,nar)
Density parameter

Boundaries meshing 5.89 16.06
#Extracted boundary surface constrained edges
# Boundary nodes
Optimization process

Volume meshing 47.56 266.52
# Constrained facets
# Nodes
Optimization process

Total 85.67 373.61

Table 4.1: The mesh generation times and the parameters on which the subprocesses
depend. The computing times mentioned here are obtained for mesh generations done
on a ThinkPad P50 i7 6700HQ, 32 GB RAM coded in MATLAB. Considering that the
generator was coded in an interpreted language, the evolution of the computation times
should be analysed as a function of the mesh refinement and among the process relative
to each other, rather than according to their absolute value.

Figure 4.20: Examples of different types of RVEs generated by (Sonon et al., 2012,
2015; Sonon and Massart, 2013) : inclusion-based microstructure (left) and a woven
composite (right)
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Some of these RVEs are discretized in this section in order to show the capabilities
of the new mesh generator. Three types of RVEs are shown for illustration, (i)
inclusion-based media (Sonon et al., 2012), (ii) woven composite (Sonon and Massart,
2013; Wintiba et al., 2017), and (iii) random geometry obtained with excursion
sets of random fields.

The first example is an RVE generated by DN-RSA developed by (Sonon et al.,
2012). This tool is based on a distance-controlled random sequential addition
algorithm. It has the capability to generate inclusion-based microstructures with
large size distributions and arbitrary shapes with precise control on neighboring
distances. This example illustrates a periodic inclusion-based material composed
by 222 inclusions of various shapes and sizes with an inclusion volume fraction of
50,87%. The size distribution of inclusions varies between 0.05 and 0.35 for a cubic
RVE of size 1. The resulting mesh shows a high quality distribution of elements
with less than 1.5% of elements with quality lower than 30% (cf. Equation (4.4)).
No slivers affecting FEM simulations are found.

The second example is an RVE of a complex periodic three dimensional textile
reinforced composite RVE with very small gaps between yarns as illustrated in
Figure 4.22. By using level set functions, the generation tool has the ability to control
the gap thickness and to remove automatically any residual interpenetration, while
controlling the volume fraction of each familily of yarns in the RVE, that tradition-
nally other methods fail. More details about the generation of the geometry for this
application can be found in (Sonon and Massart, 2013) and (Wintiba et al., 2017).

The meshing methodology developed here can be naturally extended to discretize
geometries obtained from RVEs generated by other techniques or from image-
based CT scans (Hashemi et al., 2014). Recently, RVE generation methods based
on excursion sets of correlated Random Fields (RFs) with morphological control
were developed in (Roubin et al., 2015), producing complex randomly shaped
heterogeneous material at different scales. These excursion sets, or thresholding
of an RF, can be statistically controlled both geometrically (volume and surface
area) and topologically (Euler characteristic) by linking analytically these to the
statistical parameters of an RF, see (Adler, 2008) for more details. This tool
leads to the generation of geometries such as matrix/inclusion morphologies or
porous materials, involving opened or closed porosity as well as representing grain
or pore size distributions. Figure 4.23 illustrates a conforming mesh of a RVE
generated by excursion sets of Random Fields.
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Figure 4.21: Final periodic and conform mesh of the RVE (#Nodes=1 236
685/#Elements=7 501 711) : (1) Global view of the optimized mesh for both phases
(inclusions/matrix), (2) Cut view of the inclusion-based RVE, (3) Inclusions meshes only,
(4) Quality distribution - Mean quality : 81.36%

4.6 Discussion
The examples shown in the Applications section show the generator’s ability of
the generator to mesh complex geometries of very different shapes. The use of
distance fields provides the necessary information to refine the areas of interest to
take into account the geometrical complexity associated to rather high curvatures
or narrow matrix zones between neighbouring inclusions. However, inaccuracies
may appear in the evaluation of the orientation of the normal to interfaces and
therefore on the nodal reaction forces on the inclusions surfaces. This may lead to
self-intersections in the resulting mesh. It is a known issue addressed already by
several contributions, see (Attene, 2014; Lo, 2015). For this case, these irregularities
comes from the grid resolution of the input geometry compared with its curvature.
In fact, refining locally the mesh would not solve the problem as the gradient
quality can not be better than the initial grid resolution. A solution is to smoothen
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Figure 4.22: Final periodic and conform mesh of the RVE (#Nodes=119 096/#El-
ements=729 350) - Left : Global view of the optimized mesh for both phases (inclu-
sions/matrix) - Right Cut view of the woven composite RVE

Figure 4.23: Final conform mesh of the RVE based on excursion sets with a cube of
size a = 1, σ2 = 1, lc = 0.04 (#Nodes=2 398 675/#Elements=14 601 647). The threshold
is taken at 0.45 leading to a porosity of 33%. : Left : Matrix - Right Matrix/Inclusions
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locally the level set function if the problem appears loosing in return locally some
of the details. Another solution is to implement a predictor-corrector process to
stabilize the forward euler resolution scheme.

In relative terms, with the procedure implemented here, the presence of self-
intersections in particularly complex shapes is lower than 0.01 % of the total number
of surface elements. A simple solution proposed here is to remove them from the
surface triangulation, which results in the opening of surfaces initially closed. When
the volumic CDT is applied, some parts of the surface are therefore not constrained
anymore. During, the optimization process moving the nodes to reach the targeted
length size defined by h(x), it is possible to satisfy the empty circumsphere criterion
of a Delaunay triangulation and to preserve the conformity of the very small missing
part by avoiding crossing elements even if CDT is not applied there.

As presented in Section 4.4.4, the constraint of using global level-sets functions
is that they do not preserve the sharp features when an explicit facetted geometry
is extracted by a Marching cubes algorithm (Lorensen and Cline, 1987). In the
context of this article, the case of sharp edges has therefore not been addressed
because it requires a dedicated development. An implicit geometrical description
that preserves sharp edges, as present for instance in open cell metallic foams, was
proposed in (Sonon et al., 2015). It is based on the slicing of distance fields or level
sets by ad hoc functions to describe sharp edges. The mesh generator proposed here
could perfectly be extended to account for such features. It would consist in resorting
to the methodology proposed in (Sonon et al., 2015) to extract the sharp edges.

Also, the use of an improved marching cubes for the extraction of isosurfaces from
scattered datas or an octree-based dual contouring method (Zhang et al., 2005, 2010)
could be used in future developments to produce a better initial adapted surface
triangulation allowing a faster convergence of the optimization and potentially
allowing preventing non-manifold triangulations.

The subsequent attribution of elements to proper material phases is done thanks
to TetGen in most general cases. For inclusions with removed self-intersections, the
detection of closed surfaces is no longer possible. For these particular inclusions,
the attribution of elements to the material phases is done by interpolating the level
set function value at the centroid of the tetrahedra.

As seen in Section 4.5, due to the complexity of the shapes, a few bad-shaped
tetrahedra may still be present after the optimization process. Those elements
are mainly located in areas with strong curvatures (requiring greater refinement)
as well as at the neighborhood of the intersection between the external boundary
faces of the RVE and surfaces of the inclusions. For the latter, the boundaries
may exhibit sharp edges that give rise to very flat elements. Taking into account
the proximity to the boundary faces through selective refinement without breaking
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the periodicity of the mesh would drastically reduce the number of poor quality
elements. The example of inclusion based medium shows that less than 1.5% of
elements have a quality lower than 30%. Even if the ratio of bad-shaped elements
remains very low, this issue could become critical in simulations involving finite
deformations or strong anisotropy. A solution of tetrahedral mesh improvement
method presented by (Klingner and Shewchuk, 2008) that uses a broader set of
operations such as topological transformation could be a good option for further
improvements to get rid from these few low quality elements.

4.7 Conclusion
The present contribution presents a new conforming mesh generation methodology
for 2D and 3D periodic (or not) complex heterogeneous RVEs. The implementation
is adapted and optimized for the RVEs generation tools developed by (Sonon et al.,
2012) in order to propose an integrated approach. However, a natural extension can
be built for general implicit geometries obtained from other geometry generation
or from experimental techniques such as CT scans.

The newly developed approach is an iterative Delaunay mesh generator based on
an extended Persson-Strang truss analogy optimization process. Such an approach,
based on signed distance fields, carries the advantage that the level set information
used during the generation of the geometry of the microstructure by (Sonon et al.,
2012) can seamlessly be used in the subsequent discretization procedure.

The meshing process is hierarchical and aims at generating a triangulation,
optimizing and constraining progressively interfaces, boundary faces and the volume.
It offers a specific control on the inherent specificities of each part and leads to
the generation of high quality FEM meshes.

On the internal surfaces, nodes are preventing from moving outside by system-
atically constraining their normal movement acting like boundary reactions while
tension/compression forces act in the bars to reach the desired lengths defined by
the size function. The latter allows optimizing the node distribution as a function
of geometrical features such as curvature, nearness and narrowness. The distorsion
of the elements is reduced by using a gradient limiting factor to better control
the growing elements size. Periodicity is ensured by meshing independently non
opposite master RVE faces before copying, translating and merging them to form
the periodic enclosing box while conformity is ensured by using the Constrained
Delaunay Tetrahedralization.
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Abstract

This contribution presents an assessment of computational techniques
enabling automated simulations of complex porous rocks microstructures
based on 3D imaging techniques. A subset of a CT-scanned sandstone
sample is used to compare the results obtained by two advanced dis-
cretization frameworks. Raw scan results are processed by a level
set-based segmentation technique to produce smooth geometries prone
to finite element discretizations. A recently developed technique is
outlined for conforming mesh generation for complex porous geometries
described implicitly by functions. This allows generating high quality
tetrahedral meshes with selective refinement. Next to this, a technique
that uses a kinematic enrichment by incompatible modes to represent
the heterogeneous geometry is explained. Both techniques use the
same implicit geometry as main input for the simulations. Mechanical
simulations are conducted on a subset of a scanned sample of a sandstone
under triaxial loading conditions for isotropic compressive loading and for
loading conditions involving a stress deviator. The results are compared
and discussed based on local stress distributions and on a Mohr-Coulomb
criterion with tensile cut-off. The results show that both discretization
strategies yield complementary tools and allow envisioning automated
simulations based on raw CT scan data for porous rocks exhibiting
complex pore space morphologies.

Keywords: Rock Mechanics, Porous Rocks, Automated Meshing,
Finite Elements, Embedded Discontinuities, CT scan, Image-based
Modelling
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5.1 Context
The mechanical and fluid transport behaviour of porous geomaterials is strongly
dependent on their microstructure, and in particular on the morphological properties
of their pore or fracture networks. Furthermore, these microstructural features may
evolve as a result of mechanical loading, which induces further couplings between
the mechanical response and the transport properties.

As a result, many research efforts have been devoted in the past to investigate
the link between the microstructure of geomaterials (in the broad sense) and their
overall properties. Initially, many of these contributions dealt with the effect of
degradation and cracking evolution on the mechanical response of geomaterials.
This was achieved using various techniques such as micromechanically-inspired
models (Shao et al., 1999), discrete element modelling (Li et al., 2017) or RVE
computations (Li et al., 2015). Fluid transport properties and their link to cracking
evolution were also scrutinized using micromechanically-inspired models (Shao et al.,
1999) and multiscale techniques (Massart and Selvadurai, 2012, 2014).

With the development of experimental imaging techniques at different scales,
the investigations on the effect of microstructural features on the overall behaviour
received even more attention.

Focusing on scanning techniques allowing to obtain the microstructural phase
arrangement, computed tomography (CT) nowadays allows addressing a variety
of scales (micro-tomography or at higher scales) and of geomaterials such as soils
(Hashemi et al., 2014), rocks (Chen et al., 2006) or mixtures (Li et al., 2016).
Such investigations are devoted to their mechanical behaviour (Chen et al., 2006;
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Li et al., 2016), to their transport properties (White et al., 2006); or to coupled
processes (Hashemi et al., 2015).

Early efforts in the use of 3D images for analysis and modelling of rocks behaviour
started with an effort reconstructing a 3D granite mesostructure (at the scale of
a full lab specimen), based on an iterative milling and scanning system presented
in (Chen et al., 2006). The procedure was used to conduct 3D Brazilian test
simulations on a real mesostructural geometry by means of a finite difference
scheme. Subsequent efforts at similar (large) scales were devoted to jointed rocks
(sandstone) (Yu et al., 2016), in which computed tomography was used to analyse
and model the effect of joints shape on the mechanical behaviour; and to feed
soil-rock mixture 2D simulations (Li et al., 2016).

Experimental efforts in the field of rock mechanics to capture microstructural
features used micro-tomography (µCT) to investigate the microstructural changes
in the pore space during unconfined compression tests in Gosford sandstone (Sufian
and Russell, 2013). This was achieved by scanning samples at different loading levels
prior to failure in order to link the pore structure evolution to the macroscopic energy
dissipation. In situ µCT observations of porosity evolutions under triaxial tests were
also investigated for calcarenite in (Raynaud et al., 2012). The relationship between
specific surface and porosity in ten different types of sandstone was scrutinized in
(Rabbani and Jamshidi, 2014) by µCT in order to build modified Carman-Kozeny
equations for sandstones; and real time (in situ) µCT triaxial experiments were
performed in sandstone to assess the effect of chemical corrosion in (Feng et al., 2004).

With the availability of the detailed 3D microstructural geometry, µCT also
allowed feeding microstructural mechanical computations making direct use of the
image information. Such observations were mostly used to feed 3D DEM simulations
on sandstones at the RVE and at the sample scales (Li et al., 2015). Strength
anisotropy was scrutinized in Berea sandstone together with an µCT assessment of
the porosity levels to feed 2D DEM simulations (Kim et al., 2016). Additional efforts
addressed the upscaling of transport properties by using multiscale approaches using
finite element macroscopic computations fed by a lattice Boltzmann framework
based on 3D µCT images (White et al., 2006; Sun and fong Wong, 2018).

Next to the direct use of 3D images, µCT observations were also exploited
to reconstruct equivalent geometrical models which can subsequently be used in
finite element simulations. Such a reconstruction strategy was proposed in (Zhou
and Xiao, 2017) for porous rocks (sandstone). It was next extended in (Zhou and
Xiao, 2018a) using simulated annealing, leading to models that do not consist of
the scanned geometry itself, but rather of equivalent geometries reproducing the
essential features identified in the scans. These techniques were also applied in
(Zhou and Xiao, 2018b) to triaxial tests with comparisons to experiments.
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These previous contributions in the literature show that there is an interest
in addressing the simulation of microstructural processes in porous rocks using
directly the 3D images obtained by µCT. However, the discretization of such
geometries may quickly become extremely complex. The purpose of the present
contribution is to compare two novel discretization strategies that allow building
models in an automated way based on a raw 3D µCT image. The first of these
discretization strategies consists of a recent extension of the meshing tool relying
on the Persson-Strang analogy (Persson and Strang, 2004; Ehab Moustafa Kamel
et al., 2019) to build a high quality conforming tetrahedral mesh. It relies on an
implicit description of the geometry of the solid phase and of the pore space of a
porous rock. The second strategy is based on the projection of such an implicit
geometry on an unstructured tetrahedral mesh, with an incompatible kinematic
enrichment defined at the element level to account for the heterogeneity of phases.
The comparison will here be performed through mechanical simulation on a subset
of the CT-scanned image of a sandstone (Hu et al., 2018).

To build this comparison, this contribution will be structured as follows. Section
5.2 will outline the pre-processing required from the raw µCT scan data (seg-
mentation and smoothing) to provide the implicit geometrical information for the
discretization tools. Section 5.3 will next detail the procedures followed by each
strategy to construct the discretization based on the implicit geometry devised
in Section 2 from the raw µCT scan data. Section 5.4 will compare the results
obtained by both strategies for a sandstone µCT scan sample subjected both to a
pure isotropic triaxial stress state and to a triaxial stress state involving a stress
deviator. Finally the results will be discussed in Section 5.5, before conclusions
are drawn in Section 5.6.

5.2 Problem statement and segmentation

In the context of image-based modelling of heterogeneous porous rocks, the porous
microstructure can be obtained either by reconstruction of equivalent geometrical
models from the exploitation of 3D images or by virtual generation according to
morphological quantitative features (Sonon et al., 2012; Roubin et al., 2015). When
dealing with image-based models, the interfaces separating the pore space from
the solid phase can be described either explicitly by means of triangulated surfaces
in 3D, or implicitly by means of level-set functions and/or distance fields. The
latter approach offers the ability to model and handle geometries with arbitrarily
complex features. When using level sets, a curve Φ in 2D, respectively a surface
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Figure 5.1: Subset of Vosges sandstone sample obtained by X-ray tomography from
Cong Hu’s thesis (Hu et al., 2018) : solid part (left) and pore space (right) of the sandstone

in 3D, can be represented implicitly by means of the level sets of functions of
spatial coordinates x denoted LS(x, ...) :

Φ ≡ LS(x, ...) = k (5.1)

where k represents the iso-value of the function.
A well-known example of level set function consists of the gray-scale density

map obtained by X-ray CT scans increasingly used in the context of rock mechanics.
To exploit properly imaging techniques, the segmentation process is however a
crucial step. Indeed, it must accurately reflect the complexity of the geometry at
hand, be able to identify the different phases of the material, and make the results
usable in the subsequent processes. The sample used in this paper to illustrate the
comparison between the two selected discretization methods is a subset of the CT
scan of a dry Vosges sandstone obtained by X-ray tomography as part of Cong
Hu’s PhD thesis (Hu et al., 2018). The scan resolution is 5 microns per voxel for
a geometry size of 100x100x100 voxels (see Figure 5.1).

Since the pore space (18.04% of total porosity) of the studied sandstone sample
is very strongly connected (about 99%), the occluded porosities represent only very
small cavities. These may require a high level of refinement in the discretization
step if they are still taken into account in the segmentation process. Therefore,
assuming that their impact on the simulation results discussed in this paper will be
negligible, they will be removed from the voxel grid before segmentation in order
to reduce computation times. To achieve this, a geodesic reconstruction (Beucher,
2001) is applied to the given grayscale image using as a mask the 6 boundaries of
the scan sample, so that only the connected porosities remain.

For the image segmentation, an automated thresholding by Otsu’s method (Otsu,
1979) is suitable when the histogram of the grayscale of the images shows two distinct
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Figure 5.2: (a) Histogram of the geometry, (b) Decomposition of the histogram in two
phases taking into account the overlapping with the level-set segmentation method

Figure 5.3: Comparison between : (a) a slice of the micro-CT scan, (b) thresholding
process obtained by Otsu’s method at 76 grayscale value, (c) level-set segmentation

normal distributions. Otherwise, overlapping will induce thresholding management
that may atrophy part of the information. In addition, this method often requires
the application of a Gaussian filter to smoothen the interfaces, a required step to
obtain a mesh-prone resulting geometry. Among the other available segmentation
techniques, the level-sets-based methods correspond to a class of deformable models
in which the desired shape is obtained by propagating an interface represented
by 2D iso-contours (3D iso-surfaces) (Caselles et al., 1997; Chan and Vese, 2001;
Shi and Karl, 2008) giving thereby smoothed contours.

Even if in this case two peaks can be distinguished relatively clearly, a level-set
segmentation method based on Bernard’s work (Bernard et al., 2009) will be used
as illustrated in Figure 5.2. In this chosen method, the implicit function is modeled
as a continuous parametric function expressed on a B-spline basis, that allows
obtaining a smooth level-set function and a satisfactory segmentation result of the
image given in input; even if it is noisy. Figure 5.3 illustrates a comparison between
an image built from the raw micro-CT scan data, using the thresholding by the
Otsu method, and using the level-set segmentation for a 2D slice.

The segmentation process was applied here for each of the slices of a raw 3D CT
scan, before being stacked to form the whole result in 3D as illustrated in Figure 5.4.
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Figure 5.4: Resulting segmentation of the solid part (left) and pore space (right) of
the subset of sandstone micro-CT scan

Figure 5.5: Signed distance field of the sandstone sample where Ω+ is the positive part
corresponding to the solid part and Ω− the negative part corresponding to the porous
space

The discretization methods presented in the following sections require the use of
signed distance functions which is a particular choice for level-set functions (Osher
and Fedkiw, 2003; Sethian, 1999). The signed distance function of Φ is a function
DS(Φ(x)) with the value of the signed euclidian distance from x to Φ. Here, the RVE
domain Ω is divided into two sub-domains Ω+ and Ω− representing respectively the
solid phase and the pore space, and Φ representing their interface. A negative value
of the distance function is attributed by convention to the domain Ω− as illustrated
in Figure 5.5. Practically, this distance function is evaluated on a discrete grid of
points regularly placed on the spatial domain of interest of the scanned sample.

In order to maintain a sufficient accuracy without requiring excessive refinement
of the background grid, the signed distance function is computed from an exact
Euclidean signed distance field evaluation from discretized geometries (Sonon et al.,
2012) extracted with a Marching Cube process (Lorensen and Cline, 1987). Other
methods exist such as for instance the fast marching method (Osher and Fedkiw,
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2003) that features interesting execution times. However, it generally only yields an
approximation of the signed distance, while the discretization processes require an
accurate definition of the euclidean distance. Figure 5.5 right illustrates the signed
distance field of the segmented micro-CT of the sandstone geometry obtained using
an exact distance computation. This distance function will be used as a basis for
the discretization procedures used in the next section.

5.3 Image-based modelling for heterogeneous ge-
omaterials

5.3.1 Conforming discretization of implicit geometries
The discretization approach explained here is based on the generation of conforming
meshes for complex heterogeneous geometries, based on their implicit description
by signed distance functions. The methodology was originally proposed by (Persson
and Strang, 2004) for homogeneous structures and extended to heterogeneous
structures by (Ehab Moustafa Kamel et al., 2019).

The conforming mesh generation strategy is subdivided into four main steps as fol-
lows :

1. Definition of a size function h(x) based on specific geometrical characteristics

2. Generation of a nodes distribution based on an octree decomposition using
this size function

3. Optimized surface meshing of the internal pore space surface and of the
external structure boundaries (i.e. the external faces of the scan sample)

4. Optimized volume meshing based on a Constrained Delaunay Tetrahedraliza-
tion (CDT) starting from the enclosed surface mesh generated during step
3.

Size function definition

The procedure starts by defining a size function h(x), where x represents the
spatial coordinates, that is used to control the elements sizes. Dealing with complex
microstructures can quickly lead to a large number of degrees of freedom in the
simulation process due to important mesh refinements. In fact, complex shapes
of the microstructure motivate taking into account local features such as narrow
gaps (nar), high curvatures (curv) or initial interface sizes (iis), thereby requiring
a local increase of the nodes density. The size function is constructed based on the
distance function to generate such non-uniform meshes refined only locally where
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Figure 5.6: 2D slices of size function h(x) based on the segmented sandstone

it is necessary. The size function is thus the starting point of the optimization
process and of the initial nodes generation. The minimum initial imposed size
values h0 depending on the three geometrical parameters iis, curv and iis are first
computed as expressed in Equation (5.2). In the present context, a low sensitivity
to curvature is used to avoid too large differences in the element sizes that can
cause a conditioning problem of the stiffness matrix in FEM simulations.

h0(x) = min({hiis(x), hnar(x), hcurv(x)}) (5.2)

To avoid poor quality elements due to significant element size variations on
small distances, a smooth evolution of the size function is enforced using a gradient
limiting factor g (Persson, 2005) expressed as

‖∇h(x)‖ = g (5.3)

Figure 5.6 illustrates the size function h(x) of the segmented sandstone sample.

Optimization by means of extended Persson-Strang truss analogy

Dealing with complex geometries makes it difficult to reach an ideal mesh in
which only quasi-regular tetrahedra are present. The objective of the optimization
process is to minimize the magnitude of the difference between the lengths of the
edges in an element, and this over the entire mesh, in order to reach an optimal
element quality for a given triangulation. This is achieved by finding an optimal
configuration of the nodes positions for a given connectivity. The mesh quality
optimization is based on an iterative technique that uses a simple mechanical
analogy between the optimal mesh for a given connectivity and the equilibrium
configuration of a 3D truss of elastic bars of stress-free lengths, or equivalently a
structure made of springs (Persson, 2005). In this analogy, the edges of tetrahedral
elements and the mesh nodes correspond respectively to the bars and joints of a
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truss system. To this end, an attractive/repulsive force field f(l, l0) is defined on
each bar, depending on its current length l and its desired length l0 set by the size
function h(x). This force field steers the nodes positions towards optimal elements
shapes. By assuming an appropriate force-elongation relationship for the bars, the
final nodes positions (x) for a set of fictitious forces (F) can be found iteratively
by solving for static equilibrium according to

F(x) = ∑
i Fint,i(x) + Fext,i(x) = 0 (5.4)

where Fint and Fext are respectively the internal forces present in the bars and
the external forces coming from boundary constraints defined by fixing nodes
on the boundary of the domain to be meshed (enclosing surface for a 3D mesh,
enclosing contour for a surface mesh).

The fictitious force vector F(x) acting on each node depends on a changing
topology of the truss system (i.e. if a new triangulation is produced during the node
relocation process). This renders F(x) not continuous accross arbitrary x variations,
thereby inducing difficulties to solve the system. When large node movements
arise, such Delaunay retriangulations are indeed performed to improve the truss
topology. The non-linear equations system can be simply resolved asymptotically
by introducing an artificial time dependency (5.5) and using a forward first order
Euler time integration scheme (5.6) starting from an initial Delaunay triangulation.
Such a scheme is used until a stationary state is reached according to a pre-defined
tolerance. The resulting fictitious mechanical equilibrium is achieved when the
nodes movements tend to vanish.

The following system of ordinary differential equations (ODEs) is considered
(in non physical units), with the initial condition x(0) = x0 being the initial
node distribution :

dx
dt

= F(x), t ≥ 0 (5.5)

x(tn+1) = x(tn) + ∆t F(x(tn)) (5.6)

Practically, the expression (5.7) is used for the internal repulsive/attractive
forces field, allowing internal forces Fint(x) to reach the equilibrium state in a
configuration matching the size function h(x)

f(l, l0) = k (l0 − l) where k = l + l0
2 l0

≈ 1 (5.7)

To accelerate the convergence and get rid of slivers (zero volume elements)
which may cause finite element computations to fail (Frey and George, 2000; Lo,
2015; Persson, 2005), an adapted ball-vertex spring method (Bottasso et al., 2005;
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Lin et al., 2014) is used during the optimization process by introducing additional
(linear) springs on badly-shaped elements resisting the movements of a node of
an element towards its opposite face in the element.

Each meshing step, namely the pore space surface meshing, the external structure
boundary faces meshing and the 3D bulk meshing (of the solid phase and the pore
space) implies an optimization process of the initial triangulation using this extended
version of the principle of the described Persson-Strang truss analogy.

Initial node distribution

The mesh generation process starts with the initialization of an unconnected nodes
distribution. A recursive refining process starting from the 8 corners of the structure
is applied, in such a way that the local nodes density is related to the defined
size function giving an octree decomposition (Legrain et al., 2011b; Macri and
De, 2008; Paiva et al., 2006). The advantage of such a method is to obtain a
smoothly distributed initial nodes set controlled by h(x), placing nodes close to
their equilibrium position in the optimization process, and thereby reducing the
number of retriangulations needed to get high quality FEM meshes.

Surface Meshing

The main difficulty with Delaunay-based mesh generators remains the enforcement
of mesh conformity at material boundaries for heterogeneous materials, especially
in 3D. In the present case this arises at the interface between the solid phase
and the pore phase. Ensuring the conformity when nodes are present on both
sides of the material boundaries before triangulation is a tricky task and is still
a challenging problem both in theory and practice (Si, 2010, 2015). This is the
reason that motivates the decomposition of the meshing process by meshing first
the internal pore space surface and the external structure boundaries, in order
to form the enclosed discretized surface that can be given as an input to 3D
constrained Delaunay triangulation (CDT). As illustrated in Figure 5.7, a Marching
Cube algorithm (Lorensen and Cline, 1987) is applied to extract the iso-surface
corresponding to the internal pore space surface, giving an initial uniform ill-shaped
surface triangulation (bad quality elements). This surface triangulation is then
optimized by extended Persson truss analogy and refined locally according to the
size function, generating a discretization appropriate for finite elements simulations.

Then, the 6 boundary faces of the sample microstructure are extracted, meshed
and optimized with the extended Persson truss analogy, simplifying the problem by
transforming the 3D boundary nodes on the six planes to deal with 2D problems.
The external contours of material boundaries and the boundary nodes coming from
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Figure 5.7: Subset of the whole surface mesh - Left : Initial non optimized surface
triangulation obtained by the Marching Cube algorithm (Lorensen and Cline, 1987), Right
: Optimized mesh based on extended Persson-Strang truss analogy

Figure 5.8: Left : Extraction of external contours of sandstone sample and octree nodes
belonging to the choosen face, Right : Optimized external structure boundary face mesh
using extended Persson-Strang truss analogy

the octree decomposition are extracted to mesh independently the 6 boundary
faces as a 2D problem as illustrated in Figure 5.8.

The process ends by merging the 6 optimized structure boundary faces meshes
with the optimized internal pore space surface meshes; that will constitute the
constrained facets providing a closed surface mesh to the CDT to ensure the mesh
conformity as illustrated in Figure 5.9.

Volume meshing

The last step aims at generating the volume mesh for the solid phase volume
and for the pore space volume, applying an efficient method that can generate
boundary-conforming tetrahedral meshes such as CDT (Shewchuk, 2002). The
constrained facets are given as input to the CDT module of the well-known and
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Figure 5.9: Exploded view of merged internal material boundaries and external structure
boundaries constituting the enclosed constrained facets taken as input in CDT

Figure 5.10: Final optimized conform mesh of the RVE (# Nodes=256 303/#
Elements=1 525 220) - Left : Global view of the optimized mesh for both phases
(Solid phase/Pore space), Center : Solid phase meshed only, Right : Pore space meshed
only

robust mesh generator TetGen (Si, 2015), while the octree nodes distribution
constitutes the background grid on which the CDT is applied. Finally, the extended
Persson truss analogy process is applied to improve low quality elements appearing
near the constrained facets due to the geometrical complexity and the imposed
conformity. Figure 5.10 illustrates the optimized conforming mesh generated for
the segmented sandstone sample.

5.3.2 Embedded weak discontinuity models

Regarding the problem of heterogeneous medium meshing, the most natural
approach is to turn to conforming meshes as presented previously. Although
being very efficient, the whole process may still suffer from poor quality elements



88 5.3. Image-based modelling for heterogeneous geomaterials

for intricate geometrical configurations. More importantly, it may be difficult to
consider evolving morphologies resulting of the development of cracks.

An alternative consists of building the approximation from non-adapted meshes.
The main difference then lies in the fact that the nodes are positioned independently
of the interfaces between the solid phase and the pore space. This avoids the need
for relocating these nodes according to the heterogeneous geometry. This aspect is a
major advantage towards some applications, such as probabilistic numerical studies
with materials with a fine scale geometry that is not controlled. As a result of the use
of a non conforming mesh, many elements - potentially all of them - are, for a given
geometry, cut in two parts by a physical interface between the solid and the pore
phase. Each of the two sub-domains of these elements defined by such an interface
is included in a material phase, the properties of which are assumed to be known
and different from the neighboring one. In order to allow these elements to represent
this contrast of properties, it is necessary to enrich their kinematics by adding
discontinuities in the interpolation of the strain field - so-called "weak" discontinuities.
Figure 5.11 shows a typical 4 noded element with such a discontinuity.

Figure 5.11: Four noded element enriched by a strain discontinuity: left undeformed;
right deformed.

Hence the kinematic enrichments constitute the keystone of this methodology.
Originally developed to assess the problems posed by cracking in Finite Element
models, such an enrichment is also advantageous in the context of the explicit
consideration of heterogeneity. The methods of practical implementation of kine-
matic enhancements within a Finite Element model can be classified into two
broad categories. Global approaches, on the one hand, are essentially based on the
Partition of Unity. The enrichment then consists of the addition of interpolation
functions and thus consists of adding global unknowns and global equations. The
XFEM - eXtended Finite Element Method (Moës et al., 1999) - belongs to this first
category and has been used, for example, to describe three-dimensional arrangements
of non-overlapping spheres (Moes et al., 2003). An enrichment can be also be built,
on the other hand, from a purely local point of view, leading to the family of
methods called EFEM - Embedded Finite Element Method (Simo et al., 1993). Also
originally developed to tackle the problem of cracking - in particular the numerical
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localization induced by the use of softening laws - these approaches lead to an
enrichment by means of local functions at the element level. Each of these added
functions leads to an additional unknown and an additional scalar equation. The
local character of those equations however makes it possible to condense them
at the element level, thus preserving the size of the assembled discrete problem.
Within this second family of methods of enrichment, the Method of Incompatible
Modes is chosen here (Ibrahimbegovic and Wilson, 1991).

The theoretical framework of the Incompatible Modes Method is based on
the three fields variational form from Hu-Washizu (Washizu, 1982). In this form,
the potential energy writes:

ΠHW (u, ε, σ) =
∫

Ω
Ψ(ε) dΩ−

∫
Ω
σ · (ε−∇su) dΩ−

∫
∂ΩvN

u · t̄ dS (5.8)

According to the basic principle of EFEM methods (Simo and Rifai, 1990),
the strain field ε can be enriched according to the form ε = ∇su + ε̃. This
gives an expression depending on the displacement field u, the enrichment ε̃
and the stress field σ:

ΠHW (u, ε̃, σ) =
∫

Ω
Ψ(∇su+ ε̃) dΩ−

∫
Ω
σ · ε̃ dΩ−

∫
∂ΩvN

u · t̄ dS (5.9)

The stationary character of ΠHW leads to the three-field formulation of the
enriched mechanical problem:

Knowing: t̄ : ∂ΩvN → R
For all: u ∈ U0, ε̃ ∈ L2(Ω) and σ ∈ L2(Ω)
Find: u ∈ U, ε̃ ∈ L2(Ω) and σ ∈ L2(Ω)
Such that:

∫
Ω∇su · ∂Ψ

∂ε
dΩ−

∫
∂ΩvN

u · t̄ dS +
∫

Ω ε̃ ·
(
∂Ψ
∂ε
− σ

)
dΩ−

∫
Ω σ · ε̃dΩ = 0 (5.10)

A compact spatial discretization for each of these fields can be defined. The
Incompatible Modes Method - from which its name derives - provides, for the
enriched deformation field, a base of orthogonal functions in L2(Ω) to the ones
chosen for the interpolation of the stress field.

∇suh = BT · U (5.11)
ε̃h = GT · υ (5.12)
σh = P T · s (5.13)

This type of interpolation leads to two sets of - potentially nonlinear - equations
to solve that can be grouped as a vector of residual equations r. On the one hand, a
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set of global coupled equations rFE is stemming from the FEM assembly operation;
while on the other hand, a set of decoupled local equations re associated with each
of the new parameters of incompatible modes is introduced. These parameters are
the additional unknowns associated with the enrichment of the kinematics.

r =
[

rFE
[re]e

]
=
[ ∫

Ω B · ∂Ψ
∂ε

dΩ−
∫
∂ΩvN

N · t̄ dS[∫
ΩG

e · ∂Ψ
∂εe dΩ

]
e

]
(5.14)

The key point of the Incompatible Modes Method lies in its local character,
and thus in the re decoupled equations. Even in a nonlinear case, their solving
is very fast and the incompatible mode parameters can be easily condensed at
the local level (Wilson, 1974).

Using the Incompatible Modes Method, in order to construct the enrichments,
the CT scan sample 3D image is projected on a tetrahedral unstructured mesh
generated using the GMSH software (Geuzaine and Remacle, 2009). This projection
is a feature offered by the python library SPAM (Andó et al., 2019; Furrer and
Sain, 2010; Gerber and Furrer, 2015; Gerber et al., 2017). This allows identifying
tetrahedra from each phase (solid phase and pore space) and the tetrahedra crossed
by the interface that are enriched kinematically. For the considered scan, this
results the model illustrated in Figure 5.12.

Figure 5.12: Embedded weak discontinuity models (# Nodes=234 996/# Elements=1
329 159) obtained from the CT scan with solid elements (grey), pore space elements
(blue), enriched elements (red)

5.4 Comparison of FEM and EFEMmethods based
on a segmented sandstone sample

To illustrate the ability of the models to conduct image-based finite element
simulations, and to build the comparison between their results, the models derived
from the CT scans are now subjected to two triaxial mechanical loading conditions
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as illustrated in Figure 5.13. First, a purely isotropic triaxial compression. The
considered sample being isotropic (because of its limited size, unlike the overall
material (Hu et al., 2018)), this matches an almost isotropic triaxial macroscopic
strain state. Second, the sample is subjected to a deviatoric state to assess
the magnitude of the local stress concentrations obtained in typical scenarii of
triaxial testing.

Unlike in conforming finite element simulations, the Embedded Finite Element
method requires considering a second phase in the pore space, described by solid-like
constitutive laws. To comply with this requirement, the simulations use a second
phase in the pore space with properties close to water (Poisson coefficient and
the shear modulus tend towards 0.5 and 0 respectively). Preferring to avoid any
consideration of fluid flow, the test is assumed undrained in the simulation.

The simulations are conducted with linear elastic materials. The model consists
of a solid phase with properties E = 10 GPa and ν = 0.2. The pore space is
filled with a medium with properties E = 0.13 GPa and ν = 0.49 to simulate
the presence of an interstitial fluid (water). It is obvious that the values of the
parameters used in simulations are somewhat arbitrary in the sense that they are
values of macroscopic parameters used in a microscopic context. As a matter of
facts, microscopic parameters in rock mechancis are difficult to identify and require
advanced methods such as micro-indentation tests (Randall et al., 2009; Mahabadi
et al., 2012) or micro-scratch tests (Akono et al., 2011) to determine them. Even
with such tests, microstructural simulations are useful to derive values of actual
model parameters and for interpretations, which motivates investigating the effect
of their variation as performed in the sequel.

Figure 5.13: Sandstone sample of size [500µm, 500µm, 500µm] subjected to a purely
isotropic compression

For the interpretation of the numerical results, a classical Mohr-Coulomb failure
criterion is considered, associated with a cut-off criterion for the tensile strength.
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In this composite criterion, the tensile cut-off aims at representing conditions giving
rise to local cracking, while the Mohr-Coulomb part represents local conditions
for the onset of local plasticity. It writes in σ3 − σ1 plane:compression σ1 = Kp σ3 + σc

tension σ3 = −σt
(5.15)

in which σc is the uniaxial compressive strength, σt is the tensile strength and

Kp = 1 + sinφ

1− sinφ (5.16)

where φ is the friction angle. With a Mohr-Coulomb failure criterion, the uniaxial
compressive strength can be expressed in terms of the cohesion c and friction angle as:

σc = 2 c cosφ
1− sinφ (5.17)

The macroscopic cohesion c and friction angles φ of the Vosges sandstone are
deduced from shear strength data obtained from triaxial tests and reported in
(Besuelle et al., 2000). They are equal to 10 MPa and 37°respectively. Those values
are also consistent with the ones reported by Hu (Hu et al., 2018). A uniaxial
compressive strength σc of 60 MPa is therefore considered. No direct experimental
data are available on the tensile strength of the Vosges sandstone. Recent efforts
showed that the tensile strength values obtained by different techniques can differ
significantly (Perras and Diederichs, 2014). Practical estimates for the tensile
strength of different sandstones were reported in (Cai, 2010), with a link to the
uniaxial compressive strength given by

σt = σc
R

(5.18)

The value of the ratio R was found to range from 8 to 26 (with exceptionally even
larger values). As a result, there is an interest to consider different values for
the post-processing of computational results in the sequel, and tensile strengths
considered from 2 to 6 MPa will be considered.

For the interpretation of the failure mechanisms, a plastic state parameter (PP)
is computed locally based on the local stress state. It represents in a way the
normalized distance to the nearest failure line of the composite criterion (Mohr-
Coulom or cutoff). It writes:

PP =



max


∣∣∣∣∣ σ1

Kp σ3 + σc

∣∣∣∣∣︸ ︷︷ ︸
MC

; −σ3

σt︸ ︷︷ ︸
Tension

 if σ3 > −σt

−σ3

σt︸ ︷︷ ︸
Tension

if σ3 ≤ −σt

(5.19)
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A local value above one of this ratio indicates that the onset of material
nonlinearity is reached. A parametric variations of the plastic parameters (PP)
is equivalent to changing the properties of the material.

Only the solid phase of interest is reported on the figures of the next sections. For
the embedded discontinuity model, the solid phase value of the enriched elements is
plotted for the entire element for simplicity, hence the jagged aspect of the boundary.

Finally, the choice was made here to compare the methods based on models
generating a comparable simulation cost. In other words, the assembly and system
solving is made similar by using meshes containing comparable numbers of nodes
(256300 and 235000 for FEM and EFEM respectively) and elements (1525000 and
1329000 for FEM and EFEM respectively).

5.4.1 Conforming model
The application of a triaxial isotropic compression of 50 MPa is first considered.
This stress level matches the ones of classical tests (Selvadurai and Głowacki, 2008).
This stress state is imposed by means of imposed deformations through applied
kinematically uniform boundary conditions on the sample (uniform displacement of
the model boundaries). The subset of the CT scan considered shows a isotropic
behaviour, leading to a triaxial isotropic compression. Note that the base material
is not fully isotropic (Hu et al., 2018), and the isotropy of the considered sample
is caused by its limited size (lack of representativity).

A first analysis of the effect of heterogeneity induced by the presence of the
pores can be performed by extracting the locations in the sample where tensile
stresses are present (tensile stresses are considered here negative according to the
usual convention in rock mechanics). Such stress states are represented in Figure
5.14. The left part of Figure 5.14 depicts the histogram of the most negative local
principal stresses σ3 in the mesh (lowest principal stress value when considering
tensions as negative). The right part of Figure 5.14 represents the negative part
of this histogram. It can be seen here that the presence of the pore space has
a negligible effect on the presence of local tensions in the microstructure when
considering a macroscopically isotropic stress state.

The composite criterion (5.15) for the detection of the onset of cracking and
plasticity can be further exploited to examine the local conditions for the presence
of local material nonlinear response. Figure 5.15 left depicts the local stress states in
the sample together with the assumed composite criterion for R = 15 (σt = 4 MPa).
All points located outside the criterion are indicating that the cracking/plasticity
onset is reached inside the microstructure. It can be seen that the macroscopic
isotropic compression state (no macroscopic deviatoric stress) is translated into a
set of stress states that significantly deviates from a isotropic stress state locally.
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Figure 5.14: Finite elements - Isotropic loading - Left : Histogram of σ3 values obtained
by FEM (red line isolates the tensile values), Right : Elements undergoing tension in the
3D volume predicted by FEM

For most of the points representing the stress states in this figure, the largest
compressive principal stress exceeds the lowest compressive stress by a factor that
ranges from 1 to 3. Yet, the number of points exceeding the criterion remains
rather limited. Most of the points located outside the criterion activate mainly the
Mohr-Coulomb part of the criterion. Note that this assessment is purely based on
the assumption that the fine scale material parameters values are comparable to the
ones identified macroscopically. Figure 5.15 left also allows assessing to what extent
a change of fine scale material strength parameters with respect to the macroscopic
ones would affect the development of local plasticity. It can be seen from Figure 5.15
left that only a decrease of the angle of friction would significantly affect the number
of stress state points exceeding the criterion. This is also reflected in Figure 5.15
right that represents the value of the local plastic state parameter (PP) according
to the minor principal stress. The horizontal dashed line represents the threshold
above which local failure/plasticity would be activated. From this figure, it can be
seen that an important number of points are located above PP = 0.5.

Further illustrations of the results can be given in order to understand the link
between the microstructural geometry and the presence of stress states for which
the failure criterion is reached. To this end, the PP defined above is depicted
on cuts in the sample in Figure 5.17, where a PP value of 1 is attributed to the
points exceeding the composite failure criterion. Note that such higher values
are also located in positions closer to the external faces of the sample as a result
of the stiff boundary conditions applied.

As a second illustration, a triaxial loading with an important deviator is applied
on the sample. Based on the data reported in (Besuelle et al., 2000), the loading
considered is determined such that it matches a stress state at which the macroscopic
failure is not yet reached, but for which an increase of the deviator would reach
the macroscopic shear strength criterion in its linear part. This loading is taken as
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Figure 5.15: Finite elements - Isotropic loading - Left: Stress state representative points
in σ3 − σ1 plane. In red, failure line expressed with a Mohr-Coulomb criterion with
the parameters defined above (c = 10 MPa, φ =37°) and with tensile cut-off at σt = 4
MPa, Right: Plasticity state parameter (PP) with points exceeding the tensile part of the
criterion in green and the Mohr-Coulomb criterion in red

Figure 5.16: Finite elements - Isotropic loading - Plasticity state parameter : PP ≥ 0.5
(Left), PP ≥ 0.7 (Center), PP ≥ 1 (Right)

σ1 =50 MPa, σ2 = σ3 =20 MPa. To apply those boundary conditions, the principal
(compressive) stress values are translated into principal (contraction) strain values,
using the homogenized stiffness of the material. The homogenized stiffness of
the material was obtained from simulations, and was assumed isotropic for the
sample used here (homogenized values from computations showed a deviation of
less than 2.3% with respect to isotropy for the stiffness components).This of course
may have an impact on the isotropic or anisotropic nature of a real sandstone.
But, as mentionned in Section 2, this subset was taken as such essentially for
numerical considerations (i.e. computational cost), and not to assess the degree
of isotropy of the material.

Figure 5.18 represents the local stress states in the sample for the above deviatoric
macroscopic loading. Clearly, the deviatoric loading further expands the range of the
local major principal stress. A significant number of representative points exceed the
criterion, showing that plasticity and failure are locally extended within the sample.
Note of course that the simulation remains elastic, and that stress redistributions
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Figure 5.17: Finite elements - Isotropic loading - Plasticity indicator PP in the 3D
volume, for two cuts (x = 0 on the left and x = 82 on the right) in the sample. Elements
exceeding composite failure criterion match (in red) are characterised by a PP of 1.

Figure 5.18: Finite elements - Deviatoric loading - Stress state representative points in
σ3−σ1 plane of the deviatoric case with elements activated by the tensile parts in red and
MC parts in green. In red, failure line expressed with a Mohr-Coulomb criterion with the
parameters defined above (c = 10 MPa, φ =37°) and with tensile cut-off at σt = 4 MPa

.

have to be expected as from the first plastification. The corresponding spatial
distribution of points having exceeded the criterion in the sample is given in Figure
5.19. It is clear from this figure that the local material nonlinearity is reached
through both parts of the criterion. It also illustrates that the tension part of the
criterion is increasingly reached for decreasing tensile strength as expected.

5.4.2 Embedded discontinuity model
Like for the finite element model, the embedded discontinuity approach is first
tested using the the triaxial compression case. This is achieved using the mesh
presented in Figure 5.12.

For the isotropic compression, the histogram of the lowest principal stress values
in the model is depicted in Figure 5.20. Unlike for the finite element case, no element
in the mesh is found to be subjected to local tensile stresses. This difference may
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Figure 5.19: Finite elements - Deviatoric loading - Elements where the PP is above 1
depending on whether the tensile (red) or MC parts (green) are activated for different
value of σt : 6 MPa (Left), 4 MPa (Center), 2 MPa (Right)

be related to the local level of discretization. The embedded discontinuity model
makes use of a uniform element size, while the classical finite element model uses
selective refinement/unrefinement depending on the local features of the geometry.
In view of the limited amount of tensile stressed elements found based on the finite
element model, this is however not a problematic difference.

Figure 5.20: Embedded discontinuity model - Isotropic loading - Histogram of σ3 values
obtained by the embedded discontinuity model

Points representing the stress states with respect to the assumed criterion are
represented in Figure 5.21 left. This distribution of points in the σ3−σ1 space is quite
different from the similar graph obtained by classical finite elements (Figure 5.15).
With the embedded discontinuity model, the translation of the macroscopic isotropic
compression state into local stress states exhibits a significantly lower deviation
from a isotropic stress state. For most of the points representing the stress states
in Figure 5.21, the largest compressive principal stress exceeds the lowest one by
a factor that ranges from 1 to 2 (rather than 3 for the conforming finite element
simulation). Like deduced from the finite element model, only a decrease of the
angle of friction would significantly affect the number of stress state points exceeding
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the criterion, but in lower proportions than with the conforming finite element
simulation. This is also reflected in Figure 5.21 right. The horizontal dashed line
represents the threshold above which plasticity would be activated. From this figure,
it can be seen that much lower values of PP should be considered to embed points
representing stress states inside the sample. As a consequence, Figure 5.16 remains
quite different from the equivalent figure for finite elements. Much less points are
found in the range of PP above 0.7, even though the figure corresponding to PP=0.5
is rather similar to the classical finite element case.

Figure 5.21: Embedded discontinuity model - Isotropic loading - Left: Stress state
representative points in σ3−σ1 plane. In red, failure line expressed with a Mohr-Coulomb
criterion with cut-off in tension σt = 4MPa, Right: Plasticity state parameter (PP) with
points exceeding the tensile part of the criterion in green and the Mohr-Coulomb criterion
in red

Figure 5.22: Embedded discontinuity model - Isotropic loading - Plasticity state
parameter : PP ≥ 0.5 (Left), PP ≥ 0.7 (Center), PP ≥ 1 (Right)

These examples show that the model results differ due to their essential features.
The classical finite element model is defined such that local geometrical features
are captured by selective refinement. Small pores are strongly refined, while large
solid components are discretized by coarser elements. Conversely, the embedded
model has the objective to allow discretizing any microstructures (here any subset
of a full CT scan) with the same uniform mesh. The small features are thus
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less well captured in the latter, while it shows a much improved flexibility for
studying many configurations with the same mesh. This is further illustrated
when comparing the cuts given in Figure 5.23 with their conforming finite element
counterpart in Figure 5.17.

Figure 5.23: Embedded discontinuity model - Isotropic loading - Plasticity indicator in
the 3D volume, for two cuts (x = 0 on the left and x = 82 on the right) in the sample.
Points undergoing plasticity match (in red) are characterised by a PP of 1

When subjected to the same deviatoric loading as the classical finite element
model, the identified trends are confirmed. Figure 5.24 represents the local stress
states in the σ1 − σ3 plane. Like for the isotropic compression case, the range
of variation of the most compressive principal stress remains more restricted in
the embedded discontinuity model than for classical finite elements, as can be
appreciated by comparing Figure 5.24 with Figure 5.18. The number of points
having exceeded the tensile part of the criterion is also much lower. This translates
directly in the spatial distribution of points having exceeded the criterion represented
in Figure 5.25. When comparing Figure 5.25 with Figure 5.19, it can be noticed
that the tensile failure is much less detected in the embedded discontinuity model,
irrespective of the level of tensile strength considered. Some detailed zones having
reached the Mohr-Coulomb part of the criterion are also less detected (see for
instance the top-left-back part of the sample in Figures 5.25 and 5.19). These
latter differences seem to be concentrated in the smallest pores, a fact that points
again to the local refinement levels as explained above.

5.4.3 Comparison of FEM and EFEM results
To have a clearer comparison between the results of both models on detailed views,
a cut of the 3D results is provided here for the lowest compressive stress and
for the value of PP.

For the isotropic loading case, Figure 5.26 compares the values of the lowest
principal stress in a slice at x = 82 for both methods, while Figure 5.27 compares
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Figure 5.24: Embedded discontinuity model - Deviatoric loading - Stress state
representative points in σ3 − σ1 plane of the deviatoric case with elements activated
by the tensile parts in red and MC parts in green. In red, failure line expressed with a
Mohr-Coulomb criterion with the parameters defined above (c = 10 MPa, φ =37°) and
with tensile cut-off at σt = 4 MPa

Figure 5.25: Embedded discontinuity model - Deviatoric loading - Elements where the
PP is above 1 depending on whether the tensile (red) or MC parts (green) are activated
for different value of σt : 6 MPa (Left), 4 MPa (Center), 2 MPa (Right)

the plasticity indicator PP. Some boundary effects appear at the surface of the
solid phase in the embedded discontinuity model. They may be related to the
use of strongly differing properties between the solid phase and the pore fluid-like
phase. Yet, the stress distribution plot illustrates that the overall stress distribution
is similar for both models, with only a more accurate estimation of the stress
concentrations as a result of the selective mesh refinement in the classical finite
element model. It can also be seen that the smallest pores (or the position at
which the pore throats are smallest) are better reproduced by the classical finite
elements for the same reason. An identical conclusion can be drawn from the map
of the PP parameter. Note that as presented above, the levels of stress in this
cut induced by the triaxial isotropic compression do not trigger plasticity/failure
as indicated by the level of PP reached.

A similar set of figures are produced below for the deviatoric loading tested.
For the isotropic loading case, Figure 5.28 compares the values of the most tensile
principal stress in a slice at x = 82 for both methods, while Figure 5.29 compares
the plasticity indicator PP. Here also, the overall distributions of the stress field
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Figure 5.26: FEM (left) and EFEM (right) results of σ3 values on a slice in plane
x = 82 for the isotropic loading case. Only the solid phase is represented for the sake of
clarity

Figure 5.27: FEM (left) and EFEM (right) results of PP values on a slice in plane
x = 82 for the isotropic loading case. Only the solid phase is represented for the sake of
clarity

and the PP values are globally matching, with only deviations related to the
selective refinement present in the finite element model, but not in the embedded
discontinuity model. Note that the PP value color bar was capped to a unit value.
Dark red values therefore include elements in which PP is larger than unity, and
in which local failure/plasticity is indeed triggered. In these zones, the refined
elements of the conforming finite element model have a clear impact on their extent
with respect to the embedded discontinuity model.

5.5 Discussion
The computations performed in this contribution based on a 3D image of a
sandstone show that automated computational models can be set up to exploit
raw CT scan data. The detailed comparison of two discretization schemes able
to process such raw data showed that both approaches are consistent with each
other delivering complementary features. The finite element mesh generation
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Figure 5.28: FEM (left) and EFEM (right) results of σ3 values on a slice in plane
x = 82 for the deviatoric loading case. Only the solid phase is represented for the sake of
clarity

Figure 5.29: FEM (left) and EFEM (right) results of PP values on a slice in plane
x = 82 for the deviatoric loading case. Only the solid phase is represented for the sake of
clarity

with selective refinement allows capturing detailed geometrical features of the
microstructure. However, it requires a pre-processing stage to produce tetrahedral
meshes with high quality elements. The embedded discontinuity-based models
reproduce the overall mechanical effects. Being based on uniform size meshes,
they are not designed to capture all the geometrical details, but present the
advantage that their non conforming mesh can be projected on any microstructural
geometry without change. The macroscopic homogenized response of both methods
yields the same homogenized elastic properties (since the volume fractions of
the phases are reproduced), but this agreement should of course be questioned
when considering plasticity.

Next to these direct comparisons of results reached by both methods, some
additional comments can be given, related to the selection of the methodology
to use depending on the objectives targeted.

The first comment relates to the computational cost of the methods. The
representation of the heterogeneous geometry by means of embedded weak disconti-
nuities induces a marginal computational preprocessing cost that consists of the
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detection of elements cut by the boundary surface of the pore network. A simple
unstructured mesh can be used, which allows efficient simulations pre-processing.
The kinematic enrichment is computed at the element level, and can be condensed
before assembly, which does not cause any additional cost in terms of the generated
system of discretized equations. Post-processing would however require an additional
implementation of tetrahedra cutting for vizualization purposes (not implemented
here). With respect to these features, the generation of a conforming mesh incurs
the pre-processing cost associated with the generation of the target size function,
and with the mesh optimization step for surface meshes and 3D meshes. These
operations can however be optimized to reach a situation in which the set-up of
model could be reached in a few minutes. Secondly, the use of a conforming mesh
with element sizes constrained by local features leads to rather fine discretizations
with the associated assembly and solving cost. This should be balanced with respect
to the intended accuracy, but more importantly requires a careful understanding
of the effects of the size functions parameters (dependency of element sizes to
curvatures, to narrowness of pore channels, etc.). Finally, postprocessing of the
results is fully standard as a result of the use of regular finite element meshes.
Existing standard or dedicated FE packages with existing dedicated constitutive
laws and formulations can also be used.

Other features remain different between both methodologies as a result of the
construction of the approximation. The embedded discontinuity methodology has
the benefit of being extendable towards strong discontinuities for representing
cracking. This is not the case for regular finite elements that require additional
ingredients for the modelling of cracks (XFEM, embedded strong discontinuities,
gradient regularization ...). Conversely, the consideration of an empty pore space
(drained tests) can be more directly addressed by the conforming approach (no
elements generated in the pore space) than by the embedded discontinuity approach
that assumes the presence of a second phase in the definition of the discretization.
A voided material therefore has to be approximated by a low stiffness material in
the latter case, which may cause conditioning problems in the limit of a vanishing
stiffness of the pore phase. Also, the extension to a quadratic interpolation of
the displacement field is immediate for the conforming mesh generation (even
though costly in terms of solving), while this is not straightforward in the case
of embedded discontinuities.

From a physical viewpoint, the material properties of the solid phase were taken
equivalent to the macroscopic material parameters as determined by (Hu et al.,
2018) and by data from literature (Besuelle et al., 2000). This choice can of course
be debated, and as illustrated in Section 5.4, the resulting locations affected by
tensile stresses can affect results. Any decrease of the tensile strength may have a
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considerable effect on the regions affected locally. The same reasoning holds to a
lower extent for the Mohr-Coulomb part of the criterion. These facts bear significance
for estimations of stress-induced permeability variations. As described in (Selvadurai
and Głowacki, 2008; Massart and Selvadurai, 2014), isotropic and deviatoric triaxial
loading on rocks can lead to permanent alterations of the permeability, potentially
as a result of local material nonlinearities induced by the heterogeneity associated
with the pore space structure. The results illustrated here show that 3D image-based
models would allow investigating such potential microstructural effects.

5.6 Conclusion
This contribution presented the assessment of computational discretization strategies
allowing to conduct automated simulations based on raw CT scan data for porous
rocks with complex pore space morphologies. Both methods rely on pore and
solid phase geometrical descriptions based on implicit functions and distance fields.
Such a description can be obtained by level set-based segmentation techniques
that were used here. Based on such implicitly described heterogeneous geometries,
two discretization schemes were outlined. The first one makes use of the implicit
description of the geometry to produce a conforming finite element discretization of
the solid and pore phases. Based on the geometrical information, it allows generating
selectively refined tetrahedral meshes to capture the complex geometry of the porous
network and the corresponding solid boundaries. Complementarily, a second strategy
based on a kinematic enrichment by incompatible modes is used to account for
material boundaries based on a non-conforming mesh with uniform element sizes.

Mechanical simulations conducted on the CT scan pre-processed geometry show
that both methods are consistent with each other. The conformal finite element
procedure allows capturing the effect of more detailed geometrical features, while
the incompatible mode-based framework is more flexible as it allows using the same
(non conforming) mesh for potentially variable geometries. It is again emphasized
that the simulations remain elastic, and that stress redistributions that have to be
expected as from the first plastification cannot be captured by such simulations.

Future works are envisioned to exploit the benefit of both approaches. Some local
geometrical information of the microstructure (translated as the target element size
function defined in Section 3.1) could be used to produce tailored non conforming
meshes with selective refinement by octree meshing at a marginal pre-processing
cost. Finally all the tools that have been developed in this paper are adapted for
simulations with a non linear mechanical behaviour of the solid phase (plasticity
and tension cutoff), which allow considering the stress redistribution within the
microstructure.
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Abstract

This contribution presents an integrated and automated methodology
for the computational analysis of permeability alterations in natural
rocks under varying stress states, taking explicitly into account the
complexity of the rock microstructure. The capacity of the methodology
is highlighted on a subset of the microCT scans of a Vosges sandstone.
After the generation of a high quality conformal mesh of the subset,
isotropic compression at the scale of the microstructure is applied
through FEM simulations. The adoption of non linear elastoplastic
constitutive laws allows considering the local stress redistributions
within the specimen. The mechanical loading of the subset highlights
pore closures by local plastification. Permeability is evaluated at
different confining pressures using the Lattice-Bolzmann method. Such a
procedure allows analysing the impact of the pore space morphology (i.e.
total porosity, pore size distribution, connectivity of the pore space, etc.)
as well as the mechanical properties (i.e. stiffness and shear strength)
on the evolution of the permeability under loading.

Keywords: Rock Mechanics, CT scan, Porous Rocks, Permeability al-
teration, Image-based Modelling, Automated Meshing, Finite Elements,
Lattice-Boltzmann

105



106 6.1. Context

Contents
6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Problem statement . . . . . . . . . . . . . . . . . . . . . 110
6.3 Numerical modelling of deformation-induced perme-

ability alterations . . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 Image processing . . . . . . . . . . . . . . . . . . . . . . 113
6.3.2 Signed distance-based meshing process . . . . . . . . . 114
6.3.3 FE simulations of rock mechanical loading . . . . . . . . 115
6.3.4 Permeability evaluation . . . . . . . . . . . . . . . . . . 119
6.3.5 Pore size distribution . . . . . . . . . . . . . . . . . . . 122

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.2 Assumptions/Questions . . . . . . . . . . . . . . . . . . 124
6.4.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.1 Context
Experts from many fields such as petrochemistry, geology or hydrology are interested
in understanding the link between the microstructural morphology of geomaterials
and their transfer properties for a multitude of industrial applications, including
critical applications such as radioactive waste storage (Rutqvist et al., 2009), gas
storage (de Jong, 2015) or the sequestration of CO2 (Delshad et al., 2013). The
rock is used in those cases as a natural protective barrier limiting fluid migration to
the outside environment. These applications have to consider physical phenomena
such as mechanical, thermal and chemical loadings at the scale of the pore space
that can potentially have a significant impact on the macroscopic properties of the
rock. An example is the storage of natural gas in underground installations (Katz
and Tek, 1981). The gas is stored in the pores of rock materials such as sandstones.
On demand, the gas is injected or extracted, which will induce stress redistribution
around the storage wells (Hu et al., 2018). These stress redistributions can have a
significant impact on the morphology of the solid skeleton and the pore space. Such
a modification of the microstructure can impact the hydraulic transfer properties
of the rock, such as the intrinsic permeability induced by clogging, re-closures,
reopenings, of cracks or pores (Hu et al., 2020b). In this context, it has been shown
in (Bérend et al., 1995) that the permeability, a concept introduced by Darcy (Darcy,
1857) measuring the ability of a porous medium to allow fluids to pass through it,
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is mainly controlled by the spatial structure of the geomaterial, the porous network
and the solid/fluid interaction, making it a key parameter in rock engineering. In
this aspect, numerous experimental investigations have been carried out in the past
on natural rocks in order to investigate the influence variations of the state of stress
on permeability such as in (Kilmer et al., 1987; Farquhar et al., 1993; Morrow et al.,
1984; Kwon et al., 2004; Meng and Li, 2013; Chalmers et al., 2012; Ghanizadeh
et al., 2014; Gensterblum et al., 2015; Selvadurai and Głowacki, 2008; Selvadurai,
2015; Selvadurai and Głowacki, 2017). A decrease of up to 40% of the permeability
of a sandstone submitted to a confining pressure of 20 MPa has been noted by
Fatt (Fatt and Davis, 1952). In the same way, a Vosges sandstone undergoes a
decrease in air permeability of about 50 % (Hu et al., 2018, 2020a) when an isotropic
compressive stress state from 5 MPa to 40 MPa is applied. Permeability variations
related to cracking under deviatoric loadings states were obtained by (Souley et al.,
2001) for a granite, with an initial decrease (initial crack closure) followed by
an increase of the permeability by several orders of magnitude. An irreversible
decrease in permeability of a limestone caused by a triaxial isotropic compression
was observed without significant macroscopic permanent deformation by (Selvadurai
and Głowacki, 2008). This implies that under loading/unloading conditions, the
irreversible decreases observed in permeability are assumed to be probably linked
to the presence of local plastic deformations inducing a modification of the pore
space potentially characterised by an alteration of the critical fluid flow paths.

In general, the modelling of rock physics is based either on theoretical models
based on idealized microstructures and calibrated on experimental measurements,
or on empirical laws derived from experimental measurements. As an example, one
can cite the (semi)-empirical laws linking porosity to permeability such as Kozeny-
Carman’s law (Kozeny, 1927; Carman, 1937), the power laws linking permeability
and porosity to stress sensitivity such as the natural logarithm model (Walsh, 1981),
the power law model (Shi and Wang, 1986; Kwon et al., 2004), the exponential
function model (Katsube et al., 1991), or the Two-Part Hooke’s model (Zheng et al.,
2015). However, these types of approaches do not allow a detailed investigation
of the phenomena operating on the microscopic scale in order to gain insight on
how a variation of the stress state way affect the rock microstructure leading to
a modification of the flow in the porous network.

More recently, advanced imaging techniques such as X-ray microtomography
(Mees et al., 2003; Cnudde and Boone, 2013; Desrues et al., 2010), FIB-SEM (Song
et al., 2015), TEM (Wiktor et al., 2012) or synchrotron (Fusseis et al., 2014) have
provided high-performance tools for analysing natural rocks with faster, more
accurate and easier access to the 3D microstructure. This enabled more information
to be extracted about the structure of the porous network (Arns et al., 2005b; Andrä
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et al., 2013a,b; Andrew et al., 2013; Blunt et al., 2013). As a result, in addition to
permeability, porosity or pore size distribution obtained by experimental methods,
other parameters such as pore connectivity, tortuosity, percolation networks can be
identified without being intrusive to the geomaterial (Robinet et al., 2012; Keller
et al., 2013). Obviously, the evaluation of these additional properties remains
dependent on the resolution and the volume of data available. Combined with high
performance computing, these methods started paving the way towards multiple
possibilities in terms of numerical analysis.

From a numerical point of view, various strategies have been used for the
simulation of fluid flow within porous microstructures, from Lattice-Botzmann
methods in experimentally obtained topologies (Sun et al., 2011; Keehm, 2004;
Boek and Venturoli, 2010; Ahrenholz et al., 2006; Hyväluoma et al., 2012; Manwart
et al., 2002; Narváez et al., 2013) to methods that identify the equivalent Darcy’s
properties. Such approaches are based on the Parallel Plates Model in the case of a
fault flow (Massart and Selvadurai, 2012, 2014), use the Random Walk Model (Hu
et al., 2013), or solve the Navier-Stokes equations based on finite elements (Narsilio
et al., 2009; Borujeni et al., 2013; Narváez et al., 2013), finite volumes (Guibert
et al., 2015; Petrasch et al., 2008), or finite differences schemes (Mostaghimi et al.,
2012; Manwart et al., 2002). Through approaches such as pore network modelling
(Bultreys et al., 2015, 2016; De Boever et al., 2016; Dong and Blunt, 2009), the
complexity of the pore network is reduced to an assembly of pore bodies and pore
throats of different sizes connected to each other through a virtual representation
of the pore network as an assembly of pore bodies and pore throats of different
sizes connected to each other. Due to their highly parallelizable potential and the
possibility to directly perform simulations on voxellized images, Lattice-boltzmann
methods are often a preferred choice to simulate the fluid behaviour on complex
microstructures obtained via X-Ray microtomography (Andrä et al., 2013a). In
contrast, few numerical studies have addressed the influence of stress state variations
on the detailed local geometrical alterations of the porous network generated at
the microstructural level, and in turn its impact on the transfer properties. Indeed,
mechanical simulations on microstructures with complex geometries require tailored
efficient discretization schemes. Different approaches can be selected for this purpose,
depending on the degree of the geometrical complexity of the microstructures.
Techniques based on extended finite element approaches (XFEM) (Legrain et al.,
2011b; Moës et al., 1999; Sukumar et al., 2001) with level sets enrichment functions,
CutFEM approaches (Csati et al., 2020) or embedded finite elements (Simo et al.,
1993; Benkemoun et al., 2010) allow the use of non-conform meshing, which can be
adapted for complex geometries. However, they may become cumbersome, especially
for problems incorporating 3D aspects or finite deformations. Conversely, conformal
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meshing generation methods give the possibility to be used in well-established FE
simulation softwares, but the discretization generation on complex geometries can
quickly become expensive and fastidious. Also, the cost of mechanical simulations
on such complex porous geometries requires an optimization of the mesh element
sizes according to morphological characteristicss refining in an automated way the
zones of interest. To address these challenges, conformal mesh generation techniques
adapted to complex geometries have been developed in (Ehab Moustafa Kamel
et al., 2019), and compared with non-conformal mesh generation methods in (Ehab
Moustafa Kamel et al., 2020), respectively the scope of Chapter 4 and 5 of this thesis.

These developments of 3D imaging techniques and of robust meshing tools
for image-based modelling motivate the development of an integrated numerical
methodology able to extract realistic microstructural geometrical data of rocks
obtained for example from X-ray microtomographies. After their processing and
meshing in a conforming approach, non linear mechanical FE simulations can be
used to analyse the deformability of the microstructural solid skeleton. A fluid flow
analysis with a Lattice Boltzmann approach can be performed on the undeformed
and the deformed microstructures in order to investigate the influence of the (plastic)
mechanical deformation on the transfer properties. The objective is thus to be
able to model explicitly pore scale deformations that have a significant impact
on the macroscopic permeability alterations. Such numerical results can provide
arguments to the assumption of local pores closure (proposed amongst others by
(Selvadurai and Głowacki, 2008)) to explain the experimental irreversible change
in permeability under loading-unloading of rock specimens while no significant
irreversible macroscopic deformations are observed. In addition, the proposed
automated integrated computational procedure thereby allows testing a number
of relevant and interesting pore scale assumptions in order to better understand
the fine scale mechanical phenomena significantly affecting the fluid flow within
the microstructure and altering the macroscopic permeability.

In order to highlight the changes in permeability obtained on a rock sample
subjected to a series of stress state variations based on numerical modelling, this
contribution will be structured as follows. Section 6.2 will outline the problem
statement linked to the choice of a representative material sample, motivating
the choice of using µCT scans to feed the integrated process of this contribution.
Section 6.3 will detail the integrated strategy for determining the permeability
at different levels of macroscopic deformation, addressing respectively the image
processing, the discretization of the processed geometry, the nonlinear elasto-plastic
FEM simulations and the permeability computation by means of Lattice-Boltzmann
simulations. Section 6.4 will present the results of possible applications with the
new integrated strategy presented in Section 6.3 illustrating the influence of fine
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mechanical parameters on the decrease in permeability under isotropic compression.
Finally, Section 6.5 will be devoted to the discussion of the methodology and to
the application results, before establishing the conclusions and perspectives in the
last Section. The test material used in this contribution is a Vosges sandstone
made available by the University of Lille(Hu et al., 2018), but the methodology is
intended to be modular, flexible in its block approach and applicable to other
types of geomaterials.

6.2 Problem statement
Obtaining a representative geometry of a rock microstructure for investigating the
permeability alterations as a function of applied stress states can be done either by
exploiting data from micro-tomographs (Mees et al., 2003; Cnudde and Boone, 2013)
or by virtual reconstruction from fundamental morphological indicators such as
porosity, pore connectivity, pores size distribution, specific surface area or tortuosity.
The virtual reconstruction methods based on random sequential addition (Sonon
et al., 2012), excursion sets (Roubin et al., 2015), or even stochastic generation
methods (Liang et al., 2000; Keehm, 2004; Andrä et al., 2013a) have the advantage
of overcoming the systematic and potentially costly use of imaging equipments
such as microtomographs, synchrotrons. They also offer the possibility of extended
parametric studies through the generation of a large number of virtual samples
with equivalent properties. However, these methods do not provide a controlled
generation of the precise and complex morphological configuration of the porous
network of a natural rock that an imaging technique would allow. Micro-CTs are
widely used to characterize the 3D microstructure of geomaterials with a resolution
ranging from millimeters to micrometres (Cnudde and Boone, 2013; Desrues et al.,
2010; Viggiani et al., 2004; Andò et al., 2013). Geometrical descriptions obtained
by imaging techniques are, among other things, dependent on the type of material
scanned and on the resolution of the extracted images. Thus, depending on the
quality of the images, their resolution, and the intended application, specific image
processing and segmentation techniques are required in order to efficiently identify
the different phases of the material. A realistic representation of the microstructure
of a Vosges sandstone obtained from a µCT scan provided by the University of
Lille (Hu et al., 2018), will be used to illustrate the construction of a geometrical
model and its exploitation for permeability evaluations. The integrated process
of modelling the permeability alterations induced by a variation of stress states
presented in this contribution will have as a starting point a model derived from
µCT. It is emphasized that the procedure due to its flexible and general nature,
also makes it possible to process virtually generated geometries. For the sake of
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simplification, only two phases with an explicit boundary will be considered: the solid
phase and the pores. In order to make the process manageable within reasonable
computation times, the model must be based on a volume smaller than the sample,
yet representative of the complete sample in terms of porosity, permeability and
pores size distribution. Generally speaking, in a rock, the permeability tends to
converge towards its macroscopic value when the selected subset is roughly 10
times larger than the diameter of the largest pore size (Gniewek and Hallatschek,
2019; De Boever et al., 2016; Arns et al., 2005a), or when the sample size is on
the order of the millimeter (Guibert et al., 2015; Mostaghimi et al., 2012). The
specific choices and treatments related to the case of Vosges sandstone as well as
the results obtained are detailed in the Applications section after having established
the modelling strategy discussed in the following section.

6.3 Numerical modelling of deformation-induced
permeability alterations

The integrated process of modelling permeability alterations in rocks under varying
stress states is subdivided into 3 main stages as illustrated in Figure 6.1, namely the
pre-processing, the simulation and the post-processing stages. The first one aims
at progressively constructing the numerical model in order to feed the mechanical
simulations. It consists first in processing the obtained 3D µCT scans to generate a
geometry the boundaries of which, separating the solid skeleton from the pore space,
are defined so as to be usable in a discretization process. This means a suppression
of small object such as small occluded porosities, an efficient identification of the
voxel phases and a smoothing process to reduce the roughness or the sharpness of
the boundaries. The second part of the pre-processing stage aims at generating an
optimized conforming mesh based on the methodology proposed in (Ehab Moustafa
Kamel et al., 2019) and serving as an input to the mechanical simulations. The
second stage involves, on the one hand, simulating the deformability of the rock
via the use of finite element method (FEM) simulations and, on the other hand,
simulating fluid flow inside the deformed pore space using a Lattice-Boltzmann
framework after mesh revoxellisation (LBM). Finally, a post-processing stage further
extracts the altered permeabilities, porosities and pore size distributions (PSD)
of the deformed microstructure to provide a complete set of data to analyse the
effects of the deformations on the mentioned parameters.



112
6.3. Numerical modelling of deformation-induced permeability

alterations

Figure 6.1: Process overview : The first step involves a pre-processing stage, treating
first 3D µCT scans of a natural rock before generating a conforming mesh. The second
stage involves mechanical and fluid simulations to simulate respectively the deformability
of the solid skeleton and the flow in the deformed pore space with a voxellisation process
of the deformed mesh at differents level of deformability. The last stage computes the
resulting permeabilities, porosities and PSDs on the deformed configurations.
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6.3.1 Image processing
The geometrical descriptions obtained by X-ray CT scans are given in the form of
a gray-scale density map expressed on a voxel grid, and subsequently translated
into level-set functions (Sethian, 1999) of the density of different constituents
in the rock. The latter, called implicit functions, make it easier to describe
particularly complex geometries where a curve Φ in 2D, respectively a surface
in 3D, can be represented implicitly by means of the level sets of functions of
spatial coordinates x denoted LS(x, ...) :

Φ ≡ LS(x, ...) = l (6.1)

where l1 represents the iso-value of the function.
Each component of the 3-dimensional matrix describing the density map, called

a voxel, has an intensity value associated to it, indicating a grey level where low
attenuation corresponds to dark grey tones ranging from 0 (black) to a maximum
value (white) depending on the color depth (i.e. 255 for unsigned 8 bits) with unique
spatial coordinates describing the geometry. The isolation of voxels with a particular
intensity to identify the differents constituents of the material is called segmentation,
a key step to the analysis of tomographic data. Many segmentation techniques exist
and their selection is highly dependent on the intended application (Fusseis et al.,
2014; Kaestner et al., 2008; Iassonov et al., 2009; Wang et al., 2011a,b). In fact,
depending on the number or density of the phases, the resolution of the scans, the
quality of the images, the spatial arrangement and shapes of objects, the methods
to be used can vary (Kaestner et al., 2008). Among the variety of them, methods
based on thresholding (Canny, 1987; Otsu, 1979) or on active contours (Caselles
et al., 1997; Chan and Vese, 2001; Shi and Karl, 2008; Bernard et al., 2009) can be
cited. These latter methods, also known as level-sets-based active contour methods,
correspond to a class of deformable models in which the desired shape is obtained
by propagating an interface represented by 2D iso-contours (3D iso-surfaces) giving
thereby smoothed contours. However, the active contours methods can quickly make
the process expensive for large geometries, due to the extra dimension added by the
levels-sets. Depending on the quality of the scanned images, the use of some filters
may be necessary before the segmentation process in order to enhance the isolation
of the phases during the segmentation (Kaestner et al., 2008). In this contribution,
and for the sake of simplification, only two phases in the Vosges sandstone are
considered with an explicit boundary: the solid phase composed of solid grains
and cement, and the pores. Finally, to make the microstructure suitable for FEM

1The notation is different from the other chapters so as not to confuse the notations of the
iso-value and of the permeability respectively
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meshing and to optimize the computing time without excessively compromising the
accuracy of the geometry, a simplifying process on the segmented 3D image may be
necessary through the application of a smoothing process (Haddad and Akansu,
1991; Shapiro and Stockman, 2001; Nixon, 2012) to slightly reduce the roughness of
the interfaces and the suppression of small features like occluded porosities. In fact,
an excessive reduction of the roughness can significantly affect permeability.

6.3.2 Signed distance-based meshing process
In order to perform finite element simulations, the geometrical model obtained by
means of the image processing must allows an efficient mesh generation. This is
associated with contradicting constraints. On the one hand, in order for the model
to be as close as possible to the real geometry, this crucial step must be able to
handle the complexity of the morphology. On the other hand, the mesh must not
be excessively dense so as to maintain a realistic computational cost. Thus, the
mesh must be optimized so that refinement is only applied in the areas of interest,
i.e. regions with high geometrical complexity or high stress gradients. Also, the
mesh generator must be able to efficiently take into account solid/void interfaces
and produce high quality meshes so that stability problems do not arise in the
case of FEM simulations incorporating geometrical and material non-linearities.
The discretization approach used in the scope of this contribution is based on the
generation of conforming meshes for complex heterogeneous geometries, based on
their implicit description by signed distance functions (Osher and Fedkiw, 2003;
Sethian, 1999). The methodology was originally proposed by (Persson and Strang,
2004) for homogeneous structures and was recently extended to heterogeneous
structures by (Ehab Moustafa Kamel et al., 2019) adressed in Chapter 4. These
signed distance fields (SDF) allow flexible and efficient controls during the meshing
process. Indeed, they can provide a series of useful informations for mesh generation
such as the distance to the closest internal and external interfaces or the curvature.
A particular choice for level-set functions describing the geometry is made here. A
distance field devoted DS(φ(x)) is used, where at each point of a regular discrete
grid of the domain of interest the signed Euclidean distance to the nearest φ interface
is evaluated. The RVE domain Ω is subdivided into two sub-domains Ω+ and Ω−

representing respectively the solid skeleton and the pore space of the model to which
the computed Euclidean distances to the solid-pore interface are assigned a positive
and negative value respectively. In order to preserve sufficient accuracy, avoid the
appearance of sharp features and thus limiting numerical stability problems during
the discretization process, this signed distance field is computed from an exact
computation of the signed Euclidean distance using python toolbox MeshToSDF
based on the implementation proposed in (Park et al., 2019). To achieve this, the field
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is generated from the distances computed from the triangulated surfaces obtained by
a Marching Cube process representing the Pores/Solid Skeleton interfaces (Lorensen
and Cline, 1987). The method is indeed more expensive than the use of methods
such as the Fast Marching Method (Sethian, 1999) but it carries the advantage of
producing a accurate signed distance field, the basis of the discretization process. In
fact, the Fast Marching Method, a priori a much less expensive approach, leads to an
approximation of the distance values depending on the level of refinement of the grid
on which it is evaluated this potentially leads to instability issues during the meshing
process. Using the signed distance field, the conforming mesh generation strategy is
composed by two main ingredients. The first one is the definition of an element size
function h(x) based on specific geometrical characteristics optimizing the initial
spatial node distribution. The second one is based on an iterative technique that
uses a simple mechanical analogy between the optimal mesh for a given connectivity
and the equilibrium configuration of a 3D truss of elastic bars (or a network of
springs) associated to the size of tetrahedral finite elements. In this analogy, an
internal force field is applied in these bars that steers the bar lengths towards the
targeted lengths defined by the element size function. The nodal force vector F of
the equivalent truss system thus contains both these internal forces from the bars
(Fint) achieving an optimal element shapes and the reactions at the boundary nodes
(Fext) constraining them on the solid-pore interface and ensuring the conformity of
the mesh as shown in Equation (6.2)2 and (6.3) and illustrated in Figure 6.2. More
details about the methodology can be found in (Ehab Moustafa Kamel et al., 2019).

F(x) = ∑
i Fint,i(x) + Fext,i(x) = 0 (6.2)

Fext(x) = −DS(x)∇DS(x) (6.3)

6.3.3 FE simulations of rock mechanical loading
In order to simulate the deformability of a rock induced by a variation of stress
state, the model obtained will be subjected to isotropic triaxial compressive
stress states. The conforming mesh generation procedure gives the possibility
to use robust conventional FEM softwares integrating the constitutive laws of
interest. In this context, the present contribution makes the choice to use the
FEM software ABAQUS (Simulia, 2014) given the availability of constitutive laws
specific to geomechanics with finite strains. In order to investigate the impact of
local plastifications within the microstructure under isotropic compression on the

2The notation is different from the other chapters so as not to confuse the notation of the
spatial coordinates of nodes and the pressure which is denoted p here
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Figure 6.2: Schematic 2D view of the optimization process applying boundary
constraints of nodes moving outside the implicitly defined boundary and the structure
composed of a network of bars (or springs) steered toward the targeted length provided
by the element size function h(x)

permeability, an elastoplastic constitutive law of the material is considered for the
solid phase. Due to the geometrical complexity, other mechanical phenomena such
as contact, further damage or cracking of the material will not be considered. To a
certain extent, the behaviour of the rock under high isotropic confining pressures can
be considered as rather ductile (Hu et al., 2018; Hoshino et al., 1972), which justifies
the use of elastoplastic constitutive laws. In this contribution, an elastoplastic law
with a Mohr Coulomb (MC) yield criterion is adopted. The MC criterion assumes
that plastic yielding occurs when the shear stress in the material reaches a value
that depends linearly on the normal stress in the same plane. The Mohr-Coulomb
yield model is illustrated in Figure 6.3 and defined by the following equation

τ = c− σn tanφ (6.4)

where σn is the normal stress which is negative in compression in ABAQUS conven-
tion, τ the shear stress, c the cohesion and φ the angle of friction of the material.

To be more convenient, the Mohr-Coulomb yield-limit F can be expressed in
terms of the stress invariants, see Equation (6.5), namely the hydrostatic pressure
p, the von Mises equivalent deviatoric stress q and r the third invariant of the
deviatoric stress respectively given by Equations (6.6), (6.7) and (6.8).

F ≡
(

1√
3 cosφ

sin
(

Θ + π

3

)
+ 1

3 cos
(

Θ + π

3

)
tanφ

)
q − p tanφ− c = 0 (6.5)

p = −1
3 trace (σ) (6.6)
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(a) (b)

Figure 6.3: Mohr-Coulomb yield model (a) and yield surface in deviatoric plane (b)
reproduced from ABAQUS theory manual (Simulia, 2014)

q =
√

3
2(S : S) (6.7)

r =
(9

2S · S : S
) 1

3
(6.8)

where the deviatoric stress S is expressed as

S = σ + pI (6.9)

and the deviatoric polar angle as

cos(3Θ) =
(
r

q

)3

(6.10)

The flow potential, G, used together with the Mohr-Coulomb yield surface in
ABAQUS is a hyperbolic function in the meridional stress plane and a smooth
elliptic function proposed by (Menétrey and Willam, 1995) in the deviatoric stress
plane as illustrated respetively in Figures 6.4(a) and 6.4(b). The continuous and
smooth nature of this flow rule ensures that the plastic flow direction is always
uniquely defined (Menétrey and Willam, 1995), avoiding some issues in the finite
elements simulations. The equation of the flow potential is given as

G =
√

(εc|0 tanψ)2 + (Rmwq)2 − p tanψ (6.11)

Rmw(Θ, e) = 4 (1− e2) cos2 Θ + (2e− 1)2

2 (1− e2) cos Θ + (2e− 1)
√

4 (1− e2) cos2 Θ + 5e2 − 4e
Rmc

(
π

3 , φ
)

(6.12)



118
6.3. Numerical modelling of deformation-induced permeability

alterations

Rmc

(
π

3 , φ
)

= 3− sinφ
6 cosφ (6.13)

where ψ is the dilation angle measured in the p − Rmwq plane (see Figure
6.4(a)), c|0 is the initial cohesion yield stress, ε the meridional eccentricity defin-
ing the rate at which the hyperbolic function approaches and e the deviatoric
eccentricity expressed as

e = 3− sinφ
3 + sinφ (6.14)

(a) (b)

Figure 6.4: (a) Hyperbolic flow potential in the meridional stress plane, (b) Menétrey-
Willam flow potential in the deviatoric stress plane reproduced from Abaqus theory
manual (Simulia, 2014)

Isotropic cohesion hardening is considered for the hardening behavior of the
Mohr-Coulomb yield surface. The hardening curve given in Equation (6.15) describes
the cohesion yield stress as a function of the plastic strain where c|0 is the initial
cohesion value, while c|f is the final cohesion value at a plastic strain value εpeq of
1. The angle of friction is kept constant, thus no hardening or softening behavior
is considered for the angle of friction keeping it constant.

c = c|0+
(c|f−c|0) εpeq
Bc + εpeq

(6.15)

where Bc is a coefficient corresponding to the equivalent plastic strain to half
the evolution of cohesion (Collin, 2003).

The equivalent plastic strain, a scalar value giving an indication on the intensity
of the plastic strain is computed following Equation (6.16).

ε̄pl =
∫ 1
c
σ : dεpl (6.16)
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In addition to the consideration of material non-linearities through the use of
a Mohr-Coulomb constitutive law, geometrical non-linearities are also considered.
These FEM simulations are performed for the solid phase using an implicit Newton-
Raphson procedure. Furthermore, since the plastic flow is non-associated, an
unsymmetric matrix storage is considered.

6.3.4 Permeability evaluation
The tools presented in the previous sub-sections provide the essential ingredients
to perform the simulations to describe the deformation of the solid skeleton of the
rock sample under mechanical loading. One then needs to evaluate the permeability
of the porous network that has been modified following the deformation of the
solid skeleton. Permeability measures the capacity of a fluid to flow through a
porous medium. It is part of the proportionality constant in Darcy’s law, the
relationship expressing the flow v in terms of the pressure gradient ∇p. This
phenomenological law is considered valid at low Reynolds numbers when the flow
is laminar without considering gravitational effect. Indeed, under this condition,
permeability is independent of fluid properties such as density, viscosity and pressure
gradient (Eshghinejadfard et al., 2016). Darcy’s law reads

v = −K
µ
· ∇p (6.17)

where K represents the permeability tensor, p the pore fluid pressure, v the
velocity vector and µ the dynamic viscosity.

This law is valid regardless of the fluid considered or the saturation conditions.
In Equation (6.17), the permeability K is computed as the product between the
intrinsic permeability Kint and the relative permeability krel (that depends on the
degree of saturation). The intrinsic permeability Kint (expressed in m2) does not
depend on the fluid considered and is mainly controlled by the spatial structure
and the porous network of the geomaterial, as well as the solid/fluid interaction
(Bérend et al., 1995). In this contribution, only water permeability under saturated
conditions will be investigated. Under those conditions, the permeability K can
thus replaced by the intrinsic permeability Kint.

Different strategies exist to simulate flows within complex geometries. For the
type of geometries considered here with complex and irregular boundaries, traditional
computational fluid dynamics (CFD) methods such as Finite Elements Methods
(Borujeni et al., 2013; Narváez et al., 2013) or Finite Volume Methods (Guibert
et al., 2015; Petrasch et al., 2008) require mesh refinement levels stronger than the
image resolution to ensure mesh convergence and simulation stability. Consequently,
obtaining an accurate permeability estimate leads to significant computational costs
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(Guibert et al., 2015; Succi, 2001), in addition to the complexity of generating a
mesh adapted to this type of geometry. Conversely, the Lattice-Boltzmann method
is prone to parallelization (McClure et al., 2014). Due to the possibility of using
it directly on complex pore space geometries of rocks (Martys and Chen, 1996;
Cancelliere et al., 1990; Keehm, 2004; Andrä et al., 2013b), it remains a preferred
choice for flow simulations in geological materials. In fact, the voxel grid of the
3D image obtained from a micro-CT scan or a virtually generated geometry can
directly be used as lattice. Consequently, no complicated meshing procedure is
required, making this approach very flexible. This method is a modern approach
in Computational Fluid Dynamics often used to solve the incompressible steady-
state, time-dependent Navier-Stokes equations (see Equations (6.18) and (6.19))
numerically in agreement with FEM solutions (Kandhai et al., 1998; Thijssen, 2007).

− µ∇2v +∇p = f (6.18)

∇ · v = 0 (6.19)

Yet, one of the main disadvantages of the method is its computational inefficiency,
even with a massively parallel implementation. The runtime scales approximately
inversely with the real flow rate (Blunt et al., 2013), which motivated some
researchers to use simplifying methods such as pore network modelling (Bultreys
et al., 2015; De Boever et al., 2016; Dong and Blunt, 2009). However, the need
to implement an integrated and automated methodology tracking the evolution of
permeability according to the mechanical deformation of the solid skeleton motivates
here the choice of the Lattice-Boltzmann method to simulate flows within the
complex microstructures. The method finds its origin in a molecular description of a
fluid. Based on cellular automata theory, it describes the fluid volume in a complex
pore-geometry in terms of the interactions of a massive number of particles following
simple local rules, namely, collision and propagation which can be understood as a
discretization of the behavior of an ideal gas. These rules recover the Navier-Stokes
equation at the macroscopic level (Rothman et al., 1998; Ladd, 1994).

The Lattice Boltzmann method describes the evolution of a discretized fluid-
particle distribution function f(x, t, ζ) that moves and interacts on a regular lattice
with very few degrees of freedom (Ramstad et al., 2010). f(x, t, ζ) represents
the probability of finding a fictitious particle in a certain location of domain x
with a certain velocity ζ at a certain time t (Eshghinejadfard et al., 2016). The
discretized Boltzmann equation in time and space, and the conversion of the space
of velocities ζ into a finite set of velocities ci describing the degrees of freedom
of the movement allowed in the lattice reads :
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fi (x + ci∆t, t+ ∆t)− fi(x, t) = −1
τ

[fi(x, t)− f eqi (x, t)] (6.20)

where fi, f eqi , τ and ∆t are respectively the distribution function of particles
moving with speed ci, an equilibrium distribution function, the dimensionless
relaxation time related to the kinematic lattice viscosity ν (see Equation (6.21))
and the time step. The right-hand side of the discretized Boltzmann equation
accounts for the Bhatnagher-Gross-Kook (BGK) collision model (Bhatnagar et al.,
1954) describing a relaxation process towards equilibrium.

v =
(
τ − 1

2

)
c2
s∆t (6.21)

where cs = 1/
√

3 is the sound speed given in non-dimensional form.
A particle distribution for each possible particle velocity vector is defined at

each node on a regular lattice as illustrated in Figure 6.5. The number of these
vectors is constrained by exclusively enabling particles to jump to a neighboring
node in one time step. Packets of particles are propagated according to their
velocities during each time step of the simulation. The velocity populations are
relaxed by a collision step (Meakin and Tartakovsky, 2009) following a collision
rule. The simplest one is the single-relaxation time Bhatnagar–Gross–Krook (BGK)
approximation. However, to ensure better numerical stability for simulations in
the complex pore-geometry of the microstructure, multiple relaxation times (MRT)
are often used (Gniewek and Hallatschek, 2019). More in-depth details about the
Lattice-Boltzmann method applied to geomaterials can be found in (Sukop and
Thorne, 2007; Eshghinejadfard et al., 2016).

The input required for the method is a discretisation in the form of a voxel
grid. In our procedure, the deformed geometry is given by the deformed 3D mesh
obtained as a result of the FEM simulations described in the previous sub-section.
This mesh is converted into a voxellisation for each confining level using a ray
intersection method based on the algorithm developed by (Patil and Ravi, 2005)
from a MATLAB code (Adam, 2020).

The flow simulations are then carried out using the open source software
PALABOS (PArallel LAttice BOltzmann Solver) (Latt et al., 2020), a framework
for general-purpose computational fluid dynamics (CFD), with a kernel based on
the lattice Boltzmann method (LBM) using the code provided by (Gniewek and
Hallatschek, 2019). Velocity fields of the fluid flow are solved using the D3Q19
lattice as illustrated in Figure 6.5(b), and are achieved by imposing a pressure
difference ∆p small enough to ensure an incompressible flow in a laminar regime
between two opposite faces of the subset constituting the inlet and the outlet for
each of the directions x−y−z. No-slip boundary conditions are applied to the solid
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material boundaries, i.e. to the pore walls. For this purpose, the solid boundaries
are handled with a simple bounce-back condition, meaning that a packet of particles
that hits a solid wall node at a certain time step is “bounced back” to the node in the
pore space where it came from (Llewellin, 2010) as illustrated in Figure 6.5(a). Once
the flows have been computed respectively in the 3 main directions, the permeability
tensor is extracted using Darcy’s law. The "scalar" equivalent permeability is
then calculated by geometrically averaging the permeabilities obtained for the 3
directions, an estimate considered more appropriate for sandstones (Selvadurai and
Selvadurai, 2014). Note that the results obtained are given in lattice units and
must be converted into physical units (Latt, 2008). For the permeabilities, this
requires multiplying by the square of the voxel length.

(a) (b)

Figure 6.5: (a) Bounce-back condition reproducing the no-slip boundary conditions
adapted from (Llewellin, 2010), (b) Discrete velocities of the D3Q19 lattice

6.3.5 Pore size distribution
Pore size distributions provide relevant information on the distribution of pore
volume fractions according to their radii. Their evolution throughout the loading
process could potentially identify the pore radii where the deformation would be
preferentially localized. Through the access to the porous network via imaging
techniques, pore size distributions can be geometrically determined. The main idea
is to determine the amount of volume for each pore radius potentially covered with
spheres in 3D without overlapping with the solid skeleton leading to the definition
of a continuous PSD. To do this, the algorithm provided by (Münch and Holzer,
2008) via the Beat (Münch and Holzer, 2008) plugin available in open-source image
processing software Fiji (Schindelin et al., 2012) first calculates a distance field
within the pore space giving the information of the closest Euclidean distance to the
boundaries separating the pores from the solid skeleton. The algorithm then starts
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with the widest area corresponding to the radius r of the largest sphere that can be
placed without overlapping. The algorithm then progresses by covering the pores
with spheres of gradually decreasing radius r until the entire pore volume is covered.

However, they do not provide more information on critical throats. Indeed,
in sandstones, the porous geometry consists of a system of large chambers (body
pores) interconnected with narrow pores (throat pores) restricting the fluid flow.
Thus, permeability is mainly controlled by the percolation pore throats, while
the pore chambers contribute essentially to the porosity. A small variation in the
throats can induce large variations in permeability without significantly affecting
the porosity (Zheng et al., 2015). Thus, the extraction from the overall pore size
distribution of a reduced distribution around the radii of critical throats would
allow investigating how pore throats and pore chambers are affected by variations
in the stress state. In this perspective, in addition to the computation of continuous
PSDs, the plugin can geometrically simulate PSDs obtained by mercury intrusion
porosimetry (MIP). The ink-bottle effect generated by these simulations somehow
provides a distribution of pore sizes reduced to their most critical throats along
the percolation paths as shown in Figure 6.6. These PSDs obtained by geometrical
MIP simulations are generated on the basis of a region growing algorithm (Chang
and Li, 1995) with constraint. In fact, a new voxel can only join the region if it
meets the growing criterion, together with all voxels of its spherical neighborhood
with radius rs in 3D (Münch and Holzer, 2008). The information of the smallest
pore radius along the percolating path reduces the continuous PSD to the critical
throats of the pore network. More details about the method are given in (Münch
and Holzer, 2008). Note that the process is used in this contribution to obtain a
geometrical information on the pore throats and is not intended to simulate a proper
MIP experiment. In the following, the term PSD will refer to the continuous PSD
while MIP will refer to the pore size distributions obtained via MIP simulations
defined in this section. Both are generated by using the Beat plugin (Münch and
Holzer, 2008) available in the Fiji software (Schindelin et al., 2012).

6.4 Applications
6.4.1 Materials
Based on the micro-CT scans of a Vosges sandstone obtained by (Hu et al., 2018),
the applications presented in this section will make use of a subset of these µCT’s.
The Vosges sandstone is representative of the class of materials suitable as host rock
for gas storage. This rock is characterized by cemented and strongly interpenetrated
grains, resulting in a highly interconnected pore network with a very low fraction
of occluded pores. The cylindrical sample that has been scanned has a height
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Figure 6.6: Schematic view of a continuous PSD and a PSD obtained by MIP simulation
showing the impact on the pore size distribution when reducing the pore sizes to their
smallest throat pores along the percolation pathways due to the ink-bottle effect

of 12.14mm with a diameter of 5.31mm. The porosity and the air permeability
measured experimentally in lab conditions for a similar sample are respectively
about 19 % and 6× 10−13m2 (Hu et al., 2018). The voxel size of the sample studied
is 5 × 5 × 5µm. Figure 6.7 illustrates a 3D voxel-based view of a cubic subset
of the Vosges sandstone µCT scans with an edge length of 1.5 mm on each side,
highlighting the morphology of the porous space and the marginal presence of
occluded porosity (less than 1% of the porosity).

(a) (b) (c)

Figure 6.7: 3D voxel-based view of a segmented Vosges sandstone subset of 1.5 mm
obtained by X-ray tomography from Cong Hu’s thesis (Hu et al., 2018) : (a) solid skeleton,
(b) pore space, (c) occluded pores

6.4.2 Assumptions/Questions
The capabilities of the integrated procedure proposed here to investigate the alter-
ation of the permeability under isotropic triaxial compression explicitly considering
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the microstructural morphology are now illustrated. To this end, and to demonstrate
how the tool can be used to test assumptions about the microstructural (pore scale)
behaviour, three assumptions/questions are here addressed for such a demonstration:

1. First, Vosges sandstone essentially has a brittle behaviour at low confinement.
However, a transition to a more ductile behaviour takes place when the
confining pressure applied to the sandstone approaches 40 MPa as mentioned
in (Hu et al., 2018). For higher macroscopic confining pressures above 40
MPa, local plastic straining is likely to occur. There is an interest in assessing
how the introduction of a microstructural plastic behavior and its parameters
such as friction or cohesion influence permeability alterations due to loading.

2. Second, a rock is heterogeneous by nature and is composed of different
constituents with different nature and properties. Sandstone is a rock in which
different grains are interpenetrated and cemented together. This cement
layer binding the grains has weaker properties than those of grains composed
mainly of quartz. Cement is therefore the preferential site for the initiation of
cracking or plastification phenomena with a potentially significant impact on
the modification of the porous network. It is therefore of interest to investigate
the effect of the presence of a thin cement layer with weaker material properties.
Our computational procedure will therefore be used to assess the impact on
permeability of considering a cement layer with weaker properties, made of
10% of the solid volume fraction and located closest to the pore network walls.
The aim here is not to identify the cement via segmentation but rather to
test a hypothesis by considering a constant thickness of cement around the
solid phase by attributing weaker properties to the elements included in this
thickness.

3. Third, as mentioned in the introduction, experimental studies on rocks such as
(Selvadurai and Głowacki, 2008; Hu et al., 2018) have observed permeability
hysteresis after unloading the samples from an applied isotropic compressive
loading potentially linked to an irreversible modification of the pore network
by local plastification of the solid skeleton during mechanical loading. The
effect of unloading at different loading levels on the permeability alterations
will therefore be assessed.

It is emphasized that this type of microstructural assumptions can only be
tested computationally based on a model incorporating the detailed morphology
of the porous network, as the one proposed here.
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6.4.3 Pre-processing
Image processing

After applying a median filter (Stone, 1995) to reduce the image noise, an hysteresis
thresholding (Canny, 1987) was applied as illustrated for a slice of the sample in
Figure 6.8. In fact, this segmentation method allows a better local voxel attribution,
especially at borders, given the overlapping shown on the grey level histogram (see
Figure 6.8b), in order to optimally distinguish the solid skeleton of the rock from
the pore space as illustrated in Figure 6.8. Due to the high connectivity of the pores,
the marginal occluded porosities representing less than 1% of the total porosity
allow building a model by removing them. Indeed, their removal will not have any
significant impact on the mechanical and fluid simulations. This avoids excessive
mesh refinement and significantly reduces the cost of the FEM simulations. Occluded
pores are therefore eliminated by using a geodesic reconstruction (Beucher, 2001),
thus keeping only the pore voxels having a connectivity with the boundary edges of
the subset, thereby representing the conductive pores only. The roughness of the
pore walls is slightly reduced by the application of a Gaussian filter generating an
isotropic smoothing with σ = 1 voxel-length. Indeed, a fully detailed representation
of roughness would induce important local curvatures, requiring a more important
refinement of the mesh for a more accurate representation of the geometrical model.
This would lead to a very costly mechanical computation. Indirectly, this will lead
on the one hand to a reduction in the number of poor quality mesh elements, and
on the other hand in an increase of the value of the computed permeability. An
assessment of the impact of pre-processing steps is given in Table 6.1.

Representativity

In order to make the process manageable within realistic computational times,
a subset that is statistically representative at the fine scale of the macroscopic
transfer properties of the complete sample must be selected. As explained in
literature, permeability tends to converge towards its macroscopic value when the
subset is about 10 times larger than the diameter of the largest pore (Gniewek
and Hallatschek, 2019; De Boever et al., 2016; Arns et al., 2005a), or when the
sample size is in the order of 1 mm (Guibert et al., 2015; Mostaghimi et al., 2012).
The pore size distribution of the complete segmented sample indicates a maximum
pore radius of approximately 70 microns as illustrated in Figure 6.9. Therefore, a
minimum sample size of 1.4 mm should be considered. In order to avoid excessive
computation times, the choice is made to limit the sample size to 1.5 mm. The voxel
size of the samples studied is 5×5×5µm leading to a sample size of 300×300×300
voxels. The selected subset among the extracted ones at this size is the one with
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Figure 6.8: Image processing of a 2D slice of a subset of Vosges Sandstone sample :
(a) 2D slice, (b) Gray level histogram, (c) Segmented image with hysteresis thresholding
after applying a median filter, (d) Smoothed contours of the segmented image

porosity and permeability values that are the closest to those computed numerically
for the complete segmented sample. The obtained porosity, connected porosity
and mean permeability of the complete sample are respectively 16.08 %, 15.97 %
and 7.98 × 10−13m2. The selected subset, for its part, has resulted in 16.18 %,
16.06 % and 7.99 × 10−13m2. The computed porosity is the Eulerian one, and is
obtained as the current pore volume divided by the current subset volume. The
estimate of porosity and permeability is in the right order of magnitude. Their
computationally evaluated values are respectively slightly lower and higher than that
the experimentally measured on a similar sample, mainly because of the resolution
limited to 5 µm. Indeed, from one segmentation method to the other, or from one
thresholding value to another, the values computed for porosity and permeability
may vary. This sensitivity is logically amplified when resolutions are not fine enough
to accurately identify the solid skeleton from the pores (Cox and Budhu, 2008).
However, the applications will focus on relative changes in permeability before and
after deformation. A future contribution could base the study on experimental
results directly carried out on the sample (which is not the case here), thus enabling
the model to be calibrated as early as the segmentation phase.
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Figure 6.9: Pore size distribution of the complete sample and the selected subset of 1.5
mm of edge showing a good match in term of pore sizes and porosity

Mesh generation of the representative subset

After the extraction of a representative subset of the Vosges sandstone microCT
scans and its image processing (segmentation, smoothing), a signed distance field
is generated in order to mesh the geometry using the methodology outlined in
Section 3. Figure 6.10 illustrates the treated subset and its corresponding signed
distance field. The result of the discretisation is shown in Figure 6.11(a). Due to
the purely mechanical process modelled by FEM simulations, only the solid phase
is meshed. The mesh used as an input for the elastoplastic simulations is composed
of 1, 111, 398 nodes and 5, 473, 446 elements. The voxellisation of the deformed
mesh will be applied for each confining level extracted. The initial voxellisation
from the undeformed mesh is illustrated in Figure 6.11(b)

Influence of pre-processing on evaluated porosity and permeability

After image processing, meshing and mechanical simulation, a revoxellization is
performed to extract permeabilities. Thus a revoxellization is also performed on the
undeformed subset to estimate the effect of the image processing and meshing on the
computationally obtained permeability. The initial porosity and permeability values
are obtained, respectively as 15.54% and 9.12× 10−13m2, varied slightly throughout
the process as shown in Table 6.1. These cumulative errors are the result of the
resolutions being used. A higher resolution when generating the distance field or a
finer mesh before revoxing on a finer grid will significantly reduce this variation at
the expense of computing time. Also, the gaussian smoothing phase tends to reduce
the roughness at the pore walls and to slightly inflate the solid skeleton, potentially
leading to an influence on the assessment of the permeability and the porosity.
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(a) (b)

Figure 6.10: Vosges sandstone subset model : (a) Treated 3D image after applying
the segmentation, removing occluded porosities and smoothing the contours, (b) Signed
distance field

(a) (b)

Figure 6.11: Vosges sandstone subset model : (a) Conforming mesh generated by the
extended Persson Truss analogy method (Ehab Moustafa Kamel et al., 2019) (# Nodes :
1, 111, 398 /# Tetrahedra : 5, 473, 446), (b) Initial voxellisation done from the undeformed
mesh
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φ [%] kxx [m2] kyy [m2] kzz [m2] k [m2]
Hyst. thres.
segmentation

16.06 5.37 × 10−13 9.52 × 10−13 1 × 10−12 7.99 × 10−13

Gaussian
smoothing

15.88 5.67× 10−13 9.93× 10−13 1.05× 10−12 8.39× 10−13

Signed dist.
field

15.80 5.79× 10−13 1.01× 10−12 1.08× 10−12 8.66× 10−13

Volume mesh
voxellisation

15.54 5.95 × 10−13 1.1 × 10−12 1.16 × 10−12 9.12 × 10−13

Error [%] 3.23 10.8 15.55 16 14.41

Table 6.1: Initial values of permeability and connected porosity values obtained for
each step of the process for the selected subset of 1.5 mm of edge length. The reference
ones for the evaluation of the permeability alterations under stress state variations are
the ones obtained after the voxellisation of the volume mesh.

In order to overcome the fluctuations in permeability and porosity, this contri-
bution chooses to consider as a reference for further simulations the permeability
and porosity obtained at the end of the pre-process, i.e. that obtained after
revoxellisation of the initial mesh. This is justified by the fact that the main
objective of the developments presented is to illustrate an integrated process for
investigating the link between the permeability alterations induced by deformation
under stress state variations and the morphology of the pore space. This approach,
due to its numerical and flexible nature, offers the possibility of testing a large
number of fine scale assumptions and of establishing trends in terms of the behaviour
of the material under deformation and its link with its transfer properties.

6.4.4 Results
In order to investigate the assumptions mentioned in the Materials sub-section, a
set of 9 simulations with varying properties have been carried out. The parameters
used for the different simulations are given in Table 6.2. The interest is focused
on the effect of the three following parameters: cohesion, angle of friction and
the consideration of a thin cement layer. The resulting deformation response of
the microstructure subjected to isotropic macroscopic compression is computed
in order to study its influence on the evolving permeability, porosity and pore
size distributions. The Young’s modulus is chosen on average at 20 GPa except
for the last simulation. The Poisson coefficient ν is chosen to be identical for all
the simulations. The values of the angle of dilation ψ were chosen according to
the respective values of the angles of friction by being 3° lower. This answers
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CEM 10% - E = 1GPa - ν = 0.2

E

[GPa]

c0

[MPa]

cf

[MPa]

φ

[°]

ψ

[°]

ν

[-]

c0

[MPa]

cf

[MPa]

φ

[°]

ψ

[°]

1 20 - - - - 0.2 - - - -

2 20 9 10.5 35 32 0.2 - - - -

3 20 6 8.5 35 32 0.2 - - - -

4 20 9 10.5 30 27 0.2 - - - -

5 22.11 9 10.5 35 32 0.2 9 10.5 30 27

6 22.11 9 10.5 35 32 0.2 9 10.5 20 17

7 22.11 9 10.5 35 32 0.2 0.5 2 20 17

8 22.11 9 10.5 30 27 0.2 0.5 2 20 17

9 40 10 15 35 32 0.2 0.5 2 20 17

Table 6.2: Finite element simulations are conducted with a set of nine different material
properties configurations of the subset sample of Vosges sandstone with an added coating
cement (CEM - 10% of the volume fraction of solid skeleton) with weaker properties for
configurations 5 to 9 to analyse the effect of the three following parameters : cohesion,
angle of friction, cement layer. Poisson coefficient ν is kept constant and the angle of
dilation ψ is 3° lower than the corresponding angle of friction φ to avoid unstable material
behaviour at high confining stress states

computational stability requirements related to the Mohr-Coulomb criterion as
implemented in the Finite Elements Method ABAQUS software (Simulia, 2014), in
order to avoid unstable material behaviour at high confining stress states. A slight
isotropic strain-hardening of the cohesion is also considered where c0 represents the
initial cohesion while cf represents the final value of hardening at an equivalent
plastic strain of 1. It is noted that the values used remain consistent with those
reported by Hu (Hu et al., 2018). However, it is obvious that these parameters are
to some extent arbitrary since they are inspired from macroscopic data, while being
used in a fine scale context. Fine scale parameters are however difficult to obtain
and require advanced characterization methods such as micro-indentation tests
(Randall et al., 2009; Mahabadi et al., 2012) or micro-scratch tests (Akono et al.,
2011). Microstructural simulations are therefore useful to build a link between the
macroscopic response of the system and the parameters of the fine scale constituents.
The studies conducted in this contribution thus also aim at varying these parameters
to quantify their respective influence in the context of a complex microstructural
rock geometry, to be able to test hypotheses, and to interpret trends.

Considering the relatively low anisotropic behaviour of the studied sandstone, the
stress states corresponding to the imposed macroscopic deformation (the simulations
are macroscopic strain-driven) are almost isotropic, the variations being more
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pronounced as the loading increases as shown in Figure 6.12(a). However, at
about 100 MPa of average confining pressure, the difference between the values
obtained for each direction is only about 4%, a variation considered negligible.
Thus, the subsequent figures will illustrate the evolution of quantities such as
porosity, permeability or pore size distribution as a function of the arithmetic mean
of the equivalent macroscopic stress in the 3 principal directions as illustrated in
Figure 6.12(b). The permeability values obtained in the 3 directions show that the
permeability evaluated in the X direction is lower than the permeability obtained
in the Y and Z directions by a factor of 2. It remains however in the same order of
magnitude, and the difference tends to decrease as the sample considered is larger,
the constraint of the size of the subset being chosen to keep affordable computing cost.
Permeability is presented in a normalized form, where the permeabilities obtained
after deformation are divided by the permeability of the undeformed subset, on the
basis of its geometric mean, an estimate considered more appropriate for sandstones
(Selvadurai and Selvadurai, 2014) in order to simplify interpretations. Figure 6.13
depicts the normalized permeability as a function of the porosity, showing a strong
correlation between changes in porosity and permeability as experimentally observed
in literature. Indeed, for all the sets of parameters used during the simulations,
the different permeability-porosity curves obtained fit each other almost perfectly.
Generally speaking, the porosity is deduced from a volume of pores while the
permeability is mainly controlled by the throat pores (Zheng et al., 2015).

(a) (b)

Figure 6.12: Confining pressure as a function of the applied macroscopic deformation
for the nine simulations with properties shown in Table 6.2: (a) in x− y − z principal
direction separately, (b) as a geometric mean value of the three principal stresses values
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Figure 6.13: Normalized permeability as a function of porosity for the nine simulations
of Vosges sandstone subset

(a) (b)

Figure 6.14: Permeability as a function of stresses for the nine simulations with properties
shown in Table 6.2 : (a) in x− y − z principal direction separately, (b) as a geometrical
mean value of the three values of permeability in the three principal directions
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(a) (b)

Figure 6.15: (a) Normalized permeability as a function of confining pressure, (b) Porosity
as a function of confining pressure

Influence of local plastic properties

The linear elastic simulation (Simulation 1) shows a very limited decrease in
permeability and porosity under an isotropic variation of stress states as shown
in Figure 6.14 and 6.15. At 40 MPa, the permeability decrease is only about 5%
and reaches 10% when the confining pressure reaches 100 MPa. The behaviour
is linear, implying relatively homogeneous and small reductions in pore throat
cross-sections as shown in Figure 6.17 with the MIP curve. It can be seen that the
average pore throats radius is around 15 microns. Moreover, this almost negligible
reduction indicates the need to consider other physical phenomena occurring at
the fine scale when the rock is subjected to a variation of stress state. In the
present contribution, the consideration of plastification shows significant effect on
permeability decrease from 40 MPa as shown in Figure 6.14 already in Simulation
2. The influence of the plastification at high confinement on a sandstone, and
the permanent nature of this decrease by local plastification inducing progressive
pore closures can be seen in Figures 6.17 and 6.16 with a decrease of pore throats
size as the load increases or the mechanical properties become weaker. However,
the concavity of the curves obtained seems to act differently from experimental
results in (Hu et al., 2018). Indeed, before reaching such a level of confining
pressure, sandstone essentially has a brittle behaviour, the transition to a more
ductile behaviour taking place when it approaches an isotropic applied stress of 40
MPa as mentioned in (Hu et al., 2018). This implies that other phenomena not
captured by the single consideration of non-associated elastoplasticity are likely
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(a) (b)

(c)

Figure 6.16: Effect of the confining pressure on the pore-size distribution (continuous
line) and MIP simulation (circled line) at (a) 30 MPa, (b) 60 MPa, (c) 90 MPa for the
nine simulations

to have a more significant effect on permeability when the confining pressure is
below 40 MPa. As an example, consideration of damage would allow the simulation
of material degradation leading to the detachment of surface sandstone particles
that could potentially clog critical pores. This would have the consequence of
modifying the concavity of the permeability decrease curves according to the trends
obtained experimentally in the literature (Selvadurai and Głowacki, 2008; Hu et al.,
2018). Figure 6.12 shows that the stress-strain curve yields from 30 MPa for
the simulations showing the progressively larger impact of plastification on the
macroscopic response of the material. It also marks the level of confinement at
which the permeability decrease becomes more significant as a function of the
selected parameters of cohesion and angle of friction.

The elasto-plastic simulations 3 and 4 with homogeneous properties of the solid
skeleton show respectively the effect of the variation of the cohesion and the angle
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See the next page for complete description...
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Figure 6.17: Effect of the confining pressure on the pore-size distribution (continuous
line) and MIP simulation (circled line) at (a) 30 MPa, (b) 60 MPa, (c) 90 MPa for each
simulation separately

of friction on the permeability compared to simulation 2. A decrease in the value of
the cohesion (Simulation 3) shows a more significant impact on the plastification at
low confining pressures, whereas a decrease in the angle of friction (Simulation 4)
will have a larger effect at higher confining pressures. This is associated with the
fact that a lower value of cohesion will trigger plastification in areas of high stress
gradient at lower confining levels. In addition, the decrease in permeability and
porosity is slightly lower for simulation 3 compared to simulation 4 up to 50 MPa.
From this value, the trend is reversed and the difference becomes progressively
more significant, reaching a permeability decrease of 55% and 65% respectively
at about 90 MPa of confinement. This can be explained by the fact that in a
Mohr-Coulomb type law, a modification of the cohesion will cause the ordinate at
the origin of the failure curve to vary. It would therefore be necessary to reduce
it considerably to see significant variations.

Figures 6.16 and 6.17 obtained by the method explained in Section 6.3.5
illustrate the modifications of the total pore size distributions, indicating that
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as simulations progress, reductions in pore cross-sections are being observed. The
MIP curves represent in some way the reduction of the pore size distribution at
throat pores radii along the percolation paths. They show that the microstructure
undergoes deformations which also affect them and explain the significant decreases
in permeability as the elasto-plastic parameters decrease. The increasingly important
evolution of the plastification of the elements as the confining pressure increases
(30 MPa, 60 MPa and 90 MPa) is illustrated for Simulation 4 in Figure 6.18 where
red regions have plastified. The intensity of the plastic strain is illustrated in
Figure 6.19 by the equivalent plastic strain distribution. It shows that the plastic
strain is relatively uniformly distributed within the microstructure. It should be
noted that for a confining pressure of 60 MPa, local equivalent plastic strains
equal to or larger than 10% can be observed, even though the macroscopic strain
applied is approximately 0.5%. These large deformations explain the significant
decrease in permeability, porosity and pore size distributions observed in Figures
6.14, 6.15, 6.16 and 6.17. Also, the a priori uniform distribution of plastic strains
is strongly related to the isotropic compression applied to the subset during the
FEM simulations. It should be noted that simulations are conducted for isotropic
loading conditions. Potentially, deviatoric loading conditions would emphasize the
non-uniform character of the deformations.

Influence of adding a cement layer

Rocks, by nature, are heterogeneous. Sandstone is made of an assembly of grains
cemented together. This cement phase binding the grains together has weaker
properties than the grains themselves composed mainly of quartz. Similarly, due
to physical phenomena such as wheathering, the cement properties may also be
weaker. This layer is potentially a preferential site of cracking or plastification
phenomena which can play a significant role in the modification of the porous
network. The effect of the presence of a thin cement layer with weaker material
properties is studied in this sub-section through simulations 5 to 9. This cement
layer is identified starting from the pore walls that can readily be identified thanks
to the distance field (see Section 6.3.2). The thickness of the layer is applied as an
offset to the implicit description of the solid phase (Sonon et al., 2012), so as to
reach 10% of the volume fraction of the solid skeleton. This value is purely arbitrary
and its purpose is mainly to determine the impact of the presence of this type of
heterogeneities on the macroscopic mechanical behaviour of the material and its
effect on the transfer properties. The signed distance field generated provides the
Euclidean distance to the nearest internal surface of the centroids of the tetrahedra
of the mesh. An offset representing the thickness of the cement layer gradually
evolves, gradually surrounding the tetrahedra starting from the internal surfaces
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Figure 6.18: Evolution of regions in which the yield is reached (in red even with very
limited plastic strains, distributions of plastic strains are plotted in Figure 6.19) of the
solid skeleton for simulation 4 at three levels of confining pressure : 30 MPa, 60 MPa, 90
MPa.



140 6.4. Applications

Figure 6.19: (Left) Equivalent plastic strain (PEEQ) and (Right) Elements with a
PEEQ equal or higher than 10% of deformation for simulation 4 at three levels of confining
pressure : 30 MPa, 60 MPa, 90 MPa.
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of the pores until the desired volume fraction is reached as shown in Figure 6.20.
The value of the corresponding thickness obtained is approximately 8 microns.
Experimental measurements are obviously necessary to obtain more information on
the precise composition of the different constituents of a Vosges sandstone.

(a) (b)

Figure 6.20: (a) 3D representation of Vosges sandstone subset with the cement layer in
dark grey and (b) Extracted cement layer from the whole 3D geometry with a thickness
of 8 microns

To investigate the influence of the Mohr Coulomb parameters on the mechanical
and hydraulic behaviour of the subset, simulations 5 to 9 progressively vary the
plastic parameters in the cement layer one by one. Except for simulation 9, a
classical mixing law is used to determine the Young modulus of the cement in order
to keep the same global Young modulus of the sandstone as the first 4 simulations
(i.e. Eskel = 20 GPa). By imposing a value of 1 GPa for the cement, a Young
modulus of the grains of 22.11 GPa yields a macroscopic Young modulus of 20
GPa. From simulation 5, the overall mechanical behaviour is slightly weaker in
the elastic phase as a consequence of the Young’s modulus of the cement being
20 times lower (see Figure 6.14). This becomes more pronounced as soon as the
plastification is initiated. Between simulations 4 and 8, the plastic properties of
the grains are kept similar. The cohesion of the cement is 18 times smaller while
the angle of friction is lower than in the grains by 15°. The addition of a thin
layer of cement with the above-mentioned properties reduces the permeability by
almost a factor of 2: for a confining pressure of 80 MPa the permeability decreases
from 33% to 77% of its initial value. Between simulations 7 and 9, the increase
in Young modulus of grains by a factor 2 and a slight increase in cohesion for
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stability reasons will have the effect of limiting the decrease in permeability going
respectively from 50% to 30% of its initial value. Simulation 9, with a higher
stress-strain curve than the elastic simulation due to a higher grain modulus, will
lead to a much more significant decrease in permeability and porosity due to the
local plastifications induced during deformation.

The concavity transition of curves 7 and 8 (see Figure 6.15(a)) indicates that some
critical paths are most probably completely occluded. The significant respective
decreases in porosity (see Figure 6.15(b)) can potentially indicate that, due to the
lack of consideration of contact in the mechanical simulations, grain interpenetration
is starting to take place. Taking the contact into account, will probably change
the concavity of the porosity decrease curve for the weakest cases, but the local
re-arrangements caused by it might still significantly decrease the porosity and
the permeability.

Comparing to Figures 6.18 and 6.19, considering a weaker cement layer will
increase significantly the intensity of plastic strains as illustrated in Figures 6.21 and
6.22. The plasticity appears noticeably and denser for the same confining pressures
compared to Simulation 4. The right side of Figure 6.21 shows the closed pore
voxels for these same confining pressures obtained by the difference between the
pore space binary voxellisation of the deformed configurations with the undeformed
one. They provide an indication of which regions are the most strongly deformed
as the confining pressure increases. This suggests that at high levels of confinement
specific regions will be preferential sites for more or less important modifications
of the pore network structure. A large deformation of pore chambers will have
a significant impact on the decrease in porosity, while a large deformation of a
critical pore will affect the fluid flow and consequently the permeability as will be
illustrated in the sequel in Fig.6.27). Also, equivalent plastic strains equal to or
larger than 10% observed are significantly more present from 30 MPa, in contrast
to simulation 4 which only considers a homogeneous solid skeleton.

Permeability hysteresis

Given the simulated impact of an isotropic loading on the subset, there is interest
in investigating in which way the emergence of local plastifications will affect the
mechanical response during unloading, and in assessing the permanent nature of the
permeability decrease. This effect is illustrated using the parameters of simulation
7 for three levels of unloading: 30 MPa, 60 MPa, 100 MPa. The macroscopic
mechanical response of the microstructure as shown in Figure 6.23(a) left shows a
strain-hardening phenomenon and the related irreversible plastic deformation of
the material. This irreversible deformation increases with the confining level at the
moment of unloading. The unloading path acts differently from the loading path.
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Figure 6.21: (Left) Evolution of regions in which the yield is reached (in red even with
very limited plastic strains, distributions of plastic strains are plotted in Figure 6.22 of
the solid skeleton and (Right) Voxels closed in relation to the undeformed space of the
3D pore space showing the most reduced pores section induced by the localization of the
plastification for simulation 7 at three levels of confining pressure : 30 MPa, 60 MPa, 90
MPa.
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Figure 6.22: (Left) Equivalent plastic strain (PEEQ) and (Right) Elements with a
PEEQ equal or higher than 10% of deformation for simulation 7 at three levels of confining
pressure : 30 MPa, 60 MPa, 90 MPa.
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(a) (b)

Figure 6.23: (a) Confining pressure as a function of the deformation and (b) Porosity
as a function of the confining pressure of the subset sample with properties number 7 in
Table 6.2 showing the effet of local plastifications on the curves after unloading at 30
MPa, 60 MPa, 100 MPa

Figure 6.23(b) indicates the permanent densification of the subset by a significant
reduction in the void volumes not recovered after unloading.

Figure 6.24, on the other hand, illustrates the irreversible decreases in perme-
ability occurring for the 3 different unloading levels. The initial permeability is
not recovered during unloading. As the plastic behaviour becomes more and more
significant from 30 MPa onwards during loading, the local irreversible deformations
generated during loading have an increasingly significant impact on the morphology
of the porous network.

These irreversible deformations obtained after unloading are illustrated through
a 2D section of the microstructure in Figure 6.26 subjected to a 100 MPa isotropic
loading before being unloaded. Local changes in pore sizes and throats are depicted.
Naturally, these 2D cuts are not related to percolation paths and cannot be
interpreted for 3D percolation. Figure 6.27 illustrates the effect of irreversible
mechanical deformations on the fluid flow obtained upon loading and after the
unloading on the 3D subset. The flow computed by Lattice-Boltzmann simulations is
illustrated on each of the three geometries, corresponding respectively to the subset
before loading, loaded at 100 MPa and unloaded. The fluid flow through the subset is
significantly affected after loading as a result of the reduction of the conducting pores
cross sections as shown in the pore size distributions in Figure 6.25 for Simulation 7.
The slope of the unloading-permeability curve (see Figure 6.24) indicates a relatively
similar return behaviour for the 3 levels of unloading. Indeed, when unloading, only
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(a) (b)

Figure 6.24: (a) Absolute permeability and (b) normalized permeability as a function
of confining pressure of the subset sample with properties number 7 in Table 6.2 showing
the irreversible decrease of both porosity and permeability due to local plastifications
after unloading at 30 MPa, 60 MPa, 100 MPa

the elastic deformation is recovered. It is characterised by a slight expansion of the
compressed pores. This is confirmed by the pore size distribution curves reported
in Figure 6.25 remaining however well below its pre-loading level.

(a) (b)

Figure 6.25: (a) PSD and (b) MIP simulation of the subset sample with properties
number 7 in Table 6.2 showing the effet of local plastifications on the curves after unloading
at 30 MPa, 60 MPa, 100 MPa
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Figure 6.26: 2D cut view in x− y plane at z = 0.75mm of the deformed solid skeleton
of the rock at 3 different states for simulation 7 in Table 6.2: (a) Initial state, (b) Loaded
state at σc = 100 MPa, (c) Unloaded state highlighting the permanent deformations due
to plasticity

6.5 Discussion
The integrated procedure developed in this contribution allows modelling the
alteration of the permeability of a rock microstructure subjected to isotropic
compression by local plastification. The uncoupled solid-fluid interaction by the
combined use of FEM simulations using conformal meshing and LBM simulations
based on the revoxellisation of the deformed mesh gives interesting results. Indeed,
this integrated image-based procedure allows assessing a number of relevant and
interesting assumptions in order to better understand the mechanical phenomena
governing at the fine scale behaviour. This allows unravelling processes that can
significantly affect the fluid flow within the microstructure and alter the macroscopic
permeability based on realistic geometrical representations of the rock pore scale
structure. The decision to develop the model from CT-Scan data was based on the
desire to use realistic microstructures compared to the virtually generated geometries.
The interest of developing virtually generated microstructural geometries resides in
the possibility to parametrize the study from the geometrical part to the simulations,
giving powerful analysis tools. It should be emphasized also that the use of CT-Scan
data requires segmentation and image processing in order to make them suitable
for FEM simulation. All these steps may potentially induce errors due to data
acquisition, to the type of segmentation selected according to the type of geometry,
the application of filters and smoothing, as well as the need to be correctly calibrated.
These precautions are crucial to obtain a geometry as close as possible to the real
morphology without compromising its use in a mechanical simulation. Moreover,
the exploitation of the CT scans is made with a fixed, quite strong, resolution. In
future investigations, a study of the impact of the scans resolution on the stress-
permeability results could be useful in order determine the effects related to lower
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Figure 6.27: 3D representation of deformed configuration (Left) and fluid flow (Right) at
3 different states for simulation 7 in Table 6.2 : Initial state, Loaded state at σc = 100MPa
, Unloaded state. Fluid is injected in the positive z-direction. The intensity of the color
of the fluid flow is related to the flow magnitude while the denser flow is related to the
diameter of throat pores
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resolutions. It is noted that this could be done artificially by interpolating the CT
scans datas on coarser grids. In the present contribution the choice was made to
start the analysis after obtaining the segmented microstructure. This is justified by
the fact that the main objective of the developments presented was to illustrate
the process allowing the investigation of the link between variations of permeability
due to mechanical deformation. A comparative study including experimental tests
and their microtomographies obtained in-situ would make it possible to calibrate
the model on the type of rock chosen and to establish a rigorous comparative grid
between the experimental results and the numerical simulations.

Nevertheless, it is emphasized that the permeability values obtained by the
Lattice-Boltzmann simulations are within the order of magnitude commonly ob-
tained in experimental tests for sandstone, and especially the experimental values
obtained on the Vosges sandstone (Hu et al., 2018). Their slightly higher values can
be explained, among other things, by Gaussian smoothing, which tends to reduce
the roughness of the geometry, making the solid-fluid surface much smoother. This
step is here used in order to obtain a geometry leading to mechanical simulations
performed within a reasonable time. Similarly, the porosity of 16.08% obtained
after segmentation by hysteresis thesholding shows that a percentage of porosity
is not resolved with the scan resolution of 5 microns.

Given the slightly initially anisotropic nature of the sandstone studied, the
confining pressure corresponding to the macroscopic deformation is almost isotropic,
with the deviation from a isotropic stress state becoming more pronounced as the
confining pressure becomes important. However, at about 100 MPa of confining
pressure on average, the difference between the values obtained for each axis does
not exceed 4%, a variation considered negligible. This contribution focuses on the
emergence of local plastifications causing permanent deformations of the porous
network, inducing in turn a modification of the hydraulic conductivity through
the use of a Mohr-Coulomb elasto-plastic law. The effect of these plastifications
start being noticeable in results above 30 MPa, which corresponds to the confining
pressure at which the sandstone behaviour starts being more ductile. Indeed, the
failure mode of Vosges sandstone is typical of a brittle-ductile transition when the
confining pressure varies from 0 to 40 MPa (Hu et al., 2018). The model developed
therefore does not enable yet the simulation of other physical phenomena governing
the modification of the micro-structural geometry for confining levels below 30 MPa.
Indeed, the decrease in permeability are found much more significant through local
plasticity than with a purely elastic law, it only allows the permeability reductions
to be represented by a progressive reduction of the pores sizes. Phenomena such
as sudden pore collapse or pore clogging may have a significant influence on the
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permeability evolution at low confining pressures, which would have the effect of
reversing the concavity of the permeability decrease curves obtained.

Yet, the use of a conforming finite element mesh makes the approach rather
versatile as it allows the use of any other laws readily available in conventional
FEM softwares such as Abaqus. Therefore, future contributions could include
consideration of contact, damage or degradation in order to study their respective
influence on the transfer properties. Of course, the addition of such constitutive
laws, given the level of refinement required to obtain a sufficiently representative
microstructure, is likely to increase considerably, the cost of the simulations and
the complexity of the solution schemes motivating the use of an explicit approach.

The parametric study highlights the influence of the plastic parameters of the fine
scale Mohr-Coulomb constitutive law, cohesion and angle of friction, as well as the
addition of a cement layer on the geometrical representation of the porous network.
The microscopic properties of the material were chosen on the basis of macroscopic
values from (Hu et al., 2018) and may therefore be debatable. However, these are
difficult to identify and require advanced characterisation methods. A decrease in
cohesion will have a more significant effect at low confining pressures, while the
impact of the angle of friction will be more significant at higher confining pressures.
This can be explained by the fact that in a Mohr-Coulomb type criterion, a change
in cohesion will cause the ordinate at the origin of the curve to vary. It would
therefore be necessary to reduce it considerably to obtain significant variations. On
the other hand, a decrease in the angle of friction by a few degrees will have a
more pronounced influence on the plastification at high confining pressure since
this affects the slope of the curve. The addition of a cement layer with weaker
properties shows that intergranular stresses within the rock can have a considerable
influence on permeability by significantly affecting the pore network through pore
closures. The process also shows its ability to represent the irreversible decreases
in permeability after unloading following the monotonic increase of the confining
pressure, thus showing that the evolution of permeability is dependent on the stress
state and is a stress-path dependent process.

6.6 Conclusion
This contribution presented a methodology for the numerical analysis of permeability
alterations in natural rocks under varying stress states, taking explicitly into account
the complexity of the rock microstructure. For this purpose, the modelling, in
order to be geometrically realistic, relies on microtomographic scan data, and was
illustrated here for a Vosges sandstone. The mechanical deformations under isotropic
compression at the scale of the microstructure inducing pore closures by local
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plastification were simulated using FEM simulations using a non-linear elastoplastic
law allowing to take into account the redistribution of local stresses. Geometrical
non linearities were also incorporated to account for pore closures. These simulations
in a conventional FEM software were made possible by the use of a conformal mesh
generator that allows the production of high quality meshes on complex geometries.
The evolution of permeability was evaluated at different confining pressure levels
using the Lattice-Bolzmann method. This unilateral solid-fluid coupling made it
possible the study of the combined influence of pore space morphology and solid
skeleton constitutive law parameters during loading and unloading. The proposed
methodology is designed to be flexible thanks to the interfacing with ’classical’
discretization approaches and a modular implementation plan. Future contributions
are envisaged to better calibrate the model on experimental results in order to better
understand the significant impact of irreversible permeability reductions by local
plastification at high confining pressure levels. The integrated approach also makes
it possible to test other microstructural features such as the effect on permeability
of different initial pore size distributions. Similarly, as the sandstone composition is
not homogeneous, it would be interesting to investigate in more detail the impact on
permeability of an evolving distribution of the cement properties along the thickness
of the layer or with a non-homogeneous distribution through the rock sample.
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7.1 Conclusion
The objective of the thesis was to develop an integrated approach to model
permeability alterations in natural rocks subjected to stress state variations by
using a realistic image based representation of the microstructural morphology.
The idea was to (i) explore the links between the properties of the porous network
and the macroscopic transfer properties of the porous material considered, and (ii)
incorporate modifications of the porous network induced by a deformation of the
rock microstructure resulting from a variation in the state of stress.

For this purpose, an integrated and automated approach was developed to provide
a robust tool allowing testing a series of assumptions on the fine scale behaviour
linking the impact of the deformability of the solid skeleton of rock microstructures
on the macroscopic permeability. The construction of this integrated approach
is the result of ingredients put in place through the choices and developments of
methods necessary to propose solutions to the identified research questions:

• The realistic description of the microstructural geometry was based on µCT
scans of a Vosges sandstone provided by the University of Lille (Hu et al.,
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2018). These images allow the analysis of data from a specific class of natural
rock.

• Image processing tools were exploited in order to make the microstructural
geometry of the Vosges sandstone usable in FEM simulations, requiring a
high quality mesh at optimized affordable computational cost.

• The development of a robust conformal and periodic mesh generator for
complex heterogeneous geometries obtained from virtually generated geome-
tries or derived from CT-scans, based on implicit geometrical descriptions.
The resulting optimized discretization makes it possible to conduct FEM
simulations in conventional softwares that include the constitutive laws
required to simulate the mechanical behaviour of rocks.

• An assessment of advanced discretization methods based on conforming
meshes (FEM) and non conforming meshes (EFEM), able to handle complex
microstructural geometries, has been set up to highlight the complementarity
of the tools in the analysis of the mechanical behaviour of rocks.

• An interface with a FEM approach via the ABAQUS simulation software
(Simulia, 2014) was set up, enabling to simulate the geometrical and material
non-linear mechanical behaviour of rocks from an optimized conforming mesh.

• The efficient evaluation of the altered macroscopic permeability was obtained
from simulated fluid flows within the porous network of the deformed mi-
crostructure at different levels of confining pressures by revoxellisation via
Lattice-Boltzmann simulations.

The set of solutions presented above to address the research questions defined in
this thesis has been presented through three distinct contributions in the framework
of chapters 4, 5 and 6.
The contribution of this work to the state of the art can therefore be summarized
along the identified research questions.

An integrated approach for the conformal discretization of
complex inclusion-based microstructures
This contribution presented a new conforming mesh generation methodology for
2D and 3D periodic (or not) complex heterogeneous RVEs. The implementation is
adapted and optimized for the RVEs generatorion tools developed by (Sonon et al.,
2012) in order to propose an integrated approach. However, as demonstrated in
this thesis, a natural extension can be built for general implicit geometries obtained
from other geometry generation methods or from experimental techniques such as
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CT scans. The newly developed approach is an iterative Delaunay mesh generator
based on an extended Persson-Strang truss analogy optimization process. Such
an approach, based on signed distance fields, carries the advantage that the level
set information used during the generation of the geometry of the microstructure
by (Sonon et al., 2012) can seamlessly be used in the subsequent discretization
procedure.The meshing process is hierarchical and aims at generating a triangulation,
optimizing and constraining progressively interfaces, boundary faces and the volume.
It offers a specific control on the inherent specificities of each part and leads to
the generation of high quality FEM meshes. On the internal surfaces, nodes are
prevented from moving outside the interfaces by systematically constraining their
normal movement acting like boundary reactions, while tension/compression forces
act in the bars to reach the desired lengths defined by a size function. The latter
allows optimizing the node distribution as a function of geometrical features such
as curvature, nearness and narrowness between inclusions, or between pore walls.
The distorsion of the elements is reduced by using a gradient limiting factor to
better control the progressive spatial changes of elements sizes. Periodicity can be
ensured by meshing independently non opposite master RVE faces before copying,
translating and merging them to form the periodic enclosing box while conformity
is ensured by using the Constrained Delaunay Tetrahedralization. The methodology
is intended to be general and has been used successfully in various applications
such as masonry (Massart et al., 2018, 2019) , woven composites (Wintiba et al.,
2017, 2020) and metal foams (Ghazi et al., 2019; Kilingar et al., 2019).

Comparison of advanced discretization techniques for image-
based modelling of heterogeneous porous rocks
This contribution presented the assessment of computational discretization strategies
allowing to conduct automated simulations based on raw CT scan data for porous
rocks with complex pore space morphologies. Both methods rely on pore and
solid phase geometrical descriptions based on implicit functions and distance fields.
Such a description can be obtained by level set-based segmentation techniques
that were used here. Based on such implicitly described heterogeneous geometries,
two discretization schemes were outlined. The first one makes use of the implicit
description of the geometry to produce a conforming finite element discretization of
the solid and pore phases. Based on the geometrical information, it allows generating
selectively refined tetrahedral meshes to capture the complex geometry of the porous
network and the corresponding solid boundaries. Complementarily, a second strategy
based on a kinematic enrichment by incompatible modes is used to account for
material boundaries based on a non-conforming mesh with uniform element sizes.
Mechanical simulations conducted on the CT scan pre-processed geometry show that
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the main feature of the behaviour can be captured by both methods. The conformal
finite element procedure allows capturing the effect of more detailed geometrical
features, while the incompatible mode-based framework is more flexible as it allows
using the same (non conforming) mesh for potentially variable geometries. It is
again emphasized that the simulations remain elastic in this contribution, and that
stress redistributions have to be expected as from the first plastification.

Image based modelling of stress induced permeability alter-
ations in sandstones

This contribution presented an image-based modelling methodology for the numerical
analysis of permeability alterations in natural rocks under varying stress states,
taking explicitly into account the complexity of the rock microstructure. The
capacity of the approach is illustrated on a subset of the microCT scans of a Vosges
sandstone. The mechanical deformations under isotropic compression at the scale
of the microstructure inducing pore closures by local plastifications were simulated
using FEM simulations with a non-linear elastoplastic law allowing to take into
account the redistribution of local stresses. These simulations in conventional FEM
software were made possible by the use of a conformal mesh generator that allows
the production of high quality meshes on complex geometries. The evolution of
permeability was evaluated at different confining pressure levels using the Lattice-
Bolzmann method. This uncoupled solid-fluid interaction made it possible the
study of the combined influence on the permeability, porosity and the pores size
distribution of the pore space morphology and the solid skeleton constitutive law
parameters during loading and unloading conditions.
The numerical results have shown that:

• The permeability of the unloaded Vosges sandstone is of the same order of
magnitude as the experimental value, which demonstrates the relevance of
the image processing and Lattice-Boltzmann methods.

• A significant modification of the permeability under isotropic compression
(with a similar order of magnitude as observed experimentally on other rock
materials), as well as irreversible changes in the permeability under isotropic
loading-unloading cycles, can be obtained only when elastoplastic constitutive
laws allowing local redistribution of stresses are considered, or when the
heterogeneity of the solid phase (i.e. presence of an arbitrary cement layer
with weaker mechanical properties around solid grains) is introduced.
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This latter result highlights that local plasticity around critical pores can be
a consistent assumption to explain the modification of the permeability observed
experimentally under varying stress state. In addition, the proposed methodology
is designed to be flexible thanks to the interfacing with ’classical’ discretization
approaches and can be easily readapted to other contexts given the block approach.

7.2 Perspectives
As a result of the developments made and the results obtained, some relevant
insights could be addressed in future contributions:

• Improving the efficiency of the mesh generator by implementing the following
functionalities:

– A parallelization process in order to speed up computation times, espe-
cially for inclusion-based geometries where each inclusion can be processed
independently.

– The integration of meshing improvement tools by local operations such as
Stellar (Klingner and Shewchuk, 2008) or the new developments proposed
by (Marot et al., 2019) allowing generating the best tetrahedralization
through an efficient parallelized serial implementation of the incremental
Delaunay insertion algorithm.

• The development of a hybrid semi-conformal approach, proposed as ’oct-
EFEM’, exploiting the benefits of the conformal and non-conformal approaches
discussed in Chapter 5. Indeed, some local geometrical information of the
microstructure could be used to produce tailored non conforming meshes with
selective refinement by octree meshing at a marginal pre-processing cost, thus
improving the accuracy of the EFEM simulations, while reducing the cost
involved in the generation of a conformal mesh.

• The implementation of an experimental study with in-situ microtomography
performed on a sandstone under compression in order to allow a calibration of
the model as early as in the segmentation phase. Based on this experimental
study, it would potentially be interesting to use Digital Image Correlation
(DIC) to identify the levels of the macroscopic strains to apply on the CT scan
subset used in FEM simulations to improve the definition of the boundary
conditions applied to this subset. This would provide a more relevant basis
for comparison between experimental and numerical results.
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• The use of the integrated methodology on virtually generated geometries via
excursion sets (Roubin et al., 2015) or DN-RSA (Sonon et al., 2012) for which
there is already a handle in view of comparison with the Vosges sandstone
model obtained from µCT scans.

• The integrated and automated approach developed enables to test a series
of hypotheses linking the deformability of the microstructure to the altered
permeabilities that would be worth investigating in the short term:

– The effect on permeability of a variation in the volume fraction of cement
(non)homogeneously distributed along the surface under a variation in
isotropic or deviatoric stress states (graded properties of the cement
based on the distance to the pore walls).

– The effect on the permeability of considering the evolving properties of
the cement along the thickness of the layer.

– The effect on permeability by the addition of contact, a damage law or
clogging pore simulation, especially at the beginning of loading during
the fragile-ductile transition.

– The effect on permeability through the addition of cracking through
the use of oct-EFEM, more adapted to simulations involving strong
discontinuities with the potential of selective refinement in areas of
interest.

– The effect on permeability of a modification of the initial pore size
distributions by targeted pore closures

Finally, the long-term goal of the tools developed in the scope of this thesis
is to provide ingredients that would contribute in the future to engineering
problems in the build-up of closed form stress-permeability relationships or
in nested multiscale approaches to be used at the regional scale, such as FE2

methods (Feyel, 2003).
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