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Abstract—This paper extends the applicability of a balancing-
based reduction method to power system models that are struc-
tured into a study area, a buffer area, and a linear parameter-
varying (LPV) external area. The latter is represented by a
network of linear time-invariant (LTI) and LPV models and
forms the target of the reduction phase. Every LPV model is built
to depict a region of the power system with a variable number of
active generators. The various LTI and LPV models are simplified
while accounting for the presence of their respective neighbors.
The adequacy of the reduction process is verified on the IEEE
118-bus system model by comparing the dynamic behavior of the
reduced model and the full nonlinear model for different sets of
disconnected generators.

Index Terms—balanced truncation, clusters, LPV model,
power system stability, structured model reduction

I. INTRODUCTION

Modern power systems have experienced an increase in the
number of interconnection lines and renewable energy sources
over the past years. As a result, large quantities of electricity
can be delivered over long distances to many customers. Yet,
at the same time, there is no denying that this transition brings
new challenges in terms of planning, operation, and control. In
particular, running dynamic simulations on an accurate power
system model tends to be computationally very demanding for
the purpose of short-term stability studies.

Previous research on model reduction has come up with
some solutions to the described problem [1]–[4], but these fail
at providing enough flexibility to incorporate later changes in
the power system. The reduced models are only valid around
the operating conditions they were derived from and cannot
accommodate to a shift in energy production and consumption.
This major restriction implies that the reduction algorithm
needs to be relaunched after any noticeable change, which
may negate the time saved during the simulations.

With a view of addressing this shortcoming, a parallel
work was performed to represent a region within a power
system by a linear parameter-varying (LPV) model [5]. The
unique scheduling parameter is arranged to reflect a change
in the number of active generators inside the related region.
Another work focuses on the structured model reduction of
coherent clusters in a power system [6]. The mathematical
model of each cluster is linearized about an equilibrium point

and reduced in a way that preserves the global behavior
of the power system at best. In this paper, the objective
is to extend the applicability of the same structured model
reduction algorithm to a set of LPV models belonging to the
external area of a power system. The expected outcome is a
reduced model that can be tuned according to different loading
conditions of the power system.

The rest of this paper is organized as follows. Section II
introduces the problem to be solved and shows the general
form given to the LPV models. Section III recalls the working
principle of the structured model reduction algorithm and
discusses the extension to LPV models. Section IV analyzes
the performance of the reduction approach on the IEEE 118-
bus system model in which the different regions of the external
area have been replaced by LTI or LPV models.

II. PROBLEM STATEMENT

Consider a power system model that is composed of a
nonlinear study area, a nonlinear buffer area, and a linear
external area (see Fig. 1). The buffer and the external areas
are furthermore partitioned into coherent clusters, i.e., several
groups of busbars that are oscillating in phase upon occurrence
of any disturbance initiated within the study area. The inter-
actions between clusters and with the study area are governed
by a series of tie-lines connected to some busbars [3], [6]. For
a given cluster, the voltage magnitudes V out and phase angles
θout of the busbars located at the internal end of the tie-lines
form the set of outputs y. Instead, the voltage magnitudes V in

and phase angles θin of the busbars at the external end of the
tie-lines represent the set of inputs u (see example in Fig. 1).

The general objective is to simplify the cluster models of
the linear external area while restricting the impact of the
simplification on the dynamic behavior of the study area.
Unlike in [6], only some of the clusters are depicted by
linear time-invariant (LTI) models, whereas the others are
represented by LPV models of the following form

∆ẋ = A(α)∆x+B(α)∆u

∆y = C(α)∆x+D(α)∆u
(1)
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Fig. 1. Illustration of a network partitioning into a study area, a buffer area,
and an external area. The clusters of the external area (in blue) are either
turned into LTI or LPV models. The input and output signals depicted in the
figure hold for the cluster with the dotted pattern.

where ∆x ∈ IRn is the vector of n state variables, ∆u ∈ IRm

is the vector of m inputs, and ∆y ∈ IRp is the vector of
p outputs. The matrices A(α) ∈ IRn×n, B(α) ∈ IRn×m,
C(α) ∈ IRp×n, and D(α) ∈ IRp×m characterize the LPV
state-space representation of a cluster and present the follow-
ing parametric dependence

A(α) = A0 +

np∑
j=1

(1− α)
j
Aj C(α) = C0

B(α) = B0 +

np∑
j=1

(1− α)
j
Bj D(α) = D0

(2)

The scheduling parameter α reflects a change in the number
of active generators within a cluster and is tuned by computing
the ratio of the total kinetic energy in the new situation to the
total kinetic energy in the reference case [5]

α =

∑
G∈Gnew

HGSG∑
G∈Gref

HGSG
(3)

where Gref is the group of active generators in the reference
case, Gnew is the group of active generators in the new
situation, HG is the inertia constant, and SG is the nominal
apparent power of the Gth generator.

To simplify a LPV model (1) with an affine parametric
dependence (2), an efficient strategy is to find a pair of basis
matrices V and W such that [7], [8]

Â(α) = W TA0V +

np∑
j=1

(1− α)
j
W TAjV

B̂(α) = W TB0 +

np∑
j=1

(1− α)
j
W TBj

(4)

All the reduced-order matrices W TAjV and W TBj can
then be precomputed in the offline phase while the resulting

matrices Â(α) and B̂(α) keep a parametric dependence. The
general objective hence amounts to finding appropriate basis
matrices V and W for every LTI and LPV models within the
external area.

III. COHERENT CLUSTERING BALANCED TRUNCATION

A power system model whose buffer and external areas
are partitioned into coherent clusters is compatible with the
coherent clustering balanced truncation (CCBT) reduction
method originally developed in [6] for LTI cluster models.
In [6], this method replaces every coherent cluster of the
external area by a reduced-order LTI equivalent while taking
into consideration the presence of their respective neighbors.

Concretely, suppose that a relative level of proximity is
assigned to the different clusters (see Fig. 2). Each cluster is
recognized as the central cluster throughout its own reduction
stage. The adjacent clusters sharing a connection with the
central cluster form the first layer of clusters L1. In turn, the
clusters connected to the cluster in L1 compose the second
layer of clusters L2, and so on. The CCBT method simplifies
a central cluster by building a custom linear equivalent system
with the clusters in L1 and using it as frequency weight during
the reduction phase.

layer L2

layer L1

centralGc(s)

. . .GL1
1 (s) GL1

k1 (s)

GL2
1 (s) GL2

2 (s) . . . GL2
k2 (s)

Fig. 2. Example of an arrangement of clusters into multiple layers. The
clusters are either part of the external area or of the buffer area.

A. Constructing an Equivalent System for Each Cluster

Assuming that k1 clusters belong to the first layer L1
associated with a given cluster, a linear state-space realization
of the small interconnected system, comprising the central
cluster and the layer L1, is represented as [6]

∆ẋe = Ae∆xe +Be
θ∆θ

e

∆ye = Ce∆xe +De
θ∆θ

e (5)

where ∆xe ∈ IRne

is the vector of ne state variables, ∆ye ∈
IRpe is the vector of pe outputs, ∆θe ∈ IRk2 is the vector of
k2 inputs.

The vector of state variables ∆xe are arranged as

∆xe =
[
(∆xc)

T (∆xL11 )T . . . (∆xL1k1 )T
]T

where ∆xc ∈ IRnc corresponds to the central cluster, ∆xL1j ∈
IRnL1

j corresponds to the jth cluster inside the layer L1, and
nc +

∑k1
j=1 n

L1
j = ne. The n1↔2 tie-lines between the k1
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clusters of the first layer L1 and the k2 clusters of the second
layer L2 determine the vector of outputs ∆ye of the small
interconnected system

∆ye =
[
(∆θout1↔2)T (∆V out

1↔2)T
]T

where ∆θout1↔2 ∈ IRnout and ∆V out
1↔2 ∈ IRnout are associated

with nout busbars of the first layer L1. The vector of inputs
∆θe withholds one entry per cluster of the second layer L2

∆θe =
[
∆θin1 ∆θin2 . . . ∆θink2

]T
where ∆θinj ∈ IR is a substitute for all the voltage phase
angles belonging to the jth cluster of the second layer L2.

B. Reducing the Central Cluster

The interconnected system balanced truncation (ISBT)
method [3], [6], [9], [10] is applied for extracting the relevant
modes of the central cluster inside the larger system (5). In this
context, the first step consists in computing the controllability
P e and observability Qe Gramians, which are the solutions
to the following Lyapunov equations

AeP e + P e(Ae)T +Be
θ(B

e
θ)
T = 0

(Ae)TQe +QeAe + (Ce)TCe = 0
(6)

Each row/column in P e and Qe is related to a state variable
of ∆xe, and the Gramians can be partitioned as

P e =

[
Pc · · ·
...

. . .

]
, Qe =

[
Qc · · ·

...
. . .

]
(7)

where Pc and Qc are nc × nc submatrices.
The balancing algorithm takes the upper left sub-Gramians

(Pc,Qc) and finds a coordinate transformation ∆xc =
S∆x̄c that makes the sub-Gramians balanced, namely P̄c =
S−1PcS

−T and Q̄c = STQcS fulfill

P̄c = Q̄c = Σc = diag {σc1, . . . , σcn}
σc1 ≥ · · · ≥ σcn

σcj =
√
λj(PcQc) =

√
λj(P̄cQ̄c).

(8)

where λj(A) denotes the jth eigenvalue of the matrix A. σcj is
a Hankel singular value of the studied cluster c and indicates
how controllable and observable the jth variable of ∆x̄c is
with respect to the inputs ∆θe and the outputs ∆ye of the
small interconnected system.

The order of the central cluster is reduced by discarding the
state variables associated with low Hankel singular values.

C. Extending the CCBT Method to LPV Models

The LPV models are built around the expected operating
conditions (OC) of the power system, which are retrieved by
setting α = 1. As can be seen from (3), this parameter value
corresponds to the initial configuration where all the generators
are maintained active. In this case, the cluster models (2)

amount to LTI state-space representations characterized by
their respective matrices A0, B0, C0, D0.

To ensure a high quality for the reduced LPV models around
the expected OC, the CCBT method is applied to the power
system configuration where all scheduling parameters α =
1. The main idea is to collect the truncated matrices S and
S−T and use them respectively as the requested basis matrices
V and W for the reduction of the LPV models in (4). The
reduced LPV models at α = 1 would then coincide with the
reduced LTI models at the expected OC as

Â(1) = W TA0V Ĉ(1) = C0V

B̂(1) = W TB0 D̂(1) = D0

This reduction approach may not be as robust as when the
basis matrices V and W are constructed after varying the
vector of scheduling parameters α = [α1 α2 . . . αd]

T and
sampling information within a domain Ω ⊂ IRd, where αj
is the scheduling parameter of the jth LPV model and d is
the total number of LPV models inside the power system.
Nevertheless, it is computationally less costly and becomes
a viable solution when the subspaces spanned by the local
basis matrices V

∣∣
α

and W
∣∣
α

do not deviate significantly
from one realization of α to another. This last point is verified
in Section IV by showing that the angular deviation between
corresponding basis matrices remains low in all circumstances.

IV. RESULTS

In this section, the performance of the CCBT reduction
method is assessed on the IEEE 118-bus system model whose
external area is replaced by a network of LTI and LPV models
for the model reduction stage. The focus is on comparing the
dynamic behavior of the study area in the reduced model to
the one in the full nonlinear model. All the tests are conducted
on PSAT, which is a Matlab toolbox for electric power system
analysis and simulation.

A. IEEE 118-Bus System Model

Each generator, with P > 0, is represented by a 6th-
order synchronous machine model, equipped with a IEEE
type 1 excitation system and a type 1 turbine-governor. The
generators, with P ≤ 0, and the loads are all modeled as
constant impedances.

Given an arbitrary study area, the rest of the power system
has been divided into 8 coherent clusters. 2 of them (clusters
1 and 2) form the buffer area and the remaining ones (clusters
3 to 8) constitute the external area. Among the clusters of
the external area, clusters 3, 4, 7, and 8 are represented by
LPV models, whereas clusters 5 and 6 are just turned into
LTI models, like in [5]. The degree np of the LPV models in
the form of (2) are all set to 5. The outline of the different
clusters are highlighted on Fig. 3.

B. Angles between Subspaces

A total of 2205 network configurations are considered to
verify the possibility of reducing all clusters of the external
area on the basis of only one network configuration. Each of
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Fig. 3. IEEE 118-bus system. The blank cluster is the study area, the gray clusters form the buffer area, and the colored clusters constitute the external area.

them is obtained by tuning the α-value of the 4 LPV models
and physically stems from a new situation with less active
generators in the related clusters. From the definition in (3),
the various α values are systematically confined within the
range ]0, 1] when excluding the situations leading to one or
multiple clusters with no active generators.

Table I shows for every cluster the initial number of state
variables n, the number of state variables n̂ after reduction,
the mean µ(θ) and the maximum max(θ) values of the largest
principle angle θ [11], [12] between a local basis matrix
V
∣∣
α

and the reference one V0 . It can be observed that the
angles between subspaces remain very small, irrespective of
the network configuration under consideration. These numbers
support the proposal of restricting the use of CCBT to a single
realization of the vector α, namely αj = 1, ∀j ∈ {1, . . . , d}.

TABLE I

Cluster # n n̂ µ(θ) (◦) max(θ) (◦)

3 52 10 2.22× 10−6 3.08× 10−6

4 39 9 2.06× 10−6 3.19× 10−6

5 13 5 1.62× 10−6 2.41× 10−6

6 13 5 1.68× 10−6 2.26× 10−6

7 26 4 1.79× 10−6 2.09× 10−6

8 39 7 2.06× 10−6 3.08× 10−6

C. Time Domain Simulation
After simplifying the clusters of the external area using

CCBT, the quality of the resulting power system model is
examined through time domain simulations. An electrical fault
is applied inside the study area of both the reduced LPV model
(LPV) and the full nonlinear model (nonlinear), and the focus
is on comparing the time evolution of the same area.

To demonstrate the new flexibility offered by the LPV
model, its scheduling parameters are tuned according to (3)
to match two new situations with less active generators as
shown in Table II, where the generators are recognized by the
busbars they are connected to. The studied electrical fault is
chosen to be a self-clearing short-circuit of 300 ms occurring
at busbar 2, and the observed variable is the rotor speed of the
generator connected to busbar 10.

TABLE II
CONFIGURATION OF THE CLUSTERS - SITUATIONS #1 AND #2

Cluster # Initial GEN #1 α1 #2 α2

3 46, 49, 54, 59 49 0.340 49 0.340

4 61, 65, 66 65 0.369 65 0.369

7 87, 89 89 0.979 89 0.979

8 100, 103, 111 100 0.499 100, 103, 111 1

In Fig. 4, it can be seen that the two models are overall
in good agreement over the entire simulation period for both
situations #1 and #2. With proper calibration, the LPV model is
thus able to reproduce an adequate transient behavior, similar
to the one obtained after disconnecting a set of generators.

Besides a series of time domain simulations, an eigenvalue
analysis is also carried out on both types of model as a second
confirmation test. 3 of the least damped oscillation modes are
indicated in Table III. While the modes remain slightly differ-
ent between the LPV and the nonlinear models, for the two
considered situations, it can be noticed how mode 2 emerges
simultaneously in both models under situation #2 only. The
ability of the LPV model to capture comparable oscillation
modes after calibration confirms its suitability for performing
stability studies under different operating conditions.
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Fig. 4. Time evolution of a rotor speed signal belonging to the study area - Situation #1 (left) and Situation #2 (right).

TABLE III
EIGENVALUES OF THE LPV AND THE NONLINEAR MODELS1- SITUATIONS #1 AND #2

Mode 1 Mode 2 Mode 3
λ1 f1 (Hz) ζ1 (%) λ2 f2 (Hz) ζ2 (%) λ3 f3 (Hz) ζ3 (%)

LPV #1 −0.15± j5.40 0.86 2.76 - - - −0.26± j8.41 1.34 3.11

nonlinear #1 −0.11± j5.50 0.87 2.00 - - - −0.27± j8.06 1.28 3.38

LPV #2 −0.15± j5.40 0.86 2.76 −0.63± j6.30 1.00 9.92 −0.26± j8.41 1.34 3.11

nonlinear #2 −0.13± j5.27 0.84 2.40 −0.93± j6.60 1.05 13.92 −0.28± j8.06 1.28 3.45

V. CONCLUSION

The possibility of applying the coherent clustering balanced
truncation (CCBT) reduction method on an external area,
which is composed of a network of linear time-invariant (LTI)
and linear parameter-varying (LPV) models, is studied in this
paper. The main concern is about the construction of the
different basis matrices used for the projection-based reduction
phase. In this context, a robust solution would require to
sample information over the entire domain of variation of the
scheduling parameters. However, the problem is that this strat-
egy is computationally costly for large power system models.
To limit the number of operations, the proposed alternative
is to restrict the sampling procedure to one specific network
configuration, namely the reference case around which the
LPV models are built. The effectiveness of this strategy is
successfully illustrated on the IEEE 118-bus system model by
considering different sets of disconnected generators.
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