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Downlink exposure to electromagnetic fields (EMF) in urban environments is studied using the
stochastic geometry (SG) framework. A 2D Poisson point process (PPP) is assumed for the base
station (BS) distribution and the height of the base stations is taken into account in the propagation
model. From simple assumptions, mathematical expressions of statistics of exposure are derived
from the model. The error made by taking a reduced number of base stations, instead of the whole
set of base stations, is quantified. A sensitivity analysis is proposed in order to evaluate the impact
of the model parameters on the statistics of exposure. The method is then applied to two Brussels
municipalities, in Belgium, for the UMTS 2100 and LTE 2600 frequency bands. It is shown that the
proposed model fits experimental values, paving the way to a new methodology to assess general
public exposure to electromagnetic fields.

cellular networks, exposure, Poisson point process, stochastic geometry

1. INTRODUCTION

Electromagnetic field (EMF) exposure due to cellular net-
works is classically evaluated either through in-situ mea-
surements [1], drive-tests or sensor networks [2] [3], or
by using ray-tracing softwares [4]. Numerically, this eval-
uation is however difficult to obtain deterministically in
a reasonable time. It is also subject to many uncertain-
ties (due to the number of base stations in operation, the
environment geometry, the presence of people and vehi-
cles causing shadowing...). A deterministic computation
of EMF exposure at every point of the area under study
is not always required. Instead, statistical values are of-
ten looked for, for instance to estimate the probability of
exceeding some exposure thresholds, or to estimate the
mean level of exposure. This paper aims to lay the founda-
tions of a statistical study of exposure to electromagnetic
fields due to cellular networks, using stochastic geometry
(SG) and a simple parametric propagation model.

Using SG in wireless communications is now an old
concept [5]. It has been applied in many fields, ranging
from automotive radar [6], to localization [7], including
probability of coverage and spectral efficiency [8], cumu-
lated interference power [9] and outage probability [10]
but to our knowledge, only one recent article exploits it
for exposure assessment [11].

EMF exposure is usually written in terms of incident
EMF power density S (W/m2) [12] [13]. Power density
may then be translated into electric field strength (V/m)
to define exposure limits:

E =
√

Z0 S (E1)

where Z0 =
√

µ0/ε0 = 120π ≈ 377Ω is the impedance of
free-space.

In the first part of this paper, mathematical expressions
are derived to evaluate the statistics and cumulative dis-
tribution function (CDF) of the power density emitted by



a random pattern of cellular BSs. In the second part, we fit
and validate the model using experimental data obtained
in two municipalities of the Brussels-Capital Region, in
Belgium in the UMTS 2100 and the LTE 2600 frequency
bands.

2. SG MODEL OF EXPOSURE

A. Exposure model

In the SG approach, the BS spatial distribution is consid-
ered as a random point pattern with constant density λ
in a given 2D region W , referred to as the window. Ac-
cording to [14] considering together the BSs of all network
providers, BS patterns in European cities are well modeled
using homogeneous 2D-Poisson Point Processes Φ ∈ R2

(PPP): for anyW , the number of points falling inW has a
Poisson distribution with mean λ · τ2(W),where τ2(W) is
the area ofW . It implies that measures do not depend on
the location in space where the computation is performed.

For any BS of the PPP, the received power density S
can be deduced from a path loss model

S(r) =
A

(r2 + h2)
α/2

, (E2)

where S(r) is the power density due to the BS located
at horizontal distance r, h the height of the BS, α is the
path loss exponent (typically ranging from 2 to 5) and A a
multiplicative random variable modeling channel fading
and the effective isotropic radiated powers (EIRP) of the
BS. A can be written A = p · B with p = EIRP

4π and B is any
random variable modeling fading. It is worth noting that,
in our approach, the BS network is homogenized in the
sense that BSs share common features in terms of height
and EIRP.

For all BSs of all network providers present in the PPP,
the power densities can be summed up, assuming that
all signals are uncorrelated, to get SWN , the total EMF
power density and hence the total exposure for the whole
network of BSs (WN)

SWN = ∑
i|BSi∈Φ

S(ri) = ∑
i|BSi∈Φ

A(
h2 + r2

i
)α/2

. (E3)

B. Exposure due to the nthth nearest BS

We start by studying separately the contribution of each
BS of the PPP. Let Sn = Sn(r) be the power density due to
the nth nearest BS to the calculation point. The probability
density function (PDF) of the distance to the nth nearest
BS is given by the Erlang distribution of order n [15]

f (rn) = 2
(λπ)n

(n− 1)!
r2n−1

n e−λπr2
n . (E4)

Using this PDF with n = 1, the mean value of the power
density due to the nearest BS can be obtained as

E [S1] = E

[
A(

r2
1 + h2

)α/2

]

= A ·E
[

1(
r2

1 + h2
)α/2

]

= 2πλ A
∫ ∞

0

1

(r2 + h2)
α/2

r e−λπr2
dr

= (λπ)
α/2 A eλπh2

Γ
(

1− α

2
, λπh2

)
,

(E5)

with A = E [A]. The upper incomplete Gamma function
Γ(z, t) is defined as

Γ(z, t) =
∫ ∞

t
uz−1 e−u du, <(z) > 0. (E6)

When α > 2, the last expression of (E5) is not properly
defined since the first argument of the incomplete Gamma
function, 1− α

2 , is negative. In this case, the Gauss con-
tinued fraction can nonetheless be used for numerical
calculations [16]:

Γ(z, t) =
tze−t

t +
1− z

1 +
1

t +
2− z

1 +
2

t +
3− z

1 +
. . .

(E7)

In the following, Γ̃i will be used as a simplified notation
for Γ

(
i, λπh2). The expected value for the nth nearest BS

was calculated using (E4):

E [Sn] = A
2 (λπ)n

(n− 1)!

∫ ∞

0

1

(r2 + h2)
α/2

r2 (n−1) e−λπr2
r dr

(a)
= A

(λπ)n (λπ)α/2−1

(n− 1)!
eλπh2

×
∫ ∞

λπh2
t− α/2 e−t

(
t

λπ
− h2

)n−1

dt

(b)
= A

(λπ)n (λπ)α/2−1

(n− 1)!
eλπh2

×
∫ ∞

λπh2
t− α/2 e−t

n−1

∑
l=0

(
n− 1

l

)(
t

λπ

)l (
−h2

)n−1−l
dt

= A (λπ)
α/2 eλπh2

n−1

∑
l=0

(
−λπh2)n−l−1

l! (n− l − 1)!
Γ̃1+l−α/2,

(E8)

where we used (a) the change of variable r2 → t
λπ − h2

and (b) the Binomial theorem. This result can also be
written using E [S1]:

E [Sn] = E [S1] · Ξ[1]
n (E9)
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where

Ξ[1]
n =

n

∑
l=1

(
−λπh2)n−l

(l − 1)! (n− l)!
Γ̃l−α/2

Γ̃1−α/2

, (E10)

using the change of index l + 1 → l. Fig. F1 shows the
ratio (E10) as a function of n. As can be seen from this
figure, for the set of parameters that will be identified
in section 3, the nearest BS provides the main contribu-
tion to exposure but the second BS is also important since
Ξ[1]

2 /Ξ[1]
1 ≈ 23%. From the fifth nearest BS, the contri-

bution becomes negligible since Ξ[1]
n|n>4 is less than 5%.

0 1
-20

-10

0

Fig. F1. Ratio between the mean value of the power
density coming from the nth nearest BS and the mean
value of the power density coming from the nearest BS
as a function of n. λ = 13 BS/km2, α = 2.90, h = 44 m,
EIRP = 68.49 dBm.

Similarly, the kth moment about zero for the field com-
ing from the nth BS is given by

E
[
Sk

n

]
= Ak (λπ)

kα/2 eλπh2
n−1

∑
l=0

(
−λπh2)n−l−1

l! (n− l − 1)!
Γ̃1+l−kα/2,

(E11)
allowing to compute any moment of Sn. Again, this equa-
tion can make E

[
Sk

1

]
appear, generalizing Ξ[k]

n for the
order k:

E
[
Sk

n

]
= E

[
Sk

1

]
· Ξ[k]

n , (E12)

Ξ[k]
n =

n

∑
l=1

(
−λπh2)n−l

(l − 1)! (n− l)!
Γ̃l−kα/2

Γ̃1−kα/2

(E13)

Equation (E11) leads to the variance of the distribution:

V [Sn] = E
[
S2

n

]
− (E [Sn])

2

= (λπ)α eλπh2

(
A2

n−1

∑
l=0

(
−λπh2)n−l−1

l! (n− l − 1)!
Γ̃1+l−α

− eλπh2
A2
(

n−1

∑
l=0

(
−λπh2)n−l−1

l! (n− l − 1)!
Γ̃1+l−α/2

)2 .

(E14)

C. Exposure due to the n nearest BSs
The mean value of the total power density due to the n
nearest BSs, S[n], is straightforward to obtain from (E8):

E
[
S[n]
]
= E

[
n

∑
i=1

Si

]
=

n

∑
i=1
E [Si]

= A (λπ)
α/2 eλπh2

n

∑
i=1

i−1

∑
l=0

(
−λπh2)i−l−1

l! (i− l − 1)!
Γ̃1+l−α/2,

(E15)

where we used the assumption of uncorrelated BSs. The
relative error made by truncating the network to the n
nearest BSs is shown in Fig. F2. By taking only the closest
BS, as often done in exposure studies, an error of 40% is
committed. To have a relative error lower than 10%, it
is necessary to take into account the 14 nearest BSs. The
whole-network reference E [SWN ] will be derived in the
following derivations (E29).

0 1
-15

-10

-5

0

log10(n)

10
lo

g 1
0
E
[S

W
N
]−
E
[S

[n
]]

E
[S

W
N
]

Fig. F2. Relative error between E
[
S[n]

]
(E15) and

E [SWN ] (E29). λ = 13 BS/km2, α = 2.90, h = 44 m,
EIRP = 68.49 dBm.

Similarly, the kth moment about zero of the resulting
power density from the n nearest BSs is given by:

E
[
Sk
[n]

]
= E

( n

∑
i=1

S(ri)

)k

= ∑

k1+k2+...+kn=k

(
k

k1, k2, · · · , kn

)
E
[
Sk1

1 Sk2
2 · · · Skn

n

]

= ∑
|~k|=k

(
k
~k

)
E

[
n

∏
i=1

Ski
i

]
(E16)

using the multinomial theorem [17], where(
n

k1, k2, k3, . . . , km

)
=

(
n
~k

)
=

n!
k1!k2!k3! · · · km!

=
n!

∏m
i=1 ki!

(E17)
is a multinomial coefficient, generalization of the binomial
coefficients. The quantity

E
[
Sm1

1 Sm2
2 Sm3

3 · · · Smn
n
]

(E18)
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appears in (E16). Its calculation is made in appendix A
and leads to

E
[
Sk
[n]

]
= Ak (λπ)kα/2 eλπh2

∑
|~k|=k

(
k
~k

) n−1

∑
p=1

(−1)p−1

 n−1

∏
j=p+1

1

τ
(j)
(p+1)


×
 p

∏
l=1

1

τ
(p)
(l)

 [
Γ̃

τ
(n)
(1)
−
(

λπh2
)τ

(p)
(1) Γ̃

τ
(n)
(p+1)

]
(E19)

where we use the following notations:

τi = 1−mi
α

2
(E20a)

τ
(b)
(a) =

{
∑b

i=a τi if a ≤ b

τ
(b)
(a) = 0 if a > b

(E20b)

Note that the case k = 1 corresponds to (E15). Again,
the variance of the distribution can be deduced from (E19).

D. Whole network
Well-known mathematical results of signal-plus-
interference-to-noise ratio and power coverage studies
[18], [19], [20] can be adopted to study exposure. Still
considering a PPP Φ ∈ R2, the Laplace transform of (E3)
can be calculated similarly to what is done in [21], chapter
1:

LSWN (s) = E
[
e−s SWN

]
= EΦ,A

[
exp

(
−s ∑

i∈Φ

A(
r2

i + h2
)α/2

)]

= EΦ,A

[
∏
i∈Φ

exp

(
−s

A(
r2

i + h2
)α/2

)]

= EΦ

[
∏
i∈Φ
EA

[
exp

(
−s

A(
r2

i + h2
)α/2

)]]
(a)
= exp

(
2πλ

∫ ∞

0
EA

[
exp

(
−s

A

(r2 + h2)
α/2

)
− 1

]
rdr

)
(b)
= exp

(
2πλ

α

∫ ∞

hα
EA

[
exp

(
−s

A
x

)
− 1
]

x2/α−1dx
)

= exp
(

2πλ

α

∫ ∞

hα

(
EA

[
exp

(
−s

A
x

)]
− 1
)

x2/α−1dx
)
(E21)

(a) is the probability generating functional [22] and (b) is
obtained using the change of variable

(
r2 + h2)α/2 → x.

EA

[
exp

(
−s A

x

)]
corresponds to the Laplace transform

of A/x. Equation (E21) can therefore be calculated if the
distribution of A is known.

If A is deterministic, EA

[
exp

(
−s

A
x

)]
=

exp
(
−s

A
x

)
. Therefore

Ldeterm.
SWN

(s) = exp
(

2πλ

α

∫ ∞

hα

(
exp

(
−s

A
x

)
− 1
)

x2/α−1dx
)

= exp
(

πλ h2
[

1−1 F1

(
−2/α; 1− 2/α;

−s A
hα

)])
(E22)

using the relationship [23]∫ ∞

a

(
exp

(
b
z

)
− 1
)

zv−1dz =
1
v

av [1−1 F1 (−v; 1− v; b/a)] .

(E23)
where 1F1(a; b; z) is the Kummer confluent hypergeomet-
ric function. [20] gives an excellent approximation for
(E22), which can be used for numerical calculations:

LSWN (s) ≈


exp

(
πλ h2

∞
∑

j=1

2 (−sA)j

hα j j! (j α− 2)

)
,

∣∣∣∣ s A
hα

∣∣∣∣ ≤ c

exp

(
πλ h2

(
− (s A)

2/α

h2 Γ
(

1− 2
α

)
+ 1

))
,
∣∣∣∣ s A

hα

∣∣∣∣ > c
(E24)

No analytical solution exists for c, the intersection point
of the two parts of (E24). Moreover, several solutions often
exist. For numerical calculations, it is preferable to take
the largest solution in absolute value.

For a Rayleigh fading, we let A = p B where p = EIRP
4π

and B ∼ Exp(1), an exponential random variable with
unit rate, so that E [B] = 1. Starting again from (E21), the
following result holds:

EA

[
exp

(
−s

A
x

)]
=

1
1 + p s

x
(E25)

LRayleigh
SWN

(s) = exp

(
2πλ

α

∫ ∞

hα

(
1

1 + s p
x
− 1

)
x2/α−1dx

)

= exp
(−2πλ

α

∫ ∞

hα

1
(s p)−1 x + 1

x2/α−1dx
)

(a)
= exp

(−2πλ

α
s p h2−α

∫ ∞

0

1
y + s p h−α + 1

(y + 1)2/α−1 dy
)

(b)
= exp

(−2πλ

α− 2
s p h2−α

2 F1

(
1, 1− 2/α; 2− 2/α;

−s p
hα

))
,

(E26)

using (a) the change of variable x h−α − 1→ y and (b) the
relationship [24]∫ ∞

0
t−b+c−1 (t + 1)a−c (t− z + 1)−a dt =

Γ(b) Γ(c− b)
Γ(c) 2F1(a, b; c; z)

(E27)
where 2F1(a, b; c; z) is the Gauss confluent hypergeometric
function. The CDF of SWN is then numerically obtained
by applying the inversion theorem [25]:

F(x) =
1
2
− 1

π

∫ ∞

0

=
[
e−itx LS(−it)

]
t

dt. (E28)

Consequently, using E =
√

Z0 · S for the x-axis, we
finally obtain the CDF of E. A comparison between
CDFs with and without Rayleigh fading with rate 1 is
shown in Fig. F3. As expected, the no-fading case
overestimates the exposure but the difference with the
unit-rate Rayleigh-fading case is not big, as suggests the
Kolmogorov-Smirnov distance of 0.07 between the CDFs.
In the following, we only work under a no-fading hypoth-
esis, which is moreover faster to compute numerically
thanks to the approximation (E24). The CDF, for different
values of λ, α and h, are respectively shown in Fig. F4,
Fig. F5 and Fig. F6 which makes it possible to observe
the impact of these parameters on the shape of the CDF.
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Fig. F3. CDF FEWN with a Rayleigh fading and without
fading. λ = 13 BS/km2, α = 2.90, h = 44 m, EIRP =
68.49 dBm.
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Fig. F4. CDF FEWN for several values of λ. α = 2.90,
h = 44 m, EIRP = 68.49 dBm.
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Fig. F5. CDF FEWN for several values of α. λ =

13 BS/km2, 44 m, EIRP = 68.49 dBm.
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Fig. F6. CDF FEWN for several values of h. λ =

13 BS/km2, α = 2.90, EIRP = 68.49 dBm.

Clearly, the path loss exponent has the greatest impact on
exposure.

The mean is given by

E [SWN ] = E

[
∑
i∈Φ

S(ri)

]

= EΦ,A

[
∑
i∈Φ

A(
r2

i + h2
)α/2

]

= λ A
∫ 2π

0
dθ
∫ ∞

0

1

(r2 + h2)
α/2

r dr

= 2πλ A
∫ ∞

h

1
tα

t dt

=
2πλ A
2− α

[
t2−α

]∞

h

=
2πλ A
α− 2

1
hα−2

(E29)

where we used Campbell’s formula [26] and where we im-
plicitly assumed that α > 2. Equation (E29) clearly shows
the relative impact of the BS density, the path loss expo-
nent and the BS height on the mean exposure. Similarly,
the variance of the distribution is

V [SWN ] = E

[
∑
i∈Φ

S2(ri)

]

= EA

[
A2
]
·EΦ

[
∑
i∈Φ

1(
r2

i + h2
)α

]

= 2πλ A2
∫ ∞

0

1
(r2 + h2)

α r dr

= 2πλ A2
∫ ∞

h

1
t2α

t dt

=
2πλ A2

2− α

[
t2−α

]∞

h

=
2πλ A2

2α− 2
1

h2α−2

(E30)

5



with A2 = EA
[
A2]. Equations (E29) and (E30) are valid

no matter the fading distribution chosen for A.

3. EXPERIMENTAL RESULTS
Using the open access databases of BS locations available
in Belgium [27], the BS density for all network providers
together was calculated over the Brussels-Capital Region
in Belgium. Since nearly all BSs were found to contain
antennas for all cellular services and since the antenna
density by service is not always available, we assumed
that the density of BSs is the same no matter the service:
λ = 13 BS/km2.

Statistical distributions for the power density were ex-
perimentally obtained by drive-tests in a zone of 4.37 km2

that spans two municipalities (Ixelles and Etterbeek) of
Brussels. The comprehensive experimental set-up is de-
scribed in [2]. A spectrum analyzer was mounted on a
moving car, taking calibrated measurements in the UMTS
2100 and LTE 2600 frequency bands with a resolution
bandwith of 3 MHz. A GPS was used to tag the measure-
ments with position. Measurements were averaged over
squared local areas of 2 m× 2 m. This size was heuris-
tically chosen, small enough to keep a relevant spatial
sampling, but large enough to smooth out fading. Mea-
surements were obtained for around 16 000 4 m2-squares.
We focused on the UMTS 2100 and LTE 2600 frequency
bands:

SUMTS2100 =
2 140.1 MHz

∑
f=2 110.3 MHz

S f +
2 169.7 MHz

∑
f=2 154.9 MHz

S f (E31)

SLTE2600 =
2 640 MHz

∑
f=2 620 MHz

S f +
2 690 MHz

∑
f=2 655 MHz

S f (E32)

where S f is the power density measured at frequency f .
Parameters of the model (E1)-(E3) under the no-fading

hypothesis have been fitted by minimizing

K(θ) =

(
Q05(θ)

Q05,exp
− 1

)2

+

(
Q10(θ)

Q10,exp
− 1

)2

+

(
Q25(θ)

Q25,exp
− 1

)2

+

(
Q50(θ)

Q50,exp
− 1

)2

+

(
Q75(θ)

Q75,exp
− 1

)2

+

(
Q90(θ)

Q90,exp
− 1

)2

+

(
Q95(θ)

Q95,exp
− 1

)2

+

(
µ(θ)

µexp
− 1
)2

(E33)

where θ = (h, α, EIRP) is the 3-tuple of parameters. Qx is
the x%-quantile and µ the mean of the distribution of SWN
using θ. The notation "xexp" refers to statistics obtained
from the experimental distribution. The minimization
of K(θ) is an exhaustive search onto a regular grid G =
Ih × Iα × IEIRP with Ih = [10; 60]m with a step of 1 m,
Iα = [2; 5] with a step of 0.05 and IEIRP = [56.0; 81.0]dBm
with a step of 0.01 dBm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. F7. CDF of E for the network made of BSs from all
network providers in Brussels for the UMTS 2100 band.
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Fig. F8. CDF of E for the network made of BSs from all
network providers in Brussels for the LTE 2600 band.
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Table T1. Parameters of the statistical distributions of the
power density for the UMTS 2100 and LTE 2600 frequency
bands, in the Brussels-Capital Region (Ixelles and Etterbeek).
Exp: experimental results. SG: CDF obtained by a numeric
Gil-Pelaez inversion. Qx’s are the quantiles, µ the mean.

Frequency UMTS 2100 LTE 2600

band Exp SG Exp SG

h (m) 40 44

α 3.35 2.90

EIRP (dBm) 66.80 68.49

Q05 (W/m2) 1.32 · 10−5 1.26 · 10−5 3.54 · 10−4 3.36 · 10−4

Q10 (W/m2) 1.52 · 10−5 1.57 · 10−5 3.88 · 10−4 3.95 · 10−4

Q25 (W/m2) 2.35 · 10−5 2.58 · 10−5 5.20 · 10−4 5.53 · 10−4

Q50 (W/m2) 5.32 · 10−5 5.40 · 10−5 9.02 · 10−4 9.18 · 10−4

Q75 (W/m2) 1.52 · 10−4 1.44 · 10−4 1.94 · 10−3 1.86 · 10−3

Q90 (W/m2) 4.08 · 10−4 4.13 · 10−4 3.97 · 10−3 4.02 · 10−3

Q95 (W/m2) 7.15 · 10−4 7.49 · 10−4 5.98 · 10−3 6.20 · 10−3

µ (W/m2) 1.76 · 10−4 1.55 · 10−4 1.80 · 10−3 1.65 · 10−3

KS distance 0.04 0.03

Statistical parameters of the distributions are listed in
table T1. The optimal set of parameters for the propaga-
tion model (E3) are also listed in this table.

As seen in Fig. F7 and Fig. F8, the SG CDFs well fit
the experimental ones. The x-axis is expressed in terms of
electric field strengths E instead of power densities using
(E1). The gap between the curves for small values of E is
due to background noise. To estimate goodness-of-fit, the
two-sample Kolmogorov-Smirnov (KS) distance, based on
cumulative distribution functions, is computed at the end
of the table. Fitted values for h, α and EIRP are realistic on
physical grounds.

Taking the distribution of the power density due to
the nearest BS, S1, leads to a mean power density of
9.85 · 10−4 W/m2 (computed from (E5)) instead of 1.65 ·
10−3 W/m2 when considering all the BSs (from (E29)) for
the LTE 2600 frequency band. Expressed in terms of the
electric field strengths, these values respectively corre-
spond to 0.61 V/m and 0.79 V/m. Similarly, for the LTE
2600 band, the median and the 95%-quantile of the elec-
tric field are respectively 0.36 V/m and 1.32 V/m for the
nearest-BS approximation against 0.59 V/m and 1.53 V/m
when the whole set of BSs is used.

4. CONCLUSION
In this paper, we introduced the use of stochastic geom-
etry for exposure assessment. We showed some general
mathematical expressions of the statistics of the power
density, coming from a limited number of the network’s
BSs or from all BSs. In particular, we obtained a numerical
CDF of the power density due to all BSs for a simple prop-
agation model, when the BS pattern can be approached by
a PPP. The CDF of the electric field was deduced from it, al-
lowing to compute statistics and probabilities to reach elec-
tric field thresholds. We then applied this framework to

experimental measurements realized in Brussels, Belgium.
We showed that the model gives results very faithful to
reality for the UMTS2100 and LTE2600 cellular services.

A. EXPECTED VALUE OF A PRODUCT OF
POWERS OF POWER DENSITIES

We evaluate (E18),

E
[
Sm1

1 Sm2
2 Sm3

3 · · · Smn
n
]

. (E34)

We define M = ∑n
i=1 mi and we use some properties of

(E20a) and (E20b):

τi = τ
(i)
(i) , (E35)

τ
(b)
(a) + τ

(c)
(b+1) = τ

(c)
(a) . (E36)

Moreover, we use, as previously, the change of variable
λπ

(
r2

i + h2)→ ti and the following properties involving
the upper incomplete Gamma function:
Integration property

∫ ∞

l
tb−1 Γ(z, t)dt

(a)
=

[
tb

b
Γ(z, t)

]∞

l

+
1
b

∫ ∞

l
tb−1+z e−t dt

(b)
=

1
b

(
Γ(b + z, l)− lb Γ(z, l)

)
,

(E37)

using (a) an integration by parts and (b) the result
lim
t→∞

tb Γ(z, t) = 0.

Particular case b = 1∫ ∞

l
Γ(z, t)dt = Γ(1 + z, l)− l Γ(z, l). (E38)

Recurrence formula

Γ(z + 1, t) =
∫ ∞

t
uz e−u du

=
[
−uz e−u]∞

t + z
∫ ∞

t
uz−1 e−u du

= tz e−t + z Γ(z, t).

(E39)

E
[
Sm1

1 Sm2
2 · · · Smn

n
]
= AM (λπ)Mα/2 eλπh2

∫ ∞

λπh2
t−α/2 m1
1

×
∫ ∞

t1

t−α/2 m2
2 · · ·

∫ ∞

tn−1

t−α/2 mn
n e−tn dtn · · ·dt2︸ ︷︷ ︸
∗

dt1
(E40)

using the joint probability distribution for the n nearest
BSs

f (r1, r2, · · · , rn)dr1 dr2 · · ·drn

= (2λπ)n e−λπr2
n r1 r2 · · · rn dr1 dr2 · · ·drn.

(E41)
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Let us extract the term underbraced by a star for conve-
nience:∫ ∞

t1

t−
α/2 m2

2 · · ·
∫ ∞

tn−1

t−α/2 mn
n e−tn dtn · · ·dt2

=
∫ ∞

t1

t−
α/2 m2

2 · · ·
∫ ∞

tn−2
Γ


τn︷ ︸︸ ︷

1− α/2 mn, tn−1


× t

α/2 mn−1
n−1 dtn−1 · · ·dt2

=
∫ ∞

t1

tτ2−1
2 · · ·

∫ ∞

tn−3

1
τn−1

[
Γ
(

τ
(n)
(n−1), tn−2

)
−tτn−1

n−2 Γ (τn, tn−2)
]

tτn−2−1
n−2 dtn−2 · · ·dt2

=
∫ ∞

t1

tτ2−1
2 · · ·

∫ ∞

tn−4

[
1

τn−1 τn−2
Γ
(

τ
(n)
(n−2), tn−3

)
− tτn−2

n−3
τn−1 τn−2

Γ
(

τ
(n)
(n−1), tn−3

)
− 1

τn−1 τ
(n−1)
(n−2)

Γ
(

τ
(n)
(n−2), tn−3

)

+
t
τ
(n−1)
(n−2)

n−3

τn−1 τ
(n−1)
(n−2)

Γ (τn, tn−3)

 tτn−3−1
n−3 dtn−3 · · ·dt2

=
∫ ∞

t1

tτ2−1
2 · · ·

∫ ∞

tn−4

 1

τ
(n−1)
(n−2) τ

(n−2)
(n−2)

Γ
(

τ
(n)
(n−2), tn−3

)

− t
τ
(n−2)
(n−2)

n−3

τ
(n−1)
(n−1) τ

(n−2)
(n−2)

Γ
(

τ
(n)
(n−1), tn−3

)

+
t
τ
(n−1)
(n−2)

n−3

τ
(n−1)
(n−1) τ

(n−1)
(n−2)

Γ
(

τ
(n)
(n) , tn−3

) tτn−3−1
n−3 dtn−3 · · ·dt2

= ...

=
n−1

∑
p=1

(−1)p−1

 n−1

∏
j=p+1

1

τ
(j)
(p+1)

  p

∏
l=2

1

τ
(p)
(l)

 Γ
(

τ
(n)
(p+1), t1

)
t
τ
(p)
(2)

1 .

(E42)

Using (E36) and replacing (E42) in (E40), we can calculate
(E18):

E
[
Sm1

1 Sm2
2 · · · Smn

n
]
= AM (λπ)Mα/2 eλπh2

n−1

∑
p=1

(−1)p−1

×
 n−1

∏
j=p+1

1

τ
(j)
(p+1)

  p

∏
l=1

1

τ
(p)
(l)

 [
Γ̃

τ
(n)
(1)
−
(

λπh2
)τ

(p)
(1) Γ̃

τ
(n)
(p+1)

]
.

(E43)
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