
Protocols and algorithms for secure Software Defined
Network on Chip (SDNoC)

Thesis presented by Soultana Ellinidou
in fulfilment of the requirements of the PhD Degree in Engineering
Sciences and Technology (Doctorat en Sciences de l’Ingénieur et Techno-
logie)
Academic year 2020-2021

Supervisor : Prof. Jean-Michel Dricot
Co-supervisor : Prof. Olivier Markowitch

Thesis jury :

Dr. Gaurav Sharma (Université libre de Bruxelles, Chair)
Prof. Jean-Michel Dricot (Université libre de Bruxelles, Secretary)
Prof. Guy Gogniat (Université Bretagne Sud)
Prof. Olivier Markowitch (Université libre de Bruxelles)
Prof. Dragomir Milojevic (Université libre de Bruxelles)
Prof. Kris Steenhaut (Vrije Universiteit Brussel)

Abstract

Author — Soultana Ellinidou
PhD Degree — Engineering Sciences and Technology
Academic Year — 2020–2021
Title — Protocols and algorithms for secure Software Defined Network-
on-Chip (SDNoC)
Abstract — Under the umbrella of Internet of Things (IoT) and Inter-
net of Everything (IoE), new applications with diverse requirements have
emerged and the traditional System-on-Chips (SoCs) were unable to sup-
port them. Hence, new versatile SoC architectures were designed, like
chiplets and Cloud-of-Chips (CoC). A key component of every SoC, is the
on-chip interconnect technology, which is responsible for the communica-
tion between Processing Elements (PEs) of a system. Network-on-Chip
(NoC) is the current widely used interconnect technology, which is a lay-
ered, scalable approach. However, the last years the high structural com-
plexity together with the functional diversity and the challenges (QoS, high
latency, security) of NoC motivated the researchers to explore alternatives
of it. One NoC alternative that recently gained attention is the Software
Defined Network-on-Chip (SDNoC). SDNoC originated from Software De-
fined Network (SDN) technology, which supports the dynamic nature of
future networks and applications, while lowering operating costs through
simplified hardware and software. Nevertheless, SDN technology designed
for large scale networks. Thus, in order to be ported to micro-scale networks
proper alterations and new hardware architectures need to be considered.

In this thesis, an exploration of how to embed the SDN technology
within the micro scale networks in order to provide secure and manageable
communication, improve the network performance and reduce the hard-
ware complexity is presented. Precisely, the design and implementation of
an SDNoC architecture is thoroughly described followed by the creation
and evaluation of a novel SDNoC communication protocol, called Micro-
LET, in order to provide secure and efficient communication within system
components. Furthermore, the security aspect of SDNoC constitutes a
big gap in the literature. Hence, it has been addressed by proposing a se-
cure SDNoC Group Key Agreement (GKA) communication protocol, called
SSPSoC, followed by the exploration of Byzantine faults within SDNoC and
the investigation of a novel Hardware Trojan (HT) attack together with a
proposed detection and defend method.

Keywords — Software Defined Network-on-Chip, NoC, routing algo-
rithms, Hardware Trojan, Byzantine Faults, Group Key Agreement

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor, Prof.
Jean-Michel Dricot and my co-advisor, Prof. Olivier Markowitch, for offer-
ing me this opportunity to work on the SOFIST research project, for their
insightful advices and guidance, for reviewing this PhD thesis and also my
research papers and journals during the last 3 years. Furthermore, I would
like to personally thank my advisor, whose door was always open for re-
search discussions, for his encouragement and full support during my PhD.

Secondly, I would like to thank an important person, colleague and
friend, Dr. Gaurav Sharma, with whom I had the honor to collaborate and
work in the same research project. I would like to thank him for supporting
me despite numerous obstacles and tough situations during my PhD. With-
out his motivation and insights this work would have never been complete.

Thirdly, I would like to thank Prof. Guy Gogniat for giving me the op-
portunity to visit the Lab-STICC and interact with his team members, for
his help and his valuable inputs which helped me tremendously in framing
this work.

I would like to acknowledge the Master students: Theofanis Rigas, Tris-
tan Vanspouwen and Adil Layach, who I had the opportunity to collaborate
with and supervise during their Master thesis. Thank you for your contri-
butions to my research work.

I would also like to thank my colleagues and former or current mem-
bers of Optique, Photonique, Electromagnétisme, Radio communications
et Acoustique (OPERA) Wireless Communication Group (WCG) : Prof.
Philippe De Doncker, Prof. François Horlin, Natascha Vander Heyden, Dr.
Jean-François Determe, Dr. Trung-Hien Nguyen, Dr. François Rottenberg,
Dr. Utkarsh Singh, Sullivan Derenne, Alexey Garcia Padilla, Shaghayegh
Monfared, Hasan Can Yildirim, Evert Ismael Pocoma Copa, Guylian Mo-
lineaux and Laurent Storrer for their nice conversions about research but

also about life during every day lunches at the lab, for their help in order to
survive in Brussels and for their positivity about PhD and life in general.
Furthermore, I would also like to thank my colleagues from the Quality
and security of information systems (QualSEC) research group: Prof. Yves
Roggeman, Dr. François Gerard, Dr. Suman Bala, Dr. Veronika Kuchta,
Dr. Liran Lerman, Dr. Rajeev Anand Sahu, Dr. Gaurav Sharma and Dr.
Dimitrios Sisiaridis for the nice seminars that they organised during the
academic year, for sharing their research and for all research discussions
that we had.

In addition, I would like to thank my beloved parents Lazaros Ellini-
dis and Olga Papadopoulou, my brother Nikolaos Ellinidis and my two
sisters Marina and Eleni Ellinidou for their support and their long phone
calls during all this time. I would also like to express my strong grati-
tude to my grandfather Arxelaos Papadopoulous for his financial support
in the start of my PhD. Also, I could not have completed this dissertation
without the support of my best friends from Greece: Antonios Ventouris,
Irene-Maria Tabakis, Paraskevi Smiari, Konstantina Banti, Zoi Ztoupa,
Androniki Prokopidou and also my new friends from Belgium: Shaghayegh
Monfared, Elliana Lamprianidou, Stefania Traettino, Francesca Di Matteo
and Riccardo Pace, who provided stimulating discussions as well as happy
distractions to rest my mind outside of my research.

Furthermore, I would like to thank a very important person, Guylian
Molineaux, for always being there the last months, offering unconditional
help and support during these hard times of pandemic but also for review-
ing my thesis and definitely for making my life better and brighter.

Finally, I would like to acknowledge that this research would not have
been conducted without the financial support of Project ARC (Concerted
Research Action) of Fédération Wallonie-Bruxelles.

Table of Contents

List of Figures v

List of Tables viii

List of Acronyms ix

1 Introduction 1
1.1 Background . 1
1.2 SDNoC integration within chiplet-based systems 5
1.3 SDNoC integration within CoC 7
1.4 Security Challenges . 7
1.5 Objective-Contributions . 8
1.6 Publications . 9
1.7 Thesis Organization . 10

2 Network-on-Chip Design 11
2.1 Introduction . 11
2.2 NoC Architecture . 12
2.3 NoC topologies . 14
2.4 NoC Routing . 17

2.4.1 Routing Problems 20
2.4.1.1 Deadlock 20
2.4.1.2 Livelock . 20
2.4.1.3 Starvation 21

2.5 Flow Control . 21
2.6 Overview of Academic and Commercial NoCs 22
2.7 NoC challenges . 24

2.7.1 Quality of Service 24
2.7.2 Latency . 25
2.7.3 Security . 25

2.8 Summary-Discussion . 27

i

3 Software Defined Network-on-Chip 29
3.1 Introduction . 29
3.2 Software Defined Network 30

3.2.1 Security Issues . 31
3.3 State of the art . 33

3.3.1 Literature . 33
3.3.2 Discussion . 36

3.4 SDNoC Architecture . 37
3.5 Routing within SDNoC . 40

3.5.1 XY Routing . 41
3.5.2 West First Routing 41
3.5.3 North Last Routing 42
3.5.4 Negative First Routing 42
3.5.5 Odd Even Routing 42
3.5.6 Modified Odd Even (OESL) 43

3.6 MicroLET Protocol . 45
3.6.1 Packet format . 45
3.6.2 Network Messages 46
3.6.3 Communication Protocol Phases 46

3.7 Summary-Discussion . 48

4 Implementation and Evaluation of SDNoC 51
4.1 Introduction . 51
4.2 NoC Simulators . 52
4.3 Implementation of SDNoC prototype 53

4.3.1 SDNoC Parameters 55
4.3.1.1 Impact of τ 57

4.3.2 MicroLET . 58
4.4 Routing Algorithms . 59

4.4.1 Standard Deviation Coverage 64
4.5 Analysis of variances . 69

4.5.1 Background . 69
4.5.2 Scenarios-Results . 73
4.5.3 One-way ANOVA 74

4.5.3.1 N-way ANOVA 80
4.6 Summary-Discussion . 83

5 Security within SDNoC 85
5.1 Introduction . 85
5.2 Secure Sdn-based Protocol over mpSoC 87

5.2.1 Security Requirements 87
5.2.1.1 Phase 1 . 88

ii

5.2.1.2 Phase 2 . 88
5.2.2 Group Key Agreement 89

5.2.2.1 Assumptions 89
5.2.2.2 Group Key Agreement Protocols 89

5.2.3 Communication Protocol 92
5.2.3.1 Network Architecture 92
5.2.3.2 Packet Format 92
5.2.3.3 Network Messages 92
5.2.3.4 SSPSoC Network Initialization 94

5.3 Byzantine Faults . 97
5.3.1 Related Work . 98
5.3.2 Fault Model . 99
5.3.3 Algorithm . 100

5.3.3.1 Normal Case Operation 100
5.3.3.2 Byzantine fault Case Operation 102

5.4 Hardware Trojan-Greyhole attack 104
5.4.1 Related work . 106
5.4.2 Launching of HT-Greyhole Attack 107
5.4.3 Detection . 111
5.4.4 Defense . 112

5.5 Summary . 113

6 Implementation and Evaluation of security within SDNoC115
6.1 Introduction . 115
6.2 Secure Sdn-based Protocol over mpSoC 115

6.2.1 Implementation and Performance Analysis 115
6.2.1.1 Network Performance 117
6.2.1.2 Memory Usage 118

6.2.2 Conclusion . 120
6.3 Byzantine Faults . 121

6.3.1 Implementation . 121
6.3.2 Evaluation . 121
6.3.3 Conclusion . 123

6.4 Hardware Trojan-Greyhole attack 125
6.4.1 Evaluation of the Detection Strategy 125

6.4.1.1 Background 125
6.4.1.2 Test Cases 128

6.4.2 Conclusion . 135
6.5 Summary-Discussion . 135

7 Conclusion 137
7.1 Future Work . 140

iii

A GEM5 Code 145

Bibliography 212

iv

List of Figures

1.1 Chiplet-based System . 2
1.2 Cloud-of-Chips Platform Architecture 3
1.3 History of interconnect technology: From Bus to NoC . . . 5
1.4 SDNoC architecture within a chiplet 6

2.1 System composition categorization along the axes of homogen-
ity and granularity of system components [Bjerregaard and
Mahadevan, 2006] . 12

2.2 NoC architecture . 13
2.3 NoC architecture: a) Mesh, b) Torus. 15
2.4 NoC architecture: a) Ring b) Star. 16
2.5 NoC architecture: a) Tree b) Butterfly. 16
2.6 Routing levels in NoC . 17

3.1 SDN Architecture . 31
3.2 NoC vs SDNoC architecture. 37
3.3 SDNoC architecture. 38
3.4 SDNoC router architecture. 39
3.5 (a) XY. (b) Negative-First. (c) West-First. (d) North-Last.The

solid red lines indicate the non-valid turns and the dashed
lines indicated the valid turns. 42

3.6 Odd-Even Routing . 43
3.7 Packet format . 46

4.1 Modified and Added files tree 54
4.2 Source and destination under Transpose and BitReverse traf-

fic . 56
4.3 Average latency of Transpose traffic under different traffic

injection rates (Topology:8x8). 57
4.4 Impact of τ on the average latency and throughput (tir =

0.02). 58

v

4.5 Performance measurements under Uniform traffic (Topology:
2x2 Mesh). 60

4.6 Performance measurements under Uniform traffic (Topology:
4x4 Mesh). 60

4.7 Performance measurements under Uniform traffic (Topology:
8x8 Mesh). 61

4.8 Performance measurements under BitReverse traffic (Topol-
ogy: 2x2 Mesh) . 61

4.9 Performance measurements under BitReverse traffic (Topol-
ogy: 4x4 Mesh) . 62

4.10 Performance measurements under BitReverse traffic (Topol-
ogy: 8x8 Mesh) . 62

4.11 Performance measurements under Transpose traffic (Topol-
ogy: 2x2 Mesh) . 63

4.12 Performance measurements under Transpose traffic (Topol-
ogy: 4x4 Mesh) . 63

4.13 Performance measurements under Transpose traffic (Topol-
ogy: 8x8 Mesh) . 63

4.14 95% coverage of mean values under Uniform traffic (Topol-
ogy: 2x2 Mesh). 66

4.15 95% coverage of mean values under Uniform traffic (Topol-
ogy: 4x4 Mesh). 66

4.16 95% coverage of mean values under Uniform traffic (Topol-
ogy: 8x8 Mesh). 66

4.17 95% coverage of mean values under Bit Reverse traffic (Topol-
ogy: 2x2 Mesh). 67

4.18 95% coverage of mean values under Bit Reverse traffic (Topol-
ogy: 4x4 Mesh). 67

4.19 95% coverage of mean values under Bit Reverse traffic (Topol-
ogy: 8x8 Mesh). 67

4.20 95% coverage of mean values under Transpose traffic (Topol-
ogy: 2x2 Mesh). 68

4.21 95% coverage of mean values under Transpose traffic (Topol-
ogy: 4x4 Mesh). 68

4.22 95% coverage of mean values under Transpose traffic (Topol-
ogy: 8x8 Mesh). 69

4.23 Graphical representation of the power of rejection of the null
hypothesis. 74

4.24 One-way Anova boxplot . 76
4.25 One-way Anova boxplot . 77
4.26 Multiple comparison of the mean latency of routing, traffic, tir 78

vi

4.27 Multiple comparison of the mean throughput of routing, traf-
fic, tir . 79

5.1 Packet format [Ellinidou et al., 2018] 93
5.2 Private Key exchange . 95
5.3 SSPSoC message layer. 96
5.4 Messages under Normal Case operation 102
5.5 HT-Greyhole . 108
5.6 HT-Greyhole router. 109
5.7 HT design on circuit level. 110

6.1 Performance results of SSPSoC protocol 119
6.2 Memory usage of two GKA protocols 120
6.3 Normal Case Operation Scenario measurements. 122
6.4 Byzantine fault case operation scenarios measurements. . . 124
6.5 ROC space and plots of five discrete classifier [Fawcett, 2006].127
6.6 Roc curve diagrams for 1, 3, 6 HT-Greyhole routers with

tv=0, -10, -100 and for Transpose, BitReverse, Uniform traffic.131
6.7 1 HT-Greyhole router under different traffic scenarios. . . . 133
6.8 1, 3, 6 HT-Greyhole routers scenarios measurements. 134

vii

List of Tables

3.1 Routing algorithms implemented within SDNoC 41
3.2 Designed Network messages 47

4.1 NoC Simulators . 52
4.2 Possible outcomes after decision process within ANOVA . . 73
4.3 One way ANOVA . 75
4.4 Results of N-way ANOVA for latency and throughput . . . 82

5.1 Designed Network messages 93
5.2 Designed Network messages 101

6.1 Packet loss improvement. 123
6.2 Confusion Matrix . 126
6.3 Measures for binary classification 127
6.4 Results of binary classification for detection algorithm . . . 129
6.5 Packet loss improvement with defense method. 134

7.1 STRIDE Model analysis for SDN and SDNoC 142

viii

List of Acronyms

MS Mean of Squares
SSbetween Sum of Squares between
SStotal Sum of Squares total
SSwithin Sum of Squares within

AA Always Active
ACC Accuracy
ACK ACKnowledgement
AES Advanced Encryption Standard
AMBA Advanced Micro-controller Bus Architecture
ANOVA ANalysis Of VAriances
API Application Programming Interface
AUC Area Under the Curve

BFT Byzantine Fault Tolerance

CA Certification Authority
CIANAA Confidentiality, Integrity, Authentication, Non-repudiation,

Availability, Authorization
CMP Chip Multi-Processor
CoC Cloud-of-Chips
CPU Central Processing Unit
CS Circuit Switching

DB Destination Based
DOR Dimension Order Routing
DoS Denial of Service
DTMA Dynamic Task Mapping Algorithm
DyAD Dynamically Adaptive and Deterministic

FDR False Discovery Rate
FIFO First In First Out

ix

FN False Negative
FNR False Negative Rate
FOR False Omission Rate
FP False Positive
FPR False Positive Rate

GCM Galois Counter Mode
GKA Group Key Agreement
GPP General Purpose Processor
GPU Graphical Processing Unit

HT Hardware Trojan
HT-DoS Harware Trojan Denial of Service

IC Integrated Circuits
IMEC Interuniversity Microelectronics Centre
IoE Internet of Everything
IoT Internet of Things
IP Intellectual Properties
IV Intialization Vector

MANET Mobile Ad-hoc NETwork
MANGO Message-passing Asynchronous Network-on-chip providing

Guaranteed services over OCP interfaces
ML Machine Learning
MPN Multi-Physical Network
MPSoC Multi Processor System-on-Chip

N Negative
NF Negative First
NI Network Interface
NL North Last
NM Network Manager
NoC Network-on-Chip
NPV Negative Predicted Value

OE Odd Even
OESL Odd Even with SeLection
ONF Open Networking Foundation
OSI Open Systems Interconnection
OVS OpenVSwitches

P Positive

x

PBC Pairing Based Cryptography
pBFT practical Byzantine Fault Tolerance
PCB Printed Circuit Board
PCs Personal Computers
PDF Probability Density Function
PE Processing Element
PK Private Key
PKC Public Key Cryptography
PKG Private Key Generator
PKI Public Key Infrastracture
PL Physical Links
PPV Positive Predicted Value
PSK Pre-Shared Key

QNoC Quality of service Network-on-Chip
QoS Quality of Service

ROC Receiver Operating Characteristic

SDN Software Defined Network
SDNoC Software Defined Network-on-Chip
SoC System-on-Chip
SSPSoC Secure Sdn-based Protocol over mpSoC
STRIDE Spoofing, Tampering, Repudiation, Information disclosure,

Denial of service and Elevation of privileges

TCP Transmission Control Protocol
th threshold
tir traffic injection rate
TLS Transport Layer Security
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
TSV Through Silicon Via
TTL Time To Leave

VC Virtual Channels
VLSI Very Large Scale Integration

WF West First
WSN Wireless Sensor Network

xi

Chapter 1

Introduction

1.1 Background

Since the 90’s, the number of transistors that was able to fit into a single
piece of silicon increased in a predictable way, known as Moore’s law [Moore,
1998]. This had as a result the digital evolution of minicomputers to Per-
sonal Computers (PCs), afterwards to smart-phones and to cloud. By plac-
ing more and more transistors into each generation of their microchip and
simultaneously making them more powerful and able to support the dy-
namic nature of today’s applications (for example in automotives [Hubner
et al., 2005] and avionics [Hilbrich and van Kampenhout, 2010]).

Under the umbrella of Internet of Things (IoT) [Atzori et al., 2010] and
Internet of Everything (IoE) [Miraz et al., 2015], a big variety of applica-
tions emerged in order to satisfy people’s needs in transportation, health-
care, manufacturing, and energy management. All these new applications
had diverse requirements, which traditional System-on-Chip (SoC) [Raj-
suman, 2000] were not always capable to support due to the cost of semicon-
ductor processing, fabrication and the complexity in terms of the amount of
circuit elements for a large die [Sethi and Sarangi, 2017]. At the same time
the smallest features of transistors reached 7nm [Wu et al., 2016] and In-
teruniversity Microelectronics Centre (IMEC) manufactured the first 3nm
transistor [Cadence, 2018]. Furthermore, a huge increase in Integrated Cir-
cuits (IC) cost is observed.

Hence the chipmakers start to look for alternative ways. The current
top notch approach, which the industry is investigating, are chiplets on
a substrate to reduce the cost of complex semiconductor solutions, since
the fabrication of large monolithic dies will become more costly. Chiplets

1

2 INTRODUCTION

were introduced to break a conventional monolithic SoC into smaller pieces.
More precisely, chiplets refer to the independent constituents which make
up a large chip, consisting of multiple smaller dies. The need to employ
multiple chips comes from reticle limit which dictates the maximum size
of chips possible to be fabricated. Designs that exceeded the reticle limit
had to be split up into smaller dies. The idea is that individual Central
Processing Unit (CPU), memory, and other Processing Elements (PEs) will
be mountable onto a relatively large slice of silicon, called an active inter-
poser. An interposer is a thick silicon layer, which includes interconnects
and routing circuits. Recently the chiplet approach has gained attention
from academia [Iyer, 2016,Kannan et al., 2015], industry [Sutardja, 2015,Vi-
jayaraghavan et al., 2017,Arunkumar et al., 2017] but also from government
agencies [Seemuth et al., 2015].

A chiplet-based system is depicted in Figure 1.1. It consists of chiplets
that are placed on the interposer, routing inter-chiplet connections through
metal layers in the interposer, and Through Silicon Vias (TSVs) in the in-
terposer to connect chiplet C4-bumps to the package-level interconnect. A
TSV in the bottom die provides external I/O access and power delivery to
the top die.

Active Silicon Interposer

Package

Chiplets

Micro-Bumps
Metal Layers

TSVs

C4-Bumps

Figure 1.1: Chiplet-based System

Another novel architecture able to support the dynamic nature of the
future application is referred to as Cloud-of-Chips (CoC) [Bousdras et al.,
2018], in analogy to the unlimited scalability of cloud computing paradigm.
The CoC consists of a large amount of interconnected IC and IC cores,
which can have different communication speeds and hierarchy levels. The
CoC template architecture follows a flexible architecture which can change
its characteristics, such as routing logic, transmission path, priorities and

1.1. BACKGROUND 3

IC clustering. The template architecture and computing clusters are cou-
pled at design time, while the communication scheme and security features
are dealt with at run-time. Figure 1.2 presents a Printed Circuit Board
(PCB) that hosts a package of multiple identical PEs, where each one may
have many functional Intellectual Properties (IP) cores. Moreover, these
PEs could be a Graphical Processing Unit (GPU), crypto processor, accel-
erator or a combination of such IP blocks.

Controller

Crypto
Processor

PE

PE

PE

GPU

IC

Crypto
Processor

PE

PE

PE

GPU

IC

Crypto
Processor

PE

PE

PE

GPU

IC

Advanced Packaging

PCB

Figure 1.2: Cloud-of-Chips Platform Architecture

While, the design of chiplets and CoC have already been explored [Iyer,
2016, Vijayaraghavan et al., 2017, Bousdras et al., 2018], the interconnect
fabric connecting the nodes of the entire system has been neglecting. Hence,
the interconnect must be equally explored in order to enable the properly
distribution of the data within the system. In case of the chiplets, each
individual chiplet may contain its own local interconnect, which operates
for intra-chiplet traffic and different hierarchical layers of communication
should be introduced. In case of CoC scalable and highly-configurable com-
munication infrastructures are needed.

Although current multi-chiplet architectures utilize passive integration
technologies such as silicon interposers, in this research the chiplet-based
SoCs that are based on active silicon interposer (Figure 1.1) have been
taken into account. Despite the high interest into the passive substrates
(only wires but not logic)) [NVIDIA, 2016], there is available research
in academia [Kannan et al., 2015], industry and government [Beyne and

4 INTRODUCTION

Manna, 2013] focused on active interposers. An active interposer (transis-
tors thus logic) implements its own interconnect in order to enable the com-
munication of the chiplets. While connecting several interconnects together,
new resource cycles that cause cyclic dependencies across the chiplets can
be introduced by causing deadlocks and livelocks.

A key component of the SoC is the on-chip interconnect, which is consid-
ered as the backbone, ensuring the communication of all PEs of the system.
The history of the interconnect consists of three phases, which are depicted
on the Figure 1.3. The first phase was driven by bus technology, with the
first de-facto commercial standard being ARM’s Advanced Micro-controller
Bus Architecture (AMBA) [Flynn, 1997], which provides a shared commu-
nication medium for data transfer within the system. As SoCs grew in num-
bers of IP blocks, the bus showed its limitations (poor performance, high
power consumption and big delay). In order to overcome these limitations,
the crossbar interconnect was introduced in the 90’s, providing high-speed
point-to-point data transfer between cores [Niehaus et al., 1989]. The cross-
bar is suitable for a small number of nodes but not scalable as wire cost be-
comes even more expensive with many cores. Afterwards in the early 2000’s
Network-on-Chip (NoC) was introduced [Benini and De Micheli, 2002] in
academia and thereafter in industry. NoC provides parallel communica-
tion but without significant cost overhead as in the crossbar interconnect.
Contrary to bus and crossbar interconnects, NoC provides path diversity as
several paths exist between source and destination cores by solving the scal-
ability problem of bus-based architecture. More precisely, people referred
to as an unification of on-chip communication solutions, which consists of
an on-chip packet or circuit switched micro-network of interconnects. PE
access the network by means of proper interfaces, and have their packets
forwarded to destination through a multi-hop routing path. The scalable
and modular nature of NoC together with their support for efficient on-chip
communication lead to NoC-based multi-processor systems characterized by
high structural complexity and functional diversity.

However, the complexity of the current NoCs and the novel hardware ar-
chitecture designs motivated researchers to explore alternatives of it [Cong
et al., 2014,Berestizshevsky et al., 2017]. One NoC alternative that gained
attention the last years is the Software Defined Network-on-Chip (SDNoC).
The Software Defined Network (SDN) technology emerged to support the
dynamic nature of future network functions and intelligent applications
while lowering operating costs through simplified hardware, software and
management. Although SDN appeared as a research concept in 2008 [McK-

1.2. SDNOC INTEGRATION WITHIN CHIPLET-BASED SYSTEMS 5

eown et al., 2008], it quickly gained significant attention from the industry
over the past few years. In fact, Google, Facebook, Yahoo, Microsoft,
Verizon, and Deutsche Telekom funded the Open Networking Foundation
(ONF) and in this way adopted the SDN through open standards develop-
ment.

Figure 1.3: History of interconnect technology: From Bus to NoC

The approach proposed by the SDN paradigm is that data travels across
multiple network entities (switches or routers) and efficient and effective
data transfer is supported by a centralized controller. The controller can
implement different communication rules to define the paths, as Quality of
Service (QoS), fault-tolerance, and security. As far as the SoC architectures,
they may adopt the SDN paradigm due to its advantages: reduced hardware
complexity, high re-usability, and flexible management of communication
policies. Though, the are also some challenges. SDN may be the overhead
for defining the paths in software compared to hardware-based approaches
and the controller can be a single point of failure of the whole system.

1.2 SDNoC integration within chiplet-based sys-
tems

The typical intra-chiplet data communication is managed by NoC, which
supports regular interconnected topologies. However, in order to manage
routing inside a chiplet with multiple cores, the size of routing tables will
be too large enough to be accommodated on ordinary NoC routers. The
memory overhead for routing tables will grow by n2 ∗ k units where n2 is
the number of PEs on each chiplet and k is the number of chiplet on each
package. Therefore, to achieve secure inter-chiplet and intra-chiplet com-
munication on a package, some techniques based on SDN paradigm could
be designed. The SDN concept came into the micro-scale networks recently,

6 INTRODUCTION

as it is presented in the previous section, and it is still limited under re-
search. Traditional routing mechanisms employ NoC hardware routers to
manage the routes among chiplets. However, recent SDN-based strategies
implement a controller with global view that controls the routing in an
adaptive manner. The proposed SDNoC network for chiplet-based system
is depicted in Figure 1.4. Since in this research the main focus is to cover
the intra-chiplet communication and leave the inter-chiplet for future work,
the controller will be placed inside a chiplet and attached to one router.
The rest of the routers within the network will communicate in order to
ask for a possible route for the upcoming packets. In this way the SDNoC
approach is enabled. Regarding the inter-chiplet communication an extra
NoC is placed on the active interposer and it is able to efficiently intercon-
nect them.

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

CT : Controller
: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: Chiplet

NI

PE

PE
NI

CT
NI

PE
NI

 ACTIVE INTERPOSER

PE
NI

PE
NI

PE
NI

PE
NI

Figure 1.4: SDNoC architecture within a chiplet

1.3. SDNOC INTEGRATION WITHIN COC 7

1.3 SDNoC integration within CoC

To enable the reconfigurability at the different levels of CoC platform but
also in order to provide quick and secure communication, the SDNoC in-
terconnect technology is proposed. Each IC integrates a software pro-
grammable controller. All controllers are reporting to the central hardware
controller. The two levels of hierarchy enable the efficient communication
on the IC level as well as the PCB level. The packet forwarding is man-
aged in an SDN way. The source IP core forwards the packet header to
the on-board controller and the controller sends back the whole sequence
of exit ports at each NoC router. The controllers on each IC also maintain
flow tables and group tables for outside IC communication. The central
controller is looking at the global view of the topology and is responsible
for the updates of flow entries on these controllers. Once the flow entry is
updated, the header packet is assigned a route and rest of the packets will
follow the same route.

1.4 Security Challenges

As the number of processing cores is increasing dramatically, the commu-
nication among them is of high importance. NoC has direct access to all
resources and information within a SoC, rendering it appealing to attackers.
Precisely, the sensitive information flow on the interconnect leaves the sys-
tem vulnerable to various threats. Most of the real-time applications do not
support any encryption or authentication strategy to protect this informa-
tion. The interface to external devices makes the IP cores more vulnerable
to attacks. Moreover, frequent reconfiguration and wireless communica-
tion causes the situation to be more opportunistic. Additionally, running
an untrusted application can render IP cores and routers behavior mali-
cious. The infected IP cores extract sensitive information stored locally
and forward them to some external entity. The infected router can cause
arbitrary deviation from its specification, packet redirection, packet modi-
fication, (partial) packet dropping, deadlocks or livelocks.

As it previously mentioned, recent advancement leads to applicability
of SDN on micro-architectural level, namely SDNoC. However, the idea is
explored from the hardware and partially from networking view point, the
security view point has been undermined. Hence, in this thesis the security
issues of SDN by providing secure protocols in order to ensure the secure
communication and by designing secure algorithms in order to detect and

8 INTRODUCTION

defend the network from security bridges have been addressed.

1.5 Objective-Contributions

The work of this thesis is part of Self-Organising circuits For Interconnected,
Secure and Template computing (SOFIST) research project supported by
Project ARC (Concerted Research Action) of Fédération Wallonie-Bruxelles.
This project aims the development of a future SoC architecture, which can
have different communication speeds and hierarchy levels. As part of the
project the design of the proposed architecture was investigated from four
different perspectives: reconfigurable hardware design, real-time schedul-
ing, flexible communication and required security primitives. In this thesis
the two latter perspectives were investigated.

By taking into account the main challenges of the current interconnect
technologies, which mentioned before, the main objective of this thesis is
to embed the SDN concept into micro-scale systems in order to provide
secure and manageable communication, improve the network performance
and reduce the hardware complexity. More precisely this thesis provides 3
main contributions:

Contribution 1: Design and implementation of an SDNoC architecture
[Ellinidou et al., 2018]. (Chapter 3, Chapter 4)

Contribution 2: Creation of a novel SDNoC communication protocol in
order to provide secure and efficient communication between routers and
controller. Precisely, MicroLET is the first SDNoC communication protocol
destined for future SoC by supporting efficient routing management without
significant latency [Ellinidou et al., 2019]. (Chapter 3, Chapter 4)

Contribution 3: Filling the gap of literature by exploring the security
aspect of SDNoC. Firstly, the secure communication has been explored by
proposing a secure SDN-based Group Key Agreement (GKA) communi-
cation protocol, followed by the exploration of Byzantine faults and the
investigation of a novel HT attack together with a proposed detection and
defend method [Soultana Ellinidou, 2019, Ellinidou et al., 2020b, Ellinidou
et al., 2020a]. (Chapter 5, Chapter 6)

1.6. PUBLICATIONS 9

1.6 Publications

This thesis led to the following contributions in recognized international
conferences and scientific journals:

Journal Articles

1. Sharma, G., Bousdras, G., Ellinidou, S., Markowitch, O., Dricot,
J.M. and Milojevic, D., 2021. Exploring the security landscape: NoC-
based MPSoC to Cloud-of-Chips. Microprocessors and Microsystems,
p.103963, Elsevier.

2. Ellinidou, S., Sharma, G., Rigas, T., Vanspouwen, T., Markowitch,
O. and Dricot, J.M., 2019. SSPSoC: A secure SDN-based protocol
over MPSoC. Security and Communication Networks, 2019, Hindawi.

3. Sharma, G., Kuchta, V., Anand Sahu, R., Ellinidou, S., Bala, S.,
Markowitch, O. and Dricot, J.M., 2019. A twofold group key agree-
ment protocol for NoC-based MPSoCs. Transactions on Emerging
Telecommunications Technologies, 30(6), p.e3633, Wiley Online Li-
bray.

Conference Articles

1. Ellinidou, S., Sharma, G., Markowitch, O., Dricot, J. M. and Gog-
niat, G., 2020, October. Towards NoC Protection of HT-Greyhole
Attack. In International Conference on Algorithms and Architectures
for Parallel Processing (pp. 309-323). Springer, Cham.

2. Ellinidou, S., Sharma, G., Markowitch, O., Gogniat, G. and Dricot,
J.M., 2020, October. A novel Network-on-Chip security algorithm for
tolerating Byzantine faults. In 2020 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT) (pp. 1-6). IEEE.

3. Ellinidou, S., Sharma, G., Kontogiannis, S., Markowitch, O., Dricot,
J.M. and Gogniat, G., 2019, August. MicroLET: A new SDNoC-
based communication protocol for chipLET-based systems. In 2019
22nd Euromicro Conference on Digital System Design (DSD) (pp.
61-68). IEEE.

4. Sharma, G., Ellinidou, S., Vanspouwen, T., Rigas, T., Dricot, J.M.
and Markowitch, O., 2019. Identity-based TLS for Cloud of Chips.
In ICISSP (pp. 44-54).

10 INTRODUCTION

5. Sharma, G., Ellinidou, S., Kuchta, V., Sahu, R.A., Markowitch,
O. and Dricot, J.M., 2018, August. Secure communication on noc
based mpsoc. In International Conference on Security and Privacy in
Communication Systems (pp. 417-428). Springer, Cham.

6. Ellinidou, S., Sharma, G., Dricot, J.M. and Markowitch, O., 2018,
April. A SDN solution for system-on-chip world. In 2018 Fifth Inter-
national Conference on Software Defined Systems (SDS) (pp. 14-19).
IEEE.

Book Chapters

1. Ellinidou, S., Sharma, G., Markowitch, O. Dricot, J. M. and Gog-
niat, G. Towards NoC Protection of HT-Greyhole Attack. In Algo-
rithms and Architectures for Parallel Processing: 20th International
Conference, ICA3PP 2020, New York City, NY, USA, October 2–4,
2020, Proceedings, Part III (p. 309). Springer Nature.

1.7 Thesis Organization

Firstly, in Chapter 2 an overview of NoC design is presented, where the
architecture, topologies, routing and the challenges of NoC are explained.
Afterwards, in Chapter 3, the SDN technology is described, followed by the
state of the art of the SDNoC based solutions. In the same chapter, the gen-
eral SDNoC is introduced together with the routing algorithms, that have
been implemented, a proposed new routing algorithm, and a novel SDNoC
based communication protocol. Following the previous chapter, in Chapter
4 an implementation and evaluation of SDNoC prototype is demonstrated.
Precisely, in this chapter the MicroLET communication protocol is evalu-
ated followed by a performance evaluation of different routing algorithms,
which are described in the previous chapters, under different scenarios and
an ANalysis Of VAriances (ANOVA) is performed in order to investigate
the affect of different factors within the network perfomance. Thereafter,
in Chapter 5 the security aspect of SDNoC is explored, where a novel GKA
communication protocol is introduced followed by the exploration of the
Byzantine faults within SDNoC and the investigation of a new Hardware
Trojan (HT) attack with the proposal of a detection and defense algorithm.
In Chapter 6 the implementation and evaluation of GKA communication
protocol, Byzantine faults and HT attack with defense and detection algo-
rithm are described. Finally, the conclusion and future work are presented
in Chapter 7.

Chapter 2

Network-on-Chip Design

2.1 Introduction

Network-on-Chip (NoC) is a layered and scalable on-chip interconnect tech-
nology designed to replace the traditional bus and crossbar interconnects for
the Multi Processor System-on-Chip (MPSoC), chiplet based systems and
future System-on-Chip (SoC). NoC technology adopted concepts and tech-
niques from large scale networks. Critical parameters such as performance,
power consumption and reliability along with the fundamental differences
between the on-chip networks and large scale networks have shaped the
research within NoC technology. As [Benini and De Micheli, 2002] men-
tioned, SoC can be viewed as a micro-network of components. Thus, the
electrical logic and functional properties of the interconnection scheme can
be abstracted.

The diversity of communication in the network is affected by architec-
tural issues such as system composition and clustering. Figure 2.1 illus-
trates how system composition can be categorized along the axes of ho-
mogenity and granularity of system cores. The figure also clarifies a basic
difference between NoC and networks for more traditional parallel com-
puters; the latter have generally been homogeneous and coarse grained,
whereas NoC-based systems implement a much higher degree of variety in
composition and in traffic diversity. Clustering deals with the localization
of portions of the system. Such localization may be logical or physical. Log-
ical clustering can be a valuable programming tool. It can be supported by
the implementation of hardware primitives in the network. Physical clus-
tering, based on preexisting knowledge of traffic patterns in the system, can
be used to minimize global communication, thereby minimizing the total
cost of communicating, power and performance wise. Generally speaking,

11

12 CHAPTER 2. NETWORK-ON-CHIP DESIGN

reconfigurability deals with the ability to allocate available resources for
specific purposes. In relation to NoC-based systems, reconfigurability con-
cerns how the NoC, a flexible communication structure, can be used to
make the system reconfigurable from an application point of view. Much
research work has been done on architecturally-oriented projects in rela-
tion to NoC-based systems. The main issue in architectural decisions is the
balancing of flexibility, performance, and hardware costs of the system as
a whole. As the underlying technology advances, the trade-off spectrum is
continually shifted, and the viability of the NoC concept has opened up to
a communication-centric solution space which is what current system-level
research explores.

Figure 2.1: System composition categorization along the axes of homogenity and gran-
ularity of system components [Bjerregaard and Mahadevan, 2006]

In this chapter an overview of NoC design is discussed. Firstly, the
NoC architecture is presented in detail, following the NoC topologies seen
in literature. Afterwards, NoC routing is analyzed, which will play an im-
portant role throughout this thesis following the flow control techniques
within NoC. Furthermore, an overview of the existing NoC architectures
introduced in literature but also in industry is presented. Finally, the main
challenges of NoC and the need for new NoC alternatives are explained.

2.2 NoC Architecture

The NoC architecture consists of 4 main core components: routers, Net-
work Interface (NI), Processing Element (PE) and Physical Links (PL).

2.2. NOC ARCHITECTURE 13

Routers play a key role of routing packets from source to destination nodes
in the network, while the links are sets of wires that connect the routers
together. A router is linked to every PE (which could be a memory, a
core or a processor) and interconnects them through physical links. The
NI is the intermediate entity between a PE and a router. The manner in
which the routers are placed in the network is called the topology. Popular
NoC topologies include: mesh, torus, ring, butterfly and binary tree [Philip
et al., 2014], which are explained in the next section. However different
topologies have been introduced over the years, a suitable NoC topology
can be chosen for a specific application based on the performance evalua-
tion and area consumption [Chen et al., 2011].

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: System-on-Chip

NI PE

PE
NI

PE

NI

PE
NI

Crossbar switch

VC

Switch
allocator

VC

VC

VC

VC

VC Allocator

Buffer

BufferB
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

N

S

W E

L

NI

Routing
Logic

Figure 2.2: NoC architecture

In Figure 2.2 a 2D-Mesh NoC architecture is depicted, whose network
entities are the following:

• Routers: In Figure 2.2 the architecture of a NoC 5-port router em-
ploying virtual channel flow control and switching is illustrated. The
five ports correspond to the four cardinal directions (North (N), South
(S), West (W), East (E)) and the local direction which connects the
router with the PE through NI. The router consists of four compo-
nents: the Routing Logic, the Virtual Channels (VC), the Buffers,
the Switch Allocator, the VC Allocator and the Crossbar switch. It

14 CHAPTER 2. NETWORK-ON-CHIP DESIGN

employs a pipelined design with speculative path selection to improve
performance. The router is characterized by a two-stage, pipelined
architecture. The first stage is responsible for routing, where the
router runs a routing algorithm in order to determine the exit port
of the incoming packet. The second stage is responsible for crossbar
traversal. The functionality of the router is described with respect to
a 2D mesh interconnect.

• Physical Links: The communication between routers is managed by
dedicated links, which interconnect them. Through the links, packets
or flits are forwarded between routers.

• Network Interface is composed by two First In First Out (FIFO)
memories, one logic block to interface with the network, called router
adapter, and a logic block to interface with the processing unit (or
core), called core adapter. The router adapter is a logic block that
interacts with the network dealing with the signals of physical channel
and integrates the data that come from the network, to be delivered
to the core. The core adapter also is a logic block that is connected
with the core, and prepares the data that comes from the core to
be written in the network, concatenating the fields control bit, origin
address and destination address to the data field.

2.3 NoC topologies

One of the challenges in the NoC design is the choice of the best topology
to meet the bandwidth and latency requirements for the target application
with the lowest power and area cost. Different topologies are proposed in
the literature for the design of NoC [Philip et al., 2014], some of them are
the following:

• Mesh: A mesh topology consists of m columns and n rows of nodes.
In a mesh, nodes are connected as a grid, as shown in Figure 2.3a.
Addresses of routers and resources can be easily defined with the
coordinates (x, y).

• Torus: A torus architecture (Figure 2.3b) is obtained by adding di-
rect connections to two end nodes in the same row or column in a
mesh architecture. Compared with mesh, its diameter is reduced.
A regular torus has long wrap-around links. However, by folding a
torus, long wires can be avoided.

2.3. NOC TOPOLOGIES 15

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: System-on-Chip

NI PE

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

Figure 2.3: NoC architecture: a) Mesh, b) Torus.

• Ring: In a ring architecture, all nodes are connected in a ring, as
shown in Figure 2.4a. Every node has two neighbors regardless the
size of the ring. The small degree is preferable, but the diameter
increases linearly with the number of nodes.

• Star: A star network (Figure 2.4b) consists of a central router in the
middle of the star, and computational resources or subnetworks in the
spikes of the star. The capacity requirements of the central router are
quite large, because all traffic between the spikes pass through it. This
causes a large possibility of congestion in the middle of the star.

• Tree: In a tree topology nodes are routers and leaves are computa-
tional resources. The routers above a leaf are called as leaf’s ancestors
and correspondingly the leafs below the ancestor are its children. In
a fat tree topology, each node has replicated ancestors which means
that there are many alternative routes between nodes (Figure 2.5a).

• Butterfly: A butterfly network (Figure 2.5b) is unidirectional or
bidirectional. For example a simple unidirectional butterfly network
contains 8 input ports, 8 output ports and 3 router levels which each
contains 4 routers. Packets arriving to the inputs on the left side of
the network are routed to the correct output on the right side of the
network [Arjomand and Sarbazi-Azad, 2008]. In a bidirectional but-
terfly network, all the inputs and outputs are on the same side of the
network. Packets coming to inputs are first routed to the other side of
the network, then turned around and routed back to the correct out-
put. Butterfly networks have low latency and have higher bandwidth

16 CHAPTER 2. NETWORK-ON-CHIP DESIGN

than other topologies however it lacks of path diversity and they have
higher number of links.

PE
NI

PE
NI

: Network Interface
: NoC

PE NI

PE
NI

: Processing Element
: Router
: System-on-Chip

NI PE

PENI

PE
NI

PE
NI

PE
NI

PE NI

PE
NI

PENI

PE
NI

PE
NI

Figure 2.4: NoC architecture: a) Ring b) Star.

PE
NI

PE
NI

: Network Interface
: NoC

PE
NI

: Processing Element
: Router
: System-on-Chip

NI PE

PENI

PE
NI

PE
NI

PE
NI

PE NI

PE
NI

PE
NI

PE
NI

PE
NI

PE NI

PENI

PENI

PENI

PENI

PE
NI

PE NI

Figure 2.5: NoC architecture: a) Tree b) Butterfly.

2.4. NOC ROUTING 17

2.4 NoC Routing

Routing is a process of selecting a path from a source to a destination node
within a network or between different networks. Routing within NoC is
similar to routing in any network. Specifically, routing algorithms are di-
vided into two main groups (Figure 2.6): the oblivious and the adaptive
algorithms. Oblivious algorithms are divided into two subgroups: deter-
ministic and stochastic algorithms. Adaptive algorithms are also divided
into two subgroups: minimal and fully adaptive algorithms [Rantala et al.,
2006].

NoC Routing

Oblivious
algorithms

Adaptive
Algorithms

Deterministic Stohastic Minimal Adaptive Fully Adaptive

- Dimension order
- XY
- Turn model

- Valiant’s random Source
- Probabilistic flood
- Directed flood
- Random walk

- Turnaround/Turnback
- Odd-Even
- Hot-Potato

- Shortest Path
- Distance Vector
- Source
- Destination-tag
- Topology Adaptive

- Congestion look ahead

Figure 2.6: Routing levels in NoC

In oblivious algorithms, the route of the packets is determined by the
source and the destination node. In deterministic algorithms, the same
path is always chosen and in the stochastic algorithms a random route is
chosen between a source and a destination node.

In the case of deterministic algorithms, a shortest path routing is the
simplest algorithm, where packets are always routed along the shortest pos-
sible path. A distance vector routing and a link state routing are shortest
path routing algorithms. In distance vector routing, each router has a ta-
ble, which contains updated information about neighbor routers. This table
is exchanged with other routers, which take routing decision by counting
the shortest path on the grounds of their routing tables. The link state
routing is a modification of distance vector routing. The basic idea is the
same as in distance vector routing, however each router shares its rout-

18 CHAPTER 2. NETWORK-ON-CHIP DESIGN

ing table with every other router in the network. In the case of link state
routing in a NoC, routing tables covering the whole network are stored in
a router’s memory during the production stage and the routers use their
routing table updating mechanisms in the case of changes in the network
structure or in the case of faults [Ali et al., 2005]. In source routing, the
source router makes decision about a routing path of a packet by storing
the path in the header of a packet before sending it to the routers along
the route. In case of destination-tag routing, the source router stores the
address of the destination, known as a destination-tag, in the header of a
packet. However, every router makes routing decisions independently of
the address of the receiver. Deterministic routing algorithms can be im-
proved by adding some adaptive features to them. Following this concept a
topology adaptive routing algorithm is introduced where a systems adminis-
trator can update the routing tables of the routers in certain circumstances.

In the case of stochastic algorithms the most common type are the
flooding algorithms. The simplest algorithm is probabilistic flooding, in
which routers send a copy of an incoming packet to all possible directions
(flooding) and at least one of the packets will arrive at its destination. A
directed flood routing algorithm is an improved version of the probabilistic
one, where packets are directed in the direction of the destination. Another
flooding algorithm is the random walk algorithm, where a predetermined
amount of packet copies are forwarded to the network and every router
along the routing path sends the incoming packets through some of its out-
put ports. Another stochastic algorithm is the Valiant’s random algorithm,
which equalizes traffic load on the network. Firstly a random intermediate
node is picked to which packets are routed and afterwards the packets are
routed to their destination [Dally and Towles, 2004].

An example of independent oblivious routing algorithm is the Dimen-
sion Order Routing (DOR), which is a typical minimal turn algorithm.
DOR determines in which direction the packets will be routed during the
transmission of a packet from source to a destination [Dally and Towles,
2004]. The most used routing algorithm is the XY, which routes packets
first along the x axis or horizontal direction to the correct column and then
along the y axis or vertical direction to the destination. XY routing is
well suited for a network using mesh or torus topology. Furthermore, turn
model algorithms determine a turn or turns which are not allowed while
routing packets through a network. There are multiple turn model algo-
rithm, which will be further discussed in Chapter 3.

2.4. NOC ROUTING 19

Due to its distributed nature, in which each node can make routing
decisions independent from others, oblivious routing is widely adopted in
on-chip interconnection networks. However, today’s oblivious routing algo-
rithms face difficulties with certain traffic patterns, especially when band-
width demands of flows vary with time. This because routes are not ad-
justed for different applications and the route decisions are taken during
the design and not run time.

In adaptive routing, given a source and a destination address, the route
of a packet is dynamically adjusted depending on, for instance network con-
gestion or traffic pattern. In minimal adaptive routing algorithms the routes
of the packets are determined along the shortest path and in fully adaptive
routing algorithms the route is chosen is always the less congested. Due to
its dynamic load balancing, adaptive routing can achieve higher throughput
and lower latency compared to oblivious routing.

In case of fully adaptive algorithms a congestion look ahead algorithm
gets information from other routers and based on them the routing algo-
rithm can direct packets to bypass the congestions [Kim et al., 2005].

Other adaptive algorithms include turnaround routing algorithms, which
are mainly designed for butterfly and fat-tree network topologies. In case
of source and destination routers are placed on the same side of the net-
work, packets are first routed from source to a random intermediate node
on the other side of the network. When packets arrived at the intermediate
node, they are turned around and then routed to the destination on the
same side of the network. The routing from the intermediate node to the
destination is performed by the destination-tag routing, as previously ex-
plained. An odd-even routing is an adaptive algorithm used in Dynamically
Adaptive and Deterministic (DyAD) NoC system. The odd-even routing
is a deadlock free turn model which prohibits turns from east to north and
from east to south at nodes located in even columns and turns from north
to west and south to west at nodes located in odd columns [Chiu, 2000].
More details about it can be found on the Chapter 3. A hot-potato routing
algorithm routes packets without storing them in routers’ buffer memory.
Hence, packets are constantly moving before they reach their destination.
However if two packets are simultaneously destined to the same direction,
the router directs one of the packets to another direction and there is a big
possibility that the packet will be delayed before reaching to its destina-
tion [Nilsson, 2002].

20 CHAPTER 2. NETWORK-ON-CHIP DESIGN

2.4.1 Routing Problems

The continuous effort to increase the reliability of the network while en-
suring a sensible performance constitutes the main challenges among NoC
routing problems. The routing issues are diverse by having a negative im-
pact on network performance. Specifically deadlock, livelock and starvation
are potential problems on both oblivious and adaptive routing [Rantala
et al., 2006]. In the next subsections the most important problems are
detailed.

2.4.1.1 Deadlock

Deadlocks are considered as one of the most difficult problems in NoC rout-
ing. They occur when two (or more) packets are waiting to be routed, while
they reserve the network resources (buffers, channels), both hold resources
while requesting others. Typically the routers do not release the resources
before they get the new ones so the routing process can not be performed
and the packets are stuck causing a enormous damage to the network. Two
approaches cope with deadlocks: deadlock avoidance and deadlock recovery.
Deadlock avoidance schemes restrict the routing algorithm with some spe-
cific constraints in order to avoid deadlocks. On the other hand, deadlock
recovery schemes try to detect and resolve the deadlock situations when
occurring. Deadlock detection and recovery mechanisms are complicated
to implement due to the unpredictability of deadlock situations. This is
why deadlock avoidance schemes are the most widely spread.

2.4.1.2 Livelock

Livelocks occur when packets continuously flow across the network without
ever reaching their destination. This is a typical phenomenon in NoCs’ non-
minimal adaptive routing algorithms. The classic way to avoid livelocks in
the case of a distributed and non-minimal adaptive routing algorithm is to
add to each packet a Time To Leave (TTL) counter which is decremented by
each router it encounters and the oldest packets get priority for the output
channels. On the other hand, with minimal routing, each output channel
leads the packet closer to its destination. If these output channels are
occupied, the packet has no choice but to wait for their release. Therefore,
minimal routing is necessarily livelock-free [Dally and Towles, 2004]. It
should be noted that livelocks do not occur in SDNoCs since the routes of
the packets can be computed before the packets start to flow.

2.5. FLOW CONTROL 21

2.4.1.3 Starvation

Using different priorities can create a situation where some packets with
lower priorities never reach their destinations. This occurs when the pack-
ets with higher priorities reserve all resources all the time. Starvation can
be avoided by using a fair routing algorithm or reserving some bandwidth
only for low-priority packets [Benini and De Micheli, 2002].

2.5 Flow Control

Flow control determines the manner in which network resources are al-
located. Specifically, flow control dictates the buffer and link allocation
schemes. In packet-switched NoCs, a data message is broken into a prede-
fined packet format. A network packet can be further broken into multiple
flits, which size of flit normally equals physical channel width. Additional
information is added to each flit to indicate header, body, and tail flit.
The routing and other control information can either be added only to the
header flit or it can be added to each flit depending on implementation.
However in a circuit-switched NoC, a connection (i.e. circuit) is first estab-
lished between a source and destination nodes before actual data transfer
takes place. Circuit switching is used for providing guaranteed services
where system predictability is required.

In store-and-forward flow control [Dally and Towles, 2004], before for-
warding the packet to the next node, the router waits until the whole packet
has been transmitted into its local buffer. This means that the input buffer
must have enough space to store the whole packet, which can increase router
area and power consumption. This scheme also increases the communica-
tion latency, as packets spend a long time at each node just waiting for
buffering, although the output port might be free.

Virtual cut-through [Kermani and Kleinrock, 1979] improves on store-
and-forward flow control by allowing a packet to be routed to the next
router even before the whole packet arrives at the current router. However,
the packet is only forwarded if the downstream router has enough buffer
space to store the complete packet. This means that buffer size remains the
same as in the case of store-and-forward flow control with improvement in
per-hop latency.

Wormhole routing [Seiculescu et al., 2010] is a more robust scheme, as
it allocates buffer space at the granularity of flit, opposed to the virtual

22 CHAPTER 2. NETWORK-ON-CHIP DESIGN

cut-through and store-and-forward scheme which allocates buffers at the
granularity of packet. As soon as flit of a packet arrives at an input port,
it can be forwarded even if only one flit space is available in the input port
of the next router (and output channel is not allocated). The wormhole
flow control scheme results in low-area routers, and it is therefore widely
used in most on-chip networks. The term wormhole implies that a single
packet can span multiple routers at the same time. The main downside of
this scheme is that the multiple links can be blocked at the same time in
case the header flit of a multiple flit packet is blocked in one of the routers
on the communication path.

2.6 Overview of Academic and Commercial NoCs

Æthereal [Goossens et al., 2005] is developed in Philips Research Labora-
tories by aiming at achieving composability and predictability in system
design and eliminating uncertainties in interconnects, by providing guaran-
teed throughput and latency services. The Æthereal NoC consists of routers
and network interfaces. The routers, use input queuing, wormhole routing,
link-level flow control and source routing. The network interfaces have
a modular design, composed of kernel and shells. The NI kernel provides
the basic functionality, including arbitration between connections, ordering,
end-to-end flow control, packetization, and a link protocol with the router.
The network connections are configurable at runtime via a memory-mapped
configuration port. Consequently, through Æthereal it is provided efficient
network offering high-level services (including guarantees), which allows
runtime network programming using the network itself. Æthereal designed
for SoCs in the consumer electronics domain, particular digital TV (DTV)
and set-top boxes (STB).

Tilera iMesh on-chip interconnect network [Wentzlaff et al., 2007] is
an example of NoC designed for homogeneous multi-core chips. The iMesh
interconnect architecture has been used in the commercial TilePro64 multi-
core chip. The 72-core Tilera GX chip also uses the same NoC design. The
proposed NoC architecture is different from other academic and commer-
cially available on-chip architectures in terms of the number of physical
NoC. iMesh provides five different physical NoC channels: two of these
networks are used for memory access and management tasks, while the
rest are user accessible. The motivation is that future integrated circuits
will have enough silicon resources to integrate more than one NoC per chip.

Xpipes [Bertozzi and Benini, 2004,Dall’Osso et al., 2012] is an advanced

2.6. OVERVIEW OF ACADEMIC AND COMMERCIAL NOCS 23

NoC architecture, which targets high performance and reliable communi-
cation for on-chip multi-processors. It consists of a library of soft macros
(switches, NI and links) that are design-time composable and tunable so
that domain- specific heterogeneous architectures can be instantiated and
synthesized. Xpipes use a static routing protocol called “street sign” rout-
ing along with wormhole switching for on-chip communication and it is
implemented in SystemC. Links can be pipelined with a flexible number
of stages to decouple link throughput from its length and to get arbitrary
topologies. Moreover, the authors proposed a tool called Xpipes Compiler,
which automatically instantiates a customized NoC from the library of soft
network components, in order to test the Xpipes-based synthesis flow for
domain-specific communication architectures.

Message-passing Asynchronous Network-on-chip providing Guaranteed
services over OCP interfaces (MANGO) [Bjerregaard and Sparso, 2005a,
Bjerregaard and Sparsø, 2006] is a clockless NoC, which targets coarse-
grained type SoCs. MANGO provides connectionless routing as well as
connection-oriented guaranteed services. As far as the design of MANGO,
the routers implement VC as separate physical buffers. The guaranteed ser-
vices connections are established by allocating a sequence of VCs through
the network. While the routers are implemented using area efficient bundled-
data circuits, the links implement delay insensitive signal encoding. This
makes global timing robust, because no timing assumptions are necessary
between routers. A scheduling scheme [Bjerregaard and Sparso, 2005b],
schedules access to the links, allowing latency guarantees to be made, which
are not inversely dependent on the bandwidth guarantees.

Nostrum [Millberg et al., 2004a,Millberg et al., 2004b] focused on archi-
tecture and platform-based design, targeted towards multiple application
domains. The authors highlighted advantages of a grid-based, router-driven
communication media for on-chip communication as a solution to high com-
plexity of working with high density Very Large Scale Integration (VLSI)
technologies. Nostrum guaranteed services, which implemented by virtual
circuits, using an explicit time division multiplexing mechanism.

Quality of service Network-on-Chip (QNoC) [Bolotin et al., 2004,Dobkin
et al., 2009] aims at providing different levels of QoS for the end users. The
architecture of QNoC is based on a regular mesh topology and it uses worm-
hole packet routing. Packets are forwarded using the static XY coordinate-
based routing. It does not provide any support for error correction logic
and all links and data transfers are assumed to be reliable. QNoC identified

24 CHAPTER 2. NETWORK-ON-CHIP DESIGN

different service levels based on the on-chip communication requirements.
Precisely, SoC modules are placed so as to minimize spatial traffic density,
unnecessary mesh links and switching nodes are removed, and bandwidth
is allocated to the remaining links and switches according to their relative
load so that link utilization is balanced.

Intel used a mesh-based NoC for an 80-core TeraFlop experimental
chip [Hoskote et al., 2007]. The mesh NoC uses five stage pipelined routers
designed for 5 GHz frequency. This results in 1 ns per-hop latency. Ac-
cording to experiments conducted on the research chip, the NoC consumed
about 28% of total chip power although it consumed 17% of total chip area.
Furthermore Intel has also introduced a 48-core mesh NoC-based multi-core
chip called single-chip cloud computer (SCC) [Howard et al., 2010]. The
target frequency for the NoC was set at 2 GHz. The router is four-stage
pipelined and uses virtual cut-through flow control. To mitigate the prob-
lem with higher NoC power from the previous 80-core chip, Intel opted for
a different scheme for NoC. The NoC was organized as a 6×6 mesh so that
two compute cores share a single router. These techniques helped to reduce
the share of NoC power to 10%.

2.7 NoC challenges

As stated in Chapter 1, the NoC complexity challenges, like Quality of Ser-
vice (QoS), security, latency, traffic variability and network topology, and
the new hardware architectures motivated the researcher to start exploring
NoC alternatives. In this section these challenges are explored.

2.7.1 Quality of Service

QoS originates from telecommunication networks, where it refers to provide
system predictability or service guarantee. For NoCs, communication QoS
focuses on the allocation of communication resources (routers and wires),
according to the application communication characteristics, like latency
and throughput. Most techniques that provide QoS are expensive in terms
of design complexities [Owens et al., 2007]. A classic technique to provide
QoS is by creating a connection between source and destination (i.e. circuit
switching) before the actual data transfer. This method is used in some
SoC architectures [Liang et al., 2000, Rijpkema et al., 2003] . However,
it has been observed that this method leads to poor scalability since the
router area growth is proportional to the number of required connections.

2.7. NOC CHALLENGES 25

Furthermore, managing circuits introduces additional latency. Hence, new
methods should be introduced in order to ensure the QoS of a NoC

2.7.2 Latency

NoC is required to provide low latency under stringent power, area and
delay constraints. Therefore, minimizing delay is a crucial aspect of NoC
design. A NoC router has a 4 to 5 stage pipeline which increases the latency.
Techniques such as speculation have been proposed to reduce the pipeline to
1 or 2 stages. However, more study is still required to improve the accuracy
and efficiency of such design techniques [Owens et al., 2007]. Adaptive
routing techniques provide faster data routing in NoC, hence minimizing
the delay. However, this often requires additional complexity in terms of
area and resolving issues such as deadlocks, livelocks and starvation as
explained in Section 2.4. Thus, techniques that provide low latency without
compromising NoC area and power are an important goal in NoC design.

2.7.3 Security

NoC is the heart of data communication between processing cores in a SoC.
Since it has direct access to all resources and information within a SoC, at-
tackers have strong motivation to exploit its possible vulnerabilities. For
example, packets transferred via NoC are exposed to snooping. Addition-
ally, a Hardware Trojan (HT) (Section 5.4) can be deployed among the NoC
nodes in order to apply security threats of extracting sensitive information
or degrading the system performance [Daoud, 2018]. A key challenge is
to provide secure and reliable communication in the SoC, even in case an
untrusted NoC IP is inserted into it.

Precisely, the sensitive information flow on the NoC leaves the system
vulnerable to various threats. Most of the real-time applications do not
support any encryption or authentication strategy to protect this informa-
tion. Hence the applications running on an SoC based platform can be
equally prone to attacks. Moreover, frequent reconfiguration and wireless
communication causes the situation to be more opportunistic. Additionally,
running an untrusted application can turn the IP core behavior malicious.
In that case the infected IP core extracts sensitive information that is trans-
fered to it through the NoC, stores them locally and forwards them to an
external entity [Sharma et al., 2018]. The basic requirements of any secure
communication are confidentiality, integrity, authentication and availabil-
ity. However, access control is an additional primitive to care about, in
this scenario. In this research, it is not considered any of the side channel

26 CHAPTER 2. NETWORK-ON-CHIP DESIGN

attacks as well as physical attacks.

The threat model for NoC covers mainly three attacks as following:

• Denial of service attack: In order to make the NoC resources
unavailable to legitimate IP cores, an attacker may launch several
attacks. The possible approaches to waste resources are replay, incor-
rect path, deadlock and livelock.

• Extraction of secret information: In this case, a malicious router
along the path from a given source to a given destination attempts to
read some secure information. This information might be extremely
critical, such as cryptographic keys used for encryption.

• Hijacking: In this attack, an attacker tries to write some data in
a secure memory area in order to change the system behavior. The
attack can be launched by using buffer overflow or reconfiguring the
internal registers.

In recent literature, additional threats have been introduced. When a
NoC is supplied to a SoC integrator, there is a chance of it being equipped
with a HT [Rajesh et al., 2018]. In order to activate the HT, a malicious
circuit is inserted during the design of the IP block or a malicious pro-
gram can activate the Trojan later at runtime. The possible attacks due to
infected router within NoC and their solutions are:

• Snooping of sensitive data: In this case the information flow be-
tween any two routers must be confidential and accessible to them
only.

• Corrupt the data: During the routing of information, no malicious
router is allowed to modify the messages. The integrity constraints
must provide end to end security.

• Spoofing: The destination router can verify the identity of source
router.

• Denial of Service: In case of Denial of Service (DoS) attack, algo-
rithms should be introduced in order to find alternatives paths and
make the recourses available again.

However, there are many techniques in the literature to approach the
security within a SoC depending on the architecture or application or in-
terconnect. Some of them, with respect to NoC can be listed as follows:

2.8. SUMMARY-DISCUSSION 27

• Creation of security zones and protecting them via firewall around
them [Fernandes et al., 2015, Grammatikakis et al., 2014, Sepulveda
et al., 2014].

• Secure routing [Fernandes et al., 2016,Sepulveda et al., 2017a,Sepul-
veda et al., 2016]

• Secure memory access to IP cores [Fiorin et al., 2008]

• Secure communication with key agreement approach [Sharma et al.,
2019,Sepulveda et al., 2017b]

2.8 Summary-Discussion

NoC interconnect is a scalable and modular technology, enabling the ef-
ficient programming of the interconnect. Its advances have made it the
preferred choice for the communication backbone within SoCs. Concep-
tually, NoC is similar to general-purpose networks by employing a micro
network stack, that encompasses different levels of abstraction. The Phys-
ical layer is responsible for the physical aspects of communication, such as
wiring and the embedded logic responsible for signal processing. Architec-
ture and Control layers employ the concept of data links and routing algo-
rithms that establish point-to-point or end-to-end connections among the
communicating elements, and encapsulate data into packets for exchange
among different NoC elements. In the Software layer, system services and
applications execute on top of the lower level interfaces. This paradigm
decouples abstraction layers, increasing modularity and subsequent reuse
of previously designed IP modules.

NoC consists of routers interconnected by links. Routers are responsible
for routing packets from source to destination nodes in the network, while
the links are sets of wires that connect the routers together. According
to the placement of routers within the network, the NoC follows a specific
topology. As previously mentioned, popular topologies include mesh, torus,
and ring.

Furthermore, contrary to bus and crossbar interconnects, NoC provides
path diversity as several paths exist between source and destination cores,
which can be managed by the routing algorithms applied on NoC. The path
diversity can be exploited to mitigate performance loss caused by high net-
work contentions since alternative network paths can be utilized, however
this requires new routing techniques to deployed within NoC.

28 CHAPTER 2. NETWORK-ON-CHIP DESIGN

As NoC becomes the de-facto on chip communication, a lot NoC archi-
tectures have been observed both in research but also in industry. Here,
some of them were presented without including a full list of NoC implemen-
tations. Precisely, ×PIPES targets a platform-based design methodology,
in which a heterogeneous network can be instantiated for a particular ap-
plication. ÆTHEREAL, Nostrum and MANGO implement more complex
features such as guaranteed services, and target a methodology which draws
closer to backbone-based design. Tilera iMesh targets homogeneous multi-
core chips and it is already a commercial solution.

Although NoC has become the pervasive on-chip interconnect for SoCs,
numerous challenges exist. NoC is a highly complex and functional diverse
interconnect technology with many challenges, like decrease of QoS, high la-
tency and many security issues. Hence, further exploration from a research
aspect is needed in order to cover most of the challenges and provide less
complexity within its design. One NoC alternative that gained attention
the last year is the Software Defined Network-on-Chip (SDNoC). SDNoC
enables extremely flexible communication infrastructure of future system
and combines design-time reconfigurability of on-chip systems and highly
configurable communication of macroscopic systems. More details about
SDNoC can be found in the next chapter.

Chapter 3

Software Defined
Network-on-Chip

3.1 Introduction

Software Defined Network-on-Chip (SDNoC) is a Network-on-Chip (NoC)
communication paradigm rather than a specific design and implementa-
tion. SDNoC originates from Software Defined Network (SDN) technology,
in order to support future network functions and Internet of Things (IoT)
applications while lowering operating costs by simplifying the hardware,
software and management. However, SDN technology was designed for
large scale networks and in order to be ported into the microscale networks
some proper alterations need to be considered together with a new archi-
tecture and design. The SDNoC interconnect technology attracted many
researcher during the past few years.

Recently, researchers have explored the pros and cons of using the SDN
paradigm for the communication of Processing Elements (PEs) within Multi
Processor System-on-Chips MPSoCs. The main benefits of SDNoC are the
higher flexibility during run-time, the self-adaptive network management
and the reduced hardware complexity. Hence, by using the SDNoC the
routers within the interconnect will no longer be overloaded with specific
designs to support different features, like Quality of Service (QoS), fault
tolerance and power management, instead they become configurable and
at the same time they are capable to redirect NoC packets according to
the SDNoC controller rules. Due to the controller’s global knowledge of
resources, it may adopt policies to mitigate faults, balance the communica-
tion load, secure the communication and protect the information, manage
power consumption, and provide QoS.

29

30 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

In this chapter, firstly, the SDN concept is explained, followed by a
description of the state of the art of the SDNoC based solutions in the field
of SoCs, along with the contributions in the field. Afterwards a proposed
general SDNoC architecture is presented. Also, different existing routing
algorithms within SDNoC are described, together with a proposed new
routing algorithm. Lastly, a novel SDNoC-based communication protocol
is introduced.

3.2 Software Defined Network

The SDN architecture consists of three main planes as shown in Figure 3.1:
Application, Control, and Data. The Data plane consists of forwarding net-
work equipment i.e., switches.1 The Control plane contains the controllers,
that facilitate setting up and tearing down data paths in the network (Data
plane) according to the requirements of the running applications (Applica-
tion plane). The Control plane is linked with the data plane through an
Application Programming Interface (API), referred to as the south-bound
API. If multiple controllers exist, connections among them are called east
and west-bound APIs. The controller-application interface is referred to as
north-bound API.

The goal of SDN is to provide the ability to users to control and man-
age the forwarding plane (hardware) in a network through controllers. In
other words, SDN exploits the ability to split the Data plane (forwarding of
the packets) from the Control plane (route planning and optimization) [Hu
et al., 2014]. This paradigm provides a view of the entire network, and en-
ables global changes without a device-centric configuration on each router
separately. Furthermore, the Control plane could consist of one or more
controllers, depending on the size of the network. The controller can form
a peer-to-peer, high-speed, reliable and distributed network control. The
switches in the Data plane, forward packets among them by checking the
flow tables that are controlled by the controller in the Control plane.

Regarding the communication between switches and controller, specif-
ically in the south-bound API, there are several communication protocols
that appeared recently in literature, one of the most widely used being
OpenFlow [McKeown et al., 2008]. In the OpenFlow specification [Foun-

1For the sake of clarity, it is important to note that , unlike in traditional networking,
the words “switch” and “routers” are referring to the same concept in the field of NoC,.i.e,
a packet forwarding entity that interconnects processing nodes and transmit the packets
along a pre-defined data path.

3.2. SOFTWARE DEFINED NETWORK 31

dation, 2015] it is mentioned that the Data plane is controlled by providing
rules (flows) to the network devices (switches). Each flow entry is an in-
struction for matching the incoming packets with their destinations. Open-
Flow establishes a unicast communication channel between each individual
router and the controller. It allows the controller to discover routers, create
rules for the switching hardware and also collects statistics. Since Open-
Flow is layer 4 (according to Open Systems Interconnection (OSI) model)
protocol, designed for large scale networks and therefore it is not adaptable
in micro-scale networks due to the vast number of network messages and
rules that it contains. Hence a new lightweight communication protocol
should be designed in order to fulfill the needs of micro-scale networks.
Moreover, the OpenFlow protocol does not enforce security as compul-
sory which leaves the network vulnerable to several attack scenarios [Zhang
et al., 2018a].

Application#1 Application#2 Application#N

Application Plane

Northbound API

Control Plane

……..

Central Controller

Southbound API

Data Plane

Router Router

Router

Router
Router

Router
Router

Switch

Switch

Figure 3.1: SDN Architecture

3.2.1 Security Issues

A number of SDN security analyses have recently been performed [Klöti
et al., 2013, Zhang et al., 2018a], which have found that the altered en-
tities or the links between entities in the SDN framework introduce new
vulnerabilities, which were not present before. Following the data flow and
interaction among SDN entities, Microsoft presents the Spoofing, Tamper-

32 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

ing, Repudiation, Information disclosure, Denial of service and Elevation of
privileges (STRIDE) threat model [Hernan et al., 2006] to meet respectively
the security requirements Confidentiality, Integrity, Authentication, Non-
repudiation, Availability, Authorization (CIANAA). The STRIDE model
attacks are listed as follows:

• Spoofing (Authentication): an attacker masquerades as a legiti-
mate user, by sending packets in order to gain access to the network.

• Tampering (Integrity): an attacker attempts to deliberately mod-
ify given data from unauthorized transmissions. This could happen
when the controller installs flow rules, aiming to modify or falsify data
packets or flow counters [Hernan et al., 2006].

• Repudiation (Non-Repudiation): an attacker claims that he did
not do something or were not involved or making it impossible to link
an action back to him, which violates non-repudiation. Most times,
attackers do not want their identity to be known, so they hide their
malicious activities to avoid being caught or blocked. Specifically,
repudiation attacks occur when a system does not adopt controls to
properly track user’s actions, thus permitting malicious manipulation.

• Information disclosure (Confidentiality): an attacker has in-
formation in his possession that are not permitted to have. In the
context of SDN, this could lead to side channel attacks intended to
reveal extended information about the system.

• Denial of service (Availability): an attacker attempts to prevent
legitimate users from accessing the service. The Denial of Service
(DoS) attacks are introduced in order to make the system unavailable
to receive and transmit data. In the SDN concept, the controller
should be aware of the network state on a regular basis in order to
apply rules, which make an SDN base system vulnerable for DoS [Yan
and Yu, 2015].

• Elevation of privilege (Authorization): an attacker alters his
privilege to have access to the system by performing system opera-
tions. In order to perform this attack, an attacker should have access
to the controller, which is considered as less likely to happen, due
to the proposed use of Transport Layer Security (TLS) [Sezer et al.,
2013].

The OpenFlow standard describes the use of the TLS protocol. However
its use is not well enforced [Foundation, 2015]. It is written in the speci-
fication that the switch initiates a standard TLS or Transmission Control

3.3. STATE OF THE ART 33

Protocol (TCP) connection to the controller which means that the use of
TLS is completely optional. In fact, security mechanisms such as TLS, pro-
tect against many attacks, however the threats should not be overlooked
when moving to SDN and OpenFlow.

3.3 State of the art

As it is previously stated, SDNoC is not an alternative design of the classic
NoC, but it is a new communication paradigm that tries to incorporate
the SDN technology into SoCs in order to minimize the hardware complex-
ity and provide quick and safe communication within PEs. The SDNoC
concept attracted many researcher and their contributions in this specific
research field start to rise through the time.

3.3.1 Literature

SDNoC concept introduced for first time in 2014 by [Cong et al., 2014], the
authors proposed a novel SDN architecture, where it decouples hardware
from software defined control logic, and applications are able to configure
the network according to their requirements and to improve the system
performance. In their architecture the control plane is deployed as a dis-
tributed entity at each router, however this is contrary to SDN philosophy
because both planes are placed inside the router. As far as the evalua-
tion is concerned, the authors compared their SDNoC routing approach
with the static and dynamic routing schemes in the traditional on-chip net-
work. Through the results they showed that SDNoC is able to improve the
network performance and reduce power consumption. Furthermore, the au-
thors clearly stated that more details along with standardization between
control and data plane, as provide by the OpenFlow specification, need to
be considered in the future.

Afterwards, [Sandoval-Arechiga et al., 2015] applied SDN principles in
order to propose an SDNoC architecture. This architecture focus on ab-
straction layers and interfaces that permit its deployment in a modular
fashion by potentially helping to overcome the NoC management problems
in the many core era. More precisely their architecture consists of three lay-
ers: Operating System, Network Operating System, and Infrastructure and
five planes: Applications, Network Management, Control, Data Forwarding
and Data Processing. However, the authors proposed an architecture with-

34 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

out providing enough details about the communication protocols between
layers. Another interesting contribution of the same authors is presented
in [Sandoval-Arechiga et al., 2016], where they evaluate the SDNoC archi-
tecture among PE in a many core system with System C simulator, focusing
on the configuration time, delay, and throughput of their architecture. Pre-
cisely, the authors presented a system model of 7x10 2D mesh tiles, where
each tile is composed of a SDN router, NI, memory and a PE. The con-
troller was modeled in System C as a process running in the PE of tile at
the center of the mesh, with the functionalities of sending packets for PE
and routers configuration, stop and start computation in a per flow basis.

Thereafter [Scionti et al., 2016] proposed a scalable SDNoC architecture
for future many core processors. Their design tried to merge the benefits of
ring based NoC (i.e., performance, energy efficiency) with those brought by
dynamic reconfiguration (i.e., adaptation, fault tolerance), while keeping
the hard-wired topology (2D-mesh) fixed. Also, their interconnect archi-
tecture allows mapping different types of topologies and communication re-
quirements. Specifically, their architecture consists of separate rings, which
allow the communication flow in the north/south and east/west directions,
while specific bits control the status of each link. Each PE has specific
instructions to control the network topology by software, including switch
off the links which are not used.The authors evaluated the proposed archi-
tecture on an in-house simulator, in order to test scalability and application
latency, considering synthetic random traffic and a matrix multiplication
kernel. Nonetheless, the existence of a controller has been neglecting along
with the security issues of their architecture.

[Berestizshevsky et al., 2017] presented a detailed SDNoC architecture,
based on a hybrid hardware/software approach. In their architecture they
introduced a software based centralized Network Manager (NM), running
on a dedicated core. The Network Manager (NM) allocates the routes and
the routers forward the packets without storing them. Also, the routers do
not maintain any routing tables. The authors evaluated the performance of
the SDNoC scheme with a custom simulators. An improved solution is re-
cently introduced by [Fathi and Kia, 2017] where all the routers do not need
to reach the controller. The router attached to the source IP core sends
the packet header to controller and controller provides a sequence of exit
ports at each router on the route. All the other intermediate routers check
the packet header and forwards the packet to already mentioned exit port.
The proposed architecture has been tested within ISE Xilinx. Moreover, in
the context of communication demands of future multi-core systems, [Zhou

3.3. STATE OF THE ART 35

and Zhu, 2017] proposed a Dynamic Task Mapping Algorithm (DTMA)
for SDNoC, with the purpose of minimizing the communication cost of the
application execution and achieving the load balance among routers. At
the same year the author of [Salvador et al., 2017] proposed an SDNoC
controller that permits run time reconfiguration of the data forwarding
plane and at the same time allowing the execution of different algorithms
in run time. Specifically, they presented a bus-based SDNoC controller,
capable of generating the requested services by upward layers, for the re-
configuration of data forwarding and processing devices. However the au-
thors did not provide any evaluation of their proposal. Thereafter, [Ruaro
et al., 2017] propose a SDNoC Circuit Switching (CS) infrastructure for
many-core systems. Their approach enabled the design of a simple Multi-
Physical Network (MPN) for CS, through configurable CS routers based
on elastic-Buffers. The main goal of their contribution was to establish CS
for real-time applications flows by run-time support. Furthermore, with
the help of a clock-cycle accurate RTL model the authors evaluated their
approach.

[Ruaro et al., 2018] presented the pros and cons of the SDNoC paradigm
based on their previous architecture. Precisely, they simulated a cycle-
accurate many-core model, filling the lack in the literature by proposing a
generic SDNoC architecture, addressing hardware and software implemen-
tation details. The authors compared the quality of the proposal with a
state of the art search path mechanism (hardware implemented), in a QoS
case-study providing CS for applications. The same year another interest-
ing contribution has been published by [Scionti et al., 2018]. The authors,
based on their previous contribution [Scionti et al., 2016] provide more in-
formation about their SDNoC architecture by targeting specific hardware,
cloud to high-performance many-core processors in the cloud data centers.
Also, they provided simulation results by evaluating the power consump-
tion, area and performance of different SDNoC topologies, allowing local
and global traffic to be decoupled.

Later on, [Silva et al., 2019] presented a communication latency evalua-
tion of SDNoC. In their architecture the manager (or controller) is able to
execute two routing algorithms in order to define a path from a source to a
given destination, the XY deterministic routing and the Dijkstra adaptive
algorithm. Also, they provided an evaluation of their architecture by com-
paring the two routing algorithm by using system C language. The same
year another interesting contribution proposed by [Ruaro et al., 2019], who
propose a novel distributed SDNoC architecture, with multiple controllers,

36 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

each of them is managing one cluster of routers. In this work also, the
authors proposed a short path establishment heuristic for global paths that
explores the controllers’ parallelism. Finally the authors, compared their
distributed SDNoC architecture with one of their previous proposed cen-
tralized SDNoC architecture [Ruaro et al., 2018] by concluding that their
new architecture outperformed their old one in total latency in systems
larger than 256 cores without loses in success rate.

Finally, in 2020 the security aspect of SDNoC start attracting more at-
tention by researchers. In [Ruaro et al., 2020], the authors presented a sys-
temic and secure SDN framework for NoC-based many-cores, allowing that
only a trusted controller can define the communication path within a source
and a destination router. Also, they described the iteration between the
hardware, operating system, and user’s tasks, provided a secure SDN router
configuration protocol. Their architecture manages a Multiple-Physical
NoC, with one packet-switching subnet and a set of circuit-switching sub-
nets. As far as their experimental results, they manage to show the frame-
work’s capability to avoid DoS and spoofing attacks while presents a low
router configuration overhead by comparing the performance of their pro-
tocol with [Soultana Ellinidou, 2019].

3.3.2 Discussion

The SDNoC communication paradigm attracted the attention of academia
during the past years starting from 2014 [Cong et al., 2014]. However,
the researchers explored different network architectures [Sandoval-Arechiga
et al., 2015, Berestizshevsky et al., 2017, Ruaro et al., 2018], it can be no-
ticed that the network entities were always the same (routers, controller or
NM, Network Interface (NI), PE or core or IC and also the routing was
handling by the controller, respecting the SDN concept. In each paper the
authors focused on different aspects of SDNoC as for example in [Sandoval-
Arechiga et al., 2016] the authors focused on the evaluation of SDNoC
within a hardware simulator, in [Salvador et al., 2017] the authors focused
on the functions and services of the controller and in [Scionti et al., 2018]
focused in a ring topology and the reconfiguration aspect of SDNoC. More-
over, It has been observed that most of researchers focused on the hardware
aspect of SDNoC by neglecting the network but also the security aspects of
it. In the context of SDN technology, the OpenFlow [McKeown et al., 2008]
protocol has become the de facto protocol for communication between con-
troller and the routers, however OpenFlow protocol has been designed for
large scale networks and its adoption into micro-scale networks is impossi-

3.4. SDNOC ARCHITECTURE 37

ble. As far as the security is concerned, the [Ruaro et al., 2020] presented
a systemic and secure SDN framework for NoC, however a security model
for SDNoC but also the exploration of different attacks within SDNoC re-
mained unexplored.

3.4 SDNoC Architecture

The main idea of SDNoC is to minimize router complexity by exporting
the routing logic to a centralized controller which has a general view of
the network and can take routing decisions efficiently. Precisely, a decrease
of the complexity and area of the routers is achieved by the separation of
the control logic which is implemented within hardware and the placement
of it within a software-based network controller. Decoupling the control
layer from the physical layer simplifies the router’s design. Furthermore
SDNoC provides better re-usability because routers are generic and sim-
ple hardware components, configured by software. The path between any
communicating pair in the system requires the configuration of the routers
belonging to the path. From an architecture point of view, the only differ-
ence between SDNoC and NoC is that the SDNoC manages routing in an
adaptive manner with the help of a centralized controller (Figure 3.2).

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI (0,0)

(1,0)

(2,0)

(3,0)

(0,2)(0,1)

(1,3)(1,2)(1,1)

(2,1) (2,2)

(3,2)(3,1) (3,3)

(0,3)

(2,3)

CT
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

CT : Controller
: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: SoC

NI

PE

PE
NI

PE
NI

PE
NI (0,0)

(1,0)

(2,0)

(3,0)

(0,2)(0,1)

(1,3)(1,2)(1,1)

(2,1) (2,2)

(3,2)(3,1) (3,3)

(0,3)

(2,3)

Network on Chip (NoC) Software Defined Network on Chip (SDNoC)

Figure 3.2: NoC vs SDNoC architecture.

38 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

According to the authors of [Cong et al., 2014, Ellinidou et al., 2019]
SDNoC could possibly be adaptable for SoCs thanks to its advantages: 1)
it reduces the hardware complexity, 2) it has high re-usability and 3) it has
flexible management of communication policies. However, there are also
some challenges that should be taken into account, in particular the high
overhead for path selection in software against hardware based approaches
and the centralized controller which can be a single point of failure.

An SDNoC architecture is depicted on Figure 3.3. The main entities of
an SDNoC architecture are: Network Interface (NI), Physical Links (PL),
Routers, Processing Element (PE) and the Controller. The routers are
linked to every PE which could be a memory, a core or a processor and in-
terconnects them through physical links. The NI is the intermediate entity
between a PE and a router. More specifically, packets are traveling between
different nodes of the network, routers, and the packet routing is managed
by a centralized controller, which is running as a process on a given PE.

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Controller
: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: SoC

NI

PE

PE
NI

PE
NI

PE
NI

CT
NI

CT

Figure 3.3: SDNoC architecture.

3.4. SDNOC ARCHITECTURE 39

The network entities of an SDNoC architecture are explained below:

• Routers: Figure 3.4 illustrates the architecture of a SDNoC 5-port
router employing VC flow control and SDN based switching. The
five ports correspond to the four cardinal directions (North (N), West
(W), South (S), East (E)) and the Local (L) direction which connects
the router with the PE through NI. The router consists of five com-
ponents: the Flow Tables, the VC Allocator, the Switch Allocator,
the Buffers and the Crossbar Switch. The SDNoC router consists of
a two-stage, pipelined architecture. The first stage is responsible for
routing, where the router checks the Flow Tables, which they include
flow entries with a Match field with the source and destination ID of
a packet and an Action field with the outport direction for the flow
entry. If there is not any flow rule for the given source and destina-
tion then the router will send a request to the controller to ask a new
route. The second stage is responsible for crossbar traversal. In this
work, the functionality of the router is described with respect to a 2D
mesh interconnect.

Crossbar switch

VC

Flow
Tables

Switch allocator

VC

VC

VC

VC

VC Allocator

Flow
TablesFlow

Tables Match field Action field

SRC DST Outport

.

.

.

.

.

.

.

.

.

Buffer

BufferB
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

N

S

W E

L

NI

Figure 3.4: SDNoC router architecture.

• Controller: The SDN controller consists of a series of functions for

40 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

sending packets for PE and router configuration, stop and start com-
putation in a per flow basis. The controller provides the following
services: sending configuration to a specific set of nodes in the net-
work; collecting state and statistics data from a specific set of nodes
in the network and generating a global or partial view (state) of the
network. This software-based control enables to reduce the hardware
complexity, moving the decision to establish the network paths to the
software.

• Physical Links: The communication between the controller and
routers is managed by dedicated links, which interconnect them. Through
the physical links the controller transfers control messages related to
routing decisions to the routers and monitors the data network state.

• Network Interface (NI): is composed by two FIFO memories, one
logic block to interface with the network, called router adapter, and a
logic block to interface with the processing unit (or core), called core
adapter.

As far as the extra resources for the hardware implementation of the
SDNoC and more precisely the controller block, an extra low power General
Purpose Processor (GPP) of 8-32 bit will be needed [Schmidt et al., 1993].
A GPP is easily programmable by the user, it is designed for a variety
of computation tasks and it can interact directly with all PE through the
memory.

The SDNoC can accommodate larger topologies, however the trade-off
for the communication router-controller will be a burden. For this rea-
son, and by taking into account the future SoC architectures like CoC and
chiplet, the proposed SDNoC architecture can be available for a cluster of
cores or for the inter-chiplet communications. Hence, in case of a bigger
topology there is a possibility of hierarchical controllers manage the routing
within different clusters of cores or different chiplets.

3.5 Routing within SDNoC

As stated in Chapter 2, routing is a process of selecting a path from a
source to a destination node within a network or between different net-
works. Routing within SDNoC is a completely different process compared
to routing within NoC. In an SDNoC architecture the routing logic of a
router has been deleted and moved to a centralized controller, who has a

3.5. ROUTING WITHIN SDNOC 41

general view of the network and can take routing decisions efficiently. The
designer is able to employ any routing algorithm based on application re-
quirement in order to deliver a certain packet from a source to a destination.
In this research, 5 routing algorithms were chosen to be implemented and
evaluated within an SDNoC architecture following a novel proposed routing
algorithm (Table 3.1).

Table 3.1: Routing algorithms implemented within SDNoC

Routing Algorithm Year Reference Features

XY - - simple, deadlock and livelock free

West First (WF) 1992 [Glass and Ni, 1992] based on turn model, livelock free

North Last(NL) 1992 [Glass and Ni, 1992] based on turn model, livelock free

Negative First (NF) 1992 [Glass and Ni, 1992] based on turn model, livelock free

Odd Even (OE) 2000 [Chiu, 2000] based on turn model, deadlock free

Modified OE (OESL) 2019 [Ellinidou et al., 2019]
fully adaptive, based on SDNoC

architecture, deadlock and livelock
free

3.5.1 XY Routing

XY is a dimensional order routing in which the packets are first routed in
the horizontal direction until they reach the column, where the destination
is located and then, they are routed in the vertical direction until they
reached the destination. Therefore, XY routing is deterministic and mini-
mal. Deadlocks are avoided since four turns are prohibited (Figure 3.5(a)),
and livelocks are avoided since this algorithm implies minimal routes. XY
routing is typically used for its simplicity. However, in some scenarios, XY
routing does not evenly distribute the traffic across the network since most
of the traffic is concentrated on the middle of the network. Therefore, this
area could be prone to congestion, which implies a decrease of the network
performance. Moreover, XY being deterministic, it is impossible to avoid
congested routers.

3.5.2 West First Routing

In West First (WF) routing, packets firstly move to the west as long as nec-
essary and then they follow any path by avoiding turns to the west because
they are forbidden. Therefore, any route can be taken if the destination is
on the right-hand side of the source since no turn to the west is required.
Otherwise, the routing is deterministic. Figure 3.5(c) shows the valid and
invalid turns considered to prevent deadlocks.

42 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

(a) (b)

(c) (d)

Figure 3.5: (a) XY. (b) Negative-First. (c) West-First. (d) North-Last.The solid red
lines indicate the non-valid turns and the dashed lines indicated the valid turns.

3.5.3 North Last Routing

In North Last (NL) routing, packets are routed in any direction, but turns to
north are performed at the end. In other words, once a packet flows across
an output channel heading to the north, the following output channels, that
will be used, cannot face the other directions. Therefore, any route can be
taken if the destination is south of the source since no turn to the north is
required. Figure 3.5(d) shows the valid and invalid turns in NL routing.

3.5.4 Negative First Routing

In Negative First (NF) routing, packets are firstly routed towards the neg-
ative directions, west and south, and no turn towards these directions is
allowed later. Therefore, if the destination is north-east or south-west of
the source, any minimal route can be taken. Otherwise, the routing is de-
terministic. Figure 3.5(b) shows the valid and invalid turns used to prevent
deadlocks.

3.5.5 Odd Even Routing

The Odd Even (OE) routing was introduced in order to provide a more even
degree of adaptiveness. In OE routing the columns of the mesh architecture
are separated as odd or even. The first column is even, the second column
is odd. The admissible routes have to obey the two following rules:

3.5. ROUTING WITHIN SDNOC 43

Rule 1: In an even column, a turn from the east to the north or the south
is forbidden.

Rule 2: In an odd column, a turn to the west is forbidden.

These two rules ensure the deadlock-freedom of the OE routing algo-
rithm. In Figure 3.6, the blue lines indicate the valid turns and the red
lines indicate the non-valid turns.

a. Even b. Odd

Figure 3.6: Odd-Even Routing

3.5.6 Modified Odd Even (OESL)

The proposed routing algorithm has two main functionalities: the com-
putation of the admissible routes and the selection of a route among the
admissible routes. In order to compute the admissible routes, the proposed
routing algorithm relies on a turn model routing algorithm, OE [Chiu,
2000]. OE tends to provide better performance and higher adaptiveness
than the other turn model algorithms. Based on the SDNoC architecture,
once the controller has computed a set of admissible routes using the OE
routing algorithm, it applies a selection function on the set in order to get
the best possible route.

The selection function has a set of routes and the network state as in-
puts and outputs the optimal route from the set. In order to determine
which route is the optimal one, the first step is to define metrics that assess
the routes. The proposed selection algorithm that is implemented within
the controller takes into account the link load and the router load. The
load of a link (li) corresponds to the number of flits per second that flow
through the link. The router load (rij) is the number of flits per second
arriving towards the router. When the selection process takes place, the
controller is responsible to run an algorithm selecting the best route from
an admissible set of routes. For this reason the two aforementioned metrics
were designed in order to avoid the highly-loaded links and routers within

44 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

the route.

Highly-loaded links affect the bandwidth and their corresponding input
buffers are likely to be full. Therefore, sending packets towards highly-
loaded links will imply a considerable latency for the incoming packets since
they will have to wait for the release of the links and the corresponding
input buffers before accessing them. On the other hand, the more a router
is loaded, the more time it will take to process incoming packets since it
has to process first the already present packets. By avoiding the highly-
loaded links and routers, the selection function (SLsum) aims to balance the
traffic as much as possible across the data network and therefore avoids the
formation of congested network areas. In order to determine the best route
among an admissible routes set, these metrics have to be used to evaluate
the routes. In this case, the controller computes a score (S) for each route
among the set using a combination of the aforementioned metrics. With the
proposed selection function, the route scores are computed by summing the
load on the links and the routers along the routes. This score computation
is computed with the following equation:

SLsum =

Lf∑
i=0

li +

Sf∑
i=0

Sf∑
j=0

rij . (3.1)

Where Lf is the number of the sets of the link load values along the
route and Sf the number of the sets of the router load values along the
route. The controller is aware of the load of the links from the network
monitoring process, and the load of a router is inferred from the load on
the links arriving towards the routers as:

rij =
∑
i=1

li
L
. (3.2)

Where rij is computed as the average load on the links arriving towards
the router so that the router load and the link load stay in the same order
of magnitude and L is the number of the router links. Thereby, the route
score is equally affected by the load on the links and on the routers.

At the end, the controller computes the S for each route within the set
according to the SLsum and chooses the route with the lowest score. In the
case of multiple routes having the same S, a random choice is made.

3.6. MICROLET PROTOCOL 45

3.6 MicroLET Protocol

MicroLET is the first SDNoC-based communication protocol for chipLET-
based systems [Ellinidou et al., 2019]. The design of MicroLET is based on
the above mentioned SDNoC architecture. More precisely the SDNoC inte-
gration within chiplet-based systems is depicted in Figure 1.4 and described
in Chapter 1.2. As it has previously been mentioned the Openflow [McK-
eown et al., 2008] is the most common and widely used SDN-based com-
munication protocol, which enables communication between controller and
routers. However, Openflow is designed for large scale networks and its
integration to micro-scale networks seems impossible due to many network
messages that needed to be exchanged between participants. Hence the
necessity of a novel lightweight SDNoC communication protocol destined
for future SoCs is obvious. Therefore, the MicroLET SDNoC-based com-
munication protocol was introduced, which consists of 3 main phases: 1)
Handshake Phase 2) Network Monitoring Phase 3) Routing Phase, which
are detailed in Section 3.6.3.

3.6.1 Packet format

Processing cores exchange data among themselves by sending packets across
the interconnect and consequently through routers. Furthermore a router
sends packets to controller but also to the other routers by using the data
link layer. A packet is divided into a sequence of fixed-length flits, which
are composed of a header flit, body flits, and a tail flit. The packet format
in the SDNoC is illustrated in Figure 3.7 and it includes 8 fields:

• TYPE: indicates the type of the messages (different type fields are
shown in Table 3.2).

• SRC: consists of the source ID.

• DST: consists of the destination ID.

• NEXT_HOP: consists of the next hop ID.

• PRIO: contains the priority of the packet, which can be high or low
in order to be pipelined accordingly.

• PAYLOAD: contains the real data.

• TS: is the timestamp and represents the send time.

• CRC: represents the Cyclic Redundancy Check, which is the error-
detecting code field.

46 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

SRC (10) DST(10)TYPE (2) PAYLOAD (N)PRIO(2) TS(2) CRC (2)

0x01 : Hello
0x02: ACK

0x03:
Route_Rep

.

.

.

#1 (0,0)
#2 (0,1)
#3 (0,2)
#4 (0,3)

.

.
0: Low
1: High

1020 cycles
… CRC-1

Header-Flit Body-Flit Tail-Flit

Next_Hop(10)

Figure 3.7: Packet format

3.6.2 Network Messages

The network messages are exchanged between the network entities through
physical links. The different types of messages, which are integrated in order
to fit in the packet format, are illustrated in Table 3.2. The communication
protocol includes 8 types of messages with different content. The HELLO

message is designed for the handshake phase and the ROUTE_REQUEST,

ROUTE_REPLY, FLOW_UPDATE, NET_REQUEST, NET_REPLY are designed for
the network monitor and routing phases. Furthermore, it is important
to mention that every ROUTE_REPLY, FLOW_UPDATE, NET_REPLY message
should be acknowledged by an ACK message, otherwise it should be retrans-
mitted.

3.6.3 Communication Protocol Phases

The MicroLET communication Protocol consists of 3 main phases:

1. Handshake Phase: During the Handshake Phase a HELLO message is
exchanged between the participants. In this way, the controller is
aware of how many routers are in the network and about their ID’s.

2. Network Monitoring Phase: In order to move to the Network Mon-
itor phase, the Handshake phase should take place beforehand. The
controller requests to be informed about the network state by peri-
odically (within a period τ , explained in Chapter 4.3.1.1) sending a
NET_REQ message to the routers. The receiver router should reply
with a NET_REPLY message, which includes the current flits passing
by every port. Each router has a counter in the buffer of every port
and it is increasing according to the flits that are coming from this
port in a given period. Therefore, each router monitors the flits that

3.6. MICROLET PROTOCOL 47

are inserted through the North, East, South, West and Local ports
during an interval time and forms the NET_REPLY message. As soon
as the controller receives a NET_REPLY, it should send an ACK back to
the routers and it updates its parameters that would be needed for
the next phase. With this process the controller manages to have a
network state view, which is the key element for the selection function
during the routing phase.

Table 3.2: Designed Network messages

Type T-Value Description Contents

HELLO 0x01
Sent by router to controller

and vice versa or by router to
router for the handshake process.

HELLO

ACK 0x02
Sent by router to controller or

by transmitter router to receiver
router to acknowledge the request.

ACK

ROUTE_REQ 0x03
Sent by router to controller

which asks a route for a packet.
Packet ID

ROUTE_REPLY 0x04
Sent by controller

as an answer to a route request
message.

Packet ID, Route

FLOW_UPDATE 0x05
Sent by controller to routers

in order to update the outport
of a packet.

Packet ID, Route

NET_REQ 0x06
Sent by controller to routers

which asks information
for network.

NET-REQ

NET_REPLY 0x07
Sent by routers as an

answer to a network state
request message.

N= #,
S=#,
E=#,
W=#,
L=#

DATA 0x8 Contains the data. PAYLOAD

3. Routing Phase: When the controller receives a ROUTE_REQ message
from a source router, it extracts the PACKET_ID and the SRC and
DST addresses from the upcoming flits which will be the input of
the routing algorithm function. Afterwards, based on the source and
the destination, the routing algorithm outputs a set of admissible
routes. Therefore, the routing algorithm has two main functionali-
ties: (1)the computation of the admissible routes and (2)the selection
of a route among the admissible routes. In order to compute the ad-
missible route sets, the proposed routing algorithm relies on a turn
model routing algorithm. These algorithms have the advantages to

48 CHAPTER 3. SOFTWARE DEFINED NETWORK-ON-CHIP

be lightweight and deadlock-free. Among the existing turn model
routing algorithms, Odd Even [Chiu, 2000] is used since it tends to
provide better performance and higher adaptiveness than the other
routing algorithms. Finally, once the controller has computed a set
of admissible routes using the OE routing algorithm, it applies the
selection function on the set in order to get the best possible route
and forms the ROUTE_REPLY message. The modified version of OE
routing algorithm is described in Section 3.5.

3.7 Summary-Discussion

In this chapter, the SDN technology was presented together with its se-
curity issues and the SDN communication protocol OpenFlow. Afterwards
the different research contributions that have been already seen in literature
were described. It is followed a discussion about how the SDN technology
will solve the challenges of the classic NoC but also about the new chal-
lenges that SDNoC need to encounter. In each research paper, seen in
literature, different SDNoC architecture was described.

As it previously mentioned the SDNoC is introduced in 2014 by [Cong
et al., 2014], however they were multiple contributions during the last years,
most of researcher explored the hardware implementation of it by neglect-
ing the networking and security aspect of it. Hence in this thesis, an effort
has been made in order to address this two main field within SDNoC field.
Furthermore each researcher individual described and different SDNoC ar-
chitecture, hence in this research a potential prototype by respecting both
the original SDN architecture but also the hardware integration of the SD-
NoC is presented together with a novel communication SDNoC communi-
cation protocol.

As far as the security is concerned, the [Ruaro et al., 2020] presented a
systemic and secure SDN framework for NoC. In their approach the authors
considered an architecture specific threat model based on malicious packet
software task able to perform: DoS: generation of an incorrect SDN-router
configuration packet aiming to crash the controllers’ NI, flooding: flood
the controllers’ NI with malicious SDN-router configuration packets and
spoofing: malicious packet trying to assume the identity of one actor of the
framework (global manager, controller, manager). It has to be mentioned
that in their approach they consider both a controller but also a global
manager for managing the configuration and routing of the network in
comparison with the proposed approach where only a centralized controller

3.7. SUMMARY-DISCUSSION 49

is used. However, a security model for SDNoC but also the exploration
of different specific attacks within SDNoC remained unexplored. Hence,
the second priority of this thesis was the exploration of the security within
SDNoC, by firstly proposing a secure Group Key Agreement (GKA) com-
munication protocol in order to ensure not only the secure configuration of
the routers through the controller but also the secure communication be-
tween routers (Chapter 5.2). Afterwards the possibility of a specific attack,
in this case a novel Hardware Trojan (HT)-Greyhole attack within SDNoC
is explored for first time (Chapter 5.4). Furthermore the Byzantine faults,
which are arbitrary faults within SDNoC, are investigated and a novel algo-
rithm for the controller in order to tolerate the Byzantine faults is designed.

Moreover different routing algorithms and a novel routing algorithm
based on an already existing one were presented in the context of SDNoC.
The routing within SDNoC is a key element due to flexibility of defining
and choosing different paths for a packet that a controller can apply to the
routers of the network. Hence, the controller can choose one or multiple
routing algorithms in order to find the best path for a given source to a
given destination. Additionally, a novel communication protocol specifically
designed for microscale networks, called MicroLET was introduced along
with a novel packet format and a new message stack. Finally a novel
routing algorithm based on an already existing one was presented in the
context of SDNoC. The evaluation of the SDNoC architecture with the
above mentioned routing algorithms will be presented on Chapter 4.

Chapter 4

Implementation and
Evaluation of SDNoC

4.1 Introduction

Following Chapter 3, in this chapter an implementation and evaluation of
the proposed Software Defined Network-on-Chip (SDNoC) prototype is de-
scribed. Firstly, the different Network-on-Chip (NoC) simulators together
with the chosen simulator are presented in detail. Afterwards, the imple-
mentation of the proposed SDNoC architecture is described, followed by the
changes that have been made within the chosen simulator. Thereafter, an
evaluation of the first SDNoC communication protocol (MicroLET), which
was introduced in Chapter 3 is presented. The protocol is designed in or-
der to provide a new routing approach based on Software Defined Network
(SDN) technology and a new message stack specifically designed for micro-
scale networks. It follows a performance evaluation of different routing
algorithms under different scenarios. The considered scenarios consist of
3 topologies, under 3 different traffic models and under multiple injection
rates. Since the scenarios are based on numerous sources of randomness
the distribution converges to a normal or Gaussian distribution. Hence, the
standard deviation coverage of the different scenarios is analyzed. Another
research question that is answered within this chapter is how the perfor-
mance is affected by the different parameters, for this reason a statistical
analysis is followed in order to show the interaction of the different param-
eters within the network. Precisely an ANalysis Of VAriances (ANOVA)
between latency and throughput and each factor separately: traffic injec-
tion rate (tir), routing, and traffic is performed.

51

52CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

Table 4.1: NoC Simulators

Category Simulator Language Topology Routing Traffic

Regular
network

NS-2 [Hegedûs et al., 2005] C++, Otcl Mesh Dynamic Constant
OMNeT++ [Al-Badi et al., 2009] C++ Torus Dimension-order Exponential

NoC
dedicated

Nostrum [Lu et al., 2005]
System C
and Python

Mesh,
Torus,
Ring, etc

XY, Deflection Synthetic

Noxim [Catania et al., 2015] System C Mesh multiple Synthetic

Nirgan [Jain et al., 2007] System C
Mesh,
Torus,
Ring

Source, XY
and OE

Synthetic,
embedded

[Grecu et al., 2008] Java multiple user-defined Uniform
Booksim [Jiang et al., 2013] C++ multiple multiple Synthetic

Full-system Garnet [Agarwal et al., 2009] C++ multiple
XY, Turn model
and Random

Synthetic

4.2 NoC Simulators

In order to evaluate the proposed SDNoC architecture a NoC simulator
should be chosen. A common challenge when selecting the right NoC simu-
lator is that available tools usually are strong in certain aspects but they are
having deficits in others. NoC simulators can be divided into 3 categories:

• Regular network: simulators that are used in communication net-
work, like NS-2 [Issariyakul and Hossain, 2009], OMNeT++ [Varga,
2010]. These simulators utilize the similarities that exist between
general networks and NoC.

• NoC dedicated: implement a high-level representation of NoC,
modeling data at message level, providing a set of architectures and
protocols, and evaluating the network with the chosen traffic pattern
in terms of latency, throughput and power. Some of the most famous
simulators are Nostrum [Lu et al., 2005], Noxim [Catania et al., 2015],
Nirgam [Jain et al., 2007] and Booksim [Jiang et al., 2013].

• Full-system: integrate a NoC model into a full-system simulator.
Garnet [Agarwal et al., 2009] is a NoC model integrated into gem5
[Binkert et al., 2011], which is a simulation platform for Chip Multi-
Processor (CMP).

An overview of NoC simulators can be found in Table 4.1, where the pro-
gramming language, the supported topologies, routing and traffic of each
simulator are presented. All NoC simulators have their advantages and
limits. Hence, in order to chose a simulator for the design and evaluation
of the SDNoC prototype some parameters were defined. Precisely, the fol-
lowing parameters are of high importance in the selection of the best NoC

4.3. IMPLEMENTATION OF SDNOC PROTOTYPE 53

simulator: measurements options, routing options, routing settings, traf-
fic options, configuration option, full-system simulation (for future work).
Based on the above mentioned parameters, the Garnet simulator was cho-
sen. Garnet enables the evaluation of system-level optimization techniques
within a state-of-the-art interconnection network by obtain correct results.
Furthermore, it supports the evaluation of novel network proposals in a
full-system fashion. Also, it enables the implementation and evaluation
of techniques that simultaneously use the interconnection network as well
as other top-level system components, like caches, memory controller, etc.
Such techniques are difficult to evaluate faithfully without a full-system
simulator that models the interconnection network as well as other compo-
nents in detail.

In particular, the Garnet2.0 version of the Garnet simulator, which
provides 1-stage pipeline and more configurability for the users over the
previous version, was used. Precisely, it provides a cycle accurate micro-
architectural implementation of an on-chip network router. It leverages
the topology and routing infrastructure provided by gem5’s ruby memory
system model. The default router is a state of the art 1 cycle pipeline.
Each router in the topology file can be given an independent latency, which
overrides the default. In addition, each link has 2 optional parameters:
src_outport and dst_inport which are strings with names of the output
and input ports of the source and destination routers for each link [Agar-
wal et al., 2009]. These can be used inside Garnet2.0 to implement custom
routing algorithms.

4.3 Implementation of SDNoC prototype

In order to design and evaluate the proposed SDNoC architecture but also
to evaluate and compare the performance of the different routing algo-
rithms within the architecture, simulations were performed with the Gar-
net2.0 [Agarwal et al., 2009], which was build within gem5 simulator. The
gem5 simulator was build within Ubuntu 18.04. The traffic within the sim-
ulator is generated by the processing cores according to the traffic injection
rate, which is the average number of packets injected by the cores into
the network per clock cycle (0 < tir ≤ 1). Each core generates packets
following a Bernoulli distribution, described in the specification of the sim-
ulator [Binkert, 2020], with mean tir. In other words, each processing core
will indeed generate a packet each 1/tir clock cycles on average, but the
actual time at which the packets are transmitted is random.

54CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

build

Mesh_XY.py
ext

configs

include

build_opts

GEM5

m5out

results

site_cons

src

system

tests

util

var

topologies

mem
ruby

network

GarnetNetwork.cc

GarnetNetwork.hh
CONTRIBUTING.md

COPYING

LISENSE

MAINTAINERS

README

SConstruct

my_routing.sh

north_first.sh

north_last.sh

odd_even.sh

Xy.sh

west_first.sh

Router.cc

InputUnit.hh

OutputUnit.cc

InputUnit.cc

RoutingUnit.hh

Router.hh

RoutingUnit.cc

OutputUnit.hh

network
Network.py

:folder

:file

garnet2.0

Figure 4.1: Modified and Added files tree

4.3. IMPLEMENTATION OF SDNOC PROTOTYPE 55

A folder tree of the modified and added files and folders within the of-
ficial gem5 simulator is depicted in Figure 4.1. The main changes within the
Garnet2.0 model has been made in the files: GarnetNetwork.cc, Router.cc,
RoutingUnit.cc, InputUnit.cc, OutputUnit.cc, the code of which can
be found on Appendix A. Specifically, an additional router is added that
is linked with the controller, for convenience reason the code of the con-
troller is implemented as a process within the router code. Hence the file
Mesh_XY.py (Appendix A.7) is modified (main changes: lines 143-173).
Afterwards, in the file GarnetNetwork.cc (Appendix A.3) some extra lines
of code were added (lines: 72-93), in order to implement the SDNoC con-
troller together with its NI. The main changes have been made in the file
Router.cc (Appendix A.2), where links were created between all routers
and controller and the routing process was modified (lines: 147-231).
Another file that was modified is the RoutingUnit.cc (Appendix A.1),
where the controller computes the routes according to the selected rout-
ing algorithm and selects a route according to the selection function (lines:
238-345). Also, the controller updates the flow tables of the routers along
the selected route (lines: 345-364) by following all the implemented routing
algorithms (XY, WF, OE, NL, NF, OESL) in lines: 400-2043 . In the files
InputUnit.cc (A.4), the main changes happened between lines 100-173.
Precisely, in the lines 103-140 it is checked if a flow entry exists for an
incoming packet. If it doesn’t exist (lines 117-122), the packet is sent to
the controller otherwise the packet is forwarded according to the router flow
table (lines 125-139). Furthermore, in order to test the SDNoC network un-
der different parameters, 6 scripts were created that represent the different
6 Routing algorithms that are tested: my_routing.sh, north_last.sh,

north_first.sh, odd_even.sh, west_first.sh, xy.sh. The results of
the scripts are on the folder results (Figure 4.1).

4.3.1 SDNoC Parameters

As far as the performance measurements that have been used in order to
evaluate the routing algorithms:

• Latency: the time that required to transmit a packet from a given
source to a given destination. (clock cycles)

• Throughput: the number of the received packets by unit of time.
More precisely the formula that has been used is the following:

Throughput =

∑
received flits

number of nodes ∗ total cycles
(4.1)

56CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

A majority of network studies require an interconnect model to be eval-
uated with synthetic traffic types as inputs. Such studies are very common
in the interconnection network research community. Historically, several of
synthetic traffic patterns are based on communication patterns that arise
in particular applications [Bahn and Bagherzadeh, 2008]. Synthetic traffic
stresses various network resources and provides an estimate of the net-
work’s performance under various scenarios. Furthermore Garnet has been
designed to run in a network-only mode and supports only synthetic traf-
fic types. Hence, in this scenario, three synthetic traffic patterns has been
chosen: Transpose, BitReverse, Uniform, which are the most used synthetic
traffics within NoC [Ma et al., 2014]. Two of them are shown in Figure 4.2:

Transpose: a node (i, j) only sends packets to its symmetric node (n−
1− j, n− 1− i), where n is the size of the mesh.

BitReverse: Under BitReverse traffic, a source node sends packets to the
node whose the address is the bit reversal of the sender address. For
instance, a source node with the binary address (b3, b2, b1, b0) sends
packet to the node with binary address (b0, b1, b2, b3).

Uniform: each node randomly sends packets to any other node with the
same probability.

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

CT : Controller
: Network Interface
: NoC

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

: Processing Element
: Router
: Chiplet

NI

PE

PE
NI

CT
NI

PE
NI (0,0)

(1,0)

(2,0)

(3,0)

(0,2)(0,1)

(1,3)(1,2)(1,1)

(2,1) (2,2)

(3,2)(3,1) (3,3)

(0,3)

(2,3)

: Source :Destination

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

CT
NI

PE
NI (0,0)

(1,0)

(2,0)

(3,0)

(0,2)(0,1)

(1,3)(1,2)(1,1)

(2,1) (2,2)

(3,2)(3,1) (3,3)

(0,3)

(2,3)

Figure 4.2: Source and destination under Transpose and BitReverse traffic

As far as the choice of the traffic injection rate, at low traffic loads, the
average packet latency exhibits a weak dependence on the tir. However,

4.3. IMPLEMENTATION OF SDNOC PROTOTYPE 57

when the traffic injection rate exceeds a critical value, the packet delivery
time rise abruptly and the network throughput starts collapsing [Ogras and
Marculescu, 2005]. This is obvious from the Figure 4.3, where the average
latency of different routing algorithms is presented under Transpose traffic
and under multiple traffic injection rates. Hence by observing the perfor-
mance of the routing algorithms under different injections rates, the traffic
injection rate values of 0.015, 0.016, 0.017, 0.018, 0.019, 0.02, 0.022, 0.023, 0.024
packet/cycle/core were chosen for the simulations. According to [Bahn and
Bagherzadeh, 2008] similar average traffic injection rate is used also in the
following applications: fft, radix, water-nsquared, water-spatial. Moreover
from the Figure 4.3 it is obvious that the proposed OESL has the lowest
latency during higher injection rate.

Figure 4.3: Average latency of Transpose traffic under different traffic injection rates
(Topology:8x8).

4.3.1.1 Impact of τ

The evolution of the average latency and throughput as a function of the
parameter τ for each traffic scenario is illustrated in Figure 4.4 1. Despite
the traffic scenario the network performance is expected to decrease as τ
increase since the monitoring process reports an older value of the link
load. The routing does not rely on a correct view of the network state,
which implies a network performance decrease. This case is observed under
Transpose and Bit-Reverse traffic, due to the similar behavior of the traffic
over multiple consecutive periods τ . Thereby, through the monitor process

1This work has been done under collaboration with Ir. Adil Layach during his Master
thesis ”Software-defined routing protocols for system-on-chip architectures”.

58CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

an accurate view of the network state is reported to the controller and it
is able to correctly answer a ROUTE_REQUEST message by calculating routes
that avoid links and routers used by already deployed routes. For higher
values of τ , the network performance is not affected because after a certain
time all the possible source-destination pairs have already a certain route.

Figure 4.4: Impact of τ on the average latency and throughput (tir = 0.02).

On the other hand τ does not affect the network performance under
Uniform traffic. This is expected due to the unreliability of this traffic sce-
nario. Since the traffic is random, it is very likely to have different behavior
from a period τ to another despite the actual value of τ .

4.3.2 MicroLET

In order to implement the MicroLET communication protocol within the
Garnet2.0 simulator, based on SDNoC prototype, the 3 phases of the proto-
col (Section 3.6.3): Handshake Phase, Network Monitoring Phase, Routing
Phase need to be taken into account. For the implemented scenario it is
assumed that the Handshake Phase has already taken place. Concerning
the Network Monitoring Phase, the NET_REQUEST and NET_REPLY messages
were modeled as 1-flit packets. Nonetheless, they do not contain the con-
tent discussed before, because Garnet2.0 does not support the modulation
of real payload within the exchanged packets. Moreover, regarding the
Routing phase, in order to measure the link load, each router has a counter
for each of its input channels. Each time a flit reaches an input channel,
the corresponding counter is incremented. When the controller receives a
NET_REPLY message from a router, it reads the value of the counters in
order to get the link load and stores it within the corresponding N × N

4.4. ROUTING ALGORITHMS 59

matrix. The routers manage the incoming packets according to flow tables.
Also, flow table lookups are done in 1 clock cycle for the proposed network,
however this might differ according the size of the flow table and the size
of the network. When a router receives a packet that does not match with
one of its flow entries, it forwards the packet towards the controller. After-
wards, the controller runs the routing algorithm in 1 clock cycle. Therefore,
the time needed by the controller to compute the routes is not modeled.
When the controller has computed a route, it updates the flow tables of
the routers along the route and sends back the packet to the source router.
The results and the routing algorithms are presented in the next section.

4.4 Routing Algorithms

The main focus was the investigation of the perfomance of different routing
algorithms by evaluating their throughput and latency under different traf-
fic scenarios and with a different number of nodes. Specifically, 3 topologies
have been simulated: 2× 2, 4× 4, 8× 82, under 3 different synthetic traffic
scenarios: Uniform, BitReverse and Transpose (Figure 4.2), different traf-
fic injection rates: 0.015, 0.016, 0.017, 0.018, 0.019, 0.02, 0.022, 0.023, 0.024
packets/cycle/core, using different routing algorithms: XY, OE, NL, WF,
NF and OESL. Also 40 iterations of each scenario were performed, accord-
ing to convergence of the average value, and the mean value is depicted on
the figures below. In contrast to the state of the art, in this research the
performance of different routing algorithms within SDNoC under different
synthetic traffic pattern scenarios and topologies has been investigated by
bringing into the surface new scientific results about the performance of
SDNoC and its possibilities to accommodate any kind of routing algorithm
according to the traffic pattern in this case.

The simulation results have been categorized according to the different
traffic patterns. In Figures 4.5, 4.6 and 4.7, the performance measurements
(throughput and latency) of the 6 routing algorithms are depicted under
Uniform traffic. In the scenarios of a 2 × 2 topology (Figures 4.5, 4.8 and
4.11) the throughput and latency and in the scenarios of a 4 × 4 topol-
ogy (Figures 4.6(b) 4.9(b) 4.12(b)) the throughput measurements of the
different routing algorithms are identical. Under Uniform traffic, in the

2Due to the limitations of the simulator no larger topology has been evaluated. How-
ever, as it previously mentioned the SDNoC is able to accommodate larger topologies by
simulating cluster of cores and managing the routing within these clusters with the help
of a cluster controller. Hence, by taking into account the future SoC architectures here
a cluster of cores or a inter chiplet communication paradigm is simulated.

60CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

4× 4 latency graph (Figures 4.6(a)) the XY routing algorithm outperform
the others algorithms. Furthermore, in a scenario of an 8×8 topology (Fig-
ure 4.7) it is obvious that XY routing algorithm has the best performance
(the lowest latency, the highest throughput) followed by the proposed OESL
routing algorithm.

(a) latency (b) throughput

Figure 4.5: Performance measurements under Uniform traffic (Topology: 2x2 Mesh).

(a) latency (b) throughput

Figure 4.6: Performance measurements under Uniform traffic (Topology: 4x4 Mesh).

4.4. ROUTING ALGORITHMS 61

(a) latency (b) throughput

Figure 4.7: Performance measurements under Uniform traffic (Topology: 8x8 Mesh).

Figures 4.8, 4.9 and 4.10 depict the performance measurements (through-
put and latency) of the 6 routing algorithms under BitReverse traffic. In
2×2 and 4×4 NoC topologies both latency and throughput measurements
of the different routing algorithms are similar, except for the latency of the
4 × 4 Mesh topology (Figure 4.9(a)), where the proposed OESL has lower
latency in contrast to the other routing algorithms. In a 8× 8 NoC topol-
ogy, OESL routing algorithm has the best performance.

(a) latency (b) throughput

Figure 4.8: Performance measurements under BitReverse traffic (Topology: 2x2 Mesh)

62CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

(a) latency (b) throughput

Figure 4.9: Performance measurements under BitReverse traffic (Topology: 4x4 Mesh)

(a) latency (b) throughput

Figure 4.10: Performance measurements under BitReverse traffic (Topology: 8x8 Mesh)

Figures 4.11,4.12 and 4.13 depict the performance measurements (through-
put and latency) of the 6 routing algorithms under Transpose traffic. In
the 2× 2 and 4× 4 topologies, both latency and throughput measurements
of the different routing algorithms are similar, except for the latency of the
4 × 4 Mesh topology(Figure 4.9(a)), where the proposed OESL has lower
latency in contrast to the other routing algorithms. In the 8 × 8 topol-
ogy, OESL routing algorithm has the best performance. Furthermore it
should be noted that OE routing algorithm has the highest latency and
lowest throughput, but with the help of the proposed novel selection func-
tion within OE, it achieves the lowest latency and the highest throughput.
Furthermore, the proposed OESL algorithm outperforms the rest of the
algorithms.

4.4. ROUTING ALGORITHMS 63

(a) latency (b) throughput

Figure 4.11: Performance measurements under Transpose traffic (Topology: 2x2 Mesh)

(a) latency (b) throughput

Figure 4.12: Performance measurements under Transpose traffic (Topology: 4x4 Mesh)

(a) latency (b) throughput

Figure 4.13: Performance measurements under Transpose traffic (Topology: 8x8 Mesh)

64CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

4.4.1 Standard Deviation Coverage

Since the proposed scenarios are based on numerous sources of randomness
the distribution converges to a normal or Gaussian distribution. A normal
distribution, called Gaussian or bell curve, is a very common continuous
probability distribution in statistics but also in science. The normal distri-
bution model derives from the Central Limit Theorem [Rosenblatt, 1956].
This theory states that averages calculated from independent, identically
distributed random variables have approximately normal distributions, re-
gardless of the type of distribution from which the variables are sampled.
The Probability Density Function (PDF) of a normal distribution is:

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.2)

, where µ is defined as the mean of the distribution, σ is the standard de-
viation and σ2 defined as the variance.

The standard deviation (σ) is a measure of the amount of variation of a
set of values [Bland and Altman, 1996]. A low standard deviation indicates
that the values tend to be close to the mean of the set, while a high standard
deviation indicates that the values are spread out over a wider range. The
standard deviation follows the empirical rule, in which:

• 68% of data falls within the first standard deviation from the mean.

• 95% of data falls within two standard deviations.

• 99.7% of data falls within three standard deviations.

The graphs in the previous section represent the average value of latency
and throughput of different routing algorithms under different traffics and
different traffic injection rate. However, for a better understanding and
since the proposed scenarios converge to a normal distribution the calcula-
tion of standard deviation and coverage was mandatory. Hence, for every
40 iterations of every scenario the 95% coverage of data that falls within
two standard deviations (µ − 2σ, µ + 2σ) is determined, consequently the
upper and lower bound of each mean were calculated. The results are de-
picted in the Figures 4.14 -4.22.

Precisely, in the 2 × 2 topology of Uniform, Transpose and BitReverse
traffic it is obvious that the different values of the latency and throughput
tend to a linear behavior (Figure 4.14, 4.17 and 4.20). Similarly in the 4×4
graphs of throughput of the different routing algorithms tend to a linear

4.4. ROUTING ALGORITHMS 65

behavior. However, in the latency graphs of 4× 4 topology, the first differ-
ence between the routing algorithms could be noticed . In Figure 4.15(a)
the latency values are between 14− 15.5 cycles. The XY routing algorithm
has the lowest latency between 14−15.5 cycles. Nevertheless, the difference
between latency measurements is less significant in most of 4×4 topologies
(Figure 4.18, Figure 4.20).

On the other hand, when a bigger topology is simulated (8 × 8), the
differences between both latency and throughput graphs from the routing
algorithms are more obvious. In the Uniform traffic scenario, the average
packet latency (Figure 4.16(a)) was between 20− 150 cycles and the aver-
age throughput between 0.05−0.13 flits/cycle/core (Figure 4.16(b)). More
precisely, in Figure 4.16(a) the XY routing is linear in contrast to the other
routing algorithms. However, with a traffic injection rate of 0.015− 0.017,
the average latency of OESL and XY is identical, in higher traffic injection
rate the latency of OESL is increasing in a similar way as the other routing
algorithms.

It has been noted that XY routing performs better in Uniform traf-
fic because it incorporates global long term information about the traffic
pattern. However, the other algorithms select the routing paths based on
local, short-term information. This decision benefits only the packets in
the nearest future, which tend to interfere with other packets. Hence, the
smoothness of Uniform traffic is not necessarily maintained in the long term.
However, for most of the real world applications, each node will commu-
nicate with some nodes more frequently compared to others [Kundu and
Chattopadhyay, 2018]. The XY routing is unable to deal with such non-
uniform traffic patterns because of its determinism. Precisely, XY routing
maintains the irregularity of the non-uniform traffic, as it maintains the
smoothness for the Uniform traffic [Hu and Marculescu, 2004]. This is
obvious from the following figures under Transpose and BitReverse traffic.

As it is previously mentioned, in the BitReverse traffic scenario, the
difference between latency and throughput measurements is less significant
in most of 4 × 4 and 2 × 2 topologies (Figure 4.17, Figure 4.18). How-
ever, in the scenario of 8 × 8 topology the average packet latency (Figure
4.19(a)) it was between 20−80 cycles and the average throughput between
0.06 − 0.13 (Figure 4.19(b)). Precisely, it is obvious from the graphs that
OESL outperforms the other routing algorithms by achieving the lowest la-
tency and the highest throughput. Particularly, under the highest injection
rate OESL achieved 17% better latency and 19% better throughput than
the classic OE.

66CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

(a) latency (b) throughput

Figure 4.14: 95% coverage of mean values under Uniform traffic (Topology: 2x2 Mesh).

(a) latency (b) throughput

Figure 4.15: 95% coverage of mean values under Uniform traffic (Topology: 4x4 Mesh).

(a) latency (b) throughput

Figure 4.16: 95% coverage of mean values under Uniform traffic (Topology: 8x8 Mesh).

4.4. ROUTING ALGORITHMS 67

(a) latency (b) throughput

Figure 4.17: 95% coverage of mean values under Bit Reverse traffic (Topology: 2x2
Mesh).

(a) latency (b) throughput

Figure 4.18: 95% coverage of mean values under Bit Reverse traffic (Topology: 4x4
Mesh).

(a) latency (b) throughput

Figure 4.19: 95% coverage of mean values under Bit Reverse traffic (Topology: 8x8
Mesh).

68CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

(a) latency (b) throughput

Figure 4.20: 95% coverage of mean values under Transpose traffic (Topology: 2x2
Mesh).

(a) latency (b) throughput

Figure 4.21: 95% coverage of mean values under Transpose traffic (Topology: 4x4
Mesh).

Similarly, in the Transpose traffic scenario the difference between la-
tency and throughput measurements is less significant in most of 4× 4 and
2× 2 topologies (Figure 4.20, Figure 4.21). Nevertheless in an 8× 8 topol-
ogy the average packet latency (Figure 4.22(a)) was between 20− 60 cycles
and the average throughput between 0.06 − 0.12 flits/cycle/core (Figure
4.22(b)). Precisely, under the highest injection rate OESL achieved 10%
better latency and 16% better throughput than the classic OE.

4.5. ANALYSIS OF VARIANCES 69

(a) latency (b) throughput

Figure 4.22: 95% coverage of mean values under Transpose traffic (Topology: 8x8
Mesh).

4.5 Analysis of variances

There are a lot of inputs and outputs in the implemented scenarios, there-
fore the impact of each input on the perfomance of the network is a very
interesting research topic to investigate. Hence, the ANOVA technique is
selected.

4.5.1 Background

ANOVA is a statistical technique which is used to check if the means of two
or more groups are significantly different from each other. It was developed
by statistician and evolutionary biologist Ronald Fisher [Scheffe, 1999]. In
its simplest form, ANOVA provides a statistical test of whether two or more
population means are equal, and therefore generalizes the t-test beyond two
means.

A system is referred to as multivariate when there are multiple depen-
dent input variables. The input variables are referred to as factors. A factor
x can be any variable (or parameter) which has probably an influence on
the studied phenomenon. The factors are considered as a possible cause of
the of the system behavior. The discrete values taken by the factors are
called levels.

The response of the system is the set of output values that can be
measured or applied to the studied phenomenon. The response is a direct
consequence of the level of the factors that are injected as an input of the
experiment. For example, if a system with a discrete-value factor a is con-
sidered to conduct k different experiments. On this system i represents the

70CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

observation number of experiments, and j represents a different level of the
predictor variable xij with (1 ≤ j ≤ n and 1 ≤ i ≤ k). The matrix xij
is called the matrix of experiments. Furthermore, the chance of an error
during the experiments represented as ε. If an assumption that the system
model is linear is made, the response obtained during i-th experiment can
be mathematically expressed as:

yi = a0 +

n∑
j=1

aj xij +

n∑
j,k 6=1

ajkxijxik + εi (4.3)

or, as a linear system of equations:

Y =

 y1
...
yn

 =



a0

a1

a2

a3
...
an





1 x11 x12 . . . x11x12 x11x13 . . .
1 x21 x22 . . . x21x22 x21x23 . . .
1 x31 x32 . . . x31x32 x31x33 . . .
1 x41 x42 . . . x41x42 x41x43 . . .
...

...
...

. . .
...

...
...

1 xn1 xn2 . . . xn1xn2 xn1xn3 . . .


+



ε0
ε1
ε2
ε3
...
εn


= aΩ+ε

(4.4)

, where Y is the vector of experimental responses, Ω is the matrix of the
model and is filled with the coefficients of the model, and ε is a vector that
contains the experimental errors.

By using multivariate tests, such as ANOVA, it is possible to get in-
formation about the strength of the relationship between the factors and
the corresponding responses. Two factors interact significantly if the per-
formance response due to factor i depends on the value of the level j taken
by the factor i. In other words, the relative change in the response can be
observed if the second factor is modified.

The analysis of variance is based on the following assumptions:

(i) each population studied has the same variance,

(ii) the output scores for each input condition have to be normally dis-
tributed,

(iii) the observations have to be independent.

4.5. ANALYSIS OF VARIANCES 71

The key idea of ANOVA is to test the null hypothesis (H0). The null
hypothesis makes the assumption that the level of the output does not vary
with respect to the input conditions, i.e. all experiments conducted with
different levels of the input variables will have the same mean value of the
output. If this hypothesis would have to be rejected, then it is possible to
prove that, in reality, the input variable had a significant impact on the
output. In order to express a formal mathematical definition of a value
the interaction, the following definitions are introduced. First, the sum of
squares for all the values taken together is equal to:

SS
∆
=

n∑
i=1

k∑
j=1

(xij − µ)2 (4.5)

, where µ is referred to as the grand mean of the samples. It can be written
as:

µ=
1

kn

n∑
i=1

k∑
j=1

xij (4.6)

Due to the hypothesis that all of the values of the variance are nearly
equal, it can be written:

σ2
1 ' s2

1, σ
2
2 ' s2

2, σ
2
3 ' s2

3, . . . (4.7)

and the equation (4.7) can be rewritten as:

SS =
n∑

i=1

k∑
j=1

(xij − µ)2 =
n∑

i=1

k∑
j=1

(xij − µj)2 + n
k∑

j=1

(µj − µ) (4.8)

, where µj is defined as the mean of the j−th treatment. In the equation 4.8,
the left part of the equation is called the Sum of Squares total (SStotal). The
second sum of squares is referred to as the Sum of Squares within (SSwithin)
as it reflects the variation that occurs within each group. Furthermore the
third sum of squares is called Sum of Squares between (SSbetween) since it
is based on the variation that occurs between groups. Therefore:

SStotal = SSwithin + SSbetween (4.9)

Based on the Formula 4.7, the definitions of the mean squares can be
introduced. The Mean of Squares (MS), is defined by dividing each of the
three sums of squares by their respective degrees of freedom. It can be
shown that, if the null hypothesis is true, the MS can be considered as it

72CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

estimates the variance of the considered population variance. On the other
hand, if the null hypothesis is false, only the estimation of the population
variance based on the value of SSwithin would be a valid estimation since the
other two sums would be modified due to effect of the treatment (i.e., the
differences existing among the sample means). The total Mean of Squares
is defined as:

MSerror
∆
= σ2

e = s2
e = E(s2

n) =
∑
n

s2
n

k
(4.10)

Now the treatment effect of a given input variable xi can be defined as:

MSA
∆
= σ2

A =
∑ (µi − µ)2

k − 1
(4.11)

and the following expectations can be written, called test of the effect of
Factor A (F) or F − ratio.

F
∆
=

E(MSA)

E(MSerror)
=
σ2
e + nσ2

A

σ2
e

(4.12)

Under the null hypothesis H0: µA1 = µA2 = ... = µ. As a consequence,
the value of variance of the effect of F will be σ2

A = 0. In this case, the
F − ratio will have an expected value of approximatively F ' 1 and will
be distributed as the standard F distribution. However, if H0 is false and,
therefore, there is a significant interaction, the value of σ2

A will not be equal
0 and the value of F − ratio will be as different from 1 as the level of in-
teraction is high. More intuitively input, a variable (or a n-way interaction
between n variables) is considered to be significant if the variation of its
level has a significant impact on the output values of the system; which is
denoted by the amplitude of its corresponding F − ratio.

The F − statistics represents the level of significance of the interac-
tion. When the F − ratio is high, the interaction is significant. On the
other hand, for lower values of F , it is unlikely for significant interaction
to take place. However, particular data can exist where the null-hypothesis
H0 could be rejected, but showing only a small difference with the values.
Such a case leads to a wrong rejection of the null hypothesis and to an
incorrect interaction statement.

In statistics, two types of errors are defined. Firstly, the null hypothesis
can be rejected, i.e., the idea that there is no interaction can be rejected,
while in fact there is. This kind of error is called Type I error and its con-
ditional probability (the probability of rejecting the null hypothesis given

4.5. ANALYSIS OF VARIANCES 73

that it is true) is designated as α, the size of the rejection region. Secondly,
another error can be made by failing to reject the null hypothesis when it is
in fact false. This type of error is called a Type II error, and its probability
is symbolized by β. The power of the test is defined as the probability of
rejecting H0 when it is actually false. Table 4.2 synthesizes the possible
outcomes of the decision making process and the associated types of errors.

Table 4.2: Possible outcomes after decision process within ANOVA

Decision H0 : True H0 : False

H0 : Rejection
Type I Error

p = a

No Error

p = 1− β ∆
= power

H0 : No Rejection
No Error
p = 1− a

Type II Error
p = β

In Figure 4.23, two distribution are presented: H0 (blue curve) and H1
(white curve). The distribution H0 is defined as the sampling distribution
of the mean value of the output when the null hypothesis is verified. On the
other hand, the distribution H1 is the sampling distribution of the mean
value of the output as it is observed (i.e. without any hypothesis about
the interaction of the variables). It is important to note that the distri-
butions H0 and H1 are drawn on the hypothesis that the distribution of
the observed samples is normal. As a consequence, its mean value µ and
its variance σ2 can be computed and the values of α and β are obtained
from table. Furthermore when the distance between µ1 and µ0 increases,
the power of the test substantially increases too. Generally, a typical value
for the power the test is p < 5%.

4.5.2 Scenarios-Results

For the ANOVA the Matlab program is used. Firstly the input data were
reformed and afterwards 1-way ANOVA was performed between latency
and throughput and each factor separately: tir, routing, traffic. Secondly,
a multi-comparison with a N-way ANOVA tests was performed in order to
determine which pairs of groups of means are significant different.

74CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

Figure 4.23: Graphical representation of the power of rejection of the null hypothesis.

4.5.3 One-way ANOVA

The function p = anova1(y) returns the p− value for a balanced one-way
ANOVA. It also displays the standard ANOVA table and a box plot of
the columns of y. The function of ANOVA tests the hypothesis that the
samples in y are drawn from populations with the same mean against the
alternative hypothesis that the population means are not all the same. The
results of the one-way ANOVA are depicted on the Table 4.3. As a first
conclusion, it can be seen that all one-way interactions are found to be sig-
nificant for the two considered performance metrics (throughput, latency).
More specifically, regarding the latency, it can be observed that the main
effect comes from the choice of the traffic (F = 26.87 , p < 0.05) by follow-
ing the routing (F = 6.6, p < 0.05) and tir (F = 5.52 p < 0.05). Regarding
the throughput, the main effect comes again from the choice of the traffic
(F = 12.86, p < 0.056) by following the tir (F = 9.87, p < 0.05) and last
but not least the routing (F = 6.31, p < 0.05). Furthermore, from the
p − value it is obvious that in every scenario the null hypothesis can be
rejected since p < 5%.

Figure 4.24 and Figure 4.25 depict the boxplot of the one-way ANOVA.
On each box, the central mark is the median and the edges of the box are
the 25th and 75th percentiles (1st and 3rd quantiles). The whiskers extend
to the most extreme data points that are not considered outliers. The out-
liers are plotted individually. The interval endpoints are the extremes of

4.5. ANALYSIS OF VARIANCES 75

the notches. The extremes correspond to q2 − 1.57(q3 − q1)/sqrt(n) and
q2+1.57(q3−q1)/sqrt(n), where q2 is the median (50th percentile), q1 and
q3 are the 25th and 75th percentiles, respectively, and n is the number of
observations without any NaN values. Two medians are significantly dif-
ferent at the 5% significance level if their intervals do not overlap. This test
is different from the F − test that ANOVA performs, but large differences
in the center lines of the boxes correspond to large F − statistic values and
correspondingly small p− values.

Table 4.3: One way ANOVA

Source of Interaction Latency Throughput

F-ratio p-value F-ratio p-value

tir 5.52 1.17632e-06 9.87 4.17398e-12

routing 6.6 1.1839e-05 6.31 2.0826e-05

traffic 26.87 6.44187e-11 12.86 6.10229e-06

By performing a multiple comparison of the mean latency of routing,
in the Figure 4.26(b), the blue bar represents the comparison interval for
mean latency for XY. The red bars represent the comparison intervals for
the mean latency for WF, NF and OE. Neither of the red bars overlap with
the blue bar, which indicates that the mean latency of XY is significantly
different from that of WF, NF and OE. By clicking on the other routing
algorithms the results that has been obtained are the following: a)the mean
latency of WF is significantly different from that of XY and OESL, b)the
mean latency of NL is not significantly different from the rest of routing
algorithms, c) the mean latency of NF is significantly different from that
of XY and OESL, d)the mean latency of OE is significantly different from
that of XY and OESL, e)the mean latency of OESL is significantly different
from that of WF, NF and OE.

In the same way it is performed multi-comparison of the mean latency of
tir and traffic, the results are depicted on Figure 4.26. As far as the traffic
is concerned: a)the mean latency of Uniform traffic is significantly differ-
ent from that one of the Transpose and BitReverse, b)the mean latency of
BitReverse traffic is significantly different from that one of Uniform traffic.
c)the mean latency of Transpose traffic is significantly different from that
one of Uniform traffic. As far as the tir certain values of it present signifi-
cant deference between other values, like the mean latency of tir=0.015 is
significantly different of this one of 0.021, 0.022, 0.023, 0.024, and certain
values of tir presented no significant difference with others, like the mean
latency of tir 0.018 has no significantly difference from other tir.

76CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

Uniform Bit_Reverse Transpose

20

40

60

80

100

120

(a) Latency-Traffic

XY WF NL NF OE OESL

20

40

60

80

100

120

(b) Latency-Routing

0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024

20

40

60

80

100

120

(c) Latency-Tir

Figure 4.24: One-way Anova boxplot

4.5. ANALYSIS OF VARIANCES 77

Uniform Bit_Reverse Transpose

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(a) Throughput-Traffic

XY WF NL NF OE OESL

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(b) Throughput-Routing

0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(c) Throughput-Tir

Figure 4.25: One-way Anova boxplot

78CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

30 35 40 45 50 55 60 65 70

2 groups have means significantly different from Uniform

Transpose

Bit
R

everse

Uniform

Click on the group you want to test

(a) Latency-Traffic

25 30 35 40 45 50 55 60 65

3 groups have means significantly different from XY

OESL

OE

NF

NL

WF

XY

Click on the group you want to test

(b) Latency-Routing

10 20 30 40 50 60 70 80

4 groups have means significantly different from Group 0.015

0.024

0.023

0.022

0.021

0.02

0.019

0.018

0.017

0.016

0.015

Click on the group you want to test

(c) Latency-Tir

Figure 4.26: Multiple comparison of the mean latency of routing, traffic, tir

4.5. ANALYSIS OF VARIANCES 79

0.078 0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096

2 groups have means significantly different from Uniform

Transpose

Bit
R

everse

Uniform

Click on the group you want to test

(a) Throughput-Traffic

0.078 0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098

2 groups have means significantly different from XY

OESL

OE

NF

NL

WF

XY

Click on the group you want to test

(b) Throughput-Routing

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105

7 groups have means significantly different from Group 0.015

0.024

0.023

0.022

0.021

0.02

0.019

0.018

0.017

0.016

0.015

Click on the group you want to test

(c) Throughput-Tir

Figure 4.27: Multiple comparison of the mean throughput of routing, traffic, tir

80CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

Furthermore, the same tests have been performed also for the mean
throughput and the results are depicted on Figure 4.27. The results were
similar with some minor changes. As far as the traffic results of multi-
comparison test, the results were exactly the same. Concerning the rout-
ing, the following difference are observed : a)the mean latency of XY is
significantly different from that of WF and OE, b)the mean latency of NF
is not significantly different from the rest of routing algorithms, c)the mean
latency of OESL is significantly different from that of WF and OE. Regard-
ing the tir, the mean latency of most of values were significantly different
from the others.

4.5.3.1 N-way ANOVA

The p = anovan(y, group) returns a vector of p − values, one per term,
for multiway (n-way) ANOVA for testing the effects of multiple factors on
the mean of the vector y. N-way ANOVA is a generalization of two-way
ANOVA. For three factors, for example, the model can be written as:

yijkr = µ+αi +βj +γk +(αβ)ij +(αγ)ik +(βγ)jk +(αβγ)ijk + εijkr (4.13)

, where yijkr is an observation of the response variable. i represents group
i of factor A, i = 1, 2, ..., I, j represents group j of factor B, j = 1, 2, ..., J ,
k represents group k of factor C, and r represents the replication number,
r = 1, 2, ..., R. For constant R, there are a total of N = I ∗ J ∗ K ∗ R
observations, but the number of observations does not have to be the same
for each combination of groups of factors. µ is the overall mean. αi are the
deviations of groups of factor A from the overall mean µ due to factor A.
The values of αi sum to 0. βj are the deviations of groups of factor B from
the overall mean µ due to factor B. The values of βj sum to 0.
γk are the deviations of groups of factor C from the overall mean µ due to
factor C. The values of γk sum to 0. (αβ)ij is the interaction term between
factors A and B. (αβ)ij sum to 0 over either index. (αγ)ik is the interaction
term between factors A and C. The values of (αγ)ik sum to 0 over either
index. (βγ)jk is the interaction term between factors B and C. The values
of (βγ)jk sum to 0 over either index. (αβγ)ijk is the three-way interaction
term between factors A, B, and C. The values of (αβγ)ijk sum to 0 over
any index. εijkr are the random disturbances. They are assumed to be
independent, normally distributed, and have constant variance.

The results of N-way ANOVA are shown in Table 4.4. As far as the the
latency, the main effect comes from the choice of the traffic (F = 120.95,
p = 0), which is obvious from the results the One-way ANOVA. As far as the

4.5. ANALYSIS OF VARIANCES 81

interaction of the factors, the pair traffic ∗ routing has the biggest effect
on latency (F = 22.82, p = 0). The p− values for interaction tir ∗ routing
is much larger than a typical cutoff value of 0.05, indicating these terms
are not significant. As far as the throughput, the main effect comes from
the choice of the traffic (F = 68.61, p = 0) which is obvious from the
results of the one-way ANOVA. As far as the interaction of the factors, the
pair traffic ∗ routing has the biggest effect on throughput (F = 10.79,
p = 0), which is obvious from the latency results. However the p− values
for interaction tir ∗ routing it is lower than a typical cutoff value of 0.05,
indicating these terms are significant in contrast to the latency results.

82CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

T
a
b
le

4
.4
:

R
es

u
lt

s
o
f

N
-w

ay
A

N
O

V
A

fo
r

la
te

n
cy

a
n
d

th
ro

u
g
h
p
u
t

S
o
u

rc
e

o
f

In
te

ra
c
ti

o
n

L
a
te

n
c
y

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y

T
h

ro
u

g
h

p
u

t
L

a
te

n
c
y

T
h

ro
u

g
h

p
u

t

S
S

M
S

F
-r

a
ti

o
p

-v
a
lu

e

ti
r

22
86

3
0.

00
76

6
25

40
.3

0.
00

08
5

35
.2

4
41

.2
4

0
0

tr
a
f
f
ic

23
55

9.
4

0.
00

28
3

11
77

9.
7

0.
00

14
2

16
3.

39
68

.6
1

0
0

ro
u
ti
n
g

16
11

31
.3

0.
00

34
2

32
26

.3
0.

00
06

8
44

.7
5

33
.2

0
0

ti
r
∗
tr
a
f
f
ic

12
43

7.
2

0.
00

26
8

69
1

0.
00

01
5

9.
58

7.
21

0
0

ti
r
∗
ro
u
ti
n
g

32
24

.6
0.

00
16

4
71

.7
0.

00
00

4
0.

99
1.

76
0.

49
79

0
.0

11
4

tr
a
f
f
ic
∗
ro
u
ti
n
g

16
44

9.
1

0.
00

22
3

16
44

.9
0.

00
02

2
22

.8
2

10
.7

9
0

0

e
rr

o
r

64
88

.7
0.

00
18

6
72

.1
0.

00
00

2

4.6. SUMMARY-DISCUSSION 83

4.6 Summary-Discussion

In this chapter, firstly some of the most used NoC simulators, which are
introduced in literature were discussed in detail by highlight their charac-
teristics. By defining some high importance parameters for the proposed
SDNoC architecture, an overview of the NoC simulators was presented.
The Garnet2.0 simulator was chosen due to its reconfigurability and flex-
ibility on routing, topologies and traffic but also because it provides full
system simulation with more realistic results. Thereafter, the implementa-
tion of the SDNoC prototype and the MicroLET communication protocol
was demonstrated. Furthermore, the changes that has been made, within
Garnet and Gem5 simulators, in order to implement the SDNoC prototype
were explained in detail. A performance evaluation of different implemented
routing algorithms (XY, OE, NL, WF, NF, OESL), within SDNoC archi-
tecture, under different scenarios was shown. The scenarios are consisted of
3 topologies, under 3 different traffic models and under multiple injection
rates.

Routing problems are diverse by having negative impact on network
performance. The main challenge behind interesting on NoC or SDNoC
routing is to increase the reliability of the network, while ensuring a sensi-
ble performance. The main evaluated performances are: low latency, high
throughput and low power consumption. However, many papers present ex-
periments evaluating different routing algorithms, when it comes for NoC
the routing algorithms are architecture oriented. With the aforementioned
results, an effort has been made in order to show how the different routing
algorithms were performing within SDNoC by providing realistic results
under different routing scenarios. One research question that raised was
how the performance is affected by the different parameters, for this reason
it is performed for first time in the context of NoC an analysis of variance
in order to show the interaction of the different parameters within the net-
work. Precisely, the ANOVA of the SDNoC different factors: tir, traffic,
routing and their interactions was presented.

ANOVA is a statistical technique that is used to check if the means
of two or more groups are significantly different from each other. Fur-
thermore ANOVA checks the impact of one or more factors by comparing
the means of different samples. Briefly, the conclusions that were drawn
through ANOVA are: a) the one-way interactions of the factor: traffic is
found to be the most significant for the two considered performance metrics
(latency, throughput), following the routing and tir, b) the n-way interac-
tions the pair of the factors: traffic∗routing have significant affect on the

84CHAPTER 4. IMPLEMENTATION AND EVALUATION OF SDNOC

latency and throughput.

As far as the routing results is concerned, under Uniform traffic, the
proposed routing algorithm but also the rest of the routing algorithms have
lower performance than XY routing. This is due to unreliability of the
Network Monitoring Phase (Section 3.6.3). On the other hand, under the
Transpose and BitReverse traffic, the proposed routing algorithm outper-
forms the rest of routing algorithms. Indeed, under such traffic scenarios,
the controller relies on an accurate view of the network state and it is able
to balance the traffic across the network by avoiding the form of congested
network areas. Conversely, under these scenarios, XY pushes the traffic to-
wards the same links and switches. Therefore, the corresponding network
areas become congested, which leads to a network performance decrease.

The proposed routing algorithm OESL relies on the OE algorithm,
which is partially adaptive and therefore, restricts the number of admissi-
ble routes. Secondly, the controller responds to the arriving ROUTE_REQUEST

messages by allocating routes without being aware of future routes. Thereby,
when the controller searches to allocate a route for a source-destination pair,
it is possible that all the admissible routes being occupied, while there are
still possible routes (but not admissible) flowing through unoccupied re-
sources. This scenario can happen during some simulations according to
the traffic. If the controller will be aware beforehand about the future
ROUTE_REQUEST, it could adapt the allocation of the routes accordingly in
order to avoid this scenario. Moreover, the lack of knowledge concerning
the future requests is less critical if the controller uses a fully adaptive rout-
ing. Despite the higher standard deviations, the proposed routing approach
still outperforms the rest of the routing algorithms under Transpose and
BitReverse traffic and it could be a possible solution for future SoCs.

Chapter 5

Security within SDNoC

5.1 Introduction

Security within Software Defined Network (SDN) is a very sensitive topic.
As previously mentioned, one of the most used SDN-based communication
protocols seen in literature is the OpenFlow Protocol [McKeown et al.,
2008]. This protocol has several security flaws that can be exploited to
compromise the network. Additionally, the SDN paradigm is susceptible
to several security breaches [Zhang et al., 2018a]. The existing security
solution of Transport Layer Security (TLS) protocol is not well enforced
in the current version of the OpenFlow standard [Foundation, 2015]. The
lack of TLS use could lead to fraudulent data insertion and Denial of Ser-
vice (DoS) attacks [Benton et al., 2013]. Under the umbrella of Public Key
Cryptography (PKC), the TLS protocol requires a Certification Authority
(CA) to generate the CA’s key, certificates for the controllers, routers, and
then the signing of these certificates with the CA’s key. Afterwards, the cer-
tificates and the keys of the network entities are deployed to the respective
devices. However, in this research, the main concern is the communication
security among Software Defined Network-on-Chip (SDNoC) routers and
the controller, which is an unexplored topic. As far as the Public Key In-
frastracture (PKI) overhead, it includes generation and signing of digital
certificates for the routers and the controller. This makes PKI based so-
lutions less attractive for and Multi Processor System-on-Chip (MPSoC)
architecture. Therefore, a more suitable solution that fits the unique char-
acteristics of the MPSoC architecture is needed. Precisely, in this chapter
the design of new SDN-based protocol is discussed. This protocol has three
main functionalities: the derivation of keys for every node in the network
through a Private Key Generator (PKG), the establishment of a secure
group of participants, and the secure communication between the partici-

85

86 CHAPTER 5. SECURITY WITHIN SDNOC

pants is presented.

Since the number of processors and cores on a single chip is increasing,
the interconnection among them becomes significant. As shown earlier,
Network-on-Chip (NoC) has direct access to all resources and information
within a System-on-Chip (SoC), rendering it appealing to attackers. Ma-
licious attacks targeting NoC are a major cause of performance depletion
and they can cause arbitrary behavior of links or routers, that is, Byzantine
faults. Byzantine faults have been thoroughly investigated in the context of
Distributed systems, however not in Very Large Scale Integration (VLSI)
systems. Hence, in this chapter an introduction on to Byzantine faults,
together with a novel fault model is presented, followed by the design of 2
lightweight algorithms for tolerating the Byzantine faults, based on SDNoC
architecture.

Following the fault model of the Byzantine faults within the SDNoC,
malicious attacks and malicious hardware modifications of a circuit during
the design or fabrication often lead to arbitrary failures and can cause faulty
nodes to exhibit arbitrary behavior, these are Byzantine failures. Byzan-
tines failures occur when the system is under specific attacks like Hardware
Trojan (HT), DoS, HT-DoS, etc. In this thesis a novel HT-DoS attack,
called Greyhole attack is introduced. The HT-Greyhole attack targets the
routers within NoC by forcing them to block certain packets instead of for-
warding them. This, lead to performance decrease and packet loss increase.
Furthermore, during a HT-Greyhole attack, only certain packets that are
arriving at the router, are dropped making it hard to detect. Furthermore,
a detection and defense method against HT-Greyhole attack, based on the
SDNoC architecture, is presented.

Firstly, by following the SDN concept, a new security protocol, which
is called Secure Sdn-based Protocol over mpSoC (SSPSoC), is proposed
in order to secure the communication and efficiently manage the routing
within the MPSoC. The SSPSoC includes a private key derivation phase, a
Group Key Agreement (GKA) phase, and a data exchange phase in order
to ensure that basic security primitives are preserved and provide secure
communication. Afterwards, an introduction to Byzantine faults within
SDNoC is discussed by following a new fault model. Also, a novel algorithm
relying on SDNoC for tolerating the Byzantine faults is explained. Lastly,

5.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 87

the description and activation of an a novel HT-Greyhole attack in NoC
context together with a detection and defense method is introduced.

5.2 Secure Sdn-based Protocol over mpSoC

The existing literature on SDN security refers to point-to-point communi-
cation between routers and a controller. However, running different appli-
cations on a MPSoC creates multiple routing paths among Processing Ele-
ments (PEs) and therefore multiple routers interacting with the controller
quite frequently. Generally, the application based logical subsystems will be
created, which may involve multiple ICs (with different components such as
GPU, crypto processor etc.). The main idea is to create a secure point-to-
multipoint communication between a controller and a group of routers, i.e.
secure multicast. Therefore the SSPSoC 1 is proposed, which includes three
phases: 1. Obtain Private Key, 2. From a Group and 3. Router controller
communication. As fas as the second phase, two GKA protocols are chosen
to be tested within the proposed SDNoC architecture: [Sharma et al., 2017]
and [Teng and Wu, 2016]. The protocols that were chosen are balanced
and imbalanced GKA protocols respectively. In balanced GKA protocols,
all the participating nodes share the same computational burden while in
imbalanced protocols, the powerful node (in this case, the controller) is
mainly responsible for expensive computations. Sharma’s protocol comes
with the benefit of achieving mutual authentication using signature and of
course, the assurance that every participant at the end is in possession of
the valid group key. However, the Teng protocol does not provide mutual
authentication, thus trading security for efficiency.

5.2.1 Security Requirements

The SDNoC architecture contains multiple routers and a single controller
to manage the overall communication among PEs. The infrastructure to
implement identity based cryptography requires an on-board PKG. The
overall communication security on this layer (router-controller) can be in-
vestigated from two viewpoints. The first view is to securely deliver the
private keys to the routers and the controller. The second view covers the
secure communication between all the routers and the controller. In or-

1This contribution has been done under collaboration of Dr. Gaurav Sharma and
Ir. Theofanis Rigas. More precisely the part of Security Requirements has been done by
Dr. Sharma and the Group Key Agreement part has been done by Dr. Gaurav Sharma and
Ir. Thefanis Rigas. The rest of the contribution is a collaboration between Ir. Soultana
Ellinidou, Ir. Theofanis Rigas and Dr. Sharma.

88 CHAPTER 5. SECURITY WITHIN SDNOC

der to achieve this security, an authenticated group key agreement protocol
should be used.

5.2.1.1 Phase 1

The foremost issue to address is to transport the Private Key (PK) and the
required security parameters to all routers and the controller. The PKG
generates a PK for all routers and the controller and delivers it securely. The
literature suggests using a secure channel but they do not specify exactly
what this channel could be and its security requirements. The possible
threats and solutions are:

• In order to ensure that the only legitimate nodes can receive identity
ID and PK, node authentication must be performed by the PKG.

• A counterfeit PKG with a different master key can generate private
keys and IDs for the nodes. This PKG is able to decrypt all the traffic
between nodes and controller. In this case, authentication of the PKG
by the nodes is also needed.

• An attacker can eavesdrop the response of the PKG and steal the PK
of a node. A solution must be there to ensure the confidentiality of
communication between a node and the PKG.

• An attacker can sniff the packets exchanged between a node and the
PKG and replay them later to obtain a PK.

• An attacker can compromise the integrity of the packets between node
and PKG.

5.2.1.2 Phase 2

This phase refers to router-controller group communication where a GKA
protocol is adopted. The common threats are spoofing, tampering, repudi-
ation, information disclosure, denial of service and elevation of privileges.
The authenticated GKA protocol provides authentication of all partici-
pants. As the session key is derived, rest of the communication is encrypted
using AES-GCM, which is widely adopted within NoC [Cotret et al., 2016],
with session key. Therefore, confidentiality, authenticity, integrity and non-
repudiation are ensured. To address denial of service and authorization
issues, separate precautions need to be enabled.

5.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 89

5.2.2 Group Key Agreement

5.2.2.1 Assumptions

Before the design of the protocol some vital assumptions are required :

• The network consists of multiple nodes, which can be either a con-
troller or routers or the PKG, which derives the private keys to the
network entities.

• The private ID-based keys are provided to the participants of the
group by PKG, which is the private key generator. Supposing that
msk is the master secret key of the PKG and KPubPKG is the public
key.

• Given that there are n entities in the network, U1, U2, ..., Un. These
entities form a group of participants in a GKA session for establishing
a group key. Assuming that Un will be the controller of every group,
there are n− 1 nodes (routers) in this group.

5.2.2.2 Group Key Agreement Protocols

By taking into account the above assumptions and the security require-
ments, the two selected GKA protocols are presented. These two protocols
consist of 3 major phases: The Setup phase (hash functions, group genera-
tors, pairing), the Key Extraction phase (nodes and controller obtain their
private keys from PKG) and the Key Agreement phase (establishment of
a group session key for participants).

The Teng protcol [Teng and Wu, 2016]:

Setup:

• The PKG chooses two groups G1 and G2 of prime order q, a
bilinear pairing [Boneh and Franklin, 2001] e : G1 ×G1 → G2.

• The PKG selects two random generators P and Q of G1.

• ThePKG selects s ∈ Z∗q as the msk and sets KPubPKG = sP .

Private Key Extraction: Defining as input parameters, msk and IDi ∈
{0, 1}∗ with IDi being the ID of the node:

• The PKG computes KPrivi as Si = (qi + s)−1Q where qi =
H(IDi).

• The PKG communicates secretly KPrivi to node i.

90 CHAPTER 5. SECURITY WITHIN SDNOC

• The public key of node i is Ti = qiP +KPubPKG = (qi + s)P .

Key Agreement Round 1: Each participant:

• Ui selects a random ri ∈ Z∗q .
• Ui pre-computes Pi = riTi.

• Ui (1 ≤ i ≤ n) sends Pi to the controller S.

Key Agreement Round 2: Upon receiving Pi from all nodes, each
participant:

• Ui (1 ≤ i ≤ n), S chooses random r ∈ Z∗q .
• Ui computes Qi = rPi.

• Ui broadcasts Qi (1 ≤ i ≤ n), keeping r secret.

Key Computation: On receiving Qj (1 ≤ j ≤ n):

• Ui computes the final session key as
sk = e(Qi, Si)

r−1
i e(Q1 +Q2 + ...+Qn, Q)

= e(P,Q)r+rr1(s+q1)+...+rrn(s+qn).

Pre-Computation: The following tuples (ri, r
−1
i , Pi) should be created

and stored in the memory storage of the nodes before the execution
of the GKA. This essentially reduces the computation cost of the first
round for the nodes and also improves the speed in the key computa-
tion phase.

The Sharma protocol [Sharma et al., 2017]:

Assumption: Let pid be the set of the identities of the participants in
one session of the protocol and sid the session identifier.

Setup:

• The PKG selects an EC group G of prime order q. Let P be a
generator of group G.

• The PKG computes the system’s public key as KPubPKG = sP
by choosing a master secret s ∈ Z∗q .
• The PKG chooses cryptographic hash functions H1 : {0, 1}∗ ×
G→ Z∗q , H2 : {0, 1} ×G→ Z∗q and H3 : {0, 1}∗ → {0, 1}k.

Key Extraction: Defining the system parameters Params = {G, q,H1,
H2, H3, H,KPubPKG} and by keeping the master key secret:

5.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 91

• The PKG selects ri
$←− Z∗q and computes Ri = riP .

• ThePKG computes the private key for the user Ui as KPrivi =
ri + sH1(IDi, Ri).

• Each participant Ui can verify the private key as KPriviP =
Ri +H1(IDi, Ri)KPubPKG.

Key Agreement Round 1: Each participant:

• Ui(1 ≤ i ≤ n) chooses ephi
$←− Z∗q and computes li = H3(ephi,

KPrivi) and Li = liP .

• Ui(1 ≤ i ≤ n) selects a random string ki ∈ {0, 1}k . Each user,
except Un computes H(ki). The user Un masks the randomness
as k̃n = H(kn, xn) where xn is the long-term secret of Un.

• Ui(1 ≤ i ≤ n) computes H(k̃n).

• Ui(1 ≤ i ≤ n) broadcasts the tuple < Li, H(ki), H(k̃n), Ri > to
all n− 1 members.

Key Agreement Round 2: Upon receiving the message< Lj , H(kj), H(k̃n),
Rj >, each participant:

• Ui computes Uij = liLj and L = L1||L2||..||Ln

• Ui, except Un, computes Kij = H(Uij) ⊕ ki . the user Un com-
putes mask = H(Uij)⊕ k̃n
• Chooses another random number ti ∈ Z∗q and computes Ti =
tiliP . Also computes the signature on < L, Ti > as σi = tili +
KPriviH2(IDi, L, Ti, pid)

• Broadcasts < Kij(1 ≤ j ≤ n, j 6= i),mask, σi, Ti > to all n − 1
members

Key Computation: Upon receiving < Kji,mask, σi, Ti >, each partici-
pant:

• Ui verifies the received signature as: σiP = Ti+(Ri+H1(IDi, Ri)
KPubPKG)H2(IDi, L, Ti, pid)

• Ui computes k̃j = H(Uji)⊕Kji. (Similarly, k̃n can be computed
using mask.)

• Note that Uij = liLj = liljP = ljliP = ljLi = Uji.

• Ui checks the ki as H(kj) = H(k̃j) for (1 ≤ j ≤ n, j 6= i).

• Ui computes the session identity sid = H(ki)||H(k2)||...||H(k̃n).

• The session key is computed as sk = H(k1||k2||...||k̃n||sid||pid).

92 CHAPTER 5. SECURITY WITHIN SDNOC

5.2.3 Communication Protocol
In this section, the network architecture, followed by the packet format, the
network messages that are broadcasted within the network, and the three
phases of the proposed protocol are introduced.

5.2.3.1 Network Architecture

The SDNoC architecture consists of 3 main network entities:

• a PKG, which is considered as a trusted third party, generates the
corresponding private key to the rest of the nodes(routers and con-
troller).

• a centralized controller with a broader network view to manage the
routing of packets within the network.

• multiple routers which are responsible to route the packets between
the PE.

5.2.3.2 Packet Format

The packet format is the core of the protocol stack. Every packet consists
of a header structure, which is 32-bits long, Figure 5.1, [Ellinidou et al.,
2018]. The header message format consists of three main fields. Firstly,
the version field indicates the version of communication protocol that
is used for this message. Secondly, the length field indicates where this
message will end in the byte stream starting from the first byte of the
header. Thirdly, the xid, or transaction identifier, is a unique value used
to match requests to responses. Furthermore, every message that travels
across the network consists of the same header of 32-bits. However, the
payload size depends on the length field that is provided through header
message and it can vary according to the type of the message. Afterwards,
the Source_ID and Destination_ID are included, which contain the source
and destination number for the given packet. Another field is the prio,
which indicates the priority of the packet . As far as the field type, a
specific message stack is designed, which is presented below.

5.2.3.3 Network Messages

The different types of messages, which were designed and integrated into
packet format depicted in Table 5.1. The SSPSoC protocol includes 8 types
of messages with different content. These messages are flowing through the
links between the network entities. In addition, the type value of the mes-
sages is used to distinguish the GKA protocol messages from other messages

5.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 93

that might be circulating on the network and one byte is used to encode
the message type.

Source_ID

9876543210 9876543210 9876543210 10

0 1 2 3

header

Destinan_ID

Padding…..

Data

prio type padding

Figure 5.1: Packet format [Ellinidou et al., 2018]

Table 5.1: Designed Network messages

Type Value Description Contents

KEY_REQUEST 0x06 Sent by nodes to the PKG Enc(timestamp), IV , tag

KEY_REPLY 0x07
Sent by PKG to nodes

as a reply to
KEY_REQUEST message

Enc(System Parameters,
node ID, private key),

IV , tag

JOIN 0x01
Broadcasted by nodes

who want to join a group
node ID, timestamp,

JOIN token

INVITE 0x02
Broadcasted by controller

for inviting nodes
to form a group

(participant ID1,
node ID1, ... ,

participant IDn,
Node IDn, sid)

READY 0x03
Broadcasted by nodes
as a reply to INVITE

message

participant ID,
timestamp,

READY token, sid

ROUND_1 0x04
Contains cryptographic

material for the first
round of the GKA

sender ID,
Crypto R1

ROUND_2 0x05
Contains cryptographic

material for the second round
of the GKA

sender ID,
receiver ID,
Crypto R2

DATA 0x08
Contains encrypted data

with the group key

sender ID,
receiver ID,

Enc(data), IV , tag

94 CHAPTER 5. SECURITY WITHIN SDNOC

5.2.3.4 SSPSoC Network Initialization

Phase 1: Obtain Private Key During the first phase, the routers and
the controller communicate with the PKG, in order to obtain their
long-term private keys. One of the major concerns on this phase is
the security level of the communication between the nodes and the
PKG. This problem could be solved by establishing a secure channel
for the private key transmission. However, keeping the private key
confidential is not the only security consideration, it should also be
taken into account the authentication of the nodes. The authentica-
tion will ensure that only legitimate nodes can obtain a private key
from the PKG. For this reason, the implementation of authenticated
KEY_REQUEST messages is mainly used.

A node first determines a timestamp (ts) to prevent the replay at-
tacks [Syverson, 1994]. Afterwards it generates the random part of
the Intialization Vector (IV) and it encrypts ts using the Pre-Shared
Key (PSK) and AES-GCM [Dworkin, 2007]. AES-GCM outputs the
ciphertext c and the authentication tag: c, tag = AESPSK,IV (ts).
Thereafter the node sends a KEY_REQUEST message to the PKG, which
contains the IV, the ciphertext and the authentication tag. It follows
a process where the PKG decrypts the ciphertext and checks the
authentication tag. If the tags are matching, it will check that the
decrypted timestamp is within a given threshold. In case of the times-
tamp is valid, it will generate a random node ID and it will extract
the associated private key, KPriv(i). Thereupon, it generates a ran-
dom IV and encrypts them using the PSK and AES-GCM and sends
the IV, ciphertext, and the authentication tag to the node. The steps
of the this procedure are depicted on Figure 5.2.

Phase 2: Form a Group On this phase, each router communicates with
the controller in order to show interest in joining a group. The con-
troller decides upon the group members and invites them to join the
group by taking into account a session identifier (sid) for its session
of the protocol.

Firstly, it is assumed that Phase 1 has already been performed and
that the routers and controller have securely obtained their private
keys. The controller has the power to decide which participants to in-
vite to join a group, according to the network requirements and rules
that are predefined by the user/designer. However when a router
wants to join an already existing group, it broadcasts a JOIN message
with its node ID, without knowing the ID of controller. The con-
troller is waiting for JOIN messages in order to start forming a group

5.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 95

of routers. The behavior of the controller when it receives a JOIN mes-
sage depends on the characteristics and requirements of the running
applications which are translated and stored on the his memory as
network requirements and rules. As soon as the controller receives a
number of JOIN messages and a group has been created, it broadcasts
an INVITE message to all participating routers of the group, includ-
ing a given session participant ID and node ID of all members of the
group. The routers afterwards verify that they received the invita-
tion and it follows the group key agreement process, where they are
performing two rounds of messages. The two rounds are described in
Section 5.2.2.1.

Node PKG

1.c=AES-GCMPSK(tS),IV,tag

PSK
PSK,MK

7.AES-GCMPSK(IDN,KPrivN,Param),IV,tag

8.IDN,KPrivN&Param

2.ts,tag’=AES-GCMPSK(c)

3.Check(tag, tag’)

4.Check(ts)

5.IDN=GenID()

6.KPrivN=GenKey(IDN,MK)

Figure 5.2: Private Key exchange

Phase 3: Router controller communication Once the group has been
formed, the last phase can take place, which is used for data exchange.
In this phase the controller exchanges data messages with the groups
of routers. Furthermore, before the controller starts exchanging any

96 CHAPTER 5. SECURITY WITHIN SDNOC

message with a group of routers, it checks the Group Table where the
ID’s of group participants information is stored, which is described in
the previous phase. In case of data transmission between a group of
routers and the controller, the controller is using the q secure channel
where it encrypts the data. The controller encrypts the data using
AES in GCM mode, the group key and an IV.

Switch Controller

KEY_REPLY

loop

PKG

KEY_REQUEST

KEY_REQ
UEST

KEY_REPLY

JOIN

INVITE

READY

ROUND_1

ROUND_1_REPLY

ROUND_2

ROUND_2_REPLY

DATA

Phase 1

Phase 2

Phase 3

Figure 5.3: SSPSoC message layer.

5.3. BYZANTINE FAULTS 97

5.3 Byzantine Faults

Byzantine Fault Tolerance (BFT) is the ability of a network to function as
desired and correctly reach a sufficient consensus, despite malicious nodes
of the system failing or propagating incorrect information to the other
nodes. The design of BFT algorithms originates from the introduction of
the Byzantine Generals problem by [LAMPORT et al., 1982], in which the
components of a computer system are abstracted as generals of an army.
Loyal generals, which are non-faulty components need to find a way to
reach to an agreement (e.g. to attack or retreat), while traitors or faulty
components are trying to confound others by sending incorrect messages.

In Distributed systems, the communication process and the behavior of
networks in the presence of Byzantine faults have been meticulously stud-
ied. Interestingly, VLSI circuits can be viewed as Distributed systems at
several levels of abstraction: from gates that communicate via binary sig-
nals, to components in a NoC. However, the majority of the existing BFT
algorithms cannot be implemented within VLSI systems due to the unavail-
ability of the large amount of resources that is required.

The faults can be classified into transient, intermittent, or permanent
faults [Constantinescu, 2003]. Regarding SoC, all of the three types of faults
can occur in the chip’s life cycle. Transient faults appear randomly for one
or several cycles. Intermittent faults, which are easily confused with tran-
sient faults, occur repeatedly at the same location. They can be tackled by
replacing the faulty component hence by removing the fault. Permanent
faults can be either logic faults, where transistors or wires are permanently
open, or delay faults, where transistors are very slow causing set up and
hold timing violation.

Different types of faults, coming from the initial three categories, have
been introduced, like crash failures, which are permanent faults occurring
when a tile halts prematurely or a link disconnects [Dumitras et al., 2003].
However, arbitrary failures (also called Byzantine), which are transient
faults, have not been explored in the context of NoC. Since the NoC has
direct access to all communication resources and information flow within
the SoC, attackers have a strong motivation to exploit its possible vulner-
abilities. Unfortunately, malicious attacks and malicious hardware modi-
fications of a circuit during the design or fabrication process are common
causes of failure and they can cause faulty nodes to exhibit arbitrary be-
havior, that is, Byzantine faults. Malicious attacks that can cause arbitrary
faults within NoC are: HT [Bhunia and Tehranipoor, 2018], DoS [Diguet

98 CHAPTER 5. SECURITY WITHIN SDNOC

et al., 2007], HT-DoS [Daoud and Rafla, 2018], etc.

Since there is a big gap in the literature of Byzantine faults in NoC, in
this thesis the Byzantine faults are explored and a proposal of a novel secu-
rity algorithm for tolerating Byzantine faults is presented. This algorithm
is specifically designed for a NoC alternative, called SDNoC. SDNoC pro-
vides secure paths in presence of untrusted routers and assures that packets
will be successfully delivered at their destination. The contribution of this
section is summarized as:

• a new fault model, in order to introduce the Byzantine faults within
NoC, and

• a novel algorithm relying on SDNoC for tolerating the Byzantine
faults.

5.3.1 Related Work

There is no existing literature on BFT algorithms for NoC, however there
is a large number of contributions in Distributed systems following Wire-
less Sensor Network (WSN) and Cloud computing. At the end of the 90s,
the pioneers Miguel Castro and Barbara Liskov introduced the practical
Byzantine Fault Tolerance (pBFT) algorithm [Castro et al., 1999], which
provides a practical Byzantine state machine replication, tolerating mali-
cious nodes within a network by assuming that there are independent node
failures and manipulated messages are propagated by specific independent
nodes. The algorithm is designed to work in asynchronous systems and can
process thousands of requests per second with impressive overhead and a
slight increase in latency. However, it is worth mentioning that the com-
munication between the nodes within the system is heavy and each node
not only has to prove that the messages came from a specific peer node but
additionally needs to verify that the messages were not modified during the
transmission.

Following pBFT, several BFT protocols were introduced to improve its
robustness, cost and performance [Abd-El-Malek et al., 2005,Cowling et al.,
2006, Kotla et al., 2010], while alternative protocols were introduced that
leverage trusted components in order to reduce the number of replicas [Chun
et al., 2007]. Furthermore, WSNs are prone to Byzantine faults because
of their limited energy, low calculation capability and dynamic topology.
In [Xu et al., 2015], the authors propose a Byzantine fault-tolerant routing
algorithm for large-scale WSN, by ensuring the resistance of timing and
energy attacks with help of elliptic curve digital signatures. Afterwards,

5.3. BYZANTINE FAULTS 99

in [Panda and Khilar, 2015] a novel distributed fault detection algorithm is
presented in order to detect the soft faulty sensor nodes in sparse WSNs,
where every sensor node gathers the information only from their neighbor-
ing nodes in order to reduce communication overhead.

Cloud-based systems have a more complex architecture in comparison
to Distributed systems, they potentially have multiple trust levels and the
dynamic change of resources allocated to a service is an easy task in the
Cloud. As a result, new BFT algorithms specifically designed for Cloud-
based systems have been developed, such as the BFTCloud [Zhang et al.,
2011], which is a BFT framework for cloud computing that uses replication
techniques to provide the basic fault tolerance and selects voluntary nodes
based on QoS characteristics and reliability performance. Another interest-
ing contribution by [Fan et al., 2012], proposes a fault detection strategy for
cloud module and cloud application, which can make the cloud application
to dynamically detect faults at runtime.

5.3.2 Fault Model

Malicious attacks and malicious hardware modifications of a circuit during
the design or fabrication often lead to arbitrary failures and can cause faulty
nodes to exhibit arbitrary behavior, these are Byzantine failures. Byzan-
tines failures occur when the system is under specific attacks like HT, DoS,
HT-DoS etc.

HT attacks introduce a malicious circuit modification during the design
or fabrication process in an untrusted design house or foundry, in which
untrusted people, design tools, or components are involved [Bhunia and
Tehranipoor, 2018]. Such modifications can lead to abnormal functional
behavior of a system, degrade performance and provide covert channels
or backdoors by which an attacker can leak sensitive information. More
precisely, if a router is infected with a HT, it can maliciously change the
flit source or destination address or flit type information of a packet. If a
Trojan payload modifies the destination address of a packet, that packet
could be directed to an unauthorized IP core.

DoS attacks can make the resources of a system unavailable to legiti-
mate nodes. They can also misroute packets to degrade the network per-
formance causing deadlock and virtual link failure [Daoud and Rafla, 2018].

HT can also launch DoS attacks against the NoC [Zhang et al., 2018b] of
a many-core chip by causing serious damages, including dropping of pack-

100 CHAPTER 5. SECURITY WITHIN SDNOC

ets, leaking sensitive information, or modification of functionalities, etc.
The consequence of HT-DoS attacks includes bandwidth depletion, incor-
rect path routing, deadlock and livelock [Diguet et al., 2007].

There is a big number of detection and defense mechanisms specifically
designed for each attack separately in literature [Zhang et al., 2018b] [Daoud
and Rafla, 2019a], however there is no abstract algorithm that can tackle
all these attacks at the same time, ensure the right consensus of the net-
work despite the malicious nodes within the system and preserve the correct
functionality of the network.

By taking into account the previously mentioned attacks, this thesis
investigates the arbitrary routers by leaving the arbitrary links as a future
work. When a NoC is under the above mentioned attacks, the possible
arbitrary behavior of a router can include:

• arbitrary deviation from its specification,

• packet redirection,

• packet modification,

• (partial) packet dropping,

• deadlocks or livelocks.

5.3.3 Algorithm

Following the architecture and fault model, the following algorithm was
designed, which consists of 2 cases: a) the Normal Case Operation, where
the system has no faults and b) the Byzantine fault Case Operation, where
the system has faults.

5.3.3.1 Normal Case Operation

The main network entities are the source router, the destination router, the
controller and the routers along the route from the source to the destination.
The source router is linked to the source PE, which wants to send a packet
to a destination PE. The source router will contact the controller, to request
a route. Afterwards, the controller, with the help of a routing algorithm
described in Section 3.6, will find a route and it will check all the routers
along the route for faulty behavior. Thereafter, it will inform the source
router for the next hop of the packet. Finally, the source router will await
for a final acknowledgment of the packet by the destination in order to

5.3. BYZANTINE FAULTS 101

ensure that the packet was successfully delivered. More precisely, each
round of the algorithm consists of 6 steps:

• Step 1: The source node sends a request to the controller.

• Step 2: The controller multicasts the request to the other nodes
along the path based on the routing technique that was chosen.

• Step 3: The nodes send a reply to the controller.

• Step 4: The controller awaits for n replies from the nodes. (n is the
number of nodes).

• Step 5: The controller sends a message to the source node in order to
inform it that the nodes along the path are not faulty and to initiate
the routing process.

• Step 6: The Destination Node sends an acknowledgment to the
source node.

In order to implement the proposed algorithm within NoC, a set of 6
network messages were designed (Table 5.2). Network messages are ex-
changed between the nodes through physical links following the steps of
the Normal Case operation algorithm.

Table 5.2: Designed Network messages

Type T-Value Description Contents

ROUTE_REQ 0x01
Sent by source router to

controller, which asks a route
for a packet.

SRC ID, DST ID, Packet ID, TS

CONTROL_CHECK 0x02
Sent by controller to the

nodes along the chosen path.
ACK

CONTROL_REP 0x03
Sent by the nodes on the path

to controller.
NODE ID, TS

CONTROL_DONE 0x04
Sent by controller to the

source routers.
PACKET ID, NEXT HOP, TS

ACK 0x05
Sent by destination router

to the source router.
PACKET ID, TS

ALERT 0x05

Sent by source router to
the controller in order to

inform him that he did not
receive an ACK from the

destination.

DST ID, Packet ID, TS

Figure 5.4 provides an overview of the algorithm, in which the network
messages are integrated, in the normal case of no faults. S stands for Source
node, C for Controller, N for Nodes along the route and D for Destination
node.

102 CHAPTER 5. SECURITY WITHIN SDNOC

Figure 5.4: Messages under Normal Case operation

5.3.3.2 Byzantine fault Case Operation

In the second scenario, it is considered that the system is equipped with
Byzantine faults by following the previously described fault model. In this
case, the Normal Case Operation algorithm needs to be enhanced with 2
other algorithms, specifically designed for the controller.

Taking into account the Normal Case Operation algorithm, if a faulty
router is present, the first scenario to be considered is that the controller
will not receive a reply, CONTROL_REP, from the faulty routers along the
route. Thus, Algorithm 1 was designed, which is executed by the con-
troller. More precisely, the controller firstly checks if it received a reply
from all the routers along the route (while control reply[i]==0, where i is
the number of the router). If so, it continues to the next step of the Normal
Case algorithm, otherwise it considers the router, from which it did not re-
ceive a reply, as a faulty one (faulty node = check node(i)) and recomputes
a new route with the function new route() for the given source and desti-
nation of the packet, excluding this router.

The second scenario to be considered is that a faulty router, along the
route, could pretend to be legitimate by replying to the controller. How-
ever, it sinks the received packet, such that it can never reach its final
destination. As a result the destination will not receive any packet and it
will not send an ACK to the source. Thus, the ALERT messages are designed,
which are sent from the source to the controller in order to inform that the
packet may not have been received by the destination. When the controller
receives an ALERT message, it initiates Algorithm 2.

5.3. BYZANTINE FAULTS 103

Algorithm 1 Faulty Node Algorithm

Data: n, source, destination
if control reply[n] 6= n then

for i=1:n do
while control reply[i] == 0 do

faulty node = check node(i);
nroute[]=new route(source, destination, faulty node);
control check(nroute[]);

end

end

else
control done();

end

Algorithm 2 Alert Algorithm

Data: Routes[][], TrustTable[][], RouterID, a=0
for k=1:4 do

if TrustTable[k][2] < tv then
for j=1:Routes.rows() do

for t=1:Routes.column() do
if Routes[j][t] == RouterID then

neighbor == Routes[j-1] [t];
if TrustTable[k][1] == direction.neighbor() then

a=a+1;
Suspect[a]=neighbor;

end

end

end

end

end

end

104 CHAPTER 5. SECURITY WITHIN SDNOC

Based on the proposed architecture, each router is equipped with a
counter in each port (north, east, south, west), which is incremented every
time that a new packet is imported and decremented every time that a
packet is exported. The results are saved in a TrustTable, which includes
all the values for the different ports. When the controller receives an ALERT

message, it requests from all the routers to send their TrustTable along with
their RouterID. The controller calculates and chooses the routes for each
individual source-destination pair by storing them in the table Routes. The
value k indicates the 4 different directions north, east, south, west.

Algorithm 2 is mainly used to identify which are the faulty routers with
the help of the table Suspect. First the controller checks, whether any input
of the TrustTable is less than a threshold value (tv). This threshold value
can be chosen depending on traffic pattern or buffer holding capacity of the
system. If so, then by calculating where this router appears in table Routes
(if Routes[j][t] == RouterID, where j is the row and t is the column of the
router), it is searching for the previous hop (neighbor == Routes[j-1] [t],
where j-1, t are the row and column of the neighbor in the table Routes), in
order to identify the possible suspect router. Since the controller calculates
the table of Suspect of the given RouterID, it will also check the tables of
Suspect of the other RouterID ’s. If a suspect appears at least in two dif-
ferent Suspect tables, because each router could have at least two neighbor
routers, this router will be considered as faulty.

5.4 Hardware Trojan-Greyhole attack

Following the previous section, a specific Byzantine fault attack was chosen
to be investigated. This attack is the HT-DoS. Precisely, in this section a
novel HT-DoS attack is introduced.

Malicious hardware modifications at different stages of its life cycle cre-
ate major security concerns in the field of electronics. The HT attacks
emerged as a major security threat for IP blocks, ICs, PCBs, and SoCs.
Specifically, these attacks introduce a malicious modification of a circuit
during the design or fabrication process in an untrusted design house or
foundry, in which untrusted people, design tools, or components are in-
volved [Bhunia and Tehranipoor, 2018]. Such modifications can lead to
abnormal functional behavior of a system, degrade performance and pro-
vide covert channels or backdoors by which an attacker can leak sensitive
information.

5.4. HARDWARE TROJAN-GREYHOLE ATTACK 105

According to the literature, HTs have appeared in research around 2005
when the U.S. Department of Defense publicly expressed concerns over the
military’s reliance on integrated circuits manufactured abroad [Force, 2005].
Furthermore, the fabrication of malicious chips the past years in industrial
and military products, made these attacks of bigger concern. In 2010 the
chip broker VisionTech was charged with selling fake chips, many of which
were destined for safety and security critical systems such as high-speed
train breaks, hostile radar tracking in F-16 fighter jets, and ballistic missile
control system [Gorman, 2012]. In the future, the threat of hardware Tro-
jans is expected to increase, following the concerns of cyberwar [Smeets,
2018].

Since the number of processors and cores on a single chip is increasing,
the interconnection between them becomes significant. A key challenge is
to provide secure and reliable communication in the SoC, even in the case
that an untrusted NoC IP is inserted into it. Since the NoC has direct ac-
cess to all communication resources and information flow within the SoC,
attackers have a strong motivation to exploit its possible vulnerabilities.
In recent literature, a vast number of HT attacks, which mainly focus on
NoC, have been introduced [Ancajas et al., 2014, Frey and Yu, 2015, Hus-
sain and Guo, 2017]. Concerning the hardware methods for the detection
and defense of the HT-attacks targeting NoC, it is observed that most of
them are employed in the NI [Ancajas et al., 2014], which connect the IP
cores and routers, some of them on the links between routers [Boraten and
Kodi, 2016] and very few on the routers [Frey and Yu, 2015].

Following the literature, the common assumption is that a NoC is sup-
plied to a SoC integrator and there is a possibility that it is already com-
promised with a HT [Rajesh et al., 2018]. In order to activate the HT, a
malicious circuit has already been inserted during the design time of the
IP block and a malicious program can activate it later at runtime. The
possible attacks due to infected NoC IP block are:

• Snooping: In this case, illegal monitoring is performed by an un-
trusted router within the path, which tracks the number of packets
between source and destination IP cores.

• Corruption of the data: A malicious router can modify the content
of the incoming flits and the route of the packets.

• Spoofing: A malicious router copies and replays packets, which may
lead to the malfunction or eviction of sensitive data.

106 CHAPTER 5. SECURITY WITHIN SDNOC

• Denial of service (DoS): The denial or distributed denial of service
can make the resources unavailable to legitimate PE/routers.

In this thesis, a specific HT assisted DoS attack is considered, called
the Greyhole attack, which targets the routers of a NoC within a SoC.
The Greyhole attack is a well known attack from WSNs [Tripathi et al.,
2013, Martins and Guyennet, 2010]. In case of a Greyhole attack, a mali-
cious router blocks certain packets from its neighboring routers instead of
forwarding them. Hence, critical packets, that are forwarded to a Greyhole
router, are captured and could not arrive to their destinations. In order to
detect and mitigate a malicious router within a network, some of the secu-
rity mechanisms encountered in the literature are: data partitioning, key
management, key generation, localization and trust management [Martins
and Guyennet, 2010].

However, despite the large amount of research contributions in WSN
about the Greyhole attack, this attack has not been introduced in the
field of electronics and more specifically in NoC context. Hence the main
contributions are summarized as follows:

• the description and activation of a HT-Greyhole attack in NoC con-
text,

• the exploration of SDNoC as a potential solution for NoCprotection,

• a security management mechanism relying on SDNoC, as key proposal
in order to identify malicious routers,

• depending on the position of affected routers, a route exclusion ap-
proach is presented in order to mitigate the impact of the attack.

SDNoC provides secure paths in presence of untrusted routers and assures
that the packets will be successfully delivered to their destination.

5.4.1 Related work

There is no existing literature on HT-Greyhole attacks, however since Grey-
hole attacks are variants of Blackhole attacks, the related literature of HT-
Blackhole attacks is presented. More precisely, when a blackhole attack is
launched, a malicious node stops forwarding or dropping all the incoming
packets. In 2018, the HT-Blackhole attack targeting the NoCs was intro-
duced [Zhang et al., 2018b], the authors investigate not only the Blackhole
but also the Sinkhole attack in the context of NoC. In a sinkhole attack, the
traffic is directed to the hostile node and then many attacks like selective

5.4. HARDWARE TROJAN-GREYHOLE ATTACK 107

and blackhole can be empowered by a sinkhole attack. The authors focus
on the effects of the attack by measuring the packet loss rate, considering
the number of HTs and their distribution in NoC. They provide a theo-
retical detection method, where a global manager injects detection request
packets to randomly selected routers in order to find the suspicious one.
Though the main disadvantage of the detection method is that it can only
detect HTs which are always on trigger mode. A defense method is also
presented, where each router keeps a record of neighbors, which is updated
by the global manager and needs to be checked by the router itself before
taking routing decisions.

Afterwards, in [Daoud and Rafla, 2019a], an analysis of the HT-Blackhole
attack, considering the area and power overhead of the malicious router,
was presented. Precisely, the authors presented the influence of the number
of HT-Blackhole routers along with their distribution in the NoC. Another
contribution by the same authors is presented in [Daoud and Rafla, 2019b],
where they proposed a secure protocol with runtime detection and protec-
tion of HT-Blackhole attack. The proposed secure protocol protects the
system from HT-Blackhole attacks, but it increases dramatically the over-
head due to the large number of ACK packets that need to be exchanged
between the routers for each data packet transmission from a source to a
destination router.

5.4.2 Launching of HT-Greyhole Attack

HTs can be inserted into the pipeline of a VC router according to [Jerger
et al., 2017] and at each input port of a router. The main HT is placed
on the VC Allocator and the other HTs are synchronized with it through
a control signal [Zhang et al., 2018b]. A HT structure consists of three
modules: the Trigger, the Configuration and the Greyhole function module
(Figure 5.5). The placement of the HT-Greyhole in a NoC router is shown
in Figure 5.6, where specifically a malicious HT-Greyhole router architec-
ture is illustrated. The router consists of 5 input/output ports, 5 VCs, 5
Buffers with a counter (C), a VC allocator, a Crossbar switch, a Switch
allocator, a TrustTable and Flow Tables. The five ports correspond to the
four cardinal directions and the local direction which connects the router
with the PE through the NI. The router consists of a two-stage, pipelined
architecture. The first stage is responsible for routing and the second stage
is responsible for crossbar traversal. In this work, the functionality of the
router is described with respect to a 2D mesh interconnect. A HT is placed
in each input port: South, North, East, West, Local, which are synchro-
nized with the main HT-Greyhole which is placed on the VC allocator.

108 CHAPTER 5. SECURITY WITHIN SDNOC

More details for the HT insertion in one port in a single cycle VC-based
router can be found in [Dimitrakopoulos et al., 2015].

Greyhole

Trigger

Configuration

Imported flits

Exported flits

HT-Greyhole

Figure 5.5: HT-Greyhole

Before an attack is launched, a configuration packet should be sent to
the target router by an attacker through a malicious program running on
the given IP core connected to the router. The configuration packet, which
is depicted in Figure 5.7, consists of the following fields:

• Config cmd: is the field of a packet that consists of a specific bit
pattern (e.g. 00110101), which states as a HT configuration packet.

• Trigger: has 2 modes: Always Active (AA) and Destination Based
(DB). An AA trigger HT is always active, while a DB trigger is acti-
vated only when the destination ID of an incoming packet is identical
with the target ID of the configuration packet.

• Packet Type: declares the type of packet, which is either a signal
or data packet.

• Activation Signal: could be on or off depending on the activation
of the HT.

• Target ID: specifies the target address for the DB trigger.

• Interceptor ID: in case that a HT is launched, every data packet
Destination ID will be replaced with the Interceptor ID.

5.4. HARDWARE TROJAN-GREYHOLE ATTACK 109

Crossbar switch

VC

Flow
Tables

Switch allocator

VC

VC

VC

VC

VC Allocator

Flow
TablesFlow

Tables

Trust
Table

CC C

C

C

C

Buffer

Buffer
B
u
f
f
e
r

B
u
f
f
e
r

B
u
f
f
e
r

N

S

W E

L

NI

Figure 5.6: HT-Greyhole router.

After the configuration packet has been delivered to the target router,
the HT configuration information will be saved in a set of registers (Figure
5.7). When a HT has been configured, it can be activated by the trigger
module. More precisely the steps for launching an attack are the following:

• Step 1: An attacker sends a configuration packet through a malicious
program to the target router.

• Step 2: The HT, placed in the target router, receives the configura-
tion packet and updates its configuration information.

• Step 3: The trigger module chooses its mode based on the Trigger
field data stored in the registers.

• Step 4: An activation signal is generated by trigger, by taking into
account the Trigger mode. As for AA mode an activation signal is
generated all the time, while for the DB mode the activation signal

110 CHAPTER 5. SECURITY WITHIN SDNOC

is set to on when the Destination ID of the incoming packet matches
with the Target ID of the register.

… Config
cmd Trigger Packet

Type
Interceptor

ID
Activation

Signal
Target

ID

=

…

cmd

=

… Source
ID

Destination
ID

Packet
Type …

activation
signal

=

Destination

Incoming packet

configuration packet

Hardware Trojan

: comparator=

: AND gate: register
: MUX

Figure 5.7: HT design on circuit level.

• Step 5: The attacker specifies in the configuration packet the type
of the packet that needs to be dropped. If the type of the packet
matches with the type of the incoming packet then move to the next
step (in this scenario the signal packets are normally processed and
the data packets are dropped).

• Step 6: Launch the attack according to the signal and the Packet
Type.

• Step 7: If the Packet Type is data then the Destination ID of the
incoming packet will be replaced with the Interceptor ID. If the Packet
Type is signal, the Destination ID will not be modified.

5.4. HARDWARE TROJAN-GREYHOLE ATTACK 111

5.4.3 Detection

HT assisted DoS attacks are hard to detect due to their low silicon foot-
print, small power and area consumption but also due to their conditional
activation during the run time. Specifically, in the HT attack presented
in [Zhang et al., 2018b], the area and the power consumption are 0.07%
and 0.02% of a NoC router and in [Daoud and Rafla, 2019a] the malicious
router area and power increase are 1.98% and 0.74%, respectively.

The proposed detection strategy has been designed in order to specifi-
cally detect a HT-Greyhole attack in the context of SDNoC. Based on the
architecture, each router has a counter in each port (Figure 5.6), which
is incremented every time that a new packet is imported and it is decre-
mented every time that a packet is exported. The results are saved in the
TrustTable, which includes all the values for each port. The routers are
responsible to periodically send the TrustTable along with their RouterID,
to the controller. The controller calculates and chooses the routes for each
individual source and destination by storing them in the table Routes. The
value k indicates the 4 different directions north, east, south, west.

As soon as the controller receives a TrustTable, it uses the Algorithm
3 in order to find out which routers are considered as suspects. In the
algorithm, the controller checks if any input of the TrustTable is less than
a threshold value (tv), which value can be chosen depending on the traffic
pattern or buffer holding capacity. More details about the choice of tv value
can be found in Chapter 6.4.

Since a malicious router can modify its TrustTable and pretend that
it is non-malicious, it can only be detected through its neighbors. Hence,
the algorithm searches the previous hop (neighbor) of the given RouterID
and afterwards it clarifies if the direction of the neighbor matches with
the direction of the port value of RouterID within the TrustTable. If so,
the neighbor is considered as suspect. More precisely, different values of
tv tested (0−10) and according to buffers read and write request of each
routers and the traffic pattern, the most suitable threshold was chosen for
each scenario.

Since the controller calculates the table Suspect of the given RouterID,
it will also check the tables Suspect of the other RouterID ’s. If a suspect
appears at least in two different Suspect tables, because each router could
have at least two neighbor routers, the suspect router will be considered as
malicious.

112 CHAPTER 5. SECURITY WITHIN SDNOC

Algorithm 3 Detection Algorithm

Data: Routes[][], TrustTable[][], RouterID, a=0
for k=1:4 do

if TrustTable[k][2] < tv then
for j=1:Routes.rows() do

for t=1:Routes.column() do
if Routes[j][t] == RouterID then

neighbor == Routes[j-1] [t];
if TrustTable[k][1] == direction.neighbor() then

a=a+1;
Suspect[a]=neighbor;

end

end

end

end

end

end

The detection method is less costly in terms of overhead and complexity
since the control links between routers and controller are utilized and the
only router side operation is to calculate a TrustTable, which includes the
values of the 4 counters (4-bit each), and to send it through the control
links to the controller.

5.4.4 Defense

As the proposed detection strategy has already identified the malicious
routers and their positions, a route exclusion approach is presented in order
to mitigate the attack. The controller executes the defense approach which
consists of following three phases:

• Route Exploration Phase: Given a source and a destination, the
controller computes a set of admissible routes based on the OE routing
algorithm [Chiu, 2000] and it stores them in a table. OE is a turn
model routing algorithm, lightweight and deadlock-free. Among the
existing turn model routing algorithms, OE tends to provide better
performance and higher adaptiveness than the others.

• Untrusted Paths Phase: From the detection algorithm, the con-
troller already has a list with the malicious routers. Hence, in this

5.5. SUMMARY 113

phase, it has as input the set of admissible routes from the previous
phase, which are checked if they include any malicious router. The
routes that include a malicious router are marked as untrusted and
the rest of the routes as trusted.

• Selection Phase: The inputs in this phase are all the trusted routes
from a given source to a destination. In the classic OE routing algo-
rithm, a random route is chosen among the admissible ones. However,
in this case the controller chooses the least congested route among the
admissible ones by calculating the link load (li) of the routes. The li
corresponds to the number of flits per second that are passing through
the link. The designed formula in order to avoid the highly-loaded
links and routers within within the route can be computed as:

S =

Lf∑
i=0

li. (5.1)

Where S is the computed score for each admissible trusted route and
Lf is the number of links along the route.

Among the scores of the different routes, the route with smallest score
value is selected and indeed it represents the least congested route.
Note that the controller’s knowledge of the data network state (via
the link load) is gathered by immediate inputs from different routers
and their TrustTable computations. Nevertheless for the initial route
computation there is no available score, hence a random route is cho-
sen among the admissible ones, offered by OE.

5.5 Summary

Firstly, a novel GKA communication protocol in order to provide secure
communication within a SoC was introduced. The security requirements
of the proposed architecture were presented, which includes two phases. In
Phase 1, the foremost issue of transporting the PK and the required se-
curity parameters of the nodes was addressed and in Phase 2, the router
controller communication, where GKA protocols are used, was described.
As far as the GKA protocols, two lightweight protocols were chosen and
modified in order to fit in the proposed scenario and to be evaluated. After-
wards, the SSPSoC communication protocol was explained, which includes
a description of the network architecture, network messages, packet format

114 CHAPTER 5. SECURITY WITHIN SDNOC

and the network initialization. The network initialization consists of three
phases: 1) Obtain private key, 2) Form a group and 3) Router controller
communication. Following the design of the proposed SSPSoC protocol, its
evaluation within an SDN environment is presented in Chapter 6.2.1.

Secondly, a very common problem in all systems was explored, the
Byzantine faults. Byzantine faults can cause network performance decrease,
higher packet loss and arbitrary behavior of the nodes. However, they re-
main an unexplored research problem in the context of VLSI systems and
more precisely in the NoC. In this thesis an exploration of Byzantine faults
within NoC was shown. Precisely, an introduction of a new fault model in
NoC context was presented, followed by the design of a novel lightweight
algorithm, which includes two cases of operation, and can tolerate Byzan-
tine faults based on SDNoC architecture.

Thirdly, by following the previous research, a specific attack, called HT-
DoS, which can cause Byzantine faults, was explored. Specifically, in this
thesis the Greyhole attack was introduced. The HT-Greyhole attack targets
the routers within NoC by causing performance decrease and packet loss
increase. However, during a HT-Greyhole attack, certain packets, which
arrive at the router, are dropped, makes it hard to detect. In this chap-
ter, a detection and defense method, against HT-Greyhole attack, which is
based on SDNoC architecture were introduced.

As far as the evaluation and implementation of the protocols and al-
gorithms that were introduced in this chapter, will be presented in the
following Chapter 6.

Chapter 6

Implementation and
Evaluation of security within
SDNoC

6.1 Introduction

Following the Chapter 5, in this Chapter an implementation and evalua-
tion of the proposed SSPSoC protocol, the novel Byzantine fault algorithms
and a new Hardware Trojan (HT)-Greyhole attack with a defense and a
detection mechanism in the context of Software Defined Network-on-Chip
(SDNoC) are demonstrated. As far as the implementation is concerned,
for the SSPSoC a software Software Defined Network (SDN)-based emu-
lator was used, the Mininet, and for the Byzantine Faults algorithms and
HT-Greyhole attack the Garnet Simulator was used, which is described in
Chapter 4.2.

6.2 Secure Sdn-based Protocol over mpSoC

6.2.1 Implementation and Performance Analysis

Regarding the performance analysis of the SSPSoC protocol, a simple sce-
nario with three participants: Private Key Generator (PKG), Router and
Controller was considered. The messages that will be exchanged between
the three participants are depicted in Figure 5.3. As a first step the
router and controller will obtain a private key from PKG, by establish-
ing a Transmission Control Protocol (TCP) connection and transmitting
the KEY_REQUEST message, the PKG will reply with a KEY_REPLY message.
While a TCP connection is needed in order to conduct a validation of the

115

116 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

proposed protocol, the Layer 4 headers and protocols are not needed in the
context on Multi Processor System-on-Chip (MPSoC), thus before its inte-
gration into an MPSoC platform some proper modifications should be per-
formed. Afterwards, the Group Key Agreement (GKA) process is executed,
where the Sharma protocol and Teng protocol, described in Section 5.2.2.1,
were implemented. In order to integrate these two GKA protocols in this
scenario, the following steps were implemented:

1. A router broadcasts a JOIN message, which contains its ID. The des-
tination is always the controller and it waits for an INVITE message.

2. The controller receives the JOIN message, makes a decision about the
participants of the group (routers) and broadcasts an INVITE mes-
sage to them, which contains the IDs of all the invited participants.
Afterwards it waits for READY messages.

3. The router receives the INVITE message and creates a list of partic-
ipants. If the ID is valid, it broadcasts a READY message, based on
the list.

4. The controller remains in idle mode until it receives a READY message
from the routers that are participants of the group at a specific time.
Thereafter, it sends a ROUND_1 message and waits for ROUND_1_REPLY
messages.

5. As soon as the router receives the ROUND_1 message, it broadcasts a
ROUND_1_REPLY message by waiting for ROUND_1 and ROUND_2 mes-
sages.

6. When the controller receives the ROUND_1_REPLY message from all the
participants of the group, it will send ROUND_2 messages by waiting
for ROUND_2_REPLY messages.

7. When the controller receives ROUND_2_REPLY messages from all routers,
the key computation of the group key is started.

8. As a last step the routers, that already belong to a group, can start ex-
changing DATA messages with the controller by using Openflow [McK-
eown et al., 2008] protocol.

Following the SDN concept, the SSPSoC protocol was evaluated by
using the emulator Mininet [Lantz et al., 2010], running on a computer.
Mininet is a network emulator, that runs a collection of end-hosts, switches,
routers, and links on a single Linux kernel. It uses lightweight virtualization

6.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 117

to make a single system look like a complete network, running the same
kernel, system, and user code. In short, Mininet’s virtual hosts, switches,
links, and controllers are created using software rather than hardware by
having similar behavior to discrete hardware elements.

Concerning the network entities: OpenVSwitches (OVS) [Pfaff et al.,
2015] were used as SDNoC routers and a Ryu [Tomonori, 2013] was used
as SDNoC controller. The network hosts are emulated using lightweight
OS-level visualization: each virtual host inside the mininet network corre-
sponds to a container and it has a virtual network interface with a distinct
IP address [Rong and Liu, 2017]. Applications, such as the PKG, controller
and node executables can run directly inside virtual hosts. In the exper-
iments, the hosts are interconnected using virtual links and OVS routers
are running in kernel mode. In each emulated network instance, one vir-
tual host was used to run the PKG, one host for the controller, and the
rest of the hosts to run the nodes participating in the GKA. As far as the
implementation of GKA protocols, the PBC [Lynn, 2006] cryptographic
library, SHA-256 hash function and AES-GCM cipher are used. Follow-
ing the PBC library, the Type A (based on symmetric pairing) and Type
d159 (based on MNT curves [Miyaji et al., 2001]) parameters were used
for the implementation of [Teng and Wu, 2016] and [Sharma et al., 2017]
respectively.

6.2.1.1 Network Performance

Simulations were performed for a samples of 1 to 30 nodes (32 virtual hosts
in total). Specifically, in order to test the performance of the SSPSoC pro-
tocol based on GKA, groups of 2 to 30 nodes (routers) were created. In
this research, the first concern was the evaluation of the performance of
SSPSoC, by using two different GKA protocols in order to find out which
is more appropriate according to their total cost, the cost of ROUND_1 and
ROUND_2 and the Key Derivation cost. The total cost refers to the time
interval between broadcasting a first INVITE message and the forming and
sending of the first DATA message. The cost of two rounds refers to the pe-
riod between the first ROUND_1 message or ROUND_2 message is sent by the
controller and the period that the last ROUND_1_REPLY or ROUND_2_REPLY

message is received by the router. The key derivation cost refers to the
time that is needed for the group key to be derived (Figure 6.1).

As far as the performance of the controller about Sharma protocol,
as depicted in Figure 6.1a, the evolution of the cost is exponential. This
appears due to the cost of ROUND_2 messages, which dominate both the

118 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

ROUND_1 and the Key Derivation phases concerning its contribution to the
total cost. As far as the nodes, as shown in Figure 6.1b, the cost of the pro-
tocol still grows exponentially, due to the cost of ROUND_2. It can be noted
that the total cost for the nodes is initially higher than the cost of the con-
troller, however it becomes almost equivalent for group sizes of more than
20 nodes. This is due to the implementation, where the controller is among
the last participants who generates ROUND_2 messages. In contrast with
the first nodes in the group of participants, which receive all the ROUND_2

messages destined to them earlier and thus complete the protocol faster.
Therefore, the controller and the average node costs gradually start to be-
come equal due to ROUND_2 dominating the total cost of the protocol.

In both controller and the node cases, the cost of the Teng protocol
grows linearly with the size of the nodes, as it was expected. In the case
of the nodes, as depicted in Figure 6.1d the ROUND_2 cost is essentially the
network cost for the transmission of the ROUND_2 messages, as the calcu-
lations are performed by the controller. Similarly the ROUND_1 cost of the
controller is the waiting time of ROUND_1 messages from the nodes. Mean-
while, the controller’s ROUND_2 cost grows faster that the ROUND_1 cost
as the number of calculations depends on the number of participants and
eventually dominates the total execution time of the protocol.

6.2.1.2 Memory Usage

Following the MPSoC concept, another important factor that should be
taken into account is the memory usage, since both GKAprotocols are de-
veloped for . Hence, scenarios for 5, 10 and 15 nodes were evaluated. The
total amount of heap memory allocated during the execution of the SSP-
SoC protocol by using the two GKA schemes was measured with Valgrind
tool Suite [Nethercote and Seward, 2007], which perform a dynamic binary
analysis and enables the Massif heap profiler. The results are presented in
Figure 6.2.

The Sharma protocol (Figure 6.2a) the controller and the nodes use
almost the same amount of heap memory, as we would expect from a bal-
anced protocol. In contrast to the Teng protocol (Figure 6.2b), the nodes
use about 30% less memory than the controller, which is in line with ex-
pectations from an imbalanced protocol. For both protocols, the memory
consumption seems to be growing linearly with the number of participants.

6.2. SECURE SDN-BASED PROTOCOL OVER MPSOC 119

(a) Scalabilty: Controller delay
according to Sharma Protocol

(b) Scalabilty: Nodes delay
according to Sharma Ptotocol

(c) Scalabilty: Controller delay
according to Teng Protocol

(d) Scalabilty: Nodes delay
according to Teng Protocol

Figure 6.1: Performance results of SSPSoC protocol

120 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

(a) Sharma Protocol (b) TENG Protocol

Figure 6.2: Memory usage of two GKA protocols

6.2.2 Conclusion

In this research, a new communication protocol based on the group key
agreement approach and able to address the inside communication of a
MPSoC was proposed. Following the design of the proposed SSPSoC pro-
tocol, it was validated and simulated within an SDN environment. The
results focused on the evaluation of two GKA schemes according to their
scalability and their memory usage. The two main factors making the scal-
ability of Sharma protocol poor are the cost of the scalar multiplications
needed for the Round 2 and Signature verification calculations (Chapter
5.2.2.1) and the network cost of Round 2 communications. In addition, it
should be considered that both cost factors scale with the number of nodes
participating in the protocol, contrary to the number of pairing calculations
in the Teng protocol which is fixed. Certainly, the results for the Teng pro-
tocol concern Type A pairing parameters, which are the fastest available
in the PBC library. However, because only two pairing calculations are in-
volved in the Teng protocol and the message cost scales linearly, while the
number of scalar multiplications grows with the number of participants in
the Sharma protocol and the message cost grows exponentially, we expect
the Teng protocol to be faster for greater number of nodes, regardless of
the type of the pairing used. To conclude, the Teng protocol has far better
performance and significantly lower power consumption based on the num-
ber of participants, making it a more appropriate option for integration in
the third phase of the SSPSoC protocol. On the other hand, the Sharma
protocol, even without using pairing as Teng protocol, has higher cost and
memory usage. These results were obtained due to the authenticity of every
participant that the Sharma protocol is considering in contrast to the Teng
protocol which does not consider the authenticity of the group participants.

6.3. BYZANTINE FAULTS 121

6.3 Byzantine Faults

6.3.1 Implementation

Following Chapter 5.3, in order to show how a Byzantine fault can affect
the SDNoC and also the improvement of throughput and packet loss, that
is accomplished as a result to the proposed algorithms, simulations were
performed with Garnet2.0 [Agarwal et al., 2009]. Precisely, the SDNoC
architecture was simulated as discussed in Chapter 4 by implementing and
evaluating different scenarios in order to explore the effect of Byzantine
faults in the network, but also in order to test the proposed algorithms for
the correct function of the system. The first scenario represents the Normal
Case Operation which is described in Section 5.3.3.1. Afterwards, various
scenarios were implemented, in which 1, 3 and 6 Byzantines faults, were
imported within the SDNoC and the Byzantine fault Operation algorithms
(5.3.3.2) were tested.

For this scenario an 8 × 8 topology is simulated, including 0, 1, 3 and
6 Byzantine faults within the network. Furthermore, three different traffic
scenarios have been evaluated: Transpose, Uniform and Bit-Reverse. It
should be noted that for each scenario 40 iterations are performed, of which
the average value of throughput and latency are calculated.

6.3.2 Evaluation

The results of the first scenario, which represents the Normal Case Oper-
ation of the proposed algorithm, are depicted in Figure 6.3a, Figure 6.3b,
Figure 6.3c. More precisely, in the figures the average throughput and the
average packet latency, under different injection rates (0.015 − 0.024), are
presented for Transpose, Uniform and BitReverse traffic respectively. The
average throughput and latency tend to be identical for Transpose and Bit-
Reverse traffic. The average throughput is in the range of 0.075 − 0.115
flits/cycle/core and the average latency is between 20 − 180 cycles. As a
result, the controller relies on an accurate view of the network state and is
able to balance the traffic across the network by avoiding the creation of
congested network areas. However, under Uniform traffic the controller is
unable to balance the traffic under high injection rate because the source-
destination pair is randomly chosen. Hence, in conjunction with the routing
algorithm restrictions applied to the routes, the average latency is in the
range of 0− 400 cycles and the average throughput in the range of 0.0075-
0.0095 flits/cycle/core.

122 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

(a) Throughput and Latency under Transpose Traf-
fic.

(b) Throughput and Latency under BitReverse Traf-
fic.

(c) Throughput and Latency under Uniform Traffic.

Figure 6.3: Normal Case Operation Scenario measurements.

6.3. BYZANTINE FAULTS 123

Table 6.1: Packet loss improvement.

Byzantine Faults 1 3 6

Algorithm 1 2 1 2 1 2

Transpose traffic 24% 15% 56% 47% 76% 65%

BitReverse traffic 24% 14% 55% 46% 77% 67%

Uniform traffic 19% 10% 50% 42% 66% 55%

In Figure 6.4, three different scenarios are presented in each graph. In
the first scenario, a single Byzantine fault is imported, the second scenario
considers three Byzantine faults and in the third instance, there are six
Byzantine faults. Figures 6.4a, 6.4b and 6.4c depict the normalized aver-
age throughput under Transpose, Uniform and BitReverse traffic respec-
tively. Figures 6.4d, 6.4e and 6.4f show the normalized packet loss rate.
Figure 6.4g, 6.4h and 6.4i illustrate the normalized packet loss. By taking
into account these results, the packet loss improvement is shown in Table
6.1. As far as the throughput is concerned, it shows improvement between
62 − 64% for Uniform traffic and 87 − 89% for Transpose and BitReverse
traffics. However, with the implementation of the algorithms within the
system, there is an increase in the functionalities of the network and hence,
there is also a latency increase between 10% and 40%.

6.3.3 Conclusion

Byzantine faults are a common problem in all systems and can cause net-
work performance decrease, higher packet loss and arbitrary behavior of
the nodes. However, they remain an unexplored research problem in the
context of VLSI systems and more precisely in the NoC. In this research
the Byzantine faults were explored in the context of NoC together with a
new fault model, which covers the NoC context. Additionally, a design and
evaluation of a novel lightweight algorithm was presented, which includes
two cases of operation, and can tolerate Byzantine faults based on SDNoC
architecture.

From the results, it is obvious that there is a large throughput decrease
and packet loss increase due to the Byzantine faults. Hence, two different
algorithms were proposed in order to deal with the reverse arbitrary behav-
ior of the Byzantine fault routers. By applying the proposed algorithms,
the NoC continues to function normally by improving the overall packet
loss by 23%-77% and the average throughput by 62%-89%.

124 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

(a) Throughput under Transpose Traffic. (b) Throughput under BitReverse Traffic.

(c) Throughput under Uniform Traffic. (d) Packet loss under Transpose Traffic.

(e) Packet loss under BitReverse Traffic. (f) Packet loss under Uniform Traffic.

(g) Latency under Transpose Traffic. (h) Latency under BitReverse Traffic.

(i) Latency under Uniform Traffic.

Figure 6.4: Byzantine fault case operation scenarios measurements.

6.4. HARDWARE TROJAN-GREYHOLE ATTACK 125

The main goal was to achieve the right consensus of the system and the
delivery of the packet from the source to the destination. Furthermore, by
using the SDNoC architecture, the authenticity of the network is ensured,
since there are direct links between the controller and each router. How-
ever, the confidentiality and integrity of the network are still open research
problems and need further exploration.

6.4 Hardware Trojan-Greyhole attack

Following the Chapter 5.4, the implementation of the HT-Greyhole attack
but also the evaluate of the proposed detection and defense strategy were
performed. The Garnet2.0 [Agarwal et al., 2009] simulator has been used,
which is a NoC model implementation within the gem5 simulator [Binkert
et al., 2011]. Precisely, the SDNoC architecture was simulated as discussed
in Chapter 4, by implementing the HT-Greyhole attack followed by the de-
tection and defense strategy proposed in Chapter 5.4.3 and Chapter 5.4.4
respectively.

An 8×8 topology is simulated, containing either 1 or 3 or 6 HT-Greyhole
routers. Furthermore, three different traffic scenarios have been evaluated:
Transpose, Uniform and BitReverse.

6.4.1 Evaluation of the Detection Strategy

6.4.1.1 Background

In order to evaluate the detection algorithm, binary classification is used.
Binary or binomial classification is the task of classifying the elements of
a given set into two groups (predicting which group each one belongs to)
based on the classification rule. Binary classification is the most common
classification task.

Data entries x1, .., xn have to be assigned into predefined classes C1, .., Cl.
In case of binary classification the input classified into one, and only one,
of two non-overlapping classes (C1C2) [Sokolova and Lapalme, 2009]. As-
signed categories can be objective, independent of manual evaluation (e.g,
republican or democrat in the votes data of the UCI repository ([Frank,
2010]) or subjective, dependent on manual evaluation (e.g., positive or neg-
ative reviews in Amazon.com ([Blitzer et al., 2007]). Classes can be well-
defined (e.g., the voting labels), ambiguous (e.g., the review opinion labels),
or both.

126 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

Table 6.2: Confusion Matrix

True Condition

Predicted
Condition

Total Population Positive (P) Negative (N)
Positive (P) True Positive (TP) False Positive (FP)
Negative (N) False Negative (FN) True Negative (TN)

Considering a two-class prediction problem, in which the outcomes are
labeled either as Positive (P) or Negative (N). In this case, there are four
possible outcomes from a binary classifier. If the outcome from a prediction
is P and the actual value is also P, then it is called a True Positive (TP);
however if the actual value is N then it is said to be a False Positive (FP).
Conversely, a True Negative (TN) has occurred when both the prediction
outcome and the actual value are N and False Negative (FN) is when the
prediction outcome is N, while the actual value is P. Based on these pa-
rameters, a confusion matrix ca be defined in Table 6.2. The correctness
of a classification can be evaluated by computing the number of correctly
recognized class examples (TP), the number of correctly recognized exam-
ples that do not belong to the class (TN), and examples that either were
incorrectly assigned to the class (FP) or that were not recognized as class
examples (FN).

Table 6.3 presents the most used measures for binary classification based
on the values of confusion matrix. Two of the most used measures are
the Sensitivity and the Specificity. Sensitivity, which also called the True
Positive Rate (TPR) or Recall, measures the proportion of actual Positive
that are correctly identified as Positive. On the other hand Specificity,
called the True Negative Rate (TNR), measures the proportion of actual
Negative that are correctly identified as Negative. The Positive Predicted
Value (PPV) and Negative Predicted Value (NPV) are the proportions of
positive and negative results in statistics and diagnostic tests that are TP
and TN results, respectively. As far as the Accuracy (ACC) is concerned,
it can be described as the degree of closeness of measurements of a quantity
to that quantity’s true value.

Based on the confusion matrix, a Receiver Operating Characteristic
(ROC) graph is a technique for visualizing, organizing and selecting clas-
sifiers based on their performance [Fawcett, 2006]. In other words a ROC
curve is a graphical representation plot that illustrates the diagnostic abil-
ity of a binary classifier system as its discrimination threshold is varied.
ROC graphs are two-dimensional graphs in which the TPR is plotted on
the Y axis and FPR is plotted on the X axis. A ROC graph depicts the
relative trade-off between benefits (TP) and costs (FP). Figure 6.5 shows
a ROC graph with five classifiers labeled A through E.

6.4. HARDWARE TROJAN-GREYHOLE ATTACK 127

Table 6.3: Measures for binary classification

Measure Abr Formula Explanation

Sensitivity, Recall
or True Positive Rate

TPR TP
TP+FN

Effectiveness of a classifier to identify
positive labels.

Specificity, Selectivity
or True Negative Rate

TNR TN
TN+FP

Effectiveness of a classifier to identify
negative labels.

Precision or
Positive Predicted Rate

PPV TP
TP+FP

Class agreement of the data with the
positive labels given by the classifier.

Negative Predicted Value NPV TN
TN+FN

Class agreement of the data with the
negative labels given by the classifier.

Miss rate or
False Negative Rate

FNR FN
FN+TP

Probability of identifying positive
labels as negative.

False Positive Rate FPR FP
FP+TN

Probability of falsely identifying
negative labels as positive.

False Discovery Rate FDR FP
FP+TP

Control of the expected discovered
labels that are negative.

False Omission Rate FOR FN
FN+TN Compliment of NPV.

Accuracy ACC TP+TN
TP+TN+FP+FN Overall effectiveness of a classifier.

Figure 6.5: ROC space and plots of five discrete classifier [Fawcett, 2006].

128 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

The best possible prediction method would yield a point in the upper left
corner or coordinates (0,1) of the ROC space, representing 100% sensitivity
(no FN) and 100% specificity (no FP). The (0,1) point is also called a perfect
classification. A random guess would give a point along a diagonal line
from the left bottom to the top right corners (regardless of the positive and
negative base rates). The diagonal divides the ROC space. Points above
the diagonal represent good classification results and points below the line
represent bad classification. As far as the Figure 6.5, D’s performance is
the best since it lies on (0,1), followed by the performance of A and B. The
performance of C lies on random guess line and the performance of E is the
worst.

When using normalized units, the Area Under the Curve (AUC) is equal
to the probability that a classifier will rank a randomly chosen Positive in-
stance higher than a randomly chosen Negative one [Fawcett, 2006]. In
other words the AUC represents the degree or measure of separability. The
AUC measure gives a better view about the algorithm’s capability of dis-
tinguishing between classes. The higher the AUC, the better the model
is at predicting the Positive and Negative values. An excellent model has
AUC close to the 1, which means it has good separability. A poor model
has AUC close to the 0 which means it has bad separability. The formula
for the AUC is the following:

AUC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(6.1)

6.4.1.2 Test Cases

By using binary classification, 27 different scenarios of an 8x8 topology were
identified, taking into account, different traffics (Transpose, BitReverse,
Uniform), different numbers of HT (1, 3, 6) and different threshold (th)
values (0, -10, -100) of the detection algorithm. The results of the different
scenarios are presented in Table 6.4. For this scenario a malicious node
(HT) is considered as Negative and a non-malicious node is considered as
Positive, in that setting:

• TP: Non-malicious node correctly identified as non-malicious.

• FP: Malicious node incorrectly identified as non-malicious.

• TN: Malicious node correctly identified as malicious.

• FN: Non-Malicious node incorrectly identified as malicious.

6.4. HARDWARE TROJAN-GREYHOLE ATTACK 129

T
a
b
le

6
.4
:

R
es

u
lt

s
o
f

b
in

a
ry

cl
a
ss

ifi
ca

ti
o
n

fo
r

d
et

ec
ti

o
n

a
lg

o
ri

th
m

T
ra

ffi
c

#
H

T
tv

T
P

F
N

F
P

T
N

T
P

R
F

N
R

T
N

R
F

P
R

P
P

V
F

D
R

N
P

V
F

O
R

A
C

C

T
ra

n
sp

os
e

1
0

58
5

0
1

92
.1

%
7
.9

%
1
00

%
0%

10
0%

0%
16

.6
%

83
.3

%
9
2
.2

%

T
ra

n
sp

os
e

1
-1

0
62

1
0

1
98

.4
%

1
.6

%
1
00

%
0%

10
0%

0%
50

%
50

%
9
8
.4

%

T
ra

n
sp

os
e

1
-1

00
63

0
0

1
10

0%
0
%

1
00

%
0%

10
0%

0%
10

0%
0%

1
0
0
%

T
ra

n
sp

os
e

3
0

54
7

0
3

88
.5

%
1
1.

5%
1
00

%
0%

10
0%

0%
30

%
70

%
8
9
.1

%

T
ra

n
sp

os
e

3
-1

0
56

5
0

3
91

.8
%

8
.2

%
1
00

%
0%

10
0%

0%
37

.5
%

62
.5

%
9
2
.2

%

T
ra

n
sp

os
e

3
-1

00
60

1
0

3
98

.4
%

1
.6

%
1
00

%
0%

10
0%

0%
75

%
62

.5
%

9
8
.4

%

T
ra

n
sp

os
e

6
0

50
8

1
5

86
.2

%
1
3.

8%
8
3.

3%
16

.7
%

98
%

2%
38

.5
%

61
.%

8
4
.9

%

T
ra

n
sp

os
e

6
-1

0
52

6
0

6
89

.7
%

1
0.

3%
1
00

%
0%

10
0%

0%
50

%
50

%
9
0
.6

%

T
ra

n
sp

os
e

6
-1

00
57

1
0

6
98

.3
%

1
.7

%
1
00

%
0%

10
0%

0%
85

.7
%

14
.3

%
9
8
.4

%

B
it

R
ev

er
se

1
0

57
6

0
1

90
.5

%
9
.5

%
1
00

%
0%

10
0%

0%
14

.3
%

85
.7

%
9
0
.6

%

B
it

R
ev

er
se

1
-1

0
60

3
0

1
95

.2
%

4
.8

%
1
00

%
0%

10
0%

0%
25

%
75

%
9
5
.3

%

B
it

R
ev

er
se

1
-1

00
63

0
0

1
10

0%
0
%

1
00

%
0%

10
0%

0%
10

0%
0%

1
0
0
%

B
it

R
ev

er
se

3
0

52
9

0
1

85
.2

%
1
4.

8%
1
00

%
0%

10
0%

0%
25

%
75

%
8
5
.9

%

B
it

R
ev

er
se

3
-1

0
55

6
0

1
90

.2
%

9
.8

%
1
00

%
0%

10
0%

0%
33

.3
%

66
.7

%
9
0
.6

%

B
it

R
ev

er
se

3
-1

00
61

0
0

3
10

0%
0
%

1
00

%
0%

10
0%

0%
10

0%
0%

1
0
0
%

B
it

R
ev

er
se

6
0

48
10

1
5

82
.9

%
1
7.

2%
8
3.

3%
16

.7
%

98
%

2%
33

.3
%

66
.7

%
8
2
.8

%

B
it

R
ev

er
se

6
-1

0
53

5
1

5
91

.4
%

8
.6

%
8
3.

3%
16

.7
%

98
.1

%
1.

9%
50

%
50

%
9
0
.6

%

B
it

R
ev

er
se

6
-1

00
58

0
0

6
10

0%
0
%

1
00

%
0%

10
0%

0%
10

0%
0%

1
0
0
%

U
n
if

or
m

1
0

54
9

0
1

85
.7

%
1
4.

3%
1
00

%
0%

10
0%

0%
10

%
90

%
8
5
.9

%

U
n
if

or
m

1
-1

0
56

7
0

1
89

.9
%

1
1.

1%
1
00

%
0%

10
0%

0%
12

.5
%

87
.5

%
8
9
.1

%

U
n
if

or
m

1
-1

00
60

3
0

1
95

.2
%

4
.8

%
1
00

%
0%

10
0%

0%
25

%
75

%
9
5
.3

%

U
n
if

or
m

3
0

49
12

0
3

80
.3

%
1
9.

7%
1
00

%
0%

10
0%

0%
20

%
80

%
8
1
.2

%

U
n
if

or
m

3
-1

0
54

7
0

3
88

.5
%

1
1.

5%
1
00

%
0%

10
0%

0%
30

%
70

%
8
9
.1

%

U
n
if

or
m

3
-1

00
58

3
0

3
95

.1
%

4
.9

%
1
00

%
0%

10
0%

0%
50

%
50

%
9
5
.3

%

U
n
if

or
m

6
0

42
16

1
5

72
.4

%
2
7.

6%
8
3.

3%
16

.7
%

97
.7

%
2.

3%
23

.8
%

76
.2

%
7
3
.4

%

U
n
if

or
m

6
-1

0
47

11
1

5
81

%
1
9%

8
3.

3%
16

.7
%

97
.9

%
2.

1%
31

.2
%

68
.8

%
8
1
.2

%

U
n
if

or
m

6
-1

00
54

4
0

6
93

.1
%

6
.9

%
1
00

%
0%

10
0%

0%
60

%
40

%
9
3
.8

%

130 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

In the test case of 1 malicious node, taking into account the different
traffics and for threshold value 0 the TPR values are between 85.7% and
92.1%, the TNR is 100% and the ACC is between 85.9% and 92.2%. In the
test case of 3 malicious node, taking into account the different traffics and
for threshold value 0 the TPR values are between 80.3% and 88.5%, the
TNR is 100% and the ACC is between 81.2% and 89.2%. In the test case of
6 malicious node, taking into account the different traffics and for threshold
value 0 the TPR values are between 72.7% and 92.1%, the TNR is 83.3%
and the ACC is between 73.4% and 92.2%. Furthermore, it worths to be
mentioned that for the last test case for first time 1 FN value is noticed,
hence the TNR is lower in contrast to the other test cases.

In the test case of 1 malicious node, taking into account the different
traffics and for threshold value -10 the TPR values are between 89.9% and
98.4%, the TNR is 100% and the ACC is between 89.1% and 98.4%. In
the test case of 3 malicious node, taking into account the different traffics
and for threshold value -10 the TPR values are between 88.5% and 91.8%,
the TNR is 100% and the ACC is between 89.1% and 92.2%. In the test
case of 6 malicious node, taking into account the different traffics and for
threshold value -10 the TPR values are between 81% and 91.4%, the TNR
is between 83.3% and 100% and the ACC is between 81.2% and 90.6%.
However in the previous test cases the FN value was 1, hence the TNR is
lower in contrast to the other test cases, for the 3 different traffic scenarios,
in this scenario it is only for Bit-Reverse and Uniform traffic.

In the test case of 1 malicious node, taking into account the different
traffics and for threshold value -100 the TPR values are between 95.2% and
100%, the TNR is 100% and the ACC is between 95.9% and 100%. In the
test case of 3 malicious node, taking into account the different traffics and
for threshold value -100 the TPR values are between 95.1% and 100%, the
TNR is 100% and the ACC is between 95.3% and 100%. In the test case of
6 malicious node, taking into account the different traffics and for threshold
value -100 the TPR values are between 93.1% and 100%, the TNR is 100%
and the ACC is between 93.8% and 100%. It is obvious that the perfor-
mance and the accuracy of the algorithm under the threshold value -100 is
better for all traffics. Hence the threshold value -100 was consider for the
rest of the test cases.

6.4. HARDWARE TROJAN-GREYHOLE ATTACK 131

(a) 1 HT-Greyhole router.

(b) 3 HT-Greyhole router.

(c) 6 HT-Greyhole router

Figure 6.6: Roc curve diagrams for 1, 3, 6 HT-Greyhole routers with tv=0, -10, -100
and for Transpose, BitReverse, Uniform traffic.

132 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

Figure 6.6 represents the ROC curves of the different scenarios for dif-
ferent numbers of HT-Greyhole routers within the network, under different
traffic scenarios and different threshold (tv) values. From the graphs, it
is obvious that the ROC curves for the tv = −100 tend to be ideal for
all scenarios. Hence the proposed algorithm is able to better distinguish
between positive and negative values for this threshold value. As fas as the
ACC of the algorithm is concerned, for tv = 0 the ACC is between 73.4%
and 92.2%, for tv = −10 the ACC is between 81.2% and 98.4% and for
tv = −100 the ACC is between 95.2% and 100%. However it should be
mentioned that for some test cases (tv = 0 and tv = −10), it is noted that
FN values are appeared, hence the FPR will be higher. As far as the AUC
value is concerned for tv = −100, it is between 0.965 and 1, which means
that in some test cases it is perfect (AUC=1) and in other cases it tends to
be perfect (0.95 < AUC < 1).

Figure 6.7 depicts a scenario of 1 HT-Greyhole router. More precisely, in
Figures 6.7a, 6.7b and 6.7c the average throughput under different injection
rates (0.015-0.024) is presented for Transpose, Uniform and BitReverse traf-
fic respectively. In Figure 6.7d, 6.7e and 6.7f the packet loss rate is shown
under different injection rates. From the figures it is obvious that there is
an increase on the packet loss rate and a decrease on the throughput of the
SDNoC when the network is under attack compared to when the network
works normally. Furthermore, when the proposed defense part is employed
on SDNoC, it is noticed that the throughput values of SDNoC with de-
fense and the throughput values of normal SDNoC tend to be identical.
Precisely, under the higher injection rate, an increase of 3% is observed
under Uniform, Transpose and BitReverse traffics of the overall packet loss
rate between SDNoC and SDNoC under HT-Greyhole attack. Regarding
the average throughput, it is decreased by 8% under Uniform traffic, 10%
under Transpose and BitReverse traffic. Thus, the detection of this attack
is a very difficult process.

In Figure 6.8, three different scenarios are presented in each graph. In
the first scenario, only one HT-Greyhole router is simulated, the second
scenario considers three HT-Greyhole routers and in third instance, there
are six HT-Greyhole routers. Figures 6.8a, 6.8b and 6.8c depict the normal-
ized average throughput under Transpose, Uniform and BitReverse traffic
respectively. Figures 6.8d, 6.8e, 6.8f show the normalized packet loss rate.
By taking into account these results, the packet loss improvement is shown
in Table 6.5. As far as the throughput is concerned, by applying the defense
method it is improved between 63-66% for Uniform traffic and 88-89% for
Transpose and BitReverse traffics.

6.4. HARDWARE TROJAN-GREYHOLE ATTACK 133

(a) Throughput under Transpose Traffic. (b) Throughput under Uniform Traffic.

(c) Throughput under BitReverse Traffic. (d) Packet loss under Transpose Traffic.

(e) Packet loss under Uniform Traffic. (f) Packet loss under BitReverse Traffic.

Figure 6.7: 1 HT-Greyhole router under different traffic scenarios.

134 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

(a) Throughput under Transpose Traffic. (b) Throughput under Uniform Traffic.

(c) Throughput under BitReverse Traffic. (d) Packet loss under Transpose Traffic.

(e) Packet loss under Uniform Traffic. (f) Packet loss under BitReverse Traffic.

Figure 6.8: 1, 3, 6 HT-Greyhole routers scenarios measurements.

Table 6.5: Packet loss improvement with defense method.

HT-Greyhole Router 1 3 6

Transpose Traffic 27,3% 56,8% 76%

Uniform Traffic 23,6% 50,5% 66%

BitReverse Traffic 27,6% 56,2% 72%

6.5. SUMMARY-DISCUSSION 135

6.4.2 Conclusion

The HT-Greyhole DoS attack targeting NoC can possibly cause network
performance decrease and higher packet loss. In this thesis the attack is
introduced within SDNoC context and a detection method and a defense
method have been designed and evaluated. Through the evaluation of the
detection algorithm (using binary classification), the different possibilities
of threshold values by finding the most accurate were explored. After-
wards by taking into account the performance results, it is obvious that
the packet loss increase and throughput decrease are not significant (3%-
10%) enough in order to detect a HT-Greyhole router, due to its stealthy
behavior. Hence, the need of an alternate detection method able to detect
malicious routers and a defense method which allows the normal function
of the systems is mandatory. By applying the defense method, the inter-
connection system continues to function normally by improving the overall
packet loss by 23.6%-77% and the average throughput by 63%-89%.

6.5 Summary-Discussion

This chapter is separated into 3 parts. The first part: the implementation
and evaluation of SSPSoC, which is independent from the other two parts:
Byzantine faults and HT-Greyhole attack. Precisely, in the first part the
implementation and evaluation of a novel SDNoC-based secure GKA com-
munication protocol was presented by evaluating two different GKA within
the proposed scenario according to their scalability and their memory usage.
From the results it can be noticed that the [Teng and Wu, 2016] protocol
outperforms the [Sharma et al., 2017] protocol, hence it was considered as
more appropriate in for integration within SSPSoC protocol. It should be
noted that the SSPSoC protocol was the first secure communication proto-
col within SDNoC architecture. However, the protocol has been simulated
within a modified software based simulator and in the future it could be
tested in a hardware-based simulator for more accurate results.

In the second part, the implementation and evaluation of Byzantine
faults in the context of SDNoC were presented. The main objective of this
part is the defense against system failures by mitigating the influence of
malicious nodes on the correct function of the system and the right consen-
sus that is reached by the legitimate nodes. The proposed algorithms can
be used to build highly available NoCs and can tolerate Byzantine faults.
Additionally, from the results, it is obvious that when Byzantine faults
were implemented within the SDNoC architecture, the throughput was de-

136 CHAPTER 6. EVALUATION OF SECURITY WITHIN SDNOC

creased and packet loss was increased. Hence, two different algorithms were
proposed and evaluated in order to deal with the reverse arbitrary behav-
ior of the Byzantine fault routers. From the evaluation of the proposed
algorithms, it was noticed that the NoC continues to function normally by
improving the overall packet loss by 23%-77% and the average throughput
by 62%-89%. To conclude, the main goal was to achieve the right consensus
of the system and the delivery of the packet from the source to the desti-
nation. Furthermore, by using the SDNoC architecture, the authenticity of
the network is ensured, since there are direct links between the controller
and each router. However, the confidentiality and integrity of the network
are still open research problems and need further exploration.

In the third part, the implementation and evaluation of a specific Byzan-
tine Fault behavior, that is coming from the HT-Greyhole attack, was pre-
sented. Precisely, the HT-Greyhole attack targets the routers within NoC
by causing performance decrease and packet loss increase. However, dur-
ing a HT-Greyhole attack, certain packets, which are arriving towards the
router, are dropped which makes it hard to detect. This has been proven
through performance results, it is obvious that the packet loss increase and
throughput decrease are not significant (3%-10%) enough to detect a HT-
Greyhole router, due to its stealthy behavior. Hence, it had been taken
into account the accuracy of the proposed detection algorithm. Through
the evaluation of the detection algorithm, binary classification was used in
order to explore the different possibilities of threshold values by finding the
most accurate. As far as the evaluation of the defense method, the inter-
connection system continues to function normally by improving the overall
packet loss by 23.6%-77% and the average throughput by 63%-89%. In the
future, more measurements in the context of power and area consumption
of this attack could be considered together with the time of HT-Greyhole
router detection and its effect on the system.

Chapter 7

Conclusion

The demand for more power-efficient and higher performance computing
systems has ushered in the System-on-Chip (SoC) era, where many Intel-
lectual Properties (IP) cores and many processor can be integrated on a
single chip. This new trend has provided a higher level of performance
for various application requirements. However, as the number of cores,
within a single piece of silicon, continuously grows, there is need for scal-
able on-chip interconnect networks that can deliver high speed data transfer
among the many IP cores and processors. According to the literature and
recent studies, the traditional interconnects, bus and crossbar, do not scale
with an increasing number of cores. Conversely, Network-on-Chip (NoC)
has emerged as an alternative and scalable interconnect for future SoCs.
However, most existing NoCs suffer from performance degradation due to
underutilization of NoC resources. Moreover, it has high complexity and as
main communication component between processing core it attracted the
attentions of the attackers. Hence researchers, start exploring alternatives
of it. The Software Defined Network-on-Chip (SDNoC) is a NoC alternative
that gained a lot of attention the last years from the research community.
The approach proposed by SDNoC is derived from SDN technology and
targets as a main goal the minimization of routers’ complexity. Precisely,
with the help of SDNoC, the routing logic of the hardware routers, attached
in each PE, is exported to a centralized controller, which is running as a
software in a given Processing Element (PE). Furthermore, the centralize
controller has a general view of the network and can take routing decisions
about the packets/flits within the network efficiently.

In this thesis, an attempt has been made towards the research of the the
novel SDNoC architecture as a potential solution for future SoCs. Firstly
the state of the art of the SDNoC concept was presented. From the presen-

137

138 CHAPTER 7. CONCLUSION

tation of the state of the art, it is obvious that authors focused on different
aspects of SDNoC by concentrating mainly on hardware and neglecting the
networking functionalities that can be unfolded, but also the security as-
pects, that can be provided through SDNoC. Hence, in this thesis an effort
has been made in order to fill these gaps.

In the context of SDN technology, the OpenFlow Protocol is used for
communication between routers and the controller, however its adoptions
to micro-scale system is impossible due to its size and design for large scale
systems. Following the proposed SDNoC architecture, the first communi-
cation protocol called MicroLET [Ellinidou et al., 2019] in the context of
micro-scale systems was introduced. The MicroLET protocol is designed
in order to provide a new routing approach based on SDN technology and
a new message stack specifically designed for micro-scale networks. Fur-
thermore through the evaluation of the MicroLET protocol, it is proven
that it could be a good candidate for the future SoCs, as chiplet-based sys-
tems. Additionally, in this thesis the routing within SDNoC was explored,
where different routing algorithms were implemented and tested within an
SDNoC prototype under different scenarios. Also, a new modified version
of an already existing routing algorithm was designed and tested in order
to obtain better performance results within network. Finally, a statistical
analysis was performed in order explore how the performance is affected
by the different parameters that has been taken into account within the
different simulated scenarios.

As previously mentioned, the security within SDNoC is an unexplored
field. Hence, the second field of priority was the investigation of security,
by firstly proposing a secure SDNoC-based Group Key Agreement (GKA)
protocol, called SSPSoC [Soultana Ellinidou, 2019]. The design of SSPSoC
has three main functionalities: the derivation of keys for every node (router
or controller) in the network through a Private Key Generator (PKG), the
establishment of a secure group of participants, and the secure communi-
cation between the participants. Moreover, a simulation and validation of
SSPSoC within an SDN environment together with the performance analy-
sis of two GKA protocols, in order to verify which is more suitable in order
to cover the second functionality of the proposed protocol in the view of
running time and memory consumption were presented.

Afterwards, a common problem within NoC, the arbitrary behavior of
routers, Byzantine faults, that can be caused when the system is under
different attacks was explored. The Byzantine faults have been very well

139

investigated in the context of Distributed systems however not in SoCs.
Hence, in this thesis a novel fault model followed by the design and im-
plementation of lightweight algorithms, based on SDNoC architecture were
proposed [Ellinidou et al., 2020b]. The proposed algorithms can be used
to build highly available NoCs and can tolerate Byzantine faults. From
the evaluation and simulations of Byzantine faults within a SDNoC, it is
obvious that there is a large throughput decrease and packet loss increase.
However by applying the proposed algorithms, the SDNoC continues to
function normally by improving the overall packet loss by 23%-77% and
the average throughput by 62%-89%.

Following the previous contribution, a novel Hardware Trojan (HT)-
Denial of Service (DoS) attack, the HT-Greyhole, that causes Byzantine
faults was explored. The HT-Greyhole attack is an unexplored attack
within NoCs and in this thesis it was implemented and evaluated for first
time. Precisely, within this contribution the description and activation of
a HT-Greyhole attack in NoC context was presented. Thereafter a secu-
rity management mechanism relying on SDNoC, as key proposal in order to
identify malicious routers and depending on the position of affected routers,
a route exclusion approach were presented in order to mitigate the impact
of the attack. From the performance results, it was evident that the packet
loss was not significantly increased and the throughput was not also sig-
nificantly decreased (3%-10%). Furthermore, from the evaluation of the
defense method, there was a improvement of the overall packet loss by
23.6%-77% and the average throughput by 63%-89%.

Consequently, not only a novel communication and a novel security
protocol were proposed but also new possible attacks within SDNoC were
explored. The HT-DoS attacks are the new kind of the classic HT attacks
that can trick the system and extract sensitive information. For this reason,
most of the critical systems need to be specifically designed in order to be
able to tackle these kind of attacks during the run time, by detecting them
but also defending the system against them. In order to contribute in this
field, the HT-Greyhole attack was designed and evaluated. Additionally,
with the exploration of Byzantine faults within NoC, a new research field
has been opened, where new techniques and algorithms can be designed
and proposed.

As fas as the SDNoC integration within the future systems, composed
of many nodes, highly configurable communication such as SDNoC seemed
to be very promising however more research in the different communica-

140 CHAPTER 7. CONCLUSION

tion hierarchical levels need to be done. For example, in the case of CoC
architecture [Bousdras et al., 2018] each IC could integrate a software-
programmable controller and all the controllers will report to the central
hardware controller. The two-level of hierarchy enables efficient commu-
nication on the IC level as well as the PCB level. As far as, the packet
forwarding it can be managed in the same way that is described in Chapter
3.4. The source IP core forwards the packet header to the controller and the
controller sends back the exit port at each router on the path. Furthermore,
the controllers on each IC also will maintain flow tables and group tables
for outside IC communication. The flow rules include frequently visited
paths, and in a case of miss, the packet header is forwarded to the central
controller. The central controller has access to global topology view and is
responsible for the updates of flow entries on these controllers. Once the
flow entry is updated, the header packet is assigned a route and the rest
of the packets will follow the same route. As far as the chiplets architec-
ture is concerned, the MicroLET protocol (Chapter 3.6) designed to cover
the intra-chiplet communication. In that case the controller will be placed
inside a chiplet and attached to one router, the rest of the routers within
the network will communicate in order to ask for a possible route for the
upcoming packets from the controller. However in the case of inter-chiplet
communication, its chiplet may contain its own local sub-SDNoC and an
extra SDNoC will be placed on the interposer in order to transfer packets
between different chiplets. In this case two-level hierarchy is needed with a
main-controller within the interposer, which is managing the sub-controllers
within chiplets and is able to transfer packets through different chiplets.

7.1 Future Work

As previously mentioned, the security field constitutes a huge gap in the
context of SDNoC. It can be seen that except for network efficiency that
the SDNoC technology also brought new malicious attacks that need to be
considered. It was already explained in the STRIDE model, in Chapter
3.2.1, which is applicable for SDNs, since a lot of researchers try to ad-
dress the possible threats that the SDN is posing. However, from NoC and
SDNoC point of view, there is not any security model present in literature
that addresses the possible attacks of the network. Since SDNoC is a co-
design of hardware and software, it brought new threats into the surface,
which need to be addressed especially during the design process of a NoC
IP and before its integration on a SoC. A detailed analysis of the possi-
ble threats due to STRIDE model is presented in the Table 7.1. However,

7.1. FUTURE WORK 141

more research contributions need to be presented in this field by analyzing
the possible threats that are posed for the SDNoC but also by proposing
structural solutions in order to tackle them and maintain the function of
the system. The research community needs to investigate different types
of attacks coming from both software and hardware and take into account
these attacks during the design of SDNoC IPs.

In order to fully exploit the SDNoC technology, enhance its functional-
ities and maintain the secure communication of the system in the future,
more research investigating on the controller side is expected. The con-
troller is the key element of the SDNoC technology, since it has a broad
view of the network and it is able to apply rules and manage the routing
efficiently. With the capability of monitoring the network, the controller
gathers information about the routers and packets. Hence, this data can be
used as input of machine learning algorithms. Based on real-time network
data, machine learning techniques can bring intelligence to the controller
by performing data analysis, network optimization, and anomaly detec-
tion [Xie et al., 2018]. Moreover, thanks to programmability of SDN, opti-
mal network solutions (e.g., configuration and resource allocation) made by
machine learning algorithms can be executed on the network in real time.
To conclude, in order to exploit the SDNoC technology withing SoCs, su-
pervised machine learning algorithms for the controller should be designed.

In this thesis the controller is considered as a trusted entity, however
the controller could be a single point of failure. If the controller fails, the
network will cease to function, which significantly reduces the reliability
of the NoC. A possible solution could be a back-up controller or the cre-
ation of different levels of controllers. Since the processing cores in a SoC
are increasing, the future system will not be able to function with only one
controller. In that case, the controller will be overloaded and it will consume
a major amount of power. Hence, the solution of multiple controllers seems
to be ideal. In the case of multiple controllers, some reference architectures
have already been introduced [Krishnamurthy et al., 2014] [Phemius et al.,
2014] in SDN field. The controllers can form a peer-to-peer, high-speed,
reliable and distributed network control. The routers in the infrastructure
plane, forward packets among them by checking the flow tables that are
controlled by the controller(s) in the control plane. In future SoCs, like
CoC or chiplet architectures, the need of multiple controllers can be more
obvious due to its hierarchical hardware levels. Hence, more research con-
tributions are expected in this research topic.

142 CHAPTER 7. CONCLUSION

T
a
b
le

7
.1
:

S
T

R
ID

E
M

o
d
el

a
n
a
ly

si
s

fo
r

S
D

N
a
n
d

S
D

N
o
C

A
tt

a
ck

s

S
T

R
ID

E
S

D
N

o
C

S
D

N

S
p

o
ofi

n
g

A
m

al
ic

io
u
s

S
D

N
oC

co
u
ld

p
re

te
n
d

to
b

e
tr

u
st

ed
in

or
d
er

to
co

p
y

an
d

re
p
la

y
p
ac

ke
ts

[A
n
ca

ja
s

et
al

.,
20

14
],

[S
ep

ú
lv

ed
a

et
al

.,
20

17
],

[R
a

je
sh

et
al

.,
2
01

8]
.

A
co

m
p
ro

m
is

ed
S
D

N
oC

ca
n

sp
o
of

an
y

n
o
d
e

in
or

d
er

to
cr

ea
te

a
d
u
m

m
y

re
q
u
es

t
o
f

p
ri

v
il
eg

ed
in

fo
rm

at
io

n
e.

g.
S
p

o
of

ed
ro

u
te

r
[B

is
w

as
et

al
.,

20
15

].

A
sp

o
of

ed
S
D

N
co

n
tr

ol
le

r
co

u
ld

ta
ke

th
e

co
n
tr

o
l

of
th

e
w

h
o
le

n
et

w
o
rk

,
h
ow

ev
er

a
sp

o
of

ed
ro

u
te

r
co

u
ld

o
n
ly

at
ta

ck
th

e
d
a
ta

ro
u
te

d
th

ro
u
gh

it
[H

u
et

a
l.
,

2
0
15

].

T
am

p
er

in
g

A
n

at
ta

ck
er

is
ab

le
to

ta
m

p
er

w
it

h
th

e
N

oC
IP

b
ef

or
e

it
s

in
te

gr
a
ti

on
in

to
th

e
S
o
C

[S
ep

ú
lv

ed
a

et
al

.,
20

17
].

T
h
is

co
u
ld

h
ap

p
en

w
h
en

th
e

co
n
tr

o
ll
er

in
st

al
ls

fl
ow

ru
le

s,
a
im

in
g

to
ca

u
se

sy
st

em
m

is
b

eh
av

io
r

li
ke

an
at

ta
ck

of
F

a
ke

L
L

D
P

In
je

ct
io

n
[H

on
g

et
a
l.
,

20
1
5
].

R
ep

u
d
ia

ti
on

-

In
th

is
ca

se
a

co
n
tr

o
ll
er

o
r

a
sw

it
ch

ca
n

d
en

y
to

b
e

in
vo

lv
ed

in
a

co
m

m
u
n
ic

a
ti

o
n
.

C
o
n
se

q
u
en

tl
y,

n
o
n
-r

ep
u
d
ia

ti
on

ap
p

ea
rs

to
en

su
re

su
ch

d
en

ia
l

d
o
es

n
o
t

o
cc

u
r.

It
ca

n
b

e
a
ls

o
ca

u
se

d
b
y

M
an

In
T

h
e

M
id

d
le

(M
IT

M
)

a
tt

ac
k
s,

b
y

h
ij

a
ck

in
g

th
e

ch
an

n
el

b
et

w
ee

n
tw

o
p
ar

ti
es

a
n
d

p
er

su
a
d
in

g
th

a
t

th
ey

a
re

th
e

ot
h
er

p
ar

ty
.

[L
i

et
a
l.
,

20
16

]

In
fo

rm
a
ti

o
n

d
is

cl
os

u
re

A
p

os
si

b
le

ch
ip

v
u
ln

er
ab

il
it

y
ca

n
le

ad
to

in
fo

rm
at

io
n

d
is

cl
os

u
re

.
e.

g
In

te
l’
s

p
ro

ce
ss

o
rs

v
u
ln

er
ab

il
it

y
(F

or
es

h
ad

ow
at

ta
ck

[V
an

B
u
lc

k
et

al
.,

20
1
8]

),
w

h
ic

h
al

lo
w

s
an

y
ap

p
li
ca

ti
on

ru
n
n
in

g
on

a
u
se

r–
le

ve
l

m
o
d
e

to
ac

ce
ss

p
ro

te
ct

ed
m

em
or

y
ar

ea
s,

b
y

gi
v
in

g
th

e
ch

an
ce

to
th

e
at

ta
ck

er
to

ac
ce

ss
se

n
si

ti
ve

d
at

a.
A

ls
o

M
el

td
ow

n
[L

ip
p

et
al

.,
20

18
]

an
d

S
p

ec
tr

e
[K

o
ch

er
et

al
.,

2
01

9]
C

P
U

v
u
ln

er
ab

il
it

ie
s,

w
h
ic

h
aff

ec
te

d
th

e
p
ro

ce
ss

or
s

u
se

d
ov

er
th

e
p
as

t
tw

o
d
ec

a
d
es

.

If
an

at
ta

ck
er

re
ac

h
es

th
e

sw
it

ch
es

h
e

ca
n

ta
m

p
er

w
it

h
fl
ow

ru
le

ca
u
si

n
g

th
e

tr
affi

c
to

g
o

to
th

e
w

ro
n
g

d
es

ti
n
at

io
n
.

In
fo

rm
a
ti

o
n

D
is

cl
os

u
re

co
u
ld

b
e

p
er

fo
rm

ed
b
y

M
a
n

A
t

T
h
e

E
n
d

(M
A

T
E

),
if

th
e

at
ta

ck
er

ca
n

g
ai

n
in

fo
rm

at
io

n
,

w
h
ic

h
a
ll
ow

s
h
im

to
lo

g
in

to
th

e
sy

st
em

a
s

an
ad

m
in

is
tr

a
to

r
an

d
re

ac
h

th
e

co
n
tr

ol
le

r
[E

ld
ew

a
h
i

et
al

.,
2
01

8
].

M
IT

M
is

a
n

in
fo

rm
a
ti

o
n

d
is

cl
os

u
re

a
tt

a
ck

th
a
t

ta
rg

et
s

a
ls

o
th

e
in

fo
rm

at
io

n
in

th
e

tr
a
n
si

t
[B

ro
ok

s
a
n
d

Y
a
n
g,

2
0
1
5
].

D
en

ia
l

o
f

se
rv

ic
e

T
h
er

e
ar

e
th

re
e

m
ai

n
ty

p
es

of
D

oS
at

ta
ck

s
on

N
oC

s
[F

io
ri

n
et

al
.,

20
07

]:
B

an
d
w

id
th

R
ed

u
ct

io
n

[J
S

et
al

.,
20

15
]

[A
n
ca

ja
s

et
al

.,
20

14
],

w
h
er

e
fr

eq
u
en

t
an

d
u
se

le
ss

p
ac

ke
ts

ar
e

in
se

rt
ed

in
th

e
n
et

w
or

k
in

or
d
er

to
w

as
te

b
a
n
d
w

id
th

an
d

ca
u
se

a
h
ig

h
er

la
te

n
cy

in
on

-c
h
ip

co
m

m
u
n
ic

at
io

n
s.

D
ra

in
in

g
A

tt
ac

k
s,

ai
m

in
g

at
re

d
u
ci

n
g

th
e

op
er

at
iv

e
li
fe

of
a

b
at

te
ry

p
ow

er
ed

d
ev

ic
e

b
y

m
ak

in
g

th
e

sy
st

em
ex

ec
u
te

p
ow

er
h
u
n
gr

y
ta

sk
s.

H
ar

d
w

ar
e

T
ro

ja
n
s

m
ay

ca
u
se

re
tr

an
sm

is
si

on
s

w
h
ic

h
m

ay
le

ad
to

a
D

oS
at

ta
ck

b
y

cr
ea

ti
n
g

fa
ls

e
co

n
ge

st
io

n
b

et
w

ee
n

th
e

ro
u
te

rs
[B

or
at

en
an

d
K

o
d
i,

20
16

],
[M

al
ek

p
ou

r
et

al
.,

20
17

].

T
h
e

co
n
tr

o
ll
er

sh
o
u
ld

b
e

aw
ar

e
o
f

th
e

n
et

w
o
rk

st
a
te

o
n

a
re

gu
la

r
b
a
si

s
in

or
d
er

to
a
p
p
ly

ru
le

s.
T

h
is

m
ak

es
an

S
D

N
b
a
se

d
sy

st
em

v
u
ln

er
ab

le
fo

r
D

oS
is

p
o
ss

ib
le

b
y

fl
o
o
d
in

g
th

e
co

n
tr

ol
le

r-
sw

it
ch

co
m

m
u
n
ic

a
ti

o
n

o
r

th
e

fl
ow

ta
b
le

s
of

a
sw

it
ch

[Y
a
n

et
a
l.
,

2
01

6]
,

[Y
an

an
d

Y
u
,

2
01

5,
D

ov
er

,
20

1
3]

.

E
le

va
ti

o
n

o
f

p
ri

v
il
eg

e
S
em

ic
on

d
u
ct

o
r

gi
an

t
re

le
as

es
p
at

ch
fo

r
it

s
In

te
l

A
ct

iv
e

M
an

ag
em

en
t

T
ec

h
n
ol

og
y

v
u
ln

er
ab

il
it

y
th

at
co

u
ld

al
lo

w
an

at
ta

ck
er

to
es

ca
la

te
p
ri

v
il
eg

es
in

it
s

h
ig

h
-e

n
d

ch
ip

se
t

[I
n
te

l,
20

17
].

In
or

d
er

to
p

er
fo

rm
th

is
a
tt

ac
k

in
S
D

N
,

an
at

ta
ck

er
sh

ou
ld

h
av

e
a
cc

es
s

to
th

e
co

n
tr

o
ll
er

,
w

h
ic

h
is

co
n
si

d
er

ed
a
s

a
le

ss
cr

it
ic

a
l

to
h
ap

p
en

,
d
u
e

to
th

e
u
se

o
f

T
L

S
[S

ez
er

et
a
l.
,

20
1
3
].

If
an

at
ta

ck
er

g
et

s
p
ri

v
il
eg

ed
ac

ce
ss

,
th

en
th

e
en

ti
re

ro
u
ti

n
g

p
ro

ce
ss

ca
n

b
e

ch
an

ge
d

w
h
ic

h
ca

n
st

op
o
r

d
es

tr
oy

th
e

en
ti

re
sy

st
em

.

Appendix

Appendix A

GEM5 Code

1 #inc lude ”mem/ruby/network/ garnet2 .0/ RoutingUnit . hh”
2
3 #inc lude ”base / ca s t . hh”
4 #inc lude ”mem/ruby/network/ garnet2 .0/ InputUnit . hh”
5 #inc lude ”mem/ruby/network/ garnet2 .0/ Router . hh”
6 #inc lude ”mem/ruby/ s l i c c i n t e r f a c e /Message . hh”
7
8 // changes by Soultana El l in idou−SDNoC
9 #inc lude ”mem/ruby/network/ garnet2 .0/ OutputUnit . hh”

10 //
11
12 RoutingUnit : : RoutingUnit (Router ∗ route r)
13 {
14 m router = route r ;
15 m rout ing tab l e . c l e a r () ;
16 m weight tab le . c l e a r () ;
17
18 // changes by Soultana El l in idou−SDNoC
19 std : : i f s t r e am reader ;
20 reader . open (”/home/gaurav/gem5/var / timeout . txt ”) ;
21 i f (! r eader)
22 a s s e r t (0) ;
23 reader >> timeout ;
24 reader . c l o s e () ;
25
26 std : : i f s t r e am reader2 ;
27 reader2 . open (”/home/gaurav/gem5/var /Kroute . txt ”) ;
28 i f (! reader2)
29 a s s e r t (0) ;
30 reader2 >> Kroute ;
31 reader2 . c l o s e () ;
32
33 std : : i f s t r e am reader3 ;
34 reader3 . open (”/home/gaurav/gem5/var /beta . txt ”) ;
35 i f (! reader3)
36 a s s e r t (0) ;
37 reader3 >> beta ;
38 reader3 . c l o s e () ;
39
40 std : : i f s t r e am reader4 ;
41 reader4 . open (”/home/gaurav/gem5/var /gamma. txt ”) ;
42 i f (! reader4)
43 a s s e r t (0) ;
44 reader4 >> gamma;
45 reader4 . c l o s e () ;
46
47
48 std : : i f s t r e am reader5 ;
49 reader5 . open (”/home/gaurav/gem5/var / tau . txt ”) ;
50 i f (! reader5)
51 a s s e r t (0) ;
52 reader5 >> tau ;
53 reader5 . c l o s e () ;
54

145

146 APPENDIX A. GEM5 CODE

55 std : : i f s t r e am reader6 ;
56 reader6 . open (”/home/gaurav/gem5/var / pena l i t y . txt ”) ;
57 i f (! reader6)
58 a s s e r t (0) ;
59 reader6 >> pena l i t y ;
60 reader6 . c l o s e () ;
61 }
62
63 void
64 RoutingUnit : : addRoute (const NetDest& r ou t i n g t ab l e e n t r y)
65 {
66 m rout ing tab l e . push back (r ou t i n g t ab l e e n t r y) ;
67 }
68
69 void
70 RoutingUnit : : addWeight (i n t l i nk we i gh t)
71 {
72 m weight tab le . push back (l i nk we i gh t) ;
73 }
74
75
76 in t
77 RoutingUnit : : lookupRoutingTable (i n t vnet , NetDest msg des t inat ion)
78 {
79 // F i r s t f i nd a l l p o s s i b l e output l i n k cand idates
80 // For ordered vnet , j u s t choose the f i r s t
81 // (to make sure d i f f e r e n t packets don ’ t choose d i f f e r e n t route s)
82 // For unordered vnet , randomly choose any o f the l i n k s
83 // To have a s t r i c t o rde r ing between l i nk s , they should be given
84 // d i f f e r e n t weights in the topology f i l e
85
86 i n t ou tput l i nk = −1;
87 i n t min weight = INFINITE ;
88 std : : vector<int> ou tpu t l i nk cand ida t e s ;
89 i n t num candidates = 0 ;
90
91 // I d en t i f y the minimum weight among the candidate output l i n k s
92 f o r (i n t l i n k = 0 ; l i n k < m rout ing tab l e . s i z e () ; l i n k++) {
93 i f (msg des t inat ion . intersect ionIsNotEmpty (m rout ing tab l e [l i n k])) {
94
95 i f (m weight tab le [l i n k] <= min weight)
96 min weight = m weight tab le [l i n k] ;
97 }
98 }
99

100 // Co l l e c t a l l candidate output l i n k s with t h i s minimum weight
101 f o r (i n t l i n k = 0 ; l i n k < m rout ing tab l e . s i z e () ; l i n k++) {
102 i f (msg des t inat ion . intersect ionIsNotEmpty (m rout ing tab l e [l i n k])) {
103
104 i f (m weight tab le [l i n k] == min weight) {
105
106 num candidates++;
107 ou tpu t l i nk cand ida t e s . push back (l i n k) ;
108 }
109 }
110 }
111
112 i f (ou tpu t l i nk cand ida t e s . s i z e () == 0) {
113 f a t a l (”Fatal Error : : No Route e x i s t s from th i s Router . ”) ;
114 e x i t (0) ;
115 }
116
117 // Randomly s e l e c t any candidate output l i n k
118 in t candidate = 0 ;
119 i f (! (m router−>g e t n e t p t r ())−>isVNetOrdered (vnet))
120 candidate = rand () % num candidates ;
121
122 output l i nk = outpu t l i nk cand ida t e s . at (candidate) ;
123 return output l i nk ;
124 }
125
126
127 void
128 RoutingUnit : : addInDirect ion (PortDi rec t ion inpo r t d i rn , i n t i npo r t i dx)
129 {
130 m inpor t s d i rn2 idx [i npo r t d i r n] = inpo r t i dx ;
131 m inpor t s idx2d i rn [i npo r t i dx] = i npo r t d i r n ;
132 }
133
134 void

147

135 RoutingUnit : : addOutDirection (PortDi rec t ion outport d i rn , i n t outpor t idx)
136 {
137 m outport s d i rn2 idx [ou tpo r t d i rn] = outpor t idx ;
138 m outport s idx2d i rn [outpor t idx] = outpo r t d i rn ;
139 }
140
141 in t
142 RoutingUnit : : outportCompute (RouteInfo route , i n t inport , Por tDi rec t ion

i npo r t d i r n)
143 {
144 in t outport = −1;
145 i f (route . d e s t r ou t e r == m router−>g e t i d ()) {
146
147 // Mult ip le NIs may be connected to t h i s router ,
148 // a l l with output port d i r e c t i o n = ”Local ”
149 // Get exact outport id from tab l e
150 outport = lookupRoutingTable (route . vnet , route . n e t de s t) ;
151 return outport ;
152 }
153
154 // Routing Algorithm se t in GarnetNetwork . py
155 // Can be over−r idden from command l i n e us ing −−rout ing−algor i thm = 1
156 RoutingAlgorithm rout ing a l go r i thm =
157 (RoutingAlgorithm) m router−>g e t n e t p t r ()−>getRoutingAlgorithm () ;
158
159 switch (rout ing a l go r i thm) {
160 case TABLE : outport =
161 lookupRoutingTable (route . vnet , route . n e t de s t) ; break ;
162 case XY : outport =
163 outportComputeXY(route , m router−>g e t i d () , i npo r t d i r n)−>g e t i d () ;

break ;
164 de f au l t : outport =
165 lookupRoutingTable (route . vnet , route . n e t de s t) ; break ;
166 }
167 a s s e r t (outport != −1) ;
168 return outport ;
169 }
170
171 OutputUnit∗
172 RoutingUnit : : outportComputeXY(RouteInfo route , i n t current , Por tDi rec t ion

i npo r t d i r n)
173 {
174 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
175 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
176 OutputUnit∗ outport ;
177
178 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
179 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
180 a s s e r t (num rows > 0 && num cols > 0) ;
181
182 // in t my id = m router−>g e t i d () ;
183 i n t my id = current ;
184 i n t my x = my id % num cols ;
185 i n t my y = my id / num cols ;
186
187 in t d e s t i d = route . d e s t r ou t e r ;
188 i n t de s t x = de s t i d % num cols ;
189 i n t de s t y = de s t i d / num cols ;
190
191 in t x hops = abs (de s t x − my x) ;
192 i n t y hops = abs (de s t y − my y) ;
193
194 bool x d i rn = (des t x >= my x) ;
195 bool y d i rn = (des t y >= my y) ;
196
197 // a l ready checked that in outportCompute () func t i on
198 a s s e r t (! (x hops == 0 && y hops == 0)) ;
199
200 i f (x hops > 0) {
201 i f (x d i rn) {
202 a s s e r t (i npo r t d i r n == ”Local ” | | i n po r t d i r n == ”West”) ;
203 outpo r t d i rn = ”East” ;
204 } e l s e {
205 a s s e r t (i npo r t d i r n == ”Local ” | | i n po r t d i r n == ”East”) ;
206 outpo r t d i rn = ”West” ;
207 }
208 } e l s e i f (y hops > 0) {
209 i f (y d i rn) {
210 // ”Local ” or ”South” or ”West” or ”East”
211 a s s e r t (i npo r t d i r n != ”North”) ;

148 APPENDIX A. GEM5 CODE

212 outpo r t d i rn = ”North” ;
213 } e l s e {
214 // ”Local ” or ”North” or ”West” or ”East”
215 a s s e r t (i npo r t d i r n != ”South”) ;
216 outpo r t d i rn = ”South” ;
217 }
218 } e l s e {
219 // x hops == 0 and y hops == 0
220 // t h i s i s not p o s s i b l e
221 // a l ready checked that in outportCompute () func t i on
222 a s s e r t (0) ;
223 }
224
225 outport = router−>ge t map d i r e c t i on out (ou tpo r t d i rn) ;
226 return outport ;
227 }
228
229
230 in t
231 RoutingUnit : : outportComputeCustom (RouteInfo route , i n t inport , Por tDi rec t ion

i npo r t d i r n)
232 {
233 a s s e r t (0) ;
234 return −1;
235 }
236
237
238 // changes by Soultana El l in idou−SDNoC
239 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
240
241 // SDN c on t r o l l e r
242 i n t
243 RoutingUnit : : outportBack (RouteInfo route)
244 {
245 in t back to node = m router−>get map dst out (route . s r c r o u t e r)−>g e t i d () ;
246 return back to node ;
247 }
248
249 in t
250 RoutingUnit : : outportBack hack (RouteInfo route)
251 {
252 in t back to node = m router−>get map dst out (route . d e s t r ou t e r)−>g e t i d () ;
253 return back to node ;
254 }
255
256
257 in t
258 RoutingUnit : : ou tpo r tCont ro l l e r (RouteInfo route)
259 {
260 in t outport = −1;
261
262 i f (route . d e s t r ou t e r == m router−>g e t i d ()) {
263
264 // Mult ip le NIs may be connected to t h i s router ,
265 // a l l with output port d i r e c t i o n = ”Local ”
266 // Get exact outport id from tab l e
267 outport = lookupRoutingTable (route . vnet , route . n e t de s t) ;
268 return outport ;
269 }
270
271 return m outport s d i rn2 idx [” t o s dn s r c ”] ;
272 }
273
274 in t
275 RoutingUnit : : NoC outportCompute (RouteInfo route)
276 {
277 in t outport = −1;
278
279 i f (route . d e s t r ou t e r == m router−>g e t i d ()) {
280
281 // Mult ip le NIs may be connected to t h i s router ,
282 // a l l with output port d i r e c t i o n = ”Local ”
283 // Get exact outport id from tab l e
284 outport = lookupRoutingTable (route . vnet , route . n e t de s t) ;
285 return outport ;
286 }
287 return outport ;
288 }
289
290 void

149

291 RoutingUnit : : SDN outportCompute (RouteInfo route)
292 {
293 Route f i n a l r o u t e ;
294 Route mroute ;
295 std : : vector<Route> setRoute ;
296
297 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
298 // Routing algor i thm
299
300 RoutingAlgorithm rout ing a l go r i thm = (RoutingAlgorithm) m router−>

g e t n e t p t r ()−>getRoutingAlgorithm () ;
301 i n t cur rent = route . s r c r o u t e r ;
302 PortDi rec t ion i npo r t d i r n = ”Local ” ;
303
304 i f (r ou t ing a l go r i thm == 1)
305 outportComputeCustomXY(route , current , i npo r t d i rn , mroute , setRoute) ;
306
307 e l s e i f (r ou t ing a l go r i thm == 14)
308 outportComputeCustomOE(route , current , i npo r t d i rn , mroute , setRoute) ;
309
310 e l s e i f (r ou t ing a l go r i thm == 13)
311 outportComputeCustomNF(route , current , i npo r t d i rn , mroute , setRoute) ;
312
313 e l s e i f (r ou t ing a l go r i thm == 12)
314 {
315 outportComputeCustomNL(route , current , i npo r t d i rn , mroute , setRoute) ;
316 }
317
318 e l s e i f (r ou t ing a l go r i thm == 11)
319 outportComputeCustomWF(route , current , i npo r t d i rn , mroute , setRoute) ;
320
321 e l s e
322 {
323 outportComputeCustomOE(route , current , i npo r t d i rn , mroute , setRoute) ;
324 }
325
326
327 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
328 // S e l e c t i o n
329
330 i f (r ou t ing a l go r i thm == 21)
331 f i n a l r o u t e = s e l e c t i o n l i n k max (setRoute , route) ;
332
333 e l s e i f (r ou t ing a l go r i thm == 22)
334 f i n a l r o u t e = s e l e c t i o n l i n k s um (setRoute , route) ;
335
336 e l s e i f (r ou t ing a l go r i thm == 31)
337 f i n a l r o u t e = se l e c t i on r ou t e r max (setRoute , route) ;
338
339 e l s e i f (r ou t ing a l go r i thm == 32)
340 f i n a l r o u t e = s e l e c t i on r ou t e r s um (setRoute , route) ;
341
342 e l s e
343 f i n a l r o u t e = setRoute [rand () % setRoute . s i z e ()] ;
344
345 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
346 // Update f low tab l e s
347
348 f o r (auto elem : f i n a l r o u t e)
349 {
350 Router∗ route r = elem−>g e t r ou t e r () ;
351 std : : pair<int , int> pa i r = std : : make pair (route . s r c r ou t e r , route .

d e s t r ou t e r) ;
352 router−>s e t f l ow t a b l e (pair , elem−>g e t i d ()) ;
353 router−>s e t f l ow t imeou t (pair , curTick () + timeout) ;
354
355 // Pena l i ty
356 double tmp = pena l i t y /(double) tau ;
357 InputUnit∗ in = m router−>g e t n e t p t r ()−>ge t map l i nk inpo r t (elem−>

get nwk l ink ()) ;
358 in−>s e t s t a t e r a t e s a v e d (in−>g e t s t a t e r a t e s a v e d () + tmp) ;
359 }
360
361 return ;
362 }
363
364 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
365
366 void

150 APPENDIX A. GEM5 CODE

367 RoutingUnit : : addPort (std : : vector<PortDirect ion> &output set , Por tDi rec t ion dir ,
i n t my x , i n t my y , i n t num rows , i n t num cols , Por tDi rec t ion i npo r t d i r n)

368 {
369 i f (std : : f i nd (output s e t . begin () , output s e t . end () , d i r) != output s e t . end ())
370 return ;
371
372 i f (d i r == ”North” && inpo r t d i r n != ”North”)
373 {
374 i f (my y != num rows−1)
375 output s e t . push back (d i r) ;
376 }
377
378 e l s e i f (d i r == ”South” && inpo r t d i r n != ”South”)
379 {
380 i f (my y != 0)
381 output s e t . push back (d i r) ;
382 }
383
384 e l s e i f (d i r == ”East” && inpo r t d i r n != ”East”)
385 {
386 i f (my x != num cols−1)
387 output s e t . push back (d i r) ;
388 }
389
390 e l s e i f (d i r == ”West” && inpo r t d i r n != ”West”)
391 {
392 i f (my x != 0)
393 output s e t . push back (d i r) ;
394 }
395
396 e l s e
397 return ;
398 }
399
400 // ====> West F i r s t Routing
401
402 std : : vector<OutputUnit∗>
403 RoutingUnit : : routing WF (RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
404 {
405 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
406
407 // Number o f rows and number o f columns
408 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
409 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
410 a s s e r t (num rows > 0 && num cols > 0) ;
411
412 // Source po s i t i o n
413 in t my id = current ;
414 i n t my x = my id % num cols ;
415 i n t my y = my id / num cols ;
416
417 // Dest inat ion po s i t i o n
418 in t d e s t i d = route . d e s t r ou t e r ;
419 i n t de s t x = de s t i d % num cols ;
420 i n t de s t y = de s t i d / num cols ;
421
422 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
423 in t x hops = des t x − my x ;
424 i n t y hops = des t y − my y ;
425
426 // a l ready checked that in outportCompute () func t i on
427 a s s e r t (! (x hops == 0 && y hops == 0)) ;
428
429 // Pos s i b l e output
430 std : : vector<PortDirect ion> output s e t ;
431
432 i f (x hops < 0) {
433 output s e t . push back (”West”) ;
434 }
435 e l s e i f (x hops > 0 && y hops > 0) {
436 output s e t . push back (”East”) ;
437 output s e t . push back (”North”) ;
438 }
439 e l s e i f (x hops > 0 && y hops < 0) {
440 output s e t . push back (”East”) ;
441 output s e t . push back (”South”) ;
442 }
443 e l s e i f (x hops > 0 && y hops == 0) {
444 output s e t . push back (”East”) ;

151

445 }
446 e l s e i f (x hops == 0 && y hops > 0) {
447 output s e t . push back (”North”) ;
448 }
449 e l s e i f (x hops == 0 && y hops < 0) {
450 output s e t . push back (”South”) ;
451 }
452 e l s e
453 a s s e r t (0) ;
454
455
456 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t ;
457
458 f o r (auto elem : output s e t)
459 p o s s i b l e o u t pu t s e t . push back (router−>ge t map d i r e c t i on out (elem)) ;
460
461 return po s s i b l e o u t pu t s e t ;
462 }
463
464 std : : vector<std : : vector<OutputUnit∗>>
465 RoutingUnit : : routing NMWF(RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
466 {
467 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
468
469 // Number o f rows and number o f columns
470 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
471 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
472 a s s e r t (num rows > 0 && num cols > 0) ;
473
474 // Source po s i t i o n
475 in t my id = current ;
476 i n t my x = my id % num cols ;
477 i n t my y = my id / num cols ;
478
479 // Dest inat ion po s i t i o n
480 in t d e s t i d = route . d e s t r ou t e r ;
481 i n t de s t x = de s t i d % num cols ;
482 i n t de s t y = de s t i d / num cols ;
483
484 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
485 in t x hops = des t x − my x ;
486 i n t y hops = des t y − my y ;
487
488 // a l ready checked that in outportCompute () func t i on
489 a s s e r t (! (x hops == 0 && y hops == 0)) ;
490
491 // Pos s i b l e output
492 std : : vector<PortDirect ion> output se t0 ;
493 std : : vector<PortDirect ion> output se t1 ;
494 std : : vector<PortDirect ion> output se t2 ;
495
496 i f (x hops == 0)
497 {
498
499 i f (y hops > 0)
500 {
501 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
502
503 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”Local ”)
504 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
505 }
506
507 e l s e
508 {
509 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
510
511 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”Local ”)
512 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
513 }
514 }
515
516 e l s e i f (x hops != 0)
517 {
518 i f (x hops > 0)
519 {

152 APPENDIX A. GEM5 CODE

520 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

521
522 i f (y hops > 0)
523 {
524 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
525 addPort (output set2 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
526
527 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”Local ”)
528 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
529 }
530
531 e l s e i f (y hops < 0)
532 {
533 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
534 addPort (output set2 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
535
536 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”Local ”)
537 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
538 }
539
540 e l s e
541 {
542 addPort (output set1 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
543 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
544 }
545 }
546
547 e l s e
548 {
549 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”Local ”)
550 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
551 }
552 }
553
554 e l s e
555 a s s e r t (0) ;
556
557 std : : vector<std : : vector<OutputUnit∗>> po s s i b l e o u t pu t s e t ;
558 std : : vector<OutputUnit∗> tmp0 ;
559 std : : vector<OutputUnit∗> tmp1 ;
560 std : : vector<OutputUnit∗> tmp2 ;
561 std : : vector<OutputUnit∗> tmp3 ;
562
563 f o r (auto elem : output se t0)
564 {
565 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
566 tmp1 . push back (router−>ge t map d i r e c t i on out (elem)) ;
567 }
568
569 f o r (auto elem : output se t1)
570 {
571 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
572 tmp2 . push back (router−>ge t map d i r e c t i on out (elem)) ;
573 }
574
575 f o r (auto elem : output se t2)
576 {
577 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
578 tmp3 . push back (router−>ge t map d i r e c t i on out (elem)) ;
579 }
580
581 po s s i b l e o u t pu t s e t . push back (tmp0) ;
582 p o s s i b l e o u t pu t s e t . push back (tmp1) ;
583 p o s s i b l e o u t pu t s e t . push back (tmp2) ;
584 p o s s i b l e o u t pu t s e t . push back (tmp3) ;
585
586 return po s s i b l e o u t pu t s e t ;
587 }
588
589 void

153

590 RoutingUnit : : outportComputeCustomWF(RouteInfo route , i n t current , Por tDi rec t ion
inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)

591 {
592 // OE rout ing
593 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
594 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing WF (route , current ,

router , i npo r t d i r n) ;
595
596 f o r (auto port : p o s s i b l e o u t pu t s e t)
597 {
598 mroute . push back (port) ;
599 cur rent = port−>g e t d s t r o u t e r () ;
600
601 i f (cur rent == route . d e s t r ou t e r)
602 {
603 setRoute . push back (mroute) ;
604 mroute . pop back () ;
605 }
606
607 e l s e
608 {
609 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
610 outportComputeCustomWF(route , current , i npo r t d i rn , mroute , setRoute

) ;
611 }
612 }
613 mroute . pop back () ;
614 return ;
615 }
616
617 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
618
619 // ====> North Last Routing
620
621 std : : vector<OutputUnit∗>
622 RoutingUnit : : routing NL (RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
623 {
624 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
625
626 // Number o f rows and number o f columns
627 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
628 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
629 a s s e r t (num rows > 0 && num cols > 0) ;
630
631 // Source po s i t i o n
632 in t my id = current ;
633 i n t my x = my id % num cols ;
634 i n t my y = my id / num cols ;
635
636 // Dest inat ion po s i t i o n
637 in t d e s t i d = route . d e s t r ou t e r ;
638 i n t de s t x = de s t i d % num cols ;
639 i n t de s t y = de s t i d / num cols ;
640
641 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
642 in t x hops = des t x − my x ;
643 i n t y hops = des t y − my y ;
644
645 // Pos s i b l e output
646 std : : vector<PortDirect ion> output s e t ;
647
648 // a l ready checked that in outportCompute () func t i on
649 a s s e r t (! (x hops == 0 && y hops == 0)) ;
650
651 i f (x hops > 0 && y hops > 0) {
652 // Move to eas t
653 output s e t . push back (”East”) ;
654 }
655 e l s e i f (x hops > 0 && y hops < 0) {
656 output s e t . push back (”East”) ; // Could be East or South
657 output s e t . push back (”South”) ;
658 }
659 e l s e i f (x hops > 0 && y hops == 0) {
660 output s e t . push back (”East”) ;
661 }
662
663 e l s e i f (x hops < 0 && y hops > 0) {
664 // Move to eas t
665 output s e t . push back (”West”) ;

154 APPENDIX A. GEM5 CODE

666 }
667 e l s e i f (x hops < 0 && y hops < 0) {
668 output s e t . push back (”West”) ; // Could be West or South
669 output s e t . push back (”South”) ;
670 }
671 e l s e i f (x hops < 0 && y hops == 0) {
672 output s e t . push back (”West”) ;
673 }
674
675 e l s e i f (x hops == 0 && y hops > 0) {
676 output s e t . push back (”North”) ;
677 }
678 e l s e i f (x hops == 0 && y hops < 0) {
679 output s e t . push back (”South”) ;
680 }
681 e l s e {
682 // x hops == 0 and y hops == 0
683 // t h i s i s not p o s s i b l e
684 // a l ready checked that in outportCompute () func t i on
685 a s s e r t (0) ;
686 }
687
688 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t ;
689 f o r (auto elem : output s e t)
690 {
691 po s s i b l e o u t pu t s e t . push back (router−>ge t map d i r e c t i on out (elem)) ;
692 }
693
694 return po s s i b l e o u t pu t s e t ;
695 }
696
697
698 std : : vector<std : : vector<OutputUnit∗>>
699 RoutingUnit : : routing NMNL(RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
700 {
701 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
702
703 // Number o f rows and number o f columns
704 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
705 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
706 a s s e r t (num rows > 0 && num cols > 0) ;
707
708 // Source po s i t i o n
709 in t my id = current ;
710 i n t my x = my id % num cols ;
711 i n t my y = my id / num cols ;
712
713 // Dest inat ion po s i t i o n
714 in t d e s t i d = route . d e s t r ou t e r ;
715 i n t de s t x = de s t i d % num cols ;
716 i n t de s t y = de s t i d / num cols ;
717
718 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
719 in t x hops = des t x − my x ;
720 i n t y hops = des t y − my y ;
721
722 // a l ready checked that in outportCompute () func t i on
723 a s s e r t (! (x hops == 0 && y hops == 0)) ;
724
725 // Pos s i b l e output
726 std : : vector<PortDirect ion> output se t0 ;
727 std : : vector<PortDirect ion> output se t1 ;
728 std : : vector<PortDirect ion> output se t2 ;
729
730 i f (x hops == 0) {
731
732 i f (y hops > 0)
733 {
734 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
735 }
736
737 e l s e
738 {
739 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
740 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;

155

741 addPort (output set1 , ”East” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

742 }
743 }
744
745 e l s e i f (x hops != 0)
746 {
747 i f (x hops > 0)
748 {
749 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
750
751 i f (y hops < 0)
752 {
753 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
754 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
755 }
756
757 e l s e
758 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
759 }
760
761 e l s e
762 {
763 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
764
765 i f (y hops < 0)
766 {
767 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
768 addPort (output set2 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
769 }
770
771 e l s e
772 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
773 }
774 }
775
776 e l s e
777 a s s e r t (0) ;
778
779 std : : vector<std : : vector<OutputUnit∗>> po s s i b l e o u t pu t s e t ;
780 std : : vector<OutputUnit∗> tmp0 ;
781 std : : vector<OutputUnit∗> tmp1 ;
782 std : : vector<OutputUnit∗> tmp2 ;
783 std : : vector<OutputUnit∗> tmp3 ;
784
785 f o r (auto elem : output se t0)
786 {
787 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
788 tmp1 . push back (router−>ge t map d i r e c t i on out (elem)) ;
789 }
790
791 f o r (auto elem : output se t1)
792 {
793 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
794 tmp2 . push back (router−>ge t map d i r e c t i on out (elem)) ;
795 }
796
797 f o r (auto elem : output se t2)
798 {
799 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
800 tmp3 . push back (router−>ge t map d i r e c t i on out (elem)) ;
801 }
802
803 po s s i b l e o u t pu t s e t . push back (tmp0) ;
804 p o s s i b l e o u t pu t s e t . push back (tmp1) ;
805 p o s s i b l e o u t pu t s e t . push back (tmp2) ;
806 p o s s i b l e o u t pu t s e t . push back (tmp3) ;
807
808 return po s s i b l e o u t pu t s e t ;
809 }
810
811

156 APPENDIX A. GEM5 CODE

812 void
813 RoutingUnit : : outportComputeCustomNL(RouteInfo route , i n t current , Por tDi rec t ion

inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)
814 {
815 // OE rout ing
816 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
817 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing NL (route , current ,

router , i npo r t d i r n) ;
818
819 f o r (auto port : p o s s i b l e o u t pu t s e t)
820 {
821 mroute . push back (port) ;
822 cur rent = port−>g e t d s t r o u t e r () ;
823
824 i f (cur rent == route . d e s t r ou t e r)
825 {
826 setRoute . push back (mroute) ;
827 mroute . pop back () ;
828 }
829
830 e l s e
831 {
832 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
833 outportComputeCustomNL(route , current , i npo r t d i rn , mroute , setRoute

) ;
834 }
835 }
836 mroute . pop back () ;
837 return ;
838 }
839
840 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
841
842 // ====> Negative F i r s t Routing
843
844 std : : vector<OutputUnit∗>
845 RoutingUnit : : routing NF (RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
846 {
847 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
848
849 // Number o f rows and number o f columns
850 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
851 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
852 a s s e r t (num rows > 0 && num cols > 0) ;
853
854 // Source po s i t i o n
855 in t my id = current ;
856 i n t my x = my id % num cols ;
857 i n t my y = my id / num cols ;
858
859 // Dest inat ion po s i t i o n
860 in t d e s t i d = route . d e s t r ou t e r ;
861 i n t de s t x = de s t i d % num cols ;
862 i n t de s t y = de s t i d / num cols ;
863
864 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
865 in t x hops = des t x − my x ;
866 i n t y hops = des t y − my y ;
867
868 // Pos s i b l e output
869 std : : vector<PortDirect ion> output s e t ;
870
871 // a l ready checked that in outportCompute () func t i on
872 a s s e r t (! (x hops == 0 && y hops == 0)) ;
873
874 i f (x hops < 0 && y hops < 0) {
875 // Negative f i r s t
876 output s e t . push back (”West”) ; // Could be West or South
877 output s e t . push back (”South”) ;
878 }
879 e l s e i f (x hops < 0 && y hops > 0) {
880 // Negative f i r s t
881 output s e t . push back (”West”) ;
882 }
883 e l s e i f (x hops < 0 && y hops == 0) {
884 // Negative f i r s t
885 output s e t . push back (”West”) ;
886 }
887 e l s e i f (x hops > 0 && y hops > 0) {

157

888 output s e t . push back (”East”) ; // Could be East or North
889 output s e t . push back (”North”) ;
890 }
891 e l s e i f (x hops > 0 && y hops < 0) {
892 // Negative f i r s t
893 output s e t . push back (”South”) ;
894 }
895 e l s e i f (x hops > 0 && y hops == 0) {
896 output s e t . push back (”East”) ;
897 }
898
899 e l s e i f (x hops == 0 && y hops > 0) {
900 output s e t . push back (”North”) ;
901 }
902 e l s e i f (x hops == 0 && y hops < 0) {
903 output s e t . push back (”South”) ;
904 }
905 e l s e {
906 // x hops == 0 and y hops == 0
907 // t h i s i s not p o s s i b l e
908 // a l ready checked that in outportCompute () func t i on
909 a s s e r t (0) ;
910 }
911
912 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t ;
913 f o r (auto elem : output s e t)
914 {
915 po s s i b l e o u t pu t s e t . push back (router−>ge t map d i r e c t i on out (elem)) ;
916 }
917
918 return po s s i b l e o u t pu t s e t ;
919 }
920
921
922 std : : vector<std : : vector<OutputUnit∗>>
923 RoutingUnit : : routing NMNF(RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
924 {
925 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
926
927 // Number o f rows and number o f columns
928 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
929 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
930 a s s e r t (num rows > 0 && num cols > 0) ;
931
932 // Source po s i t i o n
933 in t my id = current ;
934 i n t my x = my id % num cols ;
935 i n t my y = my id / num cols ;
936
937 // Dest inat ion po s i t i o n
938 in t d e s t i d = route . d e s t r ou t e r ;
939 i n t de s t x = de s t i d % num cols ;
940 i n t de s t y = de s t i d / num cols ;
941
942 // Number o f hops between source and de s t i n a t i on in x and y d i r e c t i o n
943 in t x hops = des t x − my x ;
944 i n t y hops = des t y − my y ;
945
946 // Pos s i b l e output
947 std : : vector<PortDirect ion> output se t0 ;
948 std : : vector<PortDirect ion> output se t1 ;
949 std : : vector<PortDirect ion> output se t2 ;
950
951 // a l ready checked that in outportCompute () func t i on
952 a s s e r t (! (x hops == 0 && y hops == 0)) ;
953
954 i f (x hops != 0 && y hops != 0)
955 {
956 i f (x hops > 0 && y hops > 0)
957 {
958 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
959 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
960
961 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | | i n po r t d i r n

== ”Local ”)
962 {

158 APPENDIX A. GEM5 CODE

963 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

964 addPort (output set2 , ”South” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

965 }
966 }
967
968 e l s e
969 {
970 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | | i n po r t d i r n

== ”Local ”)
971 {
972 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
973 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
974 }
975 }
976 }
977
978 e l s e i f (y hops == 0)
979 {
980 i f (x hops > 0)
981 {
982 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
983
984 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | | i n po r t d i r n

== ”Local ”)
985 {
986 i f (my y != 0)
987 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
988
989 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
990 }
991
992 }
993
994 i f (x hops < 0)
995 {
996 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | | i n po r t d i r n

== ”Local ”)
997 {
998 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
999 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1000 }
1001 }
1002 }
1003
1004
1005 e l s e i f (x hops == 0)
1006 {
1007 i f (y hops > 0)
1008 {
1009 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1010
1011 i f (my x != 0)
1012 {
1013 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | |

i n po r t d i r n == ”Local ”)
1014 {
1015 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1016 addPort (output set2 , ”South” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1017 }
1018 }
1019 }
1020
1021 i f (y hops < 0)
1022 {
1023 i f (i npo r t d i r n == ”East” | | i n po r t d i r n == ”North” | | i n po r t d i r n

== ”Local ”)
1024 {

159

1025 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

1026 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

1027 }
1028 }
1029 }
1030
1031 e l s e
1032 a s s e r t (0) ;
1033
1034 std : : vector<std : : vector<OutputUnit∗>> po s s i b l e o u t pu t s e t ;
1035 std : : vector<OutputUnit∗> tmp0 ;
1036 std : : vector<OutputUnit∗> tmp1 ;
1037 std : : vector<OutputUnit∗> tmp2 ;
1038 std : : vector<OutputUnit∗> tmp3 ;
1039
1040 f o r (auto elem : output se t0)
1041 {
1042 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1043 tmp1 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1044 }
1045
1046 f o r (auto elem : output se t1)
1047 {
1048 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1049 tmp2 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1050 }
1051
1052 f o r (auto elem : output se t2)
1053 {
1054 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1055 tmp3 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1056 }
1057
1058 po s s i b l e o u t pu t s e t . push back (tmp0) ;
1059 po s s i b l e o u t pu t s e t . push back (tmp1) ;
1060 po s s i b l e o u t pu t s e t . push back (tmp2) ;
1061 po s s i b l e o u t pu t s e t . push back (tmp3) ;
1062 return po s s i b l e o u t pu t s e t ;
1063 }
1064
1065
1066 void
1067 RoutingUnit : : outportComputeCustomNF(RouteInfo route , i n t current , Por tDi rec t ion

inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)
1068 {
1069 // OE rout ing
1070 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
1071 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing NF (route , current ,

router , i npo r t d i r n) ;
1072
1073 f o r (auto port : p o s s i b l e o u t pu t s e t)
1074 {
1075 mroute . push back (port) ;
1076 current = port−>g e t d s t r o u t e r () ;
1077
1078 i f (cur rent == route . d e s t r ou t e r)
1079 {
1080 setRoute . push back (mroute) ;
1081 mroute . pop back () ;
1082 }
1083
1084 e l s e
1085 {
1086 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
1087 outportComputeCustomNF(route , current , i npo r t d i rn , mroute , setRoute

) ;
1088 }
1089 }
1090 mroute . pop back () ;
1091 return ;
1092 }
1093
1094 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
1095
1096 // ====> Odd−Even rout ing
1097
1098 std : : vector<OutputUnit∗>

160 APPENDIX A. GEM5 CODE

1099 RoutingUnit : : routing OE (RouteInfo route , i n t current , Router ∗ router ,
Por tDi rec t ion i npo r t d i r n)

1100 {
1101 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
1102
1103 // Number o f rows and number o f columns
1104 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
1105 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
1106 a s s e r t (num rows > 0 && num cols > 0) ;
1107
1108 // Current po s i t i o n
1109 in t my id = current ;
1110 i n t my x = my id % num cols ;
1111 i n t my y = my id / num cols ;
1112
1113 // Dest inat ion po s i t i o n
1114 in t d e s t i d = route . d e s t r ou t e r ;
1115 i n t de s t x = de s t i d % num cols ;
1116 i n t de s t y = de s t i d / num cols ;
1117
1118 // Source po s i t i o n
1119 // in t s r c i d = s r c ;
1120 i n t s r c i d = route . s r c r o u t e r ;
1121 i n t s r c x = s r c i d % num cols ;
1122 // in t s r c y = s r c i d / num cols ;
1123
1124 // Number o f hops between current and de s t i n a t i on in x and y d i r e c t i o n
1125 in t x hops = des t x − my x ;
1126 in t y hops = des t y − my y ;
1127
1128 // a l ready checked that in outportCompute () func t i on
1129 a s s e r t (! (x hops == 0 && y hops == 0)) ;
1130
1131 // Pos s i b l e output
1132 std : : vector<PortDirect ion> output s e t ;
1133
1134 // Current switch i s in the r i gh t column
1135 i f (x hops == 0)
1136 {
1137 i f (y hops > 0)
1138 output s e t . push back (”North”) ;
1139
1140 e l s e i f (y hops < 0)
1141 output s e t . push back (”South”) ;
1142
1143 }
1144
1145 e l s e
1146 {
1147 i f (x hops > 0)
1148 {
1149 i f (y hops == 0)
1150 output s e t . push back (”East”) ;
1151
1152 e l s e
1153 {
1154 i f (my x % 2 != 0 | | s r c x == my x)
1155 {
1156 i f (y hops > 0)
1157 output s e t . push back (”North”) ;
1158 e l s e
1159 output s e t . push back (”South”) ;
1160 }
1161
1162 i f (de s t x % 2 != 0 | | x hops != 1)
1163 output s e t . push back (”East”) ;
1164 }
1165 }
1166
1167 e l s e
1168 {
1169 output s e t . push back (”West”) ;
1170 i f (my x % 2 == 0 && y hops != 0)
1171 {
1172 i f (y hops > 0)
1173 output s e t . push back (”North”) ;
1174 e l s e
1175 output s e t . push back (”South”) ;
1176 }
1177 }

161

1178 }
1179
1180 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t ;
1181 f o r (auto elem : output s e t)
1182 {
1183 po s s i b l e o u t pu t s e t . push back (router−>ge t map d i r e c t i on out (elem)) ;
1184 }
1185
1186 return po s s i b l e o u t pu t s e t ;
1187 }
1188
1189 std : : vector<std : : vector<OutputUnit∗>>
1190 RoutingUnit : : routing NMOE(RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
1191 {
1192 PortDi rec t ion outpo r t d i rn = ”Unknown” ;
1193
1194 // Number o f rows and number o f columns
1195 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
1196 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
1197 a s s e r t (num rows > 0 && num cols > 0) ;
1198
1199 // Current po s i t i o n
1200 in t my id = current ;
1201 i n t my x = my id % num cols ;
1202 i n t my y = my id / num cols ;
1203
1204 // Par i ty o f the cur rent column
1205 // bool even = (my x % 2 == 0) ;
1206
1207 // Dest inat ion po s i t i o n
1208 in t d e s t i d = route . d e s t r ou t e r ;
1209 i n t de s t x = de s t i d % num cols ;
1210 i n t de s t y = de s t i d / num cols ;
1211
1212
1213 // Number o f hops between current and de s t i n a t i on in x and y d i r e c t i o n
1214 in t x hops = des t x − my x ;
1215 in t y hops = des t y − my y ;
1216
1217 // a l ready checked that in outportCompute () func t i on
1218 a s s e r t (! (x hops == 0 && y hops == 0)) ;
1219
1220 // Pos s i b l e output
1221 std : : vector<PortDirect ion> output se t0 ;
1222 std : : vector<PortDirect ion> output se t1 ;
1223 std : : vector<PortDirect ion> output se t2 ;
1224
1225 // Same column
1226 i f (x hops == 0)
1227 {
1228 i f (my x % 2 != 0)
1229 {
1230 i f (i npo r t d i r n == ”East”)
1231 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1232
1233 i f (y hops < 0)
1234 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1235
1236 e l s e
1237 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1238 }
1239
1240 e l s e
1241 {
1242 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1243
1244 i f (y hops < 0)
1245 {
1246 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1247
1248 i f (de s t x != 0)
1249 addPort (output set2 , ”North” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1250 }

162 APPENDIX A. GEM5 CODE

1251
1252 e l s e
1253 {
1254 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1255
1256 i f (de s t x != 0)
1257 addPort (output set2 , ”South” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1258 }
1259 }
1260 }
1261
1262 // Same row
1263 e l s e i f (y hops == 0)
1264 {
1265 i f (my x % 2 != 0)
1266 {
1267 i f (x hops > 0)
1268 {
1269 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1270
1271 i f (x hops > 1)
1272 {
1273 addPort (output set1 , ”North” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1274 addPort (output set1 , ”South” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1275 }
1276
1277 i f (i npo r t d i r n == ”East”)
1278 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1279 }
1280
1281 e l s e
1282 {
1283 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1284 }
1285 }
1286
1287 e l s e
1288 {
1289 i f (x hops > 0)
1290 {
1291 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1292 addPort (output set2 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1293
1294 i f (i npo r t d i r n != ”West”)
1295 {
1296 addPort (output set1 , ”North” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1297 addPort (output set1 , ”South” , my x , my y , num rows , num cols

, i npo r t d i r n) ;
1298 }
1299 }
1300
1301 e l s e
1302 {
1303 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1304 addPort (output set1 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1305 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1306 }
1307 }
1308 }
1309
1310 // North East
1311 e l s e i f (x hops > 0 && y hops > 0)
1312 {
1313 i f (my x % 2 != 0)
1314 {
1315 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;

163

1316
1317 i f (x hops > 1)
1318 {
1319 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1320 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1321 }
1322
1323 i f (i npo r t d i r n == ”East”)
1324 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1325 }
1326
1327 e l s e
1328 {
1329 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1330 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1331
1332 i f (i npo r t d i r n != ”West”)
1333 {
1334 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1335 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1336 }
1337 }
1338 }
1339
1340 // South East
1341 e l s e i f (x hops > 0 && y hops < 0)
1342 {
1343 i f (my x % 2 != 0)
1344 {
1345 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1346
1347 i f (x hops > 1)
1348 {
1349 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1350 addPort (output set1 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1351 }
1352
1353 i f (i npo r t d i r n == ”East”)
1354 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1355 }
1356
1357 e l s e
1358 {
1359 addPort (output set0 , ”East” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1360 addPort (output set1 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1361
1362 i f (i npo r t d i r n != ”West”)
1363 {
1364 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1365 addPort (output set1 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1366 }
1367 }
1368 }
1369
1370 // North West
1371 e l s e i f (x hops < 0 && y hops > 0)
1372 {
1373 i f (my x % 2 != 0)
1374 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1375 e l s e
1376 {
1377 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;

164 APPENDIX A. GEM5 CODE

1378 addPort (output set0 , ”North” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

1379 addPort (output set1 , ”South” , my x , my y , num rows , num cols ,
i npo r t d i r n) ;

1380 }
1381 }
1382
1383 // South West
1384 e l s e i f (x hops < 0 && y hops < 0)
1385 {
1386 i f (my x % 2 != 0)
1387 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1388 e l s e
1389 {
1390 addPort (output set0 , ”West” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1391 addPort (output set0 , ”South” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1392 addPort (output set1 , ”North” , my x , my y , num rows , num cols ,

i npo r t d i r n) ;
1393 }
1394 }
1395
1396 e l s e
1397 a s s e r t (0) ;
1398
1399 std : : vector<std : : vector<OutputUnit∗>> po s s i b l e o u t pu t s e t ;
1400 std : : vector<OutputUnit∗> tmp0 ;
1401 std : : vector<OutputUnit∗> tmp1 ;
1402 std : : vector<OutputUnit∗> tmp2 ;
1403 std : : vector<OutputUnit∗> tmp3 ;
1404
1405 f o r (auto elem : output se t0)
1406 {
1407 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1408 tmp1 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1409 }
1410
1411 f o r (auto elem : output se t1)
1412 {
1413 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1414 tmp2 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1415 }
1416
1417 f o r (auto elem : output se t2)
1418 {
1419 tmp0 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1420 tmp3 . push back (router−>ge t map d i r e c t i on out (elem)) ;
1421 }
1422
1423 po s s i b l e o u t pu t s e t . push back (tmp0) ;
1424 po s s i b l e o u t pu t s e t . push back (tmp1) ;
1425 po s s i b l e o u t pu t s e t . push back (tmp2) ;
1426 po s s i b l e o u t pu t s e t . push back (tmp3) ;
1427
1428 return po s s i b l e o u t pu t s e t ;
1429 }
1430
1431 void
1432 RoutingUnit : : outportComputeCustomOE(RouteInfo route , i n t current , Por tDi rec t ion

inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)
1433 {
1434 // OE rout ing
1435 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
1436 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing OE (route , current ,

router , i npo r t d i r n) ;
1437
1438 f o r (auto port : p o s s i b l e o u t pu t s e t)
1439 {
1440 mroute . push back (port) ;
1441 current = port−>g e t d s t r o u t e r () ;
1442
1443 i f (cur rent == route . d e s t r ou t e r)
1444 {
1445 setRoute . push back (mroute) ;
1446 mroute . pop back () ;
1447 }
1448
1449 e l s e

165

1450 {
1451 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
1452 outportComputeCustomOE(route , current , i npo r t d i rn , mroute , setRoute

) ;
1453 }
1454 }
1455 mroute . pop back () ;
1456 return ;
1457 }
1458
1459 void
1460 RoutingUnit : : outportComputeCustomNMOE(RouteInfo route , i n t current ,

Por tDi rec t ion inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)
1461 {
1462 // OE rout ing
1463 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
1464 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing NMOE(route , current ,

router , i npo r t d i r n) [0] ;
1465
1466 f o r (auto port : p o s s i b l e o u t pu t s e t)
1467 {
1468 mroute . push back (port) ;
1469 current = port−>g e t d s t r o u t e r () ;
1470
1471 i f (cur rent == route . d e s t r ou t e r)
1472 {
1473 setRoute . push back (mroute) ;
1474 mroute . pop back () ;
1475 }
1476
1477 e l s e
1478 {
1479 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
1480 outportComputeCustomNMOE(route , current , i npo r t d i rn , mroute ,

setRoute) ;
1481 }
1482 }
1483 mroute . pop back () ;
1484 return ;
1485 }
1486
1487
1488 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1489
1490 std : : vector<OutputUnit∗>
1491 RoutingUnit : : routing tmp (RouteInfo route , i n t new src , i n t cnt , Por tDi rec t ion

i npo r t d i r n)
1492 {
1493 RoutingAlgorithm rout ing a l go r i thm = (RoutingAlgorithm) m router−>

g e t n e t p t r ()−>getRoutingAlgorithm () ;
1494
1495 i f (r ou t ing a l go r i thm == WEST FIRST NOP | | r ou t ing a l go r i thm ==

WEST FIRST MEAN)
1496 return routing WF (route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) ;
1497
1498 e l s e i f (r ou t ing a l go r i thm == NORTH LAST NOP | | r ou t ing a l go r i thm ==

NORTH LAST MEAN)
1499 return routing NL (route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) ;
1500
1501 e l s e i f (r ou t ing a l go r i thm == NEGATIVE FIRST NOP | | r ou t ing a l go r i thm ==

NEGATIVE FIRST MEAN)
1502 return routing NF (route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) ;
1503
1504 e l s e i f (r ou t ing a l go r i thm == ODD EVEN NOP | | r ou t ing a l go r i thm ==

ODD EVEN MEAN)
1505 return routing OE (route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) ;
1506
1507 e l s e i f (r ou t ing a l go r i thm == NM WEST FIRST NOP | | r ou t ing a l go r i thm ==

NM WEST FIRST MEAN)
1508 return routing NMWF(route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) [0] ;
1509
1510 e l s e i f (r ou t ing a l go r i thm == NM NORTH LAST NOP | | r ou t ing a l go r i thm ==

NM NORTH LAST MEAN)
1511 return routing NMNL(route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) [0] ;

166 APPENDIX A. GEM5 CODE

1512
1513 e l s e i f (r ou t ing a l go r i thm == NM NEGATIVE FIRST NOP | | r ou t ing a l go r i thm ==

NM NEGATIVE FIRST MEAN)
1514 return routing NMNF(route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) [0] ;
1515
1516 e l s e i f (r ou t ing a l go r i thm == NM ODD EVEN NOP | | r ou t ing a l go r i thm ==

NM ODD EVEN MEAN)
1517 return routing NMOE(route , new src , m router−>g e t n e t p t r ()−>getRouter (

new src) , i npo r t d i r n) [0] ;
1518
1519 e l s e
1520 a s s e r t (0) ;
1521 }
1522
1523 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
1524
1525 // =====> Mean Se l e c t i o n
1526
1527 void
1528 RoutingUnit : : r e c u r s i v e r o u t i n g (RouteInfo route , i n t current , i n t dst , std : :

vector<int> &buf f e r , OutputUnit∗ outc , i n t ∗ cnt , i n t ∗ cnt ud ,
1529 std : : map<OutputUnit ∗ , double> &scores ,

Por tDi rec t ion inpo r t d i rn , std : : vector<int> &buf r)
1530 {
1531
1532 (∗ cnt ud)++;
1533 std : : vector<OutputUnit∗> admi s s i b l e ou t c = routing tmp (route , current , ∗

cnt ud , i npo r t d i r n) ;
1534
1535 i f (std : : f i nd (bu f r . begin () , bu f r . end () , cur rent) == bu f r . end ()) {
1536 (∗ cnt)++;
1537 bu f r . push back (cur rent) ;
1538
1539 // Score
1540 in t nb out = m router−>g e t n e t p t r ()−>getRouter (cur rent)−>

get num outports () ;
1541 f o r (i n t i = 2 ; i < nb out ; i++)
1542 {
1543 std : : vector<OutputUnit∗> tmp = m router−>g e t n e t p t r ()−>getRouter (

cur rent)−>ge t ou tpu tUn i t r e f () ;
1544
1545 i f (tmp [i]−>g e t d s t r o u t e r () != m router−>g e t n e t p t r ()−>

getNumRouters ())
1546 {
1547 in t tmp router = tmp [i]−>g e t d s t r o u t e r () ;
1548 std : : vector<InputUnit∗> inport tmp = m router−>g e t n e t p t r ()−>

getRouter (tmp router)−>g e t i npu tUn i t r e f () ;
1549 f o r (i n t j = 0 ; j < inport tmp . s i z e () ; j++)
1550 {
1551 i f (inport tmp [j]−>g e t d i r e c t i o n () == ”Local ” | | inport tmp [

j]−>g e t d i r e c t i o n () == ” to node ds t ”)
1552 cont inue ;
1553 double sc = (double) inport tmp [j]−> g e t f r e e s l o t s i n (route .

vnet) ;
1554 s c o r e s [outc] += sc / (double) (inport tmp . s i z e ()−3) / (double

) (nb out−3) ;
1555 }
1556 }
1557 }
1558
1559 }
1560
1561 f o r (auto ne igh c : admi s s i b l e ou t c)
1562 {
1563 in t neigh = neigh c−>g e t d s t r o u t e r () ;
1564 i f (std : : f i nd (bu f f e r . begin () , bu f f e r . end () , ne igh c−>g e t o u t l i n k i d ()) !=

bu f f e r . end ())
1565 cont inue ;
1566
1567 bu f f e r . push back (ne igh c−>g e t o u t l i n k i d ()) ;
1568
1569 i f (neigh == dst)
1570 cont inue ;
1571
1572 r e c u r s i v e r o u t i n g (route , neigh , dst , bu f f e r , outc , cnt , cnt ud , score s ,

map out in [ne igh c−>g e t d i r e c t i o n ()] , bu f r) ;
1573 }
1574
1575 (∗ cnt ud)−−;

167

1576
1577 return ;
1578 }
1579
1580 type outScore
1581 RoutingUnit : : meanSelect ion (RouteInfo route , std : : vector<OutputUnit∗> &

f r e e o u t pu t s e t)
1582 {
1583 std : : vector<int> bu f f e r ;
1584 std : : vector<int> bu f r ;
1585 std : : map<OutputUnit ∗ , double> s c o r e s ;
1586 i n t dst = route . d e s t r ou t e r ;
1587
1588 f o r (auto outc : f r e e o u t pu t s e t) {
1589 in t cnt = 1 ;
1590 in t cnt ud = 0 ;
1591 bu f f e r = {outc−>g e t o u t l i n k i d () } ;
1592 bu f r = {outc−>g e t d s t r o u t e r () } ;
1593
1594 // Score 3 .0
1595 in t nb out = m router−>g e t n e t p t r ()−>getRouter (outc−>g e t d s t r o u t e r ())

−>get num outports () ;
1596 f o r (i n t i = 2 ; i < nb out ; i++) {
1597
1598 std : : vector<OutputUnit∗> tmp = m router−>g e t n e t p t r ()−>getRouter (

outc−>g e t d s t r o u t e r ())−>ge t ou tpu tUn i t r e f () ;
1599 i n t tmp router = tmp [i]−>g e t d s t r o u t e r () ;
1600
1601 i f (tmp router != m router−>g e t n e t p t r ()−>getNumRouters ()) {
1602
1603 std : : vector<InputUnit∗> inport tmp = m router−>g e t n e t p t r ()−>

getRouter (tmp router)−>g e t i npu tUn i t r e f () ;
1604
1605 f o r (i n t j = 0 ; j < inport tmp . s i z e () ; j++)
1606 {
1607 i f (inport tmp [j]−>g e t d i r e c t i o n () == ”Local ” | | inport tmp [

j]−>g e t d i r e c t i o n () == ” to node ds t ”)
1608 cont inue ;
1609
1610 double sc = (double) inport tmp [j]−> g e t f r e e s l o t s i n (route .

vnet) ;
1611 s c o r e s [outc] += sc / (double) (inport tmp . s i z e ()−3) / (double

) (nb out−3) ;
1612 }
1613 }
1614 }
1615
1616 r e c u r s i v e r o u t i n g (route , outc−>g e t d s t r o u t e r () , dst , bu f f e r , outc , &cnt

, &cnt ud , score s , map out in [outc−>g e t d i r e c t i o n ()] , bu f r) ;
1617 s c o r e s [outc] /= (double) cnt ;
1618 }
1619
1620
1621 // S e l e c t MIN s co r e s
1622 double min score = INFINITE ;
1623 std : : vector<OutputUnit∗> ou tpu t l i nk cand ida t e s ;
1624 i n t num candidates = 0 ;
1625
1626 // Check the MIN sco r e
1627 f o r (auto out : f r e e o u t pu t s e t)
1628 {
1629 i f (s c o r e s [out] < min score)
1630 min score = s co r e s [out] ;
1631 }
1632
1633 // Check the outport with the MIN sco r e
1634 f o r (auto out : f r e e o u t pu t s e t)
1635 {
1636 i f (s c o r e s [out] == min score)
1637 {
1638 ou tpu t l i nk cand ida t e s . push back (out) ;
1639 num candidates++;
1640 }
1641 }
1642
1643 // S e l e c t one o f the cand i ta t e
1644 OutputUnit∗ outport = outpu t l i nk cand ida t e s [rand () % num candidates] ;
1645
1646 // Return
1647 return std : : make pair (outport , min score) ;

168 APPENDIX A. GEM5 CODE

1648 }
1649
1650 type outScore
1651 RoutingUnit : : s e l e c t i o n (RouteInfo route , std : : vector<OutputUnit∗> &

pos s i b l e ou tpu t s e t , bool one)
1652 {
1653 // 1) No outport p o s s i b l e
1654 i f (p o s s i b l e o u t pu t s e t . s i z e () == 0)
1655 return std : : make pair (nu l lp t r , INFINITE) ;
1656
1657 // I f channel adjacent to the dest , take i t
1658 f o r (auto out : p o s s i b l e o u t pu t s e t)
1659 {
1660 i f (out−>g e t d s t r o u t e r () == route . d e s t r ou t e r)
1661 return std : : make pair (out , 0) ;
1662 }
1663
1664 // Check best path
1665 type outScore ou tpo r t s c o r e = meanSelect ion (route , p o s s i b l e o u t pu t s e t) ;
1666
1667 return ou tpo r t s c o r e ;
1668 }
1669
1670 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
1671 Route
1672 RoutingUnit : : s e l e c t i o n l i n k max (std : : vector<Route> &setRoute , RouteInfo

r ou t e i n f o)
1673 {
1674
1675 std : : vector<double> s c o r e s ;
1676
1677 f o r (i n t i = 0 ; i < setRoute . s i z e () ; i++)
1678 {
1679 Route route = setRoute [i] ;
1680 double s co r e = 0 ;
1681
1682 f o r (i n t n = 0 ; n < route . s i z e () − 1 ; n++)
1683 {
1684 double tmp score = 0 ;
1685
1686 //∗∗
1687 // Link U t i l i z a t i o n
1688 InputUnit∗ in = m router−>g e t n e t p t r ()−>ge t map l i nk inpo r t (route [n

]−>get nwk l ink ()) ;
1689 tmp score += in−>g e t s t a t e r a t e s a v e d () ;
1690 //∗∗
1691
1692
1693 // Most congested route r
1694 i f (tmp score > s co r e)
1695 s co r e = tmp score ;
1696
1697 // // Sum
1698 // s co r e += tmp score ;
1699 }
1700
1701 //∗∗∗
1702 // Hop count
1703 double h op d i f f = (double) route . s i z e () − (double) setRoute [0] . s i z e () ;
1704 double num = (double) m router−>g e t n e t p t r ()−>getNumRouters () ;
1705 double penalty = beta ∗ hop d i f f / num;
1706 s co r e += penalty ;
1707 //∗∗∗
1708
1709 s c o r e s . push back (s co r e) ;
1710 }
1711
1712
1713 // S e l e c t MIN s co r e s
1714 double min score = INFINITE ;
1715 std : : vector<Route> r ou t e cand ida t e s ;
1716 i n t num candidates = 0 ;
1717
1718 // Check the MIN sco r e
1719 f o r (auto s co r e : s c o r e s)
1720 {
1721 i f (s co r e < min score)
1722 min score = sco r e ;
1723 }
1724

169

1725 // Check the route with the MIN sco r e
1726 f o r (i n t i = 0 ; i < s c o r e s . s i z e () ; i++)
1727 {
1728 i f (s c o r e s [i] == min score)
1729 {
1730 rou t e cand ida t e s . push back (setRoute [i]) ;
1731 num candidates++;
1732 }
1733 }
1734
1735 // S e l e c t one o f the cand i ta t e
1736 Route f i n a l r o u t e = rout e cand ida t e s [rand () % num candidates] ;
1737 return f i n a l r o u t e ;
1738 }
1739
1740 Route
1741 RoutingUnit : : s e l e c t i o n l i n k s um (std : : vector<Route> &setRoute , RouteInfo

r ou t e i n f o)
1742 {
1743
1744 std : : vector<double> s c o r e s ;
1745
1746 f o r (i n t i = 0 ; i < setRoute . s i z e () ; i++)
1747 {
1748 Route route = setRoute [i] ;
1749 double s co r e = 0 ;
1750
1751 f o r (i n t n = 0 ; n < route . s i z e () − 1 ; n++)
1752 {
1753 double tmp score = 0 ;
1754
1755 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1756 // Link U t i l i z a t i o n
1757 InputUnit∗ in = m router−>g e t n e t p t r ()−>ge t map l i nk inpo r t (route [n

]−>get nwk l ink ()) ;
1758 tmp score += in−>g e t s t a t e r a t e s a v e d () ;
1759 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1760
1761 s co r e += tmp score ;
1762 }
1763
1764
1765 s c o r e s . push back (s co r e) ;
1766 }
1767
1768
1769
1770
1771 // S e l e c t MIN s co r e s
1772 double min score = INFINITE ;
1773 std : : vector<Route> r ou t e cand ida t e s ;
1774 i n t num candidates = 0 ;
1775
1776 // Check the MIN sco r e
1777 f o r (auto s co r e : s c o r e s)
1778 {
1779 i f (s co r e < min score)
1780 min score = sco r e ;
1781 }
1782
1783 // Check the route with the MIN sco r e
1784 f o r (i n t i = 0 ; i < s c o r e s . s i z e () ; i++)
1785 {
1786 i f (s c o r e s [i] == min score)
1787 {
1788 rou t e cand ida t e s . push back (setRoute [i]) ;
1789 num candidates++;
1790 }
1791 }
1792
1793 // S e l e c t one o f the cand i ta t e
1794 Route f i n a l r o u t e = rout e cand ida t e s [rand () % num candidates] ;
1795 return f i n a l r o u t e ;
1796 }
1797
1798 Route
1799 RoutingUnit : : s e l e c t i on r ou t e r max (std : : vector<Route> &setRoute , RouteInfo

r ou t e i n f o)
1800 {
1801

170 APPENDIX A. GEM5 CODE

1802 std : : vector<double> s c o r e s ;
1803
1804 f o r (i n t i = 0 ; i < setRoute . s i z e () ; i++)
1805 {
1806 Route route = setRoute [i] ;
1807 double s co r e = 0 ;
1808 double l i n k l o a d = 0 ;
1809 double r ou t e r l o ad = 0 ;
1810 // double pena l i t y = 0 ;
1811
1812 f o r (i n t n = 0 ; n < route . s i z e () − 1 ; n++)
1813 {
1814 //∗∗
1815 // Link U t i l i z a t i o n
1816 InputUnit∗ in = m router−>g e t n e t p t r ()−>ge t map l i nk inpo r t (route [n

]−>get nwk l ink ()) ;
1817 double tmp l ink load = in−>g e t s t a t e r a t e s a v e d () ;
1818
1819 //∗∗∗
1820
1821 //∗∗
1822 // T r a f f i c ra t e a r r i v i n g on the Current route r
1823 Router∗ route r = route [n]−>g e t r ou t e r () ;
1824 std : : vector<InputUnit∗> inputs = router−>g e t i npu tUn i t r e f () ;
1825 double tmp router load = 0 ;
1826 f o r (i n t j = 0 ; j < inputs . s i z e () ; j++)
1827 {
1828 i f (inputs [j]−>g e t d i r e c t i o n () != route [n]−>g e t d i r e c t i o n ())
1829 tmp router load += inputs [j]−>g e t s t a t e r a t e s a v e d () ;
1830 }
1831
1832 r ou t e r l o ad = rou t e r l o ad / (double) (inputs . s i z e () − 1) ;
1833 //∗∗
1834 // Most congested l i n k
1835 i f (tmp l ink load > l i n k l o a d)
1836 l i n k l o a d = tmp l ink load ;
1837
1838 // Most congested route r
1839 i f (tmp router load > r ou t e r l o ad)
1840 r ou t e r l o ad = tmp router load ;
1841
1842 }
1843
1844 s co r e = rou t e r l o ad + l i n k l o a d ;
1845 s c o r e s . push back (s co r e) ;
1846 }
1847
1848
1849
1850
1851 // S e l e c t MIN s co r e s
1852 double min score = INFINITE ;
1853 std : : vector<Route> r ou t e cand ida t e s ;
1854 i n t num candidates = 0 ;
1855
1856 // Check the MIN sco r e
1857 f o r (auto s co r e : s c o r e s)
1858 {
1859 i f (s co r e < min score)
1860 min score = sco r e ;
1861 }
1862
1863 // Check the route with the MIN sco r e
1864 f o r (i n t i = 0 ; i < s c o r e s . s i z e () ; i++)
1865 {
1866 i f (s c o r e s [i] == min score)
1867 {
1868 rou t e cand ida t e s . push back (setRoute [i]) ;
1869 num candidates++;
1870 }
1871 }
1872
1873 // S e l e c t one o f the cand i ta t e
1874 Route f i n a l r o u t e = rout e cand ida t e s [rand () % num candidates] ;
1875 return f i n a l r o u t e ;
1876 }
1877
1878 Route
1879 RoutingUnit : : s e l e c t i on r ou t e r s um (std : : vector<Route> &setRoute , RouteInfo

r ou t e i n f o)

171

1880 {
1881
1882
1883 std : : vector<double> s c o r e s ;
1884 f o r (i n t i = 0 ; i < setRoute . s i z e () ; i++)
1885 {
1886 Route route = setRoute [i] ;
1887
1888 double s co r e = 0 ;
1889
1890 f o r (i n t n = 0 ; n < route . s i z e () − 1 ; n++)
1891 {
1892 double tmp score = 0 ;
1893
1894 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1895 // Link U t i l i z a t i o n
1896 InputUnit∗ in = m router−>g e t n e t p t r ()−>ge t map l i nk inpo r t (route [n

]−>get nwk l ink ()) ;
1897 tmp score += in−>g e t s t a t e r a t e s a v e d () ;
1898 //∗∗∗
1899
1900 //∗∗
1901 // T r a f f i c ra t e a r r i v i n g on the Current route r
1902 Router∗ route r = route [n]−>g e t r ou t e r () ;
1903 std : : vector<InputUnit∗> inputs = router−>g e t i npu tUn i t r e f () ;
1904 double r ou t e r l o ad = 0 ;
1905 f o r (i n t j = 0 ; j < inputs . s i z e () ; j++)
1906 {
1907 i f (inputs [j]−>g e t d i r e c t i o n () != route [n]−>g e t d i r e c t i o n ())
1908 r ou t e r l o ad += inputs [j]−>g e t s t a t e r a t e s a v e d () ;
1909 }
1910
1911 r ou t e r l o ad = gamma ∗ r ou t e r l o ad / (double) (inputs . s i z e () − 1) ;
1912 tmp score += rou t e r l o ad ;
1913 //∗∗∗
1914
1915 // Sum
1916 sco r e += tmp score ;
1917 }
1918
1919 s co r e /= (double) route . s i z e () ;
1920
1921
1922 s c o r e s . push back (s co r e) ;
1923 }
1924
1925
1926 // S e l e c t MIN s co r e s
1927 double min score = INFINITE ;
1928 std : : vector<Route> r ou t e cand ida t e s ;
1929 i n t num candidates = 0 ;
1930
1931 // Check the MIN sco r e
1932 f o r (auto s co r e : s c o r e s)
1933 {
1934 i f (s co r e < min score)
1935 min score = sco r e ;
1936 }
1937
1938 // Check the route with the MIN sco r e
1939 f o r (i n t i = 0 ; i < s c o r e s . s i z e () ; i++)
1940 {
1941 i f (s c o r e s [i] == min score)
1942 {
1943 rou t e cand ida t e s . push back (setRoute [i]) ;
1944 num candidates++;
1945 }
1946 }
1947
1948 // S e l e c t one o f the cand i ta t e
1949 Route f i n a l r o u t e = rout e cand ida t e s [rand () % num candidates] ;
1950 return f i n a l r o u t e ;
1951 }
1952
1953 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
1954 std : : vector<OutputUnit∗>
1955 RoutingUnit : : routing XY (RouteInfo route , i n t current , Router ∗ router ,

Por tDi rec t ion i npo r t d i r n)
1956 {
1957 PortDi rec t ion outpo r t d i rn = ”Unknown” ;

172 APPENDIX A. GEM5 CODE

1958
1959 in t M5 VAR USED num rows = m router−>g e t n e t p t r ()−>getNumRows () ;
1960 i n t num cols = m router−>g e t n e t p t r ()−>getNumCols () ;
1961 a s s e r t (num rows > 0 && num cols > 0) ;
1962
1963 // in t my id = m router−>g e t i d () ;
1964 i n t my id = current ;
1965 i n t my x = my id % num cols ;
1966 i n t my y = my id / num cols ;
1967
1968 in t d e s t i d = route . d e s t r ou t e r ;
1969 i n t de s t x = de s t i d % num cols ;
1970 i n t de s t y = de s t i d / num cols ;
1971
1972 in t x hops = abs (de s t x − my x) ;
1973 i n t y hops = abs (de s t y − my y) ;
1974
1975 bool x d i rn = (des t x >= my x) ;
1976 bool y d i rn = (des t y >= my y) ;
1977
1978 // a l ready checked that in outportCompute () func t i on
1979 a s s e r t (! (x hops == 0 && y hops == 0)) ;
1980
1981 // Pos s i b l e output
1982 std : : vector<PortDirect ion> output s e t ;
1983
1984
1985 i f (x hops > 0) {
1986 i f (x d i rn) {
1987 a s s e r t (i npo r t d i r n == ”Local ” | | i n po r t d i r n == ”West”) ;
1988 output s e t . push back (”East”) ;
1989 } e l s e {
1990 a s s e r t (i npo r t d i r n == ”Local ” | | i n po r t d i r n == ”East”) ;
1991 output s e t . push back (”West”) ;
1992 }
1993 } e l s e i f (y hops > 0) {
1994 i f (y d i rn) {
1995 // ”Local ” or ”South” or ”West” or ”East”
1996 a s s e r t (i npo r t d i r n != ”North”) ;
1997 output s e t . push back (”North”) ;
1998 } e l s e {
1999 // ”Local ” or ”North” or ”West” or ”East”
2000 a s s e r t (i npo r t d i r n != ”South”) ;
2001 output s e t . push back (”South”) ;
2002 }
2003 } e l s e {
2004
2005 a s s e r t (0) ;
2006 }
2007
2008 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t ;
2009 f o r (auto elem : output s e t)
2010 {
2011 po s s i b l e o u t pu t s e t . push back (router−>ge t map d i r e c t i on out (elem)) ;
2012 }
2013 return po s s i b l e o u t pu t s e t ;
2014 }
2015
2016 void
2017 RoutingUnit : : outportComputeCustomXY(RouteInfo route , i n t current , Por tDi rec t ion

inpo r t d i rn , Route &mroute , std : : vector<Route> &setRoute)
2018 {
2019 // XY rout ing
2020 Router∗ route r = m router−>g e t n e t p t r ()−>getRouter (cur rent) ;
2021 std : : vector<OutputUnit∗> po s s i b l e o u t pu t s e t = routing XY (route , current ,

router , i npo r t d i r n) ;
2022
2023 f o r (auto port : p o s s i b l e o u t pu t s e t)
2024 {
2025 mroute . push back (port) ;
2026 current = port−>g e t d s t r o u t e r () ;
2027
2028 i f (cur rent == route . d e s t r ou t e r)
2029 {
2030 setRoute . push back (mroute) ;
2031 mroute . pop back () ;
2032 }
2033
2034 e l s e
2035 {

173

2036 i npo r t d i r n = map out in [port−>g e t d i r e c t i o n ()] ;
2037 outportComputeCustomXY(route , current , i npo r t d i rn , mroute , setRoute

) ;
2038 }
2039 }
2040 mroute . pop back () ;
2041
2042 return ;
2043 }

Listing A.1: RoutingUnit.cc

1 #inc lude ”mem/ruby/network/ garnet2 .0/ Router . hh”
2
3 #inc lude ”base / s t l h e l p e r s . hh”
4 #inc lude ”debug/RubyNetwork . hh”
5 #inc lude ”mem/ruby/network/ garnet2 .0/ CreditLink . hh”
6 #inc lude ”mem/ruby/network/ garnet2 .0/ CrossbarSwitch . hh”
7 #inc lude ”mem/ruby/network/ garnet2 .0/ GarnetNetwork . hh”
8 #inc lude ”mem/ruby/network/ garnet2 .0/ InputUnit . hh”
9 #inc lude ”mem/ruby/network/ garnet2 .0/ NetworkLink . hh”

10 #inc lude ”mem/ruby/network/ garnet2 .0/ OutputUnit . hh”
11 #inc lude ”mem/ruby/network/ garnet2 .0/ RoutingUnit . hh”
12 #inc lude ”mem/ruby/network/ garnet2 .0/ SwitchAl locator . hh”
13
14 us ing namespace std ;
15 us ing m5 : : s t l h e l p e r s : : d e l e t ePo i n t e r s ;
16
17 Router : : Router (const Params ∗p)
18 : BasicRouter (p) , Consumer (t h i s)
19 {
20 m latency = p−>l a t ency ;
21 m vi r tua l networks = p−>v i r t n e t s ;
22 m vc per vnet = p−>vc s pe r vne t ;
23 m num vcs = m vir tua l networks ∗ m vc per vnet ;
24
25 m rout ing un i t = new RoutingUnit (t h i s) ;
26 m sw al loc = new SwitchAl locator (t h i s) ;
27 m switch = new CrossbarSwitch (t h i s) ;
28
29 m input unit . c l e a r () ;
30 m output unit . c l e a r () ;
31
32 // // changes by Soultana El l in idou−SDNoC
33 std : : i f s t r e am reader ;
34 reader . open (”/home/gaurav/gem5/var / tau . txt ”) ;
35 i f (! r eader)
36 a s s e r t (0) ;
37 reader >> tau ;
38 reader . c l o s e () ;
39
40 std : : i f s t r e am reader2 ;
41 reader2 . open (”/home/gaurav/gem5/var / alpha . txt ”) ;
42 i f (! reader2)
43 a s s e r t (0) ;
44 reader2 >> alpha ;
45 reader2 . c l o s e () ;
46
47 schedule wakeup (Cycles (0)) ;
48
49 }
50
51 Router : : ˜ Router ()
52 {
53 de l e t ePo i n t e r s (m input unit) ;
54 d e l e t ePo i n t e r s (m output unit) ;
55 d e l e t e m rout ing un i t ;
56 d e l e t e m sw al loc ;
57 d e l e t e m switch ;
58 }
59
60 void
61 Router : : i n i t ()
62 {
63 BasicRouter : : i n i t () ;
64
65 m sw al loc−>i n i t () ;
66 m switch−>i n i t () ;

174 APPENDIX A. GEM5 CODE

67 }
68
69 void
70 Router : : wakeup ()
71 {
72 DPRINTF(RubyNetwork , ”Router %d woke up\n” , m id) ;
73
74 // changes by Soultana El l in idou−SDNoC
75 //∗∗∗
76 // Update Time
77
78 schedule wakeup (Cycles (tau)) ;
79 std : : vector<InputUnit ∗> input tmp = ge t i npu tUn i t r e f () ;
80 std : : vector<OutputUnit ∗> output tmp = ge t ou tpu tUn i t r e f () ;
81
82 // // Technique i n i t phase
83 // i f (curTick () == tau)
84 // {
85 // f o r (auto elem : input tmp)
86 // elem−>s e t s t a t e r a t e s a v e d (0) ;
87 // }
88 // //
89
90 i f (curTick () % tau == 0 && tau != 0) {
91 f o r (auto elem : input tmp)
92 {
93 double dtau = (double) tau ;
94 double o l d s t a t e = elem−>g e t s t a t e r a t e s a v e d () ;
95 double new state = elem−>g e t s t a t e r a t e () / dtau ;
96 double update = (new state + alpha ∗ o l d s t a t e) / (1 . 0 + alpha) ;
97 elem−>s e t s t a t e r a t e s a v e d (update) ;
98 elem−>s e t s t a t e r a t e (0 . 0) ;
99

100 }
101
102 f o r (auto elem : output tmp)
103 {
104 // pena l i t y
105 elem−>s e t p e n a l i t y (0 . 0) ;
106 }
107 }
108 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
109
110 // check f o r incoming f l i t s
111 f o r (i n t inpor t = 0 ; inpor t < m input unit . s i z e () ; i npor t++) {
112 m input unit [i npor t]−>wakeup () ;
113 }
114
115 // check f o r incoming c r e d i t s
116 // Note : the c r e d i t update i s happening be f o r e SA
117 // bu f f e r turnaround time =
118 // c r e d i t t r a v e r s a l (1− cy c l e) + SA (1− cy c l e) + Link Traversa l (1− cy c l e)
119 // i f we want the c r e d i t update to take p lace a f t e r SA, t h i s loop should
120 // be moved a f t e r the SA reques t
121 f o r (i n t outport = 0 ; outport < m output unit . s i z e () ; outport++) {
122 m output unit [outport]−>wakeup () ;
123 }
124
125 // Switch A l l o ca t i on
126 m sw al loc−>wakeup () ;
127
128 // Switch Traversa l
129 m switch−>wakeup () ;
130 }
131
132 void
133 Router : : addInPort (PortDi rec t ion inpo r t d i rn ,
134 NetworkLink ∗ i n l i n k , CreditLink ∗ c r e d i t l i n k)
135 {
136 in t port num = m input unit . s i z e () ;
137 InputUnit ∗ i npu t un i t = new InputUnit (port num , inpo r t d i rn , t h i s) ;
138 input un i t−>s e t i n l i n k (i n l i n k) ;
139 input un i t−>s e t c r e d i t l i n k (c r e d i t l i n k) ;
140 i n l i n k−>setLinkConsumer (t h i s) ;
141 c r e d i t l i n k−>setSourceQueue (input un i t−>getCreditQueue ()) ;
142
143 m input unit . push back (input un i t) ;
144
145 m rout ing unit−>addInDirect ion (inpo r t d i rn , port num) ;
146

175

147 // // changes by Soultana El l in idou−SDNoC
148 g e t n e t p t r ()−>s e t map l i nk i npo r t (i n l i n k , i nput un i t) ;
149 }
150
151 void
152 Router : : addOutPort (PortDi rec t ion outport d i rn ,
153 NetworkLink ∗ out l i nk ,
154 const NetDest& rou t i ng t ab l e en t r y , i n t l ink we ight ,
155 CreditLink ∗ c r e d i t l i n k)
156 {
157 in t port num = m output unit . s i z e () ;
158 OutputUnit ∗ output un i t = new OutputUnit (port num , outport d i rn , t h i s) ;
159
160 output unit−>s e t o u t l i n k (ou t l i n k) ;
161 output unit−>s e t c r e d i t l i n k (c r e d i t l i n k) ;
162 c r e d i t l i n k−>setLinkConsumer (t h i s) ;
163 out l i nk−>setSourceQueue (output unit−>getOutQueue ()) ;
164
165 m output unit . push back (output un i t) ;
166
167 m rout ing unit−>addRoute (r ou t i n g t ab l e e n t r y) ;
168 m rout ing unit−>addWeight (l i nk we i gh t) ;
169 m rout ing unit−>addOutDirection (outport d i rn , port num) ;
170
171
172 // // changes by Soultana El l in idou−SDNoC
173 output unit−>s e t d s t r o u t e r (map l ink node [ou t l i n k]) ;
174 s e t map d i r e c t i on ou t (outport d i rn , output un i t) ;
175 set map dst out (map l ink node [ou t l i n k] , output un i t) ;
176
177 i f (ou tpo r t d i rn != ”Local ” && outpo r t d i rn != ” to node s r c ” && outpo r t d i rn

!= ” t o sdn s r c ”)
178 g e t n e t p t r ()−>s e t mat r i x (g e t i d () , map l ink node [ou t l i n k] , output un i t

) ;
179 }
180
181 PortDi rec t ion
182 Router : : getOutportDirect ion (i n t outport)
183 {
184 return m output unit [outport]−>g e t d i r e c t i o n () ;
185 }
186
187 PortDi rec t ion
188 Router : : g e t Inpo r tD i r e c t i on (i n t inpor t)
189 {
190 return m input unit [i npor t]−>g e t d i r e c t i o n () ;
191 }
192
193 in t
194 Router : : route compute (RouteInfo route , i n t inport , Por tDi rec t ion i npo r t d i r n)
195 {
196 return m rout ing unit−>outportCompute (route , inport , i npo r t d i r n) ;
197 }
198
199 //∗∗
200 // // changes by Soultana El l in idou−SDNoC
201 in t
202 Router : : route back (RouteInfo route)
203 {
204 return m rout ing unit−>outportBack (route) ;
205 }
206
207 in t
208 Router : : route back hack (RouteInfo route)
209 {
210 return m rout ing unit−>outportBack hack (route) ;
211 }
212
213 in t
214 Router : : r o u t e c o n t r o l l e r (RouteInfo route)
215 {
216 return m rout ing unit−>outpo r tCont ro l l e r (route) ;
217 }
218
219 void
220 Router : : route compute SDN (RouteInfo route)
221 {
222 return m rout ing unit−>SDN outportCompute (route) ;
223 }
224

176 APPENDIX A. GEM5 CODE

225 in t
226 Router : : route compute NoC (RouteInfo route)
227 {
228 return m rout ing unit−>NoC outportCompute (route) ;
229 }
230
231 //∗∗
232
233 void
234 Router : : g rant sw i t ch (i n t inport , f l i t ∗ t f l i t)
235 {
236 m switch−>update sw winner (inport , t f l i t) ;
237 }
238
239 void
240 Router : : schedule wakeup (Cycles time)
241 {
242 // wake up a f t e r time cy c l e s
243 scheduleEvent (time) ;
244 }
245
246 std : : s t r i n g
247 Router : : getPortDirectionName (PortDi rec t ion d i r e c t i o n)
248 {
249 // PortDi rec t ion i s a c tua l l y a s t r i n g
250 // I f not , then t h i s func t i on should add a switch
251 // statement to convert d i r e c t i o n to a s t r i n g
252 // that can be pr inted out
253 return d i r e c t i o n ;
254 }
255
256 void
257 Router : : r egS ta t s ()
258 {
259 BasicRouter : : r egS ta t s () ;
260
261 m buf f e r r eads
262 . name(name () + ” . bu f f e r r e ad s ”)
263 . f l a g s (Stat s : : nozero)
264 ;
265
266 m bu f f e r wr i t e s
267 . name(name () + ” . b u f f e r w r i t e s ”)
268 . f l a g s (Stat s : : nozero)
269 ;
270
271 m c ro s sba r a c t i v i t y
272 . name(name () + ” . c r o s s b a r a c t i v i t y ”)
273 . f l a g s (Stat s : : nozero)
274 ;
275
276 m sw inpu t a r b i t e r a c t i v i t y
277 . name(name () + ” . sw i n pu t a r b i t e r a c t i v i t y ”)
278 . f l a g s (Stat s : : nozero)
279 ;
280
281 m sw ou tpu t a rb i t e r a c t i v i t y
282 . name(name () + ” . sw ou tpu t a r b i t e r a c t i v i t y ”)
283 . f l a g s (Stat s : : nozero)
284 ;
285 }
286
287 void
288 Router : : c o l l a t e S t a t s ()
289 {
290 f o r (i n t j = 0 ; j < m vir tua l networks ; j++) {
291 f o r (i n t i = 0 ; i < m input unit . s i z e () ; i++) {
292 m buf f e r r eads += m input unit [i]−>g e t b u f r e a d a c t i v i t y (j) ;
293 m bu f f e r wr i t e s += m input unit [i]−> g e t b u f w r i t e a c t i v i t y (j) ;
294 }
295 }
296
297 m sw inpu t a r b i t e r a c t i v i t y = m sw al loc−>g e t i n p u t a r b i t e r a c t i v i t y () ;
298 m sw ou tpu t a rb i t e r a c t i v i t y = m sw al loc−>g e t o u t p u t a r b i t e r a c t i v i t y () ;
299 m c ro s sba r a c t i v i t y = m switch−>g e t c r o s s b a r a c t i v i t y () ;
300 }
301
302 void
303 Router : : r e s e t S t a t s ()
304 {

177

305 f o r (i n t j = 0 ; j < m vir tua l networks ; j++) {
306 f o r (i n t i = 0 ; i < m input unit . s i z e () ; i++) {
307 m input unit [i]−> r e s e t S t a t s () ;
308 }
309 }
310
311 m switch−>r e s e t S t a t s () ;
312 m sw al loc−>r e s e t S t a t s () ;
313 }
314
315 void
316 Router : : pr intFau l tVector (ostream& out)
317 {
318 in t t empe ra tu r e c e l c i u s = BASELINE TEMPERATURE CELCIUS;
319 i n t num fau l t types = m network ptr−>fau l t mode l−>number o f f au l t type s ;
320 f l o a t f a u l t v e c t o r [num fau l t types] ;
321 g e t f a u l t v e c t o r (t empera tu r e c e l c iu s , f a u l t v e c t o r) ;
322 out << ”Router−” << m id << ” f a u l t vec tor : ” << endl ;
323 f o r (i n t f a u l t t yp e i nd ex = 0 ; f a u l t t yp e i nd ex < num fau l t types ;
324 f au l t t yp e i nd ex++) {
325 out << ” − p r obab i l i t y o f (” ;
326 out <<
327 m network ptr−>fau l t mode l−>f a u l t t y p e t o s t r i n g (f a u l t t yp e i nd ex) ;
328 out << ”) = ” ;
329 out << f a u l t v e c t o r [f a u l t t yp e i nd ex] << endl ;
330 }
331 }
332
333 void
334 Router : : p r in tAggregateFau l tProbab i l i ty (std : : ostream& out)
335 {
336 in t t empe ra tu r e c e l c i u s = BASELINE TEMPERATURE CELCIUS;
337 f l o a t a gg r e ga t e f au l t p r ob ;
338 g e t a g g r e g a t e f a u l t p r o b a b i l i t y (t empera tu r e c e l c iu s ,
339 &agg r e ga t e f au l t p r ob) ;
340 out << ”Router−” << m id << ” f a u l t p r obab i l i t y : ” ;
341 out << agg r e ga t e f au l t p r ob << endl ;
342 }
343
344 u in t32 t
345 Router : : f unc t i ona lWr i t e (Packet ∗pkt)
346 {
347 u in t32 t num funct i ona l wr i t e s = 0 ;
348 num funct i ona l wr i t e s += m switch−>f unc t i ona lWr i t e (pkt) ;
349
350 f o r (u in t 32 t i = 0 ; i < m input unit . s i z e () ; i++) {
351 num funct i ona l wr i t e s += m input unit [i]−> func t i ona lWr i t e (pkt) ;
352 }
353
354 f o r (u in t 32 t i = 0 ; i < m output unit . s i z e () ; i++) {
355 num funct i ona l wr i t e s += m output unit [i]−> f unc t i ona lWr i t e (pkt) ;
356 }
357
358 return num funct i ona l wr i t e s ;
359 }
360
361 Router ∗
362 GarnetRouterParams : : c r e a t e ()
363 {
364 return new Router (t h i s) ;
365 }

Listing A.2: Router.cc

1 #inc lude ”mem/ruby/network/ garnet2 .0/ GarnetNetwork . hh”
2
3 #inc lude <ca s s e r t>
4
5 #inc lude ”base / ca s t . hh”
6 #inc lude ”base / s t l h e l p e r s . hh”
7 #inc lude ”mem/ruby/common/NetDest . hh”
8 #inc lude ”mem/ruby/network/MessageBuffer . hh”
9 #inc lude ”mem/ruby/network/ garnet2 .0/CommonTypes . hh”

10 #inc lude ”mem/ruby/network/ garnet2 .0/ CreditLink . hh”
11 #inc lude ”mem/ruby/network/ garnet2 .0/ GarnetLink . hh”
12 #inc lude ”mem/ruby/network/ garnet2 .0/ NetworkInter face . hh”
13 #inc lude ”mem/ruby/network/ garnet2 .0/ NetworkLink . hh”
14 #inc lude ”mem/ruby/network/ garnet2 .0/ Router . hh”

178 APPENDIX A. GEM5 CODE

15 #inc lude ”mem/ruby/ system/RubySystem . hh”
16
17 // changes by Soultana El l in idou−SDNoC
18 #inc lude ”mem/ruby/network/ garnet2 .0/ OutputUnit . hh”
19 #inc lude ”mem/ruby/network/ garnet2 .0/ InputUnit . hh”
20 //
21
22 us ing namespace std ;
23 us ing m5 : : s t l h e l p e r s : : d e l e t ePo i n t e r s ;
24
25 /∗
26 ∗ GarnetNetwork s e t s up the rou t e r s and l i n k s and c o l l e c t s s t a t s .
27 ∗ Defaul t parameters (GarnetNetwork . py) can be overwr i t t en from command l i n e
28 ∗ (s ee c on f i g s /network/Network . py)
29 ∗/
30
31 GarnetNetwork : : GarnetNetwork (const Params ∗p)
32 : Network (p)
33 {
34 m num rows = p−>num rows ;
35 m n i f l i t s i z e = p−>n i f l i t s i z e ;
36 m vcs per vnet = p−>vc s pe r vne t ;
37 m bu f f e r s p e r da ta vc = p−>bu f f e r s p e r d a t a v c ;
38 m bu f f e r s p e r c t r l v c = p−>b u f f e r s p e r c t r l v c ;
39 m rout ing a lgor i thm = p−>r ou t ing a l go r i thm ;
40
41 m enab le fau l t mode l = p−>enab l e f au l t mode l ;
42 i f (m enab le fau l t mode l)
43 fau l t mode l = p−>f au l t mode l ;
44
45 m vnet type . r e s i z e (m vi r tua l networks) ;
46
47 f o r (i n t i = 0 ; i < m vir tua l networks ; i++) {
48 i f (m vnet type names [i] == ” response ”)
49 m vnet type [i] = DATA VNET ; // c a r r i e s data (and c t r l) packets
50 e l s e
51 m vnet type [i] = CTRL VNET ; // c a r r i e s only c t r l packets
52 }
53
54 // record the rou t e r s
55 f o r (vector<BasicRouter ∗>:: c o n s t i t e r a t o r i = p−>r ou t e r s . begin () ;
56 i != p−>r ou t e r s . end () ; ++i) {
57 Router∗ route r = sa f e c a s t<Router∗>(∗ i) ;
58 m routers . push back (route r) ;
59
60 // i n i t i a l i z e the route r ’ s network po in t e r s
61 router−>i n i t n e t p t r (t h i s) ;
62 }
63
64 // record the network i n t e r f a c e s
65 f o r (vector<ClockedObject ∗>:: c o n s t i t e r a t o r i = p−>n e t i f s . begin () ;
66 i != p−>n e t i f s . end () ; ++i) {
67 NetworkInter face ∗ni = sa f e c a s t<NetworkInter face ∗>(∗ i) ;
68 m nis . push back (n i) ;
69 ni−>i n i t n e t p t r (t h i s) ;
70 }
71
72 //∗∗∗
73 // // changes by Soultana El l in idou−SDNoC
74
75 // record the SDN c o n t r o l l e r
76 Router∗ tmp = sa f e c a s t<Router∗>(p−>sdnc [0]) ;
77 m sdnc . push back (tmp) ;
78 m sdnc[0]−> i n i t n e t p t r (t h i s) ;
79 std : : cout << ”GarnetNetwork . cc : Cont ro l l e r ID : ” << m sdnc[0]−> g e t i d () <<

std : : endl ;
80
81 // record NI c o n t r o l l e r
82 NetworkInter face ∗ni = sa f e c a s t<NetworkInter face ∗>(p−>NI c [0]) ;
83 m NIc . push back (n i) ;
84 ni−>i n i t n e t p t r (t h i s) ;
85 std : : cout << ”GarnetNetwork . cc : NI o f c o n t r o l l e r s e t ” << std : : endl ;
86
87
88 // i n i t the matrix
89 i n i t ma t r i x pn t r () ;
90 i n i t ma t r i x l a b e l () ;
91
92
93 //∗∗

179

94 }
95
96 void
97 GarnetNetwork : : i n i t ()
98 {
99 Network : : i n i t () ;

100
101 f o r (i n t i =0; i < m nodes ; i++) {
102 m nis [i]−>addNode (m toNetQueues [i] , m fromNetQueues [i]) ;
103 }
104
105 // The topology po in t e r should have a l ready been i n i t i a l i z e d in the
106 // parent network cons t ruc to r
107 a s s e r t (m topology ptr != NULL) ;
108 m topology ptr−>c r ea t eL inks (t h i s) ;
109
110 // I n i t i a l i z e topology s p e c i f i c parameters
111 i f (getNumRows () > 0) {
112 // Only f o r Mesh topology
113 // m num rows and m num cols are only used f o r
114 // implementing XY or custom rout ing in RoutingUnit . cc
115 m num rows = getNumRows () ;
116 m num cols = m routers . s i z e () / m num rows ;
117 a s s e r t (m num rows ∗ m num cols == m routers . s i z e ()) ;
118 } e l s e {
119 m num rows = −1;
120 m num cols = −1;
121 }
122
123 // FaultModel : d e c l a r e each route r to the f a u l t model
124 i f (isFaultModelEnabled ()) {
125 f o r (vector<Router ∗>:: c o n s t i t e r a t o r i= m routers . begin () ;
126 i != m routers . end () ; ++i) {
127 Router∗ route r = sa f e c a s t<Router∗>(∗ i) ;
128 i n t r o u t e r i d M5 VAR USED =
129 fau l t mode l−>d e c l a r e r o u t e r (router−>get num inports () ,
130 router−>get num outports () ,
131 router−>g e t v c pe r vne t () ,
132 getBuffersPerDataVC () ,
133 getBuffersPerCtr lVC ()) ;
134 a s s e r t (r o u t e r i d == router−>g e t i d ()) ;
135 router−>pr in tAggregateFau l tProbab i l i ty (cout) ;
136 router−>pr intFau l tVector (cout) ;
137 }
138
139 // SDN
140 Router∗ route r = sa f e c a s t<Router∗>(m sdnc [0]) ;
141 i n t r ou t e r i d M5 VAR USED = faul t mode l−>d e c l a r e r o u t e r (router−>

get num inports () ,
142 router−>

get num outports () ,
143 router−>

g e t v c pe r vne t () ,
144

getBuffersPerDataVC () ,
145

getBuffersPerCtr lVC ()) ;
146 a s s e r t (r o u t e r i d == router−>g e t i d ()) ;
147 router−>pr in tAggregateFau l tProbab i l i ty (cout) ;
148 router−>pr intFau l tVector (cout) ;
149 }
150 }
151
152 GarnetNetwork : : ˜ GarnetNetwork ()
153 {
154 de l e t ePo i n t e r s (m routers) ;
155 d e l e t ePo i n t e r s (m nis) ;
156 d e l e t ePo i n t e r s (m networkl inks) ;
157 d e l e t ePo i n t e r s (m c r ed i t l i n k s) ;
158 }
159
160 /∗
161 ∗ This func t i on c r e a t e s a l i n k from the Network I n t e r f a c e (NI)
162 ∗ i n to the Network .
163 ∗ I t c r e a t e s a Network Link from the NI to a Router and a Credit Link from
164 ∗ the Router to the NI
165 ∗/
166
167 void
168 GarnetNetwork : : makeExtInLink (NodeID src , SwitchID dest , BasicLink∗ l ink ,

180 APPENDIX A. GEM5 CODE

169 const NetDest& r ou t i n g t ab l e e n t r y)
170 {
171 a s s e r t (s r c < m nodes) ;
172
173 GarnetExtLink∗ ga rn e t l i n k = sa f e c a s t<GarnetExtLink∗>(l i n k) ;
174
175 // GarnetExtLink i s bi−d i r e c t i o n a l
176 NetworkLink∗ n e t l i n k = garne t l i nk−>m network l inks [L inkDi r e c t i on In] ;
177 ne t l i nk−>setType (EXT IN) ;
178 CreditLink∗ c r e d i t l i n k = garne t l i nk−>m cr ed i t l i n k s [L inkDi r e c t i on In] ;
179
180 m networkl inks . push back (n e t l i n k) ;
181 m c r ed i t l i n k s . push back (c r e d i t l i n k) ;
182
183 PortDi rec t ion d s t i n p o r t d i r n = ”Local ” ;
184 m routers [dest]−>addInPort (d s t i npo r t d i r n , n e t l i nk , c r e d i t l i n k) ;
185 m nis [s r c]−>addOutPort (ne t l i nk , c r e d i t l i n k , dest) ;
186 }
187
188 /∗
189 ∗ This func t i on c r e a t e s a l i n k from the Network to a NI .
190 ∗ I t c r e a t e s a Network Link from a Router to the NI and
191 ∗ a Credit Link from NI to the Router
192 ∗/
193
194 void
195 GarnetNetwork : : makeExtOutLink (SwitchID src , NodeID dest , BasicLink∗ l ink ,
196 const NetDest& r ou t i n g t ab l e e n t r y)
197 {
198 a s s e r t (dest < m nodes) ;
199 a s s e r t (s r c < m routers . s i z e ()) ;
200 a s s e r t (m routers [s r c] != NULL) ;
201
202 GarnetExtLink∗ ga rn e t l i n k = sa f e c a s t<GarnetExtLink∗>(l i n k) ;
203
204 // GarnetExtLink i s bi−d i r e c t i o n a l
205 NetworkLink∗ n e t l i n k = garne t l i nk−>m network l inks [LinkDirect ion Out] ;
206 ne t l i nk−>setType (EXT OUT) ;
207 CreditLink∗ c r e d i t l i n k = garne t l i nk−>m cr ed i t l i n k s [LinkDirect ion Out] ;
208
209 m networkl inks . push back (n e t l i n k) ;
210 m c r ed i t l i n k s . push back (c r e d i t l i n k) ;
211
212 PortDi rec t ion s r c ou tp o r t d i r n = ”Local ” ;
213 m routers [s r c]−>addOutPort (s r c ou tpo r t d i r n , n e t l i nk ,
214 r ou t i ng t ab l e en t r y ,
215 l ink−>m weight , c r e d i t l i n k) ;
216 m nis [dest]−>addInPort (ne t l i nk , c r e d i t l i n k) ;
217 }
218
219 /∗
220 ∗ This func t i on c r e a t e s an i n t e r n a l network l i n k between two rou t e r s .
221 ∗ I t adds both the network l i n k and an oppos i t e c r e d i t l i n k .
222 ∗/
223
224 void
225 GarnetNetwork : : makeInternalLink (SwitchID src , SwitchID dest , BasicLink∗ l ink ,
226 const NetDest& rou t i ng t ab l e en t r y ,
227 PortDi rec t ion s r c ou tpo r t d i r n ,
228 PortDi rec t ion d s t i n p o r t d i r n)
229 {
230 GarnetIntLink∗ ga rn e t l i n k = sa f e c a s t<GarnetIntLink∗>(l i n k) ;
231
232 // GarnetIntLink i s u n i d i r e c t i o n a l
233 NetworkLink∗ n e t l i n k = garne t l i nk−>m network l ink ;
234 ne t l i nk−>setType (INT) ;
235 CreditLink∗ c r e d i t l i n k = garne t l i nk−>m cr ed i t l i n k ;
236
237 m networkl inks . push back (n e t l i n k) ;
238 m c r ed i t l i n k s . push back (c r e d i t l i n k) ;
239
240 /// changes by Soultana El l in idou−SDNoC
241
242 //
243
244 i f (s r c == getNumRouters ())
245 {
246 m sdnc[0]−> s e t map l ink node (ne t l i nk , m routers [dest]−>g e t i d ()) ;
247 m routers [dest]−>addInPort (d s t i npo r t d i r n , n e t l i nk , c r e d i t l i n k) ;
248 m sdnc[0]−>addOutPort (s r c ou tpo r t d i r n , n e t l i nk ,

181

249 r ou t i ng t ab l e en t r y ,
250 l ink−>m weight , c r e d i t l i n k) ;
251 }
252
253 e l s e i f (dest == getNumRouters ())
254 {
255 m routers [s r c]−>s e t map l ink node (ne t l i nk , m sdnc[0]−> g e t i d ()) ;
256 m sdnc[0]−>addInPort (d s t i npo r t d i r n , n e t l i nk , c r e d i t l i n k) ;
257 m routers [s r c]−>addOutPort (s r c ou tpo r t d i r n , n e t l i nk ,
258 r ou t i ng t ab l e en t r y ,
259 l ink−>m weight , c r e d i t l i n k) ;
260 }
261
262 e l s e
263 {
264 m routers [s r c]−>s e t map l ink node (ne t l i nk , m routers [dest]−>g e t i d ()) ;
265 m routers [dest]−>addInPort (d s t i npo r t d i r n , n e t l i nk , c r e d i t l i n k) ;
266 m routers [s r c]−>addOutPort (s r c ou tpo r t d i r n , n e t l i nk ,
267 r ou t i ng t ab l e en t r y ,
268 l ink−>m weight , c r e d i t l i n k) ;
269 }
270 }
271
272 // Total r ou t e r s in the network
273 in t
274 GarnetNetwork : : getNumRouters ()
275 {
276 return m routers . s i z e () ;
277 }
278
279 // Get ID o f route r connected to a NI .
280 i n t
281 GarnetNetwork : : g e t r o u t e r i d (i n t n i)
282 {
283 return m nis [n i]−>g e t r o u t e r i d () ;
284 }
285
286 void
287 GarnetNetwork : : r egS ta t s ()
288 {
289 Network : : r egS ta t s () ;
290
291 // Packets
292 m packet s r ece ived
293 . i n i t (m vi r tua l networks)
294 . name(name () + ” . pa ck e t s r e c e i v ed ”)
295 . f l a g s (Stat s : : pdf | Stat s : : t o t a l | Stat s : : nozero | Stat s : : on e l i n e)
296 ;
297
298 m packe t s in j e c t ed
299 . i n i t (m vi r tua l networks)
300 . name(name () + ” . p a ck e t s i n j e c t e d ”)
301 . f l a g s (Stat s : : pdf | Stat s : : t o t a l | Stat s : : nozero | Stat s : : on e l i n e)
302 ;
303
304 m packet network latency
305 . i n i t (m vi r tua l networks)
306 . name(name () + ” . packet network la tency ”)
307 . f l a g s (Stat s : : on e l i n e)
308 ;
309
310 m packet queue ing latency
311 . i n i t (m vi r tua l networks)
312 . name(name () + ” . packe t queue ing la t ency ”)
313 . f l a g s (Stat s : : on e l i n e)
314 ;
315
316 f o r (i n t i = 0 ; i < m vir tua l networks ; i++) {
317 m packet s r ece ived . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
318 m packe t s in j e c t ed . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
319 m packet network latency . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
320 m packet queue ing latency . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
321 }
322
323 m avg packet vnet la tency
324 . name(name () + ” . ave rage packe t vne t l a t ency ”)
325 . f l a g s (Stat s : : on e l i n e) ;
326 m avg packet vnet la tency =
327 m packet network latency / m packet s r ece ived ;
328

182 APPENDIX A. GEM5 CODE

329 m avg packet vqueue latency
330 . name(name () + ” . ave rage packe t vqueue la t ency ”)
331 . f l a g s (Stat s : : on e l i n e) ;
332 m avg packet vqueue latency =
333 m packet queue ing latency / m packet s r ece ived ;
334
335 m avg packet network latency
336 . name(name () + ” . ave rage packe t ne twork la t ency ”) ;
337 m avg packet network latency =
338 sum(m packet network latency) / sum(m packet s r ece ived) ;
339
340 m avg packet queue ing latency
341 . name(name () + ” . ave rage packe t queue ing l a t ency ”) ;
342 m avg packet queue ing latency
343 = sum(m packet queue ing latency) / sum(m packet s r ece ived) ;
344
345 m avg packet latency
346 . name(name () + ” . ave rage packe t l a t ency ”) ;
347 m avg packet latency
348 = m avg packet network latency + m avg packet queue ing latency ;
349
350 // F l i t s
351 m f l i t s r e c e i v e d
352 . i n i t (m vi r tua l networks)
353 . name(name () + ” . f l i t s r e c e i v e d ”)
354 . f l a g s (Stat s : : pdf | Stat s : : t o t a l | Stat s : : nozero | Stat s : : on e l i n e)
355 ;
356
357 m f l i t s i n j e c t e d
358 . i n i t (m vi r tua l networks)
359 . name(name () + ” . f l i t s i n j e c t e d ”)
360 . f l a g s (Stat s : : pdf | Stat s : : t o t a l | Stat s : : nozero | Stat s : : on e l i n e)
361 ;
362
363 m f l i t n e two rk l a t en cy
364 . i n i t (m vi r tua l networks)
365 . name(name () + ” . f l i t n e two r k l a t e n c y ”)
366 . f l a g s (Stat s : : on e l i n e)
367 ;
368
369 m f l i t qu eu e i n g l a t e n c y
370 . i n i t (m vi r tua l networks)
371 . name(name () + ” . f l i t q u e u e i n g l a t e n c y ”)
372 . f l a g s (Stat s : : on e l i n e)
373 ;
374
375 f o r (i n t i = 0 ; i < m vir tua l networks ; i++) {
376 m f l i t s r e c e i v e d . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
377 m f l i t s i n j e c t e d . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
378 m f l i t n e two rk l a t en cy . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
379 m f l i t qu eu e i n g l a t e n c y . subname (i , c s p r i n t f (”vnet−%i ” , i)) ;
380 }
381
382 m avg f l i t v n e t l a t e n c y
383 . name(name () + ” . a v e r a g e f l i t v n e t l a t e n c y ”)
384 . f l a g s (Stat s : : on e l i n e) ;
385 m avg f l i t v n e t l a t e n c y = m f l i t n e two rk l a t en cy / m f l i t s r e c e i v e d ;
386
387 m avg f l i t vqueue l a t en cy
388 . name(name () + ” . a v e r a g e f l i t v qu eu e l a t e n c y ”)
389 . f l a g s (Stat s : : on e l i n e) ;
390 m avg f l i t vqueue l a t en cy =
391 m f l i t qu eu e i n g l a t e n c y / m f l i t s r e c e i v e d ;
392
393 m avg f l i t n e two rk l a t en cy
394 . name(name () + ” . a v e r a g e f l i t n e two r k l a t e n c y ”) ;
395 m avg f l i t n e two rk l a t en cy =
396 sum(m f l i t n e two rk l a t en cy) / sum(m f l i t s r e c e i v e d) ;
397
398 m avg f l i t qu eu e i n g l a t en cy
399 . name(name () + ” . a v e r a g e f l i t q u e u e i n g l a t e n c y ”) ;
400 m avg f l i t qu eu e i n g l a t en cy =
401 sum(m f l i t qu eu e i n g l a t e n c y) / sum(m f l i t s r e c e i v e d) ;
402
403 m avg f l i t l a t e n c y
404 . name(name () + ” . a v e r a g e f l i t l a t e n c y ”) ;
405 m avg f l i t l a t e n c y =
406 m avg f l i t n e two rk l a t en cy + m avg f l i t qu eu e i n g l a t en cy ;
407
408

183

409 // Hops
410 m avg hops . name(name () + ” . average hops ”) ;
411 m avg hops = m tota l hops / sum(m f l i t s r e c e i v e d) ;
412
413 // Links
414 m t o t a l e x t i n l i n k u t i l i z a t i o n
415 . name(name () + ” . e x t i n l i n k u t i l i z a t i o n ”) ;
416 m t o t a l e x t o u t l i n k u t i l i z a t i o n
417 . name(name () + ” . e x t o u t l i n k u t i l i z a t i o n ”) ;
418 m t o t a l i n t l i n k u t i l i z a t i o n
419 . name(name () + ” . i n t l i n k u t i l i z a t i o n ”) ;
420 m av e r a g e l i n k u t i l i z a t i o n
421 . name(name () + ” . a v g l i n k u t i l i z a t i o n ”) ;
422
423 m average vc load
424 . i n i t (m vi r tua l networks ∗ m vcs per vnet)
425 . name(name () + ” . avg vc load ”)
426 . f l a g s (Stat s : : pdf | Stat s : : t o t a l | Stat s : : nozero | Stat s : : on e l i n e)
427 ;
428 }
429
430 void
431 GarnetNetwork : : c o l l a t e S t a t s ()
432 {
433 RubySystem ∗ r s = params ()−>ruby system ;
434 double t ime de l t a = double (curCycle () − rs−>getStar tCyc l e ()) ;
435
436 f o r (i n t i = 0 ; i < m networkl inks . s i z e () ; i++) {
437 l i n k t yp e type = m networkl inks [i]−>getType () ;
438 i n t a c t i v i t y = m networkl inks [i]−>g e tL i nkUt i l i z a t i o n () ;
439
440 i f (type == EXT IN)
441 m t o t a l e x t i n l i n k u t i l i z a t i o n += a c t i v i t y ;
442 e l s e i f (type == EXT OUT)
443 m t o t a l e x t o u t l i n k u t i l i z a t i o n += a c t i v i t y ;
444 e l s e i f (type == INT)
445 m t o t a l i n t l i n k u t i l i z a t i o n += a c t i v i t y ;
446
447 m av e r a g e l i n k u t i l i z a t i o n +=
448 (double (a c t i v i t y) / t ime de l t a) ;
449
450 vector<unsigned int> vc load = m networkl inks [i]−>getVcLoad () ;
451 f o r (i n t j = 0 ; j < vc load . s i z e () ; j++) {
452 m average vc load [j] += ((double) vc load [j] / t ime de l t a) ;
453 }
454 }
455
456 // Ask the rou t e r s to c o l l a t e t h e i r s t a t i s t i c s
457 f o r (i n t i = 0 ; i < m routers . s i z e () ; i++) {
458 m routers [i]−> c o l l a t e S t a t s () ;
459 }
460 }
461
462 void
463 GarnetNetwork : : p r i n t (ostream& out) const
464 {
465 out << ” [GarnetNetwork] ” ;
466 }
467
468 GarnetNetwork ∗
469 GarnetNetworkParams : : c r e a t e ()
470 {
471 return new GarnetNetwork (t h i s) ;
472 }
473
474 u in t32 t
475 GarnetNetwork : : func t i ona lWr i t e (Packet ∗pkt)
476 {
477 u in t32 t num funct i ona l wr i t e s = 0 ;
478
479 f o r (unsigned in t i = 0 ; i < m routers . s i z e () ; i++) {
480 num funct i ona l wr i t e s += m routers [i]−> func t i ona lWr i t e (pkt) ;
481 }
482
483 f o r (unsigned in t i = 0 ; i < m nis . s i z e () ; ++i) {
484 num funct i ona l wr i t e s += m nis [i]−> func t i ona lWr i t e (pkt) ;
485 }
486
487 f o r (unsigned in t i = 0 ; i < m networkl inks . s i z e () ; ++i) {
488 num funct i ona l wr i t e s += m networkl inks [i]−> func t i ona lWr i t e (pkt) ;

184 APPENDIX A. GEM5 CODE

489 }
490
491 return num funct i ona l wr i t e s ;
492 }
493
494 // changes by Soultana El l in idou−SDNoC
495 void
496 GarnetNetwork : : i n i t ma t r i x pn t r ()
497 {
498 in t N = getNumRouters () ;
499 f o r (i n t i = 0 ; i < N; i++)
500 {
501 f o r (i n t j = 0 ; j < N; j++)
502 {
503 i f (i == j)
504 //m matrix . push back (std : : make pair (”C” , nu l l p t r)) ;
505 m matrix pntr . push back (nu l l p t r) ;
506 e l s e
507 //m matrix . push back (std : : make pair (”0” , nu l l p t r)) ;
508 m matrix pntr . push back (nu l l p t r) ;
509 }
510 }
511 }
512
513 void
514 GarnetNetwork : : i n i t ma t r i x l a b e l ()
515 {
516 in t N = getNumRouters () ;
517 f o r (i n t i = 0 ; i < N; i++)
518 {
519 f o r (i n t j = 0 ; j < N; j++)
520 {
521 i f (i == j)
522 m matr ix labe l . push back (CURRENT) ;
523 e l s e
524 m matr ix labe l . push back (ZERO) ;
525 }
526 }
527 }
528
529 void
530 GarnetNetwork : : s e t mat r i x (i n t r ou t e r i d , i n t rou te r d s t , OutputUnit∗ out)
531 {
532 in t N = getNumRouters () ;
533 m matrix pntr [r o u t e r i d ∗ N + rou t e r d s t] = out ;
534
535 std : : s t r i n g po r td i r = (std : : s t r i n g) out−>g e t d i r e c t i o n () ;
536 i n t l a b e l ;
537 i f (po r td i r == ”U”)
538 l a b e l = UP;
539 e l s e i f (po r td i r == ”D”)
540 l a b e l = DOWN;
541 e l s e i f (po r td i r == ”North”)
542 l a b e l = NORTH;
543 e l s e i f (po r td i r == ”South”)
544 l a b e l = SOUTH;
545 e l s e i f (po r td i r == ”East”)
546 l a b e l = EAST;
547 e l s e
548 l a b e l = WEST;
549 m matr ix labe l [r o u t e r i d ∗ N + rou t e r d s t] = l a b e l ;
550 }

Listing A.3: GarnetNetwork.cc

1 #inc lude ”mem/ruby/network/ garnet2 .0/ InputUnit . hh”
2
3 #inc lude ”base / s t l h e l p e r s . hh”
4 #inc lude ”debug/RubyNetwork . hh”
5 #inc lude ”mem/ruby/network/ garnet2 .0/ Credit . hh”
6 #inc lude ”mem/ruby/network/ garnet2 .0/ Router . hh”
7
8 us ing namespace std ;
9 us ing m5 : : s t l h e l p e r s : : d e l e t ePo i n t e r s ;

10
11 InputUnit : : InputUnit (i n t id , Por tDi rec t ion d i r e c t i on , Router ∗ route r)
12 : Consumer (route r)
13 {

185

14 m id = id ;
15 m di r ec t i on = d i r e c t i o n ;
16 m router = route r ;
17 m num vcs = m router−>get num vcs () ;
18 m vc per vnet = m router−>g e t v c pe r vne t () ;
19
20
21 m num buffer reads . r e s i z e (m num vcs/m vc per vnet) ;
22 m num buf fer wr i tes . r e s i z e (m num vcs/m vc per vnet) ;
23
24 f o r (i n t i = 0 ; i < m num buffer reads . s i z e () ; i++) {
25 m num buffer reads [i] = 0 ;
26 m num buf fer wr i tes [i] = 0 ;
27 }
28
29 creditQueue = new f l i t B u f f e r () ;
30 // I n s t an t i a t i n g the v i r t u a l channe ls
31 m vcs . r e s i z e (m num vcs) ;
32 f o r (i n t i =0; i < m num vcs ; i++) {
33 m vcs [i] = new VirtualChannel (i) ;
34 }
35
36 // changes by Soultana El l in idou−SDNoC
37 s t a t e r a t e = 0 . 0 ;
38 s t a t e r a t e s a v ed = 0 . 0 ;
39
40 std : : i f s t r e am reader ;
41 reader . open (”/home/gaurav/gem5/var / alpha . txt ”) ;
42 i f (! r eader)
43 a s s e r t (0) ;
44 reader >> alpha ;
45 // std : : cout << ” alpha : ” << alpha << std : : endl ;
46 reader . c l o s e () ;
47
48 std : : i f s t r e am reader2 ;
49 reader2 . open (”/home/gaurav/gem5/var / tau . txt ”) ;
50 i f (! reader2)
51 a s s e r t (0) ;
52 reader2 >> tau ;
53 reader2 . c l o s e () ;
54
55 std : : i f s t r e am reader3 ;
56 reader3 . open (”/home/gaurav/gem5/var / timeout . txt ”) ;
57 i f (! reader3)
58 a s s e r t (0) ;
59 reader3 >> timeout ;
60 reader3 . c l o s e () ;
61
62 }
63
64 InputUnit : : ˜ InputUnit ()
65 {
66 d e l e t e creditQueue ;
67 d e l e t ePo i n t e r s (m vcs) ;
68 }
69
70 /∗
71 ∗ The InputUnit wakeup func t i on reads the input f l i t from i t s input l i n k .
72 ∗ Each f l i t a r r i v e s with an input VC.
73 ∗ For HEAD/HEAD TAIL f l i t s , performs route computation ,
74 ∗ and updates route in the input VC.
75 ∗ The f l i t i s bu f f e r ed f o r (m latency − 1) c y c l e s in the input VC
76 ∗ and marked as va l i d f o r Swi tchAl locat ion s t a r t i n g that cy c l e .
77 ∗
78 ∗/
79
80 void
81 InputUnit : : wakeup ()
82 {
83 // bool updateTime = f a l s e ;
84 f l i t ∗ t f l i t ;
85 i f (m in l ink−>isReady (m router−>curCycle ())) {
86
87 t f l i t = m in l ink−>consumeLink () ;
88 i n t vc = t f l i t −>ge t vc () ;
89 t f l i t −>increment hops () ; // f o r s t a t s
90
91 i f ((t f l i t −>ge t type () == HEAD) | |
92 (t f l i t −>ge t type () == HEAD TAIL)) {
93

186 APPENDIX A. GEM5 CODE

94 a s s e r t (m vcs [vc]−>g e t s t a t e () == IDLE) ;
95 s e t v c a c t i v e (vc , m router−>curCycle ()) ;
96
97 // Route computation f o r t h i s vc
98
99 //∗∗

100 // changes by Soultana El l in idou−SDNoC
101
102 // NoC route r
103 i f (m router−>g e t i d () < m router−>g e t n e t p t r ()−>getNumRouters ())
104 {
105 std : : pair<int , int> pa i r = std : : make pair (t f l i t −>ge t r ou t e () .

s r c r ou t e r , t f l i t −>ge t r ou t e () . d e s t r ou t e r) ;
106 std : : map<std : : pair<int , int >, int> f low = m router−>

g e t f l ow t ab l e () ;
107 bool tmp = ! (f low . count (pa i r) > 0) ;
108 bool tmp2 = m router−>g e t f l ow t ab l e () . s i z e () == 0 ;
109
110 // Send packets to l o c a l node
111 i f (m router−>g e t i d () == t f l i t −>ge t r ou t e () . d e s t r ou t e r)
112 {
113 in t outport = m router−>route compute NoC (t f l i t −>ge t r ou t e

()) ;
114 grant outpor t (vc , outport) ;
115 }
116
117 // Send the packet to the c o n t r o l l e r i f no entry
118 e l s e i f (tmp == true | | tmp2 == true)
119 {
120 in t outport = m router−>r o u t e c o n t r o l l e r (t f l i t −>ge t r ou t e ()

) ;
121 grant outpor t (vc , outport) ;
122 }
123
124 // Use f low tab l e
125 e l s e
126 {
127 i f (curTick () >= m router−>ge t en t ry t imeout (pa i r))
128 {
129 in t outport = m router−>r o u t e c o n t r o l l e r (t f l i t −>

ge t r ou t e ()) ;
130 grant outpor t (vc , outport) ;
131 }
132
133 e l s e
134 {
135 in t outport = m router−>ge t en t ry (pa i r) ;
136 m router−>s e t f l ow t imeou t (pair , curTick () + timeout) ;
137 grant outpor t (vc , outport) ;
138 }
139 }
140 }
141
142 // SDN c o n t r o l l e r
143 e l s e
144 {
145 // Route computation
146 m router−>route compute SDN (t f l i t −>ge t r ou t e ()) ;
147
148 // Send back to the node
149 in t back to node = m router−>route back (t f l i t −>ge t r ou t e ()) ;
150 grant outpor t (vc , back to node) ;
151 }
152 //∗∗
153
154 } e l s e {
155 a s s e r t (m vcs [vc]−>g e t s t a t e () == ACTIVE) ;
156 }
157
158 //∗∗
159
160 // Buf f e r the f l i t
161 m vcs [vc]−> i n s e r t F l i t (t f l i t) ;
162
163 in t vnet = vc/m vc per vnet ;
164 m num buf fer wr i tes [vnet]++;
165 m num buffer reads [vnet]++;
166
167 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
168 // changes by Soultana El l in idou−SDNoC

187

169
170 i f (vnet == 2)
171 s t a t e r a t e++;
172
173 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
174
175 Cycles p i p e s t a g e s = m router−>g e t p i p e s t a g e s () ;
176 i f (p i p e s t a g e s == 1) {
177 // 1−cy c l e route r
178 // F l i t goes f o r SA d i r e c t l y
179 t f l i t −>advance stage (SA , m router−>curCycle ()) ;
180 } e l s e {
181 a s s e r t (p i p e s t a g e s > 1) ;
182 // Router de lay i s modeled by making f l i t wait in bu f f e r f o r
183 // (p i p e s t a g e s c y c l e s − 1) c y c l e s be f o r e going f o r SA
184
185 Cycles wait t ime = p ip e s t a g e s − Cycles (1) ;
186 t f l i t −>advance stage (SA , m router−>curCycle () + wait t ime) ;
187
188 // Wakeup the route r in that cy c l e to perform SA
189 m router−>schedule wakeup (Cycles (wait t ime)) ;
190 }
191 }
192 }
193
194 // Send a c r e d i t back to upstream route r f o r t h i s VC.
195 // Cal led by SwitchAl locator when the f l i t in t h i s VC wins the Switch .
196 void
197 InputUnit : : i n c r ement c r ed i t (i n t in vc , bool f r e e s i g n a l , Cycles curTime)
198 {
199 Credit ∗ t c r e d i t = new Credit (in vc , f r e e s i g n a l , curTime) ;
200 creditQueue−>i n s e r t (t c r e d i t) ;
201 m cr ed i t l i nk−>scheduleEventAbsolute (m router−>clockEdge (Cycles (1))) ;
202 }
203
204
205 u in t32 t
206 InputUnit : : func t i ona lWr i t e (Packet ∗pkt)
207 {
208 u in t32 t num funct i ona l wr i t e s = 0 ;
209 f o r (i n t i =0; i < m num vcs ; i++) {
210 num funct i ona l wr i t e s += m vcs [i]−> func t i ona lWr i t e (pkt) ;
211 }
212
213 return num funct i ona l wr i t e s ;
214 }
215
216 void
217 InputUnit : : r e s e t S t a t s ()
218 {
219 f o r (i n t j = 0 ; j < m num buffer reads . s i z e () ; j++) {
220 m num buffer reads [j] = 0 ;
221 m num buf fer wr i tes [j] = 0 ;
222 }
223 s t a t e r a t e = 0 ;
224 }

Listing A.4: InputUnit.cc

1 #inc lude ”mem/ruby/network/ garnet2 .0/ OutputUnit . hh”
2
3 #inc lude ”base / s t l h e l p e r s . hh”
4 #inc lude ”debug/RubyNetwork . hh”
5 #inc lude ”mem/ruby/network/ garnet2 .0/ Credit . hh”
6 #inc lude ”mem/ruby/network/ garnet2 .0/ Router . hh”
7
8 us ing namespace std ;
9 us ing m5 : : s t l h e l p e r s : : d e l e t ePo i n t e r s ;

10
11 OutputUnit : : OutputUnit (i n t id , PortDi rec t ion d i r e c t i on , Router ∗ route r)
12 : Consumer (route r)
13 {
14 m id = id ;
15 m di r ec t i on = d i r e c t i o n ;
16 m router = route r ;
17 m num vcs = m router−>get num vcs () ;
18 m vc per vnet = m router−>g e t v c pe r vne t () ;
19 m out buf f e r = new f l i t B u f f e r () ;

188 APPENDIX A. GEM5 CODE

20
21 f o r (i n t i = 0 ; i < m num vcs ; i++) {
22 m outvc state . push back (new OutVcState (i , m router−>g e t n e t p t r ())) ;
23 }
24 }
25
26 OutputUnit : : ˜ OutputUnit ()
27 {
28 d e l e t e m out buf f e r ;
29 d e l e t ePo i n t e r s (m outvc state) ;
30 }
31
32 void
33 OutputUnit : : dec r ement c red i t (i n t out vc)
34 {
35 DPRINTF(RubyNetwork , ”Router %d OutputUnit %d decrementing c r e d i t f o r ”
36 ”outvc %d at time : %l l d \n” ,
37 m router−>g e t i d () , m id , out vc , m router−>curCycle ()) ;
38
39 m outvc state [out vc]−>decrement c red i t () ;
40 }
41
42 void
43 OutputUnit : : i n c r ement c r ed i t (i n t out vc)
44 {
45 DPRINTF(RubyNetwork , ”Router %d OutputUnit %d increment ing c r e d i t f o r ”
46 ”outvc %d at time : %l l d \n” ,
47 m router−>g e t i d () , m id , out vc , m router−>curCycle ()) ;
48
49 m outvc state [out vc]−> i n c r ement c r ed i t () ;
50 }
51
52 // Check i f the output VC (i . e . , input VC at next route r)
53 // has f r e e c r e d i t s (i . . e , bu f f e r s l o t s) .
54 // This i s t racked by OutVcState
55 bool
56 OutputUnit : : h a s c r e d i t (i n t out vc)
57 {
58 a s s e r t (m outvc state [out vc]−> i s I nS t a t e (ACTIVE , m router−>curCycle ())) ;
59 return m outvc state [out vc]−>ha s c r e d i t () ;
60 }
61
62
63 // Check i f the output port (i . e . , input port at next route r) has f r e e VCs .
64 bool
65 OutputUnit : : h a s f r e e v c (i n t vnet)
66 {
67 in t vc base = vnet∗m vc per vnet ;
68 f o r (i n t vc = vc base ; vc < vc base + m vc per vnet ; vc++) {
69 i f (i s v c i d l e (vc , m router−>curCycle ()))
70 return true ;
71 }
72
73 return f a l s e ;
74 }
75
76 // Assign a f r e e output VC to the winner o f Switch A l l o ca t i on
77 in t
78 OutputUnit : : s e l e c t f r e e v c (i n t vnet)
79 {
80 in t vc base = vnet∗m vc per vnet ;
81 f o r (i n t vc = vc base ; vc < vc base + m vc per vnet ; vc++) {
82 i f (i s v c i d l e (vc , m router−>curCycle ())) {
83 m outvc state [vc]−> s e tS t a t e (ACTIVE , m router−>curCycle ()) ;
84 return vc ;
85 }
86 }
87
88 return −1;
89 }
90
91
92 // changes by Soultana El l in idou−SDNoC
93 in t
94 OutputUnit : : g e t f r e e s l o t s i n (i n t vnet)
95 {
96 in t f r e e s l o t s i n = 0 ;
97 i n t vc base = vnet ∗ m vc per vnet ;
98 f o r (i n t vc = vc base ; vc < vc base + m vc per vnet ; vc++) {
99 i f (i s v c i d l e (vc , m router−>curCycle ())) {

189

100 f r e e s l o t s i n ++;
101 }
102 }
103 return f r e e s l o t s i n ;
104 }
105 //
106
107 /∗
108 ∗ The wakeup func t i on o f the OutputUnit reads the c r e d i t s i g n a l from the
109 ∗ downstream route r f o r the output VC (i . e . , input VC at downstream route r) .
110 ∗ I t increments the c r e d i t count in the appropr ia te output VC s ta t e .
111 ∗ I f the c r e d i t c a r r i e s i s f r e e s i g n a l as true ,
112 ∗ the output VC i s marked IDLE .
113 ∗/
114
115 void
116 OutputUnit : : wakeup ()
117 {
118 i f (m c r ed i t l i nk−>isReady (m router−>curCycle ())) {
119 Credit ∗ t c r e d i t = (Credit ∗) m c r ed i t l i nk−>consumeLink () ;
120 in c r ement c r ed i t (t c r e d i t−>ge t vc ()) ;
121
122 i f (t c r e d i t−> i s f r e e s i g n a l ())
123 {
124 s e t v c s t a t e (IDLE , t c r e d i t−>ge t vc () , m router−>curCycle ()) ;
125 }
126
127 d e l e t e t c r e d i t ;
128 }
129 }
130
131 f l i t B u f f e r ∗
132 OutputUnit : : getOutQueue ()
133 {
134 return m out buf f e r ;
135 }
136
137 void
138 OutputUnit : : s e t o u t l i n k (NetworkLink ∗ l i n k)
139 {
140 m out l ink = l i n k ;
141 }
142
143 void
144 OutputUnit : : s e t c r e d i t l i n k (CreditLink ∗ c r e d i t l i n k)
145 {
146 m c r ed i t l i n k = c r e d i t l i n k ;
147 }
148
149 u in t32 t
150 OutputUnit : : func t i ona lWr i t e (Packet ∗pkt)
151 {
152 return m out buf fer−>func t i ona lWr i t e (pkt) ;
153 }

Listing A.5: OutputUnit.cc

1 import math
2 import m5
3 from m5. ob j e c t s import ∗
4 from m5. d e f i n e s import buildEnv
5 from m5. u t i l import addToPath , f a t a l
6
7 de f d e f i n e op t i o n s (par se r) :
8 # By de fau l t , ruby uses the s imple t iming cpu
9 par se r . s e t d e f a u l t s (cpu type=”TimingSimpleCPU”)

10
11 par se r . add opt ion (”−−topology ” , type=” s t r i n g ” , d e f au l t=”Crossbar ” ,
12 help=”check c on f i g s / t opo l o g i e s f o r complete s e t ”)
13 par s e r . add opt ion (”−−mesh−rows” , type=” in t ” , d e f au l t =0,
14 help=” the number o f rows in the mesh topology ”)
15 par s e r . add opt ion (”−−network” , type=” cho i c e ” , d e f au l t=” s imple ” ,
16 cho i c e s =[’ s imple ’ , ’ garnet2 . 0 ’] ,
17 help=” ’ s imple ’ | ’ garnet2 . 0 ’ ”)
18 par s e r . add opt ion (”−−router−l a t ency ” , ac t i on=” s t o r e ” , type=” in t ” ,
19 d e f au l t =1,
20 help=”””number o f p i p e l i n e s t age s in the garnet route r .
21 Has to be >= 1.

190 APPENDIX A. GEM5 CODE

22 Can be over−r idden on a per route r ba s i s
23 in the topology f i l e . ”””)
24 par s e r . add opt ion (”−−l ink−l a t ency ” , ac t i on=” s t o r e ” , type=” in t ” , d e f au l t =1,
25 help=””” la tency o f each l i n k the s imple / garnet networks .
26 Has to be >= 1.
27 Can be over−r idden on a per l i n k ba s i s
28 in the topology f i l e . ”””)
29 par s e r . add opt ion (”−−l ink−width−b i t s ” , ac t i on=” s t o r e ” , type=” in t ” ,
30 d e f au l t =128 ,
31 help=”width in b i t s f o r a l l l i n k s i n s i d e garnet . ”)
32 par s e r . add opt ion (”−−vcs−per−vnet ” , ac t i on=” s t o r e ” , type=” in t ” , d e f au l t =4,
33 help=”””number o f v i r t u a l channe ls per v i r t u a l network
34 i n s i d e garnet network . ”””)
35 par s e r . add opt ion (”−−rout ing−algor i thm” , ac t i on=” s t o r e ” , type=” in t ” ,
36 d e f au l t =0,
37 help=””” rout ing algor i thm in network .
38 0 : weight−based tab l e
39 1 : XY (f o r Mesh . see garnet2 .0/ RoutingUnit . cc)
40 2 : Custom (see garnet2 .0/ RoutingUnit . cc ”””)
41 par s e r . add opt ion (”−−network−f au l t−model” , ac t i on=” s t o r e t r u e ” ,
42 d e f au l t=False ,
43 help=””” enable network f a u l t model :
44 see s r c /mem/ruby/network/ fau l t mode l /”””)
45 par s e r . add opt ion (”−−garnet−deadlock−th r e sho ld ” , ac t i on=” s t o r e ” ,
46 type=” in t ” , d e f au l t =50000 ,
47 help=”network−l e v e l deadlock thre sho ld . ”)
48
49
50 de f c reate network (opt ions , ruby) :
51
52 # Set the network c l a s s e s based on the command l i n e opt ions
53 i f opt ions . network == ”garnet2 . 0 ” :
54 NetworkClass = GarnetNetwork
55 IntL inkClass = GarnetIntLink
56 ExtLinkClass = GarnetExtLink
57 RouterClass = GarnetRouter
58 I n t e r f a c eC l a s s = GarnetNetworkInter face
59
60 e l s e :
61 NetworkClass = SimpleNetwork
62 IntL inkClass = SimpleIntLink
63 ExtLinkClass = SimpleExtLink
64 RouterClass = Switch
65 I n t e r f a c eC l a s s = None
66
67 # In s t an t i a t e the network ob j e c t
68 # so that the c o n t r o l l e r s can connect to i t .
69 # Adil Layach − sdnc & n e t i f s c
70 network = NetworkClass (ruby system = ruby , topology = opt ions . topology ,
71 rou t e r s = [] , e x t l i n k s = [] , i n t l i n k s = [] , n e t i f s = [] , sdnc =

[] , NI c = []) #, i n t l i n k s s d n = [])
72 return (network , IntLinkClass , ExtLinkClass , RouterClass , I n t e r f a c eC l a s s)
73
74 de f i n i t n e twork (opt ions , network , I n t e r f a c eC l a s s) :
75
76 i f opt ions . network == ”garnet2 . 0 ” :
77 network . num rows = opt ions . mesh rows
78 network . v c s pe r vne t = opt ions . v c s pe r vne t
79 network . n i f l i t s i z e = opt ions . l i n k w i d t h b i t s / 8
80 network . r ou t ing a l go r i thm = opt ions . r ou t ing a l go r i thm
81 network . ga rne t dead l o ck th r e sho ld = opt ions . ga rne t dead l o ck th r e sho ld
82
83 i f opt ions . network == ” simple ” :
84 network . s e t up bu f f e r s ()
85
86 i f I n t e r f a c eC l a s s != None :
87 n e t i f s = [I n t e r f a c eC l a s s (id=i) \
88 f o r (i , n) in enumerate (network . e x t l i n k s)]
89 network . n e t i f s = n e t i f s
90
91 # changes by Soultana El l in idou−SDNoC
92 NIc = [I n t e r f a c eC l a s s (id=69)]
93 network . NI c = NIc
94 #
95
96 i f opt ions . network fau l t mode l :
97 a s s e r t (opt ions . network == ”garnet2 . 0 ”)
98 network . enab l e f au l t mode l = True
99 network . f au l t mode l = FaultModel ()

191

Listing A.6: Network.py

1 from m5. params import ∗
2 from m5. ob j e c t s import ∗
3
4 from BaseTopology import SimpleTopology
5
6 # Creates a g ene r i c Mesh assuming an equal number o f cache
7 # and d i r e c t o r y c o n t r o l l e r s .
8 # XY rout ing i s en fo rced (us ing l i n k weights)
9 # to guarantee deadlock freedom .

10
11 c l a s s Mesh XY(SimpleTopology) :
12 d e s c r i p t i o n=’Mesh XY ’
13
14 de f i n i t (s e l f , c o n t r o l l e r s) :
15 s e l f . nodes = c o n t r o l l e r s
16
17 # Makes a g ene r i c mesh
18 # assuming an equal number o f cache and d i r e c t o r y c n t r l s
19
20 de f makeTopology (s e l f , opt ions , network , IntLink , ExtLink , Router) :
21 nodes = s e l f . nodes
22
23 num routers = opt ions . num cpus
24 num rows = opt ions . mesh rows
25
26 # de f au l t va lues f o r l i n k la t ency and route r l a t ency .
27 # Can be over−r idden on a per l i n k / route r ba s i s
28 l i n k l a t e n c y = opt ions . l i n k l a t e n c y # used by s imple and garnet
29 r ou t e r l a t en cy = opt ions . r ou t e r l a t en cy # only used by garnet
30
31 # There must be an evenly d i v i s i b l e number o f c n t r l s to r ou t e r s
32 # Also , obv ious ly the number or rows must be <= the number o f r ou t e r s
33 c n t r l s p e r r o u t e r , remainder = divmod (l en (nodes) , num routers)
34 a s s e r t (num rows > 0 and num rows <= num routers)
35 num columns = in t (num routers / num rows)
36 a s s e r t (num columns ∗ num rows == num routers)
37
38 # Create the r ou t e r s in the mesh
39 rou t e r s = [Router (r o u t e r i d=i , l a t ency = rou t e r l a t en cy) \
40 f o r i in range (num routers)]
41 network . r ou t e r s = rou t e r s
42
43 # l i nk counter to s e t unique l i n k id s
44 l i nk count = 0
45
46 # Add a l l but the remainder nodes to the l i s t o f nodes to be uni formly
47 # d i s t r i bu t ed ac ro s s the network .
48 network nodes = []
49 remainder nodes = []
50 f o r node index in xrange (l en (nodes)) :
51 i f node index < (l en (nodes) − remainder) :
52 network nodes . append (nodes [node index])
53 e l s e :
54 remainder nodes . append (nodes [node index])
55
56 # Connect each node to the appropr ia te route r
57 e x t l i n k s = []
58 f o r (i , n) in enumerate (network nodes) :
59 c n t r l l e v e l , r o u t e r i d = divmod (i , num routers)
60 a s s e r t (c n t r l l e v e l < c n t r l s p e r r o u t e r)
61 e x t l i n k s . append (ExtLink (l i n k i d=l ink count , ext node=n ,
62 int node=rou t e r s [r o u t e r i d] ,
63 la t ency = l i n k l a t e n c y))
64 l i nk coun t += 1
65
66 # Connect the remainding nodes to route r 0 . These should only be
67 # DMA nodes .
68 f o r (i , node) in enumerate (remainder nodes) :
69 a s s e r t (node . type == ’DMA Controller ’)
70 a s s e r t (i < remainder)
71 e x t l i n k s . append (ExtLink (l i n k i d=l ink count , ext node=node ,
72 int node=rou t e r s [0] ,
73 la t ency = l i n k l a t e n c y))
74 l i nk coun t += 1
75

192 APPENDIX A. GEM5 CODE

76 network . e x t l i n k s = e x t l i n k s
77
78 # Create the mesh l i n k s .
79 i n t l i n k s = []
80
81 # East output to West input l i n k s (weight = 1)
82 f o r row in xrange (num rows) :
83 f o r c o l in xrange (num columns) :
84 i f (c o l + 1 < num columns) :
85 ea s t ou t = co l + (row ∗ num columns)
86 wes t in = (co l + 1) + (row ∗ num columns)
87 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
88 s rc node=rou t e r s [e a s t ou t] ,
89 dst node=rou t e r s [wes t in] ,
90 s r c ou tpo r t=”East” ,
91 d s t i npo r t=”West” ,
92 la t ency = l i nk l a t en cy ,
93 weight=1))
94 l i nk count += 1
95
96 # West output to East input l i n k s (weight = 1)
97 f o r row in xrange (num rows) :
98 f o r c o l in xrange (num columns) :
99 i f (c o l + 1 < num columns) :

100 e a s t i n = co l + (row ∗ num columns)
101 west out = (co l + 1) + (row ∗ num columns)
102 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
103 s rc node=rou t e r s [west out] ,
104 dst node=rou t e r s [e a s t i n] ,
105 s r c ou tpo r t=”West” ,
106 d s t i npo r t=”East” ,
107 la t ency = l i nk l a t en cy ,
108 weight=1))
109 l i nk count += 1
110
111 # North output to South input l i n k s (weight = 2)
112 f o r c o l in xrange (num columns) :
113 f o r row in xrange (num rows) :
114 i f (row + 1 < num rows) :
115 north out = co l + (row ∗ num columns)
116 south in = co l + ((row + 1) ∗ num columns)
117 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
118 s rc node=rou t e r s [north out] ,
119 dst node=rou t e r s [s outh in] ,
120 s r c ou tpo r t=”North” ,
121 d s t i npo r t=”South” ,
122 la t ency = l i nk l a t en cy ,
123 weight=2))
124 l i nk count += 1
125
126 # South output to North input l i n k s (weight = 2)
127 f o r c o l in xrange (num columns) :
128 f o r row in xrange (num rows) :
129 i f (row + 1 < num rows) :
130 nor th in = co l + (row ∗ num columns)
131 south out = co l + ((row + 1) ∗ num columns)
132 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
133 s rc node=rou t e r s [south out] ,
134 dst node=rou t e r s [no r th in] ,
135 s r c ou tpo r t=”South” ,
136 d s t i npo r t=”North” ,
137 la t ency = l i nk l a t en cy ,
138 weight=2))
139 l i nk count += 1
140
141 #network . i n t l i n k s = i n t l i n k s
142
143 ####################################””
144 #changes by Soultana El l in idou−SDNoC
145
146 # Create the c o n t r o l l e r
147 sdnc = [Router (r o u t e r i d=num routers , l a t ency = rou t e r l a t en cy)]
148 network . sdnc = sdnc
149
150 # Create the l i n k s to the c o n t r o l l e r
151 # i n t l i n k s s d n = []
152 f o r node in xrange (num routers) :
153 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
154 s rc node=sdnc [0] ,
155 dst node=rou t e r s [node] ,

193

156 s r c ou tpo r t=” to node s r c ” ,
157 d s t i npo r t=” to node ds t ” ,
158 la t ency = l i nk l a t en cy ,
159 weight=1))
160 l i nk coun t += 1
161
162 f o r node in xrange (num routers) :
163 i n t l i n k s . append (IntLink (l i n k i d=l ink count ,
164 s rc node=rou t e r s [node] ,
165 dst node=sdnc [0] ,
166 s r c ou tpo r t=” t o sdn s r c ” ,
167 d s t i npo r t=” to sdn ds t ” ,
168 la t ency = l i nk l a t en cy ,
169 weight=1))
170 l i nk coun t += 1
171
172 network . i n t l i n k s = i n t l i n k s
173 ###
174
175 pr in t (”number o f i n t l i n k s : ” , l en (i n t l i n k s))
176 pr in t (”number o f ext l i n k s : ” , l en (e x t l i n k s))

Listing A.7: Mesh XY.py

Bibliography

[Abd-El-Malek et al., 2005] Abd-El-Malek, M., Ganger, G. R., Goodson,
G. R., Reiter, M. K., and Wylie, J. J. (2005). Fault-scalable byzan-
tine fault-tolerant services. ACM SIGOPS Operating Systems Review,
39(5):59–74. ACM New York, NY, USA.

[Agarwal et al., 2009] Agarwal, N., Krishna, T., Peh, L.-S., and Jha, N. K.
(2009). Garnet: A detailed on-chip network model inside a full-system
simulator. In 2009 IEEE international symposium on performance anal-
ysis of systems and software, pages 33–42. IEEE.

[Al-Badi et al., 2009] Al-Badi, R., Al-Riyami, M., and Alzeidi, N. (2009).
A parameterized noc simulator using omnet++. In 2009 International
Conference on Ultra Modern Telecommunications & Workshops, pages
1–7. IEEE.

[Ali et al., 2005] Ali, M., Welzl, M., and Hellebrand, S. (2005). A dynamic
routing mechanism for network on chip. In 2005 NORCHIP, pages 70–73.
IEEE.

[Ancajas et al., 2014] Ancajas, D. M., Chakraborty, K., and Roy, S. (2014).
Fort-nocs: Mitigating the threat of a compromised noc. In Proceedings
of the 51st Annual Design Automation Conference, pages 1–6. ACM.

[Arjomand and Sarbazi-Azad, 2008] Arjomand, M. and Sarbazi-Azad, H.
(2008). Performance evaluation of butterfly on-chip network for mpsocs.
In 2008 International SoC Design Conference, volume 1, pages I–296.
IEEE.

[Arunkumar et al., 2017] Arunkumar, A., Bolotin, E., Cho, B., Milic, U.,
Ebrahimi, E., Villa, O., Jaleel, A., Wu, C.-J., and Nellans, D. (2017).
Mcm-gpu: Multi-chip-module gpus for continued performance scalability.
ACM SIGARCH Computer Architecture News, 45(2):320–332. ACM.

195

196 BIBLIOGRAPHY

[Atzori et al., 2010] Atzori, L., Iera, A., and Morabito, G. (2010). The
internet of things: A survey. Computer networks, 54(15):2787–2805. El-
sevier.

[Bahn and Bagherzadeh, 2008] Bahn, J. H. and Bagherzadeh, N. (2008). A
generic traffic model for on-chip interconnection networks. Network on
Chip Architectures, page 22.

[Benini and De Micheli, 2002] Benini, L. and De Micheli, G. (2002). Net-
works on chips: A new soc paradigm. computer, 35(1):70–78. IEEE.

[Benton et al., 2013] Benton, K., Camp, L. J., and Small, C. (2013). Open-
flow vulnerability assessment. In Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking, pages
151–152.

[Berestizshevsky et al., 2017] Berestizshevsky, K., Even, G., Fais, Y., and
Ostrometzky, J. (2017). SDNoC: Software defined network on a chip.
Microprocessors and Microsystems, 50:138–153. Elsevier.

[Bertozzi and Benini, 2004] Bertozzi, D. and Benini, L. (2004). Xpipes: A
network-on-chip architecture for gigascale systems-on-chip. IEEE Cir-
cuits and Systems magazine, 4(2):18–31. IEEE.

[Beyne and Manna, 2013] Beyne, E. and Manna, A. (2013). High-
bandwidth chip-to-chip interfaces: 3d stacking, interposers and optical
i/o. In IMEC technology forum, Taiwan.

[Bhunia and Tehranipoor, 2018] Bhunia, S. and Tehranipoor, M. (2018).
The Hardware Trojan War. Springer.

[Binkert, 2020] Binkert, N. (2013 (accessed July 5, 2020)). gem5 Simulator:
Ruby Network Test. http://www.m5sim.org/Ruby Network Test.

[Binkert et al., 2011] Binkert, N., Beckmann, B., Black, G., Reinhardt,
S. K., Saidi, A., Basu, A., Hestness, J., Hower, D. R., Krishna, T., Sar-
dashti, S., et al. (2011). The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7. ACM.

[Biswas et al., 2015] Biswas, A. K., Nandy, S., and Narayan, R. (2015).
Router attack toward noc-enabled mpsoc and monitoring countermea-
sures against such threat. Circuits, Systems, and Signal Processing,
34(10):3241–3290. Springer.

http://www.m5sim.org/Ruby_Network_Test

BIBLIOGRAPHY 197

[Bjerregaard and Mahadevan, 2006] Bjerregaard, T. and Mahadevan, S.
(2006). A survey of research and practices of network-on-chip. ACM
Computing Surveys (CSUR), 38(1):1–es. ACM New York, NY, USA.

[Bjerregaard and Sparso, 2005a] Bjerregaard, T. and Sparso, J. (2005a).
A router architecture for connection-oriented service guarantees in the
mango clockless network-on-chip. In Design, Automation and Test in
Europe, pages 1226–1231. IEEE.

[Bjerregaard and Sparso, 2005b] Bjerregaard, T. and Sparso, J. (2005b).
Scheduling discipline for latency and bandwidth guarantees in asyn-
chronous network-on-chip. In 11th IEEE International Symposium on
Asynchronous Circuits and Systems, pages 34–43. IEEE.

[Bjerregaard and Sparsø, 2006] Bjerregaard, T. and Sparsø, J. (2006). Im-
plementation of guaranteed services in the mango clockless network-on-
chip. IEEE Proceedings-Computers and Digital Techniques, 153(4):217–
229. IET.

[Bland and Altman, 1996] Bland, J. M. and Altman, D. G. (1996). Statis-
tics notes: measurement error. Bmj, 312(7047):1654. British Medical
Journal Publishing Group.

[Blitzer et al., 2007] Blitzer, J., Dredze, M., and Pereira, F. (2007). Bi-
ographies, bollywood, boom-boxes and blenders: Domain adaptation for
sentiment classification. In Proceedings of the 45th annual meeting of the
association of computational linguistics, pages 440–447.

[Bolotin et al., 2004] Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A.
(2004). Qnoc: Qos architecture and design process for network on chip.
Journal of systems architecture, 50(2-3):105–128. Elsevier.

[Boneh and Franklin, 2001] Boneh, D. and Franklin, M. (2001). Identity-
based encryption from the weil pairing. In Annual international cryptol-
ogy conference, pages 213–229. Springer.

[Boraten and Kodi, 2016] Boraten, T. and Kodi, A. K. (2016). Mitigation
of denial of service attack with hardware trojans in noc architectures. In
2016 IEEE international parallel and distributed processing symposium
(IPDPS), pages 1091–1100. IEEE.

[Bousdras et al., 2018] Bousdras, G., Quitin, F., and Milojevic, D. (2018).
Template architectures for highly scalable, many-core heterogeneous soc:
Could-of-chips. In 2018 13th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–7. IEEE.

198 BIBLIOGRAPHY

[Brooks and Yang, 2015] Brooks, M. and Yang, B. (2015). A man-in-the-
middle attack against opendaylight sdn controller. In Proceedings of the
4th Annual ACM Conference on Research in Information Technology,
pages 45–49. ACM.

[Cadence, 2018] Cadence (2018). Imec and Cadence Tape Out Industry’s
First 3nm Test Chip, Press Release. https://www.cadence.com/content/
cadence-www/global/en US/home/company/newsroom/press-releases/
pr/2018/imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.
html. Accessed: April 2019.

[Castro et al., 1999] Castro, M., Liskov, B., et al. (1999). Practical byzan-
tine fault tolerance. In OSDI, volume 99, pages 173–186.

[Catania et al., 2015] Catania, V., Mineo, A., Monteleone, S., Palesi, M.,
and Patti, D. (2015). Noxim: An open, extensible and cycle-accurate
network on chip simulator. In Application-specific Systems, Architectures
and Processors (ASAP), 2015 IEEE 26th International Conference on,
pages 162–163. IEEE.

[Chen et al., 2011] Chen, J., Li, C., and Gillard, P. (2011). Network-on-
chip (noc) topologies and performance: a review. In Proceedings of
the 2011 Newfoundland Electrical and Computer Engineering Conference
(NECEC), pages 1–6.

[Chiu, 2000] Chiu, G.-M. (2000). The odd-even turn model for adap-
tive routing. IEEE Transactions on parallel and distributed systems,
11(7):729–738. IEEE.

[Chun et al., 2007] Chun, B.-G., Maniatis, P., Shenker, S., and Kubiatow-
icz, J. (2007). Attested append-only memory: Making adversaries stick
to their word. ACM SIGOPS Operating Systems Review, 41(6):189–204.
ACM New York, NY, USA.

[Cong et al., 2014] Cong, L., Wen, W., and Zhiying, W. (2014). A con-
figurable, programmable and software-defined network on chip. In Ad-
vanced Research and Technology in Industry Applications (WARTIA),
2014 IEEE Workshop on, pages 813–816. IEEE.

[Constantinescu, 2003] Constantinescu, C. (2003). Trends and challenges
in vlsi circuit reliability. IEEE micro, 23(4):14–19. IEEE.

[Cotret et al., 2016] Cotret, P., Gogniat, G., and Flórez, M. J. S. (2016).
Protection of heterogeneous architectures on fpgas: An approach based
on hardware firewalls. Microprocessors and Microsystems, 42:127–141.
Elsevier.

https://www.cadence.com/content/cadence-www/global/en_US/home/company/newsroom/press-releases/pr/2018/imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.html
https://www.cadence.com/content/cadence-www/global/en_US/home/company/newsroom/press-releases/pr/2018/imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.html
https://www.cadence.com/content/cadence-www/global/en_US/home/company/newsroom/press-releases/pr/2018/imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.html
https://www.cadence.com/content/cadence-www/global/en_US/home/company/newsroom/press-releases/pr/2018/imec-and-cadence-tape-out-industry-s-first-3nm-test-chip.html

BIBLIOGRAPHY 199

[Cowling et al., 2006] Cowling, J., Myers, D., Liskov, B., Rodrigues, R.,
and Shrira, L. (2006). Hq replication: A hybrid quorum protocol for
byzantine fault tolerance. In Proc. of the 7th symposium on Operating
systems design and implementation, pages 177–190.

[Dall’Osso et al., 2012] Dall’Osso, M., Biccari, G., Giovannini, L., Bertozzi,
D., and Benini, L. (2012). Xpipes: a latency insensitive parameterized
network-on-chip architecture for multi-processor socs. In 2012 IEEE
30th International Conference on Computer Design (ICCD), pages 45–
48. IEEE.

[Dally and Towles, 2004] Dally, W. J. and Towles, B. P. (2004). Principles
and practices of interconnection networks. Elsevier.

[Daoud, 2018] Daoud, L. (2018). Secure network-on-chip architectures for
mpsoc: Overview and challenges. In 2018 IEEE 61st International Mid-
west Symposium on Circuits and Systems (MWSCAS), pages 542–543.
IEEE.

[Daoud and Rafla, 2018] Daoud, L. and Rafla, N. (2018). Routing aware
and runtime detection for infected network-on-chip routers. In 2018 IEEE
61st International Midwest Symposium on Circuits and Systems (MWS-
CAS), pages 775–778. IEEE.

[Daoud and Rafla, 2019a] Daoud, L. and Rafla, N. (2019a). Analysis of
black hole router attack in network-on-chip. In 2019 IEEE 62nd In-
ternational Midwest Symposium on Circuits and Systems (MWSCAS),
pages 69–72. IEEE.

[Daoud and Rafla, 2019b] Daoud, L. and Rafla, N. (2019b). Detection and
prevention protocol for black hole attack in network-on-chip. In Proceed-
ings of the 13th IEEE/ACM International Symposium on Networks-on-
Chip, page 22. ACM.

[Diguet et al., 2007] Diguet, J.-P., Evain, S., Vaslin, R., Gogniat, G., and
Juin, E. (2007). Noc-centric security of reconfigurable soc. In First
International Symposium on Networks-on-Chip (NOCS’07), pages 223–
232. IEEE.

[Dimitrakopoulos et al., 2015] Dimitrakopoulos, G., Psarras, A., and Sei-
tanidis, I. (2015). Microarchitecture of Network-on-chip Routers, volume
1025. Springer.

[Dobkin et al., 2009] Dobkin, R. R., Ginosar, R., and Kolodny, A. (2009).
Qnoc asynchronous router. Integration, 42(2):103–115. Elsevier.

200 BIBLIOGRAPHY

[Dover, 2013] Dover, J. M. (2013). A denial of service attack against the
open floodlight sdn controller. Dover Networks, Tech. Rep.

[Dumitras et al., 2003] Dumitras, T., Kerner, S., and Marculescu, R.
(2003). Towards on-chip fault-tolerant communication. In Proc. of the
ASP-DAC Asia and South Pacific Design Automation Conference, 2003.,
pages 225–232. IEEE.

[Dworkin, 2007] Dworkin, M. J. (2007). Sp 800-38d. recommendation for
block cipher modes of operation: Galois/counter mode (gcm) and gmac.
National Institute of Standards & Technology.

[Eldewahi et al., 2018] Eldewahi, A. E., Hassan, A., Elbadawi, K., and
Barry, B. I. (2018). The analysis of mate attack in sdn based on stride
model. In International Conference on Emerging Internetworking, Data
& Web Technologies, pages 901–910. Springer.

[Ellinidou et al., 2018] Ellinidou, S., Sharma, G., Dricot, J.-M., and
Markowitch, O. (2018). A SDN solution for system-on-chip world. In
Software Defined Systems (SDS), 2018 Fifth International Conference
on, pages 14–19. IEEE.

[Ellinidou et al., 2019] Ellinidou, S., Sharma, G., Kontogiannis, S.,
Markowitch, O., Dricot, J.-M., and Gogniat, G. (2019). Microlet: A
new sdnoc-based communication protocol for chiplet-based systems. In
2019 22nd Euromicro Conference on Digital System Design (DSD), pages
61–68. IEEE.

[Ellinidou et al., 2020a] Ellinidou, S., Sharma, G., Markowitch, O., Dricot,
J.-M., and Gogniat, G. (2020a). Towards noc protection of ht-greyhole
attack. In International Conference on Algorithms and Architectures for
Parallel Processing, pages 309–323. Springer.

[Ellinidou et al., 2020b] Ellinidou, S., Sharma, G., Markowitch, O., Gog-
niat, G., and Dricot, J.-M. (2020b). A novel network-on-chip security
algorithm for tolerating byzantine faults. In 2020 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pages 1–6. IEEE.

[Fan et al., 2012] Fan, G., Yu, H., Chen, L., and Liu, D. (2012). Model
based byzantine fault detection technique for cloud computing. In
2012 IEEE Asia-Pacific Services Computing Conference, pages 249–256.
IEEE.

BIBLIOGRAPHY 201

[Fathi and Kia, 2017] Fathi, A. and Kia, K. (2017). A centralized controller
as an approach in designing noc. International Journal of Modern Edu-
cation and Computer Science, 9(1):60. Modern Education and Computer
Science Press.

[Fawcett, 2006] Fawcett, T. (2006). An introduction to roc analysis. Pat-
tern recognition letters, 27(8):861–874. Elsevier.

[Fernandes et al., 2016] Fernandes, R., Marcon, C., Cataldo, R., Silveira,
J., Sigl, G., and Sepúlveda, J. (2016). A security aware routing ap-
proach for noc-based mpsocs. In Integrated Circuits and Systems Design
(SBCCI), 2016 29th Symposium on, pages 1–6. IEEE.

[Fernandes et al., 2015] Fernandes, R., Oliveira, B., Sepúlveda, J., Marcon,
C., and Moraes, F. G. (2015). A non-intrusive and reconfigurable access
control to secure nocs. In Electronics, Circuits, and Systems (ICECS),
2015 IEEE International Conference on, pages 316–319. IEEE.

[Fiorin et al., 2008] Fiorin, L., Palermo, G., Lukovic, S., Catalano, V., and
Silvano, C. (2008). Secure memory accesses on networks-on-chip. IEEE
Transactions on Computers, 57(9):1216–1229. IEEE.

[Fiorin et al., 2007] Fiorin, L., Silvano, C., and Sami, M. (2007). Security
aspects in networks-on-chips: Overview and proposals for secure imple-
mentations. In Digital System Design Architectures, Methods and Tools,
2007. DSD 2007. 10th Euromicro Conference on, pages 539–542. IEEE.

[Flynn, 1997] Flynn, D. (1997). Amba: enabling reusable on-chip designs.
IEEE micro, 17(4):20–27. IEEE.

[Force, 2005] Force, T. (2005). High performance microchip supply. Annual
Report. Defense Technical Information Center (DTIC), USA.

[Foundation, 2015] Foundation, O. N. (2015). Openflow switch specifica-
tion version 1.5. 1 (protocol version 0x06).

[Frank, 2010] Frank, A. (2010). Uci machine learning repository. irvine,
ca: University of california, school of information and computer science.
http://archive. ics. uci. edu/ml.

[Frey and Yu, 2015] Frey, J. and Yu, Q. (2015). Exploiting state obfus-
cation to detect hardware trojans in noc network interfaces. In 2015
IEEE 58th International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 1–4. IEEE.

202 BIBLIOGRAPHY

[Glass and Ni, 1992] Glass, C. J. and Ni, L. M. (1992). The turn model
for adaptive routing. ACM SIGARCH Computer Architecture News,
20(2):278–287. ACM.

[Goossens et al., 2005] Goossens, K., Dielissen, J., and Radulescu, A.
(2005). Æthereal network on chip: concepts, architectures, and imple-
mentations. IEEE Design & Test of Computers, 22(5):414–421. IEEE.

[Gorman, 2012] Gorman, C. (2012). Counterfeit chips on the rise. IEEE
Spectrum, 49(6). IEEE.

[Grammatikakis et al., 2014] Grammatikakis, M. D., Papadimitriou, K.,
Petrakis, P., Papagrigoriou, A., Kornaros, G., Christoforakis, I., and
Coppola, M. (2014). Security effectiveness and a hardware firewall for
mpsocs. In High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th
Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 2014
IEEE Intl Conf on, pages 1032–1039. IEEE.

[Grecu et al., 2008] Grecu, C., Ivanov, A., Saleh, R., Rusu, C., Anghel, L.,
Pande, P. P., and Nuca, V. (2008). A flexible network-on-chip simula-
tor for early design space exploration. In 2008 1st Microsystems and
Nanoelectronics Research Conference, pages 33–36. IEEE.

[Hegedûs et al., 2005] Hegedûs, A., Maggio, G. M., and Kocarev, L. (2005).
A ns-2 simulator utilizing chaotic maps for network-on-chip traffic anal-
ysis. In 2005 IEEE International Symposium on Circuits and Systems,
pages 3375–3378. IEEE.

[Hernan et al., 2006] Hernan, S., Lambert, S., Ostwald, T., and Shostack,
A. (2006). Threat modeling-uncover security design flaws using the stride
approach. MSDN Magazine-Louisville, pages 68–75. San Francisco, CA:
CMP Media Inc., c2000-.

[Hilbrich and van Kampenhout, 2010] Hilbrich, R. and van Kampenhout,
R. (2010). Dynamic reconfiguration in noc-based mpsocs in the avionics
domain. In Proceedings of the 3rd International Workshop on Multicore
Software Engineering, pages 56–57.

[Hong et al., 2015] Hong, S., Xu, L., Wang, H., and Gu, G. (2015). Poi-
soning network visibility in software-defined networks: New attacks and
countermeasures. In NDSS, volume 15, pages 8–11.

[Hoskote et al., 2007] Hoskote, Y., Vangal, S., Singh, A., Borkar, N., and
Borkar, S. (2007). A 5-ghz mesh interconnect for a teraflops processor.
IEEE Micro, 27(5):51–61. IEEE.

BIBLIOGRAPHY 203

[Howard et al., 2010] Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Fi-
nan, D., Ruhl, G., Jenkins, D., Wilson, H., Borkar, N., Schrom, G.,
et al. (2010). A 48-core ia-32 message-passing processor with dvfs in
45nm cmos. In 2010 IEEE International Solid-State Circuits Conference-
(ISSCC), pages 108–109. IEEE.

[Hu et al., 2014] Hu, F., Hao, Q., and Bao, K. (2014). A survey on software-
defined network and openflow: From concept to implementation. IEEE
Communications Surveys & Tutorials, 16(4):2181–2206. IEEE.

[Hu and Marculescu, 2004] Hu, J. and Marculescu, R. (2004). Dyad: smart
routing for networks-on-chip. In Proceedings of the 41st annual Design
Automation Conference, pages 260–263. ACM.

[Hu et al., 2015] Hu, Z., Wang, M., Yan, X., Yin, Y., and Luo, Z. (2015). A
comprehensive security architecture for sdn. In 2015 18th International
Conference on Intelligence in Next Generation Networks, pages 30–37.
IEEE.

[Hubner et al., 2005] Hubner, M., Paulsson, K., and Becker, J. (2005). Par-
allel and flexible multiprocessor system-on-chip for adaptive automotive
applications based on xilinx microblaze soft-cores. In 19th IEEE In-
ternational Parallel and Distributed Processing Symposium, pages 6–pp.
IEEE.

[Hussain and Guo, 2017] Hussain, M. and Guo, H. (2017). Packet leak
detection on hardware-trojan infected nocs for mpsoc systems. In Pro-
ceedings of the 2017 International Conference on Cryptography, Security
and Privacy, pages 85–90. ACM.

[Intel, 2017] Intel (2017). “New Intel Core Processor Combines Highper-
formance CPU with Custom Discrete Graphics From AMD to Enable
Sleeker, Thinner Devices,”.

[Issariyakul and Hossain, 2009] Issariyakul, T. and Hossain, E. (2009). In-
troduction to network simulator 2 (ns2). In Introduction to network
simulator NS2, pages 1–18. Springer.

[Iyer, 2016] Iyer, S. S. (2016). Heterogeneous integration for performance
and scaling. IEEE Transactions on Components, Packaging and Manu-
facturing Technology, 6(7):973–982. IEEE.

[Jain et al., 2007] Jain, L., Al-Hashimi, B., Gaur, M., Laxmi, V., and
Narayanan, A. (2007). Nirgam: a simulator for noc interconnect rout-
ing and application modeling. In Design, automation and test in Europe
conference, pages 16–20. IEEE.

204 BIBLIOGRAPHY

[Jerger et al., 2017] Jerger, N. E., Krishna, T., and Peh, L.-S. (2017). On-
chip networks. Synthesis Lectures on Computer Architecture, 12(3):1–
210. Morgan & Claypool Publishers.

[Jiang et al., 2013] Jiang, N., Becker, D. U., Michelogiannakis, G., Balfour,
J., Towles, B., Shaw, D. E., Kim, J., and Dally, W. J. (2013). A detailed
and flexible cycle-accurate network-on-chip simulator. In 2013 IEEE in-
ternational symposium on performance analysis of systems and software
(ISPASS), pages 86–96. IEEE.

[JS et al., 2015] JS, R., Ancajas, D. M., Chakraborty, K., and Roy, S.
(2015). Runtime detection of a bandwidth denial attack from a rogue
network-on-chip. In Proceedings of the 9th International Symposium on
Networks-on-Chip, page 8. ACM.

[Kannan et al., 2015] Kannan, A., Jerger, N. E., and Loh, G. H. (2015).
Enabling interposer-based disintegration of multi-core processors. In
2015 48th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 546–558. IEEE.

[Kermani and Kleinrock, 1979] Kermani, P. and Kleinrock, L. (1979). Vir-
tual cut-through: A new computer communication switching technique.
Computer Networks (1976), 3(4):267–286. Elsevier.

[Kim et al., 2005] Kim, J., Park, D., Theocharides, T., Vijaykrishnan, N.,
and Das, C. R. (2005). A low latency router supporting adaptivity for on-
chip interconnects. In Proceedings. 42nd Design Automation Conference,
2005., pages 559–564. IEEE.

[Klöti et al., 2013] Klöti, R., Kotronis, V., and Smith, P. (2013). Openflow:
A security analysis. In 2013 21st IEEE International Conference on
Network Protocols (ICNP), pages 1–6. IEEE.

[Kocher et al., 2019] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss,
D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T., et al.
(2019). Spectre attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19. IEEE.

[Kotla et al., 2010] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., and
Wong, E. (2010). Zyzzyva: Speculative byzantine fault tolerance. ACM
Transactions on Computer Systems (TOCS), 27(4):1–39. ACM New
York, NY, USA.

[Krishnamurthy et al., 2014] Krishnamurthy, A., Chandrabose, S. P., and
Gember-Jacobson, A. (2014). Pratyaastha: an efficient elastic distributed

BIBLIOGRAPHY 205

sdn control plane. In Proceedings of the third workshop on Hot topics in
software defined networking, pages 133–138.

[Kundu and Chattopadhyay, 2018] Kundu, S. and Chattopadhyay, S.
(2018). Network-on-chip: the next generation of system-on-chip inte-
gration. CRC press.

[LAMPORT et al., 1982] LAMPORT, L., SHOSTAK, R., and PEASE, M.
(1982). The byzantine generals problem. ACM Transactions on Pro-
gramming Languages and Systems, 4(3):382–401.

[Lantz et al., 2010] Lantz, B., Heller, B., and McKeown, N. (2010). A
network in a laptop: rapid prototyping for software-defined networks.
In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, pages 1–6.

[Li et al., 2016] Li, W., Meng, W., and Kwok, L. F. (2016). A survey on
openflow-based software defined networks: Security challenges and coun-
termeasures. Journal of Network and Computer Applications, 68:126–
139. Elsevier.

[Liang et al., 2000] Liang, J., Swaminathan, S., and Tessier, R. (2000).
asoc: A scalable, single-chip communications architecture. In Proceedings
2000 International Conference on Parallel Architectures and Compilation
Techniques (Cat. No. PR00622), pages 37–46. IEEE.

[Lipp et al., 2018] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas,
W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M.
(2018). Meltdown. arXiv preprint arXiv:1801.01207.

[Lu et al., 2005] Lu, Z., Thid, R., Millberg, M., Nilsson, E., and Jantsch,
A. (2005). Nnse: Nostrum network-on-chip simulation environment. In
Swedish system-on-chip conference.

[Lynn, 2006] Lynn, B. (2006). Pbc library manual 0.5. 11.

[Ma et al., 2014] Ma, S., Huang, L., Lai, M., and Shi, W. (2014). Networks-
on-chip: From Implementations to Programming Paradigms. Morgan
Kaufmann.

[Malekpour et al., 2017] Malekpour, A., Ragel, R., Ignjatovic, A., and
Parameswaran, S. (2017). Trojanguard: Simple and effective hardware
trojan mitigation techniques for pipelined mpsocs. In Proceedings of the
54th Annual Design Automation Conference 2017, page 19. ACM.

206 BIBLIOGRAPHY

[Martins and Guyennet, 2010] Martins, D. and Guyennet, H. (2010). Wire-
less sensor network attacks and security mechanisms: A short survey. In
2010 13th International Conference on Network-Based Information Sys-
tems, pages 313–320. IEEE.

[McKeown et al., 2008] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner, J.
(2008). OpenFlow: enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review, 38(2):69–74. ACM.

[Millberg et al., 2004a] Millberg, M., Nilsson, E., Thid, R., and Jantsch, A.
(2004a). Guaranteed bandwidth using looped containers in temporally
disjoint networks within the nostrum network on chip. In Proceedings
Design, Automation and Test in Europe Conference and Exhibition, vol-
ume 2, pages 890–895. IEEE.

[Millberg et al., 2004b] Millberg, M., Nilsson, E., Thid, R., Kumar, S., and
Jantsch, A. (2004b). The nostrum backbone-a communication protocol
stack for networks on chip. In 17th International Conference on VLSI
Design. Proceedings., pages 693–696. IEEE.

[Miraz et al., 2015] Miraz, M. H., Ali, M., Excell, P. S., and Picking, R.
(2015). A review on internet of things (iot), internet of everything (ioe)
and internet of nano things (iont). In 2015 Internet Technologies and
Applications (ITA), pages 219–224. IEEE.

[Miyaji et al., 2001] Miyaji, A., Nakabayashi, M., and Takano, S. (2001).
New explicit conditions of elliptic curve traces for FR-reduction. IE-
ICE transactions on fundamentals of electronics, communications and
computer sciences, 84(5):1234–1243. The Institute of Electronics, Infor-
mation and Communication Engineers.

[Moore, 1998] Moore, G. E. (1998). Cramming more components onto in-
tegrated circuits. Proceedings of the IEEE, 86(1):82–85. IEEE.

[Nethercote and Seward, 2007] Nethercote, N. and Seward, J. (2007). Val-
grind: a framework for heavyweight dynamic binary instrumentation. In
ACM Sigplan notices, volume 42, pages 89–100. ACM.

[Niehaus et al., 1989] Niehaus, J. A., Fleck, R. G., Li, S., and Strong, B. D.
(1989). Digital crossbar switch. US Patent 4,852,083.

[Nilsson, 2002] Nilsson, E. (2002). Design and implementation of a hot-
potato switch in a network on chip. Mémoire, Departement of Micro-
electronics and Information Technology, Royal Institute of Technology.
Citeseer.

BIBLIOGRAPHY 207

[NVIDIA, 2016] NVIDIA, T. (2016). P100 white paper. NVIDIA Corpo-
ration.

[Ogras and Marculescu, 2005] Ogras, U. Y. and Marculescu, R. (2005).
Application-specific network-on-chip architecture customization via long-
range link insertion. In ICCAD-2005. IEEE/ACM International Confer-
ence on Computer-Aided Design, 2005., pages 246–253. IEEE.

[Owens et al., 2007] Owens, J. D., Dally, W. J., Ho, R., Jayasimha, D.,
Keckler, S. W., and Peh, L.-S. (2007). Research challenges for on-chip
interconnection networks. IEEE micro, 27(5):96–108. IEEE.

[Panda and Khilar, 2015] Panda, M. and Khilar, P. M. (2015). Distributed
byzantine fault detection technique in wireless sensor networks based
on hypothesis testing. Computers & Electrical Engineering, 48:270–285.
Elsevier.

[Pfaff et al., 2015] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A.,
Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., et al. (2015).
The design and implementation of open vswitch. In 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’15),
pages 117–130. USENIX Association.

[Phemius et al., 2014] Phemius, K., Bouet, M., and Leguay, J. (2014).
Disco: Distributed multi-domain sdn controllers. In 2014 IEEE Network
Operations and Management Symposium (NOMS), pages 1–4. IEEE.

[Philip et al., 2014] Philip, J., Kumar, S., Norige, E., Hassan, M., and Mi-
tra, S. (2014). Asymmetric mesh noc topologies. US Patent 8,819,616.

[Rajesh et al., 2018] Rajesh, J., Chakraborty, K., and Roy, S. (2018). Hard-
ware trojan attacks in soc and noc. In The Hardware Trojan War, pages
55–74. Springer.

[Rajsuman, 2000] Rajsuman, R. (2000). System-on-a-chip: Design and
Test. Artech House, Inc.

[Rantala et al., 2006] Rantala, V., Lehtonen, T., Plosila, J., et al. (2006).
Network on chip routing algorithms. Citeseer.

[Rijpkema et al., 2003] Rijpkema, E., Goossens, K., Rădulescu, A., Dielis-
sen, J., van Meerbergen, J., Wielage, P., and Waterlander, E. (2003).
Trade-offs in the design of a router with both guaranteed and best-effort
services for networks on chip. IEE Proceedings-Computers and Digital
Techniques, 150(5):294–302. IET.

208 BIBLIOGRAPHY

[Rong and Liu, 2017] Rong, R. and Liu, J. (2017). Distributed mininet
with symbiosis. In Communications (ICC), 2017 IEEE International
Conference on, pages 1–6. IEEE.

[Rosenblatt, 1956] Rosenblatt, M. (1956). A central limit theorem and a
strong mixing condition. Proceedings of the National Academy of Sciences
of the United States of America, 42(1):43. National Academy of Sciences.

[Ruaro et al., 2020] Ruaro, M., Caimi, L. L., and Moraes, F. G. (2020).
A systemic and secure sdn framework for noc-based many-cores. IEEE
Access, 8:105997–106008. IEEE.

[Ruaro et al., 2018] Ruaro, M., Medina, H. M., Amory, A. M., and Moraes,
F. G. (2018). Software-defined networking architecture for noc-based
many-cores. In 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–5. IEEE.

[Ruaro et al., 2017] Ruaro, M., Medina, H. M., and Moraes, F. G. (2017).
Sdn-based circuit-switching for many-cores. In 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 385–390. IEEE.

[Ruaro et al., 2019] Ruaro, M., Velloso, N., Jantsch, A., and Moraes, F. G.
(2019). Distributed sdn architecture for noc-based many-core socs.
In Proceedings of the 13th IEEE/ACM International Symposium on
Networks-on-Chip, pages 1–8. ACM.

[Salvador et al., 2017] Salvador, I.-D., Remberto, S.-A., Brox, M., and Or-
tiz, M. A. (2017). Software defined network controller: A neat solu-
tion administration for reconfigurable multi-core noc. In 2017 Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig), pages 1–4. IEEE.

[Sandoval-Arechiga et al., 2016] Sandoval-Arechiga, R., Parra-Michel, R.,
Vazquez-Avila, J., Flores-Troncoso, J., and Ibarra-Delgado, S. (2016).
Software defined networks-on-chip for multi/many-core systems: A per-
formance evaluation. In Proceedings of the 2016 Symposium on Archi-
tectures for Networking and Communications Systems, pages 129–130.
ACM.

[Sandoval-Arechiga et al., 2015] Sandoval-Arechiga, R., Vazquez-Avila, J.,
Parra-Michel, R., Flores-Troncoso, J., and Ibarra-Delgado, S. (2015).
Shifting the network-on-chip paradigm towards a software defined net-
work architecture. In Computational Science and Computational Intelli-
gence (CSCI), 2015 International Conference on, pages 869–870. IEEE.

BIBLIOGRAPHY 209

[Scheffe, 1999] Scheffe, H. (1999). The analysis of variance, volume 72.
John Wiley & Sons.

[Schmidt et al., 1993] Schmidt, O. S., Husted, R. R., Van Sickle, W.,
Dauterman, T. L., and Rohn, D. R. (1993). Processor for a programmable
controller. US Patent 5,265,005.

[Scionti et al., 2016] Scionti, A., Mazumdar, S., and Portero, A. (2016).
Software defined network-on-chip for scalable cmps. In High Performance
Computing & Simulation (HPCS), 2016 International Conference on,
pages 112–115. IEEE.

[Scionti et al., 2018] Scionti, A., Mazumdar, S., and Portero, A. (2018).
Towards a scalable software defined network-on-chip for next generation
cloud. Sensors, 18(7):2330. Multidisciplinary Digital Publishing Insti-
tute.

[Seemuth et al., 2015] Seemuth, D. P., Davoodi, A., and Morrow, K.
(2015). Automatic die placement and flexible i/o assignment in 2.5 d
ic design. In Sixteenth International Symposium on Quality Electronic
Design, pages 524–527. IEEE.

[Seiculescu et al., 2010] Seiculescu, C., Murali, S., Benini, L., and
De Micheli, G. (2010). A method to remove deadlocks in networks-on-
chips with wormhole flow control. In 2010 Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), pages 1625–1628. IEEE.

[Sepulveda et al., 2017a] Sepulveda, J., Fernandes, R., Marcon, C., Florez,
D., and Sigl, G. (2017a). A security-aware routing implementation for
dynamic data protection in zone-based mpsoc. In Integrated Circuits and
Systems Design (SBCCI), 2017 30th Symposium on, pages 59–64. IEEE.

[Sepulveda et al., 2016] Sepulveda, J., Flórez, D., Fernandes, R., Marcon,
C., Gogniat, G., and Sigl, G. (2016). Towards risk aware nocs for data
protection in mpsocs. In Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2016 11th International Symposium on, pages 1–8.
IEEE.

[Sepulveda et al., 2017b] Sepulveda, J., Flórez, D., Immler, V., Gogniat,
G., and Sigl, G. (2017b). Efficient security zones implementation through
hierarchical group key management at noc-based mpsocs. Microproces-
sors and Microsystems, 50:164–174. Elsevier.

210 BIBLIOGRAPHY

[Sepulveda et al., 2014] Sepulveda, J., Gogniat, G., Flórez, D., Diguet, J.-
P., Zeferino, C., and Strum, M. (2014). Elastic security zones for noc-
based 3d-mpsocs. In Electronics, Circuits and Systems (ICECS), 2014
21st IEEE International Conference on, pages 506–509. IEEE.

[Sepúlveda et al., 2017] Sepúlveda, J., Zankl, A., Flórez, D., and Sigl, G.
(2017). Towards protected mpsoc communication for information protec-
tion against a malicious noc. Procedia computer science, 108:1103–1112.
Elsevier.

[Sethi and Sarangi, 2017] Sethi, P. and Sarangi, S. R. (2017). Internet of
things: architectures, protocols, and applications. Journal of Electrical
and Computer Engineering, 2017. Hindawi.

[Sezer et al., 2013] Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser,
B., Lake, D., Finnegan, J., Viljoen, N., Miller, M., and Rao, N. (2013).
Are we ready for sdn? implementation challenges for software-defined
networks. IEEE Communications Magazine, 51(7):36–43. IEEE.

[Sharma et al., 2018] Sharma, G., Ellinidou, S., Kuchta, V., Sahu, R. A.,
Markowitch, O., and Dricot, J.-M. (2018). Secure communication on noc
based mpsoc. In International Conference on Security and Privacy in
Communication Systems, pages 417–428. Springer.

[Sharma et al., 2019] Sharma, G., Kuchta, V., Anand Sahu, R., Ellinidou,
S., Bala, S., Markowitch, O., and Dricot, J.-M. (2019). A twofold group
key agreement protocol for noc-based mpsocs. Transactions on Emerging
Telecommunications Technologies, 30(6):e3633. Wiley Online Library.

[Sharma et al., 2017] Sharma, G., Sahu, R. A., Kuchta, V., Markowitch,
O., and Bala, S. (2017). Authenticated Group Key Agreement Proto-
col Without Pairing. In International Conference on Information and
Communications Security, pages 606–618. Springer.

[Silva et al., 2019] Silva, R. S., Cruz, P. P., Kreutz, M. E., and Pereira,
M. M. (2019). Communication latency evaluation on a software-defined
network-on-chip. In 2019 IX Brazilian Symposium on Computing Sys-
tems Engineering (SBESC), pages 1–7. IEEE.

[Smeets, 2018] Smeets, M. (2018). A matter of time: On the transitory na-
ture of cyberweapons. Journal of Strategic Studies, 41(1-2):6–32. Taylor
& Francis.

[Sokolova and Lapalme, 2009] Sokolova, M. and Lapalme, G. (2009). A
systematic analysis of performance measures for classification tasks. In-
formation processing & management, 45(4):427–437. Elsevier.

BIBLIOGRAPHY 211

[Soultana Ellinidou, 2019] Soultana Ellinidou, Gaurav Sharma, T. R. T.
V. O. M. J.-M. D. (2019). “sspsoc: A secure sdn-based protocol over
mpsoc.”. volume 2019. Hindawi.

[Sutardja, 2015] Sutardja, S. (2015). 1.2 the future of ic design innovation.
In 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Di-
gest of Technical Papers, pages 1–6. IEEE.

[Syverson, 1994] Syverson, P. (1994). A taxonomy of replay attacks [cryp-
tographic protocols]. In Computer Security Foundations Workshop VII,
1994. CSFW 7. Proceedings, pages 187–191. IEEE.

[Teng and Wu, 2016] Teng, J. and Wu, C. (2016). An identity-based group
key agreement protocol for low-power mobile devices. Chinese Journal
of Electronics, 25(4):726–733. IET.

[Tomonori, 2013] Tomonori, F. (2013). Introduction to ryu sdn framework.
Open Networking Summit, pages 1–14.

[Tripathi et al., 2013] Tripathi, M., Gaur, M. S., and Laxmi, V. (2013).
Comparing the impact of black hole and gray hole attack on leach in
wsn. Procedia Computer Science, 19:1101–1107. Elsevier.

[Van Bulck et al., 2018] Van Bulck, J., Minkin, M., Weisse, O., Genkin,
D., Kasikci, B., Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y.,
and Strackx, R. (2018). Foreshadow: Extracting the keys to the intel
sgx kingdom with transient out-of-order execution. In Proceedings of the
27th USENIX Security Symposium. USENIX Association.

[Varga, 2010] Varga, A. (2010). Omnet++. In Modeling and tools for
network simulation, pages 35–59. Springer.

[Vijayaraghavan et al., 2017] Vijayaraghavan, T., Eckert, Y., Loh, G. H.,
Schulte, M. J., Ignatowski, M., Beckmann, B. M., Brantley, W. C.,
Greathouse, J. L., Huang, W., Karunanithi, A., et al. (2017). Design
and analysis of an apu for exascale computing. In 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 85–96. IEEE.

[Wentzlaff et al., 2007] Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L.,
Edwards, B., Ramey, C., Mattina, M., Miao, C.-C., Brown III, J. F.,
and Agarwal, A. (2007). On-chip interconnection architecture of the tile
processor. IEEE micro, 27(5):15–31. IEEE.

212 BIBLIOGRAPHY

[Wu et al., 2016] Wu, S.-Y., Lin, C., Chiang, M., Liaw, J., Cheng, J., Yang,
S., Tsai, C., Chen, P., Miyashita, T., Chang, C., et al. (2016). A 7nm
cmos platform technology featuring 4 th generation finfet transistors with
a 0.027 um 2 high density 6-t sram cell for mobile soc applications. In
2016 IEEE International Electron Devices Meeting (IEDM), pages 2–6.
IEEE.

[Xie et al., 2018] Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C.,
and Liu, Y. (2018). A survey of machine learning techniques applied to
software defined networking (sdn): Research issues and challenges. IEEE
Communications Surveys & Tutorials, 21(1):393–430. IEEE.

[Xu et al., 2015] Xu, J., Wang, K., Wang, C., Hu, F., Zhang, Z., Xu, S.,
and Wu, J. (2015). Byzantine fault-tolerant routing for large-scale wire-
less sensor networks based on fast ecdsa. Tsinghua Science and Technol-
ogy, 20(6):627–633. TUP.

[Yan and Yu, 2015] Yan, Q. and Yu, F. R. (2015). Distributed denial of ser-
vice attacks in software-defined networking with cloud computing. IEEE
Communications Magazine, 53(4):52–59. IEEE.

[Yan et al., 2016] Yan, Q., Yu, F. R., Gong, Q., and Li, J. (2016). Software-
defined networking (sdn) and distributed denial of service (ddos) attacks
in cloud computing environments: A survey, some research issues, and
challenges. IEEE Communications Surveys & Tutorials, 18(1):602–622.
IEEE.

[Zhang et al., 2018a] Zhang, H., Cai, Z., Liu, Q., Xiao, Q., Li, Y., and
Cheang, C. F. (2018a). A survey on security-aware measurement in sdn.
Security and Communication Networks, 2018. Hindawi.

[Zhang et al., 2018b] Zhang, L., Wang, X., Jiang, Y., Yang, M., Mak, T.,
and Singh, A. K. (2018b). Effectiveness of ht-assisted sinkhole and black-
hole denial of service attacks targeting mesh networks-on-chip. Journal
of Systems Architecture, 89:84–94. Elsevier.

[Zhang et al., 2011] Zhang, Y., Zheng, Z., and Lyu, M. R. (2011). Bftcloud:
A byzantine fault tolerance framework for voluntary-resource cloud com-
puting. In 2011 IEEE 4th International Conference on Cloud Computing,
pages 444–451. IEEE.

[Zhou and Zhu, 2017] Zhou, X. and Zhu, Z. (2017). A dynamic task map-
ping algorithm for sdnoc. Microelectronics Journal, 63:58–65. Elsevier.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	SDNoC integration within chiplet-based systems
	SDNoC integration within CoC
	Security Challenges
	Objective-Contributions
	Publications
	Thesis Organization

	Network-on-Chip Design
	Introduction
	NoC Architecture
	NoC topologies
	NoC Routing
	Routing Problems
	Deadlock
	Livelock
	Starvation

	Flow Control
	Overview of Academic and Commercial NoCs
	NoC challenges
	Quality of Service
	Latency
	Security

	Summary-Discussion

	Software Defined Network-on-Chip
	Introduction
	Software Defined Network
	Security Issues

	State of the art
	Literature
	Discussion

	SDNoC Architecture
	Routing within SDNoC
	XY Routing
	West First Routing
	North Last Routing
	Negative First Routing
	Odd Even Routing
	Modified Odd Even (OESL)

	MicroLET Protocol
	Packet format
	Network Messages
	Communication Protocol Phases

	Summary-Discussion

	Implementation and Evaluation of SDNoC
	Introduction
	NoC Simulators
	Implementation of SDNoC prototype
	SDNoC Parameters
	Impact of

	MicroLET

	Routing Algorithms
	Standard Deviation Coverage

	Analysis of variances
	Background
	Scenarios-Results
	One-way ANOVA
	N-way ANOVA

	Summary-Discussion

	Security within SDNoC
	Introduction
	Secure Sdn-based Protocol over mpSoC
	Security Requirements
	Phase 1
	Phase 2

	Group Key Agreement
	Assumptions
	Group Key Agreement Protocols

	Communication Protocol
	Network Architecture
	Packet Format
	Network Messages
	SSPSoC Network Initialization

	Byzantine Faults
	Related Work
	Fault Model
	Algorithm
	Normal Case Operation
	Byzantine fault Case Operation

	Hardware Trojan-Greyhole attack
	Related work
	Launching of HT-Greyhole Attack
	Detection
	Defense

	Summary

	Implementation and Evaluation of security within SDNoC
	Introduction
	Secure Sdn-based Protocol over mpSoC
	Implementation and Performance Analysis
	Network Performance
	Memory Usage

	Conclusion

	Byzantine Faults
	Implementation
	Evaluation
	Conclusion

	Hardware Trojan-Greyhole attack
	Evaluation of the Detection Strategy
	Background
	Test Cases

	Conclusion

	Summary-Discussion

	Conclusion
	Future Work

	GEM5 Code
	Bibliography

