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ABSTRACT

The Southern Ocean is widely recognized as a potential cause of the lower atmospheric concentration of
CO; during ice ages, but the mechanism is debated. Focusing on the Southern Ocean surface, we review
biogeochemical paleoproxy data and carbon cycle concepts that together favor the view that both the
Antarctic and Subantarctic Zones (AZ and SAZ) of the Southern Ocean played roles in lowering ice age
CO; levels. In the SAZ, the data indicate dust-driven iron fertilization of phytoplankton growth during
peak ice age conditions. In the ice age AZ, the area-normalized exchange of water between the surface
and subsurface appears to have been reduced, a state that we summarize as “isolation” of the AZ surface.
Under most scenarios, this change would have stemmed the leak of biologically stored CO, that occurs in
the AZ today. SAZ iron fertilization during the last ice age fits with our understanding of ocean processes
as gleaned from modern field studies and experiments; indeed, this hypothesis was proposed prior to
evidentiary support. In contrast, AZ surface isolation is neither intuitive nor spontaneously generated in
climate model simulations of the last ice age.

In a more prospective component of this review, the suggested causes for AZ surface isolation are
considered in light of the subarctic North Pacific (SNP), where the paleoproxies of productivity and
nutrient consumption indicate similar upper ocean biogeochemical changes over glacial cycles, although
with different timings at deglaciation. Among the proposed initiators of glacial AZ surface isolation, a
single mechanism is sought that can explain the changes in both the AZ and the SNP. The analysis favors a
weakening and/or equatorward shift in the upwelling associated with the westerly winds, occurring in
both hemispheres. This view is controversial, especially for the SNP, where there is evidence of enhanced
upper water column ventilation during the last ice age. We offer an interpretation that may explain key
aspects of the AZ and SNP observations. In both regions, with a weakening in westerly wind-driven
upwelling, nutrients may have been “mined out” of the upper water column, possibly accompanied by
a poleward “slumping” of isopycnals. In the AZ, this would have encouraged declines in both the nutrient
content and the formation rate of new deep water, each of which would have contributed to the lowering
of atmospheric CO,. Through several effects, the reduction in AZ upwelling may have invigorated the
upwelling of deep water into the low latitude pycnocline, roughly maintaining the pycnocline’s supply of
water and nutrients so as to (1) support the high productivity of the glacial SAZ and (2) balance the
removal of water from the pycnocline by the formation of Glacial North Atlantic Intermediate Water. The
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proposed return route from the deep ocean to the surface resembles that of Broecker’s (1991) “global
ocean conveyor,” but applying to the ice age as opposed to the modern ocean.
© 2021 Princeton University. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The causes of glacial/interglacial CO, change are critical to the
feedbacks underlying ice age climate cycles. Because of its strong
control on atmospheric CO, on thousand-year time scales, the
ocean has long been recognized as central to glacial/interglacial CO,
change (Broecker, 1982a,b). In the 1980s, the Southern Ocean was
identified as a major leak of biologically stored CO, from ocean to
atmosphere, suggesting the closure of this leak as a mechanism for
lowering atmospheric CO, during ice ages (Sarmiento and
Toggweiler, 1984; Siegenthaler and Wenk, 1984; Knox and
McElroy, 1984). In the early 1990s, the focus pivoted to the role of
the low latitudes in the calcium carbonate (CaCOs3) budget of the
ocean (Archer and Maier-Reimer, 1994). However, in the late 1990s,
arguments against these low latitude mechanisms were recognized
(Sigman et al., 1998; Tyrrell et al., 1999). Accordingly, the search for
the drivers of CO, change refocused on the Southern Ocean, which
continues to dominate thinking on the topic (reviewed by Sigman
and Boyle, 2000; Fischer et al., 2010; Sigman et al., 2010; and
Hain et al., 2014a).

Here, we review previous model and measurement results and
seek new perspective on the role of the Southern Ocean in glacial/
interglacial CO, change. We first describe the current role of the
Southern Ocean in the global overturning circulation and ventila-
tion of the ocean interior (section 2). We then describe the
geochemical potential of Southern Ocean changes to lower atmo-
spheric CO, to ice age levels (section 3). We then review the evi-
dence for a strengthening of the ocean’s biological pump during the
ice ages (section 4). In doing so, we summarize coupled re-
constructions of export production and surface nitrate concentra-
tions in the Southern Ocean to argue that its two major zones, the
Antarctic Zone (AZ) to the South and the Subantarctic Zone (SAZ) to
the North, played distinct and complementary roles in the draw-
down of CO, during ice ages.

Our attention then focuses on the highly divergent hypotheses
for the physical cause of the AZ changes (section 5). The glacial AZ
condition was first described as “stratification” (Francois et al.,
1997). However, this term implied stronger density stratification
as the ultimate physical cause, which is possible but unproven, thus
our choice of the less specific term of surface “isolation.” As a
prospective aspect of this analysis, we draw on evidence from the
subarctic North Pacific (SNP) in an effort to distinguish among
hypothesized causes for ice age AZ surface isolation, leading us to
favor changes in the westerly wind-driven upwelling as instru-
mental (section 6). Our proposal for the ice age ocean is presented
in light of this conclusion (sections 7 and 8). It is then applied to
address two important questions. These relate to the two “cells” of
circulation passing through the Southern Ocean surface, specif-
ically, their respective roles in (1) ventilating the deep ocean and (2)
feeding the upper limb of global meridional overturning circulation
that produces North Atlantic Deep Water (section 9).

2. Architecture of Southern Ocean overturning

The overturning circulation of the Southern Ocean and its con-
nections to the global ocean have been usefully separated into
“upper” and “lower” cells (Fig. 1 a; Toggweiler et al., 2006; Lumpkin

and Speer, 2007). In the upper cell, the southern hemisphere
westerly winds drive upwelling in the AZ and northward wind-
driven transport toward the Polar Frontal Zone (PFZ) and SAZ.
There, water is subducted near the Antarctic Polar Front to form
Antarctic Intermediate Water (AAIW) or near the Subantarctic
Front to form Subantarctic Mode Water (SAMW). These waters flow
northward in the shallow subsurface (~200—1100 m) to the lower
latitude ocean, where they may return to the surface. In the
Southern Ocean, this cell is understood to be the “residual” of the
Ekman (wind-driven) transport and the largely opposing response
of eddies to the sea level height (and thus pressure and density)
gradients that result from it (Marshall and Speer, 2012). The wind-
driven transport tends to tilt the isopycnals, causing them to
outcrop in the polar region; the eddies, responding to the resulting
northward increase in sea level height and pycnocline thickness,
work to flatten the isopycnals. The balance between these coun-
teracting processes yields the observed pycnocline tilt (Fig. 1 a,
lower contact of the light gray region).

The surface exposure of the lower cell is entirely within the
Antarctic Zone (Fig. 1 a): waters brought from the deep Southern
Ocean interior to the AZ surface are returned to the deep Southern
Ocean. In the “polar” AZ (PAZ; poleward of the Southern Antarctic
Circumpolar Front), formation of Antarctic Bottom Water (AABW)
near the coast of Antarctica is an established mechanism for this
return flow (Orsi et al., 1999, 2002; Fukachami et al.,, 2010). Other
mechanisms may exist that more directly involve the non-coastal
AZ, such as open ocean deep convection associated with transient
open ocean polynyas (Broecker et al., 1999; Campbell et al., 2019)
and perennial, widespread open ocean mixing at the base of the AZ
winter mixed layer that links to isopycnal exchange in the interior
(Abernathey and Ferreira, 2015). The relationship between the two
cells within the Southern Ocean will arise as a central question in
section 9.

On the global scale, the upper and lower cells are connected
elsewhere in the ocean, actually representing one complex cell
(Fig. 1 a; Talley, 2013). Upper cell water from the Southern Ocean
flows northward and into the mid-depth to shallow ocean, even-
tually contributing to the formation of North Atlantic Deep Water
(NADW, Toggweiler and Samuels, 1995). NADW, largely through
mixing with deep water in the Southern Ocean, gives rise to Lower
Circumpolar Deep Water (LCDW). The exposure of NADW and
LCDW in the AZ surface feeds AABW formation; according to Talley
(2013), Upper Circumpolar Deep Water (UCDW) is also a significant
feedwater for AABW. Without reaching the AZ surface, LCDW can
also be entrained into newly formed AABW. AABW (with some
proportion of entrained LCDW) then flows through the deep Indo-
Pacific, where it accumulates regenerated nutrients, carbon, and
alkalinity from sinking material. This water upwells as it gains
buoyancy from mixing with overlying waters, becoming Pacific
Deep Water (PDW) and then UCDW as it flows back to the Southern
Ocean. As UCDW, this water upwells largely as part of the Southern
Ocean'’s upper cell, closing the global circulation.

It is useful to distinguish between the upper and lower cells in
terms of the ocean interior volumes that they occupy and the sur-
face regions that are responsible for the ventilation of these
respective volumes (Toggweiler et al., 2006). The upper cell oc-
cupies the shallower interior (including the global ocean’s
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Fig. 1. Schematic of the global ocean’s interior circulation today (a) and a proposal for the Last Glacial Maximum (b, LGM). Abbreviations are as follows: PAZ, Polar Antarctic Zone;
0OAZ, Open Antarctic Zone; SAZ, Subantarctic Zone; NADW, North Atlantic Deep Water; GNAIW, Glacial North Atlantic Intermediate Water; PDW, Pacific Deep Water; IDW, Indian
Deep Water; UCDW, Upper Circumpolar Deep Water; LCDW, Lower Circumpolar Deep Water; AABW, Antarctic Bottom Water; AAIW, Antarctic Intermediate Water; SAMW,
Subantarctic Mode Water; ITF, Indonesian Throughflow; AE, Agulhas Eddies (ITF and AE return surface water from the Pacific to the Atlantic). Circled points and crosses show water
and westerly wind transports out of and into the page, respectively (with the winds as orange circles). Line thickness changes among panels largely denote changes in flow rate,
with thin dashed lines representing the greatest declines from modern; in the modern, the thinner flow lines in the SNP denote weaker wind-driven upwelling than in the AZ.
Double-direction arrows indicate lateral mixing between surface PAZ and OAZ in the Southern Ocean, vertical mixing across the base of the mixed layer in the AZ and SNP, and
vertical (i.e., diapycnal) mixing in the ocean interior. Line colors indicate nutrient (nitrate phosphate) concentration according to the color scale (red highest and blue lowest). All
panels show the global ocean’s upper and lower overturning cells (i.e., those beginning in the SAZ and PAZ, respectively); the depiction follows Toggweiler et al. (2006) but shows
the interconnection of the cells described by Talley (2013) and highlighted by Ferrari et al. (2014). The gray scale indicates relative water densities, with light gray shading indicating
the global pycnocline, the proposed poleward “slumping” of which is shown in (b) for the LGM and is explained in the text. For explanation of (a), see section 2. Additional
phenomena in (b) include an equatorward shift and weakening in the westerly winds (black horizontal arrows and wind symbol size reduction) and increased dust-borne iron

supply to the SAZ (brown stipples). For further explanation of (b), see sections 6, 7, and 9.

pycnocline, down to roughly 1.2 km depth) and a portion of the
deeper ocean. The AZ and SAZ ventilate its shallower limb, as AAIW
and SAMW, while the North Atlantic ventilates its deeper limb as
NADW. The lower cell, which is believed to be mainly ventilated
from the AZ, occupies abyssal levels and the portion of the deep
ocean not ventilated from the North Atlantic. With this distinction,
one can imagine a competition between the AZ and the North
Atlantic to ventilate the ocean interior (specifically, the abyssal and
deep waters), and many model studies of ice age CO, drawdown
can be understood in terms of this competition (Toggweiler, 1999;
Sigman et al., 1999; Archer et al., 2003; Toggweiler et al., 2003;
Sigman and Haug, 2003; Kohler et al., 2005; Marinov et al., 2008;
Hain et al., 2010; Kwon et al.,, 2012; Menviel et al., 2018), as
described below.

However, important connections have been recognized be-
tween the two cells in the modern ocean (Talley, 2013). For
example, the AABW formed as part of the lower cell evolves by
diffusion into PDW and in turn into UCDW, the wind-driven up-
welling of which feeds the upper cell in the modern ocean (Fig. 1 a).
These connections between the two cells in the Southern Ocean
surface imply that any change in the proportion of the global deep
ocean sourced from the AZ vs. the North Atlantic also has impli-
cations for the routing of waters through the Southern Ocean sur-
face. Ferrari et al. (2014) argue that a more complete decoupling of
the circulation into two cells (as in Fig. 1 b) was a fundamental
climate-related event of the ice ages that allowed for the drawdown
of atmospheric CO,. Thompson et al. (2019) propose that variations
in the coupling between the two cells contribute to the anti-

correlated millennial-scale climate changes in the northern and
southern hemispheres during the ice ages.

The modern global ocean circulation schematic in Fig. 1 a ne-
glects an important contributor to the overturning circulation. In
the ocean interior, small-scale turbulent mixing between waters of
different densities transports heat downward from the surface and
thus increases the buoyancy of deep water. The buoyancy increase
in the existing deep water allows new dense water from high
latitude ventilation regions to flow into the ocean basins below it,
which in turn causes the diffuse upwelling of deep water in the
ocean interior (Munk, 1966). The upwelling has the potential to
import deep water directly into the pycnocline (Talley, 2013). In
section 9.4, we suggest that this upwelling into the pycnocline was
more important during the ice ages when the Southern Ocean
upper cell was sluggish (colored cones and upward arrows in the
Fig. 1 b). To emphasize the possibility of its ice age acceleration, we
include the process in Fig. 1 b but exclude it in Fig. 1 a.

3. Geochemistry of Southern Ocean mechanisms for lowering
atmospheric CO,

3.1. Southern Ocean-focused processes

Changes at the Southern Ocean surface can lower atmospheric
CO, by several categories of geochemical mechanism (Figs. 2 and 3;
the discussion below follows Hain et al., 2010). The most central to
this review is an increase in the efficiency of the global ocean’s
“biological pump” (or, more specifically, its “soft-tissue pump”).
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Here, the biological pump refers to the sequestration of CO, in
ocean waters below the surface wind-mixed layer, through the
production, export, and subsurface remineralization of photosyn-
thetic organic matter. The maximal amount of carbon sequestered
in the ocean interior by the biological pump is roughly set by the
phosphate concentration of the ocean. We can also frame this in
terms of nitrate so long as (1) the nitrogen-to-phosphorus (N/P)
ratio of organic matter is relatively well conserved over time and
(2) feedbacks keep nitrate in a relatively constant ratio to phos-
phate in the ocean. These two assumptions are defensible (e.g.,
Deutsch et al., 2007; Marconi et al., 2017; Ren et al., 2017) and help
to simplify the current discussion. The efficiency of the biological
pump refers to the degree to which the ocean’s "major nutrient”
(phosphate or nitrate) reservoir is involved in the process of carbon
storage. This is usefully tracked with the unused (“preformed”)
nutrient concentration with which the ocean interior is ventilated
(Ito and Follows, 2005). A lower preformed nutrient concentration
for the global ocean interior indicates more complete usage of the
nutrient reservoir in carbon storage (corresponding to more “re-
generated” nutrients in the ocean interior) and thus a more effi-
cient biological pump. Today, only about half of the ocean’s nutrient
inventory is associated with biologically sequestered carbon, while
the other half (the preformed half) was not used for export pro-
duction when it was last at the surface (Hain et al., 2010). The vast
majority of preformed nutrients originate from the Southern Ocean
surface (Fig. 3 a; Toggweiler et al., 2003).

A decline in mean ocean preformed nutrient concentration
could be accomplished by (1) a decrease in the unused nutrient
concentration of the Southern Ocean surface waters that ventilate
the ocean interior (Sigman and Boyle, 2000; Marinov et al., 2006) or
(2) areduction in Southern Ocean ventilation of the interior relative
to some other ventilating source with a lower preformed nutrient
concentration (in particular, the North Atlantic) (Fig. 3 a)
(Toggweiler et al., 2003; Marinov et al., 2008; Kwon et al., 2012).
Either of these changes or a combination of them would increase
the deep ocean storage of regenerated CO, and thereby lower at-
mospheric CO,. Importantly, these Southern Ocean “ventilation
reduction” and “nutrient drawdown” mechanisms do not have
additive effects on atmospheric CO, (Fig. 2). For example, if
Southern Ocean ventilation of the interior ceased while other ocean
ventilation processes continued, Southern Ocean surface nutrient
status would no longer modulate the efficiency of the global bio-
logical pump. Conversely, with more complete consumption of
nutrients in the Southern Ocean surface, the region’s tendency to
leak regenerated CO, from the deep ocean to the atmosphere
would be lower, such that reduction in Southern Ocean ventilation
of the interior would have a weaker CO, impact.

Atmospheric CO is lowered “directly” by increased sequestra-
tion of regenerated CO- in the ocean interior (the soft-tissue pump,
sensu stricto) and “indirectly” by the transient CaCOs3 dissolution
event in the deep ocean that it causes, which raises whole ocean
alkalinity (Broecker and Peng, 1987). The proportional strength of
the whole alkalinity effect can vary according to the mechanism
involved (Sigman et al., 1998), but it most often augments the CO,
drawdown by roughly a third of the drawdown due to deep ocean
CO, sequestration alone (Hain et al., 2010).

At the same time that a reduction in Southern Ocean over-
turning strengthens the soft-tissue pump and thus tends to
decrease atmospheric CO,, this effect is partially countered by a
strengthening of the “carbonate pump” (Fig. 3 b). In the carbonate
pump, the rain of CaCOs in fossiliferous material (coccoliths or
foraminifera tests) out of the surface ocean extracts alkalinity from
surface waters and sequesters it in the deep ocean (as “regenerated
alkalinity”), with consequences for surface carbonate chemistry,
atmospheric CO, and whole ocean alkalinity that are analogous to,
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Fig. 2. Simulated changes in the concentration of atmospheric CO, (in parts per
million by volume, ppm) due to proposed ice age changes in the Southern Ocean as
well as in the character of North Atlantic-formed deep water (from Hain et al., 2010).
NADW and GNAIW refer to North Atlantic Deep Water and Glacial North Atlantic In-
termediate Water. The interglacial reference case of the model has an atmospheric CO,
concentration of 270 ppm. The gray arrows indicate the CO, change caused by a given
forcing if active by itself, whereas the black arrows indicate successive addition of
forcings from left to right. First, AZ surface isolation, removing essentially all deep
ventilation from the AZ surface, causes a CO, decline of 29 ppm. In these experiments,
the only water exchanges that are reduced are those related to ventilation of the
“lower cell” of Southern Ocean overturning (i.e., AZ-formed deep water); this strategy
was taken to distinguish the CO, effect of AZ surface isolation from that of reducing the
nutrient supply to SAZ surface waters. Second, AZ surface nutrient concentration is
lowered to ~50% of its interglacial value. If conducted alone, without AZ surface
isolation, the nutrient drawdown causes a 33 ppm decline; however, without a cir-
culation change, a nutrient drawdown would require an increase in export production,
counter to ice age observations (e.g., Jaccard et al., 2013). In contrast to its effect when
applied alone, when nutrient drawdown is applied in concert with AZ surface isolation,
it only contributes an additional 7 ppm decline beyond the 29 ppm from AZ surface
isolation. Again, in these experiments, this is implemented in a way that SAZ surface
nutrients are not affected. Third, a shift from the formation of NADW to GNAIW, when
conducted in the context of the first two changes, contributes an additional 13 ppm
decline. In contrast, when the change to GNAIW is conducted alone, without the
Southern Ocean changes, it raises atmospheric CO, by 16 ppm because it gives over
more of the ocean interior to ventilation by the high-nutrient AZ. SAZ iron fertilization
(implemented as an export production increase that causes a ~43% decline in SAZ
surface nutrient concentration) lowers atmospheric CO, by 38 ppm, whether it is
conducted alone or in combination with any of the other changes. The AZ surface is an
important source of nutrients to the SAZ. If, in the model, AZ nutrient drawdown is
allowed to cause nutrient decline in the SAZ as well, then the AZ changes lower CO,
more than indicated here, while the SAZ iron fertilization lowers CO, correspondingly
less, resulting in no change in the net CO, decline from the combined forcings. A CO,
decline of 86 ppm occurs from simultaneous implementation of all four changes,
producing an atmospheric CO, concentration of 184 ppm, which is similar to obser-
vations for the LGM. LGM conditions for the temperature, salinity, and volume of the
ocean are not implemented here and in combination may have reduced ice age CO, by
an additional ~30 ppm (Kohfeld and Ridgwell, 2009); the simulations described here
were for an isothermal ocean, such that imposed circulation changes did not alter the
average ocean temperature. There is also no implementation of an ice age decline in
the terrestrial biosphere and soil carbon inventories, which may have raised atmo-
spheric CO, by ~15 ppm (Sigman and Boyle, 2000).
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Fig. 3. Schematic view of the roles of the two Southern Ocean overturning cells in the
soft-tissue pump (a) and the carbonate pump (b). In both panels, the blue and red lines
show the transport of water and CO,, respectively. In (a), the black lines show the
transport of major nutrients (represented by phosphate); in (b), the black lines show
the transport of alkalinity. The solid, wavy and dashed arrows indicate transport by
water flow, sinking organic matter, and air—sea exchange, respectively. The deep ocean
interior is filled with cold, dense waters originating from polar ocean regions, either
the northern North Atlantic (left side) or the Southern Ocean (right side). In (a), the
upper cell of Southern Ocean overturning, after upwelling in the AZ, flows through the
low-latitude, low-nutrient surface regions, where the growth of phytoplankton
completely extracts its dissolved nutrients. The particulate organic matter from this
growth sinks into the ocean interior, where it is decomposed to “regenerated” nutrient
and excess CO, (CO, added by regeneration of organic carbon), sequestering CO, away
from the atmosphere and in the deep ocean. The nutrient-poor low latitude surface
waters cannot return immediately into the interior but must first become dense by
cooling; today, this occurs dominantly in the high-latitude North Atlantic, included on
the left side of the diagram. The lower cell of Southern Ocean overturning imports
deep water into the Polar Antarctic Zone near the margin of Antarctica. Because of
vigorous vertical circulation, rapid nutrient supply, and poor light and iron conditions
in the AZ, nutrient-rich and excess CO,-rich water comes into the surface and descends
again with most of its dissolved nutrient remaining (now referred to as “preformed”).
Soft-tissue organic matter consists of assimilated carbon and nutrients, such that
preformed nutrients in the ocean interior record a “missed opportunity” for deep
ocean carbon sequestration by the soft-tissue pump. Put another way, the lower cell
releases to the atmosphere CO, that had been sequestered by the upper cell. There is a
similar effect of the two regions of ventilation on the carbonate pump (b), but this
translates to an opposing effect on atmospheric CO, (see red arrows). Biogenic CaCO3
rain is important in the low-latitude ocean. Therefore, when nutrient-bearing water is
cycled through the upper cell of ocean overturning, the rain of CaCO; sequesters
alkalinity in the deep ocean (as “regenerated alkalinity”), which raises the concen-
tration of CO, in surface waters and pushes CO; into the atmosphere. In contrast, the
Southern Ocean is dominated by biogenic opal, such that the lower cell brings re-
generated alkalinity to the surface, allows it to take up CO,, and then sends it back into
the interior as “preformed alkalinity.” As a result, if more of the ocean is ventilated by
the North Atlantic, the carbonate pump is also made more efficient, which cancels part
of the CO, decline driven by the increased efficiency of the soft-tissue pump. The figure
is adapted from Hain et al. (2014a).

but the opposite of, the sequestration of regenerated carbon via the
soft-tissue pump (Hain et al, 2010). With overturning in the
Southern Ocean, the regenerated alkalinity from deep ocean
dissolution is allowed to return to surface waters where it can take
up CO, from the atmosphere before the water is circulated back
into the ocean interior (i.e., as “preformed” alkalinity). Slowing this
overturning causes a rise in regenerated relative to preformed
alkalinity in the ocean interior, which indicates less ocean CO,
sequestration. This is a significant limitation on the ability of a
slowing of Southern Ocean overturning to lower atmospheric CO5,
with two related consequences. First, it encourages consideration of
glacial scenarios of more complete surface nutrient consumption in
the AZ. In the diatom-dominated AZ, the sinking biogenic material
includes little CaCOs, so this change would strengthen the soft-

Quaternary Science Reviews 254 (2021) 106732

tissue pump without also strengthening the carbonate pump,
maximizing the CO, reduction. Second, given the data pointing to a
glacial reduction in AZ export production (section 4.2), SAZ changes
are also required to lower atmospheric CO, to observed glacial
levels (Fig. 2).

An additional consideration regarding a slowing of the lower
cell of Southern Ocean overturning is that its geochemical com-
ponents of CO, change are affected by whether it occurs in the
context of modern-like North Atlantic Deep Water formation or of
North Atlantic ventilation to a shallower level, such as the forma-
tion of Glacial North Atlantic Intermediate Water (GNAIW; Boyle,
1988). The switch from NADW to GNAIW formation tends to raise
atmospheric CO, by ~15 ppm, due to the resulting increased role of
the high-preformed nutrient AZ surface in ventilating the deep
ocean (Hain et al., 2010). However, slowing of the Southern Ocean's
lower cell and/or a decline in its preformed nutrient concentration
then become somewhat more efficient in lowering CO, from that
level. This is firstly because the transition from NADW to GNAIW
increases the role of the AZ in deep ocean ventilation. Secondly, any
AZ-driven change in CO, storage is focused in the abyssal layer of
the ocean near the calcite lysocline, such that its tendency to in-
crease ocean alkalinity is maximized (Boyle, 1988; Toggweiler,
1999). These CO, effects of a NADW-to-GNAIW shift are impor-
tant in multiple contexts (Sigman et al., 2010), two of which are
mentioned here. First, the NADW-to-GNAIW shift appears to occur
mid-way through development of the last ice age (at ~70 Kka;
Piotrowski et al., 2005), thus potentially affecting the relationship
between Southern Ocean changes and atmospheric CO, at that
time. Second, the shoaling of NADW to GNAIW is central to a set of
prominent hypotheses for lower cell change over glacial cycles (e.g.,
Ferrari et al., 2014, sections 5.1.3 and 5.1.4).

To this point, enhanced CO, storage due to Southern Ocean
change has been described as a consequence of the CO, fluxes
across the interface between the surface mixed layer and the un-
derlying deep ocean. However, reducing the evasion of CO, from
surface mixed layer to the atmosphere represents an important
alternative. Stephens and Keeling (2000) proposed that increased
sea ice cover in the AZ would have had this effect. With respect to
the lower cell of Southern Ocean overturning, a strong limitation on
gas exchange during the ice ages, with or without ice, would have
reduced AZ CO, release, similar to the AZ circulation and biogeo-
chemical mechanisms for CO, sequestration (Archer et al., 2003;
Khatiwala et al., 2019). As with the competition between the
nutrient drawdown and ventilation reduction mechanisms
described above, the gas exchange-limitation mechanism for
reducing atmospheric CO, is not strictly additive with other
mechanisms: if one of three mechanisms completely stemmed the
leak of CO, out of the AZ surface, then the others would have no
further effect (Hain et al., 2010). One caveat to this is with respect to
the upper cell. Preventing ocean CO; release by gas exchange lim-
itation does not apply to the upper cell, as excess CO, kept in AZ
surface water would be able to escape from this surface water as it
flows northward out of the region of dense sea ice cover.

3.2. Effects involving the lower latitude ocean

The Southern Ocean as a whole supplies nutrients to the lower
latitude ocean, through equatorward transport into the SAZ and
subduction of nutrient-rich water to intermediate depths, which
includes the formation of both AAIW and SAMW (Fig. 1 a). Here, the
distinct roles of the AZ and SAZ deserve our attention. The AZ (and
more specifically, the Open Antarctic Zone, OAZ, equatorward of the
Southern Antarctic Circumpolar Front) is upstream of the SAZ in the
Southern Ocean’s “upper” overturning cell, with water and nutri-
ents upwelled in the AZ flowing northward into the SAZ surface.
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This AZ nutrient supply fuels the production and export of both
organic carbon and CaCOj3 in the SAZ. The SAZ, in turn, passes its
unused nutrients to the lower latitudes mostly through the SAMW
formation (Sarmiento et al., 2004). If nutrient consumption be-
comes more complete in either the AZ or the SAZ, and/or if the
upper cell weakens, then there should be a downstream decrease in
nutrient supply to the low latitude thermocline and thus the low
latitude surface, reducing the low latitude production of organic
matter and possibly also of CaCOs.

In the case of increased nutrient consumption in the Southern
Ocean, a CO, decrease in addition to that associated with the
Southern Ocean alone is expected because of the decreased
nutrient transport from the Southern Ocean to the lower latitudes
(Keir, 1988). First, the change reduces the load of preformed
nutrient in the mid-depth ocean by converting it into regenerated
nutrient in the deep ocean, modestly enhancing long term CO,
storage in the deep ocean and increasing the transient CaCOs3;
dissolution event that is induced by this CO, storage. Second,
reduced nutrient supply to the lower latitudes may reduce the
CaCOs rain by restricting the CaCOs-rich export production of the
low latitudes. This would reduce the strength of the global car-
bonate pump and also decrease the rain of CaCOs to the seabed.
Both of these CaCOs-related changes would reduce atmospheric
CO,, the latter by causing a rise in global ocean alkalinity so as to
deepen the steady-state lysocline (Sigman et al., 1998; Hain et al.,
2010). The nutrient supply change could be caused by either the
AZ or the SAZ. However, the SAZ is the final gateway to the vast low
latitude ocean and thus has more direct control on low latitude
effects.

4. Biogeochemical proxy evidence
4.1. Global and deep ocean evidence

Broecker (1982a,b) first proposed a stronger ocean biological
pump as the cause of the lowering of atmospheric CO, during the
last ice age. He considered three possible tests for this proposal. The
first derives from the low 3C/12C ratio of the organic carbon that is
produced by photosynthesis in the surface ocean and respired back
to CO; in the deep ocean. During the ice age in comparison to today,
the increased storage of respired CO; in the ocean interior should
have resulted in a stronger carbon isotopic gradient between sur-
face waters and the ocean interior. Second, due to the greater
accumulated respiration required to generate that respired CO,, the
average oxygen (0O;) concentration of the ocean interior should
have been lower. Third, with the deglacial transition to the Holo-
cene, the escape of CO, from the ocean interior to the atmosphere
should have caused a rise in the pH and thus the carbonate ion
concentration of deep water. This should have resulted in a tran-
sient peak in deep sea CaCOs preservation and burial, which
compensated for (i.e., reversed) the rise in deep ocean carbonate
ion concentration. This transient CaCO3 burial event, while serving
as a useful indicator, would also have lowered ocean alkalinity from
elevated glacial levels, thereby contributing to deglacial CO, rise
(Broecker and Peng, 1987).

While each of these phenomena warrants its own discussion, a
fair summary is that the biological pump hypothesis is supported
by the data on each, although with caveats that call for further work
(Shackleton, 1983; Yu et al., 2010; Jaccard and Galbraith, 2012). For
the stable carbon isotopes, uncertainties include the potential for
variation in the 3C/2C ratio of the organic carbon produced in
surface waters and for air/sea disequilibrium in regions of deep
water formation (Lynch-Stieglitz et al., 1995; Hofmann et al., 1999;
Schmitt et al., 2012; Broecker and McGee, 2013; Schmittner et al.,
2013; Khatiwala et al,, 2019). The lower O, of the glacial ocean
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interior is more conclusive evidence for ice age strengthening of the
biological pump (Francois et al., 1997; Jaccard et al., 2009; Galbraith
and Jaccard, 2015; Hoogakker et al., 2018; Anderson et al., 2019).
The stronger nature of this constraint arises in large part from the
fact that air/sea equilibration is faster for O, than for the carbon
isotopes, which reduces the potential for changes in the “pre-
formed” (initial) O, concentration of deep water (Stephens and
Keeling, 2000). For deep ocean carbonate ion, a deglacial peak
can be caused by a variety of processes that work to release CO,
from the ocean interior upon deglaciation, so its interpretation in
terms of biological pump change is non-unique (Broecker and Peng,
1987; Sigman et al., 1998).

It is important to note that these deep ocean signals do not
inherently distinguish among mechanisms for strengthening the
biological pump, for example, low latitude versus high latitude
mechanisms. However, certain temporal and spatial features in the
deep ocean during the last ice age point strongly to the Southern
Ocean as the driver of the changes in the biological pump. The first
finding in this regard was the very low 3C/12C of glacial-age
Southern Ocean-sourced abyssal water (Curry and Oppo et al,
2005). More recent work has observed that, on a millennial time
scale, deep ocean O, declined specifically when glacial Southern
Ocean surface conditions changed in a way expected to lower at-
mospheric CO, (Jaccard et al., 2016). Moreover, deglacial changes in
pH and carbonate ion concentration have been observed to vary
among the different Southern Ocean-ventilated water masses in a
way that is consistent with Southern Ocean-driven storage of CO,
in the deep ocean during the Last Glacial Maximum (LGM) (Rae
et al,, 2018; Allen et al., 2020). Additional support has been found
in deep ocean radiocarbon data for the LGM and subsequent
deglaciation: it appears that the radiocarbon content of the deep
ocean, relative to that of the atmosphere, was lower during the LGM
and rose during the deglaciation with a timing consistent with
Southern Ocean CO; release (e.g., Sikes et al., 2000; Marchitto et al.,
2007; Rose et al., 2010; Skinner et al., 2010; Burke and Robinson,
2012; Zhao et al., 2018). However, there are major uncertainties
in the significance of the radiocarbon data. Perhaps most impor-
tantly, the radiocarbon content of the modern Southern Ocean
surface is not at equilibrium with the overlying atmosphere, such
that a lower radiocarbon content in the deep ocean relative to the
atmosphere during the LGM may have reflected either a reduction
in surface-deep exchange or a reduction in the degree of equili-
bration at the sea surface (Hughen et al., 1998; Campin et al., 1999;
Stephens and Keeling, 2000; Schmittner et al., 2003; Hain et al.,
2011, 2014b; Galbraith and de Lavergne, 2019).

4.2. Southern Ocean surface nitrate and export production during
the ice ages

Our focus going forward is on proxies of biogeochemical con-
ditions in the Southern Ocean surface (Fig. 4). The >N/N ratio
(hereafter, 3'>N) of organic matter bound in the fossils of diatoms,
planktonic foraminifera, and deep sea corals suggests more com-
plete nitrate consumption (i.e., higher biological pump efficiency)
in Southern Ocean surface waters during the ice ages and thus
supports a key role for the Southern Ocean in ice age reductions in
atmospheric CO; (Fig. 4 d, e, i, j; Martinez-Garcia et al., 2014; Studer
et al, 2015; Wang et al,, 2017). For the AZ, this is qualitatively
consistent with previous measurements of the 3'°N of bulk sedi-
ment, but it overturns the previous conclusion for the SAZ (Francois
et al., 1997). The discrepant results for the SAZ are explicable in
terms of changing diagenetic overprint on the bulk organic matter
in the sediment that does not apply to the fossil-protected N
(Martinez-Garcia et al., 2014), and diagenesis may also have played
a role in the bulk sedimentary 3'°N changes observed in the AZ
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Fig. 4. Reconstructions of biogenic flux and fossil-bound nitrogen isotopic composition
from the SAZ and AZ over the last full glacial cycle. The Antarctic air temperature
reconstruction from EPICA Dome C ice deuterium is shown in black (a; Jouzel et al.,
2007), and the atmospheric CO, reconstruction compiled from Antarctic ice cores is
shown in gray (b; Liithi et al., 2008). The dark gray background indicates the main
glacial intervals MIS 6 and 2—4, the white indicates the full interglacial intervals (MIS
5e and 1), and the light gray indicates a period early in the development of the last ice
age (MIS 5a-d). In the SAZ, 2*°Th-normalized fluxes of alkenones (c, purple) and iron (f,
light gray) and foraminifera-bound 3'°N (d, dark green) are from the Atlantic sector
core ODP Site 1090 (Martinez-Garcia et al., 2014). Plotted with the ODP Site 1090
foram-bound 8'°N is a compilation of deep sea coral-bound §'°N from the SAZ south of
Tasmania (e, olive; Wang et al,, 2017). In the AZ, sediment barium-to-iron ratio (g,
blue), 2*°Th-normalized opal flux (h, purple), and pennate diatom-bound 3N (i,
green) are from the Pacific sector core PS75/072-4 (Studer et al., 2015). Coral-bound
3N is also shown from the AZ in the Drake Passage (j, olive; Wang et al., 2017).
Throughout, 3'°N is in permil, referenced to air N. In the SAZ, both biogenic flux and
35N are higher in glacial stages, suggesting higher export production and more
complete nitrate consumption in response to higher dust-borne iron fluxes to the SAZ,
supporting the iron fertilization hypothesis first proposed by John Martin. In the AZ,
biogenic flux is lower in the glacial stages than interglacial stages, suggesting lower
export production, while 3'°N is higher in glacial stages, suggesting a higher degree of
nitrate consumption. The combined changes in these two parameters indicate a
reduction in gross nitrate supply to the surface mixed layer during glacial stages.

(Studer, 2013). Regardless, the combined fossil-bound organic
matter 3°N changes from the AZ and SAZ provide a compelling
picture of Southern Ocean-wide nitrate drawdown during the ice
ages (Wang et al., 2017, and references therein). An important
caveat is that there are as yet no data from near the Antarctic
continent, where AABW forms.

In the AZ, the rise in the completeness of nitrate consumption
coincides with proxy evidence for a lower rate of export production
(the production and subsequent sinking of organic matter out of
the surface ocean; Fig. 4 g, h; Mortlock et al., 1991; Kumar et al.,
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1993; Francois et al., 1997; Jaccard et al., 2013). These two
changes together point to lower gross nitrate supply to the surface
and thus an apparent ice age reduction in the exchange of water
between the surface and the underlying ocean (here termed AZ
“surface isolation”) (Francois et al., 1997). Because AZ surface
isolation would have reduced the supplies of both nitrate and iron
to this iron-limited environment, productivity should have
declined, as observed (Lefevre and Watson, 1999; Studer et al.,
2015). However, it is expected that productivity would have
declined less than the nitrate supply, due to other routes of iron
supply to the AZ surface (Boyd et al., 2012) and the potential for
intensive iron recycling (Rafter et al., 2017). If so, the degree of
nitrate consumption should have risen, as the data indicate (Studer
et al.,, 2015). Recent support for AZ surface isolation comes from
evidence for a strong surface-to-deep water 3'%0 gradient in the AZ
during the glacial maxima of the late Pleistocene (Hasenfratz et al.,
2019).

In the SAZ, north of the AZ, more complete nitrate consumption
coincided with higher export production as well as increased dust
flux to the ocean (Fig. 4 c, d, e, f; Martinez-Garcia et al., 2014, and
references therein). These data argue for dust-borne iron fertiliza-
tion of the SAZ, enhancing export production and thus leading to
more complete nitrate consumption in this zone as well. With this
combination of AZ and SAZ physical and biological changes (Jaccard
et al., 2013), if supported by ocean cooling and not undercut by an
unexpectedly large terrestrial biosphere reduction, the full
(~90 ppm) ice age CO, decline is achievable (Fig. 2; Hain et al,,
2010).

4.3. Timing of changes: Antarctic Zone vs. Subantarctic Zone

Evidence points to AZ changes as important in initiating the
decline in atmospheric CO, going into ice ages (Jaccard et al., 2013;
Studer et al., 2015), such as the 30—40 ppm CO- decline at ~110 ka
early in the last glacial cycle (Fig. 4 b, i). In contrast, SAZ iron
fertilization became an important player only during the latter part
of the last ice age (Kohfeld et al., 2005; Martinez-Garcia et al., 2014;
Kohfeld and Chase, 2017), potentially explaining the 30—40 ppm
CO, decline at 60—70 ka (Fig. 4 b, c, d, e, f). The SAZ represents the
“final stop” of Southern Ocean surface waters before they are
subducted into the shallow arm of the upper cell. Thus, for AZ and
SAZ mechanisms for lowering atmospheric CO; to be fully com-
plementary, the AZ mechanism must involve the lower cell, which
the SAZ does not directly affect. Following the logic above (section
3.1), there are two options for the ice age AZ to contribute uniquely
to lower atmospheric CO5: (i) the AZ-sourced lower cell must have
ventilated less of the interior (i.e., AZ ventilation of the deep ocean
slowed, surrendering this process to the North Atlantic; e.g., Kwon
etal,, 2012), and/or (2) the preformed nutrient concentration in the
lower cell waters must have declined (i.e., the burden of unused
nutrients in the AZ surface must have declined). As summarized
above, there is evidence for distinct timings of AZ and SAZ
biogeochemical changes during the ice ages (Kohfeld et al., 2005;
Jaccard et al., 2013; Martinez-Garcia et al., 2014; Studer et al., 2015).
However, given that the SAZ is downstream of the AZ in the cir-
culation of the upper cell, it has been puzzling that AZ changes
during the last ice age had no clear effect on the productivity or
nutrient status of the SAZ (Martinez-Garcia et al., 2014). We will
revisit this point in section 9.2.

5. Physical and biological mechanisms for Southern Ocean-
driven reduction in atmospheric CO»

Why would the Southern Ocean have undergone these changes?
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While the evidence for iron fertilization in the ice age SAZ is
remarkable, it fits with our understanding of ocean processes as
gleaned from modern field studies and experiments (Boyd et al.,
2010). Indeed, John Martin originally proposed it based on mod-
ern ocean and culture studies, given the evidence from Antarctic ice
cores for increased atmospheric dust loads during the ice ages
(Martin, 1990). In contrast, a reduction in AZ subsurface/surface
exchange (i.e. the reconstructed AZ “surface isolation”) is unex-
pected at a mechanistic level, and it is not broadly accepted across
oceanography and climate science.

Skepticism within the paleoceanographic community derives in
part from the decades-long effort to map changes in the water mass
structure of the ocean interior. One of the central paleoceano-
graphic interpretations of data from the ice age Atlantic is that
southern hemisphere-sourced water was more volumetrically
dominant, occupying the depths below 2.5 km in most of the basin
(Rutberg et al., 2000; Lynch-Stieglitz et al., 2007). For decades, this
was almost universally accepted as corresponding to more vigorous
deep water formation in the AZ, and much of the community still
holds this view. Subsequently, it was found that this abyssal volume
(and abyssal water in other basins) was very slowly ventilated with
respect to atmospheric radiocarbon (Sikes et al., 2000; Keigwin,
2004), consistent with slow formation of deep waters that never-
theless were adequately dense to occupy most the deep Atlantic.
Very slow ventilation in the AZ may mean that the last true
ventilation of the reconstructed southern-sourced abyssal volume
occurred in the North Atlantic (Hain et al., 2010). In this scenario,
North Atlantic-ventilated water was transported at intermediate
depths into the Southern Ocean. Rather than being vigorously
ventilated there, it entrained only a small volume of very slowly
forming Antarctic Bottom Water, with the resulting mixture being
adequately dense to sink deeper in the water column and spread
throughout the global abyssal ocean (Kwon et al., 2012). This view
appears to be consistent with Neodymium isotope data, which
suggest that North Atlantic-sourced water was a significant
contributor to the filling of the abyssal Atlantic (Howe et al., 2016).
Benthic foraminiferal carbon isotope data have been interpreted to
argue against such a situation (e.g., Sikes et al., 2017); however, the
carbon isotopes may be influenced by remineralization and air/sea
gas exchange. Nevertheless, given the evidence for a large,
coherent, mostly southern-sourced abyssal volume during the last
ice age (Lynch-Stieglitz et al., 2007), it is fair to be skeptical of the
proposal of slower AZ ventilation of the interior. Moreover, modern
AZ surface waters are radiocarbon-poor due to the slow rate of air/
sea gas exchange, so the low radiocarbon content of the glacial
abyssal ocean, by itself, does not require slower overturning
through the AZ surface (Campin et al., 1999; Schmittner et al., 2003;
Galbraith and de Lavergne, 2019).

Another important cause for skepticism of ice age AZ surface
isolation is a lack of support from climate models and other nu-
merical models of ocean circulation. In models run to steady state
under LGM background conditions as part of the Paleoclimate
Modelling Intercomparison Project, the response among at least a
subset of the models is for AZ overturning to be enhanced (Otto-
Bleisner et al., 2007; Wainer et al, 2012). This appears to be
largely a consequence of enhanced sea ice formation, which den-
sifies AZ surface waters due to brine rejection. Similar behavior has
also been observed in other model simulations with the sole
background change of lower atmospheric CO, concentration
(Stouffer and Manabe, 2003) or with a broader range of prescribed
changes (Jansen, 2017; Galbraith and de Lavergne, 2019). This has
been interpreted as consistent with model simulations of ongoing
global warming; in these simulation, polar ocean overturning tends
to decline (Sarmiento et al., 1998), due in part to a rise in the pre-
cipitation excess relative to evaporation at high latitudes.
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Numerical model simulations have been used to explore the hy-
pothesis of AZ surface isolation during the ice ages (Toggweiler
et al., 2006; Tschumi et al., 2008; Menviel et al., 2018); however,
these studies rely on purposefully imposed changes in the winds or
in freshwater discharge from the Antarctic continent. To our
knowledge, AZ surface isolation has never occurred spontaneously
in a climate model under ice age boundary conditions.

If physical models do not produce AZ surface isolation, the
question arises: What mechanism do models offer to explain the
lower CO; of ice ages? Reduced sea-to-air CO; release due to seaice
cover occurs in at least some model simulations (Ferreira et al.,
2018; Marzocchi et al., 2019). Nevertheless, the plausibility of this
explanation remains unclear (Kurahashi-Nakamura et al., 2007;
Sun and Matsumoto, 2010). Among other factors, it depends on the
sensitivity of gas exchange rate to sea ice cover (e.g., Loose and
Schlosser, 2011). With regard to paleoceanographic observations,
one issue with the hypothesis of sea ice-driven gas exchange lim-
itation is that wintertime sea ice formation and associated deep
mixing would increase gross nitrate supply to the surface, whereas
the nitrogen isotope and export production proxy data suggest a
reduction in gross nitrate supply. There are two possible solutions
to this apparent discrepancy. First, the AZ summer mixed layer may
have been much shallower during ice ages, perhaps due to sum-
mertime sea ice melt, allowing a higher degree of nitrate con-
sumption to coincide with a reduction in area-normalized export
production (Keeling and Visbeck, 2001). Simulation of such mixed
layer shoaling suggests that it alone cannot quantitatively explain
the paleoproxy data (Kemeny et al., 2018), but it cannot be pre-
cluded. Second, the AZ core sites studied so far may have “missed”
the regions that hosted intense sea ice formation and deep ocean
ventilation during the ice ages. Instead, the upper water columns of
studied sites may have been stabilized by receiving sea ice and
associated fresh water from the regions of sea ice formation and
overturning (see Sigman and Haug, 2003, their Figure 9). However,
there is a lack of evidence for these alternatives. Accordingly, we
seek a plausible ocean circulation (as opposed to gas exchange)
mechanism by which the AZ surface waters reduced their leakage
of CO, to the atmosphere during the ice ages.

5.1. Hypotheses for Antarctic Zone “surface isolation”

A number of proposals exist for the cause of AZ surface isolation
during ice ages. One category involves the conditions of the
Southern Ocean upper water column (sections 5.1.1., 5.1.2, and
5.1.3), while another category involves the deep ocean (sections
5.1.4 and 5.1.5).

5.1.1. Decreased wind-driven upwelling

Perhaps the best-known hypothesis is that a northward shift
and/or weakening of the Southern hemisphere westerly winds
during ice ages reduced Ekman upwelling in the AZ and that this in
turn led to decreased ventilation of the deep Southern Ocean
(Toggweiler et al., 1999, 2006; Sigman and Boyle, 2000). This
change would have slowed the nitrate supply to the AZ surface,
consistent with the paleobiogeochemical evidence.

In the modern ocean, AZ upwelling and the associated Southern
Ocean upper cell is linked in the global circulation to NADW for-
mation (Fig. 1 a) (Toggweiler and Samuels, 1995; Marshall and
Speer, 2012). NADW formation transfers into the ocean interior
water that has been stripped of nutrients as it passed through low
latitudes, with these nutrients being returned to the ocean in the
low latitudes as sinking organic matter, storing respired CO, in the
ocean interior (Fig. 3a). Thus, if weaker Ekman upwelling in the AZ
during ice ages also weakened NADW formation, this would work
to reduce the efficiency of the global ocean’s biological pump. This
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change would tend to raise — not lower — atmospheric CO,. Thus, in
order to substantially lower atmospheric CO,, the weakening of the
upper cell must also lead to the weakening of the lower cell, which
is today responsible for much of the inefficiency in the global
ocean’s biological pump (section 3.1). Mechanisms by which
weaker wind-driven upwelling (a weakening of the upper cell) may
have reduced either the preformed nutrient content in the lower
cell or the degree of ventilation of the ocean interior by the lower
cell are discussed in section 8 to 9. Here, we should specifically note
the mechanism that arose in Toggweiler et al. (2006): with a longer
residence time for AZ surface waters, a stronger halocline devel-
oped, impeding deep water formation (see also De Boer et al.,
2008).

5.1.2. Sea ice effects

Both models and data suggest that the polar ocean experienced
more extensive sea ice during the ice ages, especially with regard to
wintertime coverage (Gersonde et al., 2005; Otto-Bleisner et al.,
2007). These findings of more extensive sea ice and a more active
sea ice cycle have led to hypotheses for the cause of glacial/inter-
glacial CO; change (e.g., the gas exchange limitation hypothesis of
Stephens and Keeling, 2000, section 3.1).

A hypothesis more related to the evidence for AZ surface
isolation was put forward by Bouttes et al. (2010), referred to here
as the “brine export” hypothesis. The growth of the Antarctic ice
sheet and the lowering of sea level would likely have reduced the
areas of the Antarctic continental shelves. This has been proposed
to shift the intense sea ice formation from shallow shelves today to
deep waters during the ice ages (Paillard and Parrenin, 2004).
Bouttes et al. (2010) proposed that, during the ice ages, this caused
the efficient export of a more pure (undiluted) brine into the deep
ocean. If so, this would have freshened the AZ even in the regions of
net sea ice formation, enhancing the salinity-driven density strat-
ification, and thus slowing the ventilation of the deep ocean by the
AZ.

The brine export hypothesis is challenged by the lack of a
modern analogue. The brines generated from sea ice today are
observed to entrain mixed layer water, such that modern sea ice
formation can export salt to the deep ocean only if the bulk surface
mixed layer water of a given region becomes adequately dense to
sink, leading to ventilation of the ocean interior (Grimm et al., 2016;
Ohshima et al., 2013; Shcherbina et al., 2003). Nevertheless, the
hypothesis warrants inclusion in our list of proposed mechanisms.

5.1.3. Effects of a more expansive Antarctic Zone

Ferrari et al. (2014) and Watson et al. (2015) developed scenarios
for the glacial ocean that focus on the areal extent of the region of
buoyancy loss in the glacial AZ (essentially the PAZ). Ferrari et al.
(2014) propose that the northward expansion of Antarctic sea ice
caused or heralded a similar expansion in the AZ region of buoy-
ancy loss. For a given overturning rate for the Southern Ocean’s
lower cell, this would have increased the residence time of water in
the AZ surface between ascending from depth and sinking back into
the interior (Ferrari et al., 2014; Watson et al., 2015). With this
longer residence time of water at the surface, similar or even
reduced biological productivity could have led to more complete
nitrate consumption. Moreover, it would imply a slower removal of
buoyancy of the AZ surface and thus slower deep water formation
near the Antarctic margin (Watson et al., 2015). Moreover, we note
here that a longer residence time of surface waters in the AZ may
have allowed the AZ halocline to strengthen, further slowing deep
water formation. This effect on the halocline was introduced above
as a potential consequence of a decline in wind-driven upwelling
(section 5.1.1).

A complementary mechanism focused on the Southern Ocean’s
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upper cell is that the westerly winds and Southern Ocean fronts
shifted equatorward during the ice ages, increasing the area of the
entire AZ, not solely the region of buoyancy loss (e.g., Lawrence
et al.,, 2013). If such a change occurred, the upwelling would have
become more remote from the PAZ, also increasing the residence
time of PAZ surface waters. Once again, this would have slowed the
per-area nutrient supply and may have allowed the PAZ halocline to
strengthen, reducing the tendency for deep ventilation by the
region.

5.1.4. Reduced abyssal mixing

Another hypothesis is of a glacial decline in abyssal mixing due
to the shoaling of the upper branch of the lower cell away from
bathymetric features, which in effect reduces the demand for new
deep water to form in the AZ (Watson and Naveira Garabato, 2006;
Lund et al.,, 2011; Ferrari et al., 2014; De Boer and Hogg, 2014). Deep
ocean mixing decreases the density of deep waters and thus en-
courages new deep water formation. Studies of this mixing suggest
that it is particularly intense over rough seafloor topography
(Wunsch and Ferrari, 2004). The contact between NADW and
AABW in the modern ocean is adequately deep for mixing over the
Atlantic seafloor to efficiently mix the two water masses. One of the
most well-known findings from the ice age ocean is that there was
a ~1 km shoaling of the contact zone between North Atlantic
sourced deep water (above) and southern sourced deep water
(below) (Lynch-Stieglitz et al., 2007). Shoaling this contact during
ice ages may have allowed the seafloor-induced mixing to occur
entirely within southern sourced abyssal water (i.e., AABW),
dramatically slowing the rate of buoyancy gain in this water.
Accordingly, the draw for new AABW would have been reduced.

Atmospheric CO, declined roughly halfway to LGM levels early
in the progression of the last ice age, at 110-115 ka, and it was
approximately at this time that Antarctic air temperature fell and
that AZ diatom-bound 3'°N shows a clear rise (Fig. 4 a, b, i). All of
these observations suggest that AZ surface isolation and the asso-
ciated reduction in deep ocean ventilation began at ~115 ka. In
contrast, the shoaling of the NADW/AABW contact apparently did
not become a persistent glacial feature until ~70 ka, at the marine
isotope stage (MIS) 5/4 boundary (Piotrowski et al., 2005). Thus,
there are some signs of a temporal mismatch between the pre-
dictions of the hypothesis and observations. However, not all ver-
sions of this hypothesis focus on the NADW/AABW contact as the
critical parameter in affecting deep mixing (Watson and Garabato,
2006).

5.1.5. Effect of homogenous cooling on the ocean’s density structure

In the AZ, wintertime temperatures are lowest at the surface,
encouraging vertical mixing and, in the extreme cases, deep water
formation. However, the halocline works against temperature’s
drive for overturning.

A proposal for AZ surface isolation during ice ages involves the
lower sensitivity of density to temperature at low temperatures,
referred to here as the “equation of state” (or “EOS”) mechanism
(Sigman et al., 2004; DeBoer et al., 2007). In the EOS mechanism,
global ocean cooling reduces the effect of temperature on polar
ocean density structure, effectively increasing the leverage of the
low salinity of the AZ upper ocean to strengthen density stratifi-
cation. In the case of a homogenously colder water column, the
decrease in temperature from deep water into the polar ocean
surface causes a weaker density increase from deep to surface. In
contrast, the shift toward a colder water column does not cause a
significant change in the effect of surface water freshness to lower
its density relative to deep waters. In net, under homogenous
cooling, the surface waters become less dense relative to deep
waters. This discourages wintertime vertical mixing and deep
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water formation. Once this decline in surface/deep exchange has
been initiated, the longer residence time of surface waters may
allow the halocline to strengthen, further strengthening the density
stratification.

6. The subarctic North Pacific as a point of comparison

The modern SNP has significant similarities with the AZ. Within
their upper water columns, the depth profiles of temperature,
salinity, density, and nutrients, as well as their seasonality, are
remarkably similar, especially when comparing the AZ to the
western SNP and Bering Sea (Talley et al., 2011). Both regions host
Ekman-(i.e.,, westerly wind driven-)upwelling of nutrient-rich
subsurface waters, which leads to nutrient-richness at the surface
(Gargett, 1991). In both regions, iron limitation prevents complete
consumption of the major nutrient supply to the surface mixed
layer (de Baar et al., 2005).

At the same time, the two regions do have important differ-
ences. The SNP lacks the deep circumpolar channel that charac-
terizes the Southern Ocean and that allows the Ekman upwelling to
draw large quantities of deep, dense, nutrient-rich water to the
surface. Rather, the nutrient richness of the SNP upper water col-
umn appears to depend partly on diffusion-driven upwelling at the
base of the pycnocline, which is enhanced by turbulence near steep
bathymetric features (Fig. 1 a) (Nishioka et al., 2020). Ekman up-
welling then conveys the nutrient-rich intermediate water to the
surface. Perhaps the most fundamental distinction is that the SNP
currently does not ventilate the deep ocean at significant rates
(Warren et al., 1983). In this regard, the SNP possesses an analogue
to the Southern Ocean’s “upper cell” but lacks a clear analogue to
the Southern Ocean’s “lower cell.”

As described below, the AZ and SNP also have notable similar-
ities in their paleobiogeochemical records of glacial/interglacial
cycles. In the context of the search for a mechanism for AZ surface
isolation, we consider here the possibility that a single mechanism
explains the observations from both regions. This would provide a
possible basis, albeit a tentative one, for favoring one mechanism
over others.

6.1. Glacial/interglacial changes

During the late Pleistocene ice ages, as with the AZ, the SNP was
characterized by reduced export production as indicated by low
burial fluxes of biogenic components (e.g., Jaccard et al., 2005) and
by a high degree of surface nitrate consumption as indicated by
nitrogen isotopic data (Brunelle et al., 2007, 2010; Galbraith et al.,
2008; Ren et al, 2015; Worne et al, 2019) (Fig. 5). Looking
further back in time, the onset of major ice age cycles ~2.7 million
years ago coincided with a sharp drop in export production in both
the SNP and the AZ (Haug et al., 1999; Sigman et al., 2004), and SNP
nitrogen isotope studies have found that this was also accompanied
by an increase in surface nitrate consumption (Studer et al., 2012).
As for the AZ, these coupled changes have been interpreted to
reflect a reduced supply of nitrate into the sunlit surface layer of the
SNP under cold conditions. This may have been due to a reduction
in surface/subsurface exchange (Jaccard et al., 2005; Brunelle et al.,
2007, 2010; Galbraith et al., 2008; Ren et al., 2015) and/or a decline
in subsurface nutrient concentration (Gray et al., 2018). Given the
evidence for the similarity of glacial/interglacial change in the AZ
and SNP, in our view, the default starting hypothesis should be of
the same basic mechanism of change in the two regions (Haug and
Sigman, 2009).

10

Quaternary Science Reviews 254 (2021) 106732

—~ 35 a MIS 2-4 MIS 6
§x
9§ 3.5
52 ¢
_—
545 hb —280
@ 5 260 =
240 &
220 5
200 ©
180
subarctic North Pacific
2000 ~50
—_ ©
sl = —~ 00
é% 16004 40 g8
S & 1200 d L 30 =6
mQ Qo5
o O -20 O =
@ 800 5
e L
3 _ 400~ 10
SE 2 4
EErTe 5 9
25035 o,
= 0 2 7
c 52 E 8 \ | \,
SEO5 ¢
S84l 9
8 F 4o
Lio io .
i Antarctic Zone
<08 g
~N —_
506 s x5
ag |, S48
» 0.4 T EB
e 555
3 0.2 1o
Ez Lo B
28 g €~
E3
8%y ML
283 | 10 82§
EES4 L11238¢2
o~ s51a
cmn 5 F12 ET® o
0% ¢ 13 58%
z =25
L A B e B e e . . —14 §7°
! 0 20 40 60 80 100 120 140 160 L'
Age (ka) !

Fig. 5. Comparison of reconstructions of biogenic flux and fossil-bound nitrogen iso-
topic composition from the AZ and western SNP, which argue for reduced nitrate
supply in both regions during ice ages. The benthic foraminifera 5'30 stack of Lisiecki
and Raymo (2005) is shown in black, and the atmospheric CO, reconstruction
compiled from Antarctic ice cores is shown in gray (Liithi et al., 2008). The gray
background indicates the main glacial intervals MIS 6 and 2—4, and the white indicates
the predominantly interglacial intervals MIS 5 and 1. In the AZ, 2*°Th-normalized opal
accumulation and barium-to-iron ratio (purple and blue) and pennate diatom-bound
35N (dark green) are from Pacific sector core PS75/072-4 (Studer et al., 2015).
Plotted with the diatom-bound §'°N is a compilation of deep sea coral-bound 3'°N
from the AZ in the Drake Passage (olive; Wang et al., 2017). In the western SNP,
biogenic barium concentration (blue) is from ODP Site 882, biogenic opal concentra-
tion records are from ODP Site 882 and Roundabout PC13 (pink and purple), diatom-
bound 3N (dark green) is from PC13, and foraminifera-bound 3'°N (grass green) is
from INOPEX core S0202-07-6 (Jaccard et al., 2005; Brunelle et al., 2010; Ren et al.,
2015). Diatom-bound 3N is also shown from Healy-0202 JPC17 in the central
Bering Sea back to 50 ka (aqua) (Brunelle et al., 2007). In both regions, biogenic fluxes
are lower in glacial stages than interglacial stages, while 5'°N is higher in glacial stages,
the former suggesting lower export production and the latter suggesting a higher
degree of nitrate consumption. Following the arguments of Francois et al. (1997), the
combined changes in these two parameters require a reduction in gross nitrate supply
to the surface mixed layer during glacial stages. Both SNP diatom-bound §'°N records
show a local minimum during Heinrich Stadial 1 (HS1) at the end of MIS 2; this
minimum does not occur in foraminifera-bound 3'°N (Ren et al., 2015; see Fig. 6) and
appears to be an artifact deriving from sponge spicules due to the very low abundance
of diatom opal in this depth interval of the western SNP sediment cores (Studer et al.,
2013).

6.2. Deglacial changes

In contrast to the similarity of the glacial/interglacial changes in
the AZ and SNP, the two regions have an important distinction in
the timing of changes at the last deglaciation (Fig. 6). At the end of
the last ice age, the most rapid Antarctic warming began at ~18 ka,
and atmospheric CO, began to rise at approximately the same time.
The first rise in AZ opal flux and decline in diatom-bound 8'°N had
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Fig. 6. Comparison of reconstructions of biogenic flux and diatom- or foraminifera-
bound nitrogen isotopic composition from the AZ and western SNP across the last
glacial termination (i.e., the last deglaciation). In the AZ (right), 2>°Th-normalized opal
and biogenic barium accumulation (purple and pink), pennate and total diatom-bound
3N (dark and light green), and TEX}e-based sea surface temperature (bronze) are
from the same Pacific sector core (PS75/072-4) as shown in Figs. 4 and 5. In the
western SNP (left), 22°Th-normalized fluxes of biogenic barium (pink), biogenic opal
(purple), and CaCO; (blue) and the 3'N of foraminifera-bound N (N. pachyderma (s) in
dark green, G. bulloides in light green) are from core SO202-07-6 (Ren et al., 2015); Mg/
Ca-based sea surface temperature (bronze) is from core SO-201-2-12KL (Riethdorf
et al.,, 2013); and boron isotope-based surface water pCO, (pink) is from core MDO1-
2416 (Gray et al., 2018). The ice 3'30 record from Greenland ice core NGRIP and the
ice dD record from Antarctic ice core EPICA Dome C are shown in black on the left and
right, reflecting northern and southern hemisphere high latitude air temperature
(NGRIP Community Members, 2004; Jouzel et al., 2007). The gray background indicates
northern hemisphere cold phases first identified in the circum-North Atlantic (Hein-
rich Stadial 1 (HS1) and the Younger Dryas (YD)), and the white indicates warmer
northern hemisphere intervals (the Bolling-Allerod (B—A), also indicated as the Ant-
arctic Cold Reversal (ACR), and the post-Younger Dryas). Triangles indicate age control
points for S0202-07-6 (left) and PS75/072-4 (right) (Studer et al, 2015; Ren et al.,
2015). The SO202-07-6 age model is well-resolved (Serno et al, 2015; Ren et al.,
2015) and clearly indicates that the deglacial increase in surface/subsurface ex-
change in the SNP does not occur until the B-A. The SNP 3'°N decline may have been
delayed by subsurface nitrate 3'°N changes during the B-A (Ren et al., 2015), such that
SNP nitrate consumption may have fallen earlier in the B-A than is suggested by the
timing of the 5'°N decline. While the age model at AZ core PS75/072-4 derives largely
from planktonic §'80 (Studer et al., 2015) and is less certain, the first rise in TEXgsL-
based sea surface temperature in the core, when aligned with the warming reflected in
Antarctic ice core 3D, indicates that the AZ biogeochemical changes began during HS1
and not during the B-A, and this is consistent with other studies (Anderson et al., 2009;
Jaccard et al., 2013).

similar timing (Fig. 6) (Anderson et al., 2009; Studer et al., 2015).
These data point to an increase in the supply rate of nitrate to AZ
surface waters that began at a similar time as the rises in atmo-
spheric CO, and Antarctic air temperature. This suggests a role for
AZ surface/deep water exchange in the deglacial CO; rise.
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These first deglacial Antarctic changes approximately coincide
with the Heinrich Stadial 1 (HS1) in the North Atlantic (Anderson
et al., 2009). This event is characterized by circum-North-Atlantic
cooling, debris-bearing icebergs, freshening of polar North
Atlantic surface waters, and a dramatic reduction in North Atlantic
subsurface water formation (Hemming, 2004; McManus et al.,
2004). The possible mechanistic connections between the North
Atlantic and Antarctic through this deglacial sequence have
received much consideration, with proposals for both atmospheric
and deep ocean pathways by which the North Atlantic changes
could drive an increase in AZ overturning (Crowley, 1992; Broecker,
1998; Lamy et al., 2007; Marchitto et al., 2007; Schmittner et al.,
2007; Sigman et al, 2007; Schmittner and Galbraith, 2008;
Toggweiler, 2009; Anderson et al., 2009; Barker et al., 2009; Denton
et al., 2010; Meckler et al., 2013).

With regard to these millennial time scale deglacial changes, the
SNP alternated with the AZ. The first major Antarctic warming
occurs at HS1, when the SNP remains cold. The SNP undergoes its
first major warming coincident with the Bolling-Allerod (B-A)
warm interval of the circum-North Atlantic (Praetorius and Mix,
2014), when warming pauses or reverses in Antarctica. Similarly,
while the AZ shifts toward Holocene biogeochemical conditions at
HS1, in the SNP, opal flux declines weakly from already very low
LGM levels into HS1, and foraminifera-bound 3°N shows no sign of
a change from glacial values (Ren et al., 2015). The SNP undergoes
its first major surface biogeochemical change at the B-A (Galbraith
et al., 2007), when the combined biogenic flux and foraminifera-
bound 8'°N data indicate an increase in nitrate supply to the SNP
surface (Fig. 6 d, e, f, g). Apparently coincident with this, surface
pCO; rises, consistent with more rapid supply of regenerated nu-
trients and carbon from the ocean interior (Fig. 6 h; Gray et al,,
2018). In summary, in the AZ and SNP, nitrate supply to the sur-
face appears to rise upon warming in that region and/or its
hemisphere.

Taking these deglacial observations together with those for the
larger scale glacial/interglacial changes in both regions, a simple
coupling is suggested between regional climate and nitrate supply
from below, with reduced circulation-driven nitrate supply under a
climate that is colder on a regional basis. That is, the control on
nitrate supply in the AZ and SNP appears to be regional - not global
- climate. One caveat to this interpretation is that deglacial
enhancement of AZ overturning might not have been a response to
its own regional climate; hypotheses exist for a trigger from
declining North Atlantic overturning through the ocean interior
(Broecker, 1998; Schmittner et al.,, 2007; Sigman et al., 2007;
Schmittner and Galbraith, 2008; Meckler et al., 2013). However, the
SNP experienced enhanced nitrate supply at the same times that
NADW formation strengthened (McManus et al., 2004), such that
compensatory behavior in the North Atlantic and SNP does not help
to explain the deglacial timing of SNP changes. To explain the SNP
changes, it appears that one must look to the SNP region.

6.3. Comparison of the Antarctic Zone mechanisms with subarctic
North Pacific changes

Based on the discussion above, hypothesized explanations for
the reconstructed changes in subsurface-to-surface nutrient supply
in the AZ and SNP can be evaluated on their potential to explain two
observations (Table 1). The first is the similarity of glacial/inter-
glacial changes in the AZ and SNP; specifically, subsurface-to-
surface nutrient supply in both regions appears to decline
strongly during the ice ages. The second is the millennial-scale
evidence for distinct timings of deglacial change in the two re-
gions. This evidence from the last deglaciation suggests that the
rate of subsurface-to-surface nutrient supply increased when
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Table 1
Agreement of proposed “surface isolation” mechanisms with two observations.
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Glacial “surface isolation” in both AZ and SNP’

Millenial synchroneity of deglacial end to “surface isolation”

mechanism

westerly winds*® Yes
abyssal mixing® No
equation of state® Yes?®
brine export® Yes?
expanded region of buoyancy loss® No
Observations Yes

No
Yes
NOh
Yes
No
No

2 Toggweiler et al. (2006); Toggweiler (2009).

b Watson and Naveira Garabato (2006); Lund et al. (2011); Ferrari et al. (2014); De Boer and Hogg (2014).

¢ Sigman et al. (2004); De Boer et al. (2007, 2008).

d Bouttes et al. (2010).

€ Ferrari et al. (2014); Watson et al. (2015).

f AZ, Antarctic Zone; SNP, western subarctic North Pacific.

€ 7 indicates points of greatest uncertainty (see text).
h

deglacial warming began in each region’s respective hemisphere.
We now revisit the proposed mechanisms for ice age AZ isolation
discussed above (section 5.1), assessing their consistency with
these two observations.

6.3.1. Glacial/interglacial changes

Given the lack of deep water formation in the modern SNP, the
similarity of the glacial/interglacial paleoproxy changes between
the AZ and SNP (Fig. 5) cannot reflect an ice age reduction in deep
ocean ventilation by each region. This argues against mechanisms
that are driven from the deep ocean or strictly involve deep water
formation. The hypothesis of reduced abyssal mixing falls into this
category.

On an annual basis, density-driven wintertime deep mixing is
critical for importing nutrients to the mixed layer. However,
without upwelling to restore the nutrient content of the upper
water column with nutrients (ultimately from deep water), sum-
mertime nutrient consumption and wintertime mixing would
eventually deplete the upper water column of its nutrients.
Conversely, a reduction in wintertime mixing depth alone might
not greatly reduce the annual nutrient supply, as the upwelling
would raise high-nutrient deep water to the base of the euphotic
zone. This argument suggests that the observed ice age reduction in
nutrient supply to the AZ and SNP is better explained by a reduction
in upwelling than by a reduction in upper ocean vertical mixing.
However, nutrient supply is a physically complex process, and so,
for the time-being, we allow that either change could be consistent
with the data (Table 1). For example, the “brine export” and EOS
hypotheses, if they acted in the SNP, would have reduced vertical
mixing in the upper water column, which may have slowed the
nutrient supply to the surface.

The proposal of an expansion of the area of buoyancy loss in the
PAZ is focused on the flow associated with the Southern Ocean’s
lower cell (Ferrari et al., 2014; Watson et al., 2015), which has no
analogue in the SNP (Table 1). However, an expansion of the AZ and
SNP as a whole, for example, as a result of equatorward migration of
the westerlies (e.g., Lawrence et al., 2013), would have slowed the
per-area nutrient supply associated with the wind-driven upwell-
ing in both regions. Thus, a scenario of zone expansion may have
contributed to the observed changes in both the AZ and SNP over
glacial cycles. Parenthetically, models and data appear consistent
with an expansion of the SNP under glacial conditions. Climate
models consistently predict an equatorward shift in the westerly
winds in the North Pacific (Wang et al,, 2018), and planktonic
foraminifera oxygen isotope data are consistent with an equator-
ward expansion of the North Pacific subpolar gyre (Gray et al.,
2020).
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EOS mechanism would strengthen surface isolation during a deglacial warming, opposite to observations.

6.3.2. Deglacial changes

The timing of deglacial biogeochemical change in the AZ and
SNP provides a complementary criterion for evaluating the un-
derlying physical mechanism of AZ surface isolation during the ice
ages. Specifically, the distinct timings of the deglacial increase in
gross nutrient supply in the AZ and the SNP argue against any
driver that would have the same timing in the two hemispheres.

The “brine export” hypothesis is based on ice age sea level
lowering, which shifts sea ice formation off the Antarctic shelf
(Bouttes et al., 2010). Given the largely global nature of deglacial sea
level rise, the distinct timings of AZ and SNP deglacial changes
(Fig. 6) appear inconsistent with this mechanism operating on the
margins of both the AZ and the SNP and driving the observed
paleobiogeochemical changes (Table 1).

The asynchrony of the AZ and SNP deglacial changes also argue
against mechanisms operating through the ocean interior. Thus, a
glacial reduction in abyssal mixing and the effect of deep ocean
cooling on the temperature sensitivity of seawater density (the EOS
hypothesis) are not supported as the triggers of the deglacial loss of
AZ isolation (Table 1). One caveat is that it may take substantial
time for a signal to propagate through the ocean interior. However,
the ~3 kyr difference between AZ and SNP changes (Fig. 6) appears
too great to be explained by a circulation-associated delay in the
SNP. Finally, the EOS mechanism would also be influenced by
region-specific surface water temperature changes. However,
deglacial surface warming would have increased surface isolation
in a given region, the opposite of the observations (Table 1).

Mechanisms driven by the atmosphere will, for the most part,
tend to be consistent with the observational test of deglacial timing,
with their greatest deglacial change occurring upon warming in
their region or hemisphere (Table 1). From the perspective of this
test, changes in westerly wind-driven upwelling (Toggweiler et al.,
2006) and/or in the areal extents of the AZ and SNP (Lawrence et al.,
2013; Ferrari et al., 2014; Watson et al., 2015) are both plausible.

6.3.3. Summary of the Antarctic Zone/subarctic North Pacific
comparison

To the degree that AZ and SNP changes in reconstructed gross
nutrient supply share a driving mechanism, comparison of the AZ
and SNP offers constraints on the origins of the “surface isolation”
of the ice age AZ (Table 1). The AZ surface isolation mechanism that
fares best when held up against the comparison of data from the AZ
and the SNP is the westerly wind-driven upwelling mechanism of
Toggweiler et al. (2006) (Fig. 1 b), so long as this mechanism also
applies to the northern hemisphere westerly winds (Table 1). The
other mechanisms fail in at least one of two respects. Some fail to
explain the observation that an ice age reduction in subsurface-to-
surface nitrate supply occurs in both the AZ and the SNP (left
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column in Table 1). Some are inconsistent with the evidence from
the last deglaciation that the changes in nitrate supply in each re-
gion respond to regional/hemispheric atmospheric temperature,
not global atmospheric or deep sea temperature (right column in
Table 1).

These conclusions have several qualifications that should be
raised here. First, while the AZ/SNP comparison argues against a
deep ocean trigger for the AZ and SNP changes, abyssal mixing
appears to have been reduced at some point during the ice ages, at
which point it may have contributed to AZ surface isolation. This is
discussed below (section 9.1.2). Second, the same driver need not
have applied to all changes in both the AZ and the SNP. For example,
the reconstructed deglacial increase in AZ surface/subsurface ex-
change at HS1 appears to be a response to declining North Atlantic
overturning, through a westerly wind change, as a response to
changes in the ocean interior, or both (Sigman et al., 2007;
Schmittner and Galbraith, 2008; Anderson et al., 2009; Denton
et al,, 2010; Meckler et al., 2013). In addition, teleconnections be-
tween the North Atlantic and the SNP have been observed in
models (Mikolajewicz et al., 1997; Saenko et al., 2004; Schmittner,
2005; Okumura et al., 2009). However, these connections would
have enhanced nitrate supply to the SNP surface during HS1, not
the B-A. So our timing-based argument in favor of a glacial reduc-
tion in wind-driven upwelling remains valid.

6.4. Upper water column changes in the glacial subarctic North
Pacific and Antarctic Zone

Here, we note a substantial body of data that has led to an
interpretation of the glacial SNP that is different from our inter-
pretation of SNP surface isolation. Previous studies find evidence
for reduced nutrients and better ventilation of the upper water
column (down to ~1.5 km) of the SNP from the ice age through the
early deglaciation (Keigwin, 1998; Okazaki et al., 2010; Max et al.,
2014; Gray et al.,, 2018). Based on foraminiferal stable carbon
isotope, radiocarbon, and micropaleontological data, these studies
argue that the LGM and/or HS1 were periods of enhanced inter-
mediate water formation in the SNP. These interpretations are
supported by the finding in some models that a shutdown in North
Atlantic overturning encourages ventilation of the mid-depths in
the SNP (Okazaki et al., 2010; Gong et al., 2019). Enhanced inter-
mediate water formation would appear to be at odds with the SNP
surface isolation during the glacials for which we have argued
above. In this interpretation, the nutrient impoverishment of the
glacial SNP surface is due not to a decline in the nutrient supply
from below but rather to increased input of low-nutrient sub-
tropical water flowing into the SNP to feed intermediate water
formation (Gray et al., 2018).

We propose a related but distinct explanation for these obser-
vations from the SNP. In this explanation, the reduction in nutrients
and the lower radiocarbon ages of the mid-depths during the LGM
and HS1 were, at least in part, due to the reduction in westerly
wind-driven upwelling in the SNP for which we have argued above
(Fig. 1 b). Slower upwelling would have yielded a lower rate of
upward advection of nutrient-rich and *C-depleted interior water
toward the surface. Without this upward advection but with
continued vertical mixing (e.g., deep winter mixing), the sinking
flux of biogenic material would have “mined out” the nutrients
from the upper water column of the glacial SNP (Fig. 1 b, blue color
of the mixing arrows in the SNP) while raising the 'C content of the
upper water column.

The formation of North Pacific Intermediate Water (NPIW) could
have played a similar role. If, during the LGM and HS1, surface
waters were lower in nutrient concentration, then NPIW formation
could have transmitted this nutrient reduction to the SNP
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subsurface at the depths that it ventilates today (the upper ~1 km).
Without the counteracting effect of the upward advection of nu-
trients from wind-driven upwelling, NPIW formation need not have
been faster to achieve this effect. Thus, whereas there have been
interpretations of an increase in NPIW formation and vertical
mixing during the LGM and HS1 (Okazaki et al., 2010; Max et al.,
2014; Gray et al., 2018), we call solely for the persistence of these
processes, possibly even at rates lower than modern, but uncoun-
tered by westerly wind-driven upwelling. Reciprocally, so long as
enhanced NPIW formation during the LGM and HS1 did not
significantly increase the nitrate supply to the SNP surface, then our
reconstruction of reduced nitrate supply does not argue against it.

In addition, the reduction in westerly wind-driven upwelling
would have contributed to mid-depth nutrient depletion in both
the SNP and the AZ during the ice ages through its effect on pyc-
nocline structure. The pycnocline tilt away from the polar regions is
driven by Ekman upwelling and partially counteracted (“compen-
sated”) by eddies (Marshall and Speer, 2012; Gent, 2016). During
the ice ages, without strong Ekman upwelling in the SNP and AZ,
the compensation by the poleward eddy-induced advection would
have been more complete, allowing for the pycnocline to “slump”
poleward while thinning at lower latitudes (Fig. 1, change in light
gray regions between panels a and b).

A change in nutrient gradients would largely parallel the
slumping of the pycnocline, reducing the nitrate concentration of
the shallow subsurface in the SNP and AZ (Fig. 1 b, change from
purple to blue lines in the SNP and AZ). With this change, each
year’s upwelling and vertical mixing would supply less nitrate to
the surface mixed layer of the SNP and AZ. Thus, glacial reductions
in both (1) the rate of subsurface water supply to the surface and (2)
the nitrate concentration of that subsurface water would have
contributed to the decline in nitrate supply to the SNP and AZ
surface. This can explain why the nitrate supply rate to the AZ
surface mixed layer is calculated to be so low during ice ages
(Kemeny et al., 2018). Thus, this interpretation fits with our goal of
explaining the similar biogeochemical changes in the AZ and SNP
during the ice ages, rather than proposing distinct, region-specific
explanations. At the same time, the proposed poleward slumping
of isopycnals is, in some regards, similar to the proposal by Gray
et al. (2018) of a northward incursion of subtropical surface wa-
ters into the SNP as part of a mid-depth overturning cell.

7. Proposal: Bihemispheric changes in westerly wind-driven
upwelling since the last ice age

In summary, we propose that, during the last ice age, an equa-
torward shift and weakening of the westerly winds reduced up-
welling in the AZ and SNP (Fig. 1 b). This reduced biological export
production but increased the degree of nitrate consumption (Fig. 1
b; change in line color from purple to blue in the AZ and SNP
surface).

Another consequence of the weakening of the westerlies con-
cerns the shape of the pycnocline and its depth. The wind-driven
Ekman transport in the AZ acts to steepen isopycnals while the
largely opposing response of eddies to the tilted isopyncnals (i.e.,
eddy advection) works to slump isopycnals back to horizontal
(Marshall and Speer, 2012). Accordingly, the weakening of the
westerlies may have caused a poleward slumping of the global
pycnocline (the light gray region in Fig. 1). Moreover, the weak-
ening in the Southern Ocean’s upper cell and the poleward
slumping of the pycnocline may have contributed to a shoaling of
the low latitude pycnocline (thinning of the light gray region in the
low latitudes in Fig. 1 b) (Gnanadesikan, 1999).

As pursued in section 9, the proposed changes in the AZ upper
water column may have slowed deep ocean ventilation by the AZ
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(indicated by the thinner and dashed flow lines in Fig. 1 b). Both
more complete nutrient consumption and reduced deep ocean
ventilation in the AZ would have reduced the leakage of biologically
sequestered CO, to the atmosphere. In contrast, the lack of signif-
icant ventilation of the ocean interior by the SNP today argues that
this region’s changes only marginally contributed to the lowering of
ice age CO; levels.

8. Models and data regarding ice age wind-driven upwelling

Since a wind-driven decrease in the upper cell of Southern
Ocean during ice ages was first proposed, it has been explored and
debated vigorously (Sigman and Boyle, 2000; Keeling and Visbeck,
2001; Sigman and Boyle, 2001; Toggweiler et al., 2006; Volker and
Kohler, 2013). Northward migration of the winds is mechanistically
intuitive and seems to have some empirical support (Lamy et al.,
2004, 2007; Bard and Rickaby, 2009; Ljung et al., 2015). However,
both paleoclimate data (Shulmeister et al., 2004; Kohfeld et al.,
2013) and models (Menviel et al, 2008; Rojas et al., 2009;
Chavaillaz et al., 2013; Rojas, 2013; Sime et al., 2013; Timmermann
et al., 2013) have so far proven ambiguous as to their support for/
refutation of a net weakening of the winds in the latitude range of
the modern-day AZ.

With regard to the North Pacific, in PMIP simulations of the
LGM, models tend to shift the winds equatorward, weakening the
westerlies over the western SNP and Bering Sea. However, the polar
easterlies also tend to move into the region. Gray et al. (2018, 2020)
find that these simulations lead to higher Ekman divergence over
the SNP as a whole. In the models, this is driven by strong Ekman
divergence along the eastern margin of the Gulf of Alaska. However,
in the modern SNP, the isopycnals are deeper in the Gulf of Alaska
than in the western SNP and Bering Sea (Olsen et al., 2019). As a
result, the western SNP and Bering Sea, not the Gulf of Alaska, are
the regions with the strongest combination of upwelling and deep
mixing, the densest wintertime surface waters, and thus the
highest nitrate supply rates and surface nitrate concentrations
(Gargett, 1991; Ohno et al., 2009; Nakanowatari et al., 2017;
Nishioka et al., 2020). Accordingly, upwelling along eastern margin
of the Gulf of Alaska during the ice ages (Gray et al., 2018) may have
drawn subsurface water from the lower density upper water col-
umn, effectively recycling waters through upper several hundred
meters and homogenizing their characteristics. We thus believe it
possible that an equatorward shift of winds would have reduced
the upwelling-driven supply of deep nutrients to the SNP as a
whole. Nevertheless, there is currently a notable lack of climate
model support for the wind-driven upwelling explanation for both
AZ and SNP surface isolation during the ice ages (Sime et al., 2013;
Gray et al., 2020), and this is a major concern.

In terms of the ocean’s response, the upper cell of the Southern
Ocean is the residual circulation resulting from the superposition of
the Ekman upwelling and eddy advection, with the latter largely
opposing the former at the surface (Marshall and Speer, 2012). Even
with a decline in northward Ekman transport, it has been argued
that a parallel decline in the compensating transport by eddies will
result in little change in the net upwelling and northward transport
(Keeling and Visbeck, 2001; Boning et al., 2008; Fischer et al., 2010).
However, model studies indicate that eddies only partially
compensate for changes in westerly wind stress, reducing the
change in the net northward surface transport in the AZ but not
preventing it (Hallberg and Gnanadesikan, 2006; Abernathey et al.,
2011; Morrison and Hogg, 2012; Munday et al., 2013). In support of
this view, benthic foraminifera carbon isotope data point to accel-
erated AAIW formation coincident with southern hemisphere
warming upon deglaciations (Bostock et al., 2004; Pahnke and
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Zahn, 2005; Jung et al., 2009), suggesting that the upper cell does
change in strength. Thus, we do not see this “eddy compensation”
as a process that will prevent an ice age reduction in Ekman
transport from resulting in a reduction in net AZ upwelling. Rather,
as described in section 7, we propose that the continued (albeit
weakened) poleward eddy advection played an important role in
depleting nutrients from the glacial AZ upper water column.

Toggweiler et al. (2006) emphasized the northward migration of
the southern hemisphere westerly winds out of the deep channel
around Antarctica (bounded to the North by South America and the
other continents) as being important to achieving a reduction in AZ
overturning that no longer imported deep water to the surface. Yet
a glacial/interglacial mechanism relying on a deep channel cannot
apply to the SNP. Steep bathymetric features in the SNP have been
argued to enhance vertical mixing and diffusion-driven upwelling
in the deep SNP (Sarmiento et al., 2004), and this may allow Ekman
upwelling in the western SNP to bring deep water and nutrients to
the surface (Nishioka et al., 2020). With mechanisms for linking
Ekman upwelling to deep nutrient reservoirs in both the AZ and the
SNP, a similar wind-driven mechanism can explain glacial/inter-
glacial changes in nutrient supply in the two regions.

9. A glacial reduction in the upper cell of the Southern Ocean:
arising questions

Above, we argue for an ice age decline in westerly wind-driven
Southern Ocean overturning and a parallel change in the SNP.
However, this proposal raises three critical questions, each of which
relates to the fact that westerly wind-driven transport of AZ surface
waters is northward and into mid-depths, not southward and into
the voluminous deep ocean. That is, westerly wind-driven up-
welling is directly tied to the upper cell, whereas its connections to
the lower cell are unclear (Fig. 1 a).

9.1. Capacity to reduce ice age CO»

The first question regarding the inference of a weakened
Southern Ocean upper cell involves its potential to lower atmo-
spheric CO,. The CO; impacts of the upper cell overturning are
strongly influenced by nutrient conditions in the SAZ. As described
above, dust-borne iron fertilization appears to modulate SAZ
nutrient consumption over glacial/interglacial cycles (Kumar et al.,
1995; Martinez-Garcia et al., 2009, 2011, 2014). Thus, the greatest
independent leverage that the AZ has on atmospheric CO; is
through the deep ocean (Fig. 1). Put another way, if the changes in
the AZ did not involve the region’s ventilation of the deep ocean,
then their CO, effects would have been limited, consistent with
some numerical model experiments of Southern Ocean wind
changes (Menviel et al., 2008; Gottschalk et al., 2020).

As described in section 3.1, there are two related geochemical
mechanisms for increasing the efficiency of the global ocean’s
biological pump: “nutrient drawdown” and “ventilation reduction.”
In “nutrient drawdown”, the supply of nutrients and excess CO> is
more completely consumed in the AZ region(s) that ventilate the
ocean interior. In “ventilation reduction,” the AZ becomes less
important in ventilating the ocean interior relative to regions such
as the North Atlantic. Current theory does not directly couple
westerly wind-driven Southern Ocean overturning (i.e., the upper
cell) to AZ ventilation of the deep ocean (i.e., the lower cell) (Fig. 1
a). Thus, we seek mechanisms for how a reduction in the Southern
Ocean'’s upper cell could either (1) increase the degree of nutrient
consumption in the AZ surface waters that then reenter the deep
ocean, or (2) inhibit ventilation of the deep ocean by AZ surface
waters. Below, we offer proposals for both scenarios (Fig. 7).
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Fig. 7. Mechanisms through which a weakening in the upper cell of Southern Ocean circulation could lead to the storage of more CO; in the deep ocean during ice ages. Southward
is to the left in each panel. Gray shading qualitatively indicates the nutrient (nitrate or phosphate) concentration, and dotted arrows indicate a reduction in magnitude relative to the
interglacial condition. (a) The modern condition of strong upper and lower cells and incomplete surface nutrient consumption. (b, ¢, d) Reduced upper cell strength (dotted lines)
relative to the interglacial case, leading to three separable but non-exclusive mechanisms for increased deep CO, storage. (b) Lower surface nutrient concentration across the entire
AZ, including the PAZ, the region mostly directly ventilating the lower cell, leading to a reduction in the preformed nutrient content of the deep ocean. In the OAZ, nutrients are
proposed to have been lowered not only at the surface but also in the shallow subsurface; this is proposed to be the result of “nutrient mining” and/or pycnocline slumping (see
text). Export production was apparently reduced throughout the glacial AZ - both the OAZ and the PAZ (thinning and dashing of the wavy green arrows). Thus, for surface nutrients
to be low in the glacial PAZ without a decline in overturning in the region, lower-nutrient water must have been mixed in from the OAZ (horizontal bidirectional arrow). Note that
the deep ocean maintains high nutrient concentrations, with the preformed nutrient concentration decline matched by a rise in regenerated nutrients (and thus more CO, storage).
(c) The increase in the residence time of AZ surface waters may lead to a strengthening of the halocline, which causes a reduction of deep ocean ventilation by the lower cell
(Toggweiler et al., 2006; De Boer et al., 2008). In this case, the PAZ may also have experienced a decline in surface nutrient concentration due to its own changes in overturning (i.e.,
the reduction in nutrient supply from the lower cell). CO, leakage from the region would have decreased without a decline in PAZ surface nutrient concentration, but the CO,
decrease would have been greater with a surface nutrient decline. In (c), the upper and lower cells are shown shifted northward, as this shift may also have helped the PAZ halocline
to strengthen (Lawrence et al., 2013). (d) Decreased Ekman transport should have caused a weakening in eddy mixing along interior isopycnals that would have reduced deep ocean
ventilation (Abernathey and Ferreira, 2015). Not shown here but shown in Fig. 1 b due to its global scale, an equatorward migration of the westerlies may also have slowed the lower
cell by shoaling the deep ocean contact zone between the lower limb of the upper cell and the upper limb of the lower cell, so as to be further above the mixing-inducing features of
the seafloor (Watson and Naveira Garabato, 2006; Lund et al., 2011; Ferrari et al., 2014; De Boer and Hogg, 2014). However, our comparison of the AZ with the SNP (Figs. 5 and 6;
Table 1) argues that such a deep ocean change did not initiate the ice age surface isolation of the AZ.

9.1.1. Reduced preformed nutrients in Antarctic Zone-formed deep violating the reconstructions of lower AZ export production during
water the ice ages (Kohfeld et al., 2005; Kemeny et al., 2018). We propose

In two regards, reduction of surface nutrient concentrations in that this is achieved by marshalling three coupled mechanisms for
the PAZ is currently the most palatable option for stemming the PAZ reducing the nutrient supply (Fig. 7 b). The first is the reduction in
leak in the biological pump, being preferable to the slowing of the the overturning rate of the upper cell. Second, we propose that this
Southern Ocean’s lower cell (section 9.1.2). First, while reducing the slowing of the upper cell allowed the nutrients from the AZ upper
circulation of the lower cell would strengthen the soft-tissue pump water column to be “mined out.” More specifically, without strong
(lowering atmospheric CO,), it would also strengthen the carbonate net upwelling, years of nitrate consumption in the summertime
pump (raising atmospheric CO;) (Fig. 3 b; section 3.1). In contrast, surface followed by vertical mixing in the winters (and year-round
reducing the surface nutrient concentration of the PAZ would below the winter mixed layer) would eventually extract nutrients
strengthen the soft-tissue pump without affecting the carbonate from the upper water column. This could well have reduced

pump, making it a more efficient mechanism for lowering atmo- nutrient concentrations of the upper water column across the AZ,
spheric CO, (Fig. 2). Second, the proposal of a reduced lower cell including in the regions of deep water formation. Third, poleward
circulation contradicts most climate model simulations of cold slumping of the pycnocline (Fig. 1 b and 7 b; see section 6) would
climates, in which extensive sea ice formation leads to the forma- have lowered the density and nutrient concentration of the upper
tion of salinity-densified deep water in the PAZ (Otto-Bleisner et al., water column (including the shallow subsurface) in these regions.
2007; Wainer et al., 2012; Jansen, 2017; Galbraith and de Lavergne, The decline in nutrient concentration would have encouraged a
2019). While this contradiction may be the fault of the models, decline in the preformed nutrient concentration of AZ-formed deep
many researchers would probably judge this to be unlikely. water (Fig. 7 b), which would, in turn, have increased the efficiency

A dramatic reduction in nutrient supply is required to drive the of the global ocean’s biological pump, contributing to the ice age
reconstructed decline in surface nitrate concentration without decline in atmospheric CO,.
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A decline in the Southern Ocean’s upper cell is most likely to
lower the nutrient concentration of the more northern portion of
the Antarctic Zone, here referred to as the Open Antarctic Zone
(OAZ, Fig. 7 b). However, the surface waters of the Polar Antarctic
Zone (PAZ) are more directly involved in ventilating the abyssal
ocean (Sloyan and Rintoul, 2001; Lumpkin and Speer, 2007), such
that a decrease in PAZ nutrients would most directly drive a decline
in the preformed nutrient of the Southern Ocean’s lower cell, which
in turn sets a large part of the AZ influence on the efficiency of the
global ocean’s biological pump. Thus, a central question for future
work is whether the decline in nutrient concentration recon-
structed for the surface waters of the OAZ surface waters also
applied to the PAZ. Even if the decline in nutrient supply was
focused in the OAZ, north-south exchange by surface waters may
have been adequate to drive a decline in surface nutrients in the
PAZ as well (Fig. 7 b, two-way horizontal arrow in the AZ surface).
In addition, as discussed below, a forced reduction in surface/sub-
surface exchange in the OAZ, by a change in winds or some other
factor, may have strengthened the halocline across the AZ. Such
halocline strengthening would have reduced the nutrient supply to
the AZ, contributing to the tendency for more complete nutrient
consumption in both the OAZ and the PAZ.

Finally, as described below, there is a suggestion from numerical
model simulations that the OAZ itself plays a role in ventilating the
deep ocean (Abernathey and Ferreira, 2015). If so, the surface
nutrient concentration decline in the OAZ could itself have lowered
the preformed nutrient concentration of the ocean interior and
thus strengthened the biological pump. However, the effect would
be stronger if the surface AZ nutrient decline extended into the PAZ.

9.1.2. Slowing deep ventilation

A weakening of the upper cell of Southern Ocean overturning
might also decrease the overturning rate of the “lower cell,” that is,
the rate of ventilation by the AZ of the underlying abyssal and deep
ocean (Fig. 7 c and d). We know of four possible mechanisms for
this.

First, weakening of the Ekman upwelling in the AZ may have
allowed the isopycnals to slump poleward (Fig. 1 b). This change,
considered alone, would have tended to reduce the density of
surface waters across the AZ. As a result, the regions suitable for
deep water formation in the AZ may have contracted, reducing AZ-
wide ventilation of the deep ocean.

Second, the AZ halocline may have intensified. The strong
northward wind-driven overturning that characterizes the modern
Southern Ocean leads to a relatively short residence time for water
in the AZ surface. This limits the strength of the halocline that can
develop in response to net precipitation in the region. With this
limit on halocline strength, modern buoyancy forcing at the Ant-
arctic margin, such as wintertime cooling and sea ice formation, are
sufficient to densify the surface ocean and drive vigorous deep
water formation in some regions of the AZ. In contrast, reduced
wind-driven overturning could allow the halocline to strengthen,
reducing the ability of buoyancy fluxes at the Antarctic margin to
form deep water (Fig. 7 c) (Toggweiler et al., 2006; De Boer et al.,
2008; Hasenfratz et al., 2019). Even if the winds moved equator-
ward more dramatically than they weakened, the decline in up-
welling in the region that is the modern AZ, as well as the
expansion of its area, would allow for strengthening of the halo-
cline in the more polar latitudes of the AZ (Lawrence et al., 2013).

Third, deep ocean ventilation may be directly connected to the
upper cell. Using an eddy-resolving, zonal channel model of the
Southern Ocean, Abernathey et al. (2011) find that the lower
overturning cell will either remain stable or strengthen under the
proposed ice age condition of weakened westerly winds. This is
counter to the sense of change that would allow circulation in the
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PAZ to enhance CO, sequestration in the deep ocean during ice
ages. However, Abernathey and Ferreira (2015) observe in the same
model that weaker westerly winds lead to reduced eddy mixing
and thus lower effective diffusivity along isopycnals in the interior.
Taking into account changes in both the advective circulation and
the isopycnal diffusivity, the net effect of a westerly wind stress
decline is a reduction in the ventilation of the deep ocean and the
mid-depth range of upwelling CDW (Abernathey and Ferreira,
2015). The role of isopycnal diffusivity in ventilating UCDW is
particularly intriguing because UCDW interacts with the surface in
the OAZ. This implies that, beyond its effects on the PAZ, the
modern OAZ is playing a role in ventilating the deep ocean and that
this role may have been reduced during the ice ages (Fig. 7 d).

Fourth, an equatorward shift in the position of southern hemi-
sphere westerly winds may have activated the abyssal mixing
decline that has been proposed previously (section 5.1.4). We have
argued above that reduction in abyssal mixing was not the initiator
of the AZ and SNP paleobiogeochemical changes. However, it re-
mains possible that such a change contributed to reducing the rate
of AZ deep water formation during the glacials, and it is thus
included in Fig. 1 b. It is believed that, under peak ice age condi-
tions, GNAIW replaced NADW (Lynch-Stieglitz et al., 2007), a
change that Ferrari et al. (2014) interpret as a shoaling of the
interface between the upper and lower ocean overturning cells and
an associated decoupling of the two cells. Ferrari et al. look to an
equatorward shift in the summer sea ice edge (which they take to
mark the latitude at which the air-sea heat flux switches sign) as
the driver, whereas Jansen (2017) suggests a more general climatic
mechanism. The proposed equatorward shift in the winds may also
have contributed to an equatorward shift in the surface boundary
between the upper and lower cells and thus a shoaling of their deep
ocean interface between the upper and lower cells, allowing the
lower cell to expand (Fig. 1 b). Shoaling of the boundary between
the two cells may have reduced the bathymetry-enhanced mixing
between them (Lund et al., 2011; two vertical arrows in Fig. 1 b as
opposed to four in Fig. 1 a). This would have, in turn, reduced the
demand for newly formed deep water from the AZ (Watson and
Naveira Garabato, 2006; Lund et al., 2011; Ferrari et al., 2014; De
Boer and Hogg, 2014). Although new abyssal water continued to
be sourced from the AZ, the slowness of ventilation from the AZ
surface may have made the North Atlantic an important ventilator
of this water (Fig. 1 b, purple dashed lines connecting the upper and
lower overturning cells in the Southern Ocean) (Hain et al., 2010;
Kwon et al., 2012).

9.2. Nutrient supply from the Antarctic Zone to the Subantarctic
Zone

The second unanswered question regarding a weakened
Southern Ocean upper cell and lower AZ surface nutrients involves
the nutrient supply to the SAZ. Today, probably more than half of
the nutrients supplied to the SAZ derive from AZ upwelling
(Sarmiento et al., 2004; Palter et al., 2010). An ice age reduction in
the volume and nutrient concentration of AZ surface waters sent
northward would have reduced nutrient supply to the SAZ.

Above, we pointed to reconstructions of enhanced export pro-
duction and more complete nutrient consumption in the ice age
SAZ, coincident with higher dust fluxes to the SAZ, as evidence of
iron fertilization that contributed to the ice age atmospheric CO;
reduction (Fig. 4; Kumar et al., 1995; Martinez-Garcia et al., 2009;
2014). However, at the initiation of the last ice age at ~110 ka, both
export production and nutrient consumption proxies in the SAZ
show only weak changes, while the same proxies point to a sig-
nificant decline in nitrate supply to the AZ (Fig. 4; Kohfeld et al,,
2005; Jaccard et al., 2013; Martinez-Garcia et al., 2014; Studer
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et al., 2015). Given the modern importance of the AZ nitrate supply
to the SAZ, two related questions arise. First, why is there no evi-
dence for a major decline in nitrate supply to the SAZ at 110 ka?
Second, how was nitrate supply maintained at adequate levels to
support the rise in export production during the high dust supply
events in the peak ice age intervals?

The weakening in wind-driven upwelling in the AZ may have
been partly compensated by increased upwelling to the North, in
the modern SAZ. Such a change would most simply be explained by
the northward shift in the southern hemisphere westerly winds
that Toggweiler et al. (2006) propose. In this way, local upwelling
into the modern region of the SAZ may partly compensate for the
reduced supply of surface nitrate from the AZ. However, we do not
believe that this is the sole mechanism of compensation. Obser-
vationally, the glacial rise in biogenic fluxes to the North of the AZ
was not of similar magnitude to the decline in biogenic fluxes
within the modern AZ (e.g., Chase et al., 2003). Conceptually, a
northward shift in the upwelling may have caused the upwelling to
be less effective at drawing water from great depth, such that nu-
trients would have been lost from the upper ocean without some
additional mechanism of nutrient resupply from the deep ocean.

9.3. Southern Ocean upper cell: North Atlantic water balance

The third question regarding the inference of a weakened
Southern Ocean upper cell during the ice ages involves the water
budget for the low latitude upper ocean and North Atlantic sinking.
NADW forms from surface, thermocline, and intermediate-depth
(~1100 m) waters flowing northward into the region (Talley,
2013); presumably, GNAIW did as well. The Southern Ocean’s up-
per cell supplies most of this water (Toggweiler and Samuels, 1995;
Marshall and Speer, 2012). Thus, feedbacks are implied to maintain
a rough balance between the formation of AAIW and SAMW in the
Southern Ocean and NADW formation in the North Atlantic
(Toggweiler and Samuels, 1995). However, North Atlantic sinking
was at a minimum during HS1 (McManus et al., 2004), during
which AZ subsurface-to-surface nutrient supply accelerated, as
apparently did AAIW formation (Pahnke and Zahn, 2005; Pahnke
et al., 2008). Moreover, the diatom-bound 3'°N data suggest that
AZ subsurface-to-surface nutrient supply decreased significantly
after the penultimate interglacial (at ~110 ka), whereas the largest
glacial reduction in North Atlantic sinking occurred at the MIS 5/4
transition (at ~70 ka) (Piotrowski et al., 2005). How could the
apparent changes in the Southern Ocean’s upper cell have been so
disconnected from those in North Atlantic sinking?

9.4. Did diffuse upwelling from the deep ocean increase during the
last ice age?

Here, we provide a possible answer for the questions raised in
sections 9.2 and 9.3. Specifically, we propose that, during the ice
ages, an increase in the diffuse upwelling of deep water in the ocean
interior compensated for the reduction in the supply of water and
nutrients to the upper ocean due to the ice age weakening of the
Southern Ocean’s upper cell.

In its first conception, the upward flow in the global overturning
circulation was thought to be driven by the addition and extraction
of buoyancy at the ocean surface and vertical mixing in the ocean
interior, allowing a diffuse upwelling of deep water into the low
latitude pycnocline (Stommel, 1961; Munk, 1966). However, wind-
driven upwelling in the Southern Ocean was eventually identified
as the dominant process (Gill and Bryan, 1971; Toggweiler and
Samuels, 1995, 1998). We propose here that the ice ages diverged
from the modern overturning geometry (Fig. 1 a) toward one more
similar to the original conception of upwelling from the deep ocean
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into the pycnocline (Fig. 1 b, the upward diffuse cone and arrow at
low latitudes). The mechanisms for this are two-fold.

The diffuse upwelling of deep water described by Stommel
(1961) and Munk (1966) is driven by diapycnal mixing in the
ocean interior, which transports buoyancy from the low latitude
surface downward into the deep ocean, causing the deep water to
upwell and be replaced by newly formed deep water. The wind-
driven upwelling in the Southern Ocean draws water from ~2 km
depth in the low latitudes, for example, Pacific Deep Water that
becomes UCDW as it is drawn into the AZ. Thus, the Southern Ocean
upwelling removes buoyancy that has been mixed down into the
deep ocean. With a reduction in the Southern Ocean upwelling,
therefore, the downward transport of buoyancy across the low
latitude pycnocline would have been more fully compensated by
diffuse upwelling across the pycnocline, much as envisioned by
Stommel and Munk for the modern ocean. This buoyancy-driven
interior upwelling may have been further enhanced by the loss of
continental shelves during the ice ages, which may have increased
diapycnal diffusion in the ocean interior (Munk and Wunsch, 1998;
Wilmes and Green, 2014; Schmittner et al., 2015).

Moreover, the weakening in the Southern Ocean’s upper cell
may have led to a shoaling in the low latitude pycnocline, com-
plementing the poleward slumping of isopycnals in response to
reduced westerly wind-driven equatorward transport of surface
waters (Fig. 1 b). In the North Atlantic, such ice age shoaling and
steepening of the pycnocline has been observed, although the
feature was explained as the result of North Atlantic hydrographic
changes (Slowey and Curry, 1992). Typical scaling of the advective/
diffusive balance calls for an inverse relationship between pycno-
cline thickness and upwelling rate (Gnanadesikan, 1999; Palter,
2010). Thus, a thinner glacial pycnocline may have encouraged a
greater upwelling rate of deep sub-pycnocline water. Whether this
occurred would have depended on how vertical mixing across the
pycnocline changed in response to its thickness, a topic that is too
complex and uncertain to treat appropriately here.

An increase in deep upwelling can explain the two needs
identified above: (1) the source of nutrients to the ice age SAZ
surface, and (2) the source of low latitude pycnocline and surface
water for Glacial North Atlantic Intermediate Water formation
(Fig. 1 b, the red-to-purple shading of the diffuse upwelling cone
indicates upward nutrient supply). With regard to (1), the deep
nutrients would have entered the global pycnocline, and isopycnal
mixing and the deep component of the subtropical gyres would
then have transported the nutrients to the shallow subsurface of
the SAZ, with wintertime mixing and the northward-shifted wind-
driven upwelling then importing the nutrients to the SAZ surface.
With regard to (2), the glacial circulation would have resembled the
global ocean “conveyor” circulation envisioned by Broecker (1991)
for the modern ocean.

10. Conclusions

The available evidence points to the Southern Ocean as playing a
central role in the lower atmospheric CO; concentrations of the ice
ages. Two distinct mechanisms appear to be involved: (1) reduced
subsurface/surface exchange in the Antarctic Zone (AZ), affecting
CO; storage associated with both the lower and upper “cells” of
Southern Ocean circulation and (2) iron fertilization in the Sub-
antarctic Zone (SAZ), largely affecting CO, storage associated with
the upper cell as well as the vertical partitioning of nutrients and
CO; in the ocean. Both of these mechanisms have important in-
teractions with the ocean’s calcium carbonate budget, which
further affects atmospheric CO,. Carbon cycle model calculations
suggest that changes in both lower and upper cell are required to
approach the full amplitude of observed ice age CO, drawdown.
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If the paleoceanographic observations have been interpreted
correctly, the central question is: Why, from a physical and bio-
logical perspective, did the Southern Ocean undergo these
changes? The ice age reduction in AZ subsurface/surface exchange
(i.e., glacial surface “isolation”) is particularly mysterious, as
underscored by the common result in climate model simulations
that AZ overturning increases under ice age boundary conditions
and decreases under global warming. Here, we have used the
subarctic North Pacific (SNP) as an analogue to distinguish among
existing hypotheses for reduced subsurface/surface exchange in the
AZ during ice ages. We find that a weakening of wind-driven up-
welling associated with an equatorward shift of the westerly winds
upon cooling fares best in its ability to explain changes in both the
AZ and the SNP. This change would have reduced the transport of
nutrient-bearing subsurface water into the surface layers of these
regions. Moreover, we suggest that it would have allowed surface
productivity and winter mixing to “mine out” the nutrients and
excess CO, from the upper water columns of the AZ and SNP, and it
may also have permitted the currently strongly tilted isopycnal
surfaces of these regions to “slump” poleward, strengthening the
vertical density gradient in these regions. We have outlined the
requirements for a reduction in the Southern Ocean’s upper cell to
intensify CO, storage in the deep ocean. We also considered how
the nutrient supply to the SAZ and the water supply for North
Atlantic-sourced deep (or intermediate) water could have been
maintained during ice ages, as observations require. For this, we
propose that an enhancement of upwelling into the low latitude
pycnocline compensated for the reduction in AZ upwelling.
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