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Abstract: Shortcomings related to the treatment of bone diseases and consequent tissue regeneration
such as transplants have been addressed to some extent by tissue engineering and regenerative
medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and
are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and
angiogenesis essential in the formation of new bone tissues. Although recent studies on developing
novel growth factor delivery systems for bone repair have attracted great attention, taking into
account the complexity of the extracellular matrix, scaffolding and growth factors should not be
explored independently. Consequently, systems that combine both concepts have great potential
to promote the effectiveness of bone regeneration methods. In this review, recent developments
in bone regeneration that simultaneously consider scaffolding and growth factors are covered in
detail. The main emphasis in this overview is on delivery strategies that employ polymer-based
scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-
regeneration approaches. From clinical applications to creating alternative structural materials, bone
tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.

Keywords: tissue engineering; drug delivery; biomaterials; polymer composites; bone regeneration;
growth factor; bone morphogenetic protein; bioscaffold

1. Introduction

Nonhealing chronic bone tissue defects represent a major problem in healthcare. De-
spite numerous reports [1,2], there is still a growing need to identify new high-impact
compounds for bone tissue regeneration applications. A current approach for bone tissue
engineering is based on scaffolds that release growth factors (GFs) required for bone re-
generation. A bone scaffold is a 3D matrix that allows for and stimulates the attachment
and proliferation of osteoinductive cells on its surface. An ideal scaffold should be bio-
compatible and should degrade with time to allow new bone deposition; it also should
have suitable mechanical properties for load-bearing with proper architecture in terms of
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porosity and pore sizes for cellular infiltration and angiogenesis, and the ability to control
the delivery of bioactive molecules and drugs [3–6]. Table 1 summarizes recent studies on
growth factor-based bone tissue engineering.

Different factors that promote tissue growth have been found at the skeletal damage
site and have a physiologic role in healing bone fractures. Osteoinductive GFs such as
platelet-derived growth factors (PDGFs), bone morphogenic proteins (BMPs), insulin-like
growth factors (IGFs), transforming growth factors (TGFs-ß), and vascular endothelial
growth factors (VEGFs) have presented great application potentials in bone healing and
osteogenesis for regulating cell behavior, including recruitment, migration, adhesion,
proliferation, and differentiation (Table 2) [7–9].

Biomechanical stability and biological activity that furnishes an appropriate back-
ground for new bone formation are the basis for triumphant GF therapy in bone tissue
engineering [9]. Thus, understanding GF biological features, action mechanisms, and
delivery strategies are vital for scientists and surgeons.

Several in vivo and clinical studies showed that incorporating GFs into polymer carri-
ers/scaffolds such as gelatin, chitosan, alginate, chitosan, collagen, and hyaluronic acid
improved bone healing [2,10–13]. Among the different carrier materials, absorbable colla-
gen sponges can be used as carriers not only for recombinant human bone morphogenetic
protein 2 (rhBMP-2) but also for BMP-9 [14] and BMP-7 [15]. However, this protocol is still
limited due to the effective delivery of GFs to tissue, such as release sustainability, stability,
inflammation, and ectopic bone formation [16].

A very short duration of action and systemic toxicity by over-release have prevented
GFs from being developed into effective regenerative treatments [17]. To circumvent the
side effects (i.e., edema), it is foremost important to attain a controllable and sustained
release of GFs [18]. Alternatives such as tissue transplantation procedures exist (allograft)
but frequently have poor regenerating results, and a better option is needed. Although
there is vast applicability for bone bioscaffolds, grafting extracellular matrix (ECM)-derived
functional groups to the scaffold is an up-and-coming potential approach for biomaterial
design [18]. Successful trials had in common the presence of a control vehicle, which cate-
gorically suggests that an effective therapeutic effect is achievable through spatiotemporal
management over the targeted area and factor bioactivity [19–21].

Emerging and trailblazing materials that modulate the biological presentation of GFs
are promising analeptic agents to aid in treating diseases [18,22]. This review considers
various biomaterial polymer carriers and GF systemic delivery systems investigated to
help the regeneration and repair of bone tissue. In the next sections, general approaches
to the strategic use of these factors are discussed in detail and some specific applications
for these factors in regenerative medicine are covered. Currently designed approaches
and investigated essential topics related to polymer-based carriers for particular technical
objectives are also addressed.

1.1. Growth Factors Roles in Bone Tissue Engineering

Studies have shown the projected perspectives of tissue engineering. However, tri-
umphant translations into the clinical application are still restricted owing to the shortfall
of delivery systems with optimal signaling. Thus, engineers and scientists are promptly
developing biomimetic drug delivery systems that can take advantage of reproducing
signaling molecules released by the native ECM during healing or regeneration processes.
Designed drug delivery systems aim to provide control over the localization, time, and
kinetics of the release pattern of signaling molecules such as GFs according to the drug
chemical properties and specific biological mechanisms [23].

Biological signal molecules have a crucial function in modulating cellular activities
and tissue regeneration. Bioactive compounds such as GFs are proteins that regulate many
aspects of cellular function, including survival, proliferation, migration, and differentia-
tion [24], and have an essential contribution to ECM synthesis [25]. Due to the essential role
of GFs in controlling cellular functions and their ability to directly promote and engineer
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tissue regeneration, a wide range of GFs has been studied and tested for therapeutic appli-
cations [26], including bone regeneration [27]. Fibroblast GFs (FGFs), VEGFs, IGFs, TGFs-β,
PDGFs, and BMPs are the main groups of GFs associated with bone regeneration [28].
Proteins such as recombinant human BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 that are
currently used in clinical trials are expected to stimulate local bone regeneration by signal-
ing the differentiation of mesenchymal stem cells (MSCs) into osteoblasts [29,30]. Currently,
special focus has been given to BMP-2 and 7, as they were approved by the FDA (Food and
Drug Administration) for bone-regeneration applications [31]. For instance, BMPs have
been shown to elicit new bone formation both at the bone defect site and at heterotopic
sites in a large number of species. The process of bone regeneration encompasses the
initial inflammatory phase, soft callus formation, mineralization, and bone remodeling [32].
The different phases of bone regeneration engage multiple GFs in specific spatiotemporal
patterns (Figure 1).

In the bone-repair process, angiogenesis precedes the onset of osteogenesis. A combi-
nation of angiogenic (VEGF), cell recruiting (platelet-derived growth factor (PDGF)), and
osteogenic (BMPs) GFs has been designed and demonstrated a synergistic effect that is
more beneficial to bone repair than any GF delivered alone [33]. This synergism was also
demonstrated through the immobilization of FGF-2 and BMP-2 in administered ratios on
the surfaces of gelatin nanofibers to promote bone regeneration [34]. BMPs stimulate the
osteogenic and chondrogenic differentiation of mesenchymal cells and play a significant
role in structural development throughout the body, having a wide range of functions,
including embryogenesis and regulation of cells widely expressed in several tissues [35].
BMPs also display sites for N- and O-glycosylation, allowing for an increase in BMP stabil-
ity and half-life in the body and determination of the specificity of receptor coupling [36,37].
The integration of stem cells with BMP-2 to promote healthy bone regeneration has demon-
strated great new bone formation, fast healing, and callus remodeling [2]. The therapeutic
effect of collagen particles combined with BMP-2 with the collagen-binding domain has
been shown to reconstruct vertebral laminar defects [38]. That being said, BMP-GFs have
an osteoinductive potential for orthopedic clinical practice for the treatment of bone tissue
regeneration.

At the surgical site, a specific delivery system should use GFs to exert and maintain
biological activity in a controlled fashion and to avoid any systemic diffusion. Therefore, a
delivery system is imperative to stabilize GFs and to provide long-term sustained release
for in vivo efficacy. Understanding the biomolecular processes during the healing of injured
organs is essential for developing GF-based therapeutics for tissue regeneration. An aspect
of the natural healing process is the continuous delivery of GFs throughout recovery,
avoiding a high variability of GF concentration at the target tissue and rapid clearance [39].

A successful delivery system can deliver GFs to areas besides the target spot through
surgery. This system can maintain enough bioactive factors during the time needed to
promote osteogenesis and low fundamental doses to prevent side effects due to supraphys-
iological GF doses [40]. Delivering osteogenic and angiogenesis-promoting GFs [41,42]
together can be a feasible alternative to reestablishing vascularized bone tissue, which is
a defying task in bone tissue engineering. Delivering distinct GFs simultaneously, over-
all, enhances the innate bone-healing process [43]. Local alendronate administration to
control β-tricalcium phosphate (β-TCP) resorption and the induction of bone formation
by rhBMP-2 were attempted [44]. However, the administration of rhBMP-2 promoted a
burst release and reduced osteoclastic resorption of β-TCP induced by rhBMP-2, resulting
in decreased bone formation. Supraphysiological delivery of bone tissue GFs resulted
in the development of heterotopic bone and other side effects [45]. Octacalcium phos-
phate/collagen (OCP/Col) can also be used as a carrier system to reduce the rhBMP-2
effective dose. Bien et al. [46] implanted OCP/Col discs impregnated with rhBMP-2 (about
0.25 µg) in mice calvarial bone defects that resulted in no bone formation. Therefore, it
is paramount to deliver an effective amount of drug to the defect site. To overcome the
mentioned drawbacks, GF carrier systems may play a key role in determining GF bioactiv-
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ity. Drug injection affecting the whole system or grafting of a polymeric scaffold modified
with a bone-targeting moiety delivers a nonintrusive approach for site-specific or targeted
therapy [47]. By changing the type of receptor and cell to which the GF binds, the same
GF can convey different instructions (Figure 2). Moreover, the same receptor can translate
different messages depending on the intracellular transduction pathways, which can differ
from one cell type to another.
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Figure 1. The main growth factors that are relevant to the bone-regeneration process: the bone-
regeneration process is addressed in four overlapped, different phases of inflammation (phase A),
soft callus formation (phase B), mineralization and resorption of the soft callus (phase C), and bone
remodeling (phase D) (BMP: bone morphogenetic protein, FGF: fibroblast growth factor, GDF-5:
growth/differentiation factor 5, IGF-1: insulin-like growth factor 1, PTH: parathyroid hormone,
M-CSF: macrophage colony-stimulating factor, OPG: osteoprotegerin, PDGF: platelet-derived growth
factor, PlGF: placental growth factor, RANKL: receptor activator of nuclear factor κB ligand, SDF-1:
stromal cell-derived factor 1, TGF-β: transforming growth factor β, TNF-α: tumor necrosis factor α,
and VEGF: vascular endothelial growth factor) [18].
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Figure 2. Peptides and aptamers are targeting moieties used to deliver drugs to bones through
carriers that transit or infiltrate the blood stream and come out after targeting. The delivered
drugs are metabolized owing to a pH media variation or via matrix metalloproteinases (MMP) and
enzymes [48].

1.2. Scaffold Properties for Bone Tissue Engineering

Evidenced by the wide range of inflammatory, osteogenic, and angiogenic factors
involved in all bone tissue regeneration processes, these processes can be directly related to
biomolecular and cellular processes [47]. GFs’ therapeutic roles can be effectively attained
by reaching the damaged tissue site without losing their bioactivity and remaining in
the specific site over the healing process [49]. Thus, it is foremost important to develop
release technologies to administer the release of signaling molecules in space and time.
A proper GF material should be able to manage GF delivery system kinetics to realize
tissue formation by efficiently loading the factor and by stimulating protein presentation
to the surface of cells (Figure 3). GF release profiles involve prolonged, multifactorial, or
sequential releases depending on the type of molecule being delivered and the biological
demands [50]. An effective carrier for GFs not only should allow site-specific delivery but
also should strengthen the infiltration of cells. Moreover, GFs should accurately load the
bioactive factors to allow strong carrier/protein associations [51]. Ultimately, the fabri-
cation process should be straightforward and viable and should maintain the bioactive
status of the integrated protein. Overall, scaffold-based GF delivery aims to orchestrate
cell response by connecting the transmission of signals from the cells to the kinetics of
bone damage healing. Tissue engineering scaffolds not only should prevent ectopic bone
formation by facilitating fast infiltration of host cells from margins to the center of the
scaffold but also should present low immunogenic and antigenic responses [52]. When
GFs are loaded into a scaffold, the incorporation levels and the kinetics that encompass
sustained therapeutic doses should be achieved [53,54]. Moreover, the scaffold should
degrade into harmless products at a rate that provides the host tissue with a successfully
developed mechanical stability [55]. Considering that bones are composed of miscella-
neous components such as hydroxyapatite (HA) mineral, organic components (type I
collagen, lipids, and non-collagenous proteins), and water [56,57], this combination of
materials likely allows the biological activity of scaffolds and their bio-architecture to be
accomplished [54]. The bioactivity of tissue engineering scaffolds can also be improved
by integrating compounds that correlate organs and cells at the cellular organizational
level [58] and, therefore, lead to osteoconduction (bone cell ingrowth), osseointegration
(steady attachment to the tissue defect), osteoinduction (stimulation of immature cells into
osteogenic ones), and vascularization [59]. Due to the versatile roles of natural bone in the
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body, bone tissue engineering scaffolds should present several different characteristics to
effectively function as a bone scaffold [60]. The main structural characteristics (such as
high porosity, high mechanical properties, and tunable architecture), common composi-
tions (polymers, ceramics, and composites), biological requirements (including nontoxicity,
biocompatibility, low immunogenic response, and bioactivity), as well as conventional and
advanced manufacturing methods (including freeze-drying, electrospinning, and solvent
casting) for bone tissue engineering scaffolds are listed in Figure 3.
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Such structures provide initial biomechanical support to the implanted tissue until
cells can develop a proper ECM to support the regeneration process. It is expected that
the scaffold is gradually degraded and metabolized during the formation, deposition,
and organization of the ECM, allowing for the tissue to be reestablished with the same or
improved function. Thus, such scaffolds are engineered to be biocompatible, biodegradable,
and porous to assure vascularization, to show mechanical reinforcement, and to allow
functional and bioactive responses [62]. Bone grafts should be biocompatible, bioresorbable,
osteoconductive, osteoinductive, structurally similar to bone, easy to use, and cost-effective.
The biomaterial properties and features determine the cascade of events that take place at
the site of bone healing [63]. The biomaterial should be dissolved or absorbed by the body to
be considered bioresorbable. Biomaterials directed for tissue regeneration should degrade
continuously in vivo besides filling the defect [64]. As discussed, polymeric, ceramic, and
composite scaffolds have been widely considered for bone tissue engineering scaffolds.
Although the incorporation of metal nanoparticles in polymeric scaffolds is known to
effectively improve scaffold mechanical properties [65,66], the application of metal scaffolds
for GF delivery is limited due to the low biodegradability, high rigidity, limited integration
to the host tissue, and infection possibility of metal scaffolds [61]. Moreover, compared to
polymeric scaffolds, porous metallic scaffolds mostly can only be manufactured through
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complex procedures, such as electron beam melting [67], layer-by-layer powder fabrication
using computer-aided design strategies [68], and extrusion [69], which further limits
their architecture design and application in GF delivery [61]. To avoid compromising the
function and structure of new bone, the degradation rate of bone biomaterials should match
the growth rate of the new structure [70]. Osteoconductive materials allow vascularization
of the tissue and further regeneration in addition to building its architecture, chemical
structure, and surface charge. Osteoinduction is related to the mobility and propagation of
embryonic stem cells as well as cell differentiation [63]. Briefly, scaffolds should present
reduced immunogenic and antigenic responses whilst making host cell infiltration easier.
Loading efficiency and release kinetics that account for controlled delivery of a therapeutic
dosage of GFs are necessary; additionally, scaffolds should degrade into non-harmful
substances in a way that the tissue can regenerate its mechanical properties [71,72].

2. Polymer Scaffolds for GF Delivery

Collagen is the most studied natural polymer for bone tissue engineering scaffolds,
as this biopolymer integrates about 90 wt.% of natural bone ECM proteins [73]. Collagen
can actively facilitate the osteogenic process of bone progenitor cells through a series of
alpha–beta integrin receptor interactions and, as a result, can promote bone mineraliza-
tion and cell growth [50]. The inter- and intra-chain crosslinks of collagen are key to its
mechanical properties which maintain the polypeptide chains in a tightly organized fibril
structure. Although collagen has a direct impact on bone strength, this biopolymer has
mechanical properties that are insufficient for creating a load-bearing scaffold. Further-
more, the mechanical and degradation properties of collagen can be customized through
the process of crosslinking [74] by forming composites [75], as shown in Figure 4. It is,
therefore, often combined with more robust materials to create composite scaffolds. As the
major inorganic component of bone, HAp has frequently been combined with collagen in
composite scaffolds. The mechanism of reaction involved in collagen surface modification
and BMP-2 functionalization of 3D hydroxyapatite [76] scaffolds is displayed in Figure 4.

Linh et al. [77] conjugated collagen and BMP-2 to the surface of a porous HAp scaffold.
The composite scaffold showed higher compressive strength (50.7 MPa) compared to the
HAp scaffold (45.8 MPa). Moreover, the delivery system in this composite scaffold structure
more efficiently induced adipose-derived stem cell osteogenic differentiation than in HAp
or HAp-collagen (without BMP incorporation) structures. HAp-collagen has been shown to
be very effective in healing critical-sized bone damage in a rodent model after HAp shows
high affinity to the GFs (BMP-2 and VEGF) used in combination to regenerate vascularized
bone tissue [78]. This affinity allows for localized delivery of GFs at the targeted defect site.

In addition to collagen, other natural biopolymers such as silk fibroin can also be
effective in bone tissue engineering applications [79,80]. Silk fibroin is a fibrous protein
produced by silkworms and spiders with outstanding mechanical characteristics, high
biological compatibility, and an adjustable degradation rate that can support cell differenti-
ation [81,82] and, thus, versatility in processing. Composite silk fibroin (Antheraea mylitta)
scaffolds were reinforced with functionalized carbon nanofiber to deliver BMP-2 and TGF-
β1 [83]. Loaded scaffolds presented a sustained GF release profile; strong adhesion; and
the development, propagation, and differentiation of MSCs into osteoblasts. Moreover,
composite structures exhibited high compatibility with a targeted immune system, as
evidenced by minimal pro-inflammatory cytokines release, both in vitro and in vivo. By
depositing HAp on the silk fibroin nanofibrous matrices, enhanced mechanical resistance
and a resourceful BMP-2 and TGF-β1 delivery system were observed [84] that induced
propagation and differentiation of osteoblasts at the early stages of healing [82].
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Figure 4. (A) Natural crosslinking of collagen (head-to-tail); (B) the intermolecular crosslink of collagen allowing for the
protection of collagen from enzymatic degradation; (C) live/dead cell viability assay of PDLSCs (periodontal ligament stem
cells) performed in collagen powder before implantation and 24 h after incubation showing that cells in green are alive;
(D) mechanism of reaction to modify a collagen scaffold functionalized with hydroxyapatite and BMP-2, and modified
scaffolds; (E) hydroxyapatite scaffold (a) micro-CT pore structure (b), surface morphology (SEM) (c), cross-sectional
morphology (SEM) (d), and hydroxyapatite and collagen scaffold (SEM) (e,f); and (F) fluorescent-stained images of a
collagen-hydroxyapatite-modified scaffold detecting BMP-2 after 1, 5, and 21 days [75,80,81].

Sodium alginate is a linear anionic binary polysaccharide that consists ofα-L-guluronic
acid (G units) and (1-4)-linked β-D-mannuronic acid (M units) segments. This biopolymer
is mostly obtained from widely available seaweeds, which makes it a great candidate for
a diverse range of tissue engineering applications (Figure 5). Consecutive G (GGGGGG),
M residues (MMMMMM), and alternating M and G residues (GMGMGM) compound
the blocks [85]. The composition ratio of these monomers (M/G ratio) and the sequence
of monomers in the polymeric backbone determine the final properties of alginate [86].
Alginate is capable of forming stabilized scaffolds through divalent cations crosslinking
(i.e., Ca2+) due to the anionic nature that allows alginate complexation to these cations [87].
This modification opens avenues for a multitude of medical applications as it overcomes the
hurdles faced by using native alginate, such as degradation rate and stability under aqueous
conditions [88]. A partially cross-linked TEMPO-oxidized cellulose nanofibril/alginate
hydrogel was used to fabricate 3D-printed scaffolds using Ca2+ crosslinking [89]. Alginate
matrices were conjugated to calcium phosphate scaffolds to achieve a programmed GF
delivery [90]. PDGF and BMP-2 were released sequentially with a 3-day PDGF to BMP-2
delivery overlap. It has been suggested that the sequential programming of PDGF to BMP-2
delivery promoted the differentiation of MSCs into osteoblast phenotypes and increased
cellular infiltration.

An alternative to overcoming the challenges faced by composite biomaterials is the
use of cellulose and other nature-derived polymers once vast manufacturing approaches
and sources are available [91]. Cellulose occurs naturally and is an accessible polymer after
it is refined from lignocellulose or synthesized from bacteria [92]. Hydrogels with specific
structures and diverse functionalities that have biomedical applications can be prepared by
manipulating the functional groups in the structure of cellulose and its derivatives (methyl-
cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose) [93]. Nonetheless,
cellulose hydrogels show restricted mechanical attributes that hold back their utilization in
hard tissue applications. To surpass this limitation of cellulose-based scaffolds and to build
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on the functional properties for hard tissue application, mineralization of cellulose hydro-
gels with HAp and other materials has been actively investigated in recent years [90–100].
Bacterial cellulose was successfully combined with HAp to deliver BMP-2 [94]. The system
kinetics was studied in vitro and showed a gradual release of BMP-2 and mineralization
spots. Also, BMP-2-loaded aligned electrospun cellulose nanocomposite nanofibers were
studied for in vivo bone regeneration in a rabbit model [95]. The results suggest a slight
difference between the GF release of aligned and random scaffolds. The aligned scaffold
delivered the GFs (0.74 µg/mm2) slightly slower than the random scaffold (0.76 µg/mm2)
after seven days.
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Figure 5. (A) Schematic representation of alginate showing the structure of mannuronate (M) and
guluronate (G), and the chair conformation and the sequence of M block and G block arrangement
in alginate are shown. (B) Poly (GM)-Ca2+ alginate and poly(M)-Ca2+ alginate are displayed. (C)
The fabrication process for 3D-printed scaffolds from TEMPO-oxidized cellulose nanofibril/sodium
alginate hydrogels is shown. (D) Scaffolds printed in different forms and designs from optimal
TEMPO-oxidized cellulose nanofibril/sodium alginate hydrogel formulation are shown [92,93,95].



Int. J. Mol. Sci. 2021, 22, 903 10 of 33

Chitin–chitosan is a nitrogen-containing polysaccharide-based biopolymer group de-
rived from diverse natural raw materials such as fungi, crustaceans, and insects [96,97].
Chitin and chitosan are structurally similar to glycosaminoglycans (GAGs, the major com-
ponent of the bone ECM), which make them suitable biopolymers for tissue engineering
scaffolds [96–98]. Chitin used in combination with chitosan/poly(vinyl alcohol) to fabricate
nanofibers showed enhanced mechanical properties and offered osteoblast cell growth
with HAp biomineralization [99]. Chitosan nanoparticles loaded with BMP-2 were dis-
persed into collagen hydrogel and added to the scaffolds. The system showed active
osteoinduction through the controlled delivery of GFs [99]. Drug delivery systems using
β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles [100] and dextran
sulfate-chitosan microspheres [101,102] were designed to promote the sustained delivery of
BMP-2 for bone tissue regeneration. Both systems showed that alginate composite scaffolds
were able to attain the controlled release profile of GFs and to act as a mechanically and
biologically compatible framework with prominent osteoinductive activity.

Recent studies have suggested GAGs as potential biomaterials for tissue engineering
application, as this biopolymer predominantly exists in the ECM, has low immunogenicity,
and can perform strong interactions with GFs [103]. The structural composition (degree of
sulfation and polymer length) of GAGs are varied and determine the precise performance of
GAGs. Cell-binding motifs, native-like mechanical properties, bone mineralization-specific
sites, and robust GF binding and signaling capacity are among the GAG properties [104,105].
Notwithstanding, investigations on GAGs as molecules for engineering tissue scaffolds
have been conducted as of late. GAGs isolated from mammalian sources such as hep-
arin [47,106], heparan sulfate [76,107], chondroitin sulfate [108,109], keratan sulfate [110],
and hyaluronic acid [111,112] (non-sulfated) are the most widely explored in regeneration
medicine. Strong ionic interactions are expected between GAGs and proteins. Among the
GAGs, hyaluronic acid is the predominant GAG in the skin whereas chondroitin sulfate is
the major GAG found in bone. GAGs interact with residues that are prominently exposed
on the surface of proteins. Clusters of positively charged basic amino acids on proteins form
ion pairs with spatially defined negatively charged sulphate or carboxylate groups on GAG
chains. The main contribution to binding affinity comes from ionic interactions between the
highly acidic sulphate groups and the basic side chains of the protein. Despite incomplete
understanding of the interactions between cells and ECM, namely, at the molecular level,
it is known that GAGs modulate the adhesion of progenitor cells and their subsequent
differentiation and gene expression. These regulatory roles are related to the GAG ability to
interact with GFs and to protect GFs from proteolytic degradation, increasing the half-life
of GFs. For instance, during osteogenesis, heparan sulfate provides matrix-bound or cell
surface-bound reservoirs for specific binding proteins, including GFs such as BMPs [47].
In vivo BMP-2 retention can be improved via heparin microparticles (HMPs). HMPs can
improve the safety profile of scaffold-based BMP-2 delivery systems and, consequently, can
reduce the heterotopic ossification. Moreover, these microparticles can improve the spatial
localization of bone formation in large bone defects. Overall, GAGs play an important
regulatory role in the development and regeneration of skin and bone tissue by performing
complex effects on skin and bone cells at all stages of their differentiation, including the
attraction and adhesion of precursor cells, their subsequent differentiation, their activity
and immune responses, and their interactions with other proteins. Thus, GAGs are part of
a new genesis of biomimetic biomaterials.

3. Encapsulation, Incorporation, and Related Delivery Strategies

A large number of techniques have been presented and employed to manage the
release kinetics of GFs entrapped in scaffolds. A majority of successful methods is based
on encapsulating GFs in a degradable polymeric network [23], which can gradually release
the GF from the scaffold into the defect site (Figure 6). Using this process, the therapeutic
dosage release can be extended much longer than currently available rapidly releasing
scaffolds [28,113]. In this section, recently developed strategies and techniques for the
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fabrication of GF-incorporated scaffolds with a sustained release rate of GFs are covered.
Such a sustained release of these biomolecules can provide a more physiologically relevant
environment for the promotion of bone regeneration. Direct injection and systematic
local supplementation of the scaffold/GF system can lead to rapid in vivo degradation,
deactivation by enzymes, and a short half-life in the physiological environment [114].
The lack of dynamic and targeted kinetics of GF molecules has shown burst releases and
supraphysiological dosages [115] leading to the likelihood of untimely and unwanted
effects and has instigated the need to address such limitations. Nano-delivery systems
providing an artificial ECM for cell attachment and penetration while keeping a 3D network
to allow facilitated and guided tissue regeneration have been explored [116].
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Figure 6. Schematics of delivering systems of growth factors based on the extracellular matrix (ECM) ability to protect
growth factors from degradation and to avoid the formation of concentration gradients (a regulatory mechanism): (A) a
biomaterial matrix covalently incorporates or co-receives a heparin/heparin-mimetic modified matrix, which binds the
growth factors. (B) Receptor (i.e., integrin and growth factor) synergistic signaling through the addition of a fibronectin
fragment that has both receptor domains is shown. (C) A growth factor is recombinantly introduced for the factor XIIIa
substrate sequence. (D) A growth factor is recombinantly produced for incorporation into the ECM-binding domain that
interacts with ECM proteins and/or glycosaminoglycans (GAGs). As a result, the growth factor can bind endogenous ECM
or biomaterial matrices constituted of natural ECM proteins such as fibrin and collagen [18].

Physical entrapping processes for the incorporation of bioactive molecules in polymer
networks can also strongly affect the performance of these systems. Different techniques are
available to entrap drug molecules in the structure of scaffolds, which facilitate their contact
with migrating cells and regulate cell behavior (Figure 7). Surface presentation entitles
site-specific drug delivery and could narrow their potential off-target side effects [117].
The two key methods for introducing biomolecules to the scaffold surface are physical
adsorption and chemical conjugation. The first approach allows for diffusion-based release
by adsorbing GFs into a substrate. The latter involves covalent/noncovalent bonding of GFs
straight to the surface of the substrate. Furthermore, it is possible to attach GFs to linkers,
which are molecules that connect the GFs and the immobilizing surfaces [47,106,118–120].
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3.1. Physical Adsorption

From a technical point of view, physical adsorption can be considered the most
straightforward method for embedding biomolecules into polymer scaffolds [117]. Physical
adsorption can be obtained by integrating biomolecules into a polymer matrix before
its gelatinization [122] or by immersing the preformed scaffold in a protein solution.
It usually depends on the interactivity amongst the biomolecules and scaffold surface,
such as electrostatic interactions, hydrogen bonding, or hydrophobic interactions [123],
and on the biomolecule structure [40]. Delivery of GFs to the defect site depends on
scaffold porosity, temperature, pH media, the salt concentration of the solute, and the
relationship between the protein and substrate. Thus, GF retention relies on its appropriate
immobilization on or absorption into the substrate [124]. Surface characteristics such as
wettability, roughness, surface functionalities, charge density, and surface charge are some
material properties that can affect the physical adsorption of biomolecules on the surface of
polymer scaffolds [117]. Physical immobilization of GFs is an easy to accomplish technique
in mild conditions and, thus, has raised much interest. Besides, technological readiness,
reasonably priced reagents, and maintenance of bioactivity are some of the advantages
of GF physical immobilization. On the other hand, inefficient retention of stable soluble
protein, a lack of spatial distribution, and release administration can be observed [75].
Notwithstanding the disadvantages, physical immobilization stands as the most common
method for attaining GF immobilization [123].

GF adsorption on the defect site has to be steady and localized, and a GF–receptor
interaction must occur to activate signaling cascades, inducing osteoblast proliferation, to
effectively allow tissue regeneration [125]. Accordingly, an equilibrium between anchored
adsorption on the substrate and protein activity protection must be attained [126]. The
properties of the scaffold can be preserved using this method, and it does not shatter the
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bioactivity of GFs. Nevertheless, matrix–factor interaction mechanisms including electro-
static interactions, ECM affinity, or hydrophobic interactions can affect the release profile of
GFs [127]. Physical adsorption can be achieved through surface adsorption, encapsulation,
and layer-by-layer techniques. BMP-2 was adsorbed on a series of nano-textured HAp sur-
faces which were substantially important in the liaison of BMP-2 dynamic behavior [127].
Compared to the HAp-flat model, the HAp-1:1 group (ridge vs. groove = 1:1) was able
to incorporate BMP-2, which showed fewer changes in its conformation. Moreover, the
HAp-1:1 group showed high cysteine-knot stability through adsorption/desorption pro-
cesses, indicating that nano-textured HAp surfaces can better incorporate BMP-2 molecules
through adsorption and can aid in BMP-2 biological activity. Alginate microbeads were
surface condensed with heparin through polyelectrolyte complexes (diethylaminoethyl-
dextran (DEAE-D), poly-l-ornithine, and poly-l-arginine) to provide a delivery system for
BMP-2 [128]. The authors observed distinct release profiles for each of the systems designed.
Although most microbeads can release about 60% of the adsorbed BMP-2 throughout three
weeks, the DEAE-D-based microbeads can present a fast GF release of 2 days, showing
structured posterolateral spinal bone formation in a rat model. The pattern of GF release
from noncovalent systems at the diffusion- and degradation-dependent levels, including
biomolecule desorption, scaffold degradation, and protein–scaffold interaction failure
mechanisms [48]. The diffusion-dependent release follows first-order kinetics and is con-
ditioned to the GF size and related to the scaffold pore size. Diffusion-dependent release
is restricted when the scaffold pores are smaller than the hydrodynamic radius of the
incorporated protein [129]. Control over the release rate can be possible by modifying the
material degradation rate and mechanism [130–132]. Increasing the electrostatic attraction
between GFs, such as BMP-2 and TGF-β, and the scaffold matrix can also improve the
loading efficiency [122].

Surface functionalization via physical adsorption has the advantage of being a simple
and gentle procedure accompanied by limited damage to fragile structures and biomolecules.
However, biomolecule binding to scaffold surfaces can be relatively weak [133]. The scaf-
fold surface can be further modified to improve its affinity for drug molecules. Heparin
has been used to modify the scaffold surface to improve GF binding to the scaffold, al-
lowing for the controlled release of BMPs [134], PDGF [135], and VEGF [136] in tissue
regeneration-related studies. The surface coating is known widely to improve the GF scaf-
fold affinity. The scaffold surface can be physically and chemically coated via proteins such
as gelatin, heparin, and fibronectin to modify the scaffold surface with specific biological
sites to immobilize GFs [137]. Different superficial immobilizing models including physical
adsorption, covalent grafting, and heparin-binding (self-assembled monolayer) to fabricate
BMP-2-immobilized surfaces distinctly influenced the loading capacity and osteoinduction
in vivo and in vitro [138]. In the in vitro studies, osteoinduction was noted in the covalently
grafted model, followed by the physically adsorbed model when the saturated dosage of
BMP-2 was applied. In contrast, the physical adsorption model was more efficient when
inducing osteogenesis when a similar amount of BMP-2 was used (120 ng) for each model.
Heparin scaffold strengthened BMP-2 and BMP-2 receptor recognition and weakened BMP-
2 attachment to its competitor, demonstrating heparin’s selectivity in inducing in vivo bone
tissue differentiation. Specifically, BMP-2 cell recognition efficiency can be handled via
an orientation that can be a potential design target to achieve BMP-2 delivery vehicles
with improved therapeutic efficiencies. One of the first techniques used to build a delivery
system to release multiple GFs is direct adsorption; nonetheless, the release kinetics in
a controlled or programmable manner has been proven to be challenging in addition to
having a loss of bioactivity [139]. Thus, alternative maneuvers have been used to address
these bottlenecks. Electrostatic interactivity between polyelectrolytes with opposite charges
and GFs are used to deliver functionalized polymer overlays on a myriad of surfaces [121].
This approach is called layer-by-layer. Notably important to protein delivery, the layer-
by-layer method requires facile aqueous baths which potentially preserve soluble protein
activity, as the method does not need to use harsh organic solvents [140]. During tissue
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regeneration, different GF profiles are present, and the multilayer biotechnology is an open
venue that allows for building GF carriers with appropriate delivery kinetics that are able
to simulate those GF profiles. For instance, a polydopamine multilayered coating was used
to associate BMP-2 and VEGF, where BMP-2 was bound onto the inner layer and VEGF
was bound onto the outer layer [141]. The authors reported a more rapid VEGF delivery
succeeded by a gentle and more continuous release of BMP-2. Additionally, angiogenic
and osteogenic gene expression assessment indicated a collaborating effect between the
GF-loaded scaffolds and the co-culture (human bone marrow-derived mesenchymal stem
cells (hMSCs) and hEPC) conditions.

A brushite/PLGA composite system to control the release of PDGF, TGF-β1, and VEGF
was designed to promote bone remodeling [142]. PDGF and TGF-β1 were delivered more
rapidly from brushite cement compared to VEGF in a rabbit model where approximately
40% PDGF and TGF-β1 were delivered on the first day. In the next six following days,
the release rates were reduced by approximately 5.5% per day, and a total release of 90%
was observed after three weeks. In contrast, scaffolds incorporated with VEGF were more
efficient in tailoring the release profile by controlling it (7%/day in the first week; 1.2%/day
for three weeks), with a total release of approximately 80% within two months. Therefore,
GF-loaded microspheres built into scaffolds allow for an uninterrupted and long-lasting
release of GFs from scaffolds.

3.2. Chemical Conjugation

Chemical conjugation, or covalent bonding, offers prolonged and more stable drug
molecule presentation than the physical adsorption method [23,143]. For this process, the
scaffold surface needs to be activated with functional groups that can then conjugate with
drug molecules through proper chemical reactions [122] (Figure 8). Nonetheless, most of
the scaffolds applicable in bone tissue engineering are degradable and deficient in reactive
groups [144]. The primary approaches for functionalization of scaffolds are modification
after fabrication and incorporation of GFs before fabrication. However, the fact that the
conjugation reaction may modify the biomolecule conformation and result in the loss of
bioactivity is an important issue [145]. For instance, covalently grafted (chemical coupling
process) BMP-2 may affect ectopic bone formation due to unwanted self-crosslinking of
BMP-2 during the reaction [146]. Therefore, many drugs are pre-modified (e.g., conjugation
to a PEG spacer) [147] and drug mimics (GF peptide mimics) [148] are utilized. Various
bioconjugation reactions have been investigated, with reactions conducted in aqueous
solution or under mild reaction conditions being particularly favorable. Copolymerization
and chemical/physical reactions between active groups of scaffolds and GFs are widely
used to incorporate biomaterials and cargos [149]. Amidation, esterification, and click
reactions are some of the commonly used reactions for this purpose [150]. Suboptimal doses
of BMP-2 (2.5 µg) can be chemically conjugated on a collagen scaffold via a crosslinker,
Traut’s reagent, and a cross-linker (4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid
3-sulfo-N-hydroxysuccinimide ester sodium salt) to obtain a controlled GF delivery system
for bone tissue regeneration with no ectopic formation [151]. Moreover, in rat models,
co-treatment with stromal cell-derived factor-1α (SDF-1α) and the suboptimal dose of
BMP-2 chemically interacted on the surface of collagen scaffolds can induce higher levels
of ectopic bone formation compared to physically interacted systems. Moreover, Zhang
et al. [144] reported that a collagen membrane chemically conjugated with SDF-1α can
promote new bone and microvessel formation significantly compared to a system with SDF-
1α physical adsorption. Thiol-ene click reaction was used to conjugate a BMP-2 mimicking
peptide (P24) onto a nanofibrous scaffold [152] to guide tissue formation. As a chemical
reaction may modify the GF molecular structure and create a loss in bioactivity [153],
mimicking biomolecules are encouraging strategies in GF release from scaffolds and unveil
their functionality [154] within tissue regeneration. The scaffold showed the bioactivity
and osteoinduction of rabbit bone marrow-derived MSCs. Udomluck [34] developed a GF
delivery system based on heparin chemically conjugated to decellularized bone particles
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to allow for electrostatic tethering of PDGF. Bone particles with tethered GF promoted
bone mineral deposition by adipose-derived stem cells in vitro and, hence, bone formation
mediated by stem cells in vivo within murine critical-sized calvarial defects. Wang et al.
electrospun a scaffold of porous gelatin nanofibers to improve the bone growth and to
imitate the function of natural ECM for sustained release of multiple GFs. The scaffold
system was coated with HAp in a simulated body fluid solution and surface-functionalized
with avidin to facilitate binding with biotinylated GFs such as BMP-2 and FGF-2 at different
ratios [75]. Multiple GFs were successfully conjugated onto the functionalized surface of
the scaffold by controlling the FGF-2/BMP-2 ratio. The release profiles were compared with
those of physical adsorption, and a more continued and controlled release for avidin-biotin
pairing was observed. The delivery of various GFs and the overlayer out of HA-nanofiber
synergistically optimized bone healing, which was substantiated by the incremented
osteogenic gene marker expression. Therefore, the nanofiber scaffold is an up-and-coming
osteoconductive vehicle to deliver multiple GFs in a sustained manner.
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Controlled and sustained release of BMP-2 and VEGF built-in silk fibroin/nanoHA
scaffolds via chemical and physical covalent bonding, respectively, was observed [75].
VEGF promoted the formation of new blood vessels at the beginning stages of bone
healing, while the spatiotemporal release of BMP-2 led to in vitro and in vivo osteogenic
differentiation. The in vivo trial in a rat model resulted in complete bone formation in
calvaria defects after 12 weeks. These results suggested that the combination of appropriate
doses (BMP-2: 300 ng per scaffold and VEGF: 20 ng per scaffold) of multiple GFs incor-
porated into an ideal scaffold have a synergistic effect on vascularized bone regeneration.
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Thus, GF covalent bonding to scaffolds has advantages in the management of long-term
release systems compared to the physical adsorption method.

3.3. Spatiotemporally Controlled Delivery of GFs

Biochemical gradients in the cellular microenvironment are known to drive a variety
of physiological processes including bone repair [156]. The major role of growth factor
gradients in bone formation is to stimulate cells to migrate in the direction of gradually
increasing concentrations of signaling biomolecules (chemotaxis) [157,158]. The neighbor-
ing cells sense the changes in signal concentrations and respond accordingly. The cellular
response and subsequent bone formation depend on bone morphogenic protein concentra-
tion and occur only if the BMP threshold dose is achieved [23]. To address those challenges,
implantable polymeric, the biomolecule-delivering systems, and carriers are engineered to
balance between growth factor release and retention to reach the optimal dose of cues for
stimulation of bone regeneration. By releasing BMPs, the delivery device induces cells to
migrate towards the injury while the retained factors promote bone formation within the
defect [105]. Bone tissue itself is a functionally and structurally graded system [159]. Bone
remodeling, on the other hand, involves seven sequential phases (quiescence, activation,
resorption, reversal, formation, mineralization, and termination), each regulated locally by
the expression and release of growth factors in a sequential manner [39,160]. The highest
effectiveness of bone formation in vitro is expected to be achieved in bone tissue-mimicking
systems. So far, many biomaterials have been designed to provide spatiotemporal control
over growth factor delivery to enhance osteogenesis. A proper design of delivery systems
with an ability to locally control over spatial distribution and sustained release of the
biological agents may prevent the side effects and toxicity to the surrounding healthy
tissues [161]. For example, James et al. recognized major side effects associated with the
clinical use of BMP-2, which includes inflammatory and wound complications, ectopic
bone formation in the surrounding soft tissues, and bone resorption due to osteolysis [162].
Most drug-releasing systems use natural polymers (e.g., collagen and alginate) as matri-
ces for immobilization of GFs and other biologically active molecules. However, those
polymer-only scaffolds may suffer from rapid and uncontrolled GF sequestration; thus,
more advanced strategies are now being developed. These include novel materials and
devices that allow for the sequential release of multiple growth factors and other chemical
cues. Figure 9 demonstrates the current approaches for the generation of chemical gradients
within hydrogels. Graded materials can be designed to have either single (Figure 9(Ba)) or
multiple (Figure 9(Bb)) gradients of biologically active molecules.



Int. J. Mol. Sci. 2021, 22, 903 17 of 33

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 18 of 35 
 

 

depositing polymeric layers laden with BMP-2 directly onto the PLGA supporting mem-
brane, followed by coating with mitogenic platelet-derived growth factor-BB-containing 
layers. The released GFs induced bone repair in a critical-size rat calvaria model and pro-
moted local bone formation by bridging a critical-size defect [33]. Freeman et al. [168] uti-
lized a 3D bioprinting technique to print alginate-based hydrogels containing a spatial 
gradient of bioactive molecules directly within polycaprolactone scaffolds. They created 
two distinct growth factor patterns: peripheral and central localizations. To enhance the 
bone repairing process of large defects, the authors combined VEGF with BMP-2 in a 
properly designed implant. The structure contained vascularized bioink (VEGF) in the 
core and osteoinductive material at the periphery of the PCL scaffold. Proper control over 
the release of the signaling biomolecule was achieved by combining alginate with lapo-
nite, the presence of which slowed down the release rate in comparison to the alginate-
only biomaterial. This approach was found to enhance angiogenesis and bone regenera-
tion without abnormal growth of bone (heterotopic ossification). In Kang et al., FGF-2 and 
FGF-18 were successively released from mesoporous bioactive glass nanospheres embed-
ded in electrospun PCL scaffolds. The nanocomposite bioactive platform stimulated cell 
proliferation and induced alkaline phosphate activity and cellular mineralization leading 
to bone formation [169]. 

 
Figure 9. Engineered GF gradients: (A) injection of graded biomaterials for bone regeneration; (B) 
strategies used to create GF gradients within hydrogels: (a) concentration gradient of a single bio-
molecule (GF1), (b) sequential delivery of three different biomolecules (GF1, GF2, and GF3), and 
(c) encapsulation of biomolecule(s) in polymeric micro- and nanocarriers; and (C) methods for 
graded biomaterial fabrication: (a) 3D bioprinting, (b) microfluidics, (c) layer-by-layer scaffolding, 
and (d) magnetically (electrically) driven distribution of GFs. Created using Biorender.com. 

All currently used strategies for engineering and fabrication of graded tissue scaf-
folds for bone regeneration are guided by the same principles: (1) to mimic native bone 
tissues and to follow the ordered sequence of bone remodeling, (2) to generate complex 

Figure 9. Engineered GF gradients: (A) injection of graded biomaterials for bone regeneration;
(B) strategies used to create GF gradients within hydrogels: (a) concentration gradient of a single
biomolecule (GF1), (b) sequential delivery of three different biomolecules (GF1, GF2, and GF3), and
(c) encapsulation of biomolecule(s) in polymeric micro- and nanocarriers; and (C) methods for graded
biomaterial fabrication: (a) 3D bioprinting, (b) microfluidics, (c) layer-by-layer scaffolding, and (d)
magnetically (electrically) driven distribution of GFs. Created using Biorender.com.

One of the strategies for sequential GF delivery assumes the incorporation of various
nanoparticles with encapsulated growth factors into polymeric scaffolds [49] (Figure 9(Bc)).
Several studies have reported the fabrication of PLGA (poly(lactic acid-co-glycolic acid))
capsules loaded with different growth factors and then immobilized in hydrogel matrices.
Sequential VEGF delivery and BMP-2 were achieved by the inclusion of alginate micro-
capsules embedded with GF-containing PLGA NPs into the collagen matrix [163]. Despite
its complexity, this system allowed for the effective transport of biomolecules and their
functional synergism in bone regeneration. Wang et al. [164] utilized microencapsulation
in a hydrogel matrix for the generation of a single concentration gradient and a dual
reverse gradient of bone morphogenetic protein 2 (rhBMP-2) and insulin-like growth factor
I (rhIGF-I) to induce osteochondral differentiation of hMSCs. Microsphere GF carriers
fabricated from silk and PLGA were further incorporated in silk fibroin or alginate scaf-
folds. The hMSCs were differentiated into osteoblast-like (cuboidal) and chondrocyte-like
(spherical) cells along the concentration gradients. Because silk microspheres turned out to
be more efficient GF vehicles than PLGA microcapsules, the authors proposed a silk-based
platform for delivery of multiple biomolecules that allows for regulation of the spatial
control over distribution and temporal control over sequestration of GFs. In a study by
Yilgor et al., wet-spun chitosan and chitosan-PEO scaffolds were embedded with PLGA and
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules containing BMP-2
and BMP-7, respectively [165]. The sequential delivery of the growth factors enhanced
alkaline phosphatase activity, which was an early indicator of MSC differentiation into
chondroblasts and osteoblasts.
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Hettiaratchi et al. developed a BMP-2-delivering system based on the strong affinity
interactions between heparin microparticles (HMPs) and bone morphogenic proteins
embedded within an alginate/polycaprolactone scaffold. By binding BMP-2 to HMPs, the
authors reduced the rate of biomolecule diffusion of BMP-2 by generating its long-term
gradient and by controlling spatial localization [105]. In another study, heparin-conjugated
superparamagnetic iron oxide nanoparticles (heparin-SPIONs) were used to generate a
magnetically driven biochemical gradient of BMP-2 within a cell-laden agarose hydrogel.
The BMP-2 concentration gradient governed the spatial osteogenic gene expression to
form robust osteochondral constructs with hierarchical microstructure from low-stiffness
cartilage to high-stiffness mineralized bone [166].

Recent technological advances in biomanufacturing have enabled the biofabrication
of biomaterials with differentially arranged growth factor gradients. These advanced
techniques include 3D bioprinting, microfluidics, layer-by-layer scaffolding, and tech-
niques that utilize magnetic or electrical fields to distribute biomolecules within scaffolds
(Figure 9C) [166,167]. Layer-by-layer (LbL) scaffolding has been utilized to create multilay-
ered scaffolds embedded with several growth factors. In such systems, each layer is cured
individually and contains a different biomolecule or concentration. The separation of bio-
logically active agents into different shells is based on the interactions between scaffolding
material and a cue. The LbL technique allows sequential delivery of various bioagents and
creates a spatial gradient of growth factors release. Shah et al. designed a polyelectrolyte
multilayer system formed by a layer-by-layer (LbL) method to deliver multiple biologic
cues in a controlled, preprogrammed manner. The gradient concentration of growth factors
was created by sequential depositing polymeric layers laden with BMP-2 directly onto the
PLGA supporting membrane, followed by coating with mitogenic platelet-derived growth
factor-BB-containing layers. The released GFs induced bone repair in a critical-size rat
calvaria model and promoted local bone formation by bridging a critical-size defect [33].
Freeman et al. [168] utilized a 3D bioprinting technique to print alginate-based hydrogels
containing a spatial gradient of bioactive molecules directly within polycaprolactone scaf-
folds. They created two distinct growth factor patterns: peripheral and central localizations.
To enhance the bone repairing process of large defects, the authors combined VEGF with
BMP-2 in a properly designed implant. The structure contained vascularized bioink (VEGF)
in the core and osteoinductive material at the periphery of the PCL scaffold. Proper control
over the release of the signaling biomolecule was achieved by combining alginate with
laponite, the presence of which slowed down the release rate in comparison to the alginate-
only biomaterial. This approach was found to enhance angiogenesis and bone regeneration
without abnormal growth of bone (heterotopic ossification). In Kang et al., FGF-2 and
FGF-18 were successively released from mesoporous bioactive glass nanospheres embed-
ded in electrospun PCL scaffolds. The nanocomposite bioactive platform stimulated cell
proliferation and induced alkaline phosphate activity and cellular mineralization leading
to bone formation [169].

All currently used strategies for engineering and fabrication of graded tissue scaffolds
for bone regeneration are guided by the same principles: (1) to mimic native bone tissues
and to follow the ordered sequence of bone remodeling, (2) to generate complex multifunc-
tional gradients, (3) to control the spatiotemporal distribution and kinetics of biological
cues, and (4) to be easily generated by accessible and reproducible techniques.

4. Considerations for using GFs in Bone Tissue Engineering
4.1. Toxicity

Growth factors have shown great potential in bone regeneration. However, their
clinical applications are limited due to the following reasons: short biological life in
physiological conditions due to rapid degradation and deactivation, high cost, and side
effects [170]. There are other safety issues around the use of GFs in bone regeneration,
including bony overgrowth, immune responses, inflammatory reaction, nerve damage,
breathing problems, cancer, and osteoclastic activation [171–174]. BMPs were adopted by
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many surgeons as a replacement for autologous bone grafts following FDA approval in 2002.
However, clinical safety issues were brought to light with several serious complications
reported regarding the use of BMPs postoperatively, which included oedema leading to
dysphagia and dyspnea, bone graft resorption, and osteolysis [18,175,176]. Growth factor
effects are dose-dependent. Several studies have shown that minimally effective doses are
needed to be determined above a certain threshold for bone formation as bone formation
cannot be further enhanced. Dose-dependent bone healing was observed when IGF-1 was
loaded into a sheep femoral defect. New bone formation was observed for 30 and 80 µg but
not for 100 µg IGF-I, which resulted in roughly the same effect as that for 80 µg [177,178].
Aspenberg et al. [179] reported that the application of excessive doses could provoke or
inhibit bone formation. Therefore, it is important to customize the dosage for each factor
and delivery system for successful GF delivery [180].

The use of appropriate delivery systems can considerably enhance the safety and
efficacy of GF therapies. When GFs are used for bone repair, the materials which are
prepared for the delivery system must be nontoxic and biodegradable [181]. The main
role of a delivery system for bone repair is to retain the GF at the defect site for bone
regeneration and to restrain the drug from excessive initial dose release [174]. Hollinger
et al. showed that, for BMPs, if delivered in a buffer solution, clearance is rapid and less
than 5% of the BMP dose remains at the defect site. However, when BMPs were delivered
with either gelatin foam or collagen, an increase in retention ranging from 15% to 55% was
observed [182]. Adverse effects have been mainly associated with systematic GF release,
whereas localized delivery is significantly safer. Nevertheless, when high doses of rhBMP-2
were administered locally, heterotopic bone and bone-cyst formation was reported during
defect healing in dogs [183]. Furthermore, osteoclastic resorption was also reported, and
in some cases when large doses were applied, bone resorption occurred [184]. However,
human studies using rhBMP-2 have not demonstrated systemic toxicity.

4.2. Cost

Besides the side effects, the cost-effectiveness of GFs for bone regeneration applications
is also under debate. The translation of GFs is narrowed by their delivery issues, side
effects [185], and low cost-effectiveness [186]. A study conducted by Dahabreh et al.
showed that the average cost of treatment with BMP-7 was 6.78% higher than that with
autologous-iliac-crest-bone grafts. Furthermore, 41.1% was related to the actual price of
BMP-7 [187]. Another study showed that the use of rhBMP for spinal fusion surgery would
increase the cost to the UK NHS by approximately £1.3 million per year and that the total
estimated cost of using BMP for spinal fusion is about £4.2 million per year in the UK [188].

5. Current Strategies and Future Trends

The bioactivity of GFs plays a vital role in bone regeneration. Even after several
in vivo and in vitro studies, the ideal dosage of GFs applied for bone regeneration remains
uncertain [189]. When administered without optimal delivery systems, burst release
kinetics and rapid clearance of GFs from the injury site are major challenges in terms of
safety and cost-effectiveness. In recent years, using a combination of scaffolds and GFs
has become an increasing trend in bone regeneration. To be effective, GFs should reach
the injury site without losing any bioactivity and must remain at the target site over the
therapeutic time frame. Therefore, designing biomaterials as various delivery systems or
carriers allowing dose reduction, controlled release kinetics, and precise localization in situ
and promoting enhanced cell infiltration is an effective strategy in improving bone tissue
engineering [50,190]. Furthermore, the carrier biomaterial must load each GF efficiently,
must encourage the presentation of proteins to cell surface receptors, and must promote
robust carrier–protein assembly [191,192]. Finally, fabricating the carrier should be simple
and feasible and should be able to preserve the bioactivity of the GF for prolonged periods.

To meet the requirements of GF delivery, several scaffold-based approaches such as
physical entrapment of GFs within the scaffold, covalent or noncovalent binding of the
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GFs to the scaffold, and the use of micro or nanoparticles as GF reservoirs have been
developed [49]. Covalent binding reduces the burst release of GFs, allows GFs to have the
prolonged release, and improves the protein-loading efficiency [49]. However, the limita-
tions of covalent binding include high cost and difficulty in controlling the modification
site, blocking of the active sites on the GF, and thus interference with GF bioactivity [193].
Noncovalent binding of GFs to scaffold surfaces involves the physical entrapment or bulk
incorporation of GFs into a 3D matrix [49]. The simplest method of GF delivery is often
considered to be protein absorption, and it is the method used by current commercially
available GF delivery systems [194]. Varying certain material properties such as surface
wettability, roughness, surface charge, charge density, and the presence of functional groups
are used to control the protein absorption to scaffolds. Unlike, covalent binding and non-
covalent binding systems are characterized by an initial burst release of the incorporated
GFs, followed by a degradation-mediated release which depends on the scaffold degra-
dation mechanism. The release mechanism includes degradation of the scaffold, protein
desorption, and failure of the GF to interact with the scaffold [138]. Therefore, the delivery
of GFs from noncovalent bound systems are both diffusion- and degradation-dependent
processes. The major drawbacks of noncovalent protein absorption in scaffolds are poor
control of release kinetics and loading efficiency [194]. Therefore, new strategies focusing
on altering the material’s degradation and improving the loading efficiency have been
investigated. One such example is increasing the electrostatic attraction between GFs
such as BMP-2 and the scaffold matrix [138,193]. Moreover, different fabrication methods
such as hydrogel incorporation, electrospinning, and multilayer film coating have been
employed to fabricate scaffolds with noncovalently incorporated GFs. A study conducted
by Sahoo et al. showed that electrospinning could be used to prolong GF release from
scaffolds and sustained GF release, which positively influences stem cells [195].

Hydrogels are a common GF delivery strategy as they can act as a scaffold or as
protein releasing matrices [196]. Studies have found that hydrogels can demonstrate a
preliminary burst release followed by sustained GF release over 28 days in systems with
high GF-loading concentrations [197]. Moreover, GFs can be encapsulated in nanoparticles
and then incorporated into scaffolds to reach more precise control over GF release and
can achieve a long-term sustained GF release profile [75]. There are several advantages in
encapsulating GFs within nanoparticles. The advantages include ensuring protection from
enzymes in vivo, allowing for prolonged protein retention, and obtaining a certain degree
of control over the protein release profiles [190,198]. Other advantages include improving
osteointegration, osteoconduction, and osteoinduction by mimicking the complex hierar-
chical structures of the natural bone and environment, high drug loading capacity, large
surface, and small size [114].

6. Conclusions

In this review paper, recent developments in fabricating scaffolds for GF delivery in
bone tissue regeneration were discussed. Despite progress covered in this paper, more
work is required to develop biomaterials that are porous and mechanically strong, that can
present controlled degradation, and that match the rate of new bone formation. Well-known
side effects of direct GF injection lead to the clinical need for developing delivery systems
with controlled GF delivery. Among the different available strategies, GF encapsulation
in the structure of scaffolds can be considered a promising method to control the release
kinetics of GFs and to fabricate scaffolds with improved characteristics. The GF/scaffold
release system should mimic the coordinated fracture repair pathway in practical appli-
cations. Moreover, delivery systems with the capability of delivering multiple GFs in a
targeted manner could promote the inflammation, angiogenesis, and osteogenesis phases
of bone formation.
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Table 1. Studies on growth factor-based bone tissue engineering.

Growth Factor Material Carrier Fabrication Method Delivery Remarks or
Mechanism of Action Application In Vivo or In Vitro Tests References

PDGF-BB β-tricalcium phosphate
(TCP) particles -

Interaction with PDGF
receptors stimulates

recruitment and
proliferation of cells and

promotes
revascularization.

Distal radius fractures,
hindfoot/ankle fusion;
healing in hindfoot and

ankle arthrodesis

In phase III randomized, controlled trial,
66.5% of PDGF-treated joints and 62.6%

of autograft-treated joints showed fusion
on computed tomography scanning at 24

weeks postoperatively.

[199,200]

FGF2 + BMP2
VEGF + BMP2

Silica-coated
nanohydroxyapatite-

gelatin reinforced with
poly (L-lactic acid)

(PLLA) yarns

GFs dissolved in PBS
and loaded onto the

scaffolds

FGF2 mainly promoted
cell migration, whereas
VEGF augmented new
blood vessel formation

at the defect site.

Promotes vascularisation
and bone regeneration in

a critical-sized
calvarial defect

In in vivo and in vitro tests, VEGF was
released for 1 week whereas BMP2 and

FGF2 were released for 3 weeks. In vitro
studies have shown that the composite
matrix degraded partially within 2–3

weeks in the presence of a collagenase
enzyme. Release of growth factors was

faster in vivo than in vitro. This disparity
may be due to a complex in vivo
environment containing multiple

matrix-degrading enzymes (MMP2 and
MMP9), cell types, etc. that are involved

in the healing process.

[201]

BMP-2 Polyelectrolyte (PEM)
film coating

Polyelectrolyte film
loaded with tunable
doses of BMP-2 as
the osteoinductive
surface coating of a
hollow PLGA tube

(a) Release owing to the
swelling of the film
(b) Release due to

biodegradability of
the film

Triggers fast volumetric
bone regeneration via

the surface of an implant

(a) Microcomputed tomography and
quantitative analysis, and C2C12 cell

culture and in vitro BMP-2
bioactivity assay

(b) In vivo critical-size femoral defect in
the rat: formation of vascularized cortical

and cancellous bone
(c) The formation of new bone dependent
on the dose of BMP-2: higher doses lead

to hematoma

[202]



Int. J. Mol. Sci. 2021, 22, 903 22 of 33

Table 1. Cont.

Growth Factor Material Carrier Fabrication Method Delivery Remarks or
Mechanism of Action Application In Vivo or In Vitro Tests References

BMP-2 and TGF-β1

Silk protein fibroin
reinforced with

functionalized carbon
nanofiber (CNF)

Facile green
aqueous-based

Prolonged-release
kinetics; timely growth,

attachment,
multiplication, and

differentiation of
mesenchymal and

osteoblasts cells

Extracellular matrix for
osseointegration

(a) Cytocompatibility of growth factor
loaded matrices showed

immunocompatibility due to low release
of pro-inflammatory cytokines (TNF-α

and IL-1β).
(b) In vivo analysis of new bone
formation within the implants

(radiological, µ-CT, fluorochrome
labeling, and histological analysis)
demonstrated more efficient bone
regeneration on loaded scaffolds.

[83]

bFGF (basic
fibroblast growth

factor)
Porous α-TCP particles

Immobilization on
heparin-modified

α-TCP by immersion

Stimulation of osteoblast
proliferation and

differentiation

Mandible cortical bone
regeneration

In an in vivo test on a canine model,
higher bone mineral content and

formation of homogenous cortical bone
with Haversian structure dependent on

bFGF dosage (optimal dose of 4.2 µg)
was seen.

[34,203]

rhBMP-2

Absorbable collagen
sponge (ACS) and

β-TCP/hydroxyapatite
particle (TCP/HAp)

Immobilization on
the carrier by

immersion

Stimulation of osteoblast
proliferation and

differentiation

Tooth alveolar ridge
preservation

In an in vivo test on a human model,
similar bone height and width with no

associated deleterious effects were seen.
[204,205]

BMP-2 Alginate and Collagen Scaffold loading
by droplet

(a) Collagen sponges
showed initial burst
release within a day.

(b) Alginate showed a
more controlled release.

Regeneration of femoral
segmental defects

(a) BMP-2 release in vitro was accelerated
from collagen sponge, and loaded
alginate induced higher bioactivity.

(b) In an in vivo test on a rat model, an
alginate scaffold showed higher total
bone volume at 12 weeks; heterotopic
bone volume was similar for alginate

and collagen.

[2,11]
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Table 1. Cont.

Growth Factor Material Carrier Fabrication Method Delivery Remarks or
Mechanism of Action Application In Vivo or In Vitro Tests References

hBMP-2 and hGDF5
(human growth and
differentiation factor)

Titanium (Ti)

Coated onto Ti with a
smooth surface using

heparin-binding
interaction

Initial burst release at
day 1 followed by

controlled release for 30
days

Orthopedic and dental
bone formation and

osseointegration

(a) An in vitro test showed a high
proliferation rate and alkaline

phosphatase activity resulting in calcium
deposition and gene expression.

(b) An in vivo test on a rabbit model
showed bone regeneration and

osseointegration between the implants
and host bone. Bone formation by
osteoblasts and bone resorption by
osteoclasts was observed through

histological analysis

[205,206]

BMP-2 and FGF-2 Gelatin nanofibers

Immobilization on
nanofibers through

avidin-biotin binding
after HAp deposition

A synergism between
multiple growth factor
delivery and the HAp

nanofiber coating
stimulated the

expression of osteogenic
gene markers.

Promotes bone growth
and mimics the natural

extracellular matrix

Immobilization of FGF-2 and BMP-2 in
administered ratios on the surfaces of

gelatin fibers resulted in cell proliferation.
[2,34]

PDGF Poly(ι-lactic acid) (PLLA)
nanofibers

Immobilization on
PLLA nanofibers

coated with
biominerals

Osteogenic and
endothelial

differentiation with gene
expression

Vascularized bone
regeneration

(a) In vitro. PDGF increased the
proliferation of hADSCs (human

adipose-derived stem cells).
(b) In an in vivo mouse calvarial defect,
bone regenerated 42.48% of an area and

formed capillaries and arterioles.

[205]

VEGF and BMP-2

nHAp/poly
lactic-co-glycolic acid

microspheres
(PLGAs)/chitosan [207]

hydrogel

Water-oil-water
double emulsion

solvent evaporation
method

(PLGA-loaded
microspheres) and

immersion (HAp and
CS)

Sustained release with
early burst release in the
first 10 days followed by

a steady release of
BMP-2 (days 11 and 21)
and VEFG (day 11 and

19), and bioactivity
preservation

Ossification and
vascularization in

critical-sized mandibular
bone defects

In an in vivo rabbit model, bone defect
cavities gradually reduced with time and

healed after 12 weeks with callus
remodeling.

[2]
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Table 2. Growth factors used for bone tissue engineering either directly or delivered via a scaffold [119,208–211].

Name of Growth Factor Abbreviation Source Biological Response Mechanism of Action Functions

Bone
Morphognetic

Proteins
BMP Mesenchymal Osteoblast

Endothelial Chondrocyte
Chondrogenic, osteogenic,

and osteoinductive Bone induction

BMPs are osteoinductive and induce
bone formation by causing the
migration of MSCs and their

differentiation into osteoblast. BMPs
do not initiate osteoclast activity.

Fibroblast Growth Factors FGF

Mesenchymal
Osteoblast

Chondrocyte Inflammatory
Cell Endothelia

Angiogenesis and connective
tissue cell proliferation

Angiogenesis, proliferation,
and osteogenic differentiation

FGFs induce angiogenesis by
increasing osteoblast proliferation
and a potent stimulant for wound

healing.

Insulin-Like Growth Factors IGF
Osteoblast

Chondrocyte Hepatocyte
Endothelial

Anabolic and catabolic effect
on osteogenesis Osteogenic differentiation

IGFs stimulate osteoblast
proliferation and bone matrix
synthesis. IGFs also stimulate

osteoclasts.

Platelet-Derived Growth
Factor PDGF

Platelet
Osteoblast Inflammatory

Cells Endothelial

Osteoinductive, angiogenesis,
and connective tissue cell

proliferation

Cell proliferation and
vascularization

PDGFs are a key regulator of wound
healing/tissue repair and stimulate

bone cell proliferation and
angiogenesis

Transforming Growth
Factor-Beta TGF-β

Platelet
Osteoblast

Chondrocyte
Endothelial Inflammatory

Cells Fibroblast

Osteoinductive,
immunosuppression,

angiogenesis, andcell growth
and differentiation

Osteogenic and chondrogenic
differentiation

TGF-β induces proliferation and
differentiation of bone by stimulating

migration of osteoprogenitor cells
and by regulating cell proliferation,
cell differentiation, and extracellular
matrix (ECM) synthesis and inhibits
proliferation and differentiation of

osteoclast progenitor cells.

Vascular Endothelial Growth
Factor VEGF

Platelet
Osteoblast

Chondrocyte

Osteoinductive, chemotactic,
and angiogenesis Angiogenesis

VEGF regulates migration,
proliferation, and survival of

endothelial cells through nutrient
supply from newly formed blood

vessels.
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