Contents

1	Introduction and Research strategy	3
	1.1 General context	3
	1.2 Objectives and Research Strategy	6
2	Catalysis of proton transfer steps in proton-coupled electron trans-	
	fer (PCET) reactions : experimental and numerical study	9
	2.1 Introduction	9
	2.1.1 Square scheme	10
	2.1.2 Thermodynamic of the square-scheme	12
	2.1.3 Kinetics of the square scheme	13
	2.2 General acid-base catalysis and the Brönsted catalysis law	15
	2.3 Experimental methods	19
	2.3.1 Electrochemical techniques	19
	2.3.2 Optical techniques \ldots \ldots \ldots \ldots \ldots \ldots \ldots	22
	2.3.3 Materials and reagents	23
	2.4 Model and numerical integrations	24
	2.4.1 Model	24
	2.4.2 Equations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	25
	$2.4.3$ Dimensionless equations $\ldots \ldots \ldots$	26
	2.4.4 Dimensionless initial and boundary conditions	27
	2.4.5 From equations to current values	29
	2.4.6 Determination of parameters (D,v) to use in the numerical simu-	
	lations	30
	2.5 Numerical study \ldots	32
	2.5.1 Comparison with non-catalyzed reactions	32
	2.5.2 Influence of the chosen rate constants and scan rate combination .	35
	2.5.3 Evolution of ΔE with the pH of the solution	39
	2.6 Experimental study	40
	2.6.1 Choice of the molecule \ldots	41
	2.6.2 Electrode material \ldots	41

	2.6.3 Electrochemical study of HPTS	. 42
	2.6.4 Presentation of experimental peak potential vs. pH diagrams	. 43
	2.6.5 Comparison between theoretical and experimental results	. 45
	2.6.6 Optical properties of HPTS	. 47
	.7 Conclusions and perspectives	. 53
3	Spontaneous $vs.$ natural convection in electrochemical systems	57
	.1 Introduction	. 57
	3.1.1 Mass transport in electrochemistry $\ldots \ldots \ldots \ldots \ldots \ldots$. 59
	3.1.2 Theory of spontaneous convection $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 60
	.2 Turbulent form of the advection-diffusion equation	. 63
	.3 Numerical simulation: influence of the radial contribution	. 65
	.4 Introduction of fluctuations into the numerical simulations	. 67
	.5 Accounting for natural convection	. 69
	.6 Comparison with experiments	. 70
	.7 General comments and conclusion	. 73
4	Natural convection during PCET reactions	75
	.1 Introduction	. 75
	.2 Model	. 79
	4.2.1 Dimensional equations	. 79
	4.2.2 Dimensionless equations	. 80
	4.2.3 Boundary conditions	. 81
	4.2.4 Verification of numerical simulations	. 83
	4.2.5 Determination of the Schmidt number value	. 84
	.3 Horizontal and vertical density gradients	. 85
	.4 Short-time evolution of natural convection	. 86
	4.4.1 Influence of the solutal expansion coefficients	. 86
	4.4.2 Influence of coupled reactions	. 88
	4.4.3 Influence of rate constants on natural convection	. 91
	4.4.4 Influence of chosen pK_{as}	. 92
	.5 Evolution of the velocity along a double potential step	. 93
	.6 Long time evolution	. 94
	4.6.1 Relation between concentration profiles and current measurement	97
	4.6.2 Density profiles	. 100
	4.6.3 Influence of the electrode radius and experimental times on the	100
	dynamics	. 102
	4.6.4 Evolution of the convective roll in z -direction with time	. 106
	4.6.5 Influence of the insulating shell around the electrode	. 107
	". Conclusions and perspectives	. 109

5	Impact of Marangoni flows on the electrochemical conversion A	
	\rightarrow B 12	11
	5.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 11	11
	5.1.1 Marangoni flows in chemical and electrochemical systems 11	12
	5.2 Model and numerical simulations $\ldots \ldots \ldots$	14
	5.3 Study of the impact of Marangoni flows alone $\ldots \ldots \ldots$	17
	5.3.1 Surface tension profiles $\ldots \ldots \ldots$	17
	5.3.2 Velocity evolution $\ldots \ldots \ldots$	18
	5.4 Study of the impact of Marangoni flows coupled to buoyancy-driven	
	convection $\ldots \ldots \ldots$	19
	5.4.1 Case 1: product less dense and more surface active than the reactant 12	20
	5.4.2 Case 2: product less dense and less surface active than the reactant 12	21
	5.4.3 Case 3: product denser and more surface active than the reactant 12	22
	5.4.4 Case 4: product denser and less surface active than the reactant . 12	23
	5.4.5 Velocity evolution: comparison between the four cases $\ldots \ldots \ldots 12$	24
	5.4.6 Relation with the current $\ldots \ldots \ldots$	27
	5.5 Relationship between density and surface tension $\ldots \ldots \ldots$	27
	5.5.1 Along an electrochemical reaction $\ldots \ldots \ldots$	28
	5.6 Conclusion and perspectives $\ldots \ldots \ldots$	30
6	Conclusions and prospects 13	31
В	bliography 13	37