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Dynamics of a semiconductor laser array with delayed global coupling
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We study the dynamics of an array of single mode semiconductor lasers globally but weakly coupled by a
common external feedback mirror and by nearest neighbor interactions. We seek to determine the conditions
under which all lasers of the array are in phase, whether in a steady, periodic, quasiperiodic, or chaotic regime,
in order to maximize the output far field intensity. We show that the delay may be a useful control parameter
to achieve in-phase synchronization. For the in-phase steady state, there is a competition between a delay-
induced Hopf bifurcation leading to an in-phase periodic regime and a delay-independent Hopf bifurcation
leading to an antiphased periodic regime. Both regimes are described analytically and secondary Hopf bifur-
cations to quasiperiodic solutions are found. Close to the stable steady state, the array is described by a set of
Kuramoto equations for the phases of the fields. Above the first Hopf bifurcation, these equations are gener-
alized by the addition of second and third order time derivatives of the phases.
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I. INTRODUCTION required to lock the SCL elements in phase. For this, the
symmetry of the coupling is an essential characteristic of the
Many physical, chemical, and biological systems consissystem. It was indeed found theoreticdl8}, in the absence
of interacting elementary units. A general class of such sysef delay, that a global coupling is more suitable than a
tems is that of weakly coupled oscillators. If the coupling nearest-neighbor coupling to synchronize the SCL’s in
does not modify significantly the phase space trajectoriegphase. Numerical simulations tend to extend this conclusion
one phase variable suffices to describe each oscillating elée the case where the coupling is delay&il On the other
ment. This leads to phase models, including the extensiveljland, phase locking was investigated in a laser array with a
studied Kuramoto equationd,2]. In recent years, it was random distribution of frequencies and instantaneous global
realized that delaying the interactions between elementargoupling[10]. The idea to use optical feedback in order to
cells can have a profound influence on their collective besynchronize a laser array was already exploited in Rif].
havior. The principal consequences of time delay docuHowever, up to now, only strong coupling has been consid-
mented for phase models concern the occurrence of synchrered, which raises some technical difficulties. The very small
nization [3,4] and multistability between states of transverse size of the SCL's makes it difficult to efficiently
synchronization[5]. However, if the coupling strength is reinject a substantial fraction of the emitted field back into
comparable to the attraction to the limit cycle, amplitudetheir active region. Usually, the mirror is placed a few mil-
guenching or “oscillation death” can also result from the limeters away from the array, for instance at the Talbot dis-
delay[6]. From the general viewpoint of coupled oscillators, tance. With such a small external cavity length, the only
the physical system we study in the present paper mixes theffect of the delay is to change the phase of the reinjected
two situations. We consider an array of semiconductoffield.
lasers(SCL’s) that are weakly and globally coupled by the In this paper, we again consider the model discussed in
optical feedback of an external mirror. For very small valuesRef. [7]: a one-dimensional array of SCL’s with possibly
of the coupling strength, the electric fields emitted by eachearest-neighbor coupling, with a global coupling of the la-
SCL are essentially described by their optical phases, and theers by a spherical mirror placed centimeters away from the
system can be modeled by phase equations of the Kuramotoray, as depicted in Fig. 1. The spherical shape of the mirror
type. However, increasing the coupling strength gives rise taninimizes the optical path difference between SCL’s. Such a
time periodic intensities by way of a Hopf bifurcation. The spherical feedback mirror was recently used to stabilize the
amplitude of the limit cycle created by this mechanismemission of a broad area lagé2]. Since we consider only a
strongly depends on the coupling strength. Each element afieak coupling between the lasers in our model, the feedback
the array thus becomes a two-frequency oscillator with ondield is assumed to be smaller by orders of magnitude than in
frequency in the optical domain and the other frequency corRef. [11]. We give a detailed and extended analysis of the
responding to sustained relaxation oscillations and typicallynodel presented in Ref7]. Our purpose is to determine
lying in the GHz range for a SCL. To investigate the dynam-how to maximize the array output. This goal is achieved if
ics of this system, we have suggested an extension of thie lasers are phase locked, which in this case means that
Kuramoto mode[7]. they should be in phase. We show that the problem is phase
Aside from its fundamental interest, this subject has asensitive, and that the cw regimes can be either in-phase or
technological application. SCL arrays are a compact anaut of phase. The in-phase steady state can bifurcate toward
high power optical source. To concentrate the maximum coa time periodic regime, following two different routes, and
herent output power in a single lobed far field pattern, it isthe array can be either in phase or antiphase in this time
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CL threshold. We suppose that all lasers operate in the same

=SC " - single longitudinal mode of the short cavity. This may re-
L1 ———

quire the use of frequency
= slection technique§l3], or require one to pump the lasers
q|FCL T w— not too far above the lasing threshold. Tfté laser has a
: =<—— lasing frequencyw; /7, in the absence of optical feedback

and coupling between the lasers. We denot@bynd;the
average pump and optical frequency over the SCL array.

Hereafter we will assume that the deviati0||fs,—5| and

L |o;— | are small.
The parameter; describes the global coupling strength.
FK:;- 1 Sl_chelr)natic repLeSTntatg_n Ok: a SCL array with fglﬁbalThe phase of the fields reinjected in the array of SCL'’s is
optical coupling between the lasersis the transverse size of the Y _ ; ; tri
array. The spherical feedback mirngk of radiusr is placed at the ':i?rr#(:r%rr?{;?itzljea i;/(cﬁltls ttfrl]aet ef)greg;/?‘rllr?wae\tl:’elrreo;snodn;mi)n
fogus of the converging Ien; CL, and at a distahdeom thg array. Egs. (1) and2) we 86 not foIIO\;v the commonly adopt,ed
A is an attenuator, controlling the strength of the coupling. nota.tions in which the feedback term a ithout
ppears without an

periodic regime. The bifurcation to the in-phase time peri-iﬂlaginary uniti [14]. This, however, is equivalent to setting

odic regime does not exist in the absence of a delayed feed!= /2, or shifting the position of the external mirror by one
back. It is therefore a delay-induced bifurcation. Maximiza-€ighth of the optical wavelength. Since the exact value of the
tion of the array output is achieved if parameters are selectegxternal cavity length is not known with precision, we may
such that the bifurcation occurs toward the in-phase periodisimply set 9 equal to zero. The phase dispersiph|

regime. _ _ . =w|&pj|/c can be made small if the feedback miriovith

This paper is organized as follows. In Sec. II, we describgadiusr <L) is placed at the focus of a converging lens and
the model and introduce the evolution equations. In Secs. Ilgufﬁcienﬂy far from the SCL arragsee Fig. 1 Indeed, if the
and IV, we study the synchronization properties of the SCLjateral dimensiond of the array is small compared to the
array in the cw regime. We calculate the self-pulsing threshayternal cavity lengthL, one has an inequalityd,|
olds from the cw states. For the in-phase steady state, thengr(d/ZL)Z_ For instance, ifd=1 mm, r=1 mm, andL
are two possible thresholds: a degenerate Hopf bifurcation. 19 ¢m, the dispersion in the optical path Iength$&§j|
Ieading. to an_tiphase periodip laser inten_sities, and a regu_|;3<~E2_5>< 108 m, which is much shorter than one optical
Hopf bifurcation leading to in-phase periodic laser intensi-yayelength. Hereafter, theoretical conclusions will therefore
ties. In Sec. V, we present an analytical treatment of thg,s siated ford,=0. The parameterg and { measure, re-
synchronization in the self-pulsing domain in the simplifying spectively, the Jstrength and the phase of the local coupling
limit of a large linewidth enhancement factar This results  {nat can arise due to the interaction between neighboring
from an explicit derivation of evolution equations governing |asers via evanescent fields. Note that the phase of the local
the slow time dependence of the laser intensities, also k”OWE‘oupIingg is usually assumed to be zefb5]. Finally, we

as the solvability condition of the bifurcation equations. will assume that the coupling between the lasers is weak:

n,x<<1.
II. MODEL
The mathematical model of our system is a setNof lll. SYNCHRONIZATION BELOW SELF-PULSING
coupled Lang-Kobayashi equations in dimensionless form THRESHOLD

dEj . . X A. In-phase synchronization
—:leEj+(1+|C!)ZjEj+|—e g(Ej_1+Ej+1) . ) .
dt 2 In this section, we derive the steady states of Efjsand

N (2). These equations are phase sensitive, and admit in-phase
+i2 2 e—i(ojn+5)En(t_tD), (1) and_ antiphase solutions. In this proplem, g'geady states are
N =1 defined by the property that the laser intensities are constant.

We study the linear stability of the in-phase and antiphase
cw regimes. Since we are mainly interested in the effect of
time delay on the synchronization of globally coupled lasers,
we present a detailed stability analysis for the case, and
with periodic boundary conditiongy=Ey, Ey,1=E;. In  only briefly discuss the influence of the local coupling on the
Egs.(1) and?2), E; is the electric field, and; is the carrier  stability properties of cw states. The optical feedback can
excess density of thgth laser. The time unit is the photon destabilize the SCL array from its cw operation. However,
cavity lifetime 7,=2X 10712 s, y= 7-,)/7-cz10‘3 is the ra- before  exceeds the self-pulsing threshold, the SCL’s de-
tio of the photon to carrier lifetimes, ang=5 is the line- liver a constant intensity. Below this threshold, the stability
width enhancement factoP,; is the excess pump parameter of the steady state justifies thaf and the modulus of the
of laserj, which is proportional to the injection current above fields|E;| can be adiabatically eliminated in Eq$) and(2).

_1dZ]- 2
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In the limit |P; /P— 1|=|6P;|<1, this yields the following T 5_— o
set of coupled equations for the field phases: 5 ttpVlta<otp—cot *(a)—2n7
do. n 3
—J=wj—— 1+ a? < ——ptpV1+a? (7)
dt N 2
: - N wheren is an arbitrary integer. These inequalities are consis-
xnzl sinl 9o+ ¢~ ¢n(t—1p) —cot ~ o] tent with results derived in Reff3], and obtained in the limit
N—w. In Eq. (7) the time delay appears on two well sepa-
X : - rated time scalesoty and 5ty . Since p<1<w, the varia-
- SV1+a? — gt {—cot? _ D anl- 71D 7 >
2 “« q:;ﬂ SIN($; = $j+q* ¢~ cOL ), tion of the external cavity length over one optical wave-

3) length leads to a variation of# for ZID, but leavesntp
almost constant. Therefore, we can consi@ég , and 5tp

with the boundary conditiong,= ¢y and ¢y 1= ¢,. Note s independent parameters of the problem. Inside the domain
that the effective coupling strength in E@) is proportional ~ defined by Eq(7), in-phase synchronization is lost in favor

to \1+a? and therefore increases with the linewidth en-Of antiphase cw regimes. The size of these instability do-
hancement factor. If local interactions are negligibley ~ Mains is inversely proportional tgtp . Therefore, to in-

<7, and if|0jn|<1v Eq.(3) reduces to the Kuramoto equa- '€ase the time delay favors in-phase cw operation. In Sec.
tions with a time delay3,4]. IV, we shall define selfpulsing thresholdg,; and 7y, to

Let all the lasers be identical, so tha]tzg. The in-phase periodic intenfilties. Iftp is sufficien'FIy large and .if
solutions of Eq(3) are given byg;= wt, with the common m(2tpV1+a®) “<y<17y1,, Stable cw in-phase operation

frequencyw obeying the transcendental equation exists for all values OEFD. This is due to the overlap of
stability domains of cw in-phase solutions corresponding to
— . different ECM’s.

w=w—1+ ozz[773|r'|((u'[D—CO'[71 @)

+x sin(¢—cot ! a)]. (4) B. Antiphase synchronization

The antiphase cw solutions are defined by
This equation can have multiple solutions. They correspond

to the external cavity modé&ECM'’s) of the single lasefrl4], b; = wt+ 2jM 7N, )
which grow in number with increasingty . The linear sta-

bility analysis of the in-phase cw state can be performed byvhere the integeM determines the type of antiphase state.
substituting The stability conditions for Eq(8) can be obtained using a

discrete Fourier transformation similar to £§). They are
N

¢i:“’t+egfl Spy @I 5 xcog{—cot ! a)co{zmw)sinz(kww) >0, 9

into Eq.(3) and collectingO(e) terms. The linearized equa- with k=1,... N, k#M,N—M and

tions for ¢, yield the stability conditions
ncod wtp—cot L a)

_ 1ol KT 2M M
ncog wtp—cot ! @)+ 2y cog { —cot 1a)sm2(w) >0, —4y cos{g—cot‘la)cos( N” sz(T”)<0’ (10)
(6)
wherew verifies the transcendental equation:
wherek=1,... N—1. The effect of the local coupling on
the stability of the in-phase cw regimes depends on the rela- = n . 1
tive phase between the global and local couplings. If the two w=0—yl+a® >sinwtp—cot " a)

cosine functions in Eq(6) have the same sign for lardé
local coupling almost does not change the stability domain of
the cw in-phase solution. Otherwise this stability domain de-
creases with increasing local coupling strengthThis was
also observed in Ref16]. The stability boundaries defined by E¢8) and (10) corre-
Letting x—0, the bifurcations defined by E6) merge  spond to Hopf bifurcations with the frequeney— w. Ac-

into a single N\—1)-fold degenerate bifurcation. Then, suc- cording to the stability conditiofEq. (9)], the local coupling
cessively solving Egsi6) and (4), one finds instability do- selects the antiphase states witl such that cos
r@ins of the in-phase cw state which are triangles in the-cot ! a)cos(M#/N)>0. It then follows from Eq(10) that
(wtp,n) parameter plane, the stability domain of these states increases with

+2Xsinz<%)sin(g—cot‘la) . (11)
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In the absence of local coupling, the left hand side of Eq.=---=Ey,Z;=---=2Z}. In the limit 7, y,y<1, these bifur-
(9) vanishes, which implies that the antiphase sf&ig (8)] cations are defined by the condition
is neutrally stable witiN—2 zero eigenvalues. In addition,
there is a zero eigenvalue associated with the invariance un- -, (k)
der the global phase shitb;— ¢;+const. This neutral sta-
bility is related to the existence of aN{ 1)-dimensional =se¢wtp+cot ' a)
invariant manifold in the phase space of E@). It is the
manifold spanned by the antiphase solutions that verify the
relation =; exp(¢;)=0 [16—-18. Expressiong10) and (11)
yield the following neutral stability domains of the antiphase

y(1+2P)

J1+a?

—2x sinz(%k) cos{§+cot‘1a)1,

cw solutions[Eq. (8)]: (16)
T 7t _ . with k=1,... N—1. The associated relaxation oscillation
7+ 5 Vlta’<otp—cot “a—2nw frequency is (3P)Y2 If cos((+cot ! a)<0, the lowest bi-

furcation threshold Eq. (16)] corresponds tk=1. In the
limit N—oo, it coincides with the threshold in the absence of
local coupling. Conversely, if costcot *a)>0, the self-
pulsing threshold is lowered by the local coupling, even for
Finally, we note that the phase equatid@sare valid in  largeN.
the limit , x,| §P;|<1, and below the self-pulsing threshold. ~ For x=0, Eq.(16) gives a single boundary= 7, asso-
Under these assumptions, the stability conditions obtained iniated with an N—1)-fold degenerate Hopf bifurcation.
this section agree with the linear stability analysis of the fullSuch a degenerate bifurcation is known to produce multiple
equationg1) and(2). branches of antiphase self-pulsing solutigd8]. The an-
Let us now relax the assumpticmj:a Then, in the tiphase character of the emerging sustained relaxation oscil-

large N limit, assuming a Lorentzian distribution for the lations partially destroys the in-phase synchronization of the

natural frequenciesg(w’):(F/w)[l“2+(w’—5)2]*1 the W state. The solutions describing these oscillations will be
stability condition for the desynchronized state becomesCOnStrUCteOI in Sec. IVB.

37 ntp 5
$7—T 1+a”. (12)

[3.4]
B. In-phase Hopf bifurcation
_ 2r Another Hopf bifurcation, which is always nondegener-
NS Ne= V1t aZcod wtp—cot La)’ (13 ate, is located at
wherew verifies E_q_.(ll) with 7= 7, _andX=0. Note that, D= Nyp= YL e=0otp . (17
asI'—0, the stability boundary defined by E¢L3) trans- 1-cose
forms into Eq.(10), with y=0.
Note that the bifurcation conditiofEq. (17)] is independent
IV. SELF-PULSING INSTABILITIES of x, and is identical to that of a solitary laser with a feed-
back strengthy instead of»/N in Eq. (1). The frequency
A. Antiphase Hopf bifurcation Oy, characterizing the oscillations af= 7, satisfies the

In order to describe Hopf bifurcations of the in-phase cwtranscendental equation
state leading to solutions with self-pulsing laser intensities,
we return to the original set of coupled Lang-Kobayashi — 11 — Quotp
equationg1) and(2). We confine our treatment to the case of Qo=(2yP)™“+ y(P+1/2)co — | (18)

identical lasers by setting;l:z and Pj=5. The complete

in-phase cw solution of Eq¢l) and(2) is then This equation has an infinity of solutions, each producing a

Bt 7 sin(wtp)+ x sing vz different ny, through the value of in Eq. (17). The peri-

E;(t)= : : g“t, (14  odic solution that bifurcates ap= 7, lies within the syn-
1-27sin(wtp) —2x sin{ chronization manifold. It is therefore characterized by in-
phase synchronization, not only in the optical frequency
Z(t)=—nsin(wtp) — x sin, (15 but also in the relaxation oscillations at frequereys.

Which of the two Hopf bifurcationsy= ny4 Or = 7942,
wherew is the solution of Eq(4). Besides the desynchroni- takes place first and, hence, destabilizes the cw solution de-
zation boundarie$Egs. (7)], a linear stability analysis of pends on the order of magnitude of the time delgy We
Egs. (14) and (15) reveals the existence of two different discuss three different situatior($} small, (ii) moderate, and
types of Hopf bifurcations, leading to self-pulsing solutions. (iii ) large delays.

The bifurcations of the first type are associated with pertur- (i) If tp<y~ 2 thene<1 and the cw solutionl4) and
bations transverse to the synchronization manif¢le, (15 can only be destabilized through the Hopf bifurcation at
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FIG. 2. Relative positions of the two Hopf bifurcationg=0,
a=5, P=1.5, andy=10"3. The dashed lin¢i; shows the mini- &
mal coupling strength necessary to reach the degenerate Hopf t mg 0.5
furcation = ny4. It corresponds to the minima of the curvids
shown in Fig. 3. The solid linél, represents the minimal coupling
strength corresponding to the in-phase Hopf bifurcatipa 7y,
calculated using Eq17).

Hp

1T

n=ny1. In this limit, however, the phase dispersiofig; I

may become non negligible, which makes the validity of 0.0-— T — T

formula (16) questionable. 0.5 0.0 0.5 L0
(i) If tp~y Y2 i.e., the time delay is comparable to the (b) SL=L-L;(um)

relaxation oscillations period. The value gfcorresponding

to the lowest bifurcation thresholgl,, is well approximated FIG. 3. Stability boundaries of cw solutions. The parameters are

by (275)1/2%. Then the relative position of; and 7, the same as in Fig. Za) L=Ly+ 6L and(b) L=L,+ SL with L,

can be controlled througla by changing the external cavity —13-7 ¢m and.,=44 cm. In-phase states corresponding to dif-
length on the centimeter scale. ferent ECM'’s are stable in the grey ard¢hand Il). In the regions Il

ey e . — . stable antiphase and in-phase states coexist. In the white triangular
(i) Finally, if tp=m7y %(2P+1) ! there exists at least P P g

. regions lll, only antiphase states are stable. Cukgsindicate the
one solution{)y, of Eq. (18) such thatn,,<ny;. There-  |scations of Hopf bifurcations. '
fore, it is always the in-phase Hopf bifurcatifiig. (17)] that
destabilizes the in-phase cw solution. Moreover, our nUMeri- The linear stability analysis of the cw states is summa-
cal simulations indicate that for large delays the in-phasgjzeq in Figs. %a) and 3b) for values of the external cavity
synchronized self-pulsing solution emerging #& 71, IS |ength in the vicinity ofL=13.7 and 44 cm, respectively. In

stable in a wide domain above the desynchronization threshpese figured, varies on the scale of the optical wavelength,
old given by 7= 7y;. In this sense, the antiphase instability yyhich we fix ath=1 wm. The gray areas labeled | and Il
is bypassed, and in-phase synchronization is preserved by thge the stability domains of different cw in-phase solutions,

in-phase Hopf bifurcation a= 7. o each corresponding to a certain ECM. In Figa)3it is the
_Figure 2 illustrates the dependence of the minimal coutjopt pifurcation to antiphase self-pulsing solutions st
pling strength necessary for the Hopf bifurcations 7y; -, <5 . which takes place first and destabilizes the in-

and 7= 7y on the time delay. From Eq6l6) and(17), 741 phase cw state. In Fig.(8), corresponding to a larger value
and 7y, have minimazny,=y(1+2P)/\J1+a? and 74, of feedback delay, the first Hopf bifurcation leading to in-
= nu1/(1—cosg) at cosptp+cot 'a)=1. These minima phase self-pulsing regime takes placesat 7,,< 741.

are shown as functions of the external cavity lenigttOne Having determined the critical coupling strengthyg;

can see that foL <20 cm the order of appearance of the and #,,,, we can complete the conditions to achieve synchro-
two Hopf bifurcations,»= 7y, and n=ny,, can be con- nization in the cw operation,

trolled throughL. For largerL, the in-phase Hopf bifurcation

always precedes the antiphase Hopf bifurcation. Ne<N7<NH1:TH2 >

016613-5



G. KOZYREFF, A. G. VLADIMIROV, AND PAUL MANDEL PHYSICAL REVIEW E 64 016613

where 7. is defined in Eq(13). Qualitatively, this imposes We derive amplitude equations by following the two-time
that the dispersion of the natural frequenciése smaller scale perturbation approach proposed in R28]. To this
than the relaxation rate of the carrier densjty end, we introduce the two time variablesand = and their
Finally we conclude that according to the linear stability delays by

analysis, a large time delay favors in-phase synchronization,

because it reduces the size of the instability doméaifs. (s,5p)=Qt,tp), (7,70)=y(P+1/2)(t,tp), (22
(7)] of the cw in-phase state, and favors the in-phase Hopf

bifurcation at »= 7, against the antiphase bifurcation at

=7 where Q= \/273. Coupling parameters and frequencies are
= MH1-

rescaled as

V. SELF-PULSING SOLUTIONS (an,ax,0;—0,Q;—Q)
. . . . . (K,X,éwj,ﬁﬂj)—
We now construct the time periodic solutions that bifur- (P+ 1/2)

cate from the in-phase cw solutioi$4) and (15). For the

sake of mathematical convenience, we assume dé¥afl. gng 8Q;=(P;— P)/[Q(P+1/2)]. In the leading order ap-
Using this approximation, it is possible to describe analyti- prOX|mat|on one obtains
cally not only small amplitude self-pulsing solutions of Egs.

(1) and(2) near Hopf bifurcation thresholds, but finite am- X = —Im[z;(7)€'s],
plitude periodic intensity solutions as well. Although, in . .
practice,«=5, the agreement with numerical results is quite — is
remarkable. Working in the limit, 7,y,a <1, we seek a ;= ot+¢j(1)+ R z(1)e”] (23
solution of Egs(1) and(2) of the following forms:

Yi= Rd:Z (T)els]

In the Appendix, we derive the slow time evolution equa-
tions for ¢;(7) andz;(7):

Ej(t)= JF(Hy’)exp(icbj), (19) |
do; K
ar =00 N 2, Sinin)do(|Zjn))
zj(t)=Qj%, Qj=12vyP;. (20) X
3 o2y, S EQ KW, (24

Following the procedure described in the Appendix, we ob-
tain the third order phase equation . N 1(|Zjn|)

dz ) K J
3o = (C1Fie0)z+ 5 n; oS ¢jn)Zjn

|Zjn|
Lo, (2P 1)~ dzq)' + 9% X 35(|wiq))
02| 43 e W A Y1llWiql)
Q7| dt +35 q:j_Zm cog &jq)Wiq “Tw (25)
an N
SO & Sif ¥, + @ = Py(t—tp)] In these equations],(x) are Bessel functions of the first
kind, and
ay .
P, + — . _
2 p:j—El,j+1 SINE+®j = Py) 2Y) djn=otp+ Fj,+ b — dn(7— 7p),
These equations generalize the phase equdBprby the Zin=2j=Zn(7— 7p)€Xp(—iSp), (26)
presence of higher order derivatives ®f. The left hand
side of Eq.(21) has a structure similar to the equation de- §iq= L+ dj—dq, Wiq=Z—2Z4. (27)

rived in Ref.[20] for a multimode single SCL with external

feedback. One can also note an analogy between(Eg. We use the amplitude equatiof®4) and (25) in order to
and the extended Kuramoto model, studied in Rgf%,22, describe analytically periodic self-pulsing regimes in the ar-
in which a second derivative of the phase variable was infay. Specifically, the steady stam=---=2zy=0 of Egs.
cluded in order to take into account “inertial” effects. The (24) and(25) corresponds to the cw solutions of the original
authors of Ref[21] found, in the limitN—cc, that inertia  Lang-Kobayashi equations, whereas the states with time in-
“embarrasses” the in-phase synchronization. In our case independentz|+0 correspond to periodic self-pulsing solu-
ertial terms proportional to higher order derivatives in Eg.tions of Eqs(1) and(2). Although, for the sake of generality,
(21) are responsible for the appearance of self-pulsing instdecal coupling and dispersion in natural frequencies are in-
bilities at »= ny, and = ny,. As already mentioned, the cluded in Egs(24) and(25), below we focus on the synchro-
first of these two instabilities leads to the solutions with par-nization of globally coupled oscillators with identical param-
tially broken in-phase synchrony. eters in the absence of local coupling:6(Q);, dw;,9j,=0.
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A. In-phase periodic solution laser array again loses its in-phase synchronizatioiK at

An in-phase periodic solution of Eq¢l) and (2), that =Ky4>K,. This situation is illustrated by the bifurcation
bifurcates aty= 7, is obtained by substituting; = A w7 diagram shown in Fig. (@) [_27]. In this figure, the branches
and z;(7) = p exp(AQ7) with a time independens in Egs. of stable self-pulsing solutions bifurcating from the in-phase
(24) and (25). The amplitudep of the oscillations is then CW State are shown as functions of the coupling strength. It is

related to the coupling parametérby the implicit relations  S€€N that in-phase and antiphase self-pulsing regimes can
coexist in a broad range of coupling strengths. The bifurca-

23.(p) 5 tion thresholdsK =K, and K=K, are shown in Fig. 5 as
K™t=———cosy, p=2psin(¢/2), (28)  functions ofwtp .
2p The bifurcation diagram shown in Fig. 6 corresponds to a
o _ large value of the delayrp=1.83, for which the in-phase
y=owtptAwrp, ¢=Otp+AQm, (29 Hopf bifurcation always precedes the antiphase Hopf bifur-

cation. As seen from the figure, the stable in-phase self-
where the frequency shiftAw and A() obey the transcen- pulsing solution emerging aj= 7, undergoes a secondary
dental equations Hopf bifurcation to an in-phase synchronized solution with
quasiperiodic laser intensities. Since this secondary bifurca-
tion takes place before the desynchronizing bifurcation at
K=Ky, in-phase synchronization is preserved in the quasi-
periodic self-pulsing regime. This eventually leads to an in-

Equations(30) for the correction to the relaxation oscillation Phase synchronized chaotic regime with increasjng
frequencyA() is in fact equivalent to Eq.18). The value of
¢ can be controlled by varying the external cavity length on B. Antiphase periodic solutions
the cm scale. If the delay is moderatg;<1, one canuse the  prom the linear stability analysis, we know that the an-
approximationy/=wtp . Then Eqs.(28) decouple from the tiphase self-pulsing solutions can destabilize the cw in-phase
equation for Aw in Egs. (30. Note that K—Ky, state only ifrp is sufficiently small. Otherwisey,< 71,
=2sec()/(1—cosg) asp—0, which is consistent with Eq. and the in-phase periodic solution emerges first. Let us as-
(17) for a>1 andx=0. The stability of solution$28)—(30)  sume thatrp<1 and, therefore, neglect the delay in Eq.
can be determined by linearizing Eq®4) and (25), and  (26). Substituting¢;=Awr and z;= p exp(AQ 7+ 2ijkm/N)
applying a discrete Fourier transformation of variables as inn Egs. (24) and25), we obtain the following relation be-
Eq. (5). This yields stability conditions for perturbations tween the amplitude of the antiphase selfpulsing solution
transverse to the synchronization manifold. with the discrete wave numbé&rand the coupling parameter

If 742<muq, that is, if cosp<0, the in-phase periodic K:
solution is stable in the vicinity of the self-pulsing threshold.
However, it can be destabilized by a secondary bifurcation B N
K. The conditionK =K 4 defines an {l—1)-fold degener- K™ = N 2
ate steady state bifurcation of Eq24) and(25) which cor-
responds to a secondary bifurcation of the in-phase periOdi\%here
solutions of Egs.(1) and (2). This bifurcation leads to a

PZJO(B) t(‘P)
Aw=—-2=——tany, AQ=cot =|. (30
A 2

Pn,le(Pn,k)

: (32

gradual desynchronization of the optical phaggs To dem- Ot K
onstrate this point, we perturb the in-phase soluti(&— Pnk=2p sin(—D— nim
(30) as ¢;=AwT+¢; and z;=p exp(AQD)+5z. In the ’ 2 N

particular case cag=1, the linearized equations faéip; de-

couple from those fopz; : Letting p—0 in Eq. (32), we obtainK— K;;=2/costp),

which is consistent with Eq(16) for y=0 anda—o. All
8¢, _ these solutions have the same scaling eaK 1, namely,

5y = KX 64— ddn(7=70).  (BD  p=\BAK/+O(AKY) with AK=K/Kyy;—1, except the

solution corresponding th=N/2 with N even, which scales

According to Eq.(31) the secondary instabiliti =K , takes as

place when the quantityy(p) changes from positive to BAK
negative with increasing. pP= Pt O(AK?®7?). (33
If 742> 741, the cw regime is already unstable at the 3+cog20tp)

Hopf bifurcationK =K,, and the in-phase periodic solution

emerging from this point is, therefore, also unstable. How-The self-pulsing antiphase solution with the wave number
ever, the laser array can be stabilized in the in-phase state= N/2 is often observed in numerical simulations whiis
through an N—1)-fold degenerate Hopf bifurcation of Eqgs. even in Egs(1) and(2). For this wave number, two clusters
(24) and (25 at K=K,. This corresponds to a secondary form in the array. Within each cluster, individual laser inten-
antiphase Hopf bifurcation of the in-phase self-pulsing solusities oscillate in phase, while SCL'’s pertaining to different
tion in the original laser equations. Further increadthghe  clusters differ by a phase shift af in their relaxation oscil-
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FIG. 4. (a) Branches of self-pulsing solutions bifurcating from the in-phase cw state obtained by simulating numerically Ead(2)
with N=5, mod(wtp,27)=0.14 andtp,=91.7, which corresponds dt,=5.02 andrp =0.18. The minima and maxima of the total field
are plotted as functions of. Other parameters are the same as in Fig. 2. The secondary bifureation,) corresponds tK, (K,)
discussed in Sec. V A. Dotted lines are the analytical approximations for the self-pulsing solutions obtained usiag-E&§), (34) and
(35). (b) Laser intensities for the antiphase self-pulsing branch AR)ofy=1.12x<10"3. (c) Intensities for the in-phase self-pulsing branch
IP of (a). 7=1.12x10"3.

lations. The denominator in Eq33) indicates that the With the increase of the coupling strength, a symmetry
growth rate of the amplitude of this self-pulsing state withbreaking instability of thek=N/2 solution takes place by
AK is maximum for cos(@tp) = — 1. Such a resonance con- Which the two antiphase clusters acquire different optical
dition, with respect to the frequenc@ is connected to the phas_es. In order to demonstrate this phenomenon, we SL.'bSti'
fact that the total reflected field oscillates at twice the oscil-{Yt® 1Nt Eqs(Zjl) and(25) a ?erturbeciantlpr}ase solution in
lation frequency of the individual lasers if the laser arraythe fcj)rm ¢J'_A(_”T+_(_1.) 66, Zi_.(_l) p EXpiAQ)
is in the k=N/2 state. Indeed, let us reconstruct +(—1)' 6z, and derive linearized equations 8¢ and 6z. In
Eo=S".E using Eq. (19 and ¢=Awr z the particular case cas{p)=1, the equation fob¢ does not
tot T =j=17] ' ] * 71 depend onsz, and is

zj=(—1) p exp(AQ7):

déo —

——=—KJo[2p cogQtp/2) |5 .

Eorccod p cog Qt+AQ )]+ O(pl ) dr

=Jo(p)—2J5(p)cog 20t+2A07). Accordingly, the symmetry breaking bifurcation arises when
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FIG. 5. Bifurcation loci of the in-phase self-pulsing solution FIG. 6. (@) Numerically calculated bifurcation diagram for Egs.

labelled IP in Fig. 4a). The curveny, corresponds to the Hopf (1) and(2) with N=4, mod(wtp,27)=0.14 andt, =917, which
bifurcation from the already unstable cw in-phase solution. Thecorresponds tdtp=50.2 andrp=1.83. Other parameters are the
in-phase self-pulsing solution exists above this curve, and is stablsame as in Fig. 2. The cw in-phase state undergoes the Hopf bifur-
in the grey region delimited by the curveg and 7, . cation, leading to a stable in-phase self-pulsing solution. With the
increase of the coupling strengt this solution bifurcates into a
quasiperiodic in-phase synchronized regime via a secondary Hopf
bifurcation. The latter regime bifurcates to a chaotic in-phase syn-
chronized regime ag is further increased. Dotted lines show ana-
lytical results obtained using Eq&8)—(30).

Jo[2p cos(_ltDIZ)] becomes negative with increasipg The
total field for the solution with the optical phase difference
8¢ of the antiphase clusters can be written as

E,o<COg p cOS Qt+AQ 7) + 5]+ O(pla). 3.(p)
K~ l=cogwtp+ ¢) N
Note that the trigonometric expression above possess two p
distinct minima at cosip*p). A similar feature is exhibited _
by the antiphase self-pulsing regime bifurcatingrat 1.49 " Ecos(th)p*‘Jl(p*)+p*‘]1(p*) . (35

in Fig. 4(a). N 4p?

Two antiphase clusters can appear in the arrdyig odd,
except that one laser does not belong to any cluster. The firgiue to the permutation symmetry of the problem wijth
order amplitude equatior{®4) and(25) predict that this laser =0, the laser indices can be rearranged such that he (
is in a steady state. Higher order effects lead to corrections in-1)/2 first lasers belong to the first cluster and thé (
the form of very small amplitude oscillations. This behavior —1)/2 |ast lasers form the second cluster. The cw laser is
is illustrated in Fig. 4b), and corresponds to the branch of thus at the center, and can be viewed as a transition point
the solution labeled AP in Fig.(d). In Fig. 4b), two an-  petween the two clusters where a sudden relaxation phase
tiphase clusters are formed by lasers 1 and 2 and 4 and Bhift of 7 takes place. Numerical simulations with nonzero
whereas laser 3 is almost cw. A self-pulsing solution withpyt smally and boundary condition,=Ey. ;=0 lead to
two antiphase clusters and a single cw laser can be describgdch a situation. This state of synchronization can therefore
analytically with the help of Eqg24) and(25). Looking for  pe viewed as a discrete analog of a domain wall.
a solution of the formsz;=0, zj-;=(—1)'p exp(AQ7),
$j>1=Aow7, and $;=AwT—5¢, and using the self-

consistency conditiond¢,/dr=d¢;~,/d7, we obtain a VI. CONCLUSION

transcendental equation for the optical phasedég We have studied the synchronization properties of a SCL
_ array subjected to a delayed global coupling through optical
(N—2)cog 6¢) — N cot(wtp)sin(5¢) feedback. If the lasers are identical and the coupling strength
_ _ is below the self-pulsing threshold, the array dynamics can
= (N=Do(p+ )+ Jolp-)] 2, (34) be modeled with Kuramoto phase equatiéBsthat include
2Jo(p) a time delay. Depending on the optical dephasing of the

o . feedback field, the coupling induces either in-phase or an-
wherep, =2p cosp/2) andp_=2p sin(Utp/2). The am- tiphase cw synchronization. Increasing the time delay, the
plitude p and the coupling paramet&r are related by stability domains expand for the in-phase cw states, whereas
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they shrink and tend to disappear for the antiphase cw statéke system, the cw laser becomes a discrete analog of a
[compare Figs. @ and 3b)]. In the more realistic situation domain wall.

where there is a distribution of the SCL’s optical frequen- Thus we can conclude that the effect of time delay is
cies, the coupling strength must exceed some critical valuéssentially to increase the complexity of the array dynamics
7. in order to establish synchronization. An estimation ofby producing new branches of in-phase cw, periodic, quasi-
7¢. given by Eq.(13), can be obtained from the Kuramoto Periodic, or chaotic solutions. The symmetry of the global
model[Eq. (3)] in the limit of an infinitely large array3,4]. coupling imposes tha_t these solutions lie within the in-phase
We note, however, that a more complete description of théynchron_lzanc_)n manifold, where all the elemer)ts of the array
laser synchronization properties can be expected from thBehave identically. For large delays, the bifurcations by
extended mode[Eq. (21)], because it takes into account which in-phase solutions are created precede antiphase insta-

weakly damped relaxation oscillations. These oscillations arg'“t'es' In this way, th(_a. phase_trajectory may be kept in the
) . . In-phase synchronization manifold.

typical of solid state and semiconductor lasers. Though

damped, they could degrade the synchronization properties

of the array. Recently, it was shown that a second order

derivative term included in the Kuramoto phase equations This research was supported by the Fonds National de la

can increase the in-phase synchronization thresfilf Recherche Scientifique, the Inter-University Attraction Pole
As the coupling strength exceeds the Hopf bifurcationprogram of the Belgian government, and an INTAS grant.

threshold, the laser intensities become time periodic. They

exhibit either in-phase or antiphase pulsations, with a fre- APPENDIX: DERIVATION OF THE

guency close to the relaxation oscillations frequefyof SOLVABILITY CONDITION

the solitary SCL. Antiphase dynamics is a common feature - . .

typical of many other systems consisting of globally coupled Substituting Eqs(19) and(20) into Eqs.(1) and(2) yields

identical element$24—-26. A Hopf bifurcation, leading to dx:

antiphase dynamics, exists even in the absence of time delay. d_tj =—y(1+2Pj)x—Q;y;+O( Vyla), (A1)

Conversely, in-phase self-pulsing instability can appear only

if Otp=0(1). Formoderate delays, i.eQt;=0(1), which dy; @ N

of the two self-pulsing bifurcations destabilizes the cw in- L=+~ X si 8, +®;— D (t—tp)]

phase state depends on the relaxation dephasing between the — dt N 7=1

emitted and reinjected fields. In this case we found that even

if the antiphase Hopf bifurcation takes place first, the in- +ﬂ 2 SiNE+D— D)

phase self-pulsing solution can become stable with the in- 2 p=iSj+1 ! P

crease of the coupling strength, illustrated by Figr)40n

ACKNOWLEDGMENTS

the other hand, for large delays, verifying=my (2P + Oy a, . x andPy,axdP)), (A2)
+1)71, the in-phase bifurcation always precedes the an- dd.
tiphase one, thus preserving in-phase synchrony in the self- d_'[J:wj+Qij+o(7]'X)' (A3)

pulsing regime.
Above the self-pulsing threshold, the phase equati@ns — )
are no longer valid. Therefore, in order to describe the selfWhereoP;=P;/P—1. In these equations, we keep terms of

pulsing dynamics, we use an extended version of the Kura@'dera7, ay, andy, because they are of the same order at
moto model with higher order derivative terrfigq. (21)]. the blfurcafuon pomts[Eqs. (16)_ and (17)]. _leferentlatlng
Using a perturbation method, we reduced E@Y) to the  Ed:(A3) twice with respect to time, and using E¢a1) and
amplitude equation§24) and (25). This allowed us to de- (A2), one obtains Eqe21). , _

scribe analytically various self-pulsing solutions emerging N&xt we introduce the two time scales in H2) and
from the Hopf bifurcations, and discuss their stability. In €xPand the dependent variables in Egsl)—~(A3) as
particular, we have studied secondary antiphase bifurcations
of the in-phase self-pulsing solution. For moderate delays,
QOtp=0(1), these bifurcations can destroy the synchrony of
the in-phase self-pulsing regime, and, hence, decrease the
amplitude of the total fieIcEJ!\':lEj . However, iftp~7y~1,

they are bypassed by another secondary bifurcation that
leads to in-phase synchronized output with quasiperiodic IaCoIIectingO(yO) terms. we obtain
ser intensities. Numerically, in-phase synchrony is then seen '

X =x\(s, 1)+ yx(N(s, 1)+ -,
yi=y{ (s, )+ Ps )+, (A4)

D= wt+ (s, 1)+ ydM(s, )+ - .

to persist even in the chaotic regimes. x(0) 0 -1 0

Finally we have described a particular antiphase state fea- 9 1(0)
turing extinction of the sustained relaxation oscillations of a (— E) yi©]=0, £=|1 0 0 (AS5)
single laser. The existence of such stable regime was verified F(0) 1 0 O

by means of numerical simulations of the original laser equa-
tions (1) and (2). If a weak local coupling is added to This equation has the solutions
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X% =—Im(zj()e®], y[?=Rez(7)e"], (A6)

(0= ¢,(r)+Rd z;(7)€"].

Next, equating the terms of ordef’?, we obtain

xM\
P+1/2

-———38
=

The quantityl§ on the right-hand side of EqA7) is com-
puted using the following properties of Bessel functions:

(A7)

sif wtp+ ¥, + PO - D(s—sp)]

. J1(1Zjn])
:J0(|Zjn|)sm¢jn |Z ]r
in

(zjn€ e's+c.c)
X cos¢j,+h.h,,
and
sin({+ {0 — o)

(Iwjql)

Jq .
=Jo(|wjg)sing;q+ —(W e's+c.c)
Wi

X coséjq+h.h.,

PHYSICAL REVIEW B4 016613

SinquJo(|qu|)

X
+ —
3 X

=j=1j+1

1(|qu|)

J .
is
+COS§jqw(que +c.c)|;+h.h.

The existence of nontrivial solutions of EGA7) implies the
orthogonality conditions or solvability conditions

2w 2w N .
J vo- Bds=0, j v+-Bet'Sds=0,
0 0

wherev,=(0,1,-1) andv.=(5i,1,0) are the left eigen-
vectors of £ associated with the eigenvalues 0 ahd, re-
spectively. These solvability conditions lead to E@&l) and
(25).

The error in Eqs(24) and(25), related to the assumption
a>1, can be estimated near the Hopf bifurcation points. To
this end, we introduce a small parameteby

K=Ky+e?K,,
and seek periodic solutions of the forms

fJ:Rdej’leis'i‘"'), f XJ yij wt

This produces a set of linear differential equations at each
order ine. At third order, the solvability condition yields the
corrected version of Eq25) in the vicinity of the bifurcation

where c.c. and h.h. mean “complex conjugate” and “higher point:

harmonics,” respectively. This yields

(0) —9y(0) _ (0)
X] 2%} = oQy;
5QJXJ(O)

5a)j

.0
B=——| ¥ | +
ar
{0

sin$jndo(|Zjn|)

>

1{'(
N
0

(I1zjnh)
S T &

(zjn€ e's+c.c)

T e L1
dr 12a2\/—(2P+1) Zil%
cosdx
H 2 Zjn( _|Zjn|2 +O(a71).

The principal correction to Eq25), close to the bifurcation
point, is thusO(a 2y~ Y?). Since it is imaginary, it only
affects the relaxation frequency and not the amplitude of the
oscillations. The next corrections are or®(« '), which
explains the good agreement between numerical and theoret-
ical curves in Figs. &) and 6.
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