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Abstract. The aim of this paper is to extend the classical Larson-Sweedler theorem,
namely that a k-bialgebra has a non-singular integral (and in particular is Frobenius) if
and only if it is a finite dimensional Hopf algebra, to the ‘many-object’ setting of Hopf
categories. To this end, we provide new characterizations of Frobenius V-categories
and we develop the integral theory for Hopf V-categories. Our results apply to Hopf
algebras in any braided monoidal category as a special case, and also relate to Turaev’s
Hopf group algebras and particular cases of weak and multiplier Hopf algebras.
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1. Introduction

The classical Larson-Sweedler theorem [LS69] characterizes finite dimensional Hopf
algebras among finite dimensional bialgebras as those that possess a non-singular left
integral. The existence of such an integral implies in particular that the Hopf alge-
bra is Frobenius, and this result has been refined in [Par71]. Just like Hopf algebras,
Frobenius algebras have both an algebra and a coalgebra structure, although with dif-
ferent compatibility conditions. In fact, if some finite dimensional algebra A has a Hopf
structure, the induced Frobenius structure on A has (in general) a different comultipli-
cation and counit than the ones from the Hopf algebra structure. One of the reasons
why the Larson-Sweedler theorem is so important is that it led to definitions of (locally
compact) quantum groups by means of well-behaving integrals rather than antipodes.
The result of Larson and Sweedler furthermore inspired many other results about the
connection between Hopf and Frobenius structures on a given (bi)algebra. For example,
in Hopf-Galois theory, a Frobenius structure on the Hopf algebra allows to describe the
(Morita) equivalence between modules over the ring of coinvariants and Hopf modules
in a more direct and symmetric way, see [CFM90] and [CVW04]. More recently, some
new connections between Frobenius and Hopf properties have been observed in [Sar20].

Just as the notion of Hopf algebra has been generalized in several ways, so has the
Larson-Sweedler theorem. For example, Larson-Sweedler type theorems for weak Hopf
algebras [Vec03], multiplier Hopf algebras [VW06] and weak multiplier Hopf algebras
[KV18] have been formulated; however, as explained in [IK10], the weak Hopf algebras
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case is quite subtle, since the ‘difficult’ direction of the Larson-Sweedler theorem only
holds under additional assumptions on the target algebra of the weak Hopf algebra.

The aim of the current paper is to unify and generalize these results in proving
a Larson-Sweedler theorem for Hopf V-categories. Hopf categories were introduced in
[BCV16] and can be understood as a many-object generalization of usual Hopf algebras,
in the same way as one can understand a groupoid as a many-object version of a group.
More precisely, a semi-Hopf V-category, where V is a braided monoidal category, is a
category A that is enriched over the monoidal category of comonoids in V : namely, if
we denote the hom-object between two objects x, y of A by Ax,y, it comes equipped
with usual composition mxyz : Ax,y ⊗ Ay,z → Ax,z and identities jx : I → Ax,x but also
comultiplications δxy : Ax,y → Ax,y ⊗ Ax,y and counits εxy : Ax,y → I. A semi-Hopf
category is called Hopf if it admits an antipode given by sxy : Ax,y → Ay,x for any two
objects x, y in A. With appropriate axioms, a (semi-) Hopf category with one object
is exactly a Hopf monoid (bimonoid) in V . In [BFVV17], we showed that such Hopf
categories have a natural interpretation as oplax Hopf algebras; in [Böh17] an alternative
interpretation of Hopf categories was given as Hopf monads in a suitable monoidal
bicategory. Hopf categories have the interesting feature that they are general enough to
cover many interesting examples of generalized Hopf-structures, and concrete enough
to manipulate them without the need to involve heavy higher categorical machinery.
In particular, by ‘packing’ a Hopf category, one obtains interesting examples of weak
(multiplier) Hopf algebras, whose target algebra is a direct product of copies of the base
ring.

Also in [BFVV17], we introduced the notion of a Frobenius V-category as the nat-
ural Frobenius analogue of Hopf categories, and which again serves as a many-object
generalization of Frobenius monoids. In contrast to the one-object case, where both
Hopf algebras and Frobenius algebras consist of algebras that also have a coalgebra
structure albeit with different compatibility conditions, the coalgebraic structure of a
Hopf category and a Frobenius category are of a very different nature. Indeed the coal-
gebraic structure of a Hopf category is ‘local’ in the sense that every hom-object Ax,y is
a comonoid (in the monoidal category V). On the other hand, a Frobenius V-category
is at the same time a V-enriched category and a Vop-enriched category, which means
that it comes with cocomposition Ax,y → Ax,z ⊗ Az,y and coidentity arrows Ax,x → I
for all objects x, y, z of A, i.e. the coalgebraic structure of a Frobenius V-category is
‘global’. In fact, this difference is exactly one of the advantages of working with this
many-object generalization. For example, as said before, when the same algebra has
both a Frobenius and a Hopf structure, then the two coalgebraic structures are not
the same; in the many-object setting, having the same comultiplication would not even
make sense definition-wise.

In the main result of our paper Theorem 4.16 we characterize locally rigid (i.e. such
that all Hom-objects Ax,y are rigid objects in V) Frobenius Hopf categories as those
semi-Hopf categories that possess non-singular integrals or equivalently as those Hopf
categories for which the integral spaces are isomorphic to the monoidal unit. Such a
Frobenius Hopf category then naturally possesses four different structures (category,
opcategory, local monoid and local comonoid) that can be combined in different ways
to naturally form Hopf and Frobenius structures, see Table 1.

As we argue in this paper, this result properly generalizes the classical Larson-
Sweedler theorem to the many-object setting by taking V = Vectk. On the other
hand, by taking the one-object version of our general theorem, we also obtain a version
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of the Larson-Sweedler theorem for Hopf monoids in braided monoidal categories. This
is in fact a folklore result, however no explicit written reference can be found in the
literature. Moreover, the one object-version of the above mentioned Table 1 clarifies
many results related to ‘interacting Hopf Frobenius’ structures, see e.g. [BSZ17; CD19].

Finally, let us point out that the term “Hopf category” has been used in literature
before, albeit with different meaning. For example, Crane and Frenkel [CF94] consid-
ered Hopf (monoidal) categories to characterize 4-dimensional extended quantum field
theories. In a different direction, Turaev [Tur10] introduced notions of (crossed) Hopf
G-categories and (crossed) Hopf G-categories (where G is a group) to characterize ho-
motopy quantum field theories. The exact relation between these various structures
is not clear at the moment and is the subject of forthcoming work, although a first
connection between our work and Turaev’s Hopf G-categories is discussed in Section 5.

Outline. In Section 2, we review some basic properties of Hopf V-categories. For ex-
ample, we study in detail how invertibility of the antipode morphisms is related to the
existence of an op-antipode. We also show how the notion of Hopf categories is closely
related to the notion of bi-Galois objects and explain how this leads to the construction
of non-trivial examples of Hopf categories (see Example 2.21). After recalling the fun-
damental theorem for Hopf modules, we also prove the fundamental theorem of Hopf
opmodules over Hopf categories (see Theorem 2.24).

In Section 3, we provide equivalent characterizations of the Frobenius V-categories
from [BFVV17] in terms of self-duality, Casimir elements, trace maps, module isomor-
phisms and pairs of Frobenius (i.e. two-sided adjoint) functors. These all very naturally
generalize the classical ones in the many-object setting, however in non-trivial ways.

The main results of this paper can be found in Section 4. After briefly recalling the
classical setting, we present a detailed study of the integral theory for Hopf categories.
As one can expect, this theory becomes much more involved from the 1-object case, since
the integral space is no longer described as an equalizer but as a more general limit. We
investigate the relation between the existence of integrals and Frobenius structures on a
Hopf category. In particular, we show that a Frobenius Hopf V-category also has a local
Frobenius structure, i.e. all hom-objects Hx,y are Frobenius algebras in V . Furthermore,
this additional local algebra structure is isomorphic to the local algebra structure of the
dual opcategory H∗,op; these four structures, the local and global algebra and coalgebra
structures on a single Frobenius and Hopf category fit together as explained in Table 1.
We then prove our main result: a generalization of the Larson-Sweedler theorem for
Hopf V-categories, Theorem 4.17. We also show that in the particular case of k-linear
Hopf categories, where k is a commutative base ring for which all projective modules
are free, our theorem reduces to a result that subsumes the classical Larson-Sweedler
theorem (Corollary 4.19).

In the final Section 5, we present some applications of our result. In particular, in
the one-object case we recover the classical Larson Sweedler theorem for Hopf algebras,
but also for several of their generalizations, such as monoidal Hom-Hopf algebras and
graded Hopf algebras. Other applications to Turaev’s Hopf group coalgebras [Tur10],
weak (multiplier) Hopf algebras and groupoid algebras are presented as well.

Acknowledgements. JV wants to thank Paolo Saracco for interesting and motivating
discussions on the interaction between Hopf and Frobenius properties. He also thanks
the FNRS for support through the MIS grant ”Antipode”. This work was initiated when
both MB and CV were working as postdoctoral researchers at the Université Libre de
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of Non-commutative Spaces” funded by the “Fédération Wallonie-Bruxelles”. CV was
supported by the General Secretariat for Research and Technology (GSRT) and the
Hellenic Foundation for Research and Innovation (HFRI). All authors thank the referees
for their careful reading and useful comments.

2. Hopf V-categories

In this section we recall some basic notions and constructions relatively to the concept
of a Hopf V-category, where V is a braided monoidal category; relevant references to
that end are [BCV16] and [BFVV17]. We assume familiarity with the basics of theory
of monoidal categories, see [JS93], as well as the theory of (co)monoids, Hopf monoids
and Frobenius monoids.

2.1. Preliminary results. In what follows, (V ,⊗, I) denotes a monoidal category
which, by Mac-Lane’s coherence theorem, we will regard as a strict monoidal category
without loss of generality.

A standard reference for the theory of enriched categories is [Kel05]. Briefly recall that
a V-enriched graph is a family of objects {Ax,y}x,y∈X in V , indexed by its set of objects
X; we shall use that notation for hom-objects, rather than the more common A(x, y).
Along with V-graph morphisms, i.e. functions between the sets of objects with arrows
Fxy : Ax,y → Bfx,fy in V , enriched graphs form a category V-Grph. It has a subcategory
V-Cat of V-enriched graphs equipped with composition laws mxyz : Ax,y ⊗ Ay,z → Ax,z
(again notice the difference with standard terminology) and identities jx : I → Ax,x
satisfying the usual associativity and unity conditions. A V-functor is then a V-graph
morphism that respects this structure. If F : V → W is a monoidal functor, it induces
a change of base functor V-Cat→W-Cat.

We call k-linear categories those enriched in the category Modk of k-modules for
a commutative ring k. In what follows, for a k-linear category A we usually write
composition as simple concatenation, namely pq := mxyz(p ⊗ q). We also write 1x,x
for jx(1), the image of 1 ∈ k under the identity map jx : k → Ax,x. Finally for r ∈ k
and m ∈ M , we denote by r · m the scalar multiplication, which gives the natural
isomorphism k ⊗M ∼= M .

If V is equipped with a braiding σ, every V-graph A has an opposite V-graph Aop with
the same objects and hom-objects Aop

x,y := Ay,x. In case A is moreover a V-category, Aop

is a also a V-category whose composition is

mAop

xyz : Ay,x ⊗ Az,y
σ-1

−→ Az,y ⊗ Ay,x
mzyx−−−→ Az,x

If (A,m, j) is a V-category, a (right) A-module [Law73] (N, τ) is a V-graph {Nx,y}
over the same set of objects, equipped with actions τxyz : Nx,y ⊗ Ay,z → Nx,z satisfying

Nx,y ⊗ Ay,z ⊗ Az,w Nx,z ⊗ Az,w

Nx,y ⊗ Ay,w Nx,w

τxyz⊗1

1⊗myzw τxzw

τxyw

and

Nx,y Nx,y ⊗ Ay,y

Nx,y

1⊗jy

1
τxyy
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Morphisms are identity-on-objects V-graph maps {ϕxy : Nx,y → Px,y} such that

Nx,y ⊗ Ay,z Nx,z

Px,y ⊗ Ay,z Px,z

τxyz

ϕxy⊗1 ϕxz

τxyz

(1)

These form a category of (right) A-modules which we denote V-ModA. Clearly, any
V-category is both a left and right A-module (A,m) called the regular A-module.

Notice that in the definition of a right A-module for example, the left indexing object
of the graph is not playing any role. As a result, for any right A-module (N, τ) and
any map h : X → X we can define the h-shuffle of N as the (right) A-module (Nh, τh)
where Nh

x,y := Nh(x),y and τhxyz = τh(x)yz.
Finally, recall [DS97, §9] that a V-opcategory C is a category enriched in the opposite

monoidal category Vop. Explicitly, and for future reference, there exist cocomposition
and coidentity arrows in V

dxyz : Cx,z → Cx,y ⊗ Cy,z, εx : Cx,x → I (2)

satisfying coassociativity and counity axioms:

Cx,w Cx,y ⊗ Cy,w

Cx,z ⊗ Cz,w Cx,y ⊗ Cy,z ⊗ Cz,w

dxyw

dxzw 1⊗dyzw

dxyz⊗1

Cx,y ⊗ Cy,y Cx,y Cx,x ⊗ Cx,y

Cx,y ⊗ I I ⊗ Cx,y

1⊗εy

dxyy dxxy

∼ ∼ εx⊗1

(3)
where the coherence isomorphisms in V are suppressed. Similarly, a V-opfunctor is a
Vop-functor. Together these form a category V-opCat. In a dual way to modules, there is
a category of C-opmodules V-opModC equipped with a C-coaction which is compatible
with cocomposition and coidentities.

An object A in a monoidal category V has a left dual A∗ when there exists evaluation
and coevaluation morphisms ev : A∗⊗A→ I and coev : I → A⊗A∗ making the following
diagrams commute, where the associator and unitors are suppressed:

A A⊗ A∗ ⊗ A A∗ A∗ ⊗ A⊗ A∗

A A∗

coev⊗1

id
1⊗ev

1⊗coev

id
ev⊗1 (4)

Since all duals of an object A in V are naturally isomorphic to one another, we will
from now on speak about ‘the’ dual of A. Dually, A is called the right dual of A∗

and when the monoidal category is braided, there is a bijection between left and right
duals induced by composing the evaluation and coevaluation by the braiding and its
inverse, accordingly. A monoidal category with duals is called rigid or autonomous.
Each morphism f : A→ B gives rise to f ∗ : B∗ → A∗ via

B∗
1⊗coev−−−−→ B∗ ⊗ A⊗ A∗ 1⊗f⊗1−−−−→ B∗ ⊗B ⊗ A∗ ev⊗1−−−→ A∗.

Remark 2.1. It is a standard fact that if V has left/right duals, then it is left/right
monoidal closed via − ⊗ B a [B,−]` ∼= − ⊗ B∗ and A ⊗ − a [A,−]r ∼= A� ⊗ −, where
A� denotes a right dual of A. Notice that the opposite is not true: in a (left) monoidal
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closed category V , we can indeed denote A∗ = [A, I] which e.g. for V = Vectk gives
the classical ‘dual’ of a (possible infinite dimensional) vector space, that also comes
with an evaluation map [A, I] ⊗ A → I from the counit of the tensor-hom adjunction.
However, this is not necessarily the categorical dual as defined above, unless A is finite
dimensional.

We will henceforth call a V-enriched graph or category A locally rigid when all hom-
objects Axy have duals in V – but V itself is not necessarily rigid. We will denote by
xy

coev and
xy

ev the corresponding (co)evaluation maps for the hom-object Ax,y ∈ V of a
locally rigid V-(op)category or simply enriched graph.

Example 2.2. Suppose G is a locally rigid V-graph; for example, it is k-linear where all
hom-objects are finite dimensional for a field k, or more generally it is ModR-enriched
where all hom-objects are finitely generated projective R-modules for a commutative
ring R. There is the dual V-graph G∗ with the same objects and hom-objects G∗x,y,
for example Homk(Gx,y, k) in the linear case. Notice that ‘dual’ here does not refer to
‘opposite’ as is the usual terminology.

Morever, there is the opposite dual graph (G∗)op henceforth denoted G∗,op given by
(G∗,op)x,y = G∗y,x. From now on, we will omit the parenthesis and write G∗,op

x,y = G∗y,x.
Consider now any left A-module (M, τ) which is locally rigid as a V-graph. Then

M∗,op becomes in a natural way a right A-module by means of the action

M∗
y,x⊗Ay,z

1⊗1⊗ zx
coev−−−−−→M∗

y,x⊗Ay,z ⊗Mz,x⊗M∗
z,x

1⊗τyzx⊗1−−−−−→M∗
y,x⊗My,x⊗M∗

z,x

yx
ev⊗1−−−→M∗

z,x

We denote this module by M †. Similarly, the dual of any right A-module N is becomes
naturally a left A-module which we denote by †N .

Dually, for a V-opcategory C, any right locally rigid C-opmodule (N,χ) gives rise to
a left C-opmodule structure on N∗,op via

N∗z,x
1⊗

zy
coev−−−−→ N∗z,x ⊗Nz,y ⊗N∗z,y

1⊗χzxy⊗1−−−−−−→ N∗z,x ⊗Nz,x ⊗ Ax,y ⊗N∗z,y
zx
ev⊗1⊗1−−−−→ Ax,y ⊗N∗z,y

and similarly a left one makes its opposite dual into a right C-opmodule.

In [BCV16, Theorem 5.5], the linear case of the following result is exhibited.

Proposition 2.3. For a locally rigid V-category A, its opposite dual A∗,op has the struc-
ture of a V-opcategory. Dually, C∗,op is a V-category for any locally rigid V-opcategory
C.

Proof. Cocomposition and counits are given by applying the functor (-)∗ : Vop → V
(restricted to the dualizable objects) to the composition and identities of A as in

dxyz : A∗,op
x,z = A∗z,x

m∗zyx−−−→ (Az,y ⊗ Ay,x)∗ ∼= A∗y,x ⊗ A∗z,y = A∗,op
x,y ⊗ A∗,op

y,z (5)

εx : A∗x,x
j∗x−−→ I

Essentially, the strong anti-monoidal functor (−)∗ via φXY : (X⊗Y )∗ ∼= Y ∗⊗X∗ turns a
V-category A into a V-opcategory A∗,op, and dually a V-opcategory C into a V-category
C∗,op via a process similar to the change of enrichment base.

�

Also in [BCV16, Proposition 5.4], the linear case of the following can be found.

Proposition 2.4. For any locally rigid V-category A, V-ModA ∼= V-opModA∗,op.
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Proof. Suppose (M, τ) is a right A-module. Then it can be given the structure of a
right A∗,op-opmodule via

Mx,z
1⊗

zy
coev−−−−→Mx,z ⊗ Az,y ⊗ A∗z,y

τxzy⊗1−−−−→Mx,y ⊗ A∗z,y
and vice versa, if (N,χ) is a right A∗,op-opmodule, then there is an A-action

Nx,y ⊗ Ay,z
χxzy⊗1−−−−→ Nx,z ⊗ A∗y,z ⊗ Ay,z

1⊗
yz
ev−−−→ Nx,z

These two establish a bijection between A-modules and A∗,op-opmodules; clearly this
works for left (op)modules too. Similarly V-opModC

∼= V-ModC∗,op for a V-opcategory
C. �

Hopf enriched categories, introduced in [BCV16], constitute a natural many-object
generalization of a Hopf monoid in a braided monoidal category. In what follows,
suppose that (V ,⊗, I, σ) is a braided monoidal category, and recall that its category of
comonoids Comon(V) inherits the monoidal structure, via

C ⊗D δ⊗δ−−→ C ⊗ C ⊗D ⊗D 1⊗σ⊗1−−−−→ C ⊗D ⊗ C ⊗D.
Notice that we use Latin letters to denote ‘global’ operations (those that may relate
different hom-objects, i.e. of different indices), and Greek letters to denote ‘local’ oper-
ations (those that concern each hom-object object individually).

Definition 2.5. A semi-Hopf V-category A is a Comon(V)-enriched category. Explicitly,
it consists of objects together with a collection of Ax,y ∈ V for any two objects x, y, and
families of morphisms in V

mxyz : Ax,y ⊗ Ay,z → Ax,z jx : I → Ax,x

δxy : Ax,y → Ax,y ⊗ Ax,y εxy : Ax,y → I

which make A a V-category, each Ax,y a comonoid in V , and satisfy

Ax,y ⊗ Ay,z
δxy⊗δyz //

mxyz

��

Ax,y ⊗ Ax,y ⊗ Ay,z ⊗ Ay,z
1⊗σ⊗1
��

Ax,y ⊗ Ay,z ⊗ Ax,y ⊗ Ay,z
mxyz⊗mxyz
��

Ax,z
δxz

// Ax,z ⊗ Ax,z

I
∼ //

jx

��

I ⊗ I
jx⊗jx
��

Ax,x
δxx

// Ax,x ⊗ Ax,x

Ax,y ⊗ Ay,z
εxy⊗εyz //

mxyz

��

I ⊗ I
∼
��

Ax,z εxz
// I

I
id //

jx
��

I

id
��

Ax,x εxx
// I

(6)

Semi-Hopf V-categories with Comon(V)-functors form the category Comon(V)-Cat
which we also denote sHopf-V-Cat.

Example 2.6. Every bimonoid in a braided monoidal category V is a one-object semi-
Hopf V-category.

Example 2.7. If A is a semi-Hopf V-category for (V ,⊗, I, σ), it gives rise to new
semi-Hopf V-categories Aop, Acop, Aop,cop and Acop,op as follows, see also [BCV16, §3].
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(1) Aop
xy = Ayx with composition Ayx ⊗ Azy

σ-1

−→ Azy ⊗ Ayx
mzyx−−−→ Azx; the monoidal

base of the enrichment is (V , σ−1).
(2) Acop

xy = Axy with local comultiplications δxy post-composed with the inverse

braiding; again the monoidal base is (V , σ−1).
(3) Aop,cop = (Aop)cop has hom-objects Aop,cop

xy = Ayx, composition is pre-composed
with the inverse braiding, comultiplication is post-composed with the usual
braiding, and the monoidal base is (V , σ).

(4) Acop,op = (Acop)op has hom-objects Acop,op
xy = Ayx, composition is pre-composed

with the usual braiding, comultiplication is post-composed with the inverse
braiding, and the monoidal base is (V , σ).

Clearly, if V is symmetric then one no longer needs to distinguish between the braiding
and its inverse.

We now turn to Hopf categories and their basic properties.

Definition 2.8. [BCV16, Def. 3.3] A Hopf V-category H is a semi-Hopf V-category
equipped with a family of maps sxy : Hx,y → Hy,x satisfying

Hx,y ⊗Hx,y

1⊗sxy // Hx,y ⊗Hy,x

mxyx

%%
Hx,y

εxy //

δxy
99

I
jx // Hx,x

Hx,y ⊗Hx,y

sxy⊗1
// Hy,x ⊗Hx,y

myxy

%%
Hx,y

εxy //

δxy
99

I
jy // Hy,y .

(7)

This V-graph map s : H → Hop is called the antipode of H.

If only the upper (respectively lower) diagram commutes, s is called a right (respec-
tively left) antipode of H.

Definition 2.9. An op-antipode for a semi-Hopf V-category H is an antipode for Hop,
i.e. a family of maps sxy : Hy,x → Hx,y satisfying the following two conditions:

Hx,y ⊗Hx,y

1⊗syx // Hx,y ⊗Hy,x
σ−1

// Hy,x ⊗Hx,y

myxy

((
Hx,y

εxy //

δxy
66

I
jy // Hy,y

Hx,y ⊗Hx,y

syx⊗1
// Hy,x ⊗Hx,y

σ−1
// Hx,y ⊗Hy,x

mxyx

((
Hx,y

εxy //

δxy
66

I
jx // Hx,x

A left (right) op-antipode for H is a left (right) antipode for Hop.
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Remark 2.10. [BCV16] The following properties of antipodes can be deduced from
the definitions

sxz ◦mxyz = mzyx ◦ σ ◦ (sxy ⊗ syz) δyx ◦ sxy = σ ◦ (sxy ⊗ sxy) ◦ δxy
sxx ◦ jx = jx, εyx ◦ sxy = εxy

Since op-antipodes are antipodes for Hop, they also obey respective formulas.

Lemma 2.11. If H is a Hopf V-category with antipode s, then s is an op-antipode if
and only if each syx is inverse to sxy.

Proof. If sxy is as in Definition 2.9, then on one side we find

syx ◦ sxy = syx ◦ sxy ◦ (εxy ⊗ Ax,y) ◦ δxy
= (εxy ⊗ Ax,y) ◦ (Ax,y ⊗ syx) ◦ (Ax,y ⊗ sxy) ◦ δxy
= mxxy ◦ (jxx ⊗ Ax,y) ◦ (εxy ⊗ Ax,y) ◦ (Ax,y ⊗ syx) ◦ (Ax,y ⊗ sxy) ◦ δxy
= mxxy ◦ (mxyx ⊗ Ax,y) ◦ (Ax,y ⊗ sxy ⊗ Ax,y) ◦ (Ax,y ⊗ Ax,y ⊗ syx)
◦ (Ax,y ⊗ Ax,y ⊗ sxy) ◦ (δxy ⊗ Ax,y) ◦ δxy
= mxxy ◦ (mxyx ⊗ Ax,y) ◦ (Ax,y ⊗ Ay,x ⊗ syx) ◦ (Ax,y ⊗ sxy ⊗ Ax,y)
◦ (Ax,y ⊗ Ax,y ⊗ sxy) ◦ (Ax,y ⊗ δxy) ◦ δx,y
= mxyy ◦ (Ax,y ⊗myxy) ◦ (Ax,y ⊗ Ay,x ⊗ syx) ◦ (Ax,y ⊗ σ−1)

◦ (Ax,y ⊗ δyx) ◦ (Ax,y ⊗ sxy) ◦ δxy
= mxyy ◦ (Ax,y ⊗ jy) ◦ (Ax,y ⊗ εyx) ◦ (Ax,y ⊗ sxy) ◦ δxy
= mxyy ◦ (Ax,y ⊗ jy) ◦ (Ax,y ⊗ εxy) ◦ δxy
= Ax,y

So s is left inverse to s – recall these are identity-on-objects graph morphisms. A similar
argument shows that s is also right inverse to s and the one direction is established.

Now suppose that an antipode s has inverses syx for each sxy. Then these indeed
form an op-antipode; for example, the left axiom is verified by

myxy ◦ (sxy ⊗ Ax,y) ◦ σ−1 ◦ dxy = myxy ◦ (sxy ⊗ Ax,y) ◦ σ−1 ◦ dxy ◦ syx ◦ sxy
= myxy ◦ (sxy ⊗ Ax,y) ◦ σ−1 ◦ σ ◦ (syx ⊗ syx)
◦ dyx ◦ sxy
= myxy ◦ (Ax,y ⊗ syx) ◦ dyx ◦ sxy
= jyy ◦ εxy ◦ sxy
= jyy ◦ εyx

where s satisfies conditions dual to those in Remark 2.10 merely by being inverse to s.
That s a right antipode is proved dually. �

If H and K are Hopf V-categories, a Comon(V)-functor F : H → K is called a Hopf V-
functor if sfxfy ◦Fxy = Fyx◦sxy for all x, y ∈ X. It is shown in [BCV16, Prop. 3.10] that
any Comon(V)-functor between Hopf V-categories automatically satisfies that condition;
hence we have a full subcategory Hopf-V-Cat of Comon(V)-Cat.
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Example 2.12. Every Hopf algebra H in a braided monoidal V is a one-object Hopf
V-category; this fulfils its purpose as a many-object generalization. In particular, each
endo-hom object Hx,x of an arbitrary Hopf V-category H is a Hopf monoid in V .

Remark 2.13. It was shown in [BFVV17] that sHopf-V-Cat and Hopf-V-Cat are in
fact categories of oplax bimonoids and Hopf oplax bimonoids in a symmetric monoidal
bicategory Span|V . This exhibits a more elaborate sense in which Hopf structure can
be generalized in higher categorical settings, and Hopf categories are example of such.

Example 2.14. [BCV16, p. 3.12] The ‘linearization’ functor L : Set → Modk which
sends each set to the free k-module on that set, is a strong monoidal functor. Hence
it induces a change-of-base functor between Hopf-Set-Cat and Hopf-Modk-Cat, namely
ordinary Hopf categories which are the same as groupoids, and k-linear Hopf categories.
As a result, every groupoid G determines a k-linear Hopf category H with Hx,y := LGx,y,
the free k-module on the set of morphisms x→ y in G.

Proposition 2.15. Suppose that H is a Hopf V-category with finitely many objects,
where V has a zero object and biproducts, that are also preserved by the tensor. The
packed form of H,

Ĥ =
∐
x,y

Hx,y

is a weak Hopf algebra.

Proof. Suppose that V is a monoidal category with coproducts that commute with the
tensor product – as is the case for any monoidal closed category – and a zero object.
For an arbitrary V-graph G, we get a new graph Ĝ⊗ Ĝ given by

Ĝ⊗ Ĝ =
∐
x,y

Gx,y ⊗
∐
z,u

Gz,u
∼=
∐
x,y,z,u

Gx,y ⊗Gz,u .

Now if (A,m, j) is a V-category, first of all we can define families of maps

Ax,y ⊗ Az,u
mltxyzu−−−−→ Ax,u =

{
mxyu, if y = z

0, else
and I

unixy−−−→ Ax,y =

{
jx, if x = y

0, else
.

The first one induces, for every x, y, z, u, a composite diagonal map as below — where the
vertical arrows are the canonical injections — hence the universal property of coproducts
yields a (unique) map µ : Â⊗ Â→ Â∐

x,y,z,u

Ax,y ⊗ Az,u
∐
x,u

Ax,u

Ax,y ⊗ Az,u Ax,u

µ

mltxyzu

which is easy to check that is associative. If moreover the set of objects X is finite and
(finite) biproducts exist in V , so

∐
x,y

Ax,y =
∏
x,y

Ax,y, then we also obtain a (unique) map

∏
x,y

Ax,y

I Ax,yunixy

η
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which satisfies unity conditions. Therefore under these conditions for a V-category A,
Â naturally obtains a monoid structure in V .

Now suppose that (H,m, j, δ, ε, s) is a Hopf V-category. Then Ĥ is also a comonoid
in V , since comonoids are closed under colimits in any monoidal category (see e.g.
[CDV06]). Explicitly, the comultiplication and counit again follow from the universal
property of coproducts, induced by

Hx,y
δxy−−→ Hx,y ⊗Hx,y ↪→

∐
x,y

Hx,y ⊗
∐
x,y

Hx,y, Hx,y
εxy−−→ I.

It was shown in [BCV16] that with this structure, the packed form of a Hopf Modk-
category with a finite set of objects is a weak Hopf algebra [BNS99]. Under the above
conditions, this can also be proved for general Hopf V-categories. Explicitly, the com-
patibility between multiplication and comultiplication can be shown to hold due to the
top of (6), whereas the other two axioms ε◦µ◦ (µ⊗1) = (ε⊗ ε)◦ (µ⊗µ)◦ (1⊗ δ⊗1) =
(ε⊗ε)◦(µ⊗µ)◦(1⊗σ⊗1)◦(1⊗δ⊗1) and (δ⊗1)◦δ◦η = (1⊗µ⊗1)◦(δ⊗δ)◦(η⊗η) =
can also be verified. �

In particular, applying the above proposition to the previous example, one obtains
the usual groupoid algebra kG from H, as a packed form: kG =

⊕
x,y∈G

Hx,y.

Example 2.16 (Hopf opcategories). If we replace V with Vop at Definitions 2.5 and 2.8,
we obtain the notion of a (semi) Hopf V-opcategory, called dual Hopf category in
[BCV16]. Since Comon(Vop) ∼= Mon(V)op, a semi-Hopf V-opcategory (C, d, ε, µ, η)
is precisely a Mon(V)-opcategory, i.e. it is equipped with cocomposition and counit
morphisms dxyz, εx as in (2), together with local multiplication and unit morphisms
µxy : Cx,y ⊗ Cx,y → Cx,y, ηxy : I → Cx,y making each hom-object a monoid in V , sub-
ject to compatibility conditions. Moreover, a Hopf V-opcategory comes with arrows
sxy : Cy,x → Cx,y satisfying dual axioms to (7):

Cx,y ⊗ Cy,x Cx,y ⊗ Cx,y

Cx,x I Cx,y

1⊗sxy

µxydxyx

εx ηxy

Cx,y ⊗ Cy,x Cy,x ⊗ Cy,x

Cx,x I Cy,x

syx⊗1

µyxdxyx

εx ηyx

Proposition 2.17. If A is a (semi-)Hopf locally rigid V-category, A∗,op naturally ob-
tains the structure of a (semi-)Hopf V-opcategory.

Proof. By Proposition 2.3, any V-category A gives rise to a V-opcategory A∗,op given
by A∗,op

x,y = A∗y,x. Moreover, the local comonoid structure turns into a local monoid
structure under the strong antimonoidal (−)∗ : Vop → V . More explicitly, if (A,m, j, δ, ε)
is the semi-Hopf V-category, (A∗,op, φ ◦ m∗, j∗, δ∗ ◦ φ, ε∗) is an induced semi-Hopf V-
opcategory structure on A∗,op where the cocomposition and counit are given as in (5)
and multiplication and unit are

µxy : A∗,op
x,y ⊗ A∗,op

x,y = A∗y,x ⊗ A∗y,x
φ∼=−→ (Ay,x ⊗ Ay,x)∗

δ∗yx−−→ A∗y,x = A∗,op
x,y

ηxy :
ε∗y,x−−→ A∗y,x = A∗,op

x,y

Dually, if C is a semi-Hopf V-opcategory, its opposite dual C∗,op is a semi-Hopf V-
category. �
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Remark 2.18. In the k-linear setting, the above formulas take the following form,

where
∑ xy

e i ⊗
xy

f i ∈ Ax,y ⊗ A∗x,y denotes a finite dual basis of any Ax,y. The global
comultiplication is given by

f 7→
∑
i,j

f(
zy

e i
yx

e j)
yx

f j ⊗
zy

f i

and the local multiplication is given by f ⊗ g 7→ f ∗ g where (f ∗ g)(a) = g(a1)f(a2) for
all a ∈ Ax,y.

Notice that in the one-object case of a k-bialgebra A, the induced A∗,op as described
above in fact coincides with the classical (A∗)op,coop, namely the opposite-coopposite of
the classical dual k-bialgebra A∗.

The proposition below is the generalization of the classic ‘fusion map’ formulation in
this many-object setting.

Proposition 2.19. Let H be a Hopf V-category. Then for any two objects x, y in H,
we have that the above canonical map

Hx,x ⊗Hx,y

1⊗δxy // Hx,x ⊗Hx,y ⊗Hx,y

mxxy⊗1
// Hx,y ⊗Hx,y

is an isomorphism.

Proof. One can easily check that an inverse of the canonical map is given by

Hx,y ⊗Hx,y
1⊗δxy−−−→ Hx,y ⊗Hx,y ⊗Hx,y

1⊗sxy⊗1−−−−−→ Hx,y ⊗Hy,x ⊗Hx,y
mxyx⊗1−−−−→ Hx,x ⊗Hx,y

�

Of course, the previous proposition also can be applied to Hopf opcategories. Since
it is well-known that, when working over a base field, i.e. V = Vectk, the bijectivity
of the canonical map implies that the space of (co)invariants is trivial, we can deduce
from the previous proposition the following interesting result.

Theorem 2.20. For a Hopf Vectk-category H, Hx,y is an Hx,x-Hy,y bi-Galois co-object
for any pair of objects x, y in H; for a Hopf Vectk-opcategory H, Hx,y is an Hx,x-Hy,y

bi-Galois object for any pair of objects x, y in H.

In particular, we find that each non-zero Hx,y is isomorphic as a k-vector space to both
Hx,x and Hy,y. Moreover, Hx,x and Hy,y are isomorphic as k-vector spaces if Hx,y or Hy,x

is non-zero. This observation leads to some interesting examples of Hopf (op)categories
as below.

Example 2.21. Let H be a Hopf algebra, and A any (faithfully flat, right) Galois object
of H. Then we know, see [Sch96], that one can construct a Hopf algebra L = (A⊗A)coH

such that A becomes an L-H bi-Galois object. Hence we obtain a Hopf opcategory with
two objects x, y by putting Hx,x = L, Hy,y = H, Hx,y = A and Hy,x = Aop.

2.2. The fundamental theorem of Hopf categories. In this section, we recall the
fundamental theorem for Hopf modules of Hopf V-categories; details and proofs can be
found in [BCV16]. For (A,m, j, δ, ε) a semi-Hopf V-category, a right Hopf module is a
V-graph M over the same set of objects, with a global A-action and a local A-coaction

τxyz : Mx,y ⊗ Ay,z →Mx,z, ρxy : Mx,y →Mx,y ⊗ Ax,y
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making M into an enriched A-module (Section 2.1) and each Mx,y into an ordinary
Ax,y-comodule, and furthermore satisfy

Mx,y ⊗ Ay,z Mx,y ⊗ Ax,y ⊗ Ay,z ⊗ Ay,z Mx,y ⊗ Ay,z ⊗ Ax,y ⊗ Ay,z

Mx,z Mx,z ⊗ Ax,z

ρxy⊗δyz

τxyz

1⊗σ⊗1

τxyz⊗mxyz
ρxz

There is a category with objects Hopf A-modules, and morphisms V-graph maps that
respect the global A-action and local A-coactions; it is denoted by V-ModAA.

Dually, for a semi-Hopf V-opcategory (C, d, ε, µ, η) as in Example 2.16, a right Hopf
opmodule is a V-graph N equipped with a global C-coaction and local C-action

χxyz : Nx,z → Nx,y ⊗ Cy,z νxy : Nx,y ⊗ Cx,y → Nx,y

making N into an enriched C-opmodule and each Nx,y into an ordinary Cx,y-module,
compatible in that χxyz ◦ νxz = (νxy ⊗ µyz) ◦ (1 ⊗ σ ⊗ 1) ◦ (χxyz ⊗ dxyz). The category
of right Hopf opmodules over C is denoted as V-opModCC .

Example 2.22. Suppose that (H,m, j, δ, ε, s) is a locally rigid Hopf V-category; recall
by Proposition 2.17 that H∗,op is a Hopf V-opcategory.

(1) H is a right Hopf H∗,op-opmodule via the following coaction and action:

χxyz : Hx,z
1
zy

coev−−−→ Hx,z ⊗Hz,y ⊗H∗z,y
mxzy1−−−→ Hx,y ⊗H∗z,y (8)

νxy : Hx,y⊗H∗y,x
σ−→ H∗yx⊗Hx,y

1δxy−−→ H∗y,x⊗Hx,y⊗Hx,y
1sxy1−−−→ H∗y,x⊗Hy,x⊗Hx,y

yx
ev1−−→ Hx,y

With this structure, H is called a type 1 Hopf H∗,op-opmodule, denoted H1.
(2) Hop is a right H∗,op-opmodule, via the following action and coaction:

χxyz : Hz,x Hz,x ⊗Hz,y ⊗H∗z,y Hz,x ⊗Hy,z ⊗H∗z,y Hy,z ⊗Hz,x ⊗H∗z,y

Hy,x ⊗H∗z,y

1
zy

coev 1szy1 σ1

myzx1

νxy : Hy,x ⊗H∗y,x
δyx1−−→ Hy,x ⊗Hy,x ⊗H∗y,x

1σ−→ Hy,x ⊗H∗y,x ⊗Hy,x
1
yx
ev−−→ Hy,x

With this structure, Hop is called a type 2 Hopf H∗,op-opmodule, denoted H2.
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(3) H∗ a right Hopf H-module via the action and coaction

τxyz : H∗x,y ⊗Hy,z H∗x,y ⊗Hz,y ⊗Hx,z ⊗H∗x,z H∗x,y ⊗Hx,z ⊗Hz,y ⊗H∗x,z

H∗x,y ⊗Hx,y ⊗H∗x,z

H∗x,z

ρxy : H∗x,y H∗x,y ⊗Hx,y ⊗H∗x,y H∗x,y ⊗Hx,y ⊗Hx,y ⊗H∗x,y

Hx,y ⊗H∗x,y ⊗Hx,y ⊗H∗x,y

Hx,y ⊗H∗x,y

H∗x,y ⊗Hx,y

1syz
xz

coev 1σ1

1mxzy1

xy
ev1

1
xy

coev 1δxy1

σ11

1
xy
ev1

σ

(9)
With this structure, H∗ is called a type 1 Hopf H-module, denoted H∗1 .

(4) H∗,op is a right Hopf H-module via the following action and coaction

τxyz : H∗y,x ⊗Hy,z H∗y,x ⊗Hy,z ⊗Hz,x ⊗H∗z,x H∗y,x ⊗Hy,x ⊗H∗z,x

H∗z,x

ρxy : H∗y,x H∗y,x ⊗Hy,x ⊗H∗y,x H∗y,x ⊗Hy,x ⊗Hy,x ⊗H∗y,x

H∗y,x ⊗Hy,x

H∗y,x ⊗Hx,y

11
zx

coev 1myzx1

yx
ev1

1
yx

coev 1δyx1

yx
evσ

1syx

With this structure, H∗,op is called a type 2 Hopf H-module, denoted H∗2 . Notice
that τ is precisely the induced action on the regular module from Example 2.2.
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Example 2.23. Dually, if (C, d, ε, µ, η, s) is a Hopf V-opcategory then the following
action and coaction make C∗,op a right Hopf C-opmodule.

νxy : C∗y,x ⊗ Cx,y C∗y,x ⊗ Cy,x ⊗ Cy,x ⊗ C∗y,x C∗y,x ⊗ Cy,x ⊗ Cy,x ⊗ C∗y,x

C∗y,x ⊗ Cy,x ⊗ C∗y,x

C∗y,x

χxyz : C∗z,x Cy,x ⊗ C∗y,x ⊗ C∗z,x C∗y,x ⊗ Cy,x ⊗ C∗z,x

C∗y,x ⊗ Cy,z ⊗ Cz,x ⊗ C∗z,x

C∗y,x ⊗ Cy,z

1sxy
yx

coev 1σ1

1µyx1

yx
ev1

yx
coev1 σ1

1dyzx1

11
zx
ev

Specifically χ is induced from the regular opmodule structure on C as in Example 2.2.

We now recall the fundamental theorem for Hopf modules, [BCV16, Theorem 10.2].
In its formulation, we denote by V-dGrph the category of diagonal V-graphs, namely
given by single-indexed families (Mx)x∈X of objects in V . Notice that any V-graph gives
rise to a diagonal one, by considering only its endo-hom objects Mx,x.

Theorem 2.24. Let (A,m, j, µ, ε) be a semi-Hopf V-category and suppose that V has
equalizers. The functor

−⊗A : V-dGrph→ V-ModAA (10)

that maps some {Nx}x∈X to {Nx ⊗ Ax,y}x,y∈X with A-action 1 ⊗ mxyz and coaction
1⊗ δxy, has a right adjoint (−)coA as in

V-dGrph V-ModAA

−⊗A

⊥

(−)coA

defined on a Hopf A-module (M, τ, ρ) by the equalizer

M coA
x

ix // Mx,x

ρMx,x //

1⊗jx
// Mx,x ⊗ Ax,x (11)

Moreover, A is a Hopf V-category if and only if the above functors establish an equiva-
lence of categories; in particular, M coA ⊗ A ∼= M for any Hopf A-module M .

Proof. (sketch) The unit and counit are given respectively by αx : Nx → (Nx⊗Ax,x)coAx
such that ix ◦ αx = Nx ⊗ jx and βxy = τxxy ◦ (ix ⊗ Ax,y) : M coA

x ⊗ Ax,y →Mx,y. �

Notice that M coA
x is the space of coinvariants for the local Hopf algebra Ax,x in the

k-linear case, see Example 2.12, which can in that way be defined in any monoidal
category V with equalizers.

The above theorem can also be deduced from viewing a Hopf category as a special
instance of a Hopf comonad on a naturally Frobenius map-monoidale [Böh17], using the
fundamental theorem of Hopf modules in that general setting [BL16].

Finally, the following result will be of use in later sections.
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Lemma 2.25. If a Hopf V-category H is locally rigid, then its antipode is invertible.

Proof. The proof is essentially the same as [Tak99, Theorem 4.1] and relies on the
fundamental theorem for Hopf modules for Hopf V-categories. If (H,m, j, δ, ε, s) is
the Hopf V-category, we can apply the equivalence of Theorem 2.24 to the right Hopf
H-module H∗1 described in Example 2.22(3) to get a Hopf H-module isomorphism

βxy : (H∗1 )coHx ⊗Hx,y → (H∗1 )x,y.

We now consider the following commutative diagram: since the braiding σ is invertible,
and ε∗ is split by j∗, the entire counter-clockwise composite that excludes sx,y constitutes
a left inverse to the antipode.

Hxy (H∗1 )xxHxy (H∗1 )coH
x HxxHxy Hxx(H

∗
1 )coH
x Hxy

Hyx (H∗1 )xxHyx (H∗1 )coH
x HxxHyx Hxx(H

∗
1 )coH
x Hyx Hxx(H

∗
1 )xy

ε∗xx1
sxy

β−1
xx 1

1sxy

j∗xx 1
σ1

11sxy

1βxy

11sxy

ε∗xx1 β−1
xx 1 σ1 1ζxy

The middle diagrams commute by naturality and the right-most triangle commutes by
definition of βxy, where ζxy := (

xx

ev ⊗1)◦(1⊗mxyx⊗1)◦(1⊗σ⊗1)◦(1⊗1⊗ yx

coev)◦(ix⊗1)
is defined precisely in order to cancel β introduced in Theorem 2.24 for the appropriate
action of H∗1 , (9).

Now a dual argument shows that s∗ has a left inverse, hence s also has a right inverse
because taking duals is a contravariant functor; therefore the antipode is invertible. �

2.3. The fundamental theorem of Hopf opcategories. Theorem 2.24 can be ap-
propriately dualized to produce a fundamental theorem for Hopf opmodules. However,
due to some non-trivial subtle differences between the two cases, in this section we ex-
plicitly describe the basic constructions and proofs. In what follows, we fix (C, d, ε, µ, η)
to be a semi-Hopf V-opcategory as in Example 2.16, for V a braided monoidal category.

In order to specify a functor similarly to (10), notice that for any diagonal V-graph
{Nx}x∈X , the families (N ⊗ C)x,y := Nx ⊗ Cx,y give a Hopf C-opmodule with C-action
1⊗ µxy and coaction 1⊗ dxzy. This naturaly defines a functor

−⊗ C : V-dGrph→ V-opModCC .

On the other hand, for any Hopf C-opmodule (M, ν, χ), we define the x-coinvariant
space M coC

x of M to be the limit in the following diagram

M coC
x

vxy

||
vxz

""

vxw

ss

vxu

++
Mx,w

1⊗ηwy
""

Mx,y

χxwy

||
1⊗ηyz

""

Mx,z

χxyz

||
1⊗ηzu

""

Mx,u

χxzu

||
. . . Mx,w ⊗ Cw,y Mx,y ⊗ Cy,z Mx,z ⊗ Cz,u . . .

(12)

Explicitly, the object M coC
x in V comes with maps vxy : M coC

x → Mxy such that χxyz ◦
vxz = (id⊗ ηyz) ◦ vxy for all y, z, and is universal with this property. These spaces form
a diagonal V-graph M coC = {M coC

x }x∈X for any x, and this is set to be the mapping on
objects of a functor (−)coC : V-opModCC → V-dGrph.
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Proposition 2.26. For any complete category V, there is an adjunction

V-dGrph V-opModCC .
−⊗C
⊥

(−)coC

Proof. For any {Nx}x∈X in V-dGrph, the maps 1 ⊗ ηxy : Nx → Nx ⊗ Cx,y induce mor-
phisms αx : Nx → (N ⊗ C)coHx by the universal property of the limit. On the other
hand, for any Hopf C-opmodule M let βxy = νxy ◦ (vxy ⊗ 1) : M coC

x ⊗ Cx,y →Mx,y. We
can check that α and β constitute a unit and counit for the proposed adjunction. �

Theorem 2.27. Let V be a complete category. If a semi-Hopf V-opcategory C is Hopf,
the adjunction of Proposition 2.26 is an equivalence of categories. In particular, for any
Hopf C-opmodule M ,

M coC ⊗ C ∼= M

Proof. It suffices to show that when C is a Hopf V-category, the adjunction - ⊗ C a
(−)coC is an adjoint equivalence, namely the unit and counit are isomorphisms.

An inverse for each αx as defined in the previous proof is given by

Γx := (N ⊗ C)coC
x

vxx // Nx ⊗ Cx,x
1⊗εxx // Nx

It is clear that Γx ◦ αx = id because of the commutativity of the following diagram:

Nx (N ⊗ C)coC
x Nx ⊗ Cx,x Nx

αx

1⊗ηxx
1

vxx 1⊗εxx

For the other side composite, first note that there is only one endomorphism fx : (N ⊗
C)coC

x → (N ⊗C)coC
x such that vxx ◦ fx = vxx by the universal property of limits; hence

this is the identity. Moreover, vxx ◦ (αx ◦ Γx) = vxx due to

(N ⊗ C)coC
x Nx ⊗ Cx,x Nx (N ⊗ C)coC

x

Nx ⊗ Cx,x

vxx

vxx

1⊗εxx

1

αx

1⊗ηxx
vxx

so also αx ◦ Γx = id.
For each component βxy of the counit, an inverse is given by

γxy := Mx,y

ρxxy // Mx,x ⊗ Cx,y
tx⊗1 // M coC

x ⊗ Cx,y

where tx is induced by the universal property of coinvariants and the family of maps
νxy ◦ 1⊗ syx) ◦ χxyx which form a cone over the required diagram: indeed,

χxyw ◦ νxw ◦ (Mx,w ⊗ swx) ◦ χxwx = (Mx,y ⊗ ηyw) ◦ νxy ◦ (Mx,y ⊗ sxy) ◦ χxyx.
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We can verify that this γxy is a one-sided inverse of βxy by the following commutative
square

Mx,y Mx,x ⊗ Cx,y M coC
x ⊗ Cx,y

Mx,y ⊗ Cy,y Mx,y ⊗ Cy,x ⊗ Cx,y

Mx,y Mx,y ⊗ Cx,y ⊗ Cx,y Mx,y ⊗ Cx,y

Mx,y ⊗ Cx,y Mx,y

1

χxxy

χxyy χxyx⊗1

ux⊗1

(∗∗) vxy⊗1
1⊗dyxy

1⊗εyy (∗) 1⊗syx⊗1

1

1⊗ηxy

νxy⊗1

1⊗µxy νxy

νxy

for any x, y, z, w ∈ X. The left and bottom triangle, the left upper square and the right
lower square commute since M is Hopf C-opmodule. The inner diagram (∗) follows from
the Hopf opcategory axioms and (∗∗) from the universal property of the limit defining
coinvariants. Hence βxy ◦ γxy = id.

For γxy ◦ βxy = id, first note that

χxwy ◦ νxy ◦ (vxy ⊗ Cx,y) = (νxw ⊗ Cw,y) ◦ (Mx,w ⊗ dxwy) ◦ (vxw ⊗ Cx,y) (13)

and also it can be shown that

vxy ◦ tx ◦ νxx ◦ (vxx ⊗ Cx,x) = vxy ◦ (M coC
x ⊗ εxx) (14)

Since ((M coC
x ⊗Cx,x)x, (vxy ◦(M coC

x ⊗εxx)xy)) is trivially a cone over the diagram (12), by
the universal property there exists a unique morphism h : M coC⊗C →M coC ∈ V-dGrph
such that vxy ◦ hx = vxy ◦ (M coC

x ⊗ εxx) for every x, y ∈ X. By (14), we know that
hx = tx ◦ νxx ◦ (vxx ⊗ Cx,x). Since (M coC

x ⊗ εxx) satisfies this condition trivially, we can
deduce by uniqueness of h that they have to be equal:

(M coC
x ⊗ εxx) = tx ◦ νxx ◦ (vxx ⊗ Cx,x) (15)

Finally, using the above data, we can compute

γxy ◦ βxy = (tx ⊗ Cx,y) ◦ χxxy ◦ νxy ◦ (vxy ⊗ Cx,y)
(13)
= (tx ⊗ Cx,y) ◦ (νxx ⊗ Cx,y) ◦ (Mx,x ⊗ dxxy) ◦ (vxx ⊗ Cx,y)

(15)
= (M coC

x ⊗ εxx ⊗ Cx,y) ◦ (M coC
x ⊗ dxxy)

= M coC
x ⊗ Cx,y

where the last equality is due to C being a V-opcategory, hence the proof is complete. �

A ‘full’ fundamental theorem for Hopf opmodules would include the converse of Propo-
sition 2.26; this may be readily proved by adapting the proof of the fundamental theo-
rem of Hopf modules given in [BCV16]. We omit it here since it is not required for our
purposes.



A LARSON-SWEEDLER THEOREM FOR HOPF V-CATEGORIES 19

3. Frobenius V-categories

In [BFVV17, §7], we introduced Frobenius V-categories as Frobenius monoids inside
the same monoidal bicategory where Hopf V-categories arise as oplax Hopf monoids. In
this section, we provide characterizations of Frobenius categories in terms of Casimir
elements, dual module structures, trace maps and Frobenius functors. These charac-
terizations, necessary for our central results in Section 4, naturally generalise those for
usual Frobenius algebras [CMZ02] and are similar to those of Frobenius monads [Str04b,
Thm 1.6].

Definition 3.1. [BFVV17, 7.1.1] A Frobenius V-category A is a V-category that is also
a V-opcategory, namely for every x, y ∈ ObA there is an object Ax,y ∈ V and maps

mxyz : Ax,y ⊗ Ay,z → Ax,z jx : I → Ax,x

dxyz : Ax,z → Ax,y ⊗ Ay,z εx : Ax,x → I

satisfying the usual (co)associativity and (co)unitality axioms, and moreover the follow-
ing diagrams commute:

Ax,y ⊗ Ay,z Ax,w ⊗ Aw,y ⊗ Ay,z

Ax,z

Ax,y ⊗ Ay,w ⊗ Aw,z Ax,w ⊗ Aw,z

dxwy⊗1

1⊗dywz

mxyz

1⊗mwyz

dxwz

mxyw⊗1

(16)

Along with Frobenius V-functors, namely V-graph morphisms which are functors and
opfunctors, they form a category Frob-V-Cat.

We will call the counit morphisms εx : Ax,x → I of a Frobenius V-category the trace
morphisms. Moreover, if V is braided, a Frobenius V-category is symmetric when

Ax,y ⊗ Ay,x
σ
��

mxyx // Ax,x εx

)) I

Ay,x ⊗ Ax,y myxy
// Ay,y εy

55 (17)

which translates in the k-linear case to εx(ab) = εy(ba).
A Frobenius monoid in any monoidal category V can be viewed as a one-object

Frobenius V-category, and in particular every diagonal hom-object Ax,x ∈ V is such.
For more examples and discussion of related notions, see [BFVV17].

The fact that Frobenius V-categories properly generalize Frobenius monoids in V is
also exhibited by the following result, which shows that the packed form of a Frobenius
V-category is a Frobenius monoid provided that the set of objects is finite. Notice that
this result cannot be expected to hold in case the set of objects is infinite, since in such
a case the packed form cannot be expected to be rigid in V , whereas a Frobenius monoid
is always rigid.

Proposition 3.2. Suppose A is a Frobenius V-category with a finite object-set X, and
that V has finite biproducts and ⊗ preserves them. The packed form of A

Â =
∐
x,y∈X

Ax,y
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is a Frobenius monoid in V.

Proof. We already know by Proposition 2.15 that (Â, µ, η) is a monoid in V . In a dual
way to the multiplication defined therein, the maps

Ax,y
comltxyzu−−−−−→ Ax,z ⊗ Au,y ≡

{
dxzu, if z = u

0, else
and Ax,y

counixy−−−−→ I ≡

{
εx, if x = y

0, else

induce (uniquely) comultiplication and counit arrows δ : Â→ Â⊗ Â, e : Â→ I via the

universal properties of (co)products. It can then be verified that δ and e make Â into

a comonoid, and moreover that (Â, µ, η, δ, e) is a Frobenius monoid in V . �

Remark 3.3. Let us note that the following converse of Proposition 3.2 holds. For
X a finite set, consider the category of X-bigraded V-objects (namely packed forms of
V-graphs with set of objects X) with tensor product

(
∐
x,y∈X

Ax,y)⊗ (
∐
x,y∈X

Bx,y) =
∐
x,y∈X

(
∐
u∈X

Ax,u ⊗ Au,y)

Then a Frobenius monoid in this category is exactly the packed form of a Frobenius
V-category.

We introduce the following notation for any V-category (A,m, j) which will be useful
for the characterization of Frobenius V-categories in what follows:

V1 = {ε = {εx}x∈X | εx : Ax,x → I} (18)

W1 = {d = {dxyz}x,y,z∈X | dxyz : Ax,z → Ax,y ⊗ Ay,z, satisfying (16)}

That is, the sets V1 and W1 consist respectively of candidate ‘trace morphisms’ families
and ‘comultiplication’ families for a Frobenius structure on A.

3.1. Characterization in terms of Casimir elements.

Definition 3.4. Let (A,m, j) be a V-category with ObA = X. A Casimir family is

a family e of distinguished morphisms
xy

e : I → Ax,y ⊗ Ay,x indexed by (x, y) ∈ X2,
satisfying the commutativity of the following diagram

Ax,z Ax,y ⊗ Ay,x ⊗ Ax,z

Ax,z ⊗ Az,y ⊗ Ay,z Ax,y ⊗ Ay,z

xy
e ⊗1

1⊗
zy
e 1⊗myxz

mxzy⊗1

(19)

for any triple (x, y, z) ∈ X3. In the k-linear case, this gives an X2-indexed family of

elements
xy

e= e1
x,y⊗ e2

y,x ∈ Ax,y⊗Ay,x such that ae1
z,y⊗ e2

y,z = e1
x,y⊗ e2

y,xa for all a ∈ Ax,z.
We denote by W2 the set of all Casimir families for a given V-category A.

Using the above notation (18), we obtain the following result.

Lemma 3.5. For any V-category A, we have a bijection between the sets W1 and W2.

Proof. For any family d = {dxyz}x,y,z∈X ∈ W1, define morphisms
xy

e : I
jx−→ Ax,x

dxyx−−→
Ax,y ⊗ Ay,x. To check that these satisfy the Casimir property (19), we examine the
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diagram

Ax,z Ax,x ⊗ Ax,z Ax,y ⊗ Ay,x ⊗ Ax,z

Ax,z

Ax,z ⊗ Az,z Ax,z ⊗ Az,y ⊗ Ay,z Ax,y ⊗ Ay,z

id

jx⊗1

1⊗jz

mxxz

dxyx⊗1

(16)

1⊗myxz
dxyz

(16)
mxzz

1⊗dzyz mxzy⊗1

where the left part is the unit axiom for any V-category. In k-linear language, we have
xy

e= dxyx(1x,x) and the diagram expresses that for any a ∈ Ax,z,
adzyz(1z,z) = dxyz(a1z,z) = dxyz(a) = dxyz(1x,xa) = dxyx(1x,x)a.

Conversely, given a Casimir family e = {xye}x,y∈X ∈ W2, we define a family

dxyz : Ax,z
1⊗

zy
e−−→ Ax,z ⊗ Az,y ⊗ Ay,z

mxzy⊗1−−−−→ Ax,y ⊗ Ay,z
(19)
= (1⊗myzx) ◦ (

xy

e ⊗1) (20)

These indeed satisfy the Frobenius conditions (16): the first is verified by

Ax,yAy,z Ax,yAy,wAw,yAy,z Ax,wAw,yAy,z

Ax,yAy,zAw,z Ax,yAy,wAw,z

Ax,z Ax,zAz,wAw,z Ax,wAw,z

1
yw
e 1

mxyz

11
zw
e

mxyw11

11mwyz
(19)

1mxyz
1myzw1

mxyz mxyw1

1
zw
e mxzw1

where the tensors have been omitted, and similarly for the second. In the k-linear case
we get, for a ∈ Ax,y and b ∈ Ay,z,(

(1⊗mxyz) ◦ (dxwy ⊗ 1)
)
(a⊗ b) = ae1

y,w ⊗ e2
w,yb

(19)
= abe1

z,w ⊗ e2
w,z =(

mxyz ◦ dxwz
)
(a⊗ b) =

(
(mxyz ⊗ 1) ◦ (1⊗ dywz)

)
(a⊗ b).

The above constructions provide well-defined functions α : W1 � W2 : β. Let us
check that these constructions are mutual inverses. The identity β ◦ α(d) = d follows
form the following diagram:

Ax,z
1⊗jz // Ax,z ⊗ Az,z

1⊗dzyz //

(16)mxzz

��

Ax,z ⊗ Az,y ⊗ Ay,z
mxzy⊗1

��
Ax,z

dxyz

// Ax,y ⊗ Ay,z

Conversely, the identity α ◦ β(e) = e follows from

I

jx

��

xy
e // Ax,y ⊗ Ay,x

1⊗1⊗jx
��

Ax,x
1⊗

xy
e

// Ax,x ⊗ Ax,y ⊗ Ay,x mxxy⊗1
// Ax,y ⊗ Ay,x

where the left square commutes by naturality and the triangle by the unitality condition
of the V-category A. �

We can now provide a first equivalent characterization of Frobenius categories.
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Proposition 3.6. For any V-category A, there is a bijective correspondence between

• comultiplication and counit families (d, ε) that give A the structure of a Frobenius
V-category;
• Casimir families e together with families ν = {νx : Ax,x → I}x∈X such that the

following triangles commute:

Ax,x ⊗ Ax,x I Ax,x ⊗ Ax,x

Ax,x

νx⊗1
jx

xx
e

xx
e

1⊗νx
(21)

In the k-linear context, (21) is expressed as νx(e
1
x,x) · e2

x,x = e1
x,x · νx(e2

x,x) = 1x,x. The
families of maps (e, ν) as above define a Frobenius system for any V-category A.

Proof. First, suppose that (A,m, j, d, ε) is a Frobenius V-category. By Lemma 3.5,

we know that d gives rise to a Casimir family
xy

e : I
jx−→ Ax,x

dxyx−−→ Ax,y ⊗ Ay,x. If we
define νx = εx, one easily verifies that (21) is satisfied using the counity axiom (3) for
opcategories.

Conversely, suppose that (A,m, j) is a V-category with a Casimir family e = {xye}x,y
and ν = {νx}x satisfying (21), namely a Frobenius system (e, ν). By Lemma 3.5, the

induced dxyz = (1 ⊗ myzx) ◦ (
xy

e ⊗1) already belong to W1, and moreover we define
coidentities by εx = νx. Then the coassociativity and counity conditions (3) are satis-
fied by examining the following diagrams, where ⊗ has been suppressed and separated
subscripts have been concatenated for space purposes:

Axw AxwAwyAyw AxyAyw

AxwAwyAywAwzAzw

AxwAwzAzw AxwAwyAyzAzw AxyAyzAwzAzw

Ax,wAw,zAzyAyzAzw

AxzAzw AxzAzyAyzAzw AxyAyzAzw

1
wy
e

1
wz
e

mxwy1

111
wz
e

11
wz
e

11mywz1

(19)

1
wy
e 111

11
zy
e 1mxwz1

mxwy11
1mywz1

1mxzy11

mxwz111

1
zy
e 1

mxzy11

Axy AxyAyxAxy AxxAxy

AxxAxxAxy

AxxAxy Axy

1
yx
e

xx
e 1

jx1

id

mxyx1

(19)

νx1(21)

νx11

1mxxy

mxxy

Axy AxyAyyAyy AxyAyy

AxyAyy Axy
id

(21)

1
yy
e

1jx

mxyy1

11νy 1νy

mxyy

(22)
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The unnamed sub-diagrams either commute trivially, or are V-category axioms. In the
k-linear context, the above is established, for any a ∈ Ax,w and b ∈ Ax,y, by

(1⊗ dyzw)dxyw(a) = ae1
wy ⊗ e2

ywe
1
wz ⊗ e2

zw

(19)
= ae1

wze
1
zy ⊗ e2

yz ⊗ e2
wz = (dxyz ⊗ 1)dxzw(a)

νx(be
1
y,x) · e2

x,y

(19)
= νx(e

1
x,x) · e2

x,xb
(21)
= 1x,xb = b, be1

y,y · νy(e2
y,y)

(19)
= b1y,y = b (23)

Therefore (A, d, ε) is a V-opcategory which also satisfies (16), so it is indeed Frobenius.
The bijectivity of this correspondence follows directly from the bijectivity of the

correspondence in Lemma 3.5. �

Remark 3.7. Notice that as mere families of morphisms, traces (counits) ε from the
opcategory structure and ‘functionals’ ν from the Frobenius system are basically iden-
tical, belonging to V1 as in (18). Of course they ultimately satisfy different axioms, but
as the previous proposition made clear, they are essentially the same hence can be used
interchangeably.

The following lemma establishes a very important property of Frobenius V-categories,
namely that they are locally rigid (i.e. each hom-object has a dual in V) in a natural
way.

Lemma 3.8. Any Frobenius V-category A is locally rigid, with A∗x,y
∼= Ay,x for any two

objects x, y.

Proof. Since A is equipped with a Frobenius system (e, ν), the evaluation and coevalu-
ation maps can be defined as

xy

ev : Ay,x ⊗ Ax,y
myxy−−−→ Ay,y

νy−→ I

xy

coev : I
xy
e−→ Ax,y ⊗ Ay,x

and the two commutative diagrams (22) verify that Ay,x is the dual of Ax,y. �

Remark 3.9. In the k-linear context for a commutative ring k, we know that rigid
objects are exactly finitely generated and projective modules where the dual is given
by all linear functionals. Hence (23), which establishes Lemma 3.8, expresses the dual
base property (4) exhibiting {e2

x,y, νx(−e1
y,x)} as a finite dual basis for each k-module

Ax,y. Notice that {e1
x,y, νx(e

2
y,x−)} also constitutes a dual basis for Ax,y since

a = ae1
y,y · νy(e2

yy) = e1
x,y · νy(e2

y,xa).

3.2. Characterization in terms of dual module structure. One of the equivalent
definitions of a (classical) Frobenius k-algebra A is that A is finite dimensional and
isomorphic to its dual A∗ as a right A-module. In this section, we generalize this to
Frobenius V-categories.

For any locally rigid V-category A, consider the right A-module A† that is constructed
as A∗,op out of the left regular A-module as in Example 2.2 and the left A-module †A
that is constructed out of the right regular A-module. We denote

V3 = HomA(A,A†), V ′3 = AHom(A, †A)

W3 = HomA(A†, A), W ′
3 = AHom(†A,A)
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where for example HomA(A,A†) denotes the set of all right A-module morphisms from
A to A†: an element f consists of maps fxy : Ax,y → A∗y,x which satisfy (1), here

Ax,y ⊗ Ay,z Ax,z

A∗y,x ⊗ Ay,z A∗y,x ⊗ Ay,z ⊗ Az,x ⊗ A∗z,x A∗y,x ⊗ Ay,x ⊗ A∗z,x A∗z,x

fxy1

mxyz

fxz

11
zx

coev 1myzx1 yx
ev1

(24)

Lemma 3.10. For any locally rigid V-category A, there exist bijections

(1) V1
∼= V3

∼= V ′3 ,
(2) W1

∼= W3
∼= W ′

3

where V1 and W1 are as in (18).

Proof. First notice that V3
∼= V ′3 and W3

∼= W ′
3 follow by construction of the module

structures on A∗,op.
(1). Given a family ν = {νx} ∈ V1 (see Remark 3.7), we can define

ψxy : Ax,y
1⊗

yx
coev−−−−→ Ax,y ⊗ Ay,x ⊗ A∗y,x

mxyx⊗1−−−−→ Ax,x ⊗ A∗y,x
νx⊗1−−−→ A∗y,x (25)

Thes maps can be easily verified to satisfy (24), so they form a right A-module morphism
from A to A†. This defines a map V1 → V3. Conversely, given some ψ ∈ V3, we define
a family of morphisms

νx : Ax,x
jx⊗1−−−→ Ax,x ⊗ Ax,x

ψxx⊗1−−−→ A∗x,x ⊗ Ax,x
xx
ev−→ I (26)

establishing a map V3 → V1. One can then verify that these two directions are mutual
inverses.

(2). Recall that by Lemma 3.5, W1
∼= W2, the set of Casimir families. Given a

Casimir family
xy

e , we can define an element φ ∈ W3 by means of the composition

φxy : A∗y,x
1⊗

yx
e−−−→ A∗y,x ⊗ Ay,x ⊗ Ax,y

yx
ev⊗1−−−→ Ax,y

A similar computation as in part (1) shows that φ is also a right A-module morphism
using the Casimir property (19). Conversely, given φ ∈ W3, we claim that

xy

e : I
xy

coev−−→ Ax,y ⊗ A∗x,y
1⊗φyx−−−→ Ax,y ⊗ Ay,x

form a Casimir family. Indeed, the following commutativity verifies (19):

Axz AxyA
∗
xyAxz AxyAyxAxz AxyAyz

AxyA
∗
xyAxzAzyA

∗
zy AxyA

∗
xyAxyA

∗
zy AxyA

∗
zy

AxzAzyA
∗
zy AxzAzyAyz

xy
coev1

1
zy

coev

111
zy

coev

1φyx1 1myxz

(∗)

11mxzy 1
xy
ev1

1φyz

(∗∗)
xy

coev111

11φyz

mxzy1

mxzy1

where (∗) commutes since φ is a right A-module map between the regular A-module
and its dual A†, and (∗∗) is the triangle equality for evaluation and coevaluation. The
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above constructions provide well-defined maps between W1
∼= W2 and W3, which can

be checked to be mutual inverses. �

Remark 3.11. One can observe that if V is a closed monoidal category, the bijections
V1
∼= V3

∼= V ′3 are still valid without the assumption of local rigidity – replacing X∗ by
[X, I]. On the other hand, in this setting we still have well-defined maps W1 → W3

and W1 → W ′
3, but the proof for bijectivity is only valid under local rigidity of the

V-category A.
In the k-linear case, the Casimir family e in function of a ϕ ∈ W3 is explicitly given

by
xy

ui ⊗ϕyx(
xy∗
ui ), where {(xyui,

xy∗
ui )} is a dual base for Ax,y. The Casimir property in this

case is explicitly checked as follows

a
zy

ui ⊗ϕyz(
zy∗
ui ) =

xy

ui ·
xy∗
ui (a

zy

ui)⊗ ϕyz(
zy∗
ui ) =

xy

ui ⊗ϕyz(
xy∗
ui (a

zy

ui)·
zy∗
ui ) =

=
xy

ui ⊗ϕyz(
xy∗
ui (a−)) =

xy

ui ⊗ϕyx(
xy∗
ui )a, ∀a ∈ Ax,z.

The following result then gives the characterization of Frobenius V-categories in terms
of ‘Frobenius isomorphisms’, namely A-module isomorphisms with A∗,op.

Proposition 3.12. For a locally rigid V-category A, there is a bijective correspondence
between:

(1) Frobenius systems on A;
(2) isomorphisms between the right A-modules A and A†;
(3) isomorphisms between the left A-modules A and †A.

In particular, a V-category A is Frobenius if and only if it is locally rigid and A ∼= A∗,op

as right A-modules.

Proof. Recall that the right A-module structure on A∗,op is the bottom of (24). We
only prove the equivalence between (1) and (2) since the equivalence with (3) follows
by symmetry. The last statement follows immediately from the stated correspondence
in combination with Lemma 3.8.

Given a Frobenius system (e, ν) for A, by Lemma 3.10 we can construct two right
A-linear morphisms ψ : A� A† : φ. It can easily be checked that φ and ψ are inverses
using the (co)evaluation condition together with (19) and (21).

Conversely, given an isomorphism of right A-modules ψ : A→ A† with inverse φ, we
can obtain a Casimir element E and a family (νx : Ax,x → I)x∈X from Lemma 3.10. Let
us check that these make up a Frobenius system. The left side of (21) follows from

I AxxA
∗
xx AxxAxx AxxAxxAxx

Axx AxxAxxA
∗
xx A∗xxAxxAxx

A∗xx A∗xxAxxA
∗xx A∗xx Axx

xx
coev

jx jx11

1φxx jx11

ψxx11

ψxx ψxx1 xx
ev1

1
xx

coev

id

xx
ev1

11φxx

φxx

using the evaluation-coevaluation property and φ, ψ being inverses.
For the right hand side of (21), we first notice that the induced νx constructed as

(26) are equivalently given by

Ax,x
ψxx−−→ A∗x,x

1⊗jx−−−→ A∗x,x ⊗ Ax,x
xx
ev−→ I.
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This follows from ψ being an A-module morphism and again the triangle equalities.
The remaining verification is now straightforward:

I AxxA
∗xx AxxAxx AxxA

∗
xx AxxA

∗
xxAxx

Axx Axx

xx
coev

jx

1φxx

id

1ψxx 11jx

1
xx
evxx

coev1

id

�

Remark 3.13. In the linear case, the equivalent formulations for νx are computed

νx(a) = [ψxx(1xx)](a) = [ψxx(1xx)](a1xx)=[ψxx)(1xx) · a](1xx) = ψxx(1xxa)(1x,x)

= ψxx(a)(1xx)

from which it follows that
xx

ui ·νx(ϕxx(
xx∗
ui ))=

xx

ui ·[ψx,x(ϕxx(
xx∗
ui ))](1x,x) =

xx

ui ·
xx∗
ui (1x,x) = 1xx.

The following result shows that in fact, the Frobenius isomorphism A ∼= A∗,op is a
V-opcategory one rather than just an A-module one.

Theorem 3.14. Let (A,m, j) be a Frobenius V-category with Frobenius system (e, ν)
and consider the dual V-opcategory (A∗,op, dA

∗,op
, εA

∗,op
) as in Proposition 2.3. Then the

induced isomorphisms ψxy : Ax,y → A∗y,x as in Lemma 3.10 form an isomorphism of
V-opcategories A→ A∗,op.

Proof. Recall by Proposition 3.6 that the induced comultiplication on A in terms of its

Frobenius system (e, ν) is dAxyz = (mxzy ⊗ Ay,z) ◦ (Ax,z⊗
zy

e) as in (20) and the induced
counit on A is just ε = ν. Furthermore, Lemma 3.10 describes the morphisms ψxy in

terms of the Frobenius system as ψxy = (νx ⊗A∗y,x) ◦ (mxyx ⊗A∗y,x) ◦ (Ax,y⊗
yx

coev) as in
(25).

The following diagram shows that ψ preserves the cocomposition

Axz AxzAzxA
∗
zx AxxA

∗
zx A∗zx A∗zxAzyA

∗
zy

AxzAzyAyz AxzAzyA
∗
zy A∗zxAzyAyxA

∗
yxA

∗
zy

AxyAyz AxzAzyAyzAzyA
∗
zy AxzAzyAyyAyyA

∗
zy

AxyAyzAzyA
∗
zy AxzAzyAyyA

∗
zy AxzAzyAyyA

∗
zy A∗yxA

∗
zy

AxyAyyA
∗
zy AxzAzyA

∗
zy

AxyA
∗
zy AxzAzyAyxA

∗
yxA

∗
zy

AxzAzxA
∗
yxA

∗
zy

AxyAyxA
∗
yxA

∗
zy AxxA

∗
yxA

∗
zy

1
zx

coev

1
zy
e

1
zy

coev

mxzx1 νx1 1
zy

coev

11
yx

coev1

mxzy1 1
zy
e 11

11
yy
e 1

1mzyx11

11
zy

coev 11myzy1

(19)

111νy1
1mzyy11

1myzy1 11νy1
1mzyy1

(∗)

1νy1
mxzy1

11
yx

coev1

1
yx

coev

1mzyx11

1mzyx11

mxyx11

νx11
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where the inner diagram (∗) commutes because of (21), definition of V-category and the
evaluation-coevalution property. A similar diagram proves the counit condition. �

Notice that the previous characterizations of Frobenius V-categories can be reformu-
lated in terms of V-opcategories. For example, since a V-opcategory C gives rise to a
V-category C∗,op by Proposition 2.3, Proposition 3.12 would accordingly state that a
V-opcategory C is Frobenius if and only if C is locally rigid and isomorphic to C∗,op as
right C-opmodules, using the regular structure for C and the one from Example 2.23
for C∗,op. In that case, one has the following corollary.

Corollary 3.15. A V-category A is Frobenius if and only if the V-opcategory A∗,op is
Frobenius.

Proof. This follows from the following equivalences.

V-category A is Frobenius ⇔ A ∼= A∗,op as right A-modules
⇔ A∗,op ∼= A as right A∗,op-opmodules
⇔ V-opcategory A∗,op is Frobenius

The first and last equivalences are Proposition 3.12 and its dual statement, and the
middle equivalence is Proposition 2.4. �

Finally, the symmetry of the Frobenius definition is also expressed as follows.

Proposition 3.16. If A is a Frobenius V-category, then the categories V-opModA and
V-ModA of A-modules and opmodules are isomorphic.

Proof. Suppose the V-category (A,m, j) comes with a Frobenius system (e, ν), and
(N,χ) is an A-opmodule and (M, τ) an A-module. Define a functor F : V-opModA →
V-ModA by F (Nx,y) = Nx,y with action

Nx,y ⊗ Ay,z
χxzy⊗1−−−−→ Nx,z ⊗ Az,y ⊗ Ay,z

1⊗mzyz−−−−→ Nx,y ⊗ Az,z
1⊗νz−−−→ Nx,y

mapping an A-opmodule map to the same morphism in A which can be shown to
commute with the above defined actions. Furthermore, define G : V-ModA → V-opModA
by G(Mx,y) = Mx,y with coaction

Mx,y
1⊗

yz
e−−→Mx,y ⊗ Ay,z ⊗ Az,y

τxyz⊗1−−−−→Mx,z ⊗ Az,y
Those two functors are inverse to one another, and the proof is complete. �

3.3. Characterization in terms of trace morphisms. In this subsection, we pro-
vide yet another characterization of Frobenius V-categories, generalizing the classical
characterization of Frobenius algebras in terms of properties of the trace morphisms.
We moreover show how this is related to so-called ‘Calabi-Yau’ categories.

Definition 3.17. For any V-graph G, a bilinear form Γ is a collection of morphisms
Γxy : Gx,y⊗Gy,x → I in V . If V is braided, a bilinear form is said to be symmetric when

Gx,y ⊗Gy,x

σ
��

Γxy

''
I

Gy,x ⊗Gx,y Γyx

77

commutes for all x, y.
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If A is a V-category and Γ is a bilinear form on A, we say that Γ is balanced when
the following commutes

Ax,y ⊗ Ay,z ⊗ Az,x
mxyz⊗1

//

1⊗myzx
��

Ax,z ⊗ Az,x
Γxz
��

Ax,y ⊗ Ay,x
Γxy

// I

(27)

We denote the set of all balanced bilinear forms on a V-category A by

V4 = {Γ = {Γxy}x,y∈X | Γxy : Ax,y ⊗ Ay,x → I satisfying (27)}
With notation as in (18), we obtain a correspondence to the traces or functionals on A,
see Remark 3.7.

Lemma 3.18. For any V-category A, there is a bijection V1
∼= V4.

Proof. For any ν = {νx : Ax,x → I}x ∈ V1, define a bilinear form by

Γxy : Ax,y ⊗ Ay,x
mxyx−−−→ Ax,x

νx−→ I. (28)

From the associativity of A, we immediately obtain that Γ is balanced.
Conversely, given a balanced bilinear form Γ on A, we define

νx : Ax,x
jx⊗1−−−→ Ax,x ⊗ Ax,x

Γxx−−→ I

Since Γ is balanced, we also have that νx = Γxx ◦ (1⊗ jx).
It can be easily verified that these two constructions are inverses. �

For any locally rigid V-category A, Lemmas 3.10 and 3.18 establish that

V1
∼= V3

∼= V ′3
∼= V4. (29)

A balanced bilinear form Γ ∈ V4 or a corresponding family of trace morphisms ν ∈ V1

will be called left (respectively right) non-degenerate if the corresponding element in
V3 (resp. V ′3) is a split monomorphism. Spelled out in the more general setting of a
monoidal closed category (see Remark 2.1) where η : Y → [X, Y ⊗X] is the tensor-hom
adjuction unit, this leads to the following definition.

Definition 3.19. Suppose V is monoidal closed. A bilinear form Γ on a V-category A
is left non-degenerate when all maps

Γ1
xy : Ax,y

η−→ [Ay,x, Ax,y ⊗ Ay,x]
[1,Γxy ]−−−→ [Ay,x, I] = A∗y,x

are split monomorphisms in V . If A is locally rigid, this says that

Γ1
xy : Ax,y

1⊗
yx

coev−−−−→ Ax,y ⊗ Ay,x ⊗ A∗y,x
Γxy⊗1−−−→ A∗y,x

are split monomorphisms. Symmetrically, Γ is right non-degenerate when the maps

Γ2
xy : Ax,y

η−→ [Ay,x, Ax,y ⊗ Ay,x]
[1,σ−1]−−−−→ [Ay,x, Ay,x ⊗ Ax,y]

[1,Γyx]−−−→ [Ay,x, I] = A∗y,x

are split monomorphisms in V . We say that Γ is non-degenerate if and only if it is both
left and right non-degenerate.

Equivalently, a family ν = {νx}x of traces is non-degenerate if and only if the cor-
responding bilinear form (28) is; in the locally rigid setting, this is the case when (25)
and its ‘switched’ (using braiding) are split monomorphisms in V .
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In the k-linear case (where k is a field) we find that Γ1
xy(a) ∈ A∗x,y is defined by

the formula Γ1
xy(a)(b) = Γxy(a ⊗ b). So Γ1

xy being a split monomorphism (which is in
this case equivalent to being a mononomorphism or to being injective) means that if
Γxy(a⊗ b) = 0 for all b, then a = 0 as usually stated.

The next lemma gives several sufficient conditions to obtain non-degeneracy of a
bilinear form.

Lemma 3.20.

(1) If A is a Frobenius V-category, there exists a non-degenerate balanced bilinear
form on A.

(2) If a bilinear form is symmetric, then left non-degeneracy is equivalent to right
non-degeneracy (hence to non-degeneracy).

(3) If V = Vectk and A is locally rigid then for a bilinear form, left non-degeneracy
is equivalent to right non-degeneracy (hence to non-degeneracy).

Proof. (1). If A is Frobenius, then the counit of the opcategory structure corresponds
by Lemma 3.18 to a balanced bilinear form Γ on A. On the other hand, we know by
Proposition 3.12 that A is isomorphic as a right A-module with A† and as a left A-
module with †A. As observed above, these isomorphisms are exactly given by Γ1 and
Γ2, hence in particular Γ is already non-degenerate.
(2). If a bilinear form Γ is symmetric, it follows directly from the definitions that

Γ1 = Γ2.
(3). In this case, local rigidity means that dimAx,y = dimA∗y,x and injective maps
between vector spaces of the same finite dimension are automatically bijective. �

We now proceed to the equivalent characterization of Frobenius structures in terms
of bilinear forms, and moreover for symmetric ones as in (17).

Proposition 3.21. Let A be a locally rigid V-category. There is a bijective correspon-
dence between the following:

(1) (symmetric) Frobenius structures on A;
(2) (symmetric) non-degenerate balanced bilinear forms on A;
(3) (symmetric) non-degenerate families of trace morphisms on A.

Proof. We already know by Lemma 3.18 that for a given (locally rigid) V-category, there
is a bijective correspondence between trace families (candidate counits) for a Frobenius
structure on A and balanced bilinear forms on A, which carries on to non-degenerate
ones by Definition 3.19.

From the construction of this correspondence, it is clear that a given Frobenius struc-
ture is symmetric if and only if the associated bilinear form is so. Furthermore, we know
from Lemma 3.20 that the bilinear form Γ ∈ V4 corresponding to the counits ν ∈ V1 of
a Frobenius system is non-degenerate.

It only remains to prove that a non-degenerate balanced bilinear form on A endows A
with a (unique) Frobenius system. Let Γ be such a bilinear form: by (29) we know that
it corresponds to a right A-linear morphism Γ1 : A→ A† and a left A-linear morphism
Γ2 : A → †A. Moreover, non-degeneracy of Γ implies that all Γ1

xy and Γ2
xy are split

monomorphisms in V and so they have left inverses that we will denote respectively by
Λ1
xy and Λ2

xy. Define

Λ
2

xy : A∗y,x
1⊗

xy
coev−−−−→ A∗y,x ⊗ Ax,y ⊗ A∗x,y

σ⊗Λ2
yx−−−−→ Ax,y ⊗ A∗y,x ⊗ Ay,x

1⊗
yx
ev−−−→ Ax,y



30 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

Using the fact that Λ2 is inverse to Γ2 and the evaluation/coevaluation condition, we can

verify that Λ
2

is a right inverse of Γ1
xy. Therefore, Γ1 has both a left inverse Λ1 and a right

inverse Λ
2

so is an isomorphism, and as a result A is Frobenius by Proposition 3.12. �

Now recall from [Cos07, p. 176] that a Calabi-Yau category is a k-linear category for
a field k, equipped with a family of trace maps Trx : Ax,x → I with the property that for
all x, y ∈ X the associated pairing Γxy = Trx ◦mxyx is non-degenerate and symmetric.
In our notation, if we substitute Trx by νx and recall (28), we immediately obtain
the following characterization of Calabi-Yau categories as a corollary of the previous
proposition.

Corollary 3.22. A locally rigid k-linear category is Calabi-Yau if and only if it is
symmetric Frobenius.

3.4. Characterization in terms of adjoint functors. Another classical character-
ization of Frobenius algebras says that a k-algebra A is Frobenius if and only if the
forgetful functor U : ModA → Modk that forgets the A-action is a left adjoint of the free
functor −⊗A : Modk → ModA. This is the origin of the alternative ‘Frobenius functor’
terminology that refers to adjoints which are both left and right to the same functor.
Before we generalize this result, let us first observe that for any V-category we have the
usual free-forgetful adjunction.

Proposition 3.23. Let A be a V-category. Then the forgetful functor

U : V-ModA → V-dGrph,

defined on objects by U(M, τ) 7→ {Mx,x}x∈X has a left adjoint F = −⊗ A.

Proof. Similarly to Theorem 2.24, the functor F = −⊗A : V-dGrph→ V-ModA maps a
diagonal graph {Nx}x to the right A-module {Nx ⊗ Ax,y}x,y with action 1⊗mxyz.

For any N ∈ V-dGrph, define αxN = 1 ⊗ jx : Nx → Nx ⊗ Ax,x and for any (M, τ) ∈
V-ModA define βxyM = τxyz : Mx,x ⊗ Ax,y → Mx,y. It can verified that α and β are the
unit and counit of the desired adjunction. �

The following lemma gives the essence of the characterization in terms of the adjunc-
tion.

Lemma 3.24. Let (V ,⊗, I) be a category such that the monoidal unit I is a (regular)
generator and all endofunctors −⊗ V : V → V preserve (regular) epimorphisms. For a
V-category A, the sets V1 of traces (18) and W2 of Casimir families (19) are moreover
in bijection to the following sets of natural transformations

(1) V1
∼= Nat(U ◦ F, id);

(2) W2
∼= Nat(id, F ◦ U).

Proof. (1) Consider a family ε = {εx}x∈X ∈ V1. We define a natural transformation
β : U ◦ F → id for any object N ∈ V-dGrph by

βxN = 1⊗ εx : Nx ⊗ Ax,x → Nx.

Conversely, given β : U ◦ F → id, for the unit diagonal graph D = {I}x we obtain
{βxD : Ax,x → I}x∈X ∈ V1. Now for any V-dGrph-morphism n : D → N with components
nx : I → Nx, we find by naturality of β that βxN ◦(nx⊗1) = nx ◦βxD. On the other hand,
I is a generator so the morphisms n : I → N are jointly epimorphic; since endofunctors
− ⊗ V preserve (regular) epimorphisms, it follows that (n ⊗ 1) are jointly epimorphic
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as well. Therefore, we obtain that βxN = 1⊗ βxD for all N and x, from which we deduce
that the above defined maps between V1 and Nat(U ◦ F, id) are bijections.

(2) Let e ∈ W2 be a Casimir family. Define a natural transformation id→ F ◦ U by

αxyM : Mx,y
1⊗

yx
e−−−→Mx,y ⊗ Ay,x ⊗ Ax,y

mxyx⊗1−−−−→Mx,x ⊗ Ax,y (30)

for any right A-module M and any x, y ∈ X. The fact that αxyM is a right A-module
morphism follows from the Casimir property of e, and naturality of α is immediate.

Now let α : id → F ◦ U be a natural transformations and fix y ∈ X. If h : X → X
is defined by h(z) = y for all objects z ∈ X, recall that the shuffle Ah of the regular
right A-module, as defined in Section 2.1, is given by Ahz,u = Ay,u for all z, u ∈ X with

a right action given by τhzuv = myuv. Then we define

yx

e : I
jy−→ Ay,y = Ahx,y

αxy
Ah−−→ Ahx,x ⊗ Ax,y = Ay,x ⊗ Ax,y (31)

which is verified to satisfy the Casimir property in the end of the current proof.
In case the natural transformation α arises from a Casimir family as in (30), we see

by the commutativity of the following diagram that the morphisms defined in (31) are
exactly the initial ones:

I
jy //

yx
e
��

Ay,y=A
h
x,y

yx
e 1
��

1eyx // Ahx,yAy,xAx,y = Ay,yAy,xAx,y

myyx1

��
Ay,xAx,y

11jy // Ay,xAx,yAy,y
1mxyy // Aτx,xAx,y = Ay,xAx,y

Conversely, we will show that for a natural transformation α : id → F ◦ U , the maps

defined as in (30) where
yx

e is constructed as in (31) are exactly the components of the
α. To this end, for a fixed y ∈ X, any right A-module M gives rise to a right A-module
MA whose components and action are given by

(MA)u,v = Mu,y ⊗ Ay,v, µMA
uvw = 1⊗myvw : (MA)u,v ⊗ Av,w → (MA)u,w

for all u, v, w ∈ X. Then for any family of morphisms nu : I → Mu,y with u ∈ X, we
obtain a right A-module morphism n : Ah →MA given by

nuv : Ahu,v = Ay,v
nu⊗1 // Mu,y ⊗ Ay,v = (MA)u,v

for all u, v ∈ X. As a consequence, we find that the following diagram commutes

(MA)x,y=Mx,yAy,y
αxyMA // (MA)x,xAx,y=Mx,yAy,xAx,y

Aτx,xAx,y=Ay,xAx,y

nx11 33

Aτx,y=Ay,y

nx1

OO

αxy
Ah 33

nx1
// Mx,yA

τ
x,y=Mx,yAy,y

1αxy
Ah

OO

The commutativity of the upper triangle follows by the naturality of α applied to the
right A-module morphism n, and the lower triangle commutes by naturality of the
tensor product. Hence we find that αxyMA ◦ (nx ⊗ 1) = (1 ⊗ αxy

Ah
) ◦ (nx ⊗ 1). Since this

hold for all choices of the morphisms nx : I →Mx,y, we obtain that

αxyMA = 1⊗ αxy
Ah

(32)



32 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

by the generator condition on I. Thanks to this identity, the following diagram com-
mutes by naturality of α

Mx,y

1jy // Mx,yAy,y=Mx,yA
h
x,y

µxyy

��

αxyMA=1⊗αxyAτ // Mx,yA
h
x,xAx,y=Mx,yAy,xAx,y

µxyx1

��
Mx,y

αxyM

// Mx,xAx,y

Hence αx,yM = (µxyx ⊗ 1) ◦ (1⊗ yx

e ), where the morphisms
yx

e are defined as in (31).

The proof is complete, subject to the verification of the Casimir property (19) of
yx

e
(31) by the following diagram:

Ax,y
1jy //

jx1

��

Ax,yAy,y=Ax,yA
h′
z,y

1αzy
Ah
′=α

zy

AhA //

mxyy

��

Ax,yAy,zAz,y=Ax,yA
h′
z,zAz,y

mxyz1

��
Ahz,xAx,y=Ax,xAx,y mxxy

//

αzx
Ah

1

��

Ax,y=A
h
z,y

αzy
Ah // Ahz,zAz,y=Ax,zAz,y

Ahz,zAz,yAx,y=Ax,zAz,yAx,y
1mzxy // Ax,zAz,y

The functions h, h′ : X → X are defined by h(u) = x and h′(u) = y for all u ∈ X,
the right A-module AhA has (AhA)u,v = Ax,y ⊗ Ay,v and 1 ⊗ αzy

Ah′
= αzy

AhA
is just (32)

applied to the right A-module Ah. The right upper square commutes by naturality of
α and the lower square commutes by right A-linearity of αAh . �

Recall (e.g. [CMZ02]) that a functor F : C → D is called Frobenius if it has isomorphic
left and right adjoints. If we denote the (left or right) adjoint of F by U , then we
also say that (F,U) is a Frobenius pair of functors. Hence we obtain the following
characterization of Frobenius V-categories.

Theorem 3.25. Under the same assumptions as Lemma 3.24, a V-category is Frobenius
if and only if the functor −⊗ A : V-dGrph→ V-ModA is Frobenius.

Precisely, there is a bijective correspondence between Frobenius structures on A and
pairs of natural transformations U ◦ F → id and id → F ◦ U making (F,U) into a
Frobenius pair of functors.

Proof. It can be verified that F is a right adjoint of U with unit α and counit β if
and only if the corresponding Casimir family e and family of maps ε = ν by means of
Lemma 3.24 satisfy the Frobenius system conditions (21). �

4. The Larson-Sweedler theorem

In this section, having introduced all the required structures, we proceed to the main
goal of this work: a generalization of the Larson-Sweedler theorem for Hopf V-categories.
We first briefly recall the original setting for k-algebras over a field or principal ideal
domain, then we generalize integral theory for Hopf V-categories and finally we prove
the main results relating Hopf and Frobenius structures on a V-category.
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4.1. Classical Larson-Sweedler Theorem. Let us recall the original statement found
in [LS69].

Theorem (Larson-Sweedler). Let H be a finite dimensional bialgebra over the principal
ideal domain R. Then the following conditions are equivalent:

(1) there exists an antipode for H;
(2) there exists a non-singular left integral in H.

If Λ is a non-singular left integral in H, and Λ1 is any left integral in H, there exists
a ∈ R such that Λ1 = aΛ.

By a left integral in H, one means an element t ∈ H satisfying ht = ε(h)t for all
h ∈ H. An integral is moreover non-singular if the linear maps

p : H∗ → H, p(f) = f(t(1))t(2) (33)

q : H∗ → H, q(f) = t(1)f(t(2))

are bijective. Notice that when working over a field, the existence of an isomorphism
H ∼= H∗ implies the finite dimensionality of H – so that this assumption can be dropped
in part (2) of the above statement. Moreover, one can verify that the composition of
p with the antipode of the Hopf algebra H yields a right H-linear map H∗ → H.
Since the antipode of a finite-dimensional Hopf algebra is automatically bijective (see
one-object case of Lemma 2.25) this right H-linear map is an isomorphism, giving a
Frobenius structure on H. Because of this, and since any Frobenius algebra is finite
dimensional (see one-object case of Proposition 3.12), the Larson-Sweedler theorem is
sometimes rephrased by saying that a Hopf algebra is finite dimensional if and only if
it is Frobenius.

However, an important remark should be made here: it is of course well-known that a
bialgebra can only have one unique antipode. Moreover, the Larson-Sweedler theorem
says that a non-singular integral in a finite dimensional Hopf algebra exists, and such an
integral is also unique (up to scalar multiplication). On the other hand, there can exist
many Frobenius structures on the same finite dimensional Hopf algebra. However, only
one of these Frobenius structures will correspond exactly to a non-singular integral!

Let us clarify the above by the following example. Of course, any group algebra
kG over a finite group G has the structure of a finite dimensional Hopf algebra, with
multiplication and unit extending those of the group and comultiplication, counit and
antipode extending g 7→ g⊗g, g 7→ eG and g 7→ g-1. The Larson-Sweedler theorem then
ensures that it has a non-singular integral, which in this case is given by the element∑

g∈G g, and the Casimir element of the corresponding Frobenius structure on such a

Hopf algebra is given by
∑

g∈G g ⊗ g−1.
In particular, for G = C4 the cyclic group with four elements generated by g, we find

that a Frobenius system for kG is given by the Casimir element

e⊗ e+ g ⊗ g3 + g2 ⊗ g2 + g3 ⊗ g
and linear functional δe, the dual base vector of e. On the other hand, one can easily
verify that there is another Frobenius system on kC4 given by the Casimir element

e⊗ g + g ⊗ e+ g2 ⊗ g3 + g3 ⊗ g2

and linear functional δg, the dual base vector of g. It is known (see Proposition 4.2 below)
that any Casimir element e1⊗e2 on a Hopf algebra H leads to a left integral e1ε(e2) and
on the other hand any left integral t leads to a Casimir element t(1) ⊗ s(t(2)). However,
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this correspondence is not bijective: in general, there are more Casimir elements than
integrals. In case of the example C4, we see that both Casimir elements for kC4 above
give the same integral t = e+g+g2 +g3. On the other hand, starting with this integral,
the above construction gives back only the first Casimir element.

Finally, let us also remark that a bialgebra can be Frobenius without being Hopf:
indeed, this is the case exactly when the Frobenius structure does not correspond to an
integral. Take for example the monoid algebra kM where M = {e, g | g2 = g}. Then
kM is Frobenius via the system with Casimir element

e⊗ e+ g ⊗ g
and linear functional δe. However, since M is a monoid and not a group, the bialgebra
kM is not a Hopf algebra. One can also see that the only integral in kM is g, and this
integral is singular since p(g)(δe) = δe(g)g = 0.

4.2. Integral theory for semi-Hopf V-categories. In this section, we generalize the
theory of integrals in the many-object setting, which is necessary for the expression and
proof of the main Theorem 4.17 as well as intermediate results. For what follows, fix
(A,m, j, δ, ε) to be a semi-Hopf V-category for a braided monoidal category V .

Definition 4.1. A left integral family for A is a collection t = {
xy

t : I → Ax,y}x,y∈X of
morphisms in V that satisfy the commutativity of

Az,x Az,x ⊗ Ax,y

I

Az,x ⊗ Az,y Az,y

1⊗
xy
t

1⊗
zy
t

εzx

mzxy

zy
t

εzx⊗1

(34)

where the bottom triangle commutes trivially. In fact, if we consider the unit V-graph
I given by Ix,y = I viewed as a left A-module via εxy ⊗ 1: Ax,y ⊗ I → I, a left integral
family can equivalently be viewed as an identity-on-objects left A-module morphism
t : I → A.

A right integral family for A is defined symmetrically via the property

mxyz ◦ (
xy

t ⊗1) =
xz

t ◦εyz. (35)

In the k-linear case, morphisms k → Ax,y can be identified with elements of the vector
space, and a left integral family is then can be written in the form

{
xy

t∈ Ax,y | a
xy

t= εzx(a)·
zy

t ,∀z ∈ X and ∀a ∈ Az,x}.
The following result establishes the close relationship between integral and Casimir

families from Definition 3.4, for (semi-) Hopf categories.

Proposition 4.2. Every Casimir family e = {xye}x,y∈X for A gives rise to a left integral
family te via

xy

t := I
xy
e−→ Ax,y ⊗ Ay,x

1⊗εyx−−−→ Ax,y (36)

If A is moreover Hopf, every left integral family t = {
xy

t }x,y∈X gives rise to a Casimir
family et via

xy

e := I
xy
t−→ Ax,y

δxy−−→ Ax,y ⊗ Ax,y
1⊗sxy−−−→ Ax,y ⊗ Ay,x (37)
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In fact, for every integral family t in a Hopf category it holds that tet = t.

Proof. In order to verify (34), we examine the following commutative diagram

Az,x Az,x ⊗ Ax,y ⊗ Ay,x Az,x ⊗ Ax,y

Az,y ⊗ Ay,z ⊗ Az,x Az,y ⊗ Ay,x Az,y

1⊗
xy
e

zy
e⊗1

(19)

1⊗1⊗εyx

mzxy⊗1 mzxy

1⊗myzx

1⊗εyz⊗εzx

(6)
1⊗εyx

where the bottom composite is precisely
zy

t ⊗εzx.
Conversely, the Casimir condition (19) can be verified via the following calculation

mxzy1 ◦ 11szy ◦ 1δzy ◦ 1
zy

t

(∗)
= mxzy1 ◦ 11szy ◦ 1δzy ◦ 1

zy

t ◦1εxz ◦ δxz
= mxzy1 ◦ 111εxz ◦ 11szy1 ◦ 1δzy1 ◦ 1

zy

t 1 ◦ δxz
(∗∗)
= mxzy1 ◦ 11myzz ◦ 111jz ◦ 111εxz ◦ 11szy1 ◦ 1δzy1 ◦ 1

zy

t 1 ◦ δxz
(7)
= mxzy1 ◦ 11myzz ◦ 111mzxz ◦ 111sxz1 ◦ 111δxz ◦ 11szy1 ◦ 1δzy1 ◦ 1

zy

t 1 ◦ δxz
= mxzy1 ◦ 11myzz ◦ 111mzxz ◦ 111sxz1 ◦ 11szy11 ◦ 111dxz ◦ 1δzy1 ◦ 1

zy

t 1 ◦ δxz
= mxzy1 ◦ 11myzz ◦ 111mzxz ◦ 111sxz1 ◦ 11szy11 ◦ 1dzy11 ◦ 11dxz ◦ 1

zy

t 1 ◦ δxz
2.10
= 1myxz ◦mxzy11 ◦ 11sxy1 ◦ 11mxzy1 ◦ 11σ−11 ◦ 1δzy11 ◦ 1σ−11 ◦ 11

zy

t 1 ◦ dxz1

= 1myxz ◦ 1sxy1 ◦ 1mxzy1 ◦ 1σ−11 ◦mxzy111 ◦ 1δzy11 ◦ 1σ−11 ◦ 11
zy

t 1 ◦ dxz1
(∗∗∗)
= 1myxz ◦ 1sxy1 ◦mxzymxzy1 ◦ 1σ11 ◦ δxzδzy1 ◦ 1

zy

t 1 ◦ δxz
(6)
= 1myxz ◦ 1sxy1 ◦ δxy1 ◦mxzy1 ◦ 1

zy

t 1 ◦ δxz
(34)
= 1myxz ◦ 1sxy1 ◦ δxy1 ◦ εxz11 ◦ 1

xy

t 1 ◦ δxz
(∗)
= 1myxz ◦ 1sxy1 ◦ δxy1◦

xy

t 1

Explicitly, (∗) uses the local comultiplication, (∗∗) the V-category structure and (∗ ∗ ∗)
the naturality of the braiding with σI,A = σ−1

I,A
∼= idA. Finally, taking the integral family

of an integral-induced Casimir family returns the initial one as follows:

I Ax,y Ax,y ⊗ Ax,y Ax,y ⊗ Ay,x

Ax,y

xy
t δxy

1

1⊗sxy

1⊗εxy 1⊗εyx(2.10)

�

Remark 4.3. As we already discussed in Section 4.1, in general a Hopf V-category (or
just a Hopf algebra) has more Casimir families than integral families. For example, if
the semi-Hopf category A has an op-antipode s (e.g. A is locally rigid and Hopf), given
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a left integral t, one can easily check that the following family is also Casimir

I
xy
t // Ax,y

δxy // Ax,y ⊗ Ax,y
σ // Ax,y ⊗ Ax,y

1⊗syx // Ax,y ⊗ Ay,x

In case A is commutative or cocommutative, then this Casimir element is the same as
the one from (37). In the same way, starting with a right integral family t, we find that
the following composites

I
xy
t // Ax,y

δ // Ax,y ⊗ Ax,y
sxy⊗1

// Ay,x ⊗ Ax,y (38)

I
xy
t // Ax,y

δ // Ax,y ⊗ Ax,y
σ // Ax,y ⊗ Ax,y

syx⊗1
// Ax,y ⊗ Ay,x

both form Casimir families.

Notice that a Casimir family for a V-category A is in particular a bilinear form (Defi-
nition 3.17) on A, viewed as a Vop-graph. Since Casimir elements can be constructured
from integrals by the above Proposition 4.2, non-degeneracy of bilinear forms as in Def-
inition 3.19 can be traced back to integrals as well. This lies at the origin of the notion
of non-singularity for an integral family as expressed below, where the split monomor-
phism condition of non-degeneracy here corresponds to a split epimorphism condition
due to Vop.

Suppose the enriching base V is monoidal closed, and denote A∗x,y = [Ax,y, I] which is
not necessarily the categorical dual of Ax,y as discussed in Remark 2.1. For any (left or

right) integral family t = {
xy

t } of A, we define two families of morphisms

pxy : A∗x,y
1⊗

xy
t−−−→ A∗x,y ⊗ Ax,y

1⊗δxy−−−→ A∗x,y ⊗ Ax,y ⊗ Ax,y
xy
ev⊗1−−−→ Ax,y (39)

qxy : A∗x,y

xy
t ⊗1−−−→ Ax,y⊗A∗x,y

δxy⊗1−−−→ Ax,y⊗Ax,y⊗A∗x,y
1⊗σ−−→ Ax,y⊗A∗x,y⊗Ax,y

1⊗
xy
ev−−−→ Ax,y (40)

Definition 4.4. Suppose A is a semi-Hopf V-category, where V is braided monoidal

closed. A (left or right) integral family t = {
xy

t } is called left non-singular if all maps
pxx for x ∈ X are split epimorphisms.

Similarly, the (left or right) integral family t is called right non-singular if all maps
qxx for x ∈ X are split epimorphisms. If the integral family t is both left and right
non-singular, we say that it is non-singular.

In the k-linear case for any commutative ring, the composites of Definition 4.4 are

pxy : A∗x,y → Ax,y, pxy(f) = f(
xy

t (1))·
xy

t (2)

qxy : A∗x,y → Ax,y, qxy(f) =
xy

t (1) ·f(
xy

t (2))

If k is a field and A is locally finite dimensional, then non-singularity implies that all
pxx and qxx are isomorphisms. In other words, if a k-linear semi-Hopf category (with k
a field) has a non-singular integral then all diagonal bialgebras Hxx have a non-singular
integral in the classical sense, as in (33). Moreover, we will later prove Theorem 4.16,
(iv) that if a semi-Hopf V-category A has a non-singular left and right integral, then all
maps pxy and qxy are isomorphisms.

The following result shows how to construct a right integral family from a left one,
using an invertible antipode.
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Proposition 4.5. Suppose (H,m, j, δ, ε, s) is a Hopf V-category with invertible antipode.

If t = {
xy

t : I → Hx,y}x,y is a left integral family, then

s ◦ t := {I
yx
t−→ Hy,x

syx−−→ Hx,y}x,y
is a right integral family for H. Moreover, if t is left (right) non-singular, then s ◦ t is
right (left) non-singular.

Proof. The right integral property (35) of {syx◦
yx

t }x,y can be verified by the following
computation, where e.g. syxHy,z denotes syx ⊗ 1Hy,z :

mxyz ◦ syxHy,z◦
yx

t Hy,z = mxyz ◦Hx,yszy ◦Hx,ys
−1
zy ◦ syxHy,z◦

yx

t Hy,z

= mxyz ◦Hx,yszy ◦ syxHz,y ◦Hy,xs
−1
zy ◦

yx

t Hy,z

= szx ◦mzyx ◦ σ−1 ◦Hy,xs
−1
zy ◦

yx

t Hy,z

= szx ◦mzyx ◦Hz,y

yx

t ◦s−1
zy

= szx◦
zx

t ◦εxy ◦ s−1
zy

= szx◦
zx

t ◦εyz

where we used Remark 2.10 and (34), namely the condition that left integrals satisfy.
Furthermore, to show that s ◦ t is right non-singular when t is left non-singular, as

per Definition 4.4 we need to find a right-sided inverse qx to the composite

H∗x,x

xx
t 1−−→ Hx,x⊗H∗x,x

sxx1−−→ Hx,x⊗H∗x,x
δxx1−−→ Hx,x⊗Hx,x⊗H∗x,x

1σ−→ Hx,x⊗H∗x,x⊗Hx,x
1
xx
ev−−→ Hx,x

For t, we know that there exists a px such that pxx ◦ px = H∗x,x for pxx as in (39). It
can now be verified, using that δyx ◦ sxy = σ ◦ (sxy ⊗ sxy) ◦ δxy from Remark 2.10, that

qx := Hx,x
s−1
xx−−→ Hx,x

px−→ H∗x,x
(s−1
xx )∗−−−→ H∗x,x

is the required splitting, where in the monoidal closed setting f ∗ just means [f, 1]. �

Remark that in the previous proof, we only used that the antipode is an anti-Hopf
category morphism. Hence one proves in the same way that if t is a right integral family,
then s ◦ t is a left integral family.

The following technical lemma will be needed in the proof of our main Theorem 4.17
and relates the inverses of the split epimorphisms in the non-singularity condition to
one another via an invertible antipode.

Lemma 4.6. Suppose t is a non-singular left integral family for a Hopf V-category H
with invertible antipode. For any two maps fx, gx : Hx,x → I, if the composites

I
xx
t−→ Hx,x

δxx−−→ Hx,x ⊗Hx,x
1⊗fx−−−→ Hx,x

I
xx
t−→ Hx,x

δxx−−→ Hx,x ⊗Hx,x
gx⊗1−−−→ Hx,x

are both equal to jx, then gx = fx ◦ s−1
xx .
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In particular, if qx is a right inverse of the split epimorphism qxx (39) and px a right
inverse of pxx accordingly, then

xx

ev ◦(px ⊗ 1) ◦ (jx ⊗ 1) =
xx

ev ◦σ ◦ (1⊗ qx) ◦ (1⊗ jx) ◦ s−1
xx : Hx,x −→ I.

Proof. The result follows from the following computation:

gx = gx ◦mxxx ◦Hx,xjx

= gx ◦mxxx ◦Hx,xHx,xfx ◦Hx,xδxx ◦Hx,x

xx

t

= gx ◦mxxx ◦Hx,xHx,xfx ◦Hx,xHx,xs
−1
xx ◦Hx,xHx,xsxx ◦Hx,xδxx ◦Hx,x

xx

t

= gx ◦Hx,xfx ◦Hx,xs
−1
xx ◦mxxxHx,x ◦Hx,xHx,xsxx ◦Hx,xδxx ◦Hx,x

xx

t

(∗)
= gx ◦Hx,xfx ◦Hx,xs

−1
xx ◦Hx,xmxx ◦Hx,xsxxHx,x ◦ δxxHx,x◦

xx

t Hx,x

(∗∗)
= gx ◦Hx,xfx ◦Hx,xmxx ◦Hx,xσ

−1 ◦Hx,xs
−1
xx s
−1
xx ◦Hx,xsxxHx,x ◦ δxxHx,x◦

xx

t Hx,x

= fx ◦mxxx ◦ σ−1 ◦Hx,xs
−1
xx ◦ gxHx,x ◦ δx,xHx,x◦

xx

t Hx,x

= fx ◦mxxx ◦ σ−1 ◦Hx,xs
−1
xx ◦ jxHx,x

= fx ◦mxxx ◦Hx,xjx ◦ s−1
xx

= fx ◦ s−1
xx

In (∗) we used Proposition 4.2 and in (∗∗) we used Remark 2.10. For the second part,
notice that both composites below equal jx, by definition of p and q:

I
jx−→ Hx,x

px−→ H∗x,x
1
xx
t−−→ H∗x,x ⊗Hx,x

1δxx−−→ H∗x,x ⊗Hx,x ⊗Hx,x

xx
ev1−−→ H

I
jx−→ Hx,x

qx−→ H∗x,x

xx
t 1−−→ Hx,x⊗H∗x,x

δxx1−−→ Hx,x⊗Hx,x⊗H∗x,x
1σ−→ Hx,x⊗H∗x,x⊗Hx,x

1
xx
ev−−→ H

Therefore by choosing gx =
xx

ev ◦(px ⊗Hx,x) ◦ (jx ⊗Hx,x) and fx =
xx

ev ◦σ ◦ (Hx,x ⊗ qx) ◦
(Hx,x ⊗ jx), the result follows. �

Integral families of Definition 4.1 can be expressed in any semi-Hopf V-category A.
In what follows, we require some extra assumptions in order to define an ‘integral space’
as an object in the enriching category V , whose generalized elements are precisely those
families. Notice that due to standard conventions, left integrals are constructed using
right internal homs and vice versa; since V is braided, that subtlety can be ignored.

Definition 4.7. Suppose A is a semi-Hopf V-category, where V is monoidal closed with

all limits. The left integral space of A is the diagonal graph
∫ `
A

=
{(∫ `

A

)
z

}
z∈X

where

each object
(∫ `

A

)
z
, denoted henceforth

∫ `
A,z

, is the limit of a diagram in V as below∫ `
A,z

txz

uu

tyz

))
. . . Ax,z

mwxz

uu

εxy⊗1

))

Ay,zmxyz

uu

εyu⊗1

))

. . .

[Aw,x, Aw,z] [Ax,y, Ax,z] [Ay,u, Ay,z]

(41)
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The morphisms εxy ⊗ 1 and mxyz are the adjuncts of εxy ⊗ 1: Ax,y ⊗ Ax,z → Ax,z and
mxyz : Ax,y⊗Ay,z → Ax,z under the tensor-hom adjunction for right-closure. The limiting

cone under
∫ `
A,z

is determined by the dashed maps tyz :
∫ `
A,z
→ Ay,z.

The right integral space
∫ r
A

of A is computed similarly using left closure, by taking
the limit of the diagram ∫ r

A,x

. . . Ax,y Ax,z . . .

[Az,y, Ax,y]

1⊗εzy mxzy

(42)

As one can expect, in the k-linear case an integral space
∫ `
A,x

is given exactly by

the k-linear space of all integral families of the form
yx

t for arbitrary y ∈ X. Since it
is important for what follows, let us spell out the exact connection between integral
families of Definition 4.1 and integral spaces of Definition 4.7 for general V-categories.

The key observation that connects the above definition with integral families is that
under the tensor-hom adjunction, each commuting square in the limit diagram (41) for
example corresponds to a commuting

Az,x ⊗
∫ `
A,y

1⊗txy //

1⊗tzy
��

Az,x ⊗ Ax,y
mzxy

��
Az,x ⊗ Az,y

εzx⊗1 // Az,y

(43)

Then any identity-on-object diagonal V-graph morphism u : I →
∫ `
A

in V consists of

morphisms uz : I →
∫ `
A,z

which in turn correspond to maps
xz

t as below

I

∫ `
A,z

. . . Ax,z Ay,z . . .

[Ax,y, Ax,z]

uzxz
t

yz
t

tyztxz

εxy⊗1 mxyz

(44)

which all together form an X2-family {
xy

t : I → Ax,y} satisfying precisely (34).
In the one-object case, in any monoidal closed category V with limits, both spaces

reduce to equalizers due to the shape of the limiting diagrams: the left integral space
of a bimonoid A is given by ∫ `

A
A [A,A]

ε⊗1

m
(45)
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and similarly the right integral space is the equalizer of the adjuncts of the multiplication
m : A⊗ A→ A and 1⊗ ε : A⊗ A→ A.

On the other hand, in the many-object setting again, one can wonder how the defini-
tion of integral space dualizes to a semi-Hopf V-opcategory (C, d, ε, µ, η). The construc-
tion of a similar limit will now use the (global) counit ε and the (local) multiplication
µ, and the switch between these local and global structures makes the limit in this case
into a sheer equalizer. Hence we obtain the following definition.

Definition 4.8. For a semi-Hopf V-opcategory (C, d, ε, µ, η), the left integral space of
C is the diagonal graph which consists of the equalizers∫ `

C,z
Cz,z [Cz,z, Cz,z]

εz⊗1

µzz
(46)

for all z ∈ X. Symmetrically, we will denote by
∫ r
C

the right integral space of C.

Proposition 4.5 draws a correspondence between left and right integral families for
Hopf categories; this is established as an isomorphism between the integral spaces below.

Proposition 4.9. If H is a Hopf V-category with invertible antipode, then
∫ r
H
∼=
∫ `
H

.

Proof. It suffices to show that there is a natural isomorphism between the diagrams (41)
and (42) over which the limits are computed, which is easier to see if we translate them
under the tensor-hom adjunction (since the one uses right and the other left closure):

Ax,y ⊗ Ax,z Ax,y ⊗ Ay,z Az,x ⊗ Ay,x Az,y ⊗ Ay,x

Ax,z Az,x

εxy⊗1 mxyz 1⊗εyx mzyx

The following commutative squares give isomorphisms between the left and right legs of
the above diagrams respectively, where the bottom isomorphism between the common
targets is the same:

Ax,yAx,z Ax,zAx,y Az,xAy,x Ax,yAy,z Ay,zAx,y Az,yAy,x

Ax,z Az,x Ax,z Az,x

εxy1

σ sxzsxy

1εyx mxyz

σ syzsxy

mzyx

sxz sxz

These are verified using the standard properties relating antipodes with counits and
multiplications from Remark 2.10, and the braidings imply the passage between left
and right closure in braided monoidal categories. �

The following result relates the integral spaces to the coinvariant spaces as in (11)
and (12) of specific regular Hopf (op)modules, namely H1, the Hopf H∗,op-opmodule
H described in Example 2.22(1) and H∗1 , the Hopf H-module H∗ described in Exam-
ple 2.22(3). As these modules only exist if H is locally rigid, we restrict to this setting
now. In the k-linear case, the second part below was shown in [BCV16, Prop. 10.5].

Proposition 4.10. If H is a locally rigid Hopf V-category then∫ r

H,x

∼= (H1)coH
∗,op

x and

∫ r

H∗,op,x

∼= (H∗1 )coHx
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Proof. Since H is locally rigid, the (left) internal hom [Hy,z, Hx,z] in V is given, up
to isomorphism, by Hx,z ⊗ H∗y,z; in that case, the maps mxzy and 1⊗ εzy of (42) are
precisely the global H∗,op-coaction χxyz from (8) and 1 ⊗ ε∗zy. Thus, regardless of the
exact specification of closure, there is a natural isomorphism between the diagrams
over which each limit is computed and so the integral space and coinvariant space are
themselves isomorphic. It is worth mentioning that the coinvariant of H1 is computed
using only its coaction and therefore the antipode does not play any role in this part.

Similarly for the second part, recall the Hopf V-opcategory structure of H∗,op given
in Proposition 2.17: the right integral space is given by the equalizer (46), whereas
the equalizer (11) gives the coinvariant space of the Hopf H-module H∗. It remains to
compare the local coaction (9) to the adjunct of the induced local multiplication (δ∗xx◦φ)
for H∗,op, and also 1⊗ jx to the adjunct of 1⊗ j∗x, the induced global counit which end
up being isomorphic. �

Remark 4.11. The previous result has of course also a version for left integrals. For
example, one can see that the space of left integrals in H is isomorphic to the space of
coinvariants for the left Hopf H∗,op-opmodule structure on the V-graph H with following
global coaction and local action

Hx,y
coevzx1−−−−→ Hz,x ⊗H∗z,x ⊗Hx,y

σ1−→ Hz,x ⊗H∗z,x ⊗Hx,y
1mzxy−−−→ H∗z,x ⊗Hz,y

H∗y,x⊗Hx,y
1δxy−−→ H∗y,x⊗Hx,y⊗Hx,y

1σ−→ H∗y,x⊗Hx,y⊗Hx,y
1sxy1−−−→ H∗y,x⊗Hy,x⊗Hx,y

yx
ev1−−→ Hx,y

similarly to the right module structure described in Example 2.22(1).

4.3. Main theorems. Let H be a Hopf V-category. In case the underlying V-category
is Frobenius, we just say that H is Frobenius, or that H is a Frobenius Hopf V-category.
The next results proves the ‘uniqueness of integrals’ for Frobenius semi-Hopf categories.

Proposition 4.12. If A is a Frobenius semi-Hopf V-category, then its integrals are

non-trivial and unique in the sense that
∫ `
A,x
∼= I for all x ∈ X.

Proof. If A is Frobenius, by Proposition 3.6 it comes equipped with a Frobenius system

(e, ν) whose Casimir family gives rise to an integral family te denoted {
xy

te} by Proposi-
tion 4.2. As explained by (44), the integral family te is in bijection with a unique family

of morphisms uy : I →
∫ `
A,y

such that txy ◦ uy =
xy

te. We will show that each such ux is

an isomorphism, with inverse νx ◦ txx where ν are the Frobenius functionals.
The following diagram establishes that νx ◦ txx is a right inverse of ux:

∫ `
A,x

Ax,x

I Ax,x ⊗ Ax,x Ax,x I

txx

νxux xx
te
(36)

xx
e

jx
(21)

(6)

1

1⊗εxx

νx⊗1
εxx
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The following computation shows that νx ◦ txx is a left inverse of ux: for all y ∈ X,
the following diagram commutes

I
∫ `
A,x

Ayx

Axx Ayx ⊗ Axy ⊗ Axx
(36)

Ayx ⊗ Axy Ayx

∫ `
A,x

Ayx ⊗ Axy ⊗
∫ `
A,x

Ayx ⊗ Axy ⊗ Ayx Ayx ⊗ Axx Ayx

Ayx

∫ `
A,x
⊗Axx ⊗ Axx Ayx ⊗ Axx ⊗ Axx

∫ `
A,x

∫ `
A,x
⊗Axx Ayx ⊗ Axx Ayx

Ayx

ux

yx
e

yx
te

tyx

(44)
νx

yx
e 1

1εxy1

11νx

(43)

1εxy

tyx

txx

yx
e 1

11txx

11tyx

(19)

1mxyx 1νx

yx
e 1

1
xx
e

(21) 11νx

tyx11

myxx1

1
xx
e

1jx

tyx

tyx1 myxx

1jx 1

Notice that the family {tyx}y is jointly monic since
∫ `
A,x

is defined as a limit, therefore

ux ◦ νx ◦ txx = 1 and the proof is complete. �

We refer to the above theorem as “uniqueness of integrals”, since it shows that for a
Frobenius semi-Hopf V-category, two integral families differ only up to automorphisms
of the monoidal unit I. In the one-object case, this implies the folklore result that the
integral space (45) of a Frobenius Hopf monoid in V is isomorphic to the monoidal unit.
In the k-linear case for a field k, the automorphisms k → k are just scalars; we recover
the classical uniqueness of integrals of Frobenius Hopf algebras up to a scalar, which is
part of the classical Larson-Sweedler theorem as discussed in Section 4.1.

The next result shows that for a Hopf category, being Frobenius and being locally
Frobenius (namely all local comonoids Hx,y are Frobenius in V) are two equivalent
properties. In particular, this generalizes the classical result that the underlying alge-
bra of a Hopf algebra H is Frobenius if and only if the underlying coalgebra of H is
Frobenius.

Theorem 4.13. Suppose H is a Hopf V-category. The following are equivalent:

(i) H is Frobenius (i.e. H is a Frobenius as a V-category).

(ii) H is locally rigid and
∫ `
H,x
∼= I for all x ∈ X.

(iii) H is locally Frobenius (i.e. all comonoids Hx,y are Frobenius in V).

(iv) H is locally rigid and
∫ `
H∗,x
∼= I for all x ∈ X.

Proof. (i) ⇒ (ii). If H is Frobenius, then it is locally rigid by Lemma 3.8 and the left
integral space is isomorphic to the monoidal unit by Proposition 4.12.
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(ii) ⇒ (iii). The fundamental theorem of Hopf V-opcategories (Theorem 2.27) ap-
plied to the H∗,op-Hopf opmodule H1 of Example 2.22(1) yields an isomorphism of
H∗,op-opmodules

(H1)coH∗,op ⊗H∗,op ∼= H1

which using Proposition 4.10 results in∫ r

H

⊗H∗,op ∼= H1.

Since H is locally rigid, the antipode is invertible by Lemma 2.25 so we can apply

Proposition 4.9 to get
∫ r
H
∼=
∫ `
H
∼= I and hence we can conclude that H∗,op ∼= H1 as

Hopf H∗,op-opmodules. This implies that for all x, y ∈ X

H∗y,x
∼= (H1)x,y = Hx,y

as right H∗y,x-modules, where we regard H∗y,x as a (local) monoid in V . It is easy to
check that sxy : (H1)x,y → (H2)x,y for H2 of Example 2.22(2) is a right H∗y,x-module
(iso)morphism and combining these, we obtain a right H∗y,x-module isomorphism H∗y,x

∼=
(H2)x,y = Hy,x. Now using Proposition 3.12 for the 1-object case (i.e. any monoid in
V) we find that every H∗y,x is a Frobenius monoid. It is well-known for any Frobenius
monoid in V that its dual is also Frobenius, hence this proves (iii).

Although this is in principle superfluous, let us also prove how (ii) implies (i). Above,
we already showed that H∗,op ∼= H1 as Hopf H∗,op-opmodules which means exactly that
the V-opcategory H∗,op is Frobenius by the dual statement of Proposition 3.12. Hence,
it follows from Corollary 3.15 that H is a Frobenius V-category, or equivalently H ∼= H†.

(iii)⇒ (iv). If each comonoid Hx,y is Frobenius in V , then it is dualizable and H∗x,y is
a Frobenius monoid (Corollary 3.15 in the one-object case). As a result of the 1-object

case of the direction (i)⇒ (ii) earlier, it is ensured that each
∫ `
H∗,x
∼= I.

(iv) ⇒ (i). If H is locally rigid then the antipode is invertible by Lemma 2.25 and
therefore

(H∗1 )coH ∼=
∫ r

H∗,op

∼=
∫ `

H∗,op

∼= I

by Propositions 4.9 and 4.10. Then by the fundamental theorem of Hopf modules, The-
orem 2.24, H∗1

∼= (H∗1 )coH⊗H ∼= H as Hopf H-modules where H∗1 is as in Example 2.22,
(3). In particular, they are isomorphic as plain H-modules. Since s∗ : H∗2 → H∗1 is
an H-module isomorphism, H ∼= H∗2 of Example 2.22, (4) which by Proposition 3.12
implies that H is a Frobenius V-category. �

Remark 4.14. Let H be a locally rigid Hopf V-category with a ‘unique’ right integral

family t = {
xy

t }. Using the explicit formula for the isomorphism in the fundamental
theorem for Hopf modules, Theorem 2.24, one can also obtain an explicit formula for
the Frobenius isomorphisms, following the proof (ii)⇒ (i). In particular, we find that
the Frobenius isomorphism φ : H ∼= H∗,op as right H-modules is given by

φxy : H∗y,x
1
xy
t−−→ H∗y,x ⊗Hx,y

1δxy−−→ H∗y,x ⊗Hx,y ⊗Hx,y
1sxy1−−−→ H∗y,x ⊗Hy,x ⊗Hx,y

yx
ev1−−→ Hx,y

In the k-linear case, this gives the formula ϕxy(f) = f(sxy(
xy

t (1)))
xy

t (2).
The corresponding Casimir element is exactly Casimir element associated to the right

integral t as in (38). To complete this to a full Frobenius system one also needs a family
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of trace morphisms which are then given by

νx : Hx,x
jx⊗1 // Hx,x ⊗Hx,x

φ−1
xx⊗1// H∗x,x ⊗Hx,x

ev // I

Since the explicit form of φ−1
xx depends on the explicit form of the isomorphism

∫ r
H
∼= I,

we unfortunately don’t have a more explicit form for the trace morphisms.
Using symmetric arguments based on the left Hopf H∗,op-opmodule from Remark 4.11,

we find an (in general different) Frobenius structure on H, where the Casimir element
in this case is the one from (37), induced by a left integral. If we denote the left integral

family as
xy

u then we obtain this way a Frobenius isomorphism of left H-modules of the
form

φxy : H∗y,x
1
xy
u−−→ H∗y,x⊗Hx,y

1(σ◦δxy)−−−−−→ H∗y,x⊗Hx,y ⊗Hx,y
1sxy1−−−→ H∗y,x⊗Hy,x⊗Hx,y

yx
ev1−−→ Hx,y

(47)

In a similar way, starting again with a unique right integral family
xy

t and following the
proof (ii) ⇒ (iii) above, we can also find an explicit formula form the local Frobenius
isomorphisms. In this case, these come out as

ψyx : H∗y,x
1
xy
t−−→ H∗y,x ⊗Hx,y

1δxy−−→ H∗y,x ⊗Hx,y ⊗Hx,y
1sxysxy−−−−→ H∗y,x ⊗Hy,x ⊗Hy,x

yx
ev1−−→ Hy,x

(48)

or in the k-linear case ψy,x(f) = f(S(
xy

t (1)))S(
xy

t (2)), which can explictly be checked to
be H∗xy-linear. This formula does not give us a Casimir element in H∗y,x ⊗H∗y,x for this

structure (for this one would now need the explicit form ψ−1
yx ), but we do obtain an

explicit form for the (non-degenerate) trace morphism:

νyx : H∗y,x
1
xy
t // H∗y,x ⊗Hx,y

1⊗sxy // H∗y,x ⊗Hy,x
ev // I

Finally, let us remark that the Frobenius structures that one obtains from the proof
(iv) ⇒ (i) could be different, since it makes us of the fundamental theorem for Hopf
H-modules and integrals in H∗,op, while the previous one comes from the fundamental
theorem for H∗,op-Hopf opmodules and integral in H. The previous theorem should
therefore not be understood as a theorem stating a bijective correspondence between
structures, but it is only an equivalence on existence of certain structures!

The above Theorem 4.13 gives quite a lot of information regarding Hopf Frobenius
V-categories. We now gather it all together, connecting the different structures on the
appropriate level and concluding to Table 1.

Suppose H is a locally rigid Frobenius Hopf V-category. Apart from its V-category
and local comonoid structure as a Hopf category, H also has a V-opcategory structure
from being Frobenius, as well as a local monoid structure by Theorem 4.13, (iii). As
was remarked earlier, several Frobenius structures might exist on the same Hopf V-
category: our next aim is to show that when constructed properly, these four (category,
opcategory, local algebra, local coalgebra) structures on H can be combined in different
ways to constitute Hopf and Frobenius structures.

Theorem 4.15. Let H be a locally rigid Frobenius Hopf V-category. Then the Frobenius
structure induces a V-opcategory structure on H, such that H ∼= H∗,op as Hopf V-
categories via (47).
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Proof. Let us denote by t = {
xy

t } a (unique) right integral family in H. From the proof
of Theorem 4.13 and Remark 4.14, we know that H is locally Frobenius with Frobenius

isomorphisms given by (48). If we denote by u = s◦t = {syx◦
xy

t } the left integral family
obtained from t by Proposition 4.5, we also know that it endows H with a Frobenius
structure, such that the Frobenius isomorphism is of the form (47).

Therefore, in particular, H is a V-opcategory (not necessarily with the initial opcate-
gory structure!). By Theorem 3.14 we immediately obtain that the family of morphisms
φxy : H∗,op

x,y → Hx,y form an isomorphism of V-opcategories for the considered structures.
Moreover H has a local monoid structure which is the opposite (using the braiding)

of the one induced by the right integral t. From the one-object dual of the same result,
Theorem 3.14, we know that the morphisms ψxy from (48) are monoid morphisms. Now
one can easily observe that

φx,y = ψy,x ◦ s∗x,y
where s is the inverse op-antipode as in Lemma 2.11. Since s∗ is a local anti-monoid au-
tomorphism of H∗,op, we find that the morphisms φx,y are also anti-monoid morphisms,
and hence become monoid morphisms when we consider the opposite monoid structures
on Hx,y.

We can therefore conclude that the isomorphisms φxy are both morphisms of V-
opcategories and local monoids. Since H∗,op is a Hopf V-category by Proposition 2.17,
the given structures on H also satisfy the axioms of a Hopf V-opcategory and φ is a
Hopf category isomorphism. �

The connection between the four structures on a locally rigid Frobenius Hopf category
and their combinations is summarized in the following table, which was already observed
by Street [Str04a] for group-algebras kG over a field k.

Table 1.

Hopf category A Hopf opcategory A ∼= A∗,op

Frobenius category A mxyz dxyz
Local Frobenius A δxy µxy

We now investigate, starting from a semi-Hopf rather than Hopf category, how non-
singularity of integrals can give rise to antipodes and as a result also Frobenius struc-
tures on a V-category. Recall the definitions of a right/left antipode and op-antipode,
Definitions 2.8 and 2.9, as well as non-singularity of integrals, Definition 4.4.

Theorem 4.16. Suppose (A,m, j, δ, ε) is a locally rigid semi-Hopf V-category.

(i) If it has a right non-singular left integral family, then it has right antipode; if it
also has a left non-singular right integral family, then it is Hopf.

(ii) If it has a left non-singular left integral family, then it has a left op-antipode; if it
also has has a right non-singular right integral family, then it has an op-antipode.

(iii) If it has a non-singular left and right integral family, then its antipode is invertible.
(iv) If it has a non-singular left and right integral family, then it is Frobenius.

(v) If A is Hopf with a right integral family t = {
xy

t } such that it is Frobenius via the

induced Casimir family et = {(1⊗ sxy) ◦ δxy◦
xy

t }, then t is non-singular.
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Proof.
(i) Denoting the right inverse of qxx (40) by qx, define a composite

fx : Ax,x
1⊗jx−−−→ Ax,x ⊗ Ax,x

1⊗qx−−−→ Ax,x ⊗ A∗x,x
σ−→ A∗x,x ⊗ Ax,x

xx
ev−→ I (49)

We then define:

sxy : Ax,y Ax,y ⊗ Ay,x Ax,y ⊗ Ay,x ⊗ Ay,x Ay,x ⊗ Ax,y ⊗ Ay,x

Ay,x ⊗ Ax,x

Ay,x

1⊗
yx
t 1⊗δyx σ⊗1

1⊗mxyx

1⊗fx

In the k-linear case, this is defined by the formula sxy(a) =
yx

t (1) ·fx(a
yx

t (2)). One now
checks easily that the top of (7) follows directly from the left integral condition (34) so
that sxy form a right antipode.

Now given a left non-singular right integral family, let py be the right inverse of pyy
(39) and put gy = ev ◦ (py ⊗ 1) ◦ (jy ⊗ 1) : Ay,y → I. We then define a left antipode by

s′xy : Ax,y Ay,x ⊗ Ax,y Ay,x ⊗ Ay,x ⊗ Ax,y Ay,x ⊗ Ax,y ⊗ Ay,x

Ay,y ⊗ Ay,x

Ay,x

yx
t ⊗1 δyx⊗1 1σ

mxyx1

gy⊗1

In any semi-Hopf V-category, if both left and right antipodes exist then they are equal
and thus an antipode.
(ii) This is essentially dual to the previous part. In the first case define

sxy : Ax,y
1⊗

xy
t−−−→ Ay,x ⊗ Ax,y

1⊗δxy−−−→ Ay,x ⊗ Ax,y ⊗ Ax,y
myxy⊗1−−−−→ Ay,y ⊗ Ax,x

gy⊗1−−−→ Ay,x

with gy as above; and in the second case define

s′xy : Ax,y

yx
t ⊗1−−−→ Ay,x ⊗ Ax,y

δyx⊗1−−−→ Ay,x ⊗ Ay,x ⊗ Ax,y
1⊗myxy−−−−→ Ay,x ⊗ Ax,x

1⊗fx−−−→ Ay,x

with fx as above (49).
(iii) This is immediate when we combine parts (i) and (ii) with Lemma 2.11.
(iv) By part (iii) the semi-Hopf V-category A is Hopf and the antipode is invertible.
Therefore, as in (37) the integral family t gives rise to a Casimir family et, given by

(1 ⊗ sxy) ◦ δxy◦
xy

t . By setting νx := Ax,x
s−1
xx−−→ Ax,x

fx−→ I where fx is as in (49), we can
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show that (et, ν) is a Frobenius system for A. Indeed, (21) is satisfied as follows

Ax,xνx◦
xx

e = Ax,x
xx

ev ◦Ax,xσ ◦ Ax,xAx,xqx ◦ Ax,xAx,xjx ◦ Ax,xs−1
xx ◦ Ax,xsxx ◦ δxx◦

xx

t

= Ax,x
xx

ev ◦Ax,xσ ◦ δxxA∗x,x◦
xx

t A∗x,x ◦ qx ◦ jx
= qxx ◦ qxx ◦ jx
= jx

νxAx,x◦
xx

e =
xx

ev Ax,x ◦ σAx,x ◦ Ax,xqxxAx,x ◦ Ax,xjxAx,x ◦ s−1
xxAx,x ◦ Ax,xsxx ◦ δxx◦

xx

t

(∗)
=

xx

ev Ax,x ◦ pxAx,xAx,x ◦ jxAx,xAx,x ◦ Ax,xsxx ◦ δxx◦
xx

t

= sxx◦
xx

ev Ax,x ◦ pxxAx,xAx,x ◦ jxAx,xAx,x ◦ δxx◦
xx

t

= sxx◦
xx

ev Ax,x ◦ A∗x,xδxx ◦ A∗x,x
xx

t ◦pxx ◦ jx
= sxx ◦ pxx ◦ pxx ◦ jx = sxx ◦ jx
= jx

where (∗) follows from Lemma 4.6.
(v) By Proposition 3.12, we know that A is locally rigid – thus the antipode is invertible
by Lemma 2.25 – and also we have an isomorphism of A and A∗,op as left and right
A-modules. Let us denote φxy : A∗,op

x,y → Ax,y and φ
′
xy : A∗,op

x,y → Ax,y for respectively the

right and left A-module isomorphisms as in Lemma 3.10, namely ϕxy = (
yx

ev ⊗Ax,y) ◦
(A∗y,x⊗

yx

e ) and ϕ
′
xy = (Ax,y⊗

yx

ev)◦(Ax,y⊗σ)◦(
xy

e ⊗A∗y,x). The invertibility of pxx and qxx
as in Definition 4.4 now follows from the following factorisations, which in fact shows
that all arbitrary-indices composites are not only split epimorphisms but isomorphisms.

A∗x,y A∗y,x Ay,x
s∗xy

ϕyx

pyx
A∗y,x Ay,x Ax,y

qyx

ϕ
′
xy

syx

�

We are now ready to formulate and prove the main result of this paper, which we call
the Larson-Sweedler theorem for Hopf V-categories.

Theorem 4.17. Suppose A is a locally rigid semi-Hopf V-category. The following are
equivalent:

(i) A is Hopf and has a non-singular right integral family;
(ii) A has both a non-singular right integral family, and a non-singular left integral

family;
(iii) A is Hopf and Frobenius;

(iv) A is Hopf and
∫ `
A,x
∼= I;

(v) any statement dual the those above, for the dual semi-Hopf V-opcategory A∗.
(vi) interchanging left and right in statements (i) and (iv).

Proof.
(i)⇒ (ii). Since A is locally rigid and Hopf, we know by Lemma 2.25 that the antipode
is invertible. Hence by Proposition 4.5, A also admits a non-singular left integral family.
(ii)⇒ (iii). It follows from (i) and (iv) of Theorem 4.16.
(iii)⇒ (iv). It follows from Theorem 4.13.
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(iv) ⇒ (i). If A has a Hopf V-category structure and
∫ l
A,x
∼= I, we know from The-

orem 4.13 that A has a Frobenius structure. Moreover, as explained in Remark 4.14,
one can choose a Frobenius structure such that the Casimir family of this Frobenius
structure is exactly the one as stated in Theorem 4.16 (v). Hence this last mentioned
theorem tells us that there is a non-singular right integral family.
(v). This is obvious by duality. We know that A is Frobenius and Hopf if and only if
the opcategory A∗ is Frobenius and Hopf, see Corollary 3.15 and Theorem 4.15.
(vi). Obvious since e.g. (ii) is left-right symmetric. �

The above version of the Larson Sweedler might look slightly weaker than the classical
theorem. Indeed, for example item (i) assumes both non-singular left and right inte-
grals, whereas in the classical theorem one needs only one. Similarly, the Hopf condition
is always combined with an additional assumption, such as Frobenius or uniqueness of
integrals. However, remark as well that the assumptions made in the classical Larson-
Sweedler theorem are much stronger than the ones imposed herein. Indeed, the classical
Larson-Sweedler theorem considers only Hopf algebras that are free of finite rank over a
principal ideal domain. Our theorem concerns any locally rigid Hopf categories and ap-
plies in particular to any finitely generated and projective Hopf algebra over an arbitrary
commutative ring.

Nevertheless, our last aim is to show that Theorem 4.17 subsumes the classical Larson-
Sweedler theorem for Hopf algebras when these stronger conditions are imposed. First
recall that by working over a PID, every projective module is free and therefore one can
use dimension arguments when dealing with free modules over a PID. Other (commuta-
tive) rings that have this property are local rings (Kaplansky) and polynomial rings over
a field (Quillen–Suslin). Therefore, for the rest of this section we will consider modules
over a commutative base ring k for which every finitely generated and projective module
is free. As in [LS69], we will say that a k-module is finite dimensional if it is projective
(hence free) of finite (and constant since k is commutative) rank over k. Let us first
generalize [LS69, Lemma 1] to the multi-object case.

Lemma 4.18. Let A be a locally rigid k-linear semi-Hopf category, such that for any
two objects x, y, Ax,y and Ay,y have the same dimension if Ax,y is non-zero. If s is a
right antipode of A, then it is also a left antipode of A.

Proof. Since s is a right antipode we know that Ax,y ∗ sxy = jx ◦ εxy for every x, y ∈ A,
where ∗ denotes the convolution product. Define

Γxy : Hom(Ax,y, Ay,y)→ Hom(Ax,y, Ay,x)

by Γx,y(f) = f ∗ sxy for every f : Ax,y → Ay,y. This map is clearly surjective, since we
can write every g ∈ Hom(Ax,y, Ay,x) as Γxy(g ∗ Ax,y). Using the fact that all Ax,y and
Ay,y have the same dimension, we can conclude that every Γxy is bijective.

Clearly the map Γ′xy : Hom(Ax,y, Ay,x) → Hom(Ax,y, Ay,y) : r 7→ r ∗ Ax,y is a right
inverse of Γxy. And by bijectivity of Γxy, any one-sided inverse is a two-sided inverse
and hence Γ′xy is also bijective. This implies that there exists a morphism ux,y ∈
Hom(Ax,y, Ay,x) such that jy ◦ εxy = ux,y ∗ Ax,y for every x, y ∈ A.

Moreover ux,y = ux,y ∗ (Ax,y ∗ sxy) = (ux,y ∗ Ax,y) ∗ sxy = sxy. We can conlude that s
is indeed an antipode for A. �

Corollary 4.19. In case V = Modk, where k is a ring such that all projective modules
are free, the equivalent statements of Theorem 4.17 are furthermore equivalent to
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(vii) A has a right non-singular left integral family and for any two objects x, y, Ax,y
and Ay,y have the same dimension if Ax,y is non-zero.

(viii) A is Hopf.

Proof. (i)/(vi)⇒ (vii). The left version (i) tells in particular that A has a right non-
singular left integral family. Since A is Hopf, we know by Proposition 2.19 that Ax,y ⊗
Ay,y ∼= Ax,y ⊗Ax,y in Modk and therefore Ax,y and Ay,y have the same dimension if Ax,y
is non-zero.

(vii)⇒ (viii). By Theorem 4.16(i), the existence of a right non-singular left integral
family implies that A has a right antipode and therefore by Lemma 4.18, A also has a
two-sided antipode.

(viii)⇒ (iv). As in the proof of Theorem 4.13, by the fundamental theorem for Hopf

modules we obtain A∗x,x
∼=
∫ `
A,x
⊗Ax,x. Since Ax,x and A∗x,x have the same dimension, we

find that the dimension of
∫ `
A,x

must be one, i.e.
∫ `
A,x

is free of rank one. �

5. Examples

In this section, we gather a few important examples that are obtained as results of
the generalization of the Larson-Sweedler Theorem, and we provide some directions for
further research.

Hopf algebras in a monoidal category V. For its one-object case, Theorem 4.13 gives a
version of the Larson-Sweedler theorem for Frobenius and Hopf algebras in any braided
monoidal category V . In particular, if H is a Hopf monoid in a braided monoidal
category V , then it is Frobenius if and only if it is dualizable and its integral (45) is
isomorphic to the monoidal unit I.

In particular, by regarding the 1-object case of Corollary 4.19, we recover the ’clas-
sical’ Larson-Sweedler theorem (for Frobenius and Hopf k-algebras). In the same way,
by considering the 1-object case for the monoidal Hom-category H̃(C) associated to
a braided monoidal category C as constructed in [CG11], we obtain a version of the
Larson-Sweedler for monoidal Hom-Hopf algebras. In the same way, by choosing suit-
able braided monoidal categories, one can derive the Larson-Sweedler theorem for graded
Hopf algebras and Yetter-Drinfel’d Hopf algebras [Som02].

Let us remark that there is a subtle difference between the classical case, where
the considered monoidal category is Modk, and the other mentioned cases, where the
considered monoidal category is a category of graded vector spaces or Yetter-Drinfel’d
modules. As the monoidal unit k of Modk is also a generator in this category, any
element t of the Hopf algebra H can be understood as a morphism t : k → H in this
category. This is no longer true for graded Hopf algebras and Yetter-Drinfel’d modules.
For example, in the case of graded modules, morphisms from the monoidal unit to H
correspond to homogeneous elements of degree 0 (where 0 is the unit of the grading
group). Consequently, it follows from Theorem 4.17 that a graded Hopf algebra is
Frobenius if and only if it is finite dimensional in each degree and has a non-singular
integral of degree 0. Nevertheless, there exist graded Hopf algebras with (non-singular)
integrals of arbitrary degree, but these are not Frobenius.

Turaev’s Hopf group-algebras. Recall from [Zun04] the definition of a Hopf G-algebra.
Let G be a group. A Hopf G-algebra H consist of a G-indexed family of k-coalgebras
(Hg,∆g, εg)g∈G endowed with the following data.
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(1) A family of coalgebra morphisms µ = (µg,h : Hg ⊗Hh → Hgh)g,h∈G, called the
multiplication such that

µgh,l ◦ (µg,h ⊗Hl) = µg,hl ◦ (Hh ⊗ µh,l)
for every g, h, l ∈ G

(2) A coalgebra morphism η : k → H1, called the unit such that

µg,1 ◦ (Hg ⊗ η) = Hg = µ1,g ◦ (η ⊗Hg)

for every g ∈ G
(3) A family of coalgebra isomorphisms ψ = (ψgh : Hg → Hhgh−1), which need to

satisfy:

ψhgh
−1

l ◦ ψgh = ψlh

ψghl ◦ µg,h = µlgl−1,lgl−1 ◦ (ψgl ⊗ ψ
h
l )

ψ1
h ◦ η = η

for every g, h, l ∈ G
(4) A family of maps s = (sg : Hg → Hg−1)

g∈G such that

µg−1,g ◦ (sg ⊗Hg) ◦∆g = µg,g−1 ◦ (Hg ⊗ sg) ◦∆g = η ◦ εg
for every g ∈ G

Dually one has the notion of a Hopf G-coalgebra. Every Hopf G-(co)algebra can
be turned into a k-linear Hopf (op)category. We provide here the construction for a
Hopf G-algebra, for a Hopf G-algebra ((Hg)g∈G, µ, η,∆, ε) we define the k-linear Hopf

category (H̃x,y)x,y∈G by H̃x,y := Hx−1y, mxyz : H̃x,y ⊗ H̃y,z = Hx−1y ⊗ Hy−1z

µx−1y,y−1z−−−−−−→
Hx−1z = H̃x,z, jx = η, δxy = ∆x−1y and εxy = εx−1y, see [BCV16, Proposition 6.2]. In
case H is a Hopf G-algebra such that all Hg are finite dimensional, we can apply the
Larson-Sweedler theorem for Hopf categories (see Theorem 4.17) to the Hopf category
associated to this Hopf G-algebra and obtain in this way a Frobenius k-linear category
with k-linear morphisms dxyz : H̃x,y = Hx−1y → Hx−1y ⊗ Hx−1y = H̃x,y ⊗ H̃x,y and

εx : H̃x,x = H1 → k satisfying conditions (16).
A natural question is whether there exists already a version of the Larson-Sweedler

theorem for Hopf G-algebras, without using the passage to Hopf categories as described
above. A first naive approach would be to use the result from [CD06], which states
that a Hopf G-algebra is an Hopf algebra in a suitably constructed monoidal category
of families of k-vector spaces called Turaev/Zunino category, and to apply the Larson-
Sweedler theorem for Hopf algebras in this monoidal category. However, this will not
lead to the desired result, as for this we should require that the Hopf G-algebra (G,Hg)
is a rigid object in the Zunino category. As this category is equiped with a strict
monoidal forgetful functor to Set, sending the indexing group G to its underlying set,
the rigidity of (G,Hg) in the Zunino category implies that the set G is a rigid object
in Set, which means that it is a singleton, and hence this can only be applied to the
classical case of a usual finite dimensional Hopf algebra. On the other hand, the notion
of a Frobenius G-algebra already appeared in [Tur10]: a G-algebra A together with a
symmetric k-bilinear form ρ : A⊗ A→ k such that

(1) ρ(Ag ⊗ Ah) = 0 if h 6= g−1

(2) The restriction of ρ to Ag ⊗ Ag−1 is non-degenerate for every g ∈ G
(3) ρ ◦ (µg,h ⊗ Al) = ρ ◦ (Ag ⊗ µh,l)
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In a similar way the construction to obtain a Hopf category out of a Hopf G-algebra,
one can construct a Frobenius category out of a Frobenius G-algebra. If (A, ρ) is a
Frobenius G-algebra as decribed above, then Ãx,y := Ax−1y is indeed a k-linear Frobenius
category. The k-linear category structure is obtained in the exact same way as for
the Hopf case, mxyz := µx−1y,y−1z and jx := η. To see it is Frobenius we use the

characterization given in Proposition 3.21. The bilinear form Γxy : Ãx,y ⊗ Ãy,x → k can
be defined as the restriction of ρ to Ax−1y⊗Ay−1x, which is non-degenerate by definition
of a Frobenius G-algebra.

No other equivalent definitions were given in this reference. Based on our work, one
could provide equivalent characterizations for Frobenius G-algebras as those described
in Section 3 in case of Frobenius categories can be obtained; observe the strong simi-
larity between the definition of a Frobenius G-algebra and the definition of a k-linear
Frobenius algebra as described in Proposition 3.21. Furthermore, we believe that a
Larson-Sweedler type theorem in this setting can also be obtained in such a way that
the following diagram commutes:

Hopf G−algebra Hopf category

Frobenius G−algebra Frobenius category

L−S L−S

Following this idea, the notion of Hopf G-algebra and Hopf category could be unified
by means of a more general version of Hopf categories, where the indexing set X ×X
is replaced by any groupoid, since both definitions essentially rely on the groupoid
structures of X × X and G. Moreover, such further work would also investigate a
unified Larson-Sweedler theorem in this setting.

Weak (multiplier) Hopf algebras. In [BCV16] (see also Proposition 2.15) it is shown that
for a k-linear Hopf category A with a finite set of objects X,

⊕
x,y∈X Ax,y is a weak Hopf

algebra. If each Axy is in fact finite-dimensional, then Corollary 4.19 in combination
with Proposition 3.2 ensures that

⊕
x,y∈X Ax,y is a weak Hopf algebra which is also

Frobenius. This could also be deduced from [IK10], since the base of a weak Hopf
algebra associated to a Hopf category with a finite number of objects is the cartesian
product kn where n is the finite number of objects in the category.

In case the set of objects X is not finite, the same construction of the ‘packed’ algebra
⊕x,y∈XAx,y will lead to a weak multiplier Hopf algebra, which is Frobenius as an algebra.
This can be compared to the Larson-Sweedler theorem for weak multiplier Hopf algebras
as proven in [KV18].

Groupoid algebra. Consider a groupoid G, a field k and let Gx,y be the set of maps
from y to x. Put Ax,y = kGx,y. As explained in [BCV16], A has the structure of a
k-linear Hopf category. We briefly recall the structure: The multiplication is the one
from the groupoid and extended linearly. Every kGx,y has the structure of a coalgebra:
δxy(g) = g⊗g and εxy(g) = 1. The antipode is given by the formula sxy(g) = g−1 ∈ Gy,x.

If G is locally rigid we know from our Larson-Sweedler theorem that there is a global
and local Frobenius structure on it. Let us describe these structures explicitly.

The (global) Frobenius k-linear category structure is given by k-linear category struc-
ture described above and the cocategory structure is given by:

dxyz(g) =
∑

h∈Gy,z gh
−1 ⊗ h ∈ Gx,y ⊗Gy,z
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εxy(g) =

{
1 ; g = e

0 ; g 6= e

The (local) Frobenius structure on every Ax,y is given by δxy as previously described
and the local multiplication by:

µxy : Gx,y ⊗Gx,y → Gx,y : g ⊗ h 7→

{
g ; g = h

0 ; g 6= h

ηxy : k → Gx,y : 1 7→
∑

g∈Gx,y g

and extended linearly.
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