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ABSTRACT. The aim of this paper is to extend the classical Larson-Sweedler theorem,
namely that a k-bialgebra has a non-singular integral (and in particular is Frobenius) if
and only if it is a finite dimensional Hopf algebra, to the ‘many-object’ setting of Hopf
categories. To this end, we provide new characterizations of Frobenius V-categories
and we develop the integral theory for Hopf V-categories. Our results apply to Hopf
algebras in any braided monoidal category as a special case, and also relate to Turaev’s
Hopf group algebras and particular cases of weak and multiplier Hopf algebras.
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1. INTRODUCTION

The classical Larson-Sweedler theorem [LS69] characterizes finite dimensional Hopf
algebras among finite dimensional bialgebras as those that possess a non-singular left
integral. The existence of such an integral implies in particular that the Hopf alge-
bra is Frobenius, and this result has been refined in [Par71]. Just like Hopf algebras,
Frobenius algebras have both an algebra and a coalgebra structure, although with dif-
ferent compatibility conditions. In fact, if some finite dimensional algebra A has a Hopf
structure, the induced Frobenius structure on A has (in general) a different comultipli-
cation and counit than the ones from the Hopf algebra structure. One of the reasons
why the Larson-Sweedler theorem is so important is that it led to definitions of (locally
compact) quantum groups by means of well-behaving integrals rather than antipodes.
The result of Larson and Sweedler furthermore inspired many other results about the
connection between Hopf and Frobenius structures on a given (bi)algebra. For example,
in Hopf-Galois theory, a Frobenius structure on the Hopf algebra allows to describe the
(Morita) equivalence between modules over the ring of coinvariants and Hopf modules
in a more direct and symmetric way, see [CEFM90] and [CVWO04]. More recently, some
new connections between Frobenius and Hopf properties have been observed in [Sar20].

Just as the notion of Hoptf algebra has been generalized in several ways, so has the
Larson-Sweedler theorem. For example, Larson-Sweedler type theorems for weak Hopf
algebras [Vec03], multiplier Hopf algebras [VW06] and weak multiplier Hopf algebras

[KV18] have been formulated; however, as explained in [IK10], the weak Hopf algebras
1
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case is quite subtle, since the ‘difficult’ direction of the Larson-Sweedler theorem only
holds under additional assumptions on the target algebra of the weak Hopf algebra.

The aim of the current paper is to unify and generalize these results in proving
a Larson-Sweedler theorem for Hopf V-categories. Hopf categories were introduced in
[BCV16] and can be understood as a many-object generalization of usual Hopf algebras,
in the same way as one can understand a groupoid as a many-object version of a group.
More precisely, a semi-Hopf V-category, where V is a braided monoidal category, is a
category A that is enriched over the monoidal category of comonoids in V: namely, if
we denote the hom-object between two objects =,y of A by A, ,, it comes equipped
with usual composition my,,: A, ® A, . — A, . and identities j,: I — A, , but also
comultiplications 0,,: A, — Ay, ® A, and counits €,,: A,, — I. A semi-Hopf
category is called Hopf if it admits an antipode given by s;, : A, , — A, for any two
objects x,y in A. With appropriate axioms, a (semi-) Hopf category with one object
is exactly a Hopf monoid (bimonoid) in V. In [BFVV17], we showed that such Hopf
categories have a natural interpretation as oplaz Hopf algebras; in [B6h17] an alternative
interpretation of Hopf categories was given as Hopf monads in a suitable monoidal
bicategory. Hopf categories have the interesting feature that they are general enough to
cover many interesting examples of generalized Hopf-structures, and concrete enough
to manipulate them without the need to involve heavy higher categorical machinery.
In particular, by ‘packing’ a Hopf category, one obtains interesting examples of weak
(multiplier) Hopf algebras, whose target algebra is a direct product of copies of the base
ring.

Also in [BFVV17], we introduced the notion of a Frobenius V-category as the nat-
ural Frobenius analogue of Hopf categories, and which again serves as a many-object
generalization of Frobenius monoids. In contrast to the one-object case, where both
Hopf algebras and Frobenius algebras consist of algebras that also have a coalgebra
structure albeit with different compatibility conditions, the coalgebraic structure of a
Hopf category and a Frobenius category are of a very different nature. Indeed the coal-
gebraic structure of a Hopf category is ‘local” in the sense that every hom-object A, ,, is
a comonoid (in the monoidal category V). On the other hand, a Frobenius V-category
is at the same time a V-enriched category and a V°P-enriched category, which means
that it comes with cocomposition A,, — A, . ® A., and coidentity arrows A, , — |
for all objects x,y,z of A, i.e. the coalgebraic structure of a Frobenius V-category is
‘global’. In fact, this difference is exactly one of the advantages of working with this
many-object generalization. For example, as said before, when the same algebra has
both a Frobenius and a Hopf structure, then the two coalgebraic structures are not
the same; in the many-object setting, having the same comultiplication would not even
make sense definition-wise.

In the main result of our paper Theorem 4.16 we characterize locally rigid (i.e. such
that all Hom-objects A, are rigid objects in V) Frobenius Hopf categories as those
semi-Hopf categories that possess non-singular integrals or equivalently as those Hopf
categories for which the integral spaces are isomorphic to the monoidal unit. Such a
Frobenius Hopf category then naturally possesses four different structures (category,
opcategory, local monoid and local comonoid) that can be combined in different ways
to naturally form Hopf and Frobenius structures, see Table 1.

As we argue in this paper, this result properly generalizes the classical Larson-
Sweedler theorem to the many-object setting by taking V = Vect,. On the other
hand, by taking the one-object version of our general theorem, we also obtain a version
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of the Larson-Sweedler theorem for Hopf monoids in braided monoidal categories. This
is in fact a folklore result, however no explicit written reference can be found in the
literature. Moreover, the one object-version of the above mentioned Table 1 clarifies
many results related to ‘interacting Hopf Frobenius’ structures, see e.g. [BSZ17; CD19].

Finally, let us point out that the term “Hopf category” has been used in literature
before, albeit with different meaning. For example, Crane and Frenkel [CF94] consid-
ered Hopf (monoidal) categories to characterize 4-dimensional extended quantum field
theories. In a different direction, Turaev [Turl(] introduced notions of (crossed) Hopf
G-categories and (crossed) Hopf G-categories (where G is a group) to characterize ho-
motopy quantum field theories. The exact relation between these various structures
is not clear at the moment and is the subject of forthcoming work, although a first
connection between our work and Turaev’s Hopf G-categories is discussed in Section 5.

Outline. In Section 2, we review some basic properties of Hopf V-categories. For ex-
ample, we study in detail how invertibility of the antipode morphisms is related to the
existence of an op-antipode. We also show how the notion of Hopf categories is closely
related to the notion of bi-Galois objects and explain how this leads to the construction
of non-trivial examples of Hopf categories (see Example 2.21). After recalling the fun-
damental theorem for Hopf modules, we also prove the fundamental theorem of Hopf
opmodules over Hopf categories (see Theorem 2.24).

In Section 3, we provide equivalent characterizations of the Frobenius V-categories
from [BEVV17] in terms of self-duality, Casimir elements, trace maps, module isomor-
phisms and pairs of Frobenius (i.e. two-sided adjoint) functors. These all very naturally
generalize the classical ones in the many-object setting, however in non-trivial ways.

The main results of this paper can be found in Section 4. After briefly recalling the
classical setting, we present a detailed study of the integral theory for Hopf categories.
As one can expect, this theory becomes much more involved from the 1-object case, since
the integral space is no longer described as an equalizer but as a more general limit. We
investigate the relation between the existence of integrals and Frobenius structures on a
Hopf category. In particular, we show that a Frobenius Hopf V-category also has a local
Frobenius structure, i.e. all hom-objects H, , are Frobenius algebras in V. Furthermore,
this additional local algebra structure is isomorphic to the local algebra structure of the
dual opcategory H™*°P: these four structures, the local and global algebra and coalgebra
structures on a single Frobenius and Hopf category fit together as explained in Table 1.
We then prove our main result: a generalization of the Larson-Sweedler theorem for
Hopf V-categories, Theorem 4.17. We also show that in the particular case of k-linear
Hopf categories, where k is a commutative base ring for which all projective modules
are free, our theorem reduces to a result that subsumes the classical Larson-Sweedler
theorem (Corollary 4.19).

In the final Section 5, we present some applications of our result. In particular, in
the one-object case we recover the classical Larson Sweedler theorem for Hopf algebras,
but also for several of their generalizations, such as monoidal Hom-Hopf algebras and
graded Hopf algebras. Other applications to Turaev’s Hopf group coalgebras [Turl0)],
weak (multiplier) Hopf algebras and groupoid algebras are presented as well.

Acknowledgements. JV wants to thank Paolo Saracco for interesting and motivating
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the FNRS for support through the MIS grant ” Antipode”. This work was initiated when
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2. HOPF V-CATEGORIES

In this section we recall some basic notions and constructions relatively to the concept
of a Hopf V-category, where V is a braided monoidal category; relevant references to
that end are [BCV16] and [BFVV17]. We assume familiarity with the basics of theory
of monoidal categories, see [JS93], as well as the theory of (co)monoids, Hopf monoids
and Frobenius monoids.

2.1. Preliminary results. In what follows, (V,®,I) denotes a monoidal category
which, by Mac-Lane’s coherence theorem, we will regard as a strict monoidal category
without loss of generality.

A standard reference for the theory of enriched categories is [Kel05]. Briefly recall that
a V-enriched graph is a family of objects {A, ,}.yex in V), indexed by its set of objects
X; we shall use that notation for hom-objects, rather than the more common A(x,y).
Along with V-graph morphisms, i.e. functions between the sets of objects with arrows
F.y: Azy — Bjfg gy in V, enriched graphs form a category V-Grph. It has a subcategory
V-Cat of V-enriched graphs equipped with composition laws mg,.: A, ® A, . = A, .
(again notice the difference with standard terminology) and identities j,: I — A, .
satisfying the usual associativity and unity conditions. A V-functor is then a V-graph
morphism that respects this structure. If F': ¥V — W is a monoidal functor, it induces
a change of base functor V-Cat — W-Cat.

We call k-linear categories those enriched in the category Mod of k-modules for
a commutative ring k. In what follows, for a k-linear category A we usually write
composition as simple concatenation, namely pg = my,.(p ® ¢). We also write 1, ,
for j.(1), the image of 1 € k under the identity map j,: k — A, .. Finally for r € k
and m € M, we denote by r - m the scalar multiplication, which gives the natural
isomorphism £ ®@ M = M.

If V is equipped with a braiding o, every V-graph A has an opposite V-graph A°P with
the same objects and hom-objects AP = A, .. In case A is moreover a V-category, A°P
is a also a V-category whose composition is

1
A°P | g Mzyx
Moot Ays @Ay — Ay @ Ay —— Az

Yz

If (A,m,j) is a V-category, a (right) A-module [Law73] (N, ) is a V-graph {N,,}
over the same set of objects, equipped with actions 7,,,: Ny, ® A, . — N, , satisfying

Toyz®1

NCC7y ® AZ/J«’ ® Azyw - N.Z’,Z ® Az,w ]\[:1:7 ® Ay Y

o] o N I-

Txyw
N:p,y ® Ay,w —_— Nzw

1®Jy
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Morphisms are identity-on-objects V-graph maps {¢.,: N, — Py, } such that
Nyy® Ay, —25 N,

@:cy@ll l 2z (1)

P,®A,, —— P,

Tryz

These form a category of (right) A-modules which we denote V-Mod 4. Clearly, any
V-category is both a left and right A-module (A, m) called the regular A-module.

Notice that in the definition of a right A-module for example, the left indexing object
of the graph is not playing any role. As a result, for any right A-module (V,7) and
any map h: X — X we Can define the h-shuffle of N as the (right) A-module (N*, ")
where N, := Ny, and 7). = Th(z)y--

Finally, recall [DS97, §9] that a V-opcategory C'is a category enriched in the opposite
monoidal category V°P. Explicitly, and for future reference, there exist cocomposition

and coidentity arrows in V
Aoyt Cope = Cry @C, ., €:Cry—1 (2)

satisfying coassociativity and counity axioms:

dz w II
Crw - > Coy ® Cy wy®ny\ = Coo ® Ciy
dmwl lm@dw 1®€yl / \ l%@l
Cx,z®0 WC’ZJ@CW@CZW a:y®I I@ny

(3)
where the coherence isomorphisms in V are suppressed. Similarly, a V-opfunctor is a
VP-functor. Together these form a category V-opCat. In a dual way to modules, there is
a category of C-opmodules V-opMod equipped with a C-coaction which is compatible
with cocomposition and coidentities.
An object A in a monoidal category V has a left dual A* when there exists evaluation
and coevaluation morphisms ev: A*®A — [ and coev: I — A®A* making the following
diagrams commute, where the associator and unitors are suppressed:

ALY Ao A @A A 180N 4r 5 A @ A
T e T b *
A A

Since all duals of an object A in V are naturally isomorphic to one another, we will
from now on speak about ‘the’ dual of A. Dually, A is called the right dual of A*
and when the monoidal category is braided, there is a bijection between left and right
duals induced by composing the evaluation and coevaluation by the braiding and its
inverse, accordingly. A monoidal category with duals is called rigid or autonomous.
Each morphism f: A — B gives rise to f*: B* — A* via

B* 180 proo A @ AF 228N o Bo A* &9 4%

Remark 2.1. It is a standard fact that if V has left/right duals, then it is left/right
monoidal closed via —® B4 [B,—]; ¥ —® B* and A® — 4 [A, -], & A° ® —, where
A® denotes a right dual of A. Notice that the opposite is not true: in a (left) monoidal
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closed category V, we can indeed denote A* = [A, I] which e.g. for V = Vect, gives
the classical ‘dual” of a (possible infinite dimensional) vector space, that also comes
with an evaluation map [A,I] ® A — I from the counit of the tensor-hom adjunction.
However, this is not necessarily the categorical dual as defined above, unless A is finite
dimensional.

We will henceforth call a V-enriched graph or category A locally rigid when all hom-
objects A,y have duals in V — but V itself is not necessarily rigid. We will denote by
coév and ev the corresponding (co)evaluation maps for the hom-object A4,, € V of a
locally rigid V-(op)category or simply enriched graph.

Example 2.2. Suppose G is a locally rigid V-graph; for example, it is k-linear where all
hom-objects are finite dimensional for a field k, or more generally it is Modg-enriched
where all hom-objects are finitely generated projective R-modules for a commutative
ring R. There is the dual V-graph G* with the same objects and hom-objects G,
for example Homy (G, ,, k) in the linear case. Notice that ‘dual’ here does not refer to
‘opposite’ as is the usual terminology.

Morever, there is the opposite dual graph (G*)°P henceforth denoted G*°P given by
(G*P)yy = G, . From now on, we will omit the parenthesis and write G5P = G .

Consider now any left A-module (M, 7) which is locally rigid as a V-graph. Then
M*°P becomes in a natural way a right A-module by means of the action

1®Tyzac®1

. 191®cbév . . . « &el N
My,x ® Ay,z My,x ® Ay,z ® MZJC ® Mzw My,x ® My,x ® Mz,a: Mz,x

We denote this module by MT. Similarly, the dual of any right A-module N is becomes
naturally a left A-module which we denote by TN,

Dually, for a V-opcategory C, any right locally rigid C-opmodule (N, x) gives rise to
a left C-opmodule structure on N*°P via

zy zZx
+ l®coev % v 1®Xzay®1 % «  evR1I®l %
Nz,x Nz,x ® NZ,ZJ ® Nz,y Nz,:c ® NZ@ ® Al‘:y ® Nz,y } A%y ® Nz,y

and similarly a left one makes its opposite dual into a right C-opmodule.
In [BCV16, Theorem 5.5], the linear case of the following result is exhibited.

Proposition 2.3. For a locally rigid V-category A, its opposite dual A*°P has the struc-
ture of a V-opcategory. Dually, C*°P is a V-category for any locally rigid V-opcategory
C.

Proof. Cocomposition and counits are given by applying the functor (-)*: VP — V
(restricted to the dualizable objects) to the composition and identities of A as in

m*
. *,0p __ * zyxr * A~ * * i *,0p *,0p
dmyz . Agj,z - Az,z‘ (AZ,Z/ ® Ayvx) - Ay,w ® AZ:y - Ax»y ® Ay»z <5)
Jz
€ Ay, =1

Essentially, the strong anti-monoidal functor (—)* via ¢xy: (X ®Y)* 2 Y*® X* turns a
V-category A into a V-opcategory A*°P  and dually a V-opcategory C' into a V-category
C*°P via a process similar to the change of enrichment base.

O
Also in [BCV16, Proposition 5.4], the linear case of the following can be found.
Proposition 2.4. For any locally rigid V-category A, V-Mod4 = V-opMod 4..0p.
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Proof. Suppose (M, 1) is a right A-module. Then it can be given the structure of a
right A*°P-opmodule via

Tzzy®1

1®ccz)gv
My, —— M, ®A,, @A, —— M, ® A7,

and vice versa, if (N, y) is a right A*°P-opmodule, then there is an A-action

Xzzy®1 18y
Nw)y ® A%Z % Nx,z ® AZ,Z ® Ay’z — Nm7z

These two establish a bijection between A-modules and A*°P-opmodules; clearly this
works for left (op)modules too. Similarly V-opMod, = V-Mod¢c+.cr for a V-opcategory
C. O

Hopf enriched categories, introduced in [BCV16], constitute a natural many-object
generalization of a Hopf monoid in a braided monoidal category. In what follows,
suppose that (V,®, I, 0) is a braided monoidal category, and recall that its category of
comonoids Comon(V) inherits the monoidal structure, via

CoD coceoDoD X2 ceDeC®D.

Notice that we use Latin letters to denote ‘global’ operations (those that may relate
different hom-objects, i.e. of different indices), and Greek letters to denote ‘local’ oper-
ations (those that concern each hom-object object individually).

Definition 2.5. A semi-HopfV-category A is a Comon(V)-enriched category. Explicitly,
it consists of objects together with a collection of A, , € V for any two objects z,y, and
families of morphisms in V

Mays: Apy @Ay, — Ap Jei I = Ay,
Opy: Agy = Ay @ Az y €yt Azy — 1

which make A a V-category, each A, , a comonoid in V, and satisfy

6.’1)’( ®61 z
Ax,y ® Ayvz == Aﬂ’/’7y & Axvy ® Ay,z ® Ayvz
l/l@o@l
Mayz Ax7y ® A:%Z ® Ax7y ® Ay,z
\l/mzyz®mzyz
A, o Az ® Ay, (6)
[— > I®l Apy® A, 2 10l T2
Ax,ac 5—> Ax,a: X Ax,a: A;L‘72: Tas I Aac,x W I

Semi-Hopf V-categories with Comon(V)-functors form the category Comon()V)-Cat
which we also denote sHopf-)-Cat.

Example 2.6. Every bimonoid in a braided monoidal category V is a one-object semi-
Hopf V-category.

Example 2.7. If A is a semi-Hopf V-category for (V,®,1,0), it gives rise to new
semi-Hopf V-categories AP, AP A°PP and A“P°P ag follows, see also [BCV16, §3].
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Mzyx

(1) A% = A, with composition Ay, ® A,y T A, ® Ay —2% A, the monoidal
base of the enrichment is (V,071).

(2) A5P = Agy with local comultiplications 6., post-composed with the inverse
braiding; again the monoidal base is (V,071).

(3) A°PoP = (A°P)«P has hom-objects AP = A,,, composition is pre-composed
with the inverse braiding, comultiplication is post-composed with the usual
braiding, and the monoidal base is (V, o).

(4) A®PP = (A®P)° has hom-objects AP°P = A,,, composition is pre-composed
with the usual braiding, comultiplication is post-composed with the inverse
braiding, and the monoidal base is (V, o).

Clearly, if V is symmetric then one no longer needs to distinguish between the braiding
and its inverse.

We now turn to Hopf categories and their basic properties.

Definition 2.8. [BCV16, Def. 3.3] A Hopf V-category H is a semi-Hopf V-category
equipped with a family of maps s;,: H,, — H, , satisfying

155y

Hx,y ® Hx,y Hx,y ® H s
Hx7y Exy I ]1 Hxﬂl,
Szy®1 (7)
Hﬂ?,y ® HZ‘,y : Hy,]) ® H.Z‘,y
H,, I & H,, .

This V-graph map s: H — H°P is called the antipode of H.

If only the upper (respectively lower) diagram commutes, s is called a right (respec-
tively left) antipode of H.

Definition 2.9. An op-antipode for a semi-Hopf V-category H is an antipode for H°P,
i.e. a family of maps 5,,: H,, — H, , satisfying the following two conditions:

1®§yz 0.71
Hﬂ?,y ® Hxay Hw»y ® Hva Hyvx ® H"Eﬂy

Oz Myzx
Yy yry
Exy Jy

nyy [ Hyvy
Syz®1 o1
Ozy %
Exy ]z
Hl',y I H:):,x

A left (right) op-antipode for H is a left (right) antipode for H°P.
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Remark 2.10. [BCV16] The following properties of antipodes can be deduced from
the definitions
Sz O Myyz = My 00 0 (Szy @ Syz) Oyz © Szy = 0 0 (Szy @ Szy) © Oy
Sga © ]:c = jxa Eyx O Spy = Eay
Since op-antipodes are antipodes for HP, they also obey respective formulas.

Lemma 2.11. If H is a Hopf V-category with antipode s, then s is an op-antipode if
and only if each 5y, is inverse to szy,.

Proof. 1f 5, is as in Definition 2.9, then on one side we find

Syz O Sgy = Syz O Szy O (E4y ® Ay y) 0 Ogy
= (Eay ® Asy) © (Azy @ Sya) 0 (Azy @ Say) © Oay
= Mgy O (Jaz ® Azy) © (Eay ® Asy) 0 (Azy ® Syz) 0 (Azy @ Suy) 0 Oay
= Mgy © (Maye @ Azy) 0 (Asy ® 82y ® Az y) 0 (Azy ® Azy @ 5ys)
0 (Azy ®@ Ayy ® Suy) © (02y @ Ayy) 0 0y
= Mgy © (Maye ® Azy) © (Azy ® Ay @ Fya) 0 (Apy ® Soy ® Ay y)
0 (Azy ®@ Ayy ® Suy) © (Auy ® Gay) © 0y
= My © (Azy @ Myay) 0 (Azy @ Ayr ®3yz) 0 (Azy ® o)
0 (Asy ® Oya) 0 (Azy @ Suy) © Oy
= Mgy © (Asy ® Jy) © (Azy ® Eya) © (Apy @ Suy) © bay
= Myyy © (Azy ® Jy) © (Azy ® €ay) © Oy
= Aw’y
So s is left inverse to s — recall these are identity-on-objects graph morphisms. A similar
argument shows that s is also right inverse to s and the one direction is established.
Now suppose that an antipode s has inverses s,, for each s;,. Then these indeed
form an op-antipode; for example, the left axiom is verified by
My © (Szy @ Az y) © o lo Ay = Myay © (Suy @ Azy) © o lo Ay © Syz © Syy
= Myay © (Soy ® Ayy) © o looo (Syz @ Sya)
O dyz © Sy
= My © (A y ® Syz) 0 dyy © gy
= Jyy © €ay O Say

= Jyy © €y

where s satisfies conditions dual to those in Remark 2.10 merely by being inverse to s.
That 5 a right antipode is proved dually. O

If H and K are Hopf V-categories, a Comon(V)-functor F': H — K is called a Hopf V-
functor if sg,p,0Fyy = Fp 058, forall z,y € X. It is shown in [BCV16, Prop. 3.10] that
any Comon(V)-functor between Hopf V-categories automatically satisfies that condition;
hence we have a full subcategory Hopf-V-Cat of Comon())-Cat.
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Example 2.12. Every Hopf algebra H in a braided monoidal V is a one-object Hopf
V-category; this fulfils its purpose as a many-object generalization. In particular, each
endo-hom object H, , of an arbitrary Hopf V-category H is a Hopf monoid in V.

Remark 2.13. It was shown in [BEVV17] that sHopf-V-Cat and Hopf-V-Cat are in
fact categories of oplax bimonoids and Hopf oplax bimonoids in a symmetric monoidal
bicategory Span|V. This exhibits a more elaborate sense in which Hopf structure can
be generalized in higher categorical settings, and Hopf categories are example of such.

Example 2.14. [BCV16, p. 3.12] The ‘linearization’ functor L: Set — Mod; which
sends each set to the free k-module on that set, is a strong monoidal functor. Hence
it induces a change-of-base functor between Hopf-Set-Cat and Hopf-Mod,-Cat, namely
ordinary Hopf categories which are the same as groupoids, and k-linear Hopf categories.
As aresult, every groupoid G determines a k-linear Hopf category H with H, , == LG,
the free k-module on the set of morphisms z — y in G.

Proposition 2.15. Suppose that H is a Hopf V-category with finitely many objects,
where V has a zero object and biproducts, that are also preserved by the tensor. The

packed form of H,
i =[] H.,
.y

is a weak Hopf algebra.

Proof. Suppose that V is a monoidal category with coproducts that commute with the
tensor product — as is the case for any monoidal closed category — and a zero object.
For an arbitrary V-graph G, we get a new graph G ® G given by

CoG=]]GCey@][Cen® J] Gow®Geu

x?y Z7u x?y7z7u

Now if (A, m,j) is a V-category, first of all we can define families of maps

ify=z ifz=y

0, else

mltzyzu Myyu,
Ax,y X Az,u ? Az,u =
0, else

and T 22y Apy = {‘]x’
The first one induces, for every z, ¥y, z, u, a composite diagonal map as below — where the
vertical arrows are the canonical injections — hence the universal property of coproducts
yields a (unique) map u: A® A — A

which is easy to check that is associative. If moreover the set of objects X is finite and

(finite) biproducts exist in V, so [[ A,y = [ As,y, then we also obtain a (unique) map
x?y x7y

[T Azy

/\{ x7y

.
.
n.
.
.
.
.

I ———— Ay
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which satisfies unity conditions. Therefore under these conditions for a V-category A,
A naturally obtains a monoid structure in V.

Now suppose that (H,m, j,d,¢,s) is a Hopf V-category. Then H is also a comonoid
in V, since comonoids are closed under colimits in any monoidal category (see e.g.
[CDV06]). Explicitly, the comultiplication and counit again follow from the universal
property of coproducts, induced by

Hoy ™ Hoy® Hey o [[Hoy© [ Hewe  Hoy =% 1.
.,y .,y
It was shown in [BCV16] that with this structure, the packed form of a Hopf Mody-
category with a finite set of objects is a weak Hopf algebra [BNS99]. Under the above
conditions, this can also be proved for general Hopf V-categories. Explicitly, the com-
patibility between multiplication and comultiplication can be shown to hold due to the
top of (6), whereas the other two axioms copo(p®1) = (e®e)o(u@u)o(1®i®1) =
(e®e)o(p@u)o(lro®l)o(1®d®1) and (0®@1)odon = (1Qu®1)o(d®I)o(n®n) =
can also be verified. O

In particular, applying the above proposition to the previous example, one obtains
the usual groupoid algebra kG from H, as a packed form: kG = @ H,,.

z,yeG

Example 2.16 (Hopf opcategories). If we replace V with V°P at Definitions 2.5 and 2.8,
we obtain the notion of a (semi) Hopf V-opcategory, called dual Hopf category in
[BCV16]. Since Comon(V°P) = Mon(V)°?, a semi-Hopf V-opcategory (C,d, e, u,n)
is precisely a Mon(V)-opcategory, i.e. it is equipped with cocomposition and counit
morphisms d,., €, as in (2), together with local multiplication and unit morphisms
Py Coy @ Cpy — Cpyy Ny I — Cy, making each hom-object a monoid in V, sub-
ject to compatibility conditions. Moreover, a Hopf V-opcategory comes with arrows
Suy: Cyu — Cypy satisfying dual axioms to (7):

1®szy Syz®1

Cry ®@Cyq P Cry @Chy  Cpy®@Cy, » Cya @Cyyp

dmym]\ lnu‘»'cy dzyz]\ l:u‘yﬂc

€ n €x n
Coz 1 ~— Chy Co 1 s Oy

Proposition 2.17. If A is a (semi-)Hopf locally rigid V-category, A*°P naturally ob-
tains the structure of a (semi-)Hopf V-opcategory.

Proof. By Proposition 2.3, any V-category A gives rise to a V-opcategory A*°P given
by ApoP = Aj .. Moreover, the local comonoid structure turns into a local monoid
structure under the strong antimonoidal (—)*: V°P — V. More explicitly, if (A, m, j, 9, €)
is the semi-Hopf V-category, (A*°P ¢ o m*, j* 6* o ¢,&*) is an induced semi-Hopf V-
opcategory structure on A*°P where the cocomposition and counit are given as in (5)
and multiplication and unit are

2

6*
. *,0p *,0p __ * * — * YT * . *,0p
Hay - A:v,y ® A:p,y - Ay,x ® Ay,z — (Ay,w ® Ay,r) Ay,w - Ax,y
. slij * *,0D
Noy: — Ay,w = AJ;,y

Dually, if C' is a semi-Hopf V-opcategory, its opposite dual C*°P is a semi-Hopf V-
category. U
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Remark 2.18. In the k-linear setting, the above formulas take the following form,

where 3" ¢; ® };’Z € Azy ® A}, denotes a finite dual basis of any A, ,. The global
comultiplication is given by

2y

fHZf(Zeyilgj) ?}?j®fi

and the local multiplication is given by f ® g +— f x g where (f * g)(a) = g(a1) f(az) for
allac€ A, ,.

Notice that in the one-object case of a k-bialgebra A, the induced A*°P as described
above in fact coincides with the classical (A*)°P°°°P namely the opposite-coopposite of
the classical dual k-bialgebra A*.

The proposition below is the generalization of the classic ‘fusion map’ formulation in
this many-object setting.

Proposition 2.19. Let H be a Hopf V-category. Then for any two objects x,y in H,
we have that the above canonical map

Ha:,x ® Hac,y Hx,cc ® Hac,y & Hx,y

Hyy @ Hay
s an isomorphism.

Proof. One can easily check that an inverse of the canonical map is given by

1®szy®1 Mgy ®1

Oy
H[L’,y ® Hx,y h®—> Hx,y ® H(E,y ® H:B,y HZ,y ® Hy,m ® HZE,y HZ,LL’ ® H(E,y

g

Of course, the previous proposition also can be applied to Hopf opcategories. Since
it is well-known that, when working over a base field, i.e. ¥V = Vecty, the bijectivity
of the canonical map implies that the space of (co)invariants is trivial, we can deduce
from the previous proposition the following interesting result.

Theorem 2.20. For a Hopf Vecty-category H, H,, is an H, ,-H,, bi-Galois co-object
for any pair of objects x,y in H; for a Hopf Vecty-opcategory H, H,, is an H, ,-H,,
bi-Galois object for any pair of objects x,y in H.

In particular, we find that each non-zero H, , is isomorphic as a k-vector space to both
H,,and H,,. Moreover, H,, and H, , are isomorphic as k-vector spaces if H,, or H, ,
is non-zero. This observation leads to some interesting examples of Hopf (op)categories
as below.

Example 2.21. Let H be a Hopf algebra, and A any (faithfully flat, right) Galois object
of H. Then we know, see [Sch96], that one can construct a Hopf algebra L = (A® A)«H
such that A becomes an L-H bi-Galois object. Hence we obtain a Hopf opcategory with
two objects z,y by putting H,, =L, H,, = H, H,,, = A and H,, = A”.

2.2. The fundamental theorem of Hopf categories. In this section, we recall the
fundamental theorem for Hopf modules of Hopf V-categories; details and proofs can be
found in [BCV16]. For (A,m,j,d,¢) a semi-Hopf V-category, a right Hopf module is a
V-graph M over the same set of objects, with a global A-action and a local A-coaction

Tays: Moy @ Ay = Musy  payt Mey = My ® Agy
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making M into an enriched A-module (Section 2.1) and each M, , into an ordinary

A, ~comodule, and furthermore satisfy

1®o®1

M, ® A, Myy®A; @A, @A, —— M, @A, ., @A, RA,.

Txyzl lﬁcyz@'mtacyz

Mx,z > Mx,z & Aac,z

Pzy ®6yz

There is a category with objects Hopf A-modules, and morphisms V-graph maps that
respect the global A-action and local A-coactions; it is denoted by V—Modﬁ.

Dually, for a semi-Hopf V-opcategory (C,d, €, p1,n) as in Example 2.16, a right Hopf
opmodule is a V-graph N equipped with a global C-coaction and local C-action

Xzyz - Nx,z — Nx,y ® Cy,z Vgy: Nl‘,y ® CI:ZJ - NIJJ

making N into an enriched C-opmodule and each N, , into an ordinary C,,-module,
compatible in that Yuy: 0 Ver = (Vay @ fiyz) © (1 ® 0 ® 1) 0 (Xayz @ duyz). The category
of right Hopf opmodules over C' is denoted as V—opModg.

Example 2.22. Suppose that (H,m, j,d,¢,s) is a locally rigid Hopf V-category; recall
by Proposition 2.17 that H*°P is a Hopf V-opcategory.

(1) H is a right Hopf H*°P-opmodule via the following coaction and action:

1C(§Zév mrzyl
Xxyz: Hx,z — HCL‘,Z ® Hz,y ® H;y — Hx,y ® H:,y (8)
: Nt oH,, 2 oH, 9H,, SN Y oH, o H,, %S H
Vay - Hx,y®Hy,m - yx® Ty T y,w® ey @Hey — y,r® ya @ Hey — Hay

With this structure, H is called a type 1 Hopf H*°P-opmodule, denoted H;.
(2) H°P is a right H*°P-opmodule, via the following action and coaction:

zy
Xzyz - Hz,x kif;’ Hz,x & Hz,y ® H; — Hz,w & Hy,z ® H;,y U_1> Hy,z & Hz,x X sz

——————————————— lmyzx 1

_______ > Hyw ® HZy

Syzl 1o 1&
Vay: Hy, @ Hy , — Hy, @ Hy, @ H), — Hy, @ H, , ® Hy, — Hy,

With this structure, HP is called a type 2 Hopf H*°P-opmodule, denoted Hs.
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(3) H* a right Hopf H-module via the action and coaction

1 Tz
8yzCOeV 1ol

Tope: Hi, @ Hy “SH? @ H,, @ H,.® H:, 22 H ©H,.®H.,®H:,
Tl J1mazy1
T H:;k,y@H%y@H;,z

T L&
> H;,

zy 10gzy1

* lcoev * * Ty * *

. H — - H (X)H (X)H —— H (X)H (X)H (X)H
pacy T,y x,y x,y T,y z,y x,Y z,y z,y

Tl J/all
H,,®@H;, ®H,,®H;,

STl Lign

Tt Hﬂ“ay ® H;,y

S 1o
H;Ck,y ® Hxvy
(9)
With this structure, H* is called a type 1 Hopf H-module, denoted H7.
(4) H*°P is a right Hopf H-module via the following action and coaction

11cé 1myzzl
Tayzt Hy, @ Hy . ﬂ_{—{;x ®Hy.®H. . ®H, Hy, ®Hy,®H,
______________________ )
““““““““ *
? Hz,:c
H? g o H, @ H, — s B 9 H,,® H,,® H
: _—>
sz YT Y,T ® Y,z ® Y,T Y,T ® Y,z ® Y,z ® Y,T
~\‘\\\\\\‘\‘ yr
- *
\‘\§\‘\\\ Hyyx ® H "
\\‘\~~\‘\\ J/lsyx
-y .
Hy,;r ® Hz,y

With this structure, H*°P is called a type 2 Hopf H-module, denoted H;. Notice
that 7 is precisely the induced action on the regular module from Example 2.2.
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Example 2.23. Dually, if (C,d, €, pu,n,s) is a Hopf V-opcategory then the following
action and coaction make C*°P a right Hopf C'-opmodule.
1s, cggv o
Vg Cu @ Clpy —25 O, @ Cy @ Oy ® Cyp =75 L @ Cyy ® Cy o @ C
Tt \Llﬂyzl
T O;,cc ® Oy,x ® O;,x

- yz
= vl

— .
Cy7x

:,z \—> Cy,r ® C;,x ® C;,x U—1> C;,:D ® Cy#" & C:,z
——— Jdyza1
Tl C;,.T ® Cy7z ® CZ@ ® C:,x

Tl s &
*
Oy,x ® Oy,z

Specifically x is induced from the regular opmodule structure on C' as in Example 2.2.

We now recall the fundamental theorem for Hopf modules, [BCV16, Theorem 10.2].
In its formulation, we denote by V-dGrph the category of diagonal V-graphs, namely
given by single-indexed families (M, ).cx of objects in V. Notice that any V-graph gives
rise to a diagonal one, by considering only its endo-hom objects M, ,.

Theorem 2.24. Let (A, m,j,p,€) be a semi-Hopf V-category and suppose that V has
equalizers. The functor

— ®A: V-dGrph — V-Modj (10)
that maps some {Ny}rex to {Ny ® Ay ytayex with A-action 1 @ my,, and coaction
1 ® 0yy, has a right adjoint (=) as in

defined on a Hopf A-module (M, T, p) by the equalizer

M
Pz,

coA la
M M, .

Mx,x & Ax,a: (11)

1®j

Moreover, A is a Hopf V-category if and only if the above functors establish an equiva-
lence of categories; in particular, M* @ A= M for any Hopf A-module M.

Proof. (sketch) The unit and counit are given respectively by a, : N, — (N, ® A, )24
such that i, 0 ay = N, ® J, and By = Tuzy 0 (ix ® Apy) : MA@ Ayy — M, O

Notice that M4 is the space of coinvariants for the local Hopf algebra A, ., in the
k-linear case, see Example 2.12, which can in that way be defined in any monoidal
category V with equalizers.

The above theorem can also be deduced from viewing a Hopf category as a special
instance of a Hopf comonad on a naturally Frobenius map-monoidale [Boh17], using the
fundamental theorem of Hopf modules in that general setting [BL16].

Finally, the following result will be of use in later sections.
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Lemma 2.25. If a Hopf V-category H is locally rigid, then its antipode is invertible.

Proof. The proof is essentially the same as [Tak99, Theorem 4.1] and relies on the
fundamental theorem for Hopf modules for Hopf V-categories. If (H,m,j,0,¢,s) is
the Hopf V-category, we can apply the equivalence of Theorem 2.24 to the right Hopf
H-module Hf described in Example 2.22(3) to get a Hopf H-module isomorphism

Bay : (Hf)accOH ® Hyy = (H{)ay-
We now consider the following commutative diagram: since the braiding o is invertible,
and €* is split by 7%, the entire counter-clockwise composite that excludes s, , constitutes
a left inverse to the antipode.
e 1 1
H (HY)aoHyy —— (Hy)?" Hyp Hyy — Hoo(HY)H Hoyy

Ty _>€* N 1By
xTxT
Szyl llszy lllszy 1lszyl

Hye > (i )wHlye — (DS HosHye 0 Haa(HD2 Hya b ooy
The middle diagrams commute by naturality and the right-most triangle commutes by
definition of 3,,, where (,, := (ev ®1)0(1®M,,, ®1)o(1®c®1)o(1®1® coev)o (i, ®1)
is defined precisely in order to cancel § introduced in Theorem 2.24 for the appropriate
action of Hf, (9).

Now a dual argument shows that s* has a left inverse, hence s also has a right inverse
because taking duals is a contravariant functor; therefore the antipode is invertible. [J

2.3. The fundamental theorem of Hopf opcategories. Theorem 2.24 can be ap-
propriately dualized to produce a fundamental theorem for Hopf opmodules. However,
due to some non-trivial subtle differences between the two cases, in this section we ex-
plicitly describe the basic constructions and proofs. In what follows, we fix (C,d, €, i, )
to be a semi-Hopf V-opcategory as in Example 2.16, for V a braided monoidal category.

In order to specify a functor similarly to (10), notice that for any diagonal V-graph
{N,}zex, the families (N ® C),, := N, ® C,,, give a Hopf C-opmodule with C-action
1 ® fizy and coaction 1 ® d,.,. This naturaly defines a functor

— ® C : V-dGrph — V-opMod¢ .

On the other hand, for any Hopf C-opmodule (M, v, x), we define the z-coinvariant
space M°© of M to be the limit in the following diagram

McoC
< £ A BN
Mm,w Mm,y Mx,z . M:):,u (12)
N N N %
1 Nw Xzxwy 1 My z Xzyz 1®772u Xzxzu
ST N NS
Mx,w X wa,y Mx,y X Cy,z Mx,z X Cz,u

Explicitly, the object M°¢ in V comes with maps v,, : MY — M,, such that y.,. o
Uy = (1d @ 1)y) © Uy for all y, z, and is universal with this property. These spaces form
a diagonal V-graph M = {M®°C} _y for any x, and this is set to be the mapping on
objects of a functor (—)°¢ : V-opMod — V-dGrph.
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Proposition 2.26. For any complete category V, there is an adjunction

-®C
V-dGrph 1~ V-opMod¢.
(7)(:0(:'

Proof. For any {N,},ex in V-dGrph, the maps 1 ® n,, : N, - N, ® C,, induce mor-
phisms a,: N, — (N ® C)®f by the universal property of the limit. On the other
hand, for any Hopf C-opmodule M let ., = vy 0 (vyy @ 1): M @ C,, — M,,,. We
can check that o and § constitute a unit and counit for the proposed adjunction. [J

Theorem 2.27. Let V be a complete category. If a semi-Hopf V-opcategory C' is Hopf,
the adjunction of Proposition 2.26 is an equivalence of categories. In particular, for any
Hopf C'-opmodule M,

M“C®C>=M

Proof. Tt suffices to show that when C' is a Hopf V-category, the adjunction - ® C' -
(—)*¢ is an adjoint equivalence, namely the unit and counit are isomorphisms.
An inverse for each a, as defined in the previous proof is given by

1®€zx

I, = (NoC)*® —2 = N, ®C,,

)

N,

It is clear that I', o o, = id because of the commutativity of the following diagram:

N, =5 (N© 02 25 N, @ C,p <25 N,
W
1

For the other side composite, first note that there is only one endomorphism f, : (N ®
C)C — (N ® C)°¢ such that v,, o f, = v, by the universal property of limits; hence
this is the identity. Moreover, v, o (a, o I'y) = v,, due to

(N R C’);OC % ]\73C ® Cx@ 1®€zz> Nx Qg N (N ® C);J:OC

lm lvzz
1

Yz N:J: X Cx,z

so also o, o I'y = id.
For each component 3, of the counit, an inverse is given by

ta®1

Yoy = Myy — s My, @ Cyy MeC ® C,,

where ¢, is induced by the universal property of coinvariants and the family of maps
Vgy © 1 ® Syz) © Xaye Which form a cone over the required diagram: indeed,

Xzyw © Vew © (Mm,w ® Swa:) O Xzwz = (Mx,y & nyw) O Vgy © (Mx,y ® Szy) O Xzyz-
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We can verify that this 7,, is a one-sided inverse of 3., by the following commutative
square

Xzzy Uy Q1
My, ———— M, , ®Cyy ——— M;OC ® Cry
Xzyy Xa:y:t@l
1®d1ﬂ N2
1 Myy ® Cyy P My @ Cyo ® oy (%) Vay®1
ll@eyy () 1®8ys®1
<~ Vay®1 <~
1®;U'Iy Vgy

Vzy
Mmay ® vay any

1

for any x,y, z,w € X. The left and bottom triangle, the left upper square and the right
lower square commute since M is Hopf C-opmodule. The inner diagram (x) follows from
the Hopf opcategory axioms and (xx) from the universal property of the limit defining
coinvariants. Hence [3,, 0 v, = id.

For 7,y o By, = id, first note that

Xzwy © Vay © (Uwy ® Cz,y) = (Vow ® Cw,y) © (M:C,w ® dwwy) 0 (Vg ® Ca:,y) (13)
and also it can be shown that
Usy © by © Vg © (Vag ® Chrg) = Uy © (MC @ €4) (14)

Since ((M° ®Cyz)as (Viy 0 (M ®€44)sy)) is trivially a cone over the diagram (12), by
the universal property there exists a unique morphism h: M*°¢®@C — MY € V-dGrph
such that v,y o hy, = vy 0 (M®C @ €,,) for every z,y € X. By (14), we know that
he =ty 0 Vg © (Vgr ® Cyp ). Since (MY ® e,,) satisfies this condition trivially, we can
deduce by uniqueness of h that they have to be equal:

(M;OC X ez:v) - tw O Vg © (U:B;B X Cz,a;) (15)
Finally, using the above data, we can compute

fy:ry © 5xy = (tw ® Cx,y) o ancy o ny o (Uzy ® Cx,y)

D (1, ® Chy) © (Ve ® Cay) © (M ® dasay) © (Vaw @ Clay)

) (MPC @ €0 ® Cy) 0 (MEC @ dyy)

— MxCOC ® C@y
where the last equality is due to C' being a V-opcategory, hence the proof is complete. [

A ‘full’ fundamental theorem for Hopf opmodules would include the converse of Propo-
sition 2.26; this may be readily proved by adapting the proof of the fundamental theo-
rem of Hopf modules given in [BCV16]. We omit it here since it is not required for our
purposes.
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3. FROBENIUS V-CATEGORIES

In [BFVV17, §7], we introduced Frobenius V-categories as Frobenius monoids inside
the same monoidal bicategory where Hopf V-categories arise as oplaxz Hopf monoids. In
this section, we provide characterizations of Frobenius categories in terms of Casimir
elements, dual module structures, trace maps and Frobenius functors. These charac-
terizations, necessary for our central results in Section 4, naturally generalise those for
usual Frobenius algebras [CMZ02] and are similar to those of Frobenius monads [Str04b,
Thm 1.6].

Definition 3.1. [BFVV17, 7.1.1] A Frobenius V-category A is a V-category that is also
a V-opcategory, namely for every x,y € ObA there is an object A, , € V and maps

Mayz: Azy @Ay, = Ay Jui I — Ay,
Apyz: Agy — Apy @ Ay, €t Ape — 1

satisfying the usual (co)associativity and (co)unitality axioms, and moreover the follow-
ing diagrams commute:

dzwy®1
~
Myyz
~
].®dywz A:D,Z 1@May (16)
~
dzwz
Apy @Ay ® Ay, — > Apw @ Ay

Along with Frobenius V-functors, namely V-graph morphisms which are functors and
opfunctors, they form a category Frob-V-Cat.

We will call the counit morphisms €, : A, , — I of a Frobenius V-category the trace
morphisms. Moreover, if V) is braided, a Frobenius V-category is symmetric when

‘| Ty (17)
Ay ® Agy Ayy %

Myaxy

Myyz

Aa:,y & Ay,az Az,x

which translates in the k-linear case to €,(ab) = €,(ba).

A Frobenius monoid in any monoidal category V can be viewed as a one-object
Frobenius V-category, and in particular every diagonal hom-object A, , € V is such.
For more examples and discussion of related notions, see [BEVV17].

The fact that Frobenius V-categories properly generalize Frobenius monoids in V is
also exhibited by the following result, which shows that the packed form of a Frobenius
V-category is a Frobenius monoid provided that the set of objects is finite. Notice that
this result cannot be expected to hold in case the set of objects is infinite, since in such
a case the packed form cannot be expected to be rigid in V, whereas a Frobenius monoid
is always rigid.

Proposition 3.2. Suppose A is a Frobenius V-category with a finite object-set X, and
that V has finite biproducts and ® preserves them. The packed form of A

A= T 4.y

z,yeX
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1s a Frobenius monoid in V.

Proof. We already know by Proposition 2.15 that (A, i, m) is a monoid in V. In a dual
way to the multiplication defined therein, the maps

comltay-u d ifz=u counig € ifx=
Az7y Y Ax7z ® Au,y = TZUH and A%y —Z/> ] = X y
0, else 0, else

induce (uniquely) comultiplication and counit arrows d: A= A® A e: A— I via the
universal properties of (co)products. It can then be verified that 6 and e make A into
a comonoid, and moreover that (A, u,n, 9, e) is a Frobenius monoid in V. O

Remark 3.3. Let us note that the following converse of Proposition 3.2 holds. For
X a finite set, consider the category of X-bigraded V-objects (namely packed forms of
V-graphs with set of objects X) with tensor product

( H Asy) ® ( H Byy) = H (H Agu @ Auy)
z,yeX z,yeX r,yeX ueX
Then a Frobenius monoid in this category is exactly the packed form of a Frobenius

V-category.

We introduce the following notation for any V-category (A, m, j) which will be useful
for the characterization of Frobenius V-categories in what follows:

Vi={e=Aertrex | €2 Apx — I} (18)
Wl = {d = {dwyz}x,y,zeX ’ dxyz : Agg,z — Az,y & Ay,27 satisfying (16)}

That is, the sets V; and W consist respectively of candidate ‘trace morphisms’ families
and ‘comultiplication’ families for a Frobenius structure on A.

3.1. Characterization in terms of Casimir elements.

Definition 3.4. Let (A, m,j) be a V-category with ObA = X. A Casimir family is
a family e of distinguished morphisms ¢: I — A,, ® A,, indexed by (z,y) € X2,
satisfying the commutativity of the following diagram

zy
Am,z L Aw,y X Ay,m X Aw,z
1®Zéyl l1®myzz (19)

Aac,z ® Az,y ® Ay, W A x,Yy ® Ay,z

for any triple (x y,z) € X3. In the k-linear case, this gives an X?2-indexed family of

elements €= el ®e € Ay y® A, such that ael ®e ®e gaforallae A, ..
We denote by Wy the set of all Casimir famllles for a glven V category A.

Using the above notation (18), we obtain the following result.

Lemma 3.5. For any V-category A, we have a bijection between the sets Wi and Ws.

Proof. For any family d = {d.y.}s,.cx € Wi, define morphisms RN LN Ay — Govs
A,y ® Ay, .. To check that these satisfy the Casimir property (19), we examine the
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diagram

A:C,y X Ay,x X Az‘,z

e o
(16) \

_
Ap @ A Tediy, A @ Ary ® Ay, —] Ay @ Ay

1®7- 1®myzz

where the left part is the unit axiom for any V-category. In k-linear language, we have
€= dyyz (1, ) and the diagram expresses that for any a € A, .,

adzyz(lz,z) = dmyz(alz,z> - dzyz<a> - dmyz(lx,ma) - dmym(lx,;B)a'
Conversely, given a Casimir family e = {Iey}x,ye x € Wa, we define a family

doet Ay, 25 4 A, @A, 2 4 9 A, D (1emy.) o (@ @l) (20)
ryz + {lrz T,z z,y Y,z T,y Y,z YZT

These indeed satisfy the Frobenius conditions (16): the first is verified by

yw
lel Mgywll
AI,yAy,Z zZw > AI?yAy?wAw7yAy7Z 11 > A‘/l:?wAw?yAsz
117e Muwyz
(19)
\ Imyzw1 \
Mayz Aw,yAy’zAw,Z > Am,yAy,wAw,z 1may-

\mz}yz \mzywl

Aw,z > Ax,zAz,wAw,z > Ax,wAw,z

lzéw Mgzwl
where the tensors have been omitted, and similarly for the second. In the k-linear case
we get, fora € A,, and be A, ,,

(1@ maye) © (douy © 1) (@ @) = ey, @ ek b= abel , @€l =
(mmyz o dwz) (a®b) = ((mxyz ®1)o(l® dywz))(a ®b).
The above constructions provide well-defined functions « : W7 <= Wy @ 3. Let us
check that these constructions are mutual inverses. The identity 5 o a(d) = d follows
form the following diagram:

1®jz 1®dzyz

sz

)

Aa:,z ® Az,z AJU,Z ® AZ,?J ® Ay,z

\ lmzzz (1()) lmzzy(@l

x?’z Az7y ® Ay?’z

dmyz

Conversely, the identity « o 5(e) = e follows from

zy

d ACE,y ® Ay,it

I
Ja l 1®1l®jx \

ACL’ T A(L‘,LU ® Ailf,y ® Ay,il‘ Al‘,y ® Ay,iL’

) 1®zey Mzry®1

where the left square commutes by naturality and the triangle by the unitality condition
of the V-category A. O

We can now provide a first equivalent characterization of Frobenius categories.
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Proposition 3.6. For any V-category A, there is a bijective correspondence between

e comultiplication and counit families (d, €) that give A the structure of a Frobenius
V-category;

o Casimir families e together with families v = {v,: Ay — I}iex such that the
following triangles commute:

TT TT

Ax,:c ® Ax,:c < : I z > Ax,oc ® Ax,x

gy |+ _ (21)

AII

)

In the k-linear context, (21) is expressed as v,(e; ) - €5, = €y, - Vao(€l ) = 1o The

families of maps (e, v) as above define a Frobenius system for any V-category A.

Proof. First, suppose that (A, m,j,d, €) is a Frobenius V-category. By Lemma 3.5,

we know that d gives rise to a Casimir family e A s M Ay ® Ay, If we
define v, = €,, one easily verifies that (21) is satisfied using the counity axiom (3) for
opcategories.

Conversely, suppose that (A, m, j) is a V-category with a Casimir family e = {%y}x’y
and v = {v, }, satisfying (21), namely a Frobenius system (e,v). By Lemma 3.5, the
induced dyy. = (1 ® my.,) o (€ ®1) already belong to W;, and moreover we define
coidentities by €, = v,. Then the coassociativity and counity conditions (3) are satis-
fied by examining the following diagrams, where ® has been suppressed and separated
subscripts have been concatenated for space purposes:

Magwyl

wy
le
Azw > AzwAwyAyw > AzyAyw
e
1 1"%111 A:rwAwyAywszAzw 11m 1 1'%
e Yywz
~ / \ ~
AwwszAzw (19) / AzwAwyAyzAzw AzyAyzszAzw
D Imgzyll
11e1l
Mawz1 Ap wAw s A AL A 1 1
Twz rwtw,z4 zyLlyzLlzw Moo 111 Mawyll Mywz
AzzAzw 2y ? A:pzAzyAyzAzw Maeyll > AmyAyzAzw

yx

le vy My
Ty
Ay, —
I
\

mzwl

y Aoy = Awelay Ay L Ay Ay Ay 2 Ay Ay,

A
~
€1 19) '
\ 2 4 NN
(21) Ax AzxAxy vzl \ 13 11wy 1y
\ Jx
N

. ]\L\ a1l .

A Azy T Azy AN R AﬁyAyy Mayy Amy
\Id\ //7[ \id\\\ i

(22)
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The unnamed sub-diagrams either commute trivially, or are V-category axioms. In the
k-linear context, the above is established, for any a € A,,, and b € A, ,, by
19
(1 ® dyzw)dryw(a) = ae%vy ® e?/weiluz ® ezw (:) aezluzeiy ® ezz ® e%vz = (dzyz ® 1>d12w<a)
vo(be, ) - €2, L va(eh ) - es b = l,.b=0, be,, - vyle ) L bl,, =b (23)
Therefore (A, d, €) is a V-opcategory which also satisfies (16), so it is indeed Frobenius.
The bijectivity of this correspondence follows directly from the bijectivity of the
correspondence in Lemma 3.5. Il

Remark 3.7. Notice that as mere families of morphisms, traces (counits) € from the
opcategory structure and ‘functionals’ v from the Frobenius system are basically iden-
tical, belonging to V; as in (18). Of course they ultimately satisfy different axioms, but
as the previous proposition made clear, they are essentially the same hence can be used
interchangeably.

The following lemma establishes a very important property of Frobenius V-categories,
namely that they are locally rigid (i.e. each hom-object has a dual in V) in a natural
way.

Lemma 3.8. Any Frobenius V-category A is locally rigid, with Ay = A, for any two
objects x, .

Proof. Since A is equipped with a Frobenius system (e, /), the evaluation and coevalu-
ation maps can be defined as

Myazy

zy Vy
evi Ay, @A, — Ay, — 1
zy

coev: [ = Ay, ®A,,
and the two commutative diagrams (22) verify that A, , is the dual of A, . i

Remark 3.9. In the k-linear context for a commutative ring k, we know that rigid
objects are exactly finitely generated and projective modules where the dual is given
by all linear functionals. Hence (23), which establishes Lemma 3.8, expresses the dual
base property (4) exhibiting {eZ ,,v.(—¢; ,)} as a finite dual basis for each k-module

A,y Notice that {e; ,, v.(e ,—)} also constitutes a dual basis for A, since

a = ae;y . l/y(eiy) = eivy . Uy(e;xa).

3.2. Characterization in terms of dual module structure. One of the equivalent
definitions of a (classical) Frobenius k-algebra A is that A is finite dimensional and
isomorphic to its dual A* as a right A-module. In this section, we generalize this to
Frobenius V-categories.

For any locally rigid V-category A, consider the right A-module AT that is constructed
as A*°P out of the left regular A-module as in Example 2.2 and the left A-module TA
that is constructed out of the right regular A-module. We denote

Vs = HomA<A7AT)> ‘/?)/:AHOm(Aa TA)
W5 = Homy(AT, A), Wi = sHom(TA, A)
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where for example Hom 4 (A, A") denotes the set of all right A-module morphisms from
A to AT: an element f consists of maps fu,: Az, — Ay . which satisfy (1), here

Myyz

A:B,y ® Ay,Z

y Asz
] 5
flz,m ® f4y7z ___j;7+ 14Z,x ® fqy,z ® f42,$ ® fiz,x i;;;;;? f4;,z ® fiy,m ® fiz,m __g%__+ /42,1
(24)

11lcoev

Lemma 3.10. For any locally rigid V-category A, there exist bijections
(1) Vi 2 V3 = V3,
(2) Wy = W3 = Wj

where Vi and Wy are as in (18).

Proof. First notice that V5 = V5 and W3 = W follow by construction of the module
structures on A*°P.
(1). Given a family v = {v,} € V; (see Remark 3.7), we can define

My ®1

yx
Vay: Azy R Apy @ Ayo ® Az,z — A ® AZJC 22 A;I (25)

Thes maps can be easily verified to satisfy (24), so they form a right A-module morphism
from A to A". This defines a map V; — V3. Conversely, given some v € V3, we define
a family of morphisms

J2®1

Ver Ay 255 A, @ Ay, SN AT @ A, ST (26)

establishing a map V3 — V. One can then verify that these two directions are mutual
inverses.
(2). Recall that by Lemma 3.5, Wi = W, the set of Casimir families. Given a

Casimir family ¢, we can define an element ¢ € W5 by means of the composition

% 1®?’gj * g$®1
Gy AW s AW Q@ Ay ®Apy — Azy
A similar computation as in part (1) shows that ¢ is also a right A-module morphism
using the Casimir property (19). Conversely, given ¢ € W3, we claim that

xy codv x 1@y
el — Ay @A, — Ary ® Ay s
form a Casimir family. Indeed, the following commutativity verifies (19):

zy 1oyel 1m
coevl yx Yrz
Apy —— Ay AL Ase AgyAye Ay, ———— AgyAy.

llllcégv (%) 1¢>sz

1lmg. 1691
* * * * *
Leoby Ay AL A Ay A%, — Awy Ay Ay A%, Ay A [ mazyl
CW () Myl
TZY

A AL AL

> ApsAsyAys

11¢y.

where (x) commutes since ¢ is a right A-module map between the regular A-module
and its dual AT, and (*) is the triangle equality for evaluation and coevaluation. The
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~Y

above constructions provide well-defined maps between W; = W, and W3, which can
be checked to be mutual inverses. O

Remark 3.11. One can observe that if V is a closed monoidal category, the bijections
Vi = V3 =2 V4 are still valid without the assumption of local rigidity — replacing X* by
[X,I]. On the other hand, in this setting we still have well-defined maps W; — Wjs
and Wp — Wi, but the proof for bijectivity is only valid under local rigidity of the
V-category A.

In the k-linear case, the Casimir family e in function of a ¢ € Wj is explicitly given
by U @py. (i), where {(u;, u;)} is a dual base for A,,. The Casimir property in this
case is explicitly checked as follows

ZYx

@ il; @pys (i) =t; - U (a i) @ () = @y (W] (a i) &) =
:{Lyl ®90yz( ﬁz* (a_)) :{Lyz ®90ya:(ﬁi*)a’ Va € Ax’z'

The following result then gives the characterization of Frobenius V-categories in terms
of ‘Frobenius isomorphisms’, namely A-module isomorphisms with A*°P.

Proposition 3.12. For a locally rigid V-category A, there is a bijective correspondence
between.:

(1) Frobenius systems on A;
(2) isomorphisms between the right A-modules A and A';
(3) isomorphisms between the left A-modules A and TA.

In particular, a V-category A is Frobenius if and only if it is locally rigid and A = A*°P
as right A-modules.

Proof. Recall that the right A-module structure on A*°P is the bottom of (24). We
only prove the equivalence between (1) and (2) since the equivalence with (3) follows
by symmetry. The last statement follows immediately from the stated correspondence
in combination with Lemma 3.8.

Given a Frobenius system (e,v) for A, by Lemma 3.10 we can construct two right
A-linear morphisms v : A < AT : ¢. It can easily be checked that ¢ and 1 are inverses
using the (co)evaluation condition together with (19) and (21).

Conversely, given an isomorphism of right A-modules ¢ : A — A" with inverse ¢, we
can obtain a Casimir element F and a family (v, : A, — [)zex from Lemma 3.10. Let
us check that these make up a Frobenius system. The left side of (21) follows from

ngv 1¢:cz ]111

ja Lge11 Lea1n

: _—
An, 00 AT A At — Sy AT, Ay

......... |d

using the evaluation-coevaluation property and ¢, v being inverses.
For the right hand side of (21), we first notice that the induced v, constructed as
(26) are equivalently given by

Yoz, gx 1QJs 4« v
Age — AL, » AL, @ Ay — L
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This follows from 1) being an A-module morphism and again the triangle equalities.
The remaining verification is now straightforward:

> 1 1 115
I =S A Aar 25 Ay Ay~ Ay ALy —255 Ay Al A,

........... i/d
Jx T llgg

g

Remark 3.13. In the linear case, the equivalent formulations for v, are computed

= Y0 (@)(Lea)

from which it follows that

The following result shows that in fact, the Frobenius isomorphism A = A*°P is a
V-opcategory one rather than just an A-module one.

Theorem 3.14. Let (A,m,j) be a Frobenius V-category with Frobenius system (e, v)
and consider the dual V-opcategory (A*°P,d4"" €2 as in Proposition 2.5. Then the
induced isomorphisms Py, Ay, — Ay, as in Lemma 5.10 form an isomorphism of
V-opcategories A — AP,

Proof. Recall by Proposition 3.6 that the induced comultiplication on A in terms of its
Frobenius system (e, v) is df),. = (Mgzy ® Ay2) 0 (A .® ¢) as in (20) and the induced
counit on A is just € = v. Furthermore, Lemma 3.10 describes the morphisms 1,, in
terms of the Frobenius system as 13, = (1, ® A} ) 0 (Myye ® A7 ) 0 (A,,®@ cdev) as in
(25).

The following diagram shows that 1 preserves the cocomposition

1Cég\/ Myzzl vzl 1(23%\/
2y 1coby
e lllcggvl
* * * *
Ap. AL A, A AL AL At Ay Ay AT AL
vy
11el
Mgzyl llzéyll €
* *
AzyAy: Ape Ay Ay Ay Az, (19) Apz Ay Ay Ayy Az, Imaye11
11coév HmyZyIJ ml J{Hl’/yl
* * * * *
AmyAyZAZyAzy AxZAZyAyyAzy AxZAZyAyyAzy (*) AyacAzy
Imyyl
1myzy1l llluyl y
* *
AwyAl/yAzy szAzyAzy
yx
Magzyl
* * *
AiEyAzy AzzAzyAyIAyzAzy
llmzyzll
vell
* *
Aps A Ay AL,
1cdev 1m2y111l

Ay Aye AT AS s A AT A

yziizy Mayrll yzizy



A LARSON-SWEEDLER THEOREM FOR HOPF V-CATEGORIES 27

where the inner diagram (x) commutes because of (21), definition of V-category and the
evaluation-coevalution property. A similar diagram proves the counit condition. Il

Notice that the previous characterizations of Frobenius V-categories can be reformu-
lated in terms of V-opcategories. For example, since a V-opcategory C' gives rise to a
V-category C*°P by Proposition 2.3, Proposition 3.12 would accordingly state that a
V-opcategory C' is Frobenius if and only if C' is locally rigid and isomorphic to C*°P as
right C-opmodules, using the regular structure for C' and the one from Example 2.23
for C*°P. In that case, one has the following corollary.

Corollary 3.15. A V-category A is Frobenius if and only if the V-opcategory A*°P is
Frobenius.

Proof. This follows from the following equivalences.

V-category A is Frobenius < A = A*°P as right A-modules
& AP = A as right A%°P-opmodules
< V-opcategory A*°P is Frobenius

The first and last equivalences are Proposition 3.12 and its dual statement, and the
middle equivalence is Proposition 2.4. Il

Finally, the symmetry of the Frobenius definition is also expressed as follows.

Proposition 3.16. If A is a Frobenius V-category, then the categories V-opMod 4 and
V-Mod 4 of A-modules and opmodules are isomorphic.

Proof. Suppose the V-category (A, m,j) comes with a Frobenius system (e,v), and
(N, x) is an A-opmodule and (M, 7) an A-module. Define a functor F': V-opMod, —
V-Mody by F(N,,) = N,, with action

1®mzyz 1®v,

Noy ® Ayy X225 N, @ Ay ® Ay 5 N, ® A, 245 N,

mapping an A-opmodule map to the same morphism in A which can be shown to
commute with the above defined actions. Furthermore, define G: V-Mod,4 — V-opMod 4
by G(M,,) = M,, with coaction

Tryz ®1

l®yez
Mx,y ) Ma;,y ® Ay,z ® Az’y —_—_> Mx7z ® Az7y

Those two functors are inverse to one another, and the proof is complete. U
3.3. Characterization in terms of trace morphisms. In this subsection, we pro-
vide yet another characterization of Frobenius V-categories, generalizing the classical

characterization of Frobenius algebras in terms of properties of the trace morphisms.
We moreover show how this is related to so-called ‘Calabi-Yau’ categories.

Definition 3.17. For any V-graph G, a bilinear form T is a collection of morphisms
Ipy: Gy ®Gy — Iin V. If V is braided, a bilinear form is said to be symmetric when

Gz,y & Gy,m Lay
‘) T~ I
Gyo ® Gay /

Yy

commutes for all z,y.
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If Ais a V-category and I is a bilinear form on A, we say that I' is balanced when
the following commutes

Mayz®1

Axvy ® Ayvz ® AZ,I Aw,z ® Az,x (27)

1®myzz l/ l | o

Apy @ Ay o I

Tuy

We denote the set of all balanced bilinear forms on a V-category A by
Vi={l ={Tuy}oyex | Tay: Avy @ A, — I satistying (27)}

With notation as in (18), we obtain a correspondence to the traces or functionals on A,
see Remark 3.7.

Lemma 3.18. For any V-category A, there is a bijection V; = V.
Proof. For any v = {v,: A,, — I}, € V4, define a bilinear form by

Loyt Avy @ Ayw —255 Ayy 25 1. (28)
From the associativity of A, we immediately obtain that I' is balanced.

Conversely, given a balanced bilinear form I' on A, we define

Vot Apg 225 Ao @ Ay ~25 1
Since I' is balanced, we also have that v, = 'y, o (1 ® j,).
It can be easily verified that these two constructions are inverses. U

For any locally rigid V-category A, Lemmas 3.10 and 3.18 establish that
ViV =2V, 2V, (29)

A balanced bilinear form I' € V; or a corresponding family of trace morphisms v € V}
will be called left (respectively right) non-degenerate if the corresponding element in
V3 (resp. V3) is a split monomorphism. Spelled out in the more general setting of a
monoidal closed category (see Remark 2.1) where n: ¥ — [X,Y ® X] is the tensor-hom
adjuction unit, this leads to the following definition.

Definition 3.19. Suppose V is monoidal closed. A bilinear form I' on a V-category A
is left non-degenerate when all maps

(LT 2y] *
Fiy: Agy RN [Ay 2, Ay @ Ay o] — [Ay o, I] = Al

are split monomorphisms in V. If A is locally rigid, this says that

yx
1. 1®coev «  Tzy®1 «
Fzy' Al":y — Ar,y ® Ay,w ® Ay,w B Ay,x

are split monomorphisms. Symmetrically, I is right non-degenerate when the maps

o1 .
2 Ay L [Ays Apy @ Ay ) LN Ay Ay ® Ay ] ETN A

Y, Y, I] = AZ,JS
are split monomorphisms in V. We say that I' is non-degenerate if and only if it is both
left and right non-degenerate.

Equivalently, a family v = {v,}, of traces is non-degenerate if and only if the cor-
responding bilinear form (28) is; in the locally rigid setting, this is the case when (25)

and its ‘switched’ (using braiding) are split monomorphisms in V.

Y,T»
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In the k-linear case (where k is a field) we find that F;y(a) € Ar  is defined by

Y
the formula 'y (a)(b) = I'yy(a ® b). So T}, being a split monomorphism (which is in
this case equivalent to being a mononomorphism or to being injective) means that if
I';y(a®b) =0 for all b, then a = 0 as usually stated.

The next lemma gives several sufficient conditions to obtain non-degeneracy of a
bilinear form.

Lemma 3.20.

(1) If A is a Frobenius V-category, there exists a mon-degenerate balanced bilinear
form on A.

(2) If a bilinear form is symmetric, then left non-degeneracy is equivalent to right
non-degeneracy (hence to non-degeneracy).

(3) If V = Vecty, and A is locally rigid then for a bilinear form, left non-degeneracy
is equivalent to right non-degeneracy (hence to non-degeneracy).

Proof. (1). If A is Frobenius, then the counit of the opcategory structure corresponds
by Lemma 3.18 to a balanced bilinear form I' on A. On the other hand, we know by
Proposition 3.12 that A is isomorphic as a right A-module with AT and as a left A-
module with TA. As observed above, these isomorphisms are exactly given by I'' and
I'2, hence in particular I is already non-degenerate.

(2). If a bilinear form T' is symmetric, it follows directly from the definitions that
't =r2

(3). In this case, local rigidity means that dim A,, = dim A} , and injective maps
between vector spaces of the same finite dimension are automatically bijective. O

We now proceed to the equivalent characterization of Frobenius structures in terms
of bilinear forms, and moreover for symmetric ones as in (17).

Proposition 3.21. Let A be a locally rigid V-category. There is a bijective correspon-
dence between the following:

(1) (symmetric) Frobenius structures on A;
(2) (symmetric) non-degenerate balanced bilinear forms on A;
(3) (symmetric) non-degenerate families of trace morphisms on A.

Proof. We already know by Lemma 3.18 that for a given (locally rigid) V-category, there
is a bijective correspondence between trace families (candidate counits) for a Frobenius
structure on A and balanced bilinear forms on A, which carries on to non-degenerate
ones by Definition 3.19.

From the construction of this correspondence, it is clear that a given Frobenius struc-
ture is symmetric if and only if the associated bilinear form is so. Furthermore, we know
from Lemma 3.20 that the bilinear form I' € V} corresponding to the counits v € V; of
a Frobenius system is non-degenerate.

It only remains to prove that a non-degenerate balanced bilinear form on A endows A
with a (unique) Frobenius system. Let I' be such a bilinear form: by (29) we know that
it corresponds to a right A-linear morphism I'' : A — AT and a left A-linear morphism
I'?: A — TA. Moreover, non-degeneracy of I' implies that all I} and I'2 are split
monomorphisms in V and so they have left inverses that we will denote respectively by
A}, and A2 . Define

2 s 1®coby * % U®A32/ac * 1R8v
Azy . Ay,x I Ay,m ® Az,y ® Aw,y —_— Aﬂfvy ® Ay,r ® Ayﬂﬁ E— Aa:,y
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Using the fact that A? is inverse to I'? and the evaluation/coevaluation condition, we can
verify that Nisa right inverse of I'} . Therefore, I'' has both a left inverse A' and a right

inverse A~ 50 is an isomorphism, and as a result A is Frobenius by Proposition 3.12. [J

Now recall from [Cos07, p. 176] that a Calabi-Yau category is a k-linear category for
a field £, equipped with a family of trace maps Tr,: A, , — I with the property that for
all z,y € X the associated pairing I'y, = Tr, o mg,, is non-degenerate and symmetric.
In our notation, if we substitute Tr, by v, and recall (28), we immediately obtain
the following characterization of Calabi-Yau categories as a corollary of the previous
proposition.

Corollary 3.22. A locally rigid k-linear category is Calabi-Yau if and only if it s
symmetric Frobenius.

3.4. Characterization in terms of adjoint functors. Another classical character-
ization of Frobenius algebras says that a k-algebra A is Frobenius if and only if the
forgetful functor U : Mod 4 — Mod,, that forgets the A-action is a left adjoint of the free
functor — ® A: Mod, — Mod 4. This is the origin of the alternative ‘Frobenius functor’
terminology that refers to adjoints which are both left and right to the same functor.
Before we generalize this result, let us first observe that for any V-category we have the
usual free-forgetful adjunction.

Proposition 3.23. Let A be a V-category. Then the forgetful functor
U:V-Mody — V-dGrph,
defined on objects by U(M, 1) — {M, ,}rex has a left adjoint FF = — ® A.

Proof. Similarly to Theorem 2.24, the functor F = — ® A: V-dGrph — V-Mod 4 maps a
diagonal graph {N,}, to the right A-module {N, ® A, ,}., with action 1 ® m,..

For any N € V-dGrph, define o, = 1® j,: N, = N, ® A, , and for any (M, 1) €
V-Mod, define 5] = Tuye: My ® Ayy — M. It can verified that o and 8 are the
unit and counit of the desired adjunction. U

The following lemma gives the essence of the characterization in terms of the adjunc-
tion.

Lemma 3.24. Let (V,®,1) be a category such that the monoidal unit I is a (reqular)
generator and all endofunctors — @V :V — V preserve (reqular) epimorphisms. For a
V-category A, the sets Vi of traces (18) and Wy of Casimir families (19) are moreover
in bigection to the following sets of natural transformations

(1) Vi = Nat(U o F,id);

(2) Wy = Nat(id, F o U).

Proof. (1) Consider a family € = {€,},ex € Vi. We define a natural transformation
B:Uo F —id for any object N € V-dGrph by

By =1®€: Ny ® Ay y = N,

Conversely, given § : U o F' — id, for the unit diagonal graph D = {I}, we obtain
{h: Avx — I}rex € V1. Now for any V-dGrph-morphism n : D — N with components
n, : I — N, we find by naturality of 5 that 5% o (n,®1) = n,0/5%. On the other hand,
I is a generator so the morphisms n : I — N are jointly epimorphic; since endofunctors
— ® V preserve (regular) epimorphisms, it follows that (n ® 1) are jointly epimorphic
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as well. Therefore, we obtain that g3 = 1 ® g7, for all N and z, from which we deduce
that the above defined maps between V; and Nat(U o F|id) are bijections.
(2) Let e € W5 be a Casimir family. Define a natural transformation id — F' o U by

yx
I®e
zy
Ay Myy » My ® Ay @ Agy

mzyz®1 M:r’x ®A%y (30)
for any right A-module M and any x,y € X. The fact that «}7 is a right A-module
morphism follows from the Casimir property of e, and naturality of « is immediate.

Now let « : id — F o U be a natural transformations and fix y € X. If h : X — X
is defined by h(z) = y for all objects z € X, recall that the shuffle A" of the regular
right A-module, as defined in Section 2.1, is given by AZU = A,, for all z,u € X with
a right action given by 7 = m,,,. Then we define

. azy
€I A=A A @A, =A,,0 A, (31)

which is verified to satisfy the Casimir property in the end of the current proof.

In case the natural transformation « arises from a Casimir family as in (30), we see
by the commutativity of the following diagram that the morphisms defined in (31) are
exactly the initial ones:

Jy

__ Ah le¥® h _
[ Ay:y_Aa:,y Aa:,yAyJAx»y - AyyyAvaAl”vy
¥ 1 L j Myyal
A, A W AL AL A e At A = A LA
Y,z Z,Y Y,z T,y Yy x,xr Ty T Y,z z,y

Conversely, we will show that for a natural transformation « : id — F o U, the maps
defined as in (30) where € is constructed as in (31) are exactly the components of the
a. To this end, for a fixed y € X, any right A-module M gives rise to a right A-module
M A whose components and action are given by

(MA)u,v - Mu,y & Ay,v; /j/qug =1® Myvw - (MA)U,'U & A'U,w — (MA)u,w

for all u,v,w € X. Then for any family of morphisms n, : I — M, , with u € X, we
obtain a right A-module morphism n : A* — M A given by

Ny ®1

Ny ° A’J’U =A My, ®@A,,=(MA),,

y7’U

for all u,v € X. As a consequence, we find that the following diagram commutes

Yy

(MA)%y:Mz,yAy,y = 11(MA)x,xAxvy:Mx,yAywA%y
nel oy A;,zA%y:Ay,xAx,y E

«

/Ah7
AT =A

Ty

T N
Yy el Mw7yAz,y—Mx7yAy,y

The commutativity of the upper triangle follows by the naturality of o applied to the
right A-module morphism n, and the lower triangle commutes by naturality of the
tensor product. Hence we find that ajj, o (n, ® 1) = (1® a’}}) o (n, ® 1). Since this
hold for all choices of the morphisms n, : I — M, ,, we obtain that

o= 180a% (32)
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by the generator condition on /. Thanks to this identity, the following diagram com-
mutes by naturality of a

. zy _ zy
15y A a=1®a

M,

_ h h _
szyAy:y_Mm,yAm,y M%ZJAI,:EA%?J_M%Z/AZU@Affyy

\L luzyzl

M, Ay,

x,y a:]ﬂ\éj
Hence a5 = (Jlaye ® 1) o (1® €), where the morphisms € are defined as in (31).

The proof is complete, subject to the verification of the Casimir property (19) of e
(31) by the following diagram:

2y _ Y
1aAh, =000,

&L ApyAyy=A,, AV Apy Ay Asy=A, AT A,

A.Z,y Y ) z z z,y )

jzlj \ meyy lmzyzl
zy
X uh

h _ — Ah A h —
Az,a:Axyy_Ax@AI,y Maay AI»Q_AZ,y AZ,ZAZJ/_A%ZAZJ/
O‘fh lj ‘
Im
h _ zZxrYy
AZ’ZAz,yAz,y_Aax,zAz,yAa:,y Az,zAz,y

The functions h,h': X — X are defined by h(u) = x and h'(u) = y for all u € X
the right A-module A"A has (A"A),, = A,y ® Ay, and 1 ® o7, = o, is just (32)
applied to the right A-module A”. The right upper square commutes by naturality of

« and the lower square commutes by right A-linearity of a 4. Il

Recall (e.g. [CMZ02]) that a functor F' : C — D is called Frobenius if it has isomorphic
left and right adjoints. If we denote the (left or right) adjoint of F' by U, then we
also say that (F,U) is a Frobenius pair of functors. Hence we obtain the following
characterization of Frobenius V-categories.

Theorem 3.25. Under the same assumptions as Lemma 3.2/, a V-category is Frobenius
if and only if the functor — ® A: V-dGrph — V-Mod 4 is Frobenius.

Precisely, there is a bijective correspondence between Frobenius structures on A and
pairs of natural transformations U o F' — id and id — F o U making (F,U) into a
Frobenius pair of functors.

Proof. 1t can be verified that F' is a right adjoint of U with unit o and counit g if
and only if the corresponding Casimir family e and family of maps € = v by means of
Lemma 3.24 satisfy the Frobenius system conditions (21). O

4. THE LARSON-SWEEDLER THEOREM

In this section, having introduced all the required structures, we proceed to the main
goal of this work: a generalization of the Larson-Sweedler theorem for Hopf V-categories.
We first briefly recall the original setting for k-algebras over a field or principal ideal
domain, then we generalize integral theory for Hopf V-categories and finally we prove
the main results relating Hopf and Frobenius structures on a V-category.
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4.1. Classical Larson-Sweedler Theorem. Let us recall the original statement found
in [LS69].

Theorem (Larson-Sweedler). Let H be a finite dimensional bialgebra over the principal
ideal domain R. Then the following conditions are equivalent:

(1) there exists an antipode for H;
(2) there exists a non-singular left integral in H.

If A is a non-singular left integral in H, and A1 is any left integral in H, there exists
a € R such that Ay = aA.

By a left integral in H, one means an element ¢ € H satisfying ht = €(h)t for all

h € H. An integral is moreover non-singular if the linear maps

p:H — H,  p(f)=fltowte (33)

q:H* = H,  q(f) =tu)f(w)
are bijective. Notice that when working over a field, the existence of an isomorphism
H = H* implies the finite dimensionality of H — so that this assumption can be dropped
in part (2) of the above statement. Moreover, one can verify that the composition of
p with the antipode of the Hopf algebra H yields a right H-linear map H* — H.
Since the antipode of a finite-dimensional Hopf algebra is automatically bijective (see
one-object case of Lemma 2.25) this right H-linear map is an isomorphism, giving a
Frobenius structure on H. Because of this, and since any Frobenius algebra is finite
dimensional (see one-object case of Proposition 3.12), the Larson-Sweedler theorem is
sometimes rephrased by saying that a Hopf algebra is finite dimensional if and only if
it is Frobenius.

However, an important remark should be made here: it is of course well-known that a
bialgebra can only have one unique antipode. Moreover, the Larson-Sweedler theorem
says that a non-singular integral in a finite dimensional Hopf algebra exists, and such an
integral is also unique (up to scalar multiplication). On the other hand, there can exist
many Frobenius structures on the same finite dimensional Hopf algebra. However, only
one of these Frobenius structures will correspond exactly to a non-singular integral!

Let us clarify the above by the following example. Of course, any group algebra
kG over a finite group G has the structure of a finite dimensional Hopf algebra, with
multiplication and unit extending those of the group and comultiplication, counit and
antipode extending g + ¢®g, g — eg and g — g'. The Larson-Sweedler theorem then
ensures that it has a non-singular integral, which in this case is given by the element
> gec 9, and the Casimir element of the corresponding Frobenius structure on such a
Hopf algebra is given by 3 ,9®g7"

In particular, for G = C; the cyclic group with four elements generated by g, we find
that a Frobenius system for kG is given by the Casimir element

e®e+g®g3+gz®92+g3®g

and linear functional d., the dual base vector of e. On the other hand, one can easily
verify that there is another Frobenius system on kCj given by the Casimir element

e®g+g®e+92®gg+g3®92

and linear functional d,, the dual base vector of g. It is known (see Proposition 4.2 below)
that any Casimir element e! ® ¢? on a Hopf algebra H leads to a left integral e'e(e?) and
on the other hand any left integral ¢ leads to a Casimir element ¢y ® s(t(2)). However,
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this correspondence is not bijective: in general, there are more Casimir elements than
integrals. In case of the example Cy, we see that both Casimir elements for kCy above
give the same integral t = e+ g+ g%+ ¢>. On the other hand, starting with this integral,
the above construction gives back only the first Casimir element.

Finally, let us also remark that a bialgebra can be Frobenius without being Hopf:
indeed, this is the case exactly when the Frobenius structure does not correspond to an
integral. Take for example the monoid algebra kM where M = {e,g | ¢*> = g}. Then
kM is Frobenius via the system with Casimir element

eRe+g9gRg

and linear functional d.. However, since M is a monoid and not a group, the bialgebra
kM is not a Hopf algebra. One can also see that the only integral in kM is g, and this
integral is singular since p(g)(d.) = 6.(g)g = 0.

4.2. Integral theory for semi-Hopf V-categories. In this section, we generalize the
theory of integrals in the many-object setting, which is necessary for the expression and
proof of the main Theorem 4.17 as well as intermediate results. For what follows, fix
(A,m, j,6,¢) to be a semi-Hopf V-category for a braided monoidal category V.

Definition 4.1. A left integral family for A is a collection t = {}J I — Ay y}eyex of
morphisms in V that satisfy the commutativity of

Ty
Az7q; o ? AZ,J? ® ACC,y
Ezx
1®Zty \ ]— \ Mgy (34)
Zty \
Ap ® A, — S A,

where the bottom triangle commutes trivially. In fact, if we consider the unit V-graph
7 given by Z,, = I viewed as a left A-module via e,, ® 1: A, , ® I — I, a left integral
family can equivalently be viewed as an identity-on-objects left A-module morphism
t: 7 — A

A right integral family for A is defined symmetrically via the property

Mgy O (t ®1) =1 Oy (35)

In the k-linear case, morphisms k — A, , can be identified with elements of the vector
space, and a left integral family is then can be written in the form

(te Ay la t=¢e.(a) ¢,Vz € X and Va € A, ,}.

The following result establishes the close relationship between integral and Casimir
families from Definition 3.4, for (semi-) Hopf categories.

Proposition 4.2. FEvery Casimir family e = {gg}mjex for A gives rise to a left integral
family t. via

1®5yz

Ti=1 S5 A, @Ay, —5 Ay (36)

If A is moreover Hopf, every left integral family t = {Zty}xﬂex gives rise to a Casimir

family e; via
zy
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In fact, for every integral family t in a Hopf category it holds that t., = t.

Proof. In order to verify (34), we examine the following commutative diagram

Az,x 10°¢ > Az,z @ Ax,y ® Aw 1®1Qeys Az,a: 2 AW
Zey®1l (19) lmzzy@)l lmzzy
Az,y & Ay,z ® Az,w A v
1®ey-®€za

where the bottom composite is precisely ? QE 2-
Conversely, the Casimir condition (19) can be verified via the following calculation

Mgzyl 0 115,y 018,01 ¢

© Myzyl 0115, 010,01 1 ole,, 06,,

— Mgyl 0111e,, 0 11s,y1 018,101 ¢ 104,

(2) mxzyl o 11myz2 o 111]z ollle,. o 11823/1 © 1521/1 ol Z'EJ Lo 5xz

D 1yl 0 11my.. 0 111, 0 1115,.1 0 1116,, 0 11s,, 10 16,,1 01 £ 1 04,

= Mgyl o 11my.. 0 111m.,. 0 111s,.1 0 115,11 0 111d,, 0 18,101 ¢ 104,

= Myzyl 0 11my,, 0 111m 4, 0 111s,,1 0 115,11 0 1d,,11 0 11d,, o 1 zty lod,,

2;0 1myzz o mmzy].l o 115my1 ° 11mmzy1 © 110_11 © 1531111 © 10_11 oll Zty Lo dmzl

— 1myp. 0 L5zl 0 Imyayl o 107 1 o my.y111 016,110 10 1011 { 1o d,.1

(*;*) 1mymz ) ]-Sxyl O mmymmyl olollo (5xz52y]- ol zty lo 62:,2

© 1My, 0 1syy1 0 951 0myyl ol Y10 Ous

O s 0 180yl 0 85yl 0 €0ullo 1 104y,

Y 1imyes 0 155,10 0gylo 7 1

Explicitly, () uses the local comultiplication, (%) the V-category structure and (x * *)
the naturality of the braiding with o7 4 = 01_7114 = id4. Finally, taking the integral family
of an integral-induced Casimir family returns the initial one as follows:
mty 51:’/ 1®51y
I — A$7y _— Aa@y ® A.Z’,y — Aw,y ® Ay,x
e, (2,10)l1®syw

=4,
O

Remark 4.3. As we already discussed in Section 4.1, in general a Hopf V-category (or
just a Hopf algebra) has more Casimir families than integral families. For example, if
the semi-Hopf category A has an op-antipode 5 (e.g. A is locally rigid and Hopf), given
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a left integral ¢, one can easily check that the following family is also Casimir

zy
t
1 Agy

- 1®5yx
Am,y X Am,y - Am,y X Az,y — Am,y X Ay,z

Sy

In case A is commutative or cocommutative, then this Casimir element is the same as
the one from (37). In the same way, starting with a right integral family ¢, we find that
the following composites

zy

[ ) Soy®1
1 A -

Yy Aw,y ® Am,y - Ay,w ® A:v,y (38)

e Sya®1

t 1 o
1 Asy Apy Ay —Apy @Ay y — Ay @ Ay,

both form Casimir families.

Notice that a Casimir family for a V-category A is in particular a bilinear form (Defi-
nition 3.17) on A, viewed as a V°P-graph. Since Casimir elements can be constructured
from integrals by the above Proposition 4.2, non-degeneracy of bilinear forms as in Def-
inition 3.19 can be traced back to integrals as well. This lies at the origin of the notion
of non-singularity for an integral family as expressed below, where the split monomor-
phism condition of non-degeneracy here corresponds to a split epimorphism condition
due to V°P.

Suppose the enriching base V is monoidal closed, and denote A = [A y, I] which is
not necessarily the categorical dual of A, , as discussed in Remark 2.1. For any (left or

right) integral family ¢t = {zty} of A, we define two families of morphisms
Ty Yy
Doyt Apy 5 AL @ Auy —% Ay, 8 Ay ® Agy = Ay (39)

zy@l

¥ 5 o ped
Goy: AL, T2 Apy@AL T ALy ®A, QAL 120 A @AY © AL, ooy Ay (40)

Definition 4.4. Suppose A is a semi-Hopf V-category, where V is braided monoidal

closed. A (left or right) integral family ¢ = {Zty} is called left non-singular if all maps
Pz for x € X are split epimorphisms.

Similarly, the (left or right) integral family ¢ is called right non-singular if all maps
Gz for x € X are split epimorphisms. If the integral family ¢ is both left and right
non-singular, we say that it is non-singular.

In the k-linear case for any commutative ring, the composites of Definition 4.4 are

Pay = Ary = Avgs pey(F) = F(E ) Lo

oy - A;,y — A;t,ya %vy(f) :ty(l) f(ty(2))
If £ is a field and A is locally finite dimensional, then non-singularity implies that all
Pz and Gy, are isomorphisms. In other words, if a k-linear semi-Hopf category (with &
a field) has a non-singular integral then all diagonal bialgebras H,, have a non-singular
integral in the classical sense, as in (33). Moreover, we will later prove Theorem 4.16,
(iv) that if a semi-Hopf V-category A has a non-singular left and right integral, then all
maps Py and ¢, are isomorphisms.

The following result shows how to construct a right integral family from a left one,

using an invertible antipode.
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Proposition 4.5. Suppose (H, m, j,0,¢, s) is a HopfV-category with invertible antipode.
Ift = {TtJ I — Hyy}ay is aleft integral family, then

Yyx

sot:= {] L) Hy@ Sy_z> Hz,y}ac,y

is a right integral family for H. Moreover, if t is left (right) non-singular, then s ot is
right (left) non-singular.

Proof. The right integral property (35) of {s,,0 ytx}zy can be verified by the following
computation, where e.g. sy, H, . denotes sy, ® 1g,_:

yx

My © Sy Hy .0t Hy .

yx

_ ~1
= Mygy: © Hyyszy 0 Hyys, 08y Hy 0t Hy,

_ -1 %
= Mayz © HyySay 0 SyaHzy o Hygso ot Hy.
Yyx

—1 —1
=822 OMyye ©0 ~ O Hy,:pszy ot Hy,z

yx 1

= Szz O Myyg © Hz,y t Oszy
zx 1

= 5,,0 t OE4y © sz_y

zT

= 8,40 1 O&y;

where we used Remark 2.10 and (34), namely the condition that left integrals satisfy.
Furthermore, to show that s ot is right non-singular when ¢ is left non-singular, as

per Definition 4.4 we need to find a right-sided inverse g, to the composite

H;,a: t—1> Hx,m@Hw,x i Hm,x@H;,a: = Hm,x@HI,x@H;,x 1—> H$:$®H;,x®H$,1 i> HI:I
For t, we know that there exists a p, such that p,, op, = Hy , for p,, as in (39). It

can now be verified, using that d,, 0 s,y = 0 0 (sS4 ® Suy) © dyy from Remark 2.10, that

—1 D, soA)*
G, = Hyp 25 Hy, 2 12, S0 e
is the required splitting, where in the monoidal closed setting f* just means [f,1]. O

Remark that in the previous proof, we only used that the antipode is an anti-Hopf
category morphism. Hence one proves in the same way that if ¢ is a right integral family,
then s ot is a left integral family.

The following technical lemma will be needed in the proof of our main Theorem 4.17
and relates the inverses of the split epimorphisms in the non-singularity condition to
one another via an invertible antipode.

Lemma 4.6. Suppose t is a non-singular left integral family for a Hopf V-category H
with invertible antipode. For any two maps fy, ge: Hyn — I, if the composites

18 fx

T Ozz
I - H,, — H,, ®Hy y —— H,,

TtT 51@ gac®1
I - Hx,x — Ha:,m ® Hm@ — Hx,m

are both equal to j,, then g, = f,os,}.
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In particular, if G, is a right inverse of the split epimorphism q.. (39) and p, a right
inverse of pye accordingly, then

evo(p,®1)o(j,®1)=evooro(1®q,)o(l1®j,)os,r: Hypw— 1.
Proof. The result follows from the following computation:
Gz = Gz © Mgy © Hy g s
= G0 © Mgy © HooHyo fr © HiyOrg 0 Ho
= 20 Muge © Hy ooy fo 0 Ho o Ho ) © Hy pHy 50 © Hy y80p 0 Hoy 1

rx

-1
=Gz © x,:r:f:r: Ollg xSy, © ma:mcHx,x o Hx,xHx,xsxx o Ha:,x(scr:x Oy g t
()

=gz 0 x,xfx Olly xSy, O dlg Mgy O x,a:sccxHx,x o 5szx,xo t H:c,x

() -1 -1 -1 e
= gz © x,a:f:c © Hx,a:mx:v O [y 20 O My 2S5y Spx © H:c,azsxxHJ:,x o 6333:Hx,a:o t Haz,x

-1 -1 i
= fm O Mgy ©0 o Hm,xsg;x © ngx,z © 53:,9:Hx,xo t Hx,x

_1 1.
= fa: OMypgy ©0 ~ O Lly 2S,, © ]wHa:,w

. -1
= fx O Mygx © g gz © Syy

In () we used Proposition 4.2 and in (%) we used Remark 2.10. For the second part,
notice that both composites below equal j,, by definition of p and 7:

xTxr
evl

Ju Pa 1% 1600
I —H,, — H;l, — H;;m ® Hy, — H;,x QHy, @ Hyy — H

& H, S a, “5H,, 98, Y H,,0H,,0H , ‘% H,,oH: ,©H,, 5 H
Therefore by choosing g, =ev o(p, ® H,,) o (j. ® H,,) and f, =ev oo o (H,, ®7,) o
(Hyz ® Ju), the result follows. O

Integral families of Definition 4.1 can be expressed in any semi-Hopf V-category A.
In what follows, we require some extra assumptions in order to define an ‘integral space’
as an object in the enriching category V, whose generalized elements are precisely those
families. Notice that due to standard conventions, left integrals are constructed using
right internal homs and vice versa; since V is braided, that subtlety can be ignored.

Definition 4.7. Suppose A is a semi-Hopf V-category, where ) is monoidal closed with
all limits. The left integral space of A is the diagonal graph fj = {( fj) } where

zeX
each object < fj) , denoted henceforth fj _, is the limit of a diagram in V as below

¢
//fA,z\\

[Aw T A’LU Z] [Ax,yy AI,Z] [Ayﬂl/? Ay,Z]
(41)
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The morphisms €,, ® 1 and My, are the adjuncts of e, ® 1: A, , ® A, . — A, . and
My Az y®A, . — A, . under the tensor-hom adjunction for right-closure. The limiting

cone under fj _ is determined by the dashed maps t,. : fj L= Ay

The right integral space f; of A is computed similarly using left closure, by taking
the limit of the diagram

Ja
Ax

. <
-

1@% A,

[Azys Azy]

As one can expect, in the k-linear case an integral space sz is given exactly by

the k-linear space of all integral families of the form T for arbitrary y € X. Since it
is important for what follows, let us spell out the exact connection between integral
families of Definition 4.1 and integral spaces of Definition 4.7 for general V-categories.

The key observation that connects the above definition with integral families is that
under the tensor-hom adjunction, each commuting square in the limit diagram (41) for
example corresponds to a commuting

1®tay

An® [y, A.a ® Agy (43)
1®tzy \j Mzry

€22®1
Az7x ® Az7y AZ?y

Then any identity-on-object diagonal V-graph morphism w: Z — fj in V consists of

morphisms u,: [ — sz which in turn correspond to maps t as below

(44)

[Aa:,ya Ax,z]

which all together form an X?-family {xty: I — A, ,} satistying precisely (34).

In the one-object case, in any monoidal closed category V' with limits, both spaces
reduce to equalizers due to the shape of the limiting diagrams: the left integral space
of a bimonoid A is given by

e®1

[y —— A== [A,A] (45)
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and similarly the right integral space is the equalizer of the adjuncts of the multiplication
m: AR A— Aand 1®e: AR A— A

On the other hand, in the many-object setting again, one can wonder how the defini-
tion of integral space dualizes to a semi-Hopf V-opcategory (C,d, €, 1, n). The construc-
tion of a similar limit will now use the (global) counit e and the (local) multiplication
1, and the switch between these local and global structures makes the limit in this case
into a sheer equalizer. Hence we obtain the following definition.

Definition 4.8. For a semi-Hopf V-opcategory (C,d, €, uu,n), the left integral space of
C' is the diagonal graph which consists of the equalizers

Q1
fé’,z — szz M; [Cz,270z,z] (46)

for all z € X. Symmetrically, we will denote by [ g the right integral space of C.

Proposition 4.5 draws a correspondence between left and right integral families for
Hopf categories; this is established as an isomorphism between the integral spaces below.

Proposition 4.9. If H s a Hopf V-category with invertible antipode, then f; > ffl

Proof. Tt suffices to show that there is a natural isomorphism between the diagrams (41)
and (42) over which the limits are computed, which is easier to see if we translate them
under the tensor-hom adjunction (since the one uses right and the other left closure):

Al’,y ® AJI,Z AJI,y ® Ay,Z AZ,.Z’ ® Ay,l‘ Az,y ® Ay,CE
Ax,z AZ,I

The following commutative squares give isomorphisms between the left and right legs of
the above diagrams respectively, where the bottom isomorphism between the common
targets is the same:

o SzzSxy o SyzSxy
Ax7yAx7z Ax7zAx7y AZ7IAy7I AI’yAyYZ AyVZAI?y AZ7yAy7x
é‘xyll/ llé‘yw mzyzl lmzyz
A:v,z > Az,x A:p,z 4 Az x

Szz

These are verified using the standard properties relating antipodes with counits and
multiplications from Remark 2.10, and the braidings imply the passage between left
and right closure in braided monoidal categories. O

The following result relates the integral spaces to the coinvariant spaces as in (11)
and (12) of specific regular Hopf (op)modules, namely H;, the Hopf H*°°-opmodule
H described in Example 2.22(1) and Hj, the Hopf H-module H* described in Exam-
ple 2.22(3). As these modules only exist if H is locally rigid, we restrict to this setting
now. In the k-linear case, the second part below was shown in [BCV16, Prop. 10.5].

Proposition 4.10. If H is a locally rigid Hopf V-category then

[ o= wa [ e

H,x H*op g
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Proof. Since H is locally rigid, the (left) internal hom [H, ., H,.] in V is given, up
to isomorphism, by H,. ® H ; in that case, the maps M., and 1 ® ¢, of (42) are
precisely the global H*°P-coaction X, from (8) and 1 ® ¢},. Thus, regardless of the
exact specification of closure, there is a natural isomorphism between the diagrams
over which each limit is computed and so the integral space and coinvariant space are
themselves isomorphic. It is worth mentioning that the coinvariant of H; is computed
using only its coaction and therefore the antipode does not play any role in this part.
Similarly for the second part, recall the Hopf V-opcategory structure of H*°P given
in Proposition 2.17: the right integral space is given by the equalizer (46), whereas
the equalizer (11) gives the coinvariant space of the Hopf H-module H*. It remains to
compare the local coaction (9) to the adjunct of the induced local multiplication (J%,0¢)
for H*°P  and also 1 ® j, to the adjunct of 1 ® j7, the induced global counit which end
up being isomorphic. O

Remark 4.11. The previous result has of course also a version for left integrals. For
example, one can see that the space of left integrals in H is isomorphic to the space of
coinvariants for the left Hopf H*°P-opmodule structure on the V-graph H with following
global coaction and local action

coevyl ol Imzq
Hxvy Hz7x ® H‘;,I ® szy —> szm ® H:,CE ® Hx’y : H:,l’ ® szy

yx
evl

* 1637 * lo * 1szyl *
H, ®H,, — H, ®H,,&H,, — H, ®H,,®H,, —— H, &H,,@H,, — H,,
similarly to the right module structure described in Example 2.22(1).

4.3. Main theorems. Let H be a Hopf V-category. In case the underlying V-category
is Frobenius, we just say that H is Frobenius, or that H is a Frobenius Hopf V-category.
The next results proves the ‘uniqueness of integrals’ for Frobenius semi-Hopf categories.

Proposition 4.12. If A is a Frobenius semi-Hopf V-category, then its integrals are
non-trivial and unique in the sense that sz =] forallr e X.

Proof. If A is Frobenius, by Proposition 3.6 it comes equipped with a Frobenius system
(e,v) whose Casimir family gives rise to an integral family . denoted {tZ} by Proposi-
tion 4.2. As explained by (44), the integral family ¢, is in bijection with a unique family
of morphisms u, : I — ij such that ¢, o u, :%”Z We will show that each such u, is

an isomorphism, with inverse v, o t,, where v are the Frobenius functionals.
The following diagram establishes that v, o t,, is a right inverse of wu,:

fA,x Ax,z

Uy
t
/(366) 18¢zs

ON.
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The following computation shows that v, ot,, is a left inverse of u,: for all y € X,
the following diagram commutes

tya
fo — Ay,
/ (44)
(36)

Apy —L—— Ay @ Ay ® Ay —— Ay vz

t 11tzz legyl
xTx (4%) Ty

YA 1 1tyz 1mzyz v,

3
Az - Ay ® Ay ® fA,x — Ap @ Apy ® Ay — Ay @ Apy —— Ay

~, 7

myxml
\

e (21) lnyx

Ljz 14 tyal Myza
Az — fA,m ®Amx E— Ayac ® Aacac / Ayac
\ . / 1

tyx / 1jz
A

Yyx

Notice that the family {t,,}, is jointly monic since sz is defined as a limit, therefore
Uy O Uy 0ty = 1 and the proof is complete. O

We refer to the above theorem as “uniqueness of integrals”, since it shows that for a
Frobenius semi-Hopf V-category, two integral families differ only up to automorphisms
of the monoidal unit 7. In the one-object case, this implies the folklore result that the
integral space (45) of a Frobenius Hopf monoid in V is isomorphic to the monoidal unit.
In the k-linear case for a field k, the automorphisms k — k are just scalars; we recover
the classical uniqueness of integrals of Frobenius Hopf algebras up to a scalar, which is
part of the classical Larson-Sweedler theorem as discussed in Section 4.1.

The next result shows that for a Hopf category, being Frobenius and being locally
Frobenius (namely all local comonoids H,, are Frobenius in V) are two equivalent
properties. In particular, this generalizes the classical result that the underlying alge-
bra of a Hopf algebra H is Frobenius if and only if the underlying coalgebra of H is
Frobenius.

Theorem 4.13. Suppose H is a Hopf V-category. The following are equivalent:
(i) H is Frobenius (i.e. H is a Frobenius as a V-category).

(i) H is locally rigid and ff]x =] forallz e X.

(111) H is locally Frobenius (i.e. all comonoids H,, are Frobenius in V).

(iv) H is locally rigid and fé*’x =] forallz e X.

Proof. (i) = (ii). If H is Frobenius, then it is locally rigid by Lemma 3.8 and the left
integral space is isomorphic to the monoidal unit by Proposition 4.12.
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(74) = (i73). The fundamental theorem of Hopf V-opcategories (Theorem 2.27) ap-
plied to the H*°P-Hopf opmodule H; of Example 2.22(1) yields an isomorphism of
H*°P-opmodules

(HL)™ @ HP =

which using Proposition 4.10 results in

/ QH™P = H;.
H
Since H is locally rigid, the antipode is invertible by Lemma 2.25 so we can apply

Proposition 4.9 to get [;, = ff] >~ | and hence we can conclude that H*°P = H; as
Hopf H*°P-opmodules. This implies that for all x,y € X
HE = (Hy)yy = H

m7y x?y

as right H; -modules, where we regard Hy  as a (local) monoid in V. It is easy to
check that sxy (Hl)Ly (Hz)z,y for Hy of Example 2.22(2) is a right H -module
(iso)morphism and combining these, we obtain a right H; -module isomorphism H , =
(H3)yy = Hy . Now using Proposition 3.12 for the 1-object case (i.e. any monoid in
V) we find that every Hy  is a Frobenius monoid. It is well-known for any Frobenius
monoid in V that its dual is also Frobenius, hence this proves (ii7).

Although this is in principle superfluous, let us also prove how (i¢) implies (7). Above,
we already showed that H*°P = H; as Hopf H*°P-opmodules which means exactly that
the V-opcategory H*°P is Frobenius by the dual statement of Proposition 3.12. Hence,
it follows from Corollary 3.15 that H is a Frobenius V-category, or equivalently H = HT.

(49i) = (iv). If each comonoid H,, is Frobenius in V, then it is dualizable and Hy  is

a Frobenius monoid (Corollary 3.15 in the one-object case). As a result of the 1—object
case of the direction (i) = (i) earlier, it is ensured that each [ é L=
(tv) = (7). If H is locally rigid then the antipode is invertible by Lemma 2.25 and

therefore
}{* coH ~v d/p u/p ~ 7
H*:0p H*:0p

by Propositions 4.9 and 4.10. Then by the fundamental theorem of Hopf modules, The-
orem 2.24, Hy = (H7)*" @ H = H as Hopf H-modules where H} is as in Example 2.22,
(3). In particular, they are isomorphic as plain H-modules. Since s*: Hy — H; is
an H-module isomorphism, H = Hj of Example 2.22, (4) which by Proposition 3.12
implies that H is a Frobenius V-category. [l

Remark 4.14. Let H be a locally rigid Hopf V-category with a ‘unique’ right integral
family ¢t = {Ity}. Using the explicit formula for the isomorphism in the fundamental
theorem for Hopf modules, Theorem 2.24, one can also obtain an explicit formula for
the Frobenius isomorphisms, following the proof (ii) = (7). In particular, we find that
the Frobenius isomorphism ¢ : H = H*°P as right H-modules is given by

lszyl

Ty
Guy: HY, *5 HY @ H,\y ~% H' ® H,, @ H,, —% H? @H,,®H, "% H,,

In the k-linear case, this gives the formula ¢, (f) = f(s4,(t 1)) t (2.
The corresponding Casimir element is exactly Casimir element associated to the right
integral ¢ as in (38). To complete this to a full Frobenius system one also needs a family
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of trace morphisms which are then given by

o ®1 2z ®1 ev
Vg . Hx,a} &) Ha:,:v ® Ha:,x ¢—®> H;k@ X Hx,x I [
Since the explicit form of ¢ depends on the explicit form of the isomorphism || ;I =7,
we unfortunately don’t have a more explicit form for the trace morphisms.

Using symmetric arguments based on the left Hopf H*°P-opmodule from Remark 4.11,
we find an (in general different) Frobenius structure on H, where the Casimir element
in this case is the one from (37), induced by a left integral. If we denote the left integral
family as @ then we obtain this way a Frobenius isomorphism of left H-modules of the
form

. Lsgyl &

Hy , @H.y®H,y —— H, @ H,,®H,, — H,,
(47)

In a similar way, starting again with a unique right integral family % and following the
proof (i7) = (iii) above, we can also find an explicit formula form the local Frobenius
isomorphisms. In this case, these come out as

Ty
. * 1u % 1(0'05my)
gbﬁy . Hy,m Hy,:c ® Hl’vy

zy yz

Uyt HY, 25 HY @ H,y\y % HY, © Hyy @ Hyy —2% HY @ H,, ® H,, ~ H,,

(48)

or in the k-linear case ¢, ,.(f) = f(S(Zty(l)))S(zty(g)), which can explictly be checked to

be Hj -linear. This formula does not give us a Casimir element in H;  ® H, , for this

structure (for this one would now need the explicit form ¢,!), but we do obtain an
explicit form for the (non-degenerate) trace morphism:

zy
VZ’/I : H;,m L‘ ng,z ® Hx,y % H;,z ® Hy,a) L I

Finally, let us remark that the Frobenius structures that one obtains from the proof
(tv) = (i) could be different, since it makes us of the fundamental theorem for Hopf
H-modules and integrals in H*°P, while the previous one comes from the fundamental
theorem for H*°P-Hopf opmodules and integral in H. The previous theorem should
therefore not be understood as a theorem stating a bijective correspondence between
structures, but it is only an equivalence on existence of certain structures!

The above Theorem 4.13 gives quite a lot of information regarding Hopf Frobenius
V-categories. We now gather it all together, connecting the different structures on the
appropriate level and concluding to Table 1.

Suppose H is a locally rigid Frobenius Hopf V-category. Apart from its V-category
and local comonoid structure as a Hopf category, H also has a V-opcategory structure
from being Frobenius, as well as a local monoid structure by Theorem 4.13, (iii). As
was remarked earlier, several Frobenius structures might exist on the same Hopf V-
category: our next aim is to show that when constructed properly, these four (category,
opcategory, local algebra, local coalgebra) structures on H can be combined in different
ways to constitute Hopf and Frobenius structures.

Theorem 4.15. Let H be a locally rigid Frobenius Hopf V-category. Then the Frobenius
structure induces a V-opcategory structure on H, such that H = H*°P as Hopf V-
categories via (47).
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Proof. Let us denote by ¢ = {¢} a (unique) right integral family in H. From the proof
of Theorem 4.13 and Remark 4.14, we know that H is locally Frobenius with Frobenius
isomorphisms given by (48). If we denote by u = sot = {s,,0 Ity} the left integral family
obtained from t by Proposition 4.5, we also know that it endows H with a Frobenius
structure, such that the Frobenius isomorphism is of the form (47).

Therefore, in particular, H is a V-opcategory (not necessarily with the initial opcate-
gory structure!). By Theorem 3.14 we immediately obtain that the family of morphisms
Guy: Hy P — Hyy form an isomorphism of V-opcategories for the considered structures.

Moreover H has a local monoid structure which is the opposite (using the braiding)
of the one induced by the right integral . From the one-object dual of the same result,
Theorem 3.14, we know that the morphisms 1., from (48) are monoid morphisms. Now
one can easily observe that

¢x7y = wy,x o §;7y
where 5 is the inverse op-antipode as in Lemma 2.11. Since 5* is a local anti-monoid au-
tomorphism of H*°P, we find that the morphisms ¢, , are also anti-monoid morphisms,
and hence become monoid morphisms when we consider the opposite monoid structures
on H,,.

We can therefore conclude that the isomorphisms ¢,, are both morphisms of V-
opcategories and local monoids. Since H*°P is a Hopf V-category by Proposition 2.17,
the given structures on H also satisfy the axioms of a Hopf V-opcategory and ¢ is a
Hopf category isomorphism. O

The connection between the four structures on a locally rigid Frobenius Hopf category
and their combinations is summarized in the following table, which was already observed
by Street [Str04a] for group-algebras kG over a field k.

TABLE 1.
Hopf category A | Hopf opcategory A = A*°P
Frobenius category A Megys Ay
Local Frobenius A Ouy Ly

We now investigate, starting from a semi-Hopf rather than Hopf category, how non-
singularity of integrals can give rise to antipodes and as a result also Frobenius struc-
tures on a V-category. Recall the definitions of a right/left antipode and op-antipode,
Definitions 2.8 and 2.9, as well as non-singularity of integrals, Definition 4.4.

Theorem 4.16. Suppose (A, m, j,6,¢) is a locally rigid semi-Hopf V-category.
(i) If it has a right non-singular left integral family, then it has right antipode; if it
also has a left non-singular right integral family, then it is Hopf.
(i) If it has a left non-singular left integral family, then it has a left op-antipode; if it
also has has a right non-singular right integral famaily, then it has an op-antipode.
(iii) If it has a non-singular left and right integral family, then its antipode is invertible.
() If it has a non-singular left and right integral family, then it is Frobenius.

(v) If A is Hopf with a right integral family t = {1} such that it is Frobenius via the

induced Casimir family e, = {(1 ® Szy) 0 dyy0 '}, then t is non-singular.
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Proof.
(i) Denoting the right inverse of g, (40) by q,, define a composite

FotApe “255 A, @Ay I A, @ AL, DAY @A, ST (49)
We then define:

yx
1®t 1®6y90 o®1
Sxy: Ax:y - Axvy ® Ayvx Ax’y ® Ay:x ® Ay:x Ay@ ® AI:Z/ ® Ay,x

\\\\\\“\\\ l]-@mzyz
Tl Ay,x ®Am,x
\\\\\‘\\\\ ll@fz

5 4

y?l:

In the k-linear case, this is defined by the formula s,,(a) =% (1) “fz(a 1 (2))- One now
checks easily that the top of (7) follows directly from the left integral condition (34) so
that s,, form a right antipode.

Now given a left non-singular right integral family, let p, be the right inverse of p,,
(39) and put g, =evo (p,®1)o (j, ®1): Ay, — I. We then define a left antipode by

yxr
;. t ®1 5y:t®1
Sxy' Ax,y \—> Ay,z ® Al"»y —

In any semi-Hopf V-category, if both left and right antipodes exist then they are equal
and thus an antipode.
(ii) This is essentially dual to the previous part. In the first case define

Myzy®1

Ty
1®t 1®5zy gy®1
Sxy: Axvy Ayvx ® Axvy Ay:x ® szy ® Axvy Ay,y ® vax Ay@“

with g, as above; and in the second case define

yx
/ t ®1 Oyz®1
Spyt Ay — Ay @ Ay y ——

Ty z,y Ay7x ® Ayvm ® Axvy Ay»z ® Ax»m Ay7$

with f, as above (49).

(iii) This is immediate when we combine parts (i) and (ii) with Lemma 2.11.

(iv) By part (iii) the semi-Hopf V-category A is Hopf and the antipode is invertible.
Therefore, as in (37) the integral family t gives rise to a Casimir family e;, given by

z Spa z . .
1® 84,) © 040 . By settin Vp = Apy — Ay J=, I where » 1s as in (49), we can
y y y g 7 :
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show that (e;, v) is a Frobenius system for A. Indeed, (21) is satisfied as follows

T TT — . -1 TT
A:L‘,xyxo € = Az,:r: ev OA:U,IU o Aa},an:,xqm © Ax,an:,xjx © A:c,xszx o Ax,:csxa; o 590900 t
= Ay, 6V oA 0paAL 0t AL oG, 0]
- xX,Tr €v o LL’,Z‘O- o T Qj7"ljo t x,r o Qx o ].I
= QQZ o q;naj o ,]CB
= Jz

T

TT _ . -1 Tx
V:vAz,a:o € =ev A:c,z o UA:L’,J: o AJZ,Iqa}xAiL‘,LE o Az,x]a:A;t,w OS2 A:v,;t o A:v,:cscc;t o 5$$o t

=€V Ax,m © prr,rAx,x o ,]xAr,xAz,x o Am,zsmx o 6mmo t
T _ . T
= Szg0 €V Ax,z o p;pr:t,xAz,a: o ]xAx,mAx,x o 5:6:130 t

TT

= 5440 €V Ay o A;,xdm © A;,x t ODgq © Jx

= Szz O Pax Oz_jmg; sz = Saz ij

= Ja
where () follows from Lemma 4.6.
(v) By Proposition 3.12, we know that A is locally rigid — thus the antipode is invertible
by Lemma 2.25 — and also we have an isomorphism of A and A*°P as left and right
A-modules. Let us denote ¢y : A7P — A,y and qb;y: AyP — A, for respectively the
right and left A-module isomorphisms as in Lemma 3.10, namely ¢,, = (év ®Azy) ©
(4; .® €) and <p;3y = (A, ® V)0 (A, ®0)0(€ ®A; ). The invertibility of p,, and gy,
as in Definition 4.4 now follows from the following factorisations, which in fact shows
that all arbitrary-indices composites are not only split epimorphisms but isomorphisms.

*

S
% Ty % Pyzx % Qyz Syz
Aoy =2 Aye T F Aye Ay 2 A T3 Auy

Pyx /
Py

g

We are now ready to formulate and prove the main result of this paper, which we call
the Larson-Sweedler theorem for Hopf V-categories.

Theorem 4.17. Suppose A is a locally rigid semi-Hopf V-category. The following are
equivalent:
(i) A is Hopf and has a non-singular right integral family;
(ii) A has both a non-singular right integral family, and a non-singular left integral
family;
(iii) A is Hopf and Frobenius;
(iv) A is Hopf and fj}x ~J;
(v) any statement dual the those above, for the dual semi-Hopf V-opcategory A*.
(vi) interchanging left and right in statements (i) and (iv).

Proof.

(1) = (di). Since A is locally rigid and Hopf, we know by Lemma 2.25 that the antipode
is invertible. Hence by Proposition 4.5, A also admits a non-singular left integral family.
(73) = (idi). It follows from (i) and (iv) of Theorem 4.16.

(7i1) = (iv). It follows from Theorem 4.13.
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(tv) = (i). If A has a Hopf V-category structure and fix =~ ], we know from The-
orem 4.13 that A has a Frobenius structure. Moreover, as explained in Remark 4.14,
one can choose a Frobenius structure such that the Casimir family of this Frobenius
structure is exactly the one as stated in Theorem 4.16 (v). Hence this last mentioned
theorem tells us that there is a non-singular right integral family.

(v). This is obvious by duality. We know that A is Frobenius and Hopf if and only if
the opcategory A* is Frobenius and Hopf, see Corollary 3.15 and Theorem 4.15.

(vi). Obvious since e.g. (ii) is left-right symmetric. O

The above version of the Larson Sweedler might look slightly weaker than the classical
theorem. Indeed, for example item (i) assumes both non-singular left and right inte-
grals, whereas in the classical theorem one needs only one. Similarly, the Hopf condition
is always combined with an additional assumption, such as Frobenius or uniqueness of
integrals. However, remark as well that the assumptions made in the classical Larson-
Sweedler theorem are much stronger than the ones imposed herein. Indeed, the classical
Larson-Sweedler theorem considers only Hopf algebras that are free of finite rank over a
principal ideal domain. Our theorem concerns any locally rigid Hopf categories and ap-
plies in particular to any finitely generated and projective Hopf algebra over an arbitrary
commutative ring.

Nevertheless, our last aim is to show that Theorem 4.17 subsumes the classical Larson-
Sweedler theorem for Hopf algebras when these stronger conditions are imposed. First
recall that by working over a PID, every projective module is free and therefore one can
use dimension arguments when dealing with free modules over a PID. Other (commuta-
tive) rings that have this property are local rings (Kaplansky) and polynomial rings over
a field (Quillen—Suslin). Therefore, for the rest of this section we will consider modules
over a commutative base ring k for which every finitely generated and projective module
is free. As in [1.S69], we will say that a k-module is finite dimensional if it is projective
(hence free) of finite (and constant since k is commutative) rank over k. Let us first
generalize [L.S69, Lemma 1] to the multi-object case.

Lemma 4.18. Let A be a locally rigid k-linear semi-Hopf category, such that for any
two objects x,y, Ay, and A,, have the same dimension if A,, is non-zero. If s is a
right antipode of A, then it is also a left antipode of A.

Proof. Since s is a right antipode we know that A, , * s, = j, 0 €4, for every z,y € A,
where * denotes the convolution product. Define

I'yy : Hom(A,,, A,,) = Hom(A, ,, A, .)

by Iy y(f) = f * syy for every f: A, , — A,,. This map is clearly surjective, since we
can write every g € Hom(A,,, A, .) as I'yy(g * A, ). Using the fact that all A, , and
A, , have the same dimension, we can conclude that every I';, is bijective.

Clearly the map I7,, : Hom(A,,, A, ;) — Hom(A,,, Ay ,) 17— 7% A,y is a right
inverse of I'y,. And by bijectivity of I';,, any one-sided inverse is a two-sided inverse
and hence F;y is also bijective. This implies that there exists a morphism u,, €
Hom(A, ,, A, ) such that j, o e,y = u,, * A, for every z,y € A.

Moreover Uy ; = Uy y * (Azy * Szy) = (Uzy * Azy) * Szy = Szy. We can conlude that s
is indeed an antipode for A. O

Corollary 4.19. In case V = Mody, where k is a ring such that all projective modules
are free, the equivalent statements of Theorem 4.17 are furthermore equivalent to
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(vii) A has a right non-singular left integral family and for any two objects x,y, A,,
and Ay, have the same dimension if A, is non-zero.
(viii) A is Hopf.

Proof. (i)/(vi) = (vii). The left version (i) tells in particular that A has a right non-
singular left integral family. Since A is Hopf, we know by Proposition 2.19 that A, , ®
Ayy = A, ®A,, in Mody, and therefore A, , and A, , have the same dimension if A, ,
is non-zero.

(vii) = (viii). By Theorem 4.16(i), the existence of a right non-singular left integral
family implies that A has a right antipode and therefore by Lemma 4.18, A also has a
two-sided antipode.

(viii) = (iv). As in the proof of Theorem 4.13, by the fundamental theorem for Hopf

: ¢ . . :
modules we obtain A} , = [ A ®Asz. Since Ay, and A7, have the same dimension, we

find that the dimension of ff; , must be one, i.e. fj . Is free of rank one. O

5. EXAMPLES

In this section, we gather a few important examples that are obtained as results of
the generalization of the Larson-Sweedler Theorem, and we provide some directions for
further research.

Hopf algebras in a monoidal category V. For its one-object case, Theorem 4.13 gives a
version of the Larson-Sweedler theorem for Frobenius and Hopf algebras in any braided
monoidal category V. In particular, if H is a Hopf monoid in a braided monoidal
category V, then it is Frobenius if and only if it is dualizable and its integral (45) is
isomorphic to the monoidal unit 7.

In particular, by regarding the 1-object case of Corollary 4.19, we recover the ’clas-
sical’ Larson-Sweedler theorem (for Frobenius and Hopf k-algebras). In the same way,
by considering the 1-object case for the monoidal Hom-category 7—2(C) associated to
a braided monoidal category C as constructed in [CG11], we obtain a version of the
Larson-Sweedler for monoidal Hom-Hopf algebras. In the same way, by choosing suit-
able braided monoidal categories, one can derive the Larson-Sweedler theorem for graded
Hopf algebras and Yetter-Drinfel’d Hopf algebras [Som02].

Let us remark that there is a subtle difference between the classical case, where
the considered monoidal category is Mody, and the other mentioned cases, where the
considered monoidal category is a category of graded vector spaces or Yetter-Drinfel’d
modules. As the monoidal unit £ of Mod, is also a generator in this category, any
element t of the Hopf algebra H can be understood as a morphism ¢ : k — H in this
category. This is no longer true for graded Hopf algebras and Yetter-Drinfel’d modules.
For example, in the case of graded modules, morphisms from the monoidal unit to H
correspond to homogeneous elements of degree 0 (where 0 is the unit of the grading
group). Consequently, it follows from Theorem 4.17 that a graded Hopf algebra is
Frobenius if and only if it is finite dimensional in each degree and has a non-singular
integral of degree 0. Nevertheless, there exist graded Hopf algebras with (non-singular)
integrals of arbitrary degree, but these are not Frobenius.

Turaev’s Hopf group-algebras. Recall from [Zun04] the definition of a Hopf G-algebra.
Let G be a group. A Hopf G-algebra H consist of a G-indexed family of k-coalgebras

(Hg, Ayg, €9) je endowed with the following data.
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(1) A family of coalgebra morphisms p = (pgn : Hy ® Hy — Hgn), ), called the
multiplication such that

figh © (fign @ Hi) = pign o (Hp ® png)

for every g,h,l € G
(2) A coalgebra morphism 7 : k — Hj, called the unit such that

pgro (Hy®@mn) = Hy = 140 (n® Hy)

for every g € G
(3) A family of coalgebra isomorphisms ¢ = (¢ : Hy — Hpgp-1), which need to
satisfy:

lhgh_l © ¢Z =
V" 0 g = pugi-1gg-1 0 (U] @ Y)
Upon =1
for every g, h,l € G
(4) A family of maps s = (s, : H, — Hg—l)gec such that

fig-140 (8¢ ® Hy) 0o Ay = Hg,g—1 © (Hy®sg)0Ag=no0¢

for every g € G

Dually one has the notion of a Hopf G-coalgebra. Every Hopf G-(co)algebra can
be turned into a k-linear Hopf (op)category. We provide here the construction for a
Hopf G-algebra, for a Hopf G-algebra ((H,)ec, i1, 1, A, €) we define the k-linear Hopf

Hyp—1y y=1,

category (Ef%y)x’yeg by Hx,y = Hy-1y, Mgy, Hz,y ® ﬁy,z =H,1, ® Hy1,
H,., = ~x7z7 Jo =1, Ozy = Ay—1,, and e, = €,-1,, see [BCV16, Proposition 6.2]. In
case H is a Hopf G-algebra such that all H, are finite dimensional, we can apply the
Larson-Sweedler theorem for Hopf categories (see Theorem 4.17) to the Hopf category
associated to this Hopf G-algebra and obtain in this way a Frobenius k-linear category
with k-linear morphisms dg,. : ﬁm} = Hyy = Hpy @ Hyryy = I—ifx’y ® I:Ix,y and
€y ﬁx@ = H; — k satisfying conditions (16).

A natural question is whether there exists already a version of the Larson-Sweedler
theorem for Hopf G-algebras, without using the passage to Hopf categories as described
above. A first naive approach would be to use the result from [CDO06], which states
that a Hopt G-algebra is an Hopf algebra in a suitably constructed monoidal category
of families of k-vector spaces called Turaev/Zunino category, and to apply the Larson-
Sweedler theorem for Hopf algebras in this monoidal category. However, this will not
lead to the desired result, as for this we should require that the Hopf G-algebra (G, H,,)
is a rigid object in the Zunino category. As this category is equiped with a strict
monoidal forgetful functor to Set, sending the indexing group G to its underlying set,
the rigidity of (G, Hy) in the Zunino category implies that the set G is a rigid object
in Set, which means that it is a singleton, and hence this can only be applied to the
classical case of a usual finite dimensional Hopf algebra. On the other hand, the notion
of a Frobenius G-algebra already appeared in [Turl0]: a G-algebra A together with a
symmetric k-bilinear form p: A ® A — k such that

(1) p(Ay @ Ar) =0if h # g1
(2) The restriction of p to A; ® A,-1 is non-degenerate for every g € G
(3) po(pgn® A1) =po(Ag® ping)
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In a similar way the construction to obtain a Hopf category out of a Hopf G-algebra,
one can construct a Frobenius category out of a Frobenius G-algebra. If (A,p) is a
Frobenius G-algebra as decribed above, then flm = A1, is indeed a k-linear Frobenius
category. The k-linear category structure is obtained in the exact same way as for
the Hopf case, mguy. = piz-1y,-1, and j, = 1. To see it is Frobenius we use the
characterization given in Proposition 3.21. The bilinear form I'y,, : flr,y X fly,x — k can
be defined as the restriction of p to A,-1, ® A,-1,, which is non-degenerate by definition
of a Frobenius G-algebra.

No other equivalent definitions were given in this reference. Based on our work, one
could provide equivalent characterizations for Frobenius G-algebras as those described
in Section 3 in case of Frobenius categories can be obtained; observe the strong simi-
larity between the definition of a Frobenius G-algebra and the definition of a k-linear
Frobenius algebra as described in Proposition 3.21. Furthermore, we believe that a
Larson-Sweedler type theorem in this setting can also be obtained in such a way that
the following diagram commutes:

Hopf G—algebra » Hopf category

v [is

Frobenius G—algebra ——— Frobenius category

Following this idea, the notion of Hopf G-algebra and Hopf category could be unified
by means of a more general version of Hopf categories, where the indexing set X x X
is replaced by any groupoid, since both definitions essentially rely on the groupoid
structures of X x X and G. Moreover, such further work would also investigate a
unified Larson-Sweedler theorem in this setting.

Weak (multiplier) Hopf algebras. In [BCV16] (see also Proposition 2.15) it is shown that
for a k-linear Hopf category A with a finite set of objects X, ®w,yeX A, is a weak Hopf
algebra. If each A,, is in fact finite-dimensional, then Corollary 4.19 in combination
with Proposition 3.2 ensures that ®m,y€X A, , is a weak Hopf algebra which is also
Frobenius. This could also be deduced from [IK10], since the base of a weak Hopf
algebra associated to a Hopf category with a finite number of objects is the cartesian
product k™ where n is the finite number of objects in the category.

In case the set of objects X is not finite, the same construction of the ‘packed’ algebra
Dz yex Agy will lead to a weak multiplier Hopf algebra, which is Frobenius as an algebra.
This can be compared to the Larson-Sweedler theorem for weak multiplier Hopf algebras
as proven in [KV18].

Groupoid algebra. Consider a groupoid G, a field k and let G, be the set of maps
from y to z. Put A,, = kG,,. As explained in [BCV16], A has the structure of a
k-linear Hopf category. We briefly recall the structure: The multiplication is the one
from the groupoid and extended linearly. Every kG, , has the structure of a coalgebra:
0zy(9) = g®g and £,,(g) = 1. The antipode is given by the formula s,,(g) = ¢7* € G,.

If G is locally rigid we know from our Larson-Sweedler theorem that there is a global
and local Frobenius structure on it. Let us describe these structures explicitly.

The (global) Frobenius k-linear category structure is given by k-linear category struc-
ture described above and the cocategory structure is given by:

day=(9) = Dhec, . ght®@heG,,®G,,
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l;g=e
Ea:y(g>: Og%e

The (local) Frobenius structure on every A, , is given by d,, as previously described
and the local multiplication by:
g;9="h
0;97#h
Ney 1 k= Gay 11— decw g

uw:Gm,y®GI,y—>vay:g®hr—>{

and extended linearly.
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