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Low-frequency fluctuations in the Lang-Kobayashi equations
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The Lang-Kobayashi equations are simplified by a local analysis that focuses, in the long-delay-time limit,
on one pair of mode-antimode only. In the domain of hysteresis between the two steady states, low frequency
fluctuations(LFF) can be observed if there is a domain of bistability where both steady states are unstable. The
high-frequency oscillations and the drop-offs in the LFF regime are associated with a dynamics close to the
unstable upper and lower branch steady states, respectively.
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[. INTRODUCTION are also observed in this paper, but in the opposite limit of a
long time delay.

In 1980, Lang and KobayasltiiK) [1] proposed a simple Using a local multiple time scale analysis, Giacomelli and
model to describe the dynamics of a single mode semicorPoliti [11,12 showed that the delay differential LK equations
ductor laser subject to a coherent optical feedback. The feedwe approximated by a partial differential complex Ginzburg-
back loop is modelled by an external mirror. This creates d andau equation in the vicinity of Hopf bifurcations. This
passive external cavity. The main feature of the LK model isapproach helps understand the richness of the delay differen-
that the round trip timer of the laser beam in the external tial equations. Unfortunately it is restricted to the vicinity of
cavity is explicitly taken into account via the delayed com-the bifurcation point.
plex electric field variableE(t—r)=p(t—7)e'¢!" " fed In another attempt to simplify the LK model, we have
back in the laser after a round trip in the external cavity. Thisrecently proposed to take advantage of the fact that LFF
opens the door to a very complex dynamics since the systeghpear for pumping close to threshold, weak feedback level,

phase space has infinite dimensi@). In particular, it can 414 jarge dela§13]. Taking into account that the free carrier
sustain a chaotic regime displaying low frequency fIUCtua1ifetime is much larger than the photon lifetime for a typical

tions (LFF) [3]. They are best observed in the low-pass fil- semiconductor laser, we have adiabatically eliminated the

tered laser Intensity as sudden and irregular drop-offs fOIi‘ree carrier dynamics, reducing the LK model to a single
lowed by an intensity recoveryt].

The LFF dynamics associated with the LK model hascomplex delay equation in the long delay time lirpit3].

been the subject of active research for more than two decad(::l— IS amounts t(.) expgn_d the electrlp fidigl (t, 7), solution
(see Ref[5] for a review and also Ref6], which is the 0 the LK equations, |n_|1r/12verse fractl_olnal powers of th_e delay
latest of an annual series of proceedings on this jofice  tMe 7 @SE k(t,7) =7 "E(t)+O(7 7). Numerical simu-
purpose of this paper is to analyze the LFF in a simple casitions showed that the reduced LK model fft) is still
where a clear distinction can be made between the causé$le to sustain LFF. Its advantage over the complete LK
and the effects of the LFF. model comes from the elimination of the laser relaxation
Sano demonstrated numerically that LFF could be demechanism from the system dynamics: the reduced model no
scribed as chaotic itineracy among the many unstable steadgnger presents the numerical stiffness of the LK model, al-
states of the systefiY]. A similar result was obtained inde- lowing a much simpler and faster numerical integration. As
pendently by van Tartwijlet al. [8]. The question remains, noted in Ref[13], the long delay time limit is regular, which
however, to know if that itineracy is the cause or the conseimplies that all solutions of the reduced model are also solu-
guence of the observed LFF. tions of the full model in the limit of a weak feedback and
Using the Sano result, Huyet al. attempted to replace for pumping close to the solitary threshold, the converse be-
the LK model by a system of ordinary differential equationsing equally true. Simplifying further the reduced LK model
[9]. To achieve that goal, they considered the small delays thus a sensible strategy to determine properties of the LFF.
time limit, replacing the delayed field amplitugét— 7) by  In this paper, we show that the reduced model can be further
its current valuep(t) and the delayed phasg(t—7) by its  simplified to retain only one branch of finite intensity steady
first-order expansiop(t) — rde(t)/dt. The resulting equa- states. In the language of the LK equations, this amounts to
tions have no delayed term any more though the steady stateslect one particular external cavity mode and neglect all the
are still those of the full LK model. According to the Sano others. The resulting system still displays LFF and is simple
description, this simplified system was therefore a good canenough to allow for a characterization of this LFF attractor,
didate to display LFF, which are indeed observed. Howevervhich is the purpose of this paper.
there is no one-to-one correspondence between the solutions The plan of the paper is as follows. In Sec. Il, we derive
of the LK model and those of this reduced model because & simplified model from the reduced LK model. In Sec. I,
is not a consistent asymptotic approximation of the LK equaanalytical results are presented, followed by numerical re-
tions. The model was further analyzed in REEO] where  sults in Sec. IV. A detailed discussion of LFF is presented in
correlations between the emergence of the LFF and the st&ec. V before we conclude in Sec. VI with a clear distinction
bility of the steady states were found. Similar correlationsbhetween the causes and the effects of LFF in the frame of the
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simplified single mode deterministic model analyzed in this
paper.

II. MODEL DERIVATION

The dynamics of the complex electric fiel&(t)

=p(t)e'?® of a semiconductor laser pumped exactly at the o I N A
solitary laser threshold and subject to a weak coherent opti- ) 60 50 100 150 200 250
cal feedback with a large delay can be described by the re- H(b)
duced LK model[13]: -
<$ op
dE =
a=—(1+ia)|E|2E+r]E(t—1), D S 2
. _ | | 1 ‘ L | 1
in complex form, or 0 50 100 150 200 250
O 4 oot ) 2) t
dt ' FIG. 1. Low frequency fluctuations obtained by numerical inte-
gration of the reduced LK model, E¢l). Parameters arg=6.95
d_QD_ T - 3 and «=3. The intensity is filtered according to EG}) with 7;
Pgr =@ npsin(e—e), @ -1

in real form, where the dimensionless times expressed in Because of the series truncation, the simplified mogleind

units of the delay timeg is the linewidth enhancement fac- (6) are obviously not equivalent to the reduced LK model.

tor, and »=0 is the feedback strength. The delay appearé\levertheless, using the same parameters as in Fig. 1, Fig. 2
' ~ A . shows that it can still sustain LFF. Comparing the two sets of
through p=p(t—1) and o=¢(t—1). Most electronic de-

. . . time traces reveals qualitative differences. In particular, the
vices are too slow to record the instantaneous laser intensit

|E|?=p2. Therefore, to compare theoretical results with ex—t\é\é0 thJI_sesthwhe;re;zSI_—f_¢ dreac(?e;d;r?, seen in 'T'g: L ?Le
perimental results, it is necessary to introduce a low-pas@°S€Nt (N the Simplified model. This 1S normal since these

filtered intensityl given by excursions correspond to valuesgf ¢ for which the trun-
cated series is not a good approximation of the trigonometric
dl 5 functions anymore. This is why the LFF produced by the
Pl DU F (4 reduced LK model1) are more irregular than those of the

simplified model(5) and (6).
where; is the time constant of the filter. This amounts to a
time averaging op?, which is precisely what a slow detector IIl. ANALYTICAL RESULTS
does. As explained in the Introduction, the main motivation for

The reduced LK equation®) and (3) have steady, peri- gimpjifying the reduced LK model is to simplify its bifurca-
odic, quasiperiodic, and chaotic solutions, among which the plifying plify

LFF type of solutions. For a moderaig multiple dynamical 7
regimes coexist, with multistability between some of them.

An example of LFF regime is illustrated in Fig. 1. In this 5
regime, Fig. 1b) shows that the phase differenge- ¢ re- 1

mains mostly located in the vicinity ofzp—{oz—13~ r
—44r, which corresponds to one specific unstable steady C . s
state. This suggests a two-step reduction of the LK equations 0 50 100

| 1 | 1
150 200 250

to focus on that particular branch of steady states and the 6:(b)
dynamics connected to that branch. First, we introduce a new 4C
phase variable= ¢—4xt. As a result$— ¢ remains most < 2
of the time close to zero. Second, we replace the trigonomet- S 0
ric functions by their truncated Taylor’'s expansion. The re- 2
sulting simplified model is thus given by 4 LI, . .
0 50 100 150 200 250
dp 1 ~ A t
— 3 2
—=—p°+pll-5(p— 5

FIG. 2. Low frequency fluctuations obtained by numerical inte-
d gration of the simplified model, Eq$5) and (6). The intensity is
pd_‘f:4ﬂ_p_ ap3— n(p— (;,));) (6) Elitgerid according to Eq(4) with 7;=1. Same parameters as in
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FIG. 3. Bifurcation diagrams forr=3. The steady branches n

emerge from the zero solution, the periodic branches emerge from . . . . .
R FIG. 4. Bifurcation diagram fore=3 obtained by numerical

the steady branches. Thidkhin) lines correspond to stabl@in- integration of the simplified LK model, Eq&5) and(6). The extre-

stable regime. Labels St and 1-6 designate the same branches In 9 P = '

both diagrams. Circlegsquarefs are primary(secondary Hopf bi- _mum.values ofp(t) are plotted, i.e., V?'“es for Wh'dﬁp/dt van-
. . e N . . ishes:(a) Forward,(b) backward sweeping of. Labels: St, 3, and
furcations leading to periodiéquasiperiodit solutions. Triangles

. b : . 4 correspond to the stable section of the same branches in(Bjg. 3
are period doubling bifurcationga) Reduced LK model, Eql). 7 indicatpes another periodic branch absent from Fig).3 (Big
(b) Simplified model, Eqs(5) and (6). :

tion diagram without disabling LFF generation. The bifurca-— 1 With ps=0 andws= /2. Following that branchy and
tion diagrams of the reduced mo({@) and (3) and of the wWg decrease Wh||e)s increases. There is a turning pOint for
simplified model(5) and (6) are displayed in Figs.(@ and @s=4m— \(16m°a—2a—8m)/a. Beyond the turning
3(b), respectively. A detailed description of the bifurcation point, ws continues to decrease whilg and ps increase.
diagram shown in Fig. @) for the reduced LK model is Asymptotically, for »—c, it is easy to verify thaiw— (1
found in Ref.[13]. For the simplified model, the branch la- — y1+ 2a%)/a<0 andpg~(1— w2) pl2—=.

beled St in Fig. &) corresponds to steady solutions of the
form p(t)=ps and ¢(t) = wst. In the LK terminology, the
upper (lower) part of the branch corresponds to modaes-
timodes of the external cavity. The steady solutions are To complement the analytical results, we have used the
numerical packag®beBIFTOOL [14] to locate the Hopf bi-
furcations on the branches of steady states. We found three of

IV. NUMERICAL RESULTS

_ntl . V1+ 9[2a(an—4m)+2+ 7]

@s™ ang an ' ™ them on the lower part of the steady branch and three others
on the upper steady branch fg<9. There are many more
pi=(2—wd) nl2. (8)  Hopf bifurcations for larger values of. As seen in Fig. &),

the stable section of the upper steady branch ends at a Hopf
The highest values ab belong to the lower branch steady bifurcation. Branches of periodic solutions emerge from the
state. There are only three possibiliti€s: no steady state Hopf bifurcations. Secondary Hopf bifurcations were found
solution[leftmost part of Fig. &)]; (i) only one steady state on each of the six periodic branches of Figo)3All periodic
[rightmost part of Fig. @)]; (iii ) two coexisting steady states branches are unstable, with the exception of two small seg-
[central part of Fig. @)]. This contrasts with the reduced LK ments on the branches labeled 3 and 4. These segments are
model for which an increasing number of modes and antifimited by a turning point and a secondary Hopf bifurcation.
modes coexist for increasing. For instance, with the value Numerical integration of the simplified equatiof® and(6)
7=6.95 that was used in Figs. 1 and 2, the reduced LKshows that stable quasiperiodic regimes emerge from these
model has seven coexisting steady solutigefswhich only  two secondary Hopf bifurcations. Unstable quasiperiodic re-
one is stablg while the simplified model has only two co- gimes emerge from the other secondary Hopf bifurcation.
existing steady solutions, both unstable. Equatitfisand The numerical packagepEBIFTOOL is able to follow only
(8) also reveal that fora<2m/(2\2m—1)~0.797, the steady and periodic branches, irrespective of their stability.
steady branch emerges supercritically and has no turning/e have used direct numerical time integration, sweeping
point. However, for conventional semiconductor lasers, exio obtain the quasiperiodic and chaotic branches. To detect
perimental values ofr are in the range 3-5. For quantum multistable regimes, two sweepings are performed: one with
well lasers,a=2, and for quantum dot lasets=1. There- increasing» [Fig. 4@] and one with decreasing [Fig.
fore, we do not consider the supercritical case in this pape#(b)]. To avoid problems related to the slow passage through
The branch of finite intensity solutions starts 7@1:2\/577 bifurcations[15,16, a small perturbation was added po
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each timen was updated, and the system was let to relax
before measuring the local extrema @f With this proce-
dure, we found one more periodic branch. It is labeled 7 in
Fig. 4 to avoid confusion with the periodic branches of Fig.
3. It starts aty~1.8 and remains stable up #p~3.9 where

the regime becomes quasiperiodic. For higherthere is a
transition towards a chaotic regime, followed by a quasiperi-
odic regime. Aty~4.84, there is an inverse Hopf bifurcation
to a periodic regime. The periodic branch becomes unstable
at »~4.86 and the system jumps to the steady state branch.
This small periodic branch corresponds to the small stable
section of the periodic branch 3 of Fig. 3. The stable part of
branch 4 of Fig. 3 is also observed in Figh¥ while it is L Lootiiiiin
absent from Fig. @) because of the multistability existing GO 10 20t30 4050 GO 10 20 30 40 50
with the steady state. Finally, it is seen that #phigher than 6 6 !

6, the system is chaotic.

Let us compare the bifurcation diagram of the reduced LK 5 3
model, Fig. 3a), and that of the simplified model, Fig(t3. ~ 4 =~ 4
Although multiple steady branches are seen in Fig),®nly 3 3
one steady state branch exists in Figb)3a direct conse-
quence of the manipulations leading to the simplified equa- 071020304050 0 10 20 30 40 50
tions. The upper part of the steady branch, labeled St in Fig. t t

3(a), matches well the Corresp_or_1ding branch of the Si”_‘p”ﬁed FIG. 5. Phase space portrait, instantaneous intengfty, (and
model. We checked that defining=¢+2(n—1)7t With  grereq intensity(l) for two different time intervals of the same

n=1,2,... selects theth upper branch. The lower part of sojytion of the simplified model. Parameters are3, 7=6.2, and
the steady state branch, characterized by the larggssuf- - —1.

fers the largest deformation. For instance, the connection to
the zero solution occurs at=77/2=10.996 for the reduced the portrait of the attractor in the phase plae<(¢,p), the
LK model, while it occurs aty=2+27—1~7.886 for the instantaneous intensity versus time, and the filtered intensity
simplified model. versus time. The two steady states are indicated in the phase
There is very good agreement between the two models fgportraits: the white dot for the upper branch and the black dot
the number and the position of the Hopf bifurcations. For thefor the lower branch. It is seen that the high-frequency oscil-
range of 5 plotted in Fig. 3b), six Hopf bifurcations are lations, which have the same frequency f&t and for I,
found, three on the upper part of the branches and three arorrespond to the motion in the vicinity of the upper branch
the lower ones. The shape and stability of the periodic solusteady state, while the drop-offs correspond to segments of
tions close to the Hopf bifurcations that emerge on the uppethe trajectory in the vicinity of the lower branch steady state.
steady state branch are similar for the reduced and the sinGomparing Figs. &1 with 5(cl) and a2 with 5(c2)
plified models. However, branches 1-3 display marked difshows that there is a one-to-one correspondence between the
ferences. In the case of the reduced LK model, branches ttajectories in the vicinity of the black ddgtower branch
and 2 form bridges between the selected steady branch amsteady stageand the fine structure of the drop-off. Thus,
two other branches. Because the latter branches have beeomparing the phase portrait and the averaged intensity is a
eliminated in the simplified model, the corresponding peri-sensible way to analyze the attractor and does not introduce
odic branches have a different topology away from the bifur-a bias.
cation points and eventually collide with the zero solution. Important steps are illustrated in Figs. 6 and 7. In Figs.
Concerning the two branches 3, they both emerge subcritié(a)—6(c) and 1a)—7(c), the upper branch steady stébeéhite
cally but then evolve very differently in both figures. Due to dot) is stable and coexists with the stable periodic and qua-
a unresolved numerical problem, we failed at continuing fur-siperiodic solutions. The two Hopf bifurcations on the upper
ther the unstable branches 3 for both figures. branch, leading to branches labeled 4 and 5, occuy at
=6.145 andp=7.129. On the lower branch, the three Hopf
bifurcations, leading to branches 1, 2, and 3, occurpat
=7.115, 6.11, and 4.931, respectively. The lower branch
In this section, we describe the LFFs in the simplifiedvanishes aty=227—1~=7.886.
model. The first problem to solve is how to analyze complex Figures §a) and qa) display two complementary views
attractors of the simplified model. There are three informa-of the periodic solution located on the stable section of
tions that can be obtained easily from numerical simulationsbranch 4 in Fig. &). Increasingy, this solution is destabi-
the phasep, the instantaneous intensip?, and the filtered lized by a secondary Hopf bifurcation from which a branch
intensityl. These three informations are used, for instance, irof quasiperiodic solutions emerge supercriticdfigs. 6b)
Fig. 5 for two segments of the same time series generated tgnd qb)]. Increasingz, the amplitude of the quasiperiodic
Egs. (5 and(6). From top to bottom, these figures display solution increases while the quasiperiodic intensity temporal

V. LFFs ATTRACTOR
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FIG. 6. Intensity time traces fax=3 and ;=1 illustrating the 4 0 50 100 150
appearance and development of the LFF attractor and obtained by
numerical integration of the simplified model, Eq%) and (6). I 3
Values of %: (a) 5.75,(b) 5.85,(c) 6.04,(d) 6.15,(e) 6.25, and(f) 2
6.95.
1 IIII|IIII|IIII

pattern is continuously deformed. A nascent drop-off results 0 >0 100 150

from the steepening of the minimum in the quasiperiodic 4

solution. At =6.04, there is a qualitative change: the torus

of quasiperiodic solutions is no longer uniformly covered FIG. 8. Intensity time traces illgstrating the progrt_essive qisap-
[Figs. 7c)]. The transition between the two regimes is con-Pearance pf the LFF regime obtained by numerical integration of
tinuous. These three figures represent the periodic and quie Simplified model, Eqd5) and (6). Values of7: (a) 7.5, (b) 8,
siperiodic attractors that coexist with a stable steady state off) 8- (d) 9. Other parameters are as in Fig. 1.

the upper branch.
As the upper branch steady state becomes unstable, there
is a qualitative change in the solutions and the LFF appear.

?‘_ In the domain ofn covered by Figs. @), 6(e), 7(d), and
<e. of 7(e), the manifold associated with the upper branch has two
§ . unstable directions and an infinity of stable directions, while
2k the manifold associated with the lower branch has five un-

stable directions and an infinity of stable directions. The fil-
tered intensity displays the typical LFF structure. Increasing
further » leads to the accentuation of the drop-off amplitude

<"§~ 0 and an increase of the average time between the drop-offs
< 1 (& . [Fig. 6d)]. The relation betweer; and the average delay
20 & between two drop-offs is not monotonic: fer=6.25, [Fig.
-3 6(e)], the average duration between the drop-offs reaches its
maximum, slightly less than 100 delay times. Figure)6
<e. also shows that the plateau duration as well as the depth of
§ 1 the drop-offs vary significantly in a single run. A further

increase ofy leads to a decrease of the plateau duration and
to an increase of the drop-off amplitu@€ig. 6(f)].
Increasing the feedback strength leads to the progressive
p destruction of the LFF and its replacement by another cha-
otic attractor, as shown in Fig. 8. Figuréa8 for »=7.5,
FIG. 7. Phase diagrams illustrating the apparition and developShows that the LFF attractor becomes more irregular, with a

ment of the LFF attractor and obtained by numerical integration of?€W small scale structure appearing. hpr8 [Fig. 8b)],

the simplified model, Eq¢5) and(6). Same parameters as in Fig. 6. the system jumps chaotically between two coexisting attrac-
The white(black dot is at the position of the uppéower) steady  tors. Finally, no more intensity recovery occliFég. 8(c) for
state. The lower steady state is unstable. The upper steady statess= 8.5], and the LFF dynamics is totally gone. This regime
stable only for parta)—(c). has been called coherence collapse in the case of the LK

P
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model[17]. Increasing further the feedback leads to a de-means related to the LFF phenomenon: LFF can occur with
crease of the intensity variatioiFig. 8(d) for »=9]. We  or without relaxation oscillations since they are absent in the
have not analyzed this chaotic attractor since the simplifiededuced and in the simplified models. This property was al-
model is not to be taken seriously in that domain of param+eady explained previouslj13]. (ii) The chaotic itineracy
eters. However, the mechanism through which the LFF atdescribed by Sano is a consequence of LFF in the presence
tractor disappears and the coarse grained structure of tha multiple coexisting steady branches and not a cause of the
emerging chaotic attractor are in qualitative agreement with.FF.

what can be observed for the complete LK equations. The results obtained in this paper do not rule out the in-
fluence of other parameters. The only statement which is
VI]. CONCLUSION made here is that LFF can be explained in terms of a single

) ) ~ mode deterministic theory that contains only one pair of

Starting from the reduced version of the LK model valid \pde-antimode, which have a domain of bistability and are
in the long delay time limit, we derived a simplified model poth unstable. The smooth recovery observed after a drop-off
based on the numerical observation that the phase differengg consistent with the experimental results. It was shown that,
¢— ¢ remains most of the time close to a multiple off2  after averaging the output signal over many samples, the
even in the LFF regime. The result of the simplification isrecovery is stepwis€l8]. However, the height of the steps
fully appreciated by comparing the bifurcation diagrams be-decreases with increasing delay time and therefore it is natu-
fore and after simplification: from the infinitely many steady ral that the recovery appears as continuous in an asymptotic
branches, the simplification scheme amounts to selectintheory based on an expansion in inverse powers of the delay
only one connected pair of them. Only the periodic, quasitime. Likewise, noise is not a prerequisite for the occurrence
periodic and chaotic attractors connected to the two selectesf LFF, as assumed in some previous studied—21). Of
branches remain. Few analytical results can be derived. Usourse, experimental results are necessarily affected by
ing the numerical continuation packa@®EBIFTOOL, the noise, and therefore experimentally observed LFF will dis-
branches of periodic solutions emerging from the steadylay a number of features that pertain to noisy systems. But
branch have been described. Quasiperiodic and chaotic solagain, we stress that these are consequences and not causes
tions have been found by numerical simulations. of the LFF. The same is true for the relaxation oscillations.

From the analysis in Sec. V, it is seen that necessary corFinally, it should be noticed that the correlation between the
ditions for the occurrence of LFF for this class of delay dif- LFF attractor and the instability of the upper branch steady
ferential equations arél) the occurrence of steady state bi- state is similar to the mechanism found in the more complex
stability and(2) instability of both steady states. The domain situation analyzed in the short delay time lirilt0].
of LFF does not strictly coincide with the bistability domain:
LFF begin for# slightly larger than the lower bound of the
hysteresis(\where the quasiperiodic solutions are obseyved
and extend slightly beyond that domain. The only parameters Fruitful discussions with E. Viktorov are gratefully ac-
that are necessary to account for the LFF are the feedbadihowledged. This research was supported in part by the
strengthn and the phase-amplitude coupliag Two direct Fonds National de la Recherche Scientifique and the Inter-
consequences of this analysis are tliathe relaxation os- university Attraction Pole program of the Belgian govern-
cillations which are present in the LK equations are by noment.

ACKNOWLEDGMENTS

[1] R. Lang and K. Kobayashi, IEEE J. Quantum ElectrQt- [11] G. Giacomelli and A. Politi, Phys. Rev. Left6, 2686(1999.

16, 347(1980. [12] G. Giacomelli and A. Politi, Physica D17, 26 (1998.
[2] J.D. Farmer, Physica D4, 366 (1982. [13] D. Pieroux and P. Mandel, Phys. Rev6E, 056213(2003.
[3] T. Morikawa, Y. Mitsuhashi, and J. Shimada, Electron. Lett.[14] K. Engelborghs, Report No. TW-30Ginpublished
12, 435(1976. [15] P. Mandel,Theoretical Problems in Cavity Nonlinear Optics
[4] C. Risch and C. Voumard, J. Appl. Phy&3, 2083(1977). (Cambridge University Press, Cambridge, 1997
[5] G.H.M. van Tartwijk and D. Lenstra, Quantum Semiclassic.[16] S.M. Baer, T. Erneux, and J. Rinzel, SIAMoc. Ind. Appl.
Opt. 7, 87 (1995. Math, J. Appl. Math.49, 55 (1989.

[6] Physics and Simulation of Optoelctronic Devices édited by ~ [17] D. Lenstra, B.H. Verbeck, and A.J. den Boef, IEEE J. Quantum
Y. Arakawa, P. Blood, and M. Osinski, SPIE Proceedings, \ol. Electron.QE-21, 674 (1985.

4283 (SPIE, Bellingham, 2001 [18] Y. Liu, P. Davis, and Y. Takiguchi, Phys. Rev. &, 6595
[7] T. Sano, Phys. Rev. A0, 2719(1994. (1999.
[8] G.H.M. van Tartwijk, A.M. Levine, and D. Lenstra, IEEE J. [19] M. Giudici et al, Phys. Rev. 55, 6414(1997).
Sel. Top. Quantum Electror, 466 (1995. [20] M.C. Eguia, G.B. Mindlin, and M. Giudici, Phys. Rev. &8,
[9] G. Huyetet al, Opt. Commun180, 339 (2000. 2636(1998.
[10] A. Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, J. Opt. B: [21] A. Hohl, H.J.C. van der Linden, and R. Roy, Opt. Le2D,
Quantum Semiclassical O, 242 (200J. 2396(1995.

036204-6



