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The semiconductor resonator is an example of an optical system where two modulational instabilities with
different wave numbers coexist. In the limit of nascent bistability, the dynamics is generically described by a
nonvariational real order parameter equation, of which we give a detailed derivation. This considerably sim-
plifies the linear and weakly nonlinear stability analyses. When the two instabilities are close together, we
derive normal form equations and put special emphasis on “envelope” branches of solutions. These particular
solutions may connect the two instability points or form an isola. On the basis of these rigorous results, we
finally discuss the case of distant modulational instabilities, in both one and two transverse dimensions.
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I. INTRODUCTION

Over the last 20 years, several theoretical and experimen-
tal studies have investigated the coupling between nonlinear-
ity, dissipation, and diffraction. This coupling allows for the
formation of transverse dissipative structures, which are
widely observed in nonlinear optical systems. These phe-
nomena are common to many nonequilibrium systems[1–6].
In optics, early reports on transverse structures were given in
[7,8], which described pulses propagation in bistable sys-
tems. Later on, it was shown that the existence of transverse
patterns does not require bistable homogeneous steady states.
They were analyzed analytically in the mean-field approxi-
mation, within what is now often called the Lugiato-Lefever
(LL ) model [9]. In that work, a connection was established
between transverse optical patterns and the well-known Tur-
ing instability in reaction-diffusion systems[10] (otherwise
called modulational instability). These transverse optical
structures can be stationary or time dependent, spatially pe-
riodic or localized in the plane orthogonal to the propagation
direction of the beam. They have also been studied under the
influence of the walk-off[11], advection[12], and beyond
the mean-field limit[13]. They result from a modulational
instability (MI ) which is responsible for the transition to a
self-organized or ordered state where translational symmetry
is broken along one or more directions. This subject has been
abundantly discussed in a number of overviews[14–24].

However, these systems are often subjected to successive
instabilities and mode interaction may alter the self-
organization process. For example, MI and Hopf branches of
solutions may loose their stability under their mutual inter-
action, giving rise to a mixed-mode solution[25]. In passive
cavities and frequency conversion systems, the interaction
between MI’s and saddle-node bifurcations may influence

the existence and stability of the emerging structures[26,27],
while in all-fiber bistable ring cavities, it may strongly affect
the switching dynamics[28] (in that system, diffraction is
replaced by chromatic dispersion).

In this paper, we present analytical results on the interplay
between two MI’s with different wavelengths. This com-
pletes a previous communication on the question[29] and, to
some extent, complements a numerical investigation in
[30,31]. An important physical application of this study is
given by semiconductor resonators. These devices have po-
tential use in information technology and so have received
special attention in recent years. In this context, the forma-
tion of periodic patterns and localized structures has been the
subject of detailed studies[32–36]. Again, these dynamical
behaviors are ultimately related to MI, as shown on general
grounds[37] and proved recently for semiconductor cavities
[38]. However, such is the complexity of this system that
even the linear stability analysis of the homogeneous solu-
tion is generally done numerically; besides, it is commonly
believed that no further analytical treatment is possible.
Hence, despite all experimental and numerical work done on
this problem, there is only little analytical understanding
about this system. More generally, one expects the coexist-
ence of two MI’s with different wavelengths to be a frequent
dynamical situation; it was, for instance, recently reported in
the theory of vegetation patterns[39]. These considerations
motivate the present work.

By considering the weakly nonlinear dynamics near the
nascent optical bistability regime, we derive a real order pa-
rameter equation. This equation is generic for the limit of
nascent bistability and contains as a particular case the Swift-
Hohenberg equation, which regularly shows up in nonlinear
optics [40–42]. It can also be derived, for instance, for the
liquid-crystal light valve [43]. It is the simplest possible
model featuring bistability and two MI’s with different criti-
cal wave numbers. Unlike the Swift-Hohenberg equation,
though, it is generally nonvariational, so that there is no
Lyapunov functional or “potential” to minimize. Next, we
derive a normal form equation describing the interaction be-
tween two neighboring MI’s. The present analysis differs
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from most, if not all, previous studies on the subject, which
investigate resonant combinations of critical wave numbers.
For instance, it has been shown that the interaction between
Turing instabilities with different wavelengths leads to the
formation of quasicrystals and superlattices[44]. In the
present case, an infinity of branches of periodic solutions
arises and it is crucial to consider the envelope of these
branches in the bifurcation diagram.

In the next section, we briefly introduce the model of the
semiconductor cavity. The derivation of the real order pa-
rameter equation is presented in Sec. III. In Sec. IV, the limit
where the two instability points are close together is investi-
gated for one transverse dimension. In Secs. V and VI, we
extend our analysis to distant instabilities and to two trans-
verse dimensions. Finally, we conclude in Sec. VII.

II. DESCRIPTION OF THE MODEL

Our starting point is the model put forward in[33]. How-
ever, the variables are rescaled with respect to the lasing
threshold(in the absence of injected field), rather than the
transparency values, because it reduces the number of free
parameters.

Consider a bulk semiconductor cavity driven by a con-
stant electric field amplitudeY at frequencyvi. The dynami-
cal equations for the dimensionless fieldF and carrier(real)
variableZ are

] F

] t
= iuF + s1 + iadZF − i¹2F + Y, s1d

] Z

] t
= gfP − Z − s1 + 2ZduFu2 + D¹2Zg. s2d

Time and space have been rescaled to the photon lifetimek−1

and the diffraction length,=c/Î2kvi. In the first equation,
u=svc−vid /k is the normalized cavity detuning,a is the
linewidth enhancement factor, and¹2 is the transverse La-
placian. In the second equation,g=1/kTn is the ratio of the
photon lifetime to the nonradiative carrier recombination
time while D=DZTn/,2 is the normalized carrier diffusion
constant. Finally,P is the pump parameter; it is related to the
injected currentI throughP=sgNth/2kdsI / I th−1d, whereg is
the differential gain andNth and I th are the lasing threshold
values of the electron density and the electric current, respec-
tively. They are themselves related to the transparency den-
sity N0 and the volume of the active regionV throughNth
=N0+k /g and I th=eVNth/Tn. In what follows, we only con-
sider pumping currents below the lasing threshold, so that
−gNth/2k, P,0. For the sake of simplicity, we have ne-
glected the radiative recombination of carriers and, without
loss of generality,Y is real.

In the case of a multi-quantum-well(MQW) structure,
light and matter can interact through a well-resolved exci-
tonic line. Below the band gap, this line is reasonably well
described by a Lorentzian profile with central frequencyve
and half width ge. With the reduced detuningD=sve

−vid /ge, Eq. (1) should then be modified to

] F

] t
= iuF +

1 + iD

1 + D2ZF − i¹2F + Y. s3d

The system(1), (2) can be transformed into(2), (3) by the
substitutionsa→D, u→ s1+D2du, D→D / s1+D2d, and Y
→ s1+D2dY and a trivial rescaling of space and time. Any
result obtained for the bulk semiconductor material can
therefore be transposed to the MQW by these substitutions.
Bearing this in mind, we will focus hereafter on the bulk
semiconductor structure.

III. REDUCTION OF THE MODEL

The dynamics of a coherently driven semiconductor cav-
ity is characterized by hysteresis and modulational instabili-
ties — the latter giving rise to either periodic or localized
distribution of light intensity in the near field. In order to
construct a simplified, yet as complete as possible picture of
this dynamics, one should look for conditions where(i) the
bistability is nascent,(ii ) the MI’s that are responsible for the
appearance of localized structures and other spatially peri-
odic patterns are in a close vicinity of the switching region,
and (iii ) the associated unstable wave numbersk are small
(see[18,40], where the same considerations are applied to
two-level atoms media).

A. Limit of small cavity detuning

Whenu=0, the homogeneous stationary solution of Eqs.
(1) and (2) is implicitly given by

Y = − s1 + iad
P − uFu2

1 + 2uFu2
F, s4d

with the constraint thatY be real. Nascent bistability corre-
sponds to]Y/]uFu=]2Y/]uFu2=0 and is reached with

Fc = s1 − iadS 3/2

1 + a2D1/2

, Zc = − 3/2,

s5d

Pc = − 9/2, Yc = S1 + a2

8/27
D1/2

.

At this critical point, the characteristic polynomial has the
form

Psl,kd = l3 + a1,kl
2 + a2,kl + a3,k, s6d

wherek is the wave number of a perturbation and

4a3,k = gk2hDf9 + s2k2 − 3ad2g + 8s2k2 − 3adj. s7d

l=0 is a root of the characteristic polynomial ifa3,k van-
ishes. This occurs fork=0, but also with 0,k!1 provided
that

D . Dc =
8a/3

1 + a2 . s8d

With this piece of information, we are in a position to reduce
the laser model to a single, scalar partial differential equation
by perturbation analysis. To formalize the requirement of a
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small hysteresis domain, we introduce a small parametere
by

P = Pc + 3e2p. s9d

We then expandY, D, andu as

Y = Ycs1 + e2y2 + e3y/4 + ¯d, s10d

D = Dcs1 + ed + ¯d, s11d

u = e3ū/Dc. s12d

In the small-k limit, one root of the characteristic polynomial
is asymptotically given byl,−a3,k/a2,k,−1

4gk4/a2,k. This
suggest to rescale time and space ast,e2t andj,e1/2x and
it is convenient to set

t =
e2t

1/g + Dc/a
, j =

e1/2x
ÎDc

. s13d

We can now write the following asymptotic expansion forF
andZ in Eqs.(1) and (2):

Fsx,td = Fcf1 + efsj,td + e2f2sj,td + ¯g, s14d

Zsx,td = Zcf1 + ezsj,td + e2z2sj,td + ¯g. s15d

Collecting like powers ofe, we find, at dominant order

− f − z= 0, s16d

f + f* + 2z= 0. s17d

This immediately yieldsz=−f. We note for future reference
that if the system above were inhomogeneous, solvability
would require that the sum of Eq.(16) with its complex
conjugate and Eq.(17) vanish.

At order e2, we have

− f2 − z2 = − y2 − f2 +
i + a

4a
¹2f , s18d

f2 + f2
* + 2z2 = − p + 2f2 −

1

2
¹2f , s19d

where¹2 means now]2/]j1
2+]2/]j2

2. The solvability condi-
tion for this pair of equations isy2=−p/2 and the solution at
this order is

f2 =
− i

4a
¹2f, z2 = f2 −

p

2
−

1

4
¹2f . s20d

Finally, by substituting this solution in the next order and
applying the solvability condition, we get the following sca-
lar equation for the field variablef:

] f

] t
= y + ū − fsp + f2d + sd − f/2d¹2f − a¹4f − ¹2f2.

s21d

This is the real order parameter equation for the semiconduc-
tor cavity. The nonlinear diffusion termsf¹2f and¹2f2 ren-
der it nonvariational. They do not arise in the study of two-
level atoms where diffusion is neglected and small detunings
are assumed[18]. Hence, they are directly imputable to the
diffusion of charge carriers and to theOs1d value of thea
parameter. We find that an equation of the form(21) natu-
rally arises when studying other pattern-forming systems un-
der the conditions(i)—(iii ) mentioned above[43], which
gives it a generic character. Let us mention that real order
parameter equations with nonlinear diffusive terms have
been derived earlier for optical parametric oscillators
[42,45,46] and thermal convection[47]; however, they pre-
serve the inversion symmetry.

Let us examine the various parameters entering this equa-
tion. First, we see that for small cavity detunings, the re-

duced detuningū and driving strengthy play the same role.
The new pump parameterp determines whether the system is
monostablesp.0d or bistablesp,0d and controls the mag-
nitude of the hysteresis. Next,d is an overall diffusion coef-
ficient; it can be negative if diffraction dominates diffusion.
Finally, the reduction to Eq.(21) is physically relevant only
if the coefficienta is positive. Otherwise, fluctuations with
arbitrarily large wave number would be unstable and the
scaling we used for the spatial dependence becomes inappro-
priate. In the present limit of a vanishing detuning, it is given
by

a ;
1 − a2

4a2 . s22d

Therefore, the linewidth enhancement factora should be less
than 1. However, this restriction can be lifted ifu is allowed
to vary more substantially, as we explain in Sec. III C.

B. Comparison with original model

The derivation of Eq.(21) relies on the smallness of the
parametere in Eq. (9) and it is important to assess how small
this parameter must be to faithfully reproduce the dynamics
of the original equations(1) and(2). To this end, let us com-
pare the linear stability analysis of the two models.

In the reduced model, the homogeneous steady state is
given by

y = fssp + fs
2d, s23d

while perturbations of the form expslt+ ik ·jd aroundfs sat-
isfy the dispersion relation

l = − p − 3fs
2 − sd − 5fs/2dk2 − ak4. s24d

Equating simultaneouslyl and]l /]k to zero, the thresholds
for MI’s are then found to be
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fs = f± =
10d ± 4Îaf12d2 + s25 − 48adpg

25 − 48a
, s25d

giving the injection thresholds

y = y± = f±sp + f±
2d. s26d

The associated critical wave numbers

k± = S5f± − 2d

4a
D1/2

s27d

are real provided that 5f± .2d. In terms of the original vari-
ables, the threshold field amplitudes for MI’s areF±=Fcs1
+ef±d, but sinceFc is complex, it is more convenient to
consider the intensities

I± = uFcu2s1 + ef±d2 =
3

2
s1 + ef±d2. s28d

In Fig. 1, we compare these intensity thresholds with those
obtained by numerically solving the characteristic polyno-
mial of Eqs.(1) and(2). We choose a set of parametersp, d,
anda for which two MI’s exist and find very good agreement
even for moderately small values ofe. In fact, the two mod-
els only start to disagree ate.0.2, whenD=Dcs1+edd be-
comes negative, hence physically irrelevant. In Fig. 2, the
branches of bifurcating solutions are compared for the same
parameter set ande=0.05. Here, too, the agreement is very
encouraging. However, we note thate sometimes has to be
much smaller for other sets of parameters.

C. Arbitrary cavity detuning

A vanishingly small cavity detuningu is rarely, if ever,
achieved in practice. It is therefore important to show that
the possibility of real order parameter description such as Eq.
(21) does not critically rely on this assumption. We now
outline the derivation whenu is significantly large. Similarly
to expression(4), one can still writeY=Ysu ,P, uFud. Nascent
bistability requires that both]Y/]uFu and ]2Y/]uFu2 vanish,
which yields the critical parameter valuesPcsud and Ycsud
and field amplitudeFcsud. From the characteristic polyno-
mial evaluated at this point, one then finds a conditionD

.Dcsud for the occurrence of a long-wavelength instability.
In practice, for a givenD, the cavity detuningu can be tuned
so as to haveD−Dcsud small.

In the absence of explicit formulas forFc, Zc, . . . one has
to compute these values numerically for each pair ofa andu.
Then the same perturbation expansion as in Sec. III A can be
carried out. At the end of the day, the model equations(1)
and (2) always reduce asymptotically to the form

] f

] t
= A1 − fsA2 + A3f2d + sA4 − A5fd¹2f − A6¹

4f − A7¹
2f2,

s29d

where the coefficientsAi are functions ofu and depend on
the parameter deviationsy, p, andd in the same way as in
Eq. (21). In particular,A6 depends only ona and u. The
domain of validity of Eq.(29) is therefore bounded by the
constraint

A6sa,ud . 0. s30d

We have computed this coefficient numerically and drawn
the locusA6sa ,ud=0 in the sa ,ud plane in Fig. 3. The do-
main of validity of Eq. (29) is above this line. As an ex-
ample, let us consider the following typical parameter val-
ues: DZ=30 cm2 s−1, gi=109 s−1, k=531011 s−1, vi =2.2
31015 s−1, and a=3. The corresponding normalized diffu-
sion parameterD equals 0.67, and we find that it is close to
Dcsud provided thatu.1.66, which falls in the validity do-
main.

Having calculated the curveA6sa ,ud=0 for the bulk
semiconductor material, a simple rescaling of the axes suf-
fices to draw the corresponding curveA6(D ,s1+D2du)=0 for
the MQW system. As can be seen, the domain of validity is
markedly increased for large detuningsD from the excitonic
resonance.

FIG. 1. Threshold intensitiesI± predicted with the original
model(dotted line) and the reduced model(solid line) as a function
of the smallness parametere. Reduced parameter valuesp=1, d
=−5, a=3.75.

FIG. 2. Numerical bifurcation diagram computed with one
transverse dimension with reduced(thin line) and original model
(squares). The thick line is the homogeneous state. The parameters
are the same as in Fig. 1 ande=0.05. In the full model,P
=−4.4925, D=0.470625,a=0.25. The reduced modelslightly
overestimates the top MI point, consistently with Fig. 1. Both
models predict subcritical bifurcation.
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The reduced model(21) is almost as general as Eq.(29).
The former, however, is more informative because the effect
of the parameter deviationsy, p, andd on the dynamics is
directly apparent. From now on, we will therefore restrict our

discussion tou, ū=0; otherwise,y, p, andd would appear at
the same places in Eq.(29), preceded by someu-dependent
coefficients.

IV. INTERACTION BETWEEN INSTABILITIES

As revealed by the linear stability analysis, two MI can
destabilize the homogeneous state. Two possible situations
where both thresholds simultaneously exist are depicted
schematically in Fig. 4. The bifurcating branches of solution
inevitably interact. Such an interaction between two MI’s is
generally investigated when the associated critical wave
numbers are equal or commensurate. Neither of the two situ-
ations apply here fork+ andk−. However, inspection of Eq.
(25) reveals that, when

p → pc =
12d2

48a − 25
, s31d

the two MI pointsf−, f+ tend to a common value

fc =
− 5pc

6d
, s32d

while

y−,y+ → yc = fcspc + fc
2d, s33d

k−,k+ → kc = S12fc

5
D1/2

. s34d

In the vicinity of the critical point where the two bifurca-
tions coincide, we may undertake a weakly nonlinear analy-
sis. The simple form of Eq.(21) makes the task easier but

this could be done with the original model as well. Here, we
only study the problem in one dimension. To this end, we
introduce a new small parameterē, which measures the dis-
tance from the critical point, and two bifurcation parameters
Dp andDy as

p = pc + 3ē2Dp, s35d

y = yc + ēakc
4Dy, s36d

where the factors in front ofDp and Dy are there to ease
subsequent algebraic manipulations. Next, in the spirit of
multiple-scale analysis, we write the following perturbation
expansion forf:

f = fc + ēf1sj,t;h,sd + ē2f2sj,t;h,sd + ¯ , s37d

with the new time and space scales

s = 3ē2t, h = 6ēj/5kc. s38d

Substituting this development into Eq.(21) and grouping
terms of like powers inē, we find at orderē

] f1

] t
= Lsf1 − Dyd, s39d

whereL is a differential operator defined as

L = − aSkc
2 +

]2

] j2D2

. s40d

As t→`, the solution of this equation tends to

FIG. 3. Curves A6sa ,ud=0 and A6sD ,s1+D2dud=0 above
which Eq. (29) is valid for the bulk and MQW materials, respec-
tively. The spot corresponds to the numerical example given in the
text. FIG. 4. (A), (B), (C) Three possible outcomes of the linear

stability analysis of the homogeneous state of Eq.(21). Dotted lines
indicate unstable regions. The limitp→pc corresponds tof+→ f− in
(A) and (B), leading either to a completely stable or completely
unstable branch of homogeneous solutions.(D), (E), (F) branches of
periodic solutions. From top bottom:Dp,0, sD−1d, sD
−1d,0,Dp, and sD−1d ,Dp,0. Dashed line: branches of peri-
odic solutions with fixed wave numberDk. Thick line: “envelope”
branch of the periodic solution.
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f1 = Dy + fAsh,sdexpsikcjd + c.c.g, s41d

whereA is the amplitude of the modulated field and “c.c”
stands for “complex conjugate.” At orderē2, the equation is

] f2

] t
= Lf2 −

5

4
kc

2sDp + Dy2d −
3

2
kc

2uAu2

+
13

4
kc

2fA2exps2ikcjd + c.c.g, s42d

and its solution is given by

4akc
2f2 = − 5sDp + Dy2d − 6uAu2 +

13

9
fA2exps2ikcjd + c.c.g.

s43d

Finally, at orderē3, we obtain an equation of the form

] f3

] t
= Lf3 + o

n=−3

3

fMnexpsnikcjd + c.c.g. s44d

We then have the solvability condition that the resonant term
M1 vanish in order forf3 not to diverge. This yields the
normal-form equation

] A

] s
= As− Dp − Dy2 − l uAu2d − 2iDy

] A

] h
+ D ]2A

] h2 , s45d

where

l = 1 −
13

54a
, D =

48a

25
. s46d

As generally expected for MI’s, the normal form is a
Ginzburg-Landau equation. In it, the interaction between the
two instabilities manifests itself in two ways. First, two pa-
rametersDp and Dy are necessary to describe the bifurca-
tion; i.e., it is of codimension 2(see, for instance,[48]).
Second, the way in which these bifurcation parameters ap-
pear in the amplitude equation is quite distinct from the stan-
dard, isolated MI. Particularly interesting is the complex
first-order partial derivative multiplied byDy. This has im-
portant implications. To see this, we first note that there ex-
ists an infinity of branches of spatially periodic solutions of
the form

A = r expsiDkhd, s47d

wherer is the oscillation amplitude andDk is a correction to
the critical wave numberkc. Substituting this ansatz into Eq.
(45), we obtainr as a function ofDy andDk through

lr2 + sDy − Dkd2 = − Dp + s1 −DdDk2. s48d

To each value ofDk corresponds a branch of solutions
and we thus have a family of curves in the bifurcation dia-
gram, as shown in Fig. 4. A crucial observation is that the
envelope of these branches is itself a branch of solutions. It is
obtained by combining Eq.(48) and the constraint that
]r /]sDkd=0. The latter imposes thatDk varies withDy as

Dk = Dkenv =
Dy

D , s49d

which, by substitution in Eq.(48), yields

lrenv
2 +

D − 1

D Dy2 = − Dp. s50d

The amplitude of this particular solution is thus described by
a conical curve in the bifurcation diagram. This curve is
determined by the values ofl and D. Equation(45) shows
from direct inspection thatl must be positive for any periodic
solution to be stable, unless, possibly, ifl !1, which we will
consider later. Let us assume thereforel .0 in the following
(this first situation was already described in[29]). It is easy
to linearize Eq.(45) around the envelope solution(50) and to
verify that it is linearly stable in that case.

If D.1 andDp,0, the branches in Eq.(48) are ellipses
and so is the envelope one. The latter connects the two in-
stability points, between which the homogeneous solution is
unstable. The fact that these two instability points can be
connected in spite of their different characteristic wave num-
bers is possible on account of the dependence ofDk with Dy
in Eq. (49).

The reverse situation happens whenD,1 andDp.0. In
this case, the homogeneous solution is stable between the
two instability points. From these, two envelope branches
emerge and grow in opposite directions. If, however,Dp is
decreased and becomes negative while keepingD,1, the
two instability points merge and annihilate. In this way, the
two envelope branches merge so that the resulting envelope
is nowhere connected to the homogeneous steady state[see
Figs. 4(C) and 4(F)]. This proves the existence ofisolated
branches of solution in the semiconductor cavity. In this situ-
ation, no threshold is associated with the instability. These
analytical predictions are fully confirmed by the numerical
integration of the real order parameter equation(see Fig. 3 of
Ref. [29]).

Let us note that, although the isolated branch exists for
arbitrarily large values of the reduced injection fieldy, this is
not the case in the original model(1) and (2). In the latter,
the high-intensity branch of homogenous solution eventually
regains stability through a MI point. This happens for large
injection field amplitudesY, out of the validity range of Eq.
(21).

Let us now consider the limit wherel !1. This is obtained
if a is close to 13/54, in which caseD is automatically less
than 1. Equation(45) then fails to provide the amplitude of
the periodic solution and an interesting higher order analysis
is possible. We first set

a =
13

54
s1 + ēDld, s51d

whereē is the same expansion parameter as before. Sincepc

depends ona, Eq. (31), it effectively becomespc=pc
s0d

+epc
s1d+¯ and it is necessary to modify the expansion in Eq.

(35) as
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p = pc
s0d + ēpc

s1d + 3ē2Dp. s52d

The development fory in Eq. (26) and the slow scales(38)
still hold, but the adequate expansion for the field is now

f = fc + ē1/2c1/2sx,t;h,sd + ēc1sx,t;h,sd + ¯ . s53d

At leading order inē1/2, one finds]c1/2/]t=Lc1/2, yielding
c1/2=Ash ,sdexpsikcxd+c.c. The rest of the calculation is
along the same lines as before and presents no particular
interest. At the end of the day, we obtain a solvability con-
dition at orderē5/2. This yields

] A

] s
= ASr1 + r2uAu2 + r3uAu4 + ir 4

] uAu2

] h
D

− isr5 + r6uAu2d
] A

] h
+ D ]2A

] h2 , s54d

where the coefficientsr i are given by

r1 = − Dp − S 5

12
kc

2Dl + DyD2

, r2 =
10

3
Dl +

12

kc
2 Dy,

r3 =
− 23247

676kc
4 , r4 =

1062

65kc
2 , r5 =

121

270
kc

2Dl + 2Dy, s55d

r6 =
659

65kc
2 .

Here, again, an infinity of periodic branches and their enve-
lope can be obtained, in the same way as with Eq.(45).
Figure 5 shows the complicated shapes that the individual
branches now assume and their envelope. As can be seen in
Fig. 5(A), whenDl ,0, Dp,0, the envelope solution emerg-
ing from one of the MI points is supercritical, hence stable.
This envelope branch, however, ends at a limit point, where

it meets the other, unstable, envelope branch emerging from
the other MI point. AsDl is progressively increased, this
limit point migrates to the right of the bifurcation diagram
and tends to infinity asDl →0−. For 0,Dl, the two envelope
branches are disjoint[Fig. 5(B)]. From this situation, de-
creasingDp induces the two MI points to merge, so that the
envelope branch separates from the homogeneous solution
altogether, as in Fig. 5(C). This time, however, the transition
does not necessarily occurs atDp=0. We have thus found the
connection between the different types of bifurcation dia-
grams encountered so far. Moreover, Fig. 5 suggests that the
envelope branches in Figs. 4(E) and 4(F) do not extend in-
definitely on the left. Rather, we expect that, even whenl is
not small, they reach a limit point and subsequently fold
towards higher intensity. This is because they are formed by
solutions emanating from the high-intensity state of the
bistable cavity and can therefore not extend much further
than the high-intensity limit point of the homogeneous
steady state.

Let us remark that, in lieu ofr exp iDkh, we could have
used the family of exact solutionsA=r sechsghdexp iDkh
and proceeded along the same line as above. This has the
advantage of dealing with finite energy modulation of the
field but significantly complicates the algebra.

V. DISTANT INSTABILITIES

If the two instabilities are well apart in the bifurcation
diagram or if only one of them exists, then they can be stud-
ied separately. In the vicinity of either off+ and f−, the so-
lution can be written as

fsx,td = f± + sB±sx,tdeik±x + c.c.d. s56d

The modulation amplitudeB± can be obtained by standard
weakly nonlinear analysis[4,49]. One finds

] B±

] t
= m1sy − y±dB± − m2B±uB±u2 + m3

]2B±

] x2 , s57d

where the coefficientsmi are given by

m1 =
5k±

2 + 12f±

6f±
2 + 2p

, m3 = 4ak±
2,

m2 = 3 −
8f±

2 − 18f±k±
2 + 9k±

4

s4/9ds3f±
2 + 8ak±

4 + pd
−

72f±
2 − 42f±k±

2 + 5k±
4

6f±
2 + 2p

.

s58d

This amplitude equation is the only rigorous result that we
can derive in the present situation. It reliably indicates
whether the bifurcating branch is supercritical and stable
sm2.0d or not. However, it is only valid very close to the
bifurcation point: it cannot, for instance, account for a bifur-
cation diagram such as the one shown in Fig. 2, where the
branch of periodic solutions connects two distant bifurcation
points.

In an attempt to make analytical progress, we decompose
the solution in the form

FIG. 5. Bifurcation diagrams resulting from a higher-order
analysis whena.13/54 (see text for description).
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fsx,td = W0 + sWke
ikx + c.c.d. s59d

In this ansatz, it is important to note that the “homogeneous-
mode” amplitudeW0 is not fixeda priori. It is now coupled
to Wk. This point was emphasized in[26,50,51]. The use of
such a truncated Fourier decomposition is hard to justify
mathematically. Still, numerical simulations indicate that the
solution remains fairly harmonic in space, far from the point
of instability; hence, this approach appears reasonable. It was
previously applied to semiconductor cavities in[32]. We now
simply substitute this ansatz into Eq.(21) and neglect higher
harmonics. In the steady state, this yields the two algebraic
equations

y = W0sp + W0
2d + s6W0 − k2dWk

2, s60d

3Wk
2 = − p − 3W0

2 + S5

2
W0 − dDk2 − ak4. s61d

Here again, we let the wave numberk vary between the two
critical valuesk+ andk−. This allows us, as before, to draw
an infinity of branches in the bifurcation diagram and we
focus on the envelope of these branches. The result, dis-
played in Fig. 6, shows a satisfying agreement with the nu-
merical simulations.

VI. TWO-DIMENSIONAL PATTERNS

We now consider two-dimensional(2D) systems. The lin-
ear stability analysis is the same as in the one-dimensional
case. The stripes have already been described in the previous
section. Hence, we focus on hexagonal and honeycomb pat-
terns. We do not consider rhombic(square) structures, be-
cause we never observed them numerically. Besides, we
know that they are intrinsically unstable for the Swift-
Hohenberg equation, which is a degenerate version of Eq.
(21) (the proof of this statement is similar to that in[52] for
tetrahedral dissipative structures). This strongly suggests that
the hexagon-square transition that has been reported in other

classes of nonlinear optical systems(see, for example, pho-
torefractive feedback systems[53]) is excluded in our model.
An essential difference that appears when considering the 2D
problem is that wave numbers are replaced by wave vectors
in the transverse plane. The homogeneous steady state is
destabilized by tripletssk1,k2,k3d of wave vectors which
have the same modulusk and which sum to zero. The triplet
itself is defined up to an arbitrary orientation in the trans-
verse plane(rotational degeneracy). A nonlinear interaction
between modes selects and stabilizes a regular pattern. In the
following, we consider only the resonant interaction between
transverse modek j, leaving againk as a parameter, and in-
clude the effect of the quasineutral mode, as in the 1D prob-
lem. Hexagonal and honeycomb patterns correspond to the
superposition of three modes with wave vectors of identical
modulus and with an angle of 2p /3 between them. We thus
look for a solution of the form

fsx,td = W0 + Fo
j=1

3

Wkexp isk j . x + f jd + c.c.G . s62d

By replacing this ansatz in Eq.(21) and using the truncated
Fourier mode expansion we find, in the steady state, that

y = W0sp + W0
2d − 3s6W0 + 4Wkcosc − k2dWk

2 s63d

and

15Wk
2 − 3sk2 − 2W0dcosscdWk

= − p − 3W0
2 + S5

2
W0 − dDk2 − ak4, s64d

where

c = f1 + f2 + f3. s65d

The steady-state solutionsc=0 andc=p give arise to hexa-
gons and honeycombs, respectively.

The results of the above analysis are summarized in the
2D bifurcation diagram displayed in Fig. 7, where we have
plotted the maximum amplitude corresponding to stripes
sW0+2Wkd, hexagonssW0+6Wkd, and honeycombssW0

+3Wkd as a function of the input field amplitudey. We used
the same parameter values as in Figs. 2 and 6. Very good
agreement is found with a direct numerical integration of the
real order parameter equation. When increasing the control
parametery, the structures that appear first are the hexagons
sc=0d. They are stable until the system exhibits transition to
stripes. Further increasing the input field amplitude, the
stripes become unstable and we observe the transition to-
wards the formation of honeycomb structuressc=pd. There
are two parameter regions where there is an overlapping do-
main of stability between stripes and hexagons or honey-
combs. On the other hand, for the parameter values consid-
ered, hexagons and honeycombs cannot coexist. All the
branches of solutions are asymmetric with respect to the
point (f =0, y=0). Finally, the bifurcation to hexagons and
honeycombs can be either supercitical or subcritical. The
shape of the bifurcation diagram is very similar to the one
obtained numerically in[30].

FIG. 6. Analytical bifurcation diagram for distant instabilities in
one spatial dimension. The parameter values are the same as in Fig.
2. The family of periodic branches is computed from Eqs.(60) and
(61).
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VII. DISCUSSION

It is well known that, at the onset of a modulational in-
stability, a band of wave numbers becomes unstable. Accord-
ingly, a continuous family of branches of periodic solutions
is generated. In the simplest case of a single, supercritical
bifurcation, it generally suffices to consider only the most
unstable wave number at the instability point. However,
when two MI’s with different critical wave numbers are
present, it is necessary to consider the whole band of un-
stable wave numbers in order to construct the solution that
joins the two bifurcation points. In this respect, theenvelope
of the periodic branches plays a predominant role, as it
emerges from the study of the normal-form equations(45)
and (54). This particular branch assumes nontrivial shapes
and reveals features which could hardly be anticipated by
considering patterns with a fixed wave number only(see
Figs. 4 and 5). The envelope branch can be viewed as the
result of a continuous bifurcation process between branches
of periodic solutions that have a fixed wave number. In order
to have a bifurcation from one branch to the next, the two
solutions must coincide to first order both in amplitude and
in wave number. This can only happen on the envelope and it
is through this constraint that the two instabilities interact.
This is quite different from the more familiar resonant inter-
action between two MI’s, in which some precise set of criti-
cal wave vectors belonging to either of the two MI’s sums to
zero. Mathematically, another sign of the interaction between
the two instabilities discussed here is the fact that it is of
codimension 2: two bifurcation parameters are necessary to
unfold the entire bifurcation structure[48].

From a numerical point of view, the above observation
may have important consequences. Recent numerical inves-
tigations of similar optical models exploited the periodicity
of the solution to discretize the stationary problem on a
single spatial period only[30,31]. This conveniently allows
to reduce the interval on which the equation is discretized,
hence to diminish the truncation error by taking a smaller
space step. However, this artificially imposes the periodicity
of the computed solution. As we have seen throughout this

paper, the modulusk of the wave number is a quantity that
naturally varies along the bifurcation diagram. The authors in
[31] lucidly addressed the question of stability with respect
to perturbations that do not have the periodicity of their grid.
They also recognized that they could in principle find a pe-
riodic solution with any wave number by controlling the size
of the elementary cell on which the equation is discretized.
What the present work suggests is to adjust the size of the
elementary cell so as to construct the envelope branch. This
is confirmed in Fig. 2, where the bifurcation diagram of the
real order parameter equation(21) was compared to the
original model. On the one hand, we integrated the time-
independent, one-dimensional version of Eq.(21) on an el-
ementary cell with periodic boundary conditions. For each
point of the bifurcation diagram, we adjusted the spatial pe-
riod so as to extremize the amplitude of the solution. On the
other hand, we integrated the time-dependent original model
(1) and (2) on a much larger domain, letting the system dy-
namically select the wave number. The solution dynamically
evolved towards the envelope branch. This agrees with the
stability predictions from the normal-form equation(45).

Concerning the isolated branch of solutions shown in Fig.
3 of [29], it has no bifurcation, hence no threshold associated
with it. It is, however, formed by solutions that bifurcate
from an unstable portion of the high-intensity homogeneous
branch[Fig. 4(F)]. Therefore, it does not correspond to the
experimental observation of thresholdless hexagons[35],
which are found at low intensities and with a linearly stable
background. Let us point out, however, that the normal forms
(45) and (54) can in principle describe isolated branches of
solution on astablehomogeneous background. Assume for
example thatl ,0, D.1, and Dp.0 in Eq. (50). In this
case, there exists a family of isolated branches of periodic
solutions despite the complete absence of MI’s. Admittedly,
these solutions would be unstable in the frame of the cubic
Ginzburg-Landau equation(45); moreover, the conditions on
l andD for such a scenario cannot simultaneously be met in
the nascent bistability limit with zero cavity detuning. How-
ever, stability can potentially be recovered within the quintic
Ginzburg-Landau description(54). Besides, the form of Eqs.

FIG. 7. Bifurcation diagram
for distant instabilities in two
transverse dimensions. The pa-
rameter values are the same as in
Figs. 2 and 6. Symbols indicate
numerically computed amplitudes
for hexagonssmd, stripessPd, and
honeycombss.d. As in Fig. 6,
one can draw many branches of
periodic solutions, each with fixed
k, using Eqs.(63) and (64) with
c=0 (hexagons) or c=p (honey-
combs). Only the envelopes of
these branches are shown here.
Dashed portions of the curves are
numerically found to be unstable.
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(45) and(54) is general and can be derived from the original
model, independently of nascent bistability. Further investi-
gations are necessary to clarify this point but it seems clear
that a thresholdless phenomenon such as the one reported in
[35] does not necessarily stem from device imperfections.

Finally, we would like to mention that vegetation patterns
are governed by equations very similar to the real order pa-
rameter equation derived here. Semi-arid environments have
been described in the weak phytomass densityr and weak
gradient limits[39]. This leads to a logisticlike equation con-
taining a nonlinear diffusive term of the formsL−rd¹2r.
Such a term accounts for the positive effect that established
plants can have on the growth of other plants — e.g., by

producing shadow, littering nutrients, and protecting against
herbivores. Because of this nonlinear diffusion, these ecosys-
tems can potentially be destabilized by MI’s with different
critical wave numbers. They are thus liable to produce some
of the bifurcation zoology described in this paper.
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