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Optical patterns with different wavelengths
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The semiconductor resonator is an example of an optical system where two modulational instabilities with
different wave numbers coexist. In the limit of nascent bistability, the dynamics is generically described by a
nonvariational real order parameter equation, of which we give a detailed derivation. This considerably sim-
plifies the linear and weakly nonlinear stability analyses. When the two instabilities are close together, we
derive normal form equations and put special emphasis on “envelope” branches of solutions. These particular
solutions may connect the two instability points or form an isola. On the basis of these rigorous results, we
finally discuss the case of distant modulational instabilities, in both one and two transverse dimensions.
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[. INTRODUCTION the existence and stability of the emerging structiz€s27,
while in all-fiber bistable ring cavities, it may strongly affect
Over the last 20 years, several theoretical and experimenhe switching dynamic$28] (in that system, diffraction is
tal studies have investigated the coupling between nonlineareplaced by chromatic dispersion
ity, dissipation, and diffraction. This coupling allows for the In this paper, we present analytical results on the interplay
formation of transverse dissipative structures, which arédetween two MI's with different wavelengths. This com-
widely observed in nonlinear optical systems. These phepletes a previous communication on the quesft8j and, to
nomena are common to many nonequilibrium systgr$].  some extent, complements a numerical investigation in
In optics, early reports on transverse structures were given if30,3T. An important physical application of this study is
[7,8], which described pulses propagation in bistable sysgiven by semiconductor resonators. These devices have po-
tems. Later on, it was shown that the existence of transverd€ntial use in information technology and so have received
patterns does not require bistable homogeneous steady statégecial attention in recent years. In this context, the forma-
They were analyzed analytically in the mean-field approxi-t'on_Of periodic patterns _and localized structures has bgen the
mation, within what is now often called the Lugiato-Lefever Subject of detailed studief82-3§. Again, these dynamical
(LL) model[9]. In that work, a connection was established Pehaviors are ultimately related to MI, as shown on general
between transverse optical patterns and the well-known Tu'grounds[S?] and pfo"?d recently for s_emlconductor cavities
ing instability in reaction-diffusion systenjd0] (otherwise ~ LS0): Hhowlever, S“CQ.I.'S the lcor_nplefmrt]y ?]f this system thal‘t
called modulational instabilily These transverse optical even the linear stability analysis of the homogeneous soju-

. . . tion is generally done numerically; besides, it is commonly
structures can be stationary or time dependent, spatially P¥elieved that no further analytical treatment is possible.

rilodic'or localized in the plane orthogonal to the .propagationHence, despite all experimental and numerical work done on
_dl;lectlon Offthﬁ bearlr:(. Thi{ ha\ije also belezn stu%;egl undgr fis problem, there is only little analytical understanding
influence of the walk-off11], advection[12], and beyon about this system. More generally, one expects the coexist-

Fhe mg_an—field Iim_it[l3]. They re_sult from a modg!ational ence of two MI's with different wavelengths to be a frequent
instability (MI) which is responsible for the transition 10 & gy namical situation; it was, for instance, recently reported in
self-organized or ordered state where translational symmetrbg

is broken along one or more directions. This_subject has bee&gﬁzgqf}gfF;/reeigcna;tlvc\)lgrﬁétterm%]. These considerations
abundantly discussed in a number of ove_rvm{Wﬂ;—Zé]. . By considering the weakly nonlinear dynamics near the
. However, these systems are often subjected t0 SUCCESSIYG s ant optical bistability regime, we derive a real order pa-
|nstab_|I|t|§s and mode interaction may alter the SeIf'r meter equation. This equation is generic for the limit of
organization process. For exa"?P'e’ Mi and prf branches ascent bistability and contains as a particular case the Swift-
solutions may loose their stability under their mutual 'nter'Hohenberg equation, which regularly shows up in nonlinear
action, giving rise to a mixed-mode solutip25]. In passive '

cavities and frequency conversion systems, the interactioOptiCS [40-42 It can also be derived, for instance, for the
: C> . iquid-crystal light valve[43]. It is the simplest possible
between MlI's and saddle-node bifurcations may influenc Pq y g [43] P P

Thodel featuring bistability and two MI's with different criti-
cal wave numbers. Unlike the Swift-Hohenberg equation,
though, it is generally nonvariational, so that there is no

*Electronic address: kozyreff@maths.ox.ac.uk Lyapunov functional or “potential” to minimize. Next, we
"Electronic  address:  mtlidi@ulb.ac.be; URL:  http:// derive a normal form equation describing the interaction be-
www.ulb.ac.be/sciences/ont tween two neighboring MI's. The present analysis differs
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from most, if not all, previous studies on the subject, which dF . 1+iA -

investigate resonant combinations of critical wave numbers. 3t =i6F + mZF -iVF+Y. (3

For instance, it has been shown that the interaction between

Turing instabilities with different wavelengths leads to the The system(1), (2) can be transformed int(®?), (3) by the

formation of quasicrystals and superlattice®4]. In the  substitutionsa— A, 6—(1+A2)6, D—D/(1+A?), and Y

present case, an infinity of branches of periodic solutions—(1+A?)Y and a trivial rescaling of space and time. Any

arises and it is crucial to consider the envelope of theseesult obtained for the bulk semiconductor material can

branches in the bifurcation diagram. therefore be transposed to the MQW by these substitutions.
In the next section, we briefly introduce the model of theBearing this in mind, we will focus hereafter on the bulk

semiconductor cavity. The derivation of the real order pa-semiconductor structure.

rameter equation is presented in Sec. lll. In Sec. 1V, the limit

where the two instability points are close together is investi-

gated for one transverse dimension. In Secs. V and VI, we

extend our analysis to distant instabilities and to two trans- The dynamics of a coherently driven semiconductor cav-

Ill. REDUCTION OF THE MODEL

verse dimensions. Finally, we conclude in Sec. VII. ity is characterized by hysteresis and modulational instabili-
ties — the latter giving rise to either periodic or localized
Il. DESCRIPTION OF THE MODEL distribution of light intensity in the near field. In order to

construct a simplified, yet as complete as possible picture of

Our starting point is the model put forward [[B3]. How-  this dynamics, one should look for conditions wheiethe
ever, the variables are rescaled with respect to the lasinpistability is nascenii) the MI's that are responsible for the
threshold(in the absence of injected fig|drather than the appearance of localized structures and other spatially peri-
transparency values, because it reduces the number of freelic patterns are in a close vicinity of the switching region,
parameters. and (iii) the associated unstable wave numbelare small

Consider a bulk semiconductor cavity driven by a con-(see[18,4Q, where the same considerations are applied to
stant electric field amplitud¥ at frequencyw;. The dynami-  two-level atoms media
cal equations for the dimensionless fiéldand carrier(real)

variableZ are A. Limit of small cavity detuning

dF . _ - When 6=0, the homogeneous stationary solution of Egs.
PTE (1+ia)ZF =iV +Y, (1 (1) and(2) is implicitly given by
Y= (@ eyl @
= - la)————F,
iz o 1+ 2FP
— =9[P-Z-(1+22)|F|*+DV?Z]. (2)
at with the constraint tha¥ be real. Nascent bistability corre-
o sponds todY/d|F|=¢Y/d|F|?=0 and is reached with
Time and space have been rescaled to the photon lifetithe P IFl IFl
and the diffraction lengtlf =c/2«w;. In the first equation, _ _ 3/2 Y2 i
0=(w.~w;j)/ k is the normalized cavity detuningy is the Fe=(1-ia) 1+2) Z;=-3l2,
linewidth enhancement factor, arwf is the transverse La-
. . ; . ©)
placian. In the second equatiop=1/«T, is the ratio of the 1+ a2\ 12
photon lifetime to the nonradiative carrier recombination P.=-9/2, Yc:< 8/27)

time while D=D,T,/¢? is the normalized carrier diffusion
constant. FinallyP is the pump parameter; it is related to the At this critical point, the characteristic polynomial has the
injected current throughP=(gNy/2x)(1/1,—1), wheregis  form

the differential gain andNy, andly, are the lasing threshold

values of the electron density and the electric current, respec- P(\K) = A3 +ag A2+ ag\ + agy,, (6)
tively. They are themselves related to the transparency de%herek is the wave number of a perturbation and

sity Ny and the volume of the active region through Ny,

=Noy+«/g andly=eVN;,/T,. In what follows, we only con- dag, = ¥k*D[9 + (2k? - 3a)?] + 8(2k* - 3a)}.  (7)
sider pumping currents below the lasing threshold, so tha>t\:0 is a root of the characteristic polynomiald, van-

—-gNy/2x<P<0. For the sake of simplicity, we have ne- . . Z ) . .
glected the radiative recombination of carriers and, withouﬁgfs' This occurs fok=0, but also with 6<k<1 provided

loss of generalityY is real.
In the case of a multi-quantum-weiMQW) structure, 8a/3

light and matter can interact through a well-resolved exci- =D.= 1+a2°

tonic line. Below the band gap, this line is reasonably well

described by a Lorentzian profile with central frequergy  With this piece of information, we are in a position to reduce

and half width y.. With the reduced detuning\=(w, the laser model to a single, scalar partial differential equation

- w;)! e, EQ. (1) should then be modified to by perturbation analysis. To formalize the requirement of a

(8
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small hysteresis domain, we introduce a small parameter

by
P =P, + 3€%p. 9)

We then expand, D, and 6 as

Y=Y 1+, +eyld+--), (10)
D=D/1+ed+---), (11
0= €0ID.. (12)

In the smallk limit, one root of the characteristic polynomial
is asymptotically given b\ ~—ag /@~ —3 yk*/a,,. This
suggest to rescale time and space-ase’t and £~ €?x and

it is convenient to set

& %
= , =—. 13
"= 1y+DJa’ © \D. (13

We can now write the following asymptotic expansion For
andZ in Egs.(1) and(2):

F(x,t) =Fd1+€f(&7) + €& + -], (14)

Z(x,) = ZJ1 +ez(§,7) + €2(&,7) + ). (15)
Collecting like powers of, we find, at dominant order

-f-z=0, (16)

f+f +2z=0. (17

This immediately yieldz=-f. We note for future reference

PHYSICAL REVIEW B9, 066202(2004)

of —
Pl A 60— f(p+f?) +(d - f/2)V?f — aV*f - V2f2.
-

(21)

This is the real order parameter equation for the semiconduc-
tor cavity. The nonlinear diffusion termf&?f and V22 ren-
der it nonvariational. They do not arise in the study of two-
level atoms where diffusion is neglected and small detunings
are assumefll8]. Hence, they are directly imputable to the
diffusion of charge carriers and to tl@(1) value of thea
parameter. We find that an equation of the fai21) natu-
rally arises when studying other pattern-forming systems un-
der the conditiongi)—(iii) mentioned abovdg43], which
gives it a generic character. Let us mention that real order
parameter equations with nonlinear diffusive terms have
been derived earlier for optical parametric oscillators
[42,45,46 and thermal convectiofd7]; however, they pre-
serve the inversion symmetry.

Let us examine the various parameters entering this equa-
tion. First, we see that for small cavity detunings, the re-

duced detuning and driving strengtly play the same role.
The new pump parametprdetermines whether the system is
monostablgp>0) or bistable(p<0) and controls the mag-
nitude of the hysteresis. Nexd,is an overall diffusion coef-
ficient; it can be negative if diffraction dominates diffusion.
Finally, the reduction to Eg21) is physically relevant only

if the coefficienta is positive. Otherwise, fluctuations with
arbitrarily large wave number would be unstable and the
scaling we used for the spatial dependence becomes inappro-
priate. In the present limit of a vanishing detuning, it is given

by

(22)

Therefore, the linewidth enhancement facioshould be less

that if the system above were inhomogeneous, solvabilityhan 1. However, this restriction can be lifteddiis allowed

would require that the sum of E¢l6) with its complex
conjugate and Eq17) vanish.
At order €2, we have

i+
‘f2‘22=_y2‘f2+|4_aV2f, (18)

a

. 1
fo+f,+ 222=—p+2f2—§V2f, (19

whereV? means now#?/ d&2+?/ d¢5. The solvability condi-
tion for this pair of equations ig,=—p/2 and the solution at
this order is

=i p 1
f,=— 2% gz,=f2- P _ Iy 20
2% 4a & 2 4 (20

Finally, by substituting this solution in the next order and

to vary more substantially, as we explain in Sec. Il C.

B. Comparison with original model

The derivation of Eq(21) relies on the smallness of the
parametek in EqQ.(9) and it is important to assess how small
this parameter must be to faithfully reproduce the dynamics
of the original equationgl) and(2). To this end, let us com-
pare the linear stability analysis of the two models.

In the reduced model, the homogeneous steady state is
given by

y="fp+fd, (23

while perturbations of the form expr+ik - ) aroundf sat-
isfy the dispersion relation

A=-p-3fi-(d-5fJ2)k? - ak’. (24)

applying the solvability condition, we get the following sca- Equating simultaneously andd\/dk to zero, the thresholds

lar equation for the field variabl&

for MI's are then found to be
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FIG. 1. Threshold intensitie$, predicted with the original
model(dotted ling and the reduced mod&olid line) as a function

FIG. 2. Numerical bifurcation diagram computed with one
of the smallness parameter Reduced parameter valups1, d

transverse dimension with reducéttin line) and original model

=-5,a=3.75. (squares The thick line is the homogeneous state. The parameters
are the same as in Fig. 1 ane=0.05. In the full model,P
10di4w"a[12d2+(25—483)p] =-4.4925,D=0.470625,«=0.25. The reduced moddlightly
fs=f.= (25)  overestimates the top MI point, consistently with Fig. 1. Both

25-4& models predict subcritical bifurcation.

giving the injection thresholds
=D_(6) for the occurrence of a long-wavelength instability.

— — 2
y=Ye=felp+ ). (26) In practice, for a give, the cavity detuning can be tuned
The associated critical wave numbers so as to hav® -D.(6) small.
12 In the absence of explicit formulas fét, Z,... one has
K, = <5f¢ - 2d> (27)  tocompute these values numerically for each pai ahd 6.
- 4a Then the same perturbation expansion as in Sec. lll A can be

carried out. At the end of the day, the model equatidhs

are real provided thatf>2d. In terms of the original vari- and(2) always reduce asymptotically to the form

ables, the threshold field amplitudes for MI's dfe=F(1
+ef,), but sinceF. is complex, it is more convenient to

consider the intensities z_f = Ay - f(Ay + Asf?) + (A — Af) V2 — AVAH — A,V22,
r

o= P21+ 2= 51+ ) (29) 29

In Fig. 1, we compare these intensity thresholds with thosavhere the coefficients!; are functions of¢ and depend on
obtained by numerically solving the characteristic polyno-the parameter deviations p, andd in the same way as in
mial of Egs.(1) and(2). We choose a set of parametgrsd,  EQ. (21). In particular, Ag depends only onv and 6. The
anda for which two MI’s exist and find very good agreement domain of validity of Eq.(29) is therefore bounded by the
even for moderately small values efln fact, the two mod- ~ constraint
els only start to disagree at=0.2, whenD=D(1+ed) be-
comes negative, hence physically irrelevant. In Fig. 2, the Ag(a, 6) > 0. (30)
branches of bifurcating solutions are compared for the same
parameter set ane=0.05. Here, too, the agreement is Very \we have computed this coefficient numerically and drawn
encouraging. However, we note thasometimes has to be ¢ locusAg(@, §)=0 in the (a, 6) plane in Fig. 3. The do-
much smaller for other sets of parameters. main of validity of Eq.(29) is above this line. As an ex-
) ) ) ample, let us consider the following typical parameter val-
C. Arbitrary cavity detuning ues: D,=30 cnt s}, y=10F s}, xk=5x10"s?, w=2.2
A vanishingly small cavity detuning is rarely, if ever, X 10®s™, and @=3. The corresponding normalized diffu-
achieved in practice. It is therefore important to show thatsion parameteD equals 0.67, and we find that it is close to
the possibility of real order parameter description such as Ed.(6) provided thatd=1.66, which falls in the validity do-
(21) does not critically rely on this assumption. We now main.
outline the derivation whe# is significantly large. Similarly Having calculated the curvedg(a,)=0 for the bulk
to expressior4), one can still writeY=Y(¢,P,|F|). Nascent semiconductor material, a simple rescaling of the axes suf-
bistability requires that botldY/s|F| and ¢?Y/d|F|? vanish, fices to draw the corresponding curvg(A, (1+A2)6)=0 for
which yields the critical parameter valu€(6) andY.(6)  the MQW system. As can be seen, the domain of validity is
and field amplitudeF,(#). From the characteristic polyno- markedly increased for large detuninysrom the excitonic
mial evaluated at this point, one then finds a condition resonance.
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FIG. 3. Curves Ag(a,0)=0 and AgA,(1+A%)9)=0 above -0.s. J
which Eq.(29) is valid for the bulk and MQW materials, respec- 0 0.5 i¥

tively. The spot corresponds to the numerical example given in the

text FIG. 4. (A), (B), (C) Three possible outcomes of the linear

stability analysis of the homogeneous state of 4). Dotted lines
indicate unstable regions. The lingit— p. corresponds t6, — f_in
The reduced modeRl) is almost as general as EQ9).  (A) and (B), leading either to a completely stable or completely
The former, however, is more informative because the eﬁ:EC{ﬁnstatﬂe branch of homogeneous solutigbg, (E), (F) branches of
of the parameter deviations p, andd on the dynamics iS periodic solutions. From top bottomAp<0<(D-1), (D
directly apparent. From now on, we will therefore restrict our-1) <0< Ap, and (D-1),Ap<0. Dashed line: branches of peri-
discussion tw’ ;:o’ otherwisey, P, andd would appear at odic solutions with fixed wave numbevk. Thick line: “enVelOpe"
the same places in E(R9), preceded by somé-dependent Pranch of the periodic solution.
coefficients.
this could be done with the original model as well. Here, we
only study the problem in one dimension. To this end, we
IV. INTERACTION BETWEEN INSTABILITIES introduce a new small parametgrwhich measures the dis-

. . . tance from the critical point, and two bifurcation parameters
As revealed by the linear stability analysis, two MI can A P P
Sp andAy as

destabilize the homogeneous state. Two possible situation
where both thresholds simultaneously exist are depicted p=p.+ 3EApD, (35
schematically in Fig. 4. The bifurcating branches of solution
inevitably interact. Such an interaction between two MI's is — A
generally investigated when the associated critical wave Y=ot ekchy, (36)
numbers are equal or commensurate. Neither of the two sitwhere the factors in front oAp and Ay are there to ease
ations apply here fok, andk_. However, inspection of Eq. subsequent algebraic manipulations. Next, in the spirit of
(25) reveals that, when multiple-scale analysis, we write the following perturbation
expansion forf:

12d?
P Pe™ 4ga—25° 3D f=fo+ep(émmo) + E€do&ima)+ -, (37
the two MI pointsf_, f, tend to a common value with the new time and space scales
(=T 5p. (32) o=3e1, n=6€ek5kK,. (38)
° 6d Substituting this development into E¢R1) and grouping
while terms of like powers irg, we find at ordere
YoYe = Vo= felpe+ 12), (33) fz_‘ijrl = L(dy-Ay), (39
12f.\ Y2 . . _ _
Kk, — ko= ( - C> _ (34) whereL is a differential operator defined as
#2\2
In the vicinity of the critical point where the two bifurca- L=- a(kg + (9_52) : (40)

tions coincide, we may undertake a weakly nonlinear analy-
sis. The simple form of Eq(21) makes the task easier but As r— oo, the solution of this equation tends to

066202-5



G. KOZYREFF AND M. TLIDI

1= Ay +[A(n,0)explik:€) + c.cl, (41)

where A is the amplitude of the modulated field and “c.c
stands for “complex conjugate.” At ordef, the equation is

9 ¢

. —£¢z--kc(Ap+Ay2)—— 2IA2

+ lZ?’kg[Azexp(Zikcg) +c.cl, (42)

and its solution is given by

4aldp, = =~ 5(Ap + Ay?) - 6|A[2 + %S[Azexp(Zikcg) +c.cl.
(43

Finally, at ordere®, we obtain an equation of the form

L¢3=5¢3+

T (44)

3
> [Mexpnikd) + c.cl.
n=-3

PHYSICAL REVIEW E 69, 066202(2004)

Ay
Ak = Akgn, = —, 49
ke = 3 (49)
which, by substitution in E48), yields
1p2, + ——Ay?=—Ap. (50)

The amplitude of this particular solution is thus described by
a conical curve in the bifurcation diagram. This curve is
determined by the values dfand D. Equation(45) shows
from direct inspection thdtmust be positive for any periodic
solution to be stable, unless, possibly &1, which we will
consider later. Let us assume therefbre0 in the following
(this first situation was already described[#9]). It is easy

to linearize Eq(45) around the envelope solutigs0) and to
verify that it is linearly stable in that case.

If D>1 andAp<0, the branches in E¢48) are ellipses
and so is the envelope one. The latter connects the two in-
stability points, between which the homogeneous solution is
unstable. The fact that these two instability points can be

We then have the solvability condition that the resonant terntonnected in spite of their different characteristic wave num-

M vanish in order forgs; not to diverge. This yields the
normal-form equation

A aA _PA
&——A( Ap-Ay?-1|AP) - 2|Ay—+D 7 (45)
where
13 48a
l=1-—, D=—. (46)
54a 25

As generally expected for MI's, the normal form is a
Ginzburg-Landau equation. In it, the interaction between th
two instabilities manifests itself in two ways. First, two pa-
rametersAp and Ay are necessary to describe the bifurca-
tion; i.e., it is of codimension Zsee, for instance[48]).
Second, the way in which these bifurcation parameters a
pear in the amplitude equation is quite distinct from the stan
dard, isolated MI.
first-order partial derivative multiplied byy. This has im-

portant implications. To see this, we first note that there ex-

ists an infinity of branches of spatially periodic solutions of.
the form

A=p expliAky), (47)

wherep is the oscillation amplitude antlk is a correction to
the critical wave numbek.. Substituting this ansatz into Eq.
(45), we obtainp as a function ofAy and Ak through

1p? + (Ay — Ak)>= - Ap + (1 - D)AK?. (48)

To each value ofAk corresponds a branch of solutions

and we thus have a family of curves in the bifurcation dia-

Particularly interesting is the complex

bers is possible on account of the dependencikofvith Ay
in Eq. (49).

The reverse situation happens wher<1 andAp>0. In
this case, the homogeneous solution is stable between the
two instability points. From these, two envelope branches
emerge and grow in opposite directions. If, howevep, is
decreased and becomes negative while keefirgl, the
two instability points merge and annihilate. In this way, the
two envelope branches merge so that the resulting envelope
is nowhere connected to the homogeneous steady [Stzte
Figs. 4C) and 4F)]. This proves the existence @folated

é)ranches of solution in the semiconductor cavity. In this situ-

ation, no threshold is associated with the instability. These
analytical predictions are fully confirmed by the numerical
integration of the real order parameter equatsee Fig. 3 of
Ref. [29)).

Let us note that, although the isolated branch exists for
arbitrarily large values of the reduced injection figichis is
not the case in the original modél) and(2). In the latter,
the high-intensity branch of homogenous solution eventually
regains stability through a MI point. This happens for large
injection field amplitudes, out of the validity range of Eq.
(21).

Let us now consider the limit whete< 1. This is obtained
if ais close to 13/54, in which cage is automatically less
than 1. Equationi45) then fails to provide the amplitude of
the periodic solution and an interesting higher order analysis
is possible. We first set

= é—j(l +€Al), (51

gram, as shown in Fig. 4. A crucial observation is that thewheree is the same expansion parameter as before. $1E‘C9
envelope of these branches is itself a branch of solutions. It |§epends ona, Eq. (31, it effectively becomesp.= pC

obtained by combining EQq(48) and the constraint that
dpl I(AK)=0. The latter imposes thatk varies withAy as

+-6p -+

(35 as

-and it is necessary to modify the expansion in Eq.
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FIG. 5. Bifurcation diagrams resulting from a higher-order

analysis whera=13/54(see text for description

p=p+

The development foy in Eq. (26) and the slow scale8)
still hold, but the adequate expansion for the field is now

f= fC +?/2¢1/2(X1t; 7, 0-) +?¢1(th; 7, U) + -

At leading order ine'?, one findsay ! dt= L5, yielding
Po=A(n,0)expikx)+c.c. The rest of the calculation is

—A(1
ey’

+ 3€2Ap.

(52)

(53

PHYSICAL REVIEW B9, 066202(2004)

it meets the other, unstable, envelope branch emerging from
the other MI point. AsAl is progressively increased, this
limit point migrates to the right of the bifurcation diagram
and tends to infinity adl — 0™. For 0<Al, the two envelope
branches are disjoiniFig. 5B)]. From this situation, de-
creasingAp induces the two MI points to merge, so that the
envelope branch separates from the homogeneous solution
altogether, as in Fig.(®). This time, however, the transition
does not necessarily occurs/gi=0. We have thus found the
connection between the different types of bifurcation dia-
grams encountered so far. Moreover, Fig. 5 suggests that the
envelope branches in Figs(E9 and 4F) do not extend in-
definitely on the left. Rather, we expect that, even when
not small, they reach a limit point and subsequently fold
towards higher intensity. This is because they are formed by
solutions emanating from the high-intensity state of the
bistable cavity and can therefore not extend much further
than the high-intensity limit point of the homogeneous
steady state.

Let us remark that, in lieu g expiAks, we could have
used the family of exact solution&=p sectiyn)expiAky
and proceeded along the same line as above. This has the
advantage of dealing with finite energy modulation of the
field but significantly complicates the algebra.

V. DISTANT INSTABILITIES

If the two instabilities are well apart in the bifurcation
diagram or if only one of them exists, then they can be stud-
ied separately. In the vicinity of either ¢f andf_, the so-
lution can be written as

along the same lines as before and presents no particular

interest. At the end of the day, we obtain a solvability con-

dition at ordere®2. This yields

JA
Jo

JA
—i(rs +rg|A)—— +D
an

— = A(r1 +1,|AZ+rg) A4 +ir,

aIAIZ)
Jn
PA

(9—772,

where the coefficients are given by

5 2 10
ri=—Ap- (1—2k§A| +Ay> . 12= Al

-23247

_ 1062

ry= . Ig= . fg=—
SToerad T YT esET 0T 270

l'e

659
= 658

12
+ FAV,

C

121
K2Al + 24y,

(54)

(55)

f(x,t) = f, + (B.(x,t)e* + c.c). (56)

The modulation amplitud®, can be obtained by standard
weakly nonlinear analysigt,49. One finds
2

15' + 2 & Bi
_:ml(y_yi)Bt_mZBi|Bt| +m3ﬁa

ot S

where the coefficientsy are given by

_5KE+ 12f,

m; = , my=4ak;,
17 6f2+2p 2= dal

722 - 42f K2 + 5K
6f2+2p

5 8fi-18f i+ o
(4/9)(3f2 + 8ak} + p)

my, =

(58)

This amplitude equation is the only rigorous result that we
can derive in the present situation. It reliably indicates
whether the bifurcating branch is supercritical and stable

Here, again, an infinity of periodic branches and their enve{m,>0) or not. However, it is only valid very close to the

lope can be obtained, in the same way as with &&).

bifurcation point: it cannot, for instance, account for a bifur-

Figure 5 shows the complicated shapes that the individuatation diagram such as the one shown in Fig. 2, where the
branches now assume and their envelope. As can be seenbranch of periodic solutions connects two distant bifurcation
Fig. 5A), whenAl <0, Ap<0, the envelope solution emerg- points.

ing from one of the MI points is supercritical, hence stable.

In an attempt to make analytical progress, we decompose

This envelope branch, however, ends at a limit point, where¢he solution in the form
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£ classes of nonlinear optical systeigsee, for example, pho-
2r torefractive feedback systerfis3]) is excluded in our model.
An essential difference that appears when considering the 2D
problem is that wave numbers are replaced by wave vectors

Lo in the transverse plane. The homogeneous steady state is
destabilized by tripletdkq,k,,k3) of wave vectors which
1r have the same modullsand which sum to zero. The triplet
itself is defined up to an arbitrary orientation in the trans-
0 sl verse plangrotational degeneragyA nonlinear interaction

between modes selects and stabilizes a regular pattern. In the
following, we consider only the resonant interaction between
transverse modg;, leaving agairk as a parameter, and in-
clude the effect of the quasineutral mode, as in the 1D prob-
lem. Hexagonal and honeycomb patterns correspond to the
0.5 0 0.5 1 15 5 Y superposition of three modes with wave vectors of identical
modulus and with an angle ofiZ 3 between them. We thus
FIG. 6. Analytical bifurcation diagram for distant instabilities in |ook for a solution of the form
one spatial dimension. The parameter values are the same as in Fig.

. o . 3

2. The family of periodic branches is computed from E&E) and ]

(61). fo,t) =W+ | > Wexpi(k;.x+ ¢ +c.c.|. (62
j=1

f(x,t) = Wy + (W e+ c.c). (59) By replacing this ansatz in E¢21) and using the truncated

. L Fourier mode expansion we find, in the steady state, that
In this ansatz, it is important to note that the “homogeneous-

mode” amplitudeW, is not fixeda priori. It is now coupled y = Wo(p +W5) — 3(6W, + 4W,cos - KOW2 (63
to Wi.. This point was emphasized [26,50,53. The use of

such a truncated Fourier decomposition is hard to justifyand
mathematically. Still, numerical simulations indicate that the

—3(Kk2 -
solution remains fairly harmonic in space, far from the point 15Wﬁ 3(k” ~ 2Wo)cos 1) Wi

of instability; hence, this approach appears reasonable. It was 5 2
previously applied to semiconductor cavitie§&2]. We now =-p- 3VV§ + EWo —dJk*-aK’, (64)
simply substitute this ansatz into E@1) and neglect higher
harmonics. In the steady state, this yields the two algebraiwhere
equations
Y=+ ot s (65)

=Wy(p + W2) + (6W, — K)W2, 60
Y =Wolp+Wo) +(6Wo — KO)Wi (60 The steady-state solutions=0 andy/= give arise to hexa-

5 gons and honeycombs, respectively.
3WE=-p-3WZ+ (—WO— d)kz— ak?. (61) The results of the above analysis are summarized in the
2 2D bifurcation diagram displayed in Fig. 7, where we have

Here again, we let the wave numbevary between the two plotted the maximum amplitude corresponding to stripes

critical valuesk, andk_. This allows us, as before, to draw (Wo*2WJ, hexagons(Wo+6W), and honeycombs(Wo
an infinity of branches in the bifurcation diagram and we*3W) @s a function of the input field amplitude We used
focus on the envelope of these branches. The result, didh® same parameter values as in Figs. 2 and 6. Very good

played in Fig. 6, shows a satisfying agreement with the nu@greement is found with a direct numerical integration of the
merical simulations. real order parameter equation. When increasing the control

parameter, the structures that appear first are the hexagons
(y=0). They are stable until the system exhibits transition to
stripes. Further increasing the input field amplitude, the

We now consider two-dimensioné2D) systems. The lin- stripes become unstable and we observe the transition to-
ear stability analysis is the same as in the one-dimensionavards the formation of honeycomb structufgs=). There
case. The stripes have already been described in the previoase two parameter regions where there is an overlapping do-
section. Hence, we focus on hexagonal and honeycomb patiain of stability between stripes and hexagons or honey-
terns. We do not consider rhombisquarg structures, be- combs. On the other hand, for the parameter values consid-
cause we never observed them numerically. Besides, wered, hexagons and honeycombs cannot coexist. All the
know that they are intrinsically unstable for the Swift- branches of solutions are asymmetric with respect to the
Hohenberg equation, which is a degenerate version of Egoint (f=0, y=0). Finally, the bifurcation to hexagons and
(21) (the proof of this statement is similar to that[i2] for ~ honeycombs can be either supercitical or subcritical. The
tetrahedral dissipative structuye$his strongly suggests that shape of the bifurcation diagram is very similar to the one
the hexagon-square transition that has been reported in othebtained numerically if30].

VI. TWO-DIMENSIONAL PATTERNS
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AA

175 — FIG. 7. Bifurcation diagram

for distant instabilities in two
transverse dimensions. The pa-
rameter values are the same as in
Figs. 2 and 6. Symbols indicate
numerically computed amplitudes
/ yd - for hexagongA), stripes(®), and
honeycombs(%). As in Fig. 6,
- one can draw many branches of
-’ periodic solutions, each with fixed
d k, using Egs.(63) and (64) with

, =0 (hexagongor =1 (honey-
-’ comby. Only the envelopes of
these branches are shown here.

. /T | | . | | | . Dashed portions of the curves are
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VIl. DISCUSSION paper, the moduluk of the wave number is a quantity that
naturally varies along the bifurcation diagram. The authors in

o 31] lucidly addressed the question of stability with respect
stability, a band of wave numbers becomes unstable. Accor o perturbations that do not have the periodicity of their grid.

ingly, a continuous family of branches of periodic solutlons.l_hey also recognized that they could in principle find a pe-

IS gene_rateq. In the Slmple_st case of a_smgle, Sl"percm'c"i‘lodic solution with any wave number by controlling the size
bifurcation, it generally suffices to consider only the most ¢ 1o elementary cell on which the equation is discretized.
unstable wave number at the instability point. Howeveryynat the present work suggests is to adjust the size of the
when two MI's with different critical wave numbers are glementary cell so as to construct the envelope branch. This
present, it is necessary to consider the whole band of ung confirmed in Fig. 2, where the bifurcation diagram of the
stable wave numbers in order to construct the solution thateg| order parameter equatiq®1) was compared to the
joins the two bifurcation points. In this respect, #evelope original model. On the one hand, we integrated the time-
of the periodic branches plays a predominant role, as ilndependent, one-dimensional version of E2{l) on an el-
emerges from the study of the normal-form equatiofy  ementary cell with periodic boundary conditions. For each
and (54). This particular branch assumes nontrivial shapespoint of the bifurcation diagram, we adjusted the spatial pe-
and reveals features which could hardly be anticipated byiod so as to extremize the amplitude of the solution. On the
considering patterns with a fixed wave number ofdge other hand, we integrated the time-dependent original model
Figs. 4 and % The envelope branch can be viewed as thg1) and(2) on a much larger domain, letting the system dy-
result of a continuous bifurcation process between branchasamically select the wave number. The solution dynamically
of periodic solutions that have a fixed wave number. In ordeevolved towards the envelope branch. This agrees with the
to have a bifurcation from one branch to the next, the twostability predictions from the normal-form equati4b).
solutions must coincide to first order both in amplitude and Concerning the isolated branch of solutions shown in Fig.
in wave number. This can only happen on the envelope and & of [29], it has no bifurcation, hence no threshold associated
is through this constraint that the two instabilities interact.with it. It is, however, formed by solutions that bifurcate
This is quite different from the more familiar resonant inter- from an unstable portion of the high-intensity homogeneous
action between two Ml’s, in which some precise set of criti- branch[Fig. 4F)]. Therefore, it does not correspond to the
cal wave vectors belonging to either of the two MI's sums toexperimental observation of thresholdless hexagf84,
zero. Mathematically, another sign of the interaction betweenvhich are found at low intensities and with a linearly stable
the two instabilities discussed here is the fact that it is ofbackground. Let us point out, however, that the normal forms
codimension 2: two bifurcation parameters are necessary t@5) and(54) can in principle describe isolated branches of
unfold the entire bifurcation structufé8]. solution on astablehomogeneous background. Assume for
From a numerical point of view, the above observationexample that <0, D>1, andAp>0 in Eg. (50). In this
may have important consequences. Recent numerical invesase, there exists a family of isolated branches of periodic
tigations of similar optical models exploited the periodicity solutions despite the complete absence of MI's. Admittedly,
of the solution to discretize the stationary problem on athese solutions would be unstable in the frame of the cubic
single spatial period only30,31]. This conveniently allows Ginzburg-Landau equatiaid5); moreover, the conditions on
to reduce the interval on which the equation is discretizedl andD for such a scenario cannot simultaneously be met in
hence to diminish the truncation error by taking a smallerthe nascent bistability limit with zero cavity detuning. How-
space step. However, this artificially imposes the periodicityever, stability can potentially be recovered within the quintic
of the computed solution. As we have seen throughout thi§&inzburg-Landau descriptiai®4). Besides, the form of Egs.

It is well known that, at the onset of a modulational in-
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(45) and(54) is general and can be derived from the original producing shadow, littering nutrients, and protecting against
model, independently of nascent bistability. Further investi-herbivores. Because of this nonlinear diffusion, these ecosys-
gations are necessary to clarify this point but it seems cleaems can potentially be destabilized by MI’'s with different
that a thresholdless phenomenon such as the one reporteddfitical wave numbers. They are thus liable to produce some
[35] does not necessarily stem from device imperfections. of the bifurcation zoology described in this paper.

Finally, we would like to mention that vegetation patterns

are governed by equations very similar to the real order pa- The authors are grateful to S.J. Chapman and J.R. Ocken-
rameter equation derived here. Semi-arid environments hawéon for their illuminating comments. G.K. was supported by

been described in the weak phytomass densignd weak

EU TMR Grant No. FMRXCT 97011HBKEY]. M.T. re-

gradient limits[39]. This leads to a logisticlike equation con- ceived support from the Fonds National de la Recherche Sci-

taining a nonlinear diffusive term of the forri—p)V2p.

entifique (Belgium). This work was also partially supported

Such a term accounts for the positive effect that establishelbly the Interuniversity Attraction Pole program of the Belgian
plants can have on the growth of other plants — e.g., bygovernment.
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