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Abstract The estimation of a density function with an unknown number of sin-
gularities or discontinuities is a typical example of a multiscale problem, with data
observed at nonequispaced locations. The data are analysed through a multiscale
local polynomial transform (MLPT), which can be seen as a slightly overcomplete,
non-dyadic alternative for a wavelet transform, equiped with the benefits from a local
polynomial smoothing procedure. In particular, the multiscale transform adopts a
sequence of kernel bandwidths in the local polynomial smoothing as resolution level
dependent, user controlled scales. The MLPT analysis leads to a reformulation of
the problem as a variable selection in a sparse, high-dimensional regression model
with exponentially distributed responses. The variable selection is realised by the
optimisation of the l1-regularised maximum likelihood, where the regularisation
parameter acts as a threshold. Fine-tuning of the threshold requires the optimisation
of an information criterion such as AIC. This paper develops discussions on results
in [9].

1 Introduction

Due to its natural intermittency, the estimation of a non-uniform density can be
described as a nonequispaced multiscale problem, especially when the density con-
tains singularities. Indeed, when the number and the locations of the singularties
remain unknown, then the estimation procedure is deemed to go through all possible
combinations of locations and intersingular distances. Also, since a given bandwidth
in a kernel based method may be too small in a regionof low intensity and too large
in a region of high intensity, a local choice of the bandwidth can be considered as an
instance of multiscale processing, where the bandwidth is seen as a notion of scale.
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A popular class of multiscale methods in smoothing and density estimation is
based on a wavelet analysis of the data. The classical wavelet approach for density
estimation [6, 3] requires an evaluation of the wavelet basis functions in the observed
data or otherwise a binning of the data into fine scale intervals, defined by equispaced
knots on which the wavelet transform can be constructed. The preprocessing for the
equispaced (and possibly dyadic) wavelet analysis may induce some loss of details
about the exact values of the observations.

This paper works with a family of multiscale transforms constructed on noneq-
uispaced knots. With these constructions and taking the observations as knots, no
information is lost at this stage of the analysis. The construction of wavelet transforms
on irregular point sets is based on the lifting scheme [12, 11]. Given the transforma-
tion matrix that maps a wavelet approximation at one scale onto the approximation
and offsets at the next coarser scale, the lifting scheme factorizes this matrix into a
product of simpler, readily invertible operations. Based on the lifting factorization,
there exist two main directions in the design of wavelets on irregular point sets. The
first direction consists in the factorization of basis functions that are known to be
refinable, to serve as approximation basis, termed scaling basis in a wavelet analysis.
The wavelet basis for the offsets between successive scales is then constructed within
the lifting factorization of the refinement equation, taking into account typical design
objectives such as vanishing moments and control of variance inflation. An example
of such existing refinable functions are B-spline functions defined on nested grids of
knots [8]. The second approach for the construction of wavelets on irregular point
sets does not factorize a scheme into lifting steps. Instead, it uses an interpolating or
smoothing scheme as a basic tool in the construction of a lifting step from scratch.
Using interpolating polynomials leads to the Deslauriers-Dubuc refinement scheme
[2, 4]. To this refinement scheme, a wavelet transform can be associated by adding a
single lifting step, designed for vanishing moments and control of variance inflation,
as in the case of factorized refinement schemes. This paper follows the second ap-
proach, using local polynomial smoothing [5, Chapter 3] as a basic tool in a lifting
scheme. For reasons explained in Section 2, the resulting Multiscale Local Polyno-
mial Transform (MLPT) is no longer a wavelet transform in the strict sense, as it
must be slightly overcomplete. Then, in Section 3, the density estimation problem is
reformulated in a way that it can easily be handled by a MLPT. Section 4 discusses
aspects of sparse selection and estimation in the MLPT domain for data from a
density estimation problem. In Section 5, the sparse selection is finetuned, using
information criteria and defining the degrees of freedom in this context. Finally,
Section 6 presents some preliminary simulation results and further outlook.

2 The Multiscale Local Polynomial Transform (MLPT)

Let Y be a sample vector from the additive model Yi = f (xi) + σiZi , where the
covariates xi may be non-equidistant and the noise Zi may be correlated. The under-
lying function, f (x), is assumed to be approximated at resolution level J by a linear
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combination of basis functions ϕJ,k(x), in

fJ (x) =
nJ−1∑
k=0

ϕJ,k(x)sJ,k = ΦJ (x)sJ,

whereΦJ (x) is a row vector containing the basis functions. The choice of coefficients
sJ is postponed to themomentwhen the basis functions are specified.At thismoment,
one could think of a least squares projection as one of the possibilities.

The Multiscale Local Polynomial Transform (MLPT) [7] finds the sparse coeffi-
cient vector v in sJ = Xv, using a linear operation v = X̃sJ . Just like in wavelet de-
composition, the coefficient vector of several subvectors v = [ sTL dTL dT

L+1 . . . d
T
J−1 ]

T ,
leading to the following basis transformation

ΦJ (x)sJ = ΦJ (x)Xv = ΦL(x)sL +
J−1∑
j=L

Ψj(x)d j,

where we inytroduced ΦL(x) and Ψj(x) for the submatrices of the transformed
basis ΦJ (x)X, corresponding to the subvectors of the coefficient vector v. The detail
vectors d j are associated to successive resolution levels through the decomposition
algorithm, corresponding to the analysis matrix X̃,
for j = J − 1, J − 2, . . . , L

• Subsamplings, i.e., keep a subset of the current approximation vector, s j+e,e =
Jj s j+1, with Jj a nj × nj+1 submatrix of the identity matrix.

• Prediction, i.e., compute the detail coefficients at scale j as offsets from a pre-
diction based on the subsample.
d j = s j+1 − Pj s j+1,e

• Update, the remaining approximation coefficients. The idea is that s j can be
interpreted as smoothed, filtered, or averaged values of s j+1.
s j = s j+1,e + Uj d j

Before elaborating on the different steps of this decomposition, we develop the
inverse transform X by straightforwardly undoing the two lifting steps in reverse
order.
for j = L, L + 1, . . . , J − 1

• Undo update, using s j+1,e = s j − Uj d j .
• Undo prediction, using s j+1 = d j + Pj s j+1,e.

2.1 Local polynomial smoothing as prediction

The transform in this paper adopts a smoothing operation as prediction, thus in-
corporating the covariate values as parameters of the analysis. As an example, the
Nadaraya-Watson kernel prediction leads to
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Pj;k,` =
K

(
x j+1,k−x j,`

h j+1

)
∑n j

l=1 K
(
x j+1,k−x j, l

h j+1

) .
In this expression, K(u) denotes a kernel function, i.e., a positive function with
integral 1. The parameter hj+1 is the bandwidth.While in (uniscale) kernel smoothing
this is a smoothing parameter, aiming at optimal balance between bias and variance
in the estimation, it acts as a user controlled scale parameter in a Multiscale Kernel
Transform (MKT). This is in contrast to a discrete wavelet transform, where the scale
is inherently fixed to be dyadic, i.e., the scale at level j is twice the scale at level
j + 1. In a MKT, an also in the forthcoming MLPT, the scale can be chosen in a data
adaptive way, taking the irrgeularity of the covariate grid into account. For instance,
when the covariates can be considered as ordered indepenent realisations from a
uniform density, it is recommended that the scale is taken to be hj = h0 log(nj)/nj

[10]. The scales at fine resolution levels are then a bit larger, allowing them cope
with the non-equidistancy of the covariates.

A slightly more complex prediction, adopted in this paper, is based on local
polynomial smoothing. It fills the kth row of Pj with P(xj+1,k), where the row vector
Pj(x) is given by

Pj(x) = X (p̃)(x)
(
X(p̃)j

T
Wj(x)X(p̃)j

)−1
,

with the row vector of power functions, X (p̃)(x) = [1 x . . . x p̃−1] and the
corresponding Vandermonde matrix at resolution level j, X(p̃)j = [1 x j . . . x

p̃−1
j ].

The diagonal matrix of weight functions is given by (Wj)``(x) = K
(
x−x j,`

h j

)
.

The prediction matrix has dimension nj+1 × nj . This expansive or redundant pre-
diction is in contrast to lifting schemes for critically downsampled wavelet transform,
such as the Deslauriers-Dubuc or B-spline refinement schemes. In these schemes,
the prediction step takes the form d j = s j+1,o−Pj s j+1,e, where s j+1,o = Jcj s j+1, with
Jcj the (nj+1 −nj)×nj+1 subsampling operation, complementary to Jj . In the MLPT,
a critical downsampling with Jj and Jcj would lead to fractal like basis functions
[7]. Omission of the complementary subsampling leads to slight redudancy, where
n data points are transformed into roughly 2n MLPT coefficients, at least if nj is ap-
proximately half of nj+1 at each scale. The corresponding scheme is known in signal
processing literature as the Laplacian pyramid [1]. With an output size of 2n, the
MLPT is less redundant than the non-decimated wavelet transform (cycle spinning,
stationary wavelet transform) which produces outputs of size n log(n). Nevertheless,
the inverse MLPT shares with the non-decimated wavelet transform an additional
smoothing occuring in the reconstruction after processing. This is because processed
coefficients are unlikely to be exact decompositions of an existing data vector. The
reconstruction thus involves some sort of projection.
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2.2 The update lifting step

The second lifting step, the updateUj , servesmultiple goals, leading to a combination
of design conditions [8]. An important objective, especially in the context of density
estimation, is tomake sure that all functions inΨj(x) have zero integral.When fj(x) =
ΦL(x)sL +

∑J−1
j=L Ψj(x)d j , then any processing that modifies the detail coefficients

d j , e.g., using thresholding, preserves the integral of fj(x), which is interesting if
we want to impose that

∫ ∞
−∞

fj(x)dx = 1 for an estimation or approximation of a
density function. Another important goal of the update, leading to additional design
conditions, is to control the variance propagation throughout the transformation.
This prevents the noise on a single observation from proceeding unchanged all the
way to coarse scales.

2.3 The MLPT frame

Examples of MLPT functions are depicted in Figure 1. It should be noted that these
functions are defined on an irregular grid of knots. Nothing of the grid irregularity
is reflected in the approximation and detail functions ΦL(x) and Ψj(x). Also, as the
detail functions form an overcomplete set, they are not basis functions in the strict
sense. Instead, the set of ΦL(x) and Ψj(x) for j = L, L + 1, . . . , J − 1 is called a
frame.

Fig. 1 Left panel: approximation function, i.e., one element of ΦL (x). Right panel: detail or offset
function, i.e., one element of Ψj (x). It holds that

∫ ∞
−∞
Ψj (x)dx = 0Tj .

Unlike in a B-spline wavelet decomposition, observation in the knots are valid
fine scale approximation coefficients [9]. More precisely, the approximation

fJ (x) =
n∑
i=1

f (xi)ϕJ,i(x),

has a convergence rate equal to that of least squares projection. This property is
important when incorporating a MLPT model into the regression formulation of the
problem of the density estimation problem in Section 3.
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2.4 The MLPT on highly irregular grids

The regression formulation of the density estimation problem in Section 3 will lead
to regression on highly irregular grids, that is, grids that are far more irregular than
ordered observations from a random variable. On these grids, it is not possible to
operate at fine scales, even if these scales are a bit wider than in the equidistant
case, as discussed in Section 2.1. In order to cope with the irregularity, the fine
scales would be so wide that fine details are lost, and no asymptotic result would be
possible. An alternative solution, adopted here, is to work with dyadic scales, but
only processing coefficients that have sufficient nearby neighbours within the current
scale. Coefficients in sparsely sampled neighbourhoods are forwarded to coarser
scales. The implementation of such a scheme requires the introduction of a smooth
transition between active and non-active areas at each scale [9]. More precisely, the
reconstruction from the local polynomial prediction s j+1 = d j +Pj s j+1,e, is replaced
by a weighted form

s j+1 = Qj+1
(
Pj s̃ j + d j

)
+ (Ij+1 −Qj+1 )̃JTj s̃ j . (1)

The diagonal matrix Qj+1 has values between 0 and 1. The value is 0 when a coef-
ficient is not surrounded by enough neighbours to apply a regular local polynomial
prediction Pj , and it gradually (not suddenly, that is) tends to one in areas with
sufficiently dense observations to apply proper polynomial prediction.

3 A regression model for density estimation

Let X be a sample of independent realisation from an unknown density fX (x) on a
bounded interval, which we take, without loss of generality, to be [0, 1]. The density
function has an unknown number of singularities, i.e., points x0 ∈ [0, 1] where
limx→x0 fX (x) = ∞, as well as other discontinuities.

As in [9], we consider the spacings ∆Xn;i = X(n;i) − X(n;i−1), i.e., the dif-
ferences between the successive ordered observations X(n;i). Then, by the mean
value theorem, we have that there exists a value ξn;i ∈ [X(n;i−1), X(n;i)] for which
fX (ξn;i)∆Xn;i = ∆Un;i , where ∆Un;i = U(n;i) −U(n;i−1) = FX (X(n;i)) − FX (X(n;i−1)).
Unfortunately, the value of ξn;i cannot be used as such in the subsequent asymptotic
result, due to technical issues in the proof. Neverthless, for a fairly free choice of
ξn;i ∈ [X(n;i−1), X(n;i)], close to ξn;i , the theorem provides nonparametric regression
of ∆Xn;i on ξn;i . For details on the proof, we refer to [9].

Theorem 1. Let fX (x) be an almost everywhere twice continuously differentiable
density function on x ∈ [0, 1]. Define AM,δ ⊂ [0, 1] as the set where fX (x) ≥ δ
and f ′X (x) ≤ M , with δ, M arbitrary, strictly positive real numbers. Then there
exist values ξn;i ∈ [X(n;i−1), X(n;i)], so that with probability one, for all intervals
[X(n;i−1), X(n;i)] ⊂ AM,δ , the value of fX (ξn;i)(n + 1)∆Xn;i , given the covariate ξn;i ,
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converges in distribution to an exponential random variable, i.e.

fX (ξn;i)(n + 1)∆Xn;i |ξn;i
d
→ D ∼ exp(1), a.s.

We thus consider a model with exponentially distributed response variable Yi =
(n + 1)∆Xn;i |ξn;i and the vector of parameters θi = fX (ξn;i) = 1/µi with µi = E(Yi),
for which we propose a sparse MLPT model θ = Xβ, with X the inverse MLPT
matrix defined on the knots in ξ .

The formulation of the density estimation problem as a sparse regression model
induces no binning or any other loss of information. On the contrary, the information
on the values of Xi is duplicated: a first, approximative copy can be found in the
covariate values ξn;i . A second copy defines the design matrix. The duplication
prevents loss of information when in subsequent steps some sort of binning is
performed on the response variables.

4 Sparse variable selection and estimation in the exponential
regression model

For the i.i.d. exponential responses Y ∼ exp(|θ |) with θ = Xβ, and µi = 1/θi , the
score is given by ∇ log L(θ;Y ) = XT (Y − µ), so that the maximum `1 regularised
log-likelihood estimator β̂ = arg maxβ log L(β) − λ‖β‖1 can be found by solving
the Karush-Kuhn-Tucker (KKT) conditions

XT
j (Y − µ) = λsign(βj) if βj , 0,���XT
j (Y − µ)

��� < λ if βj = 0.

Even if we knewwhich components of βwere nonzero, theKKTwould still be highly
nonlinear. This is in contrast to the additive normal model, where µ = Xβ. The esti-
mator given the selection then follows from a shrunk least squares solution. Indeed,

withI the set of selected components, we have β̂I =
(
XT
I

XI
)−1

STλ
(
XT
I
Y
)
,where

STλ(x) is the soft-threshold function. In the case of orthogonal design, i.e., when
XT
I

XI is the identity matrix, this reduces to straightforward soft-thresholding in the
transformed domain. In the case of non-orthogonal, but still Riesz-stable, design,
straightforward thresholding is still a good approximation and a common practice,
for instance in B-spline wavelet thresholding. For the model with exponential re-
sponse, the objective is to find appropriate values of SJ , so that β̂ = X · STλ(X̃SJ ).
can be used as estimator. For this we need at least that

(C1) the expected value of SJ is close to θ, so that E(X̃SJ ) ≈ X̃θ = β,
(C2) the MLPT decomposition β = X̃θ is sparse,
(C3) the MLPT decomposition of the errors, X̃(SJ − θ) has no outliers, i.e., no heayvy

tailed distributions.
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As θi = 1/µi = 1/E(Yi) it may be interesting to start the search for appropriate
fine scale coefficients SJ,i from S[0]J,i = 1/Yi . Unfortunately, S[0]J,i is heavy tailed.
Experiments show that the heavy tails cannot be dealt properly by truncation of 1/Yi
in S[1]J,i = min(1/Yi, smax) without loss of substantial information about the position
and nature of the singular points in the density function.

Therefore, a prefilter with a binning effect is proposed, however keeping track of
the original values of Y through the covariate values in the design X. More precisely,
let

SJ = ΠDhJ,0Π̃S
[0]
J . (2)

The matrices Π̃ and Π represent a forward and inverse, one coefficient at-a-time,
Unbalanced Haar transform defined on the data adaptive knots tJ,i =

∑i−1
k=0 Yk and

tJ,0 = 0. An Unbalanced Haar transform on the vector of knots tJ is defined by

sj,k =
∆j+1,2k sj+1,2k + ∆j+1,2k+1sj+1,2k+1

∆j,k
=
∆j+1,2k sj+1,2k + ∆j+1,2k+1sj+1,2k+1

∆j+1,2k + ∆j+1,2k+1
,

dj,k = sj+1,2k+1 − sj,k,

where ∆J,k = tJ,k − tJ,k = Yk and ∆j,k = ∆j+1,2k + ∆j+1,2k+1. In the coefficient at-a-
time version, the binning operation ∆j+1,2k + ∆j+1,2k+1 takes place on a single pair
∆j+1,k and ∆j+1,k+1, chosen so that ∆j,k = ∆j+1,k + ∆j+1,k+1 is as small as possible.
Finally, the diagonal matrix DhJ,0 in (2), replaces all details dj,k by zero for which the
scale ∆j,k is smaller than a minimum width hJ . The overall effect of (2) is that small
values inY are recursively added to their neighbours until all binned values are larger
than hJ,0. For values of hJ,0 sufficiently large, it can be analysed that the coefficients
of SJ are close to being normally distributed with expected value asymptotically
equal to θ and variance asymptotically equal to θ/hJ,0 [9]. Unfortunately, a large
value of hJ,0 also introduces binning bias. In order to reduce this bias and to let hJ,0
be sufficiently large, the choice of hJ,0 is combined with a limit on the number of
observations in one bin [9].

5 Finetuning the selection threshold

The estimator β̂ = X · STλ(X̃SJ ). applies a threshold on the MLPT of SJ . The
input SJ is correlated and heteroscedastic, while the transform is not orthogonal.
For all these reasons, the errors on X̃SJ are correlated and heteroscadastic. In an
additive normal model where variance and mean are two seperate parameters, the
threshold would be taken proporional to the standard deviation. In the context of
the exponential model with approximate variance function var(SJ,i) = E(SJ,i)/hJ,0,
coefficients with large variances tend to carry more information, i.e., they have a
larger expected value as well. As a result, there is no argument for a threshold linearly
depending on the local standard deviation. This paper adopts a single threshold for
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all coefficients to begin with. Current research also investigates the use of block
thresholding methods.

The threshold or any other selection parameter can be finetuned by optimatisa-
tion of the estimated distance between the data generating process and the model
under consideration. Estimation of that distance leads to an information criterion.
This paper works with an Akaike’s Information Criterion for the estimation of the
Kullback-Leibler distance. As data generating process, we consider the (asymptotic)
independent exponential model for the spacings, and not the asymptotic additive,
heteroscedastic normal model for SJ . This choice is motivated by the fact that a
model for SJ is complicated as it should account for the correlation structure, while
the spacings are nearly independent. Moreover, finetuning w.r.t. the spacings is not
affected by the loss of information in the computation of SJ .

The resulting information criterion is given by the sum of two terms, AIC(θ̂) =̂̀(θ̂) − ν̂(θ̂). The first term is the empirical log-likelihood

̂̀(θ̂) = n∑
i=1

[
log(θ̂i) − θ̂iYi

]
,

while the second term is an estimator of the degrees of freedom

ν(θ̂) = E
[
θ̂T (µ − Y )

]
.

The degrees of freedom are also the bias of ̂̀(θ̂) as estimator of the expected
log-likelihood, taken over the unknown data generating process. The expected log-
lilelihood in its turn is the part of the Kullback-Leibler distance that depends on the
estimated parameter vector.

An estimator of the degrees of freedom is developed in [9], leading to the expres-
sion

ν̂(θ̂) = Tr
[
DλX̃Υ−2Q̃ΥΘ̂−1X

]
,

where Θ̂−1 is a diagonal matrix with slightly shifted versions of the observed values,
i.e., Θ̂−1

ii = Yi−1. The matrix Υ is a diagonal matrix with the observations, i.e.,
Υii = Yi . The diagonal matrix Dλ has zeros and ones on the diagonal. The ones
correspond to nonzero coefficients in the thresholded MLPT decomposition.

6 Illustration and concluding discussion

Ongoing research concentrates on motivated choices for the tuning parameters in the
proposed data transformation and processing. In particular, the data transformation
depends on the choice of the finest resolution bandwidth hJ , the degree of the local
polynomial in the prediction step, the precise design of the update step. Also the
Unbalanced Haar prefilter is parametrised by a fine scale hJ,0. Processing parameters
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include the threshold value, which is selected using the AIC approach of Section 5,
and the sizes of the blocks in the block threshold procedure.

For the result in Figure 2, the MLPT adopted a local linear prediction step. In the
wavelet literature, the transform is said to have two dual vanishing moments, i.e.,
p̃ = 2, meaning that all detail coefficients of a linear function are zero. TheMLPT for
the figure also includes an update step designed for two primal vanishing moments,
meaning that

∫ ∞
−∞
Ψj(x)xrdx = 0 for r = 0 and r = 1. Block sizes were set to one,

i.e., classical thresholding was used.
The density function in the simulation study is the power law fX (x) = K |x − x0 |

k

on the finite interval [0, 1], with a singular point x0 = 1/2 in this simulation study
and k = −1/2. The sample size is n = 2000. The MLPT approach, unaware of the
presence and location of x0, is compared with a kernel density estimation applied
to a probit transform of the observations, Y = Φ−1(X − x0) for X > x0 and Y =
Φ−1(X − x0 + 1) for X < x0. This transform uses the information on the singularity’s
location, in order to create a random variable whose density has no end points
of a finite interval, nor any singular points inside. In this experiment, the MLPT
outperforms the Probit transformed kernel estimation, both in the reconstruction of
the singular peak and in the reduction of the oscillations next to the peak. With the
current procedure, this is not always the case. Further reserch concentrates on the
design making the MLPT analyses as close as possible to orthogonal projections,
using appropriate update steps. With an analysis close to orthogonal projection,
the variance propagation throughout the analysis, processing and reconstruction can
be more easily controlled, thereby reducing spurious effects in the reconstruction.
Both MLPT and Probit transformation outperform a straightforward uniscale kernel
density estimation. This estimation, illustrated the Figure 2(d), oversmooths the sharp
peaks of the true density.
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