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A B S T R A C T   

Efficient planning of measures limiting epidemic spread requires information on farm locations and sizes 
(number of animals per farm). However, such data are rarely available. The intensification process which is 
operating in most low- and middle-income countries (LMICs), comes together with a spatial clustering of farms, a 
characteristic epidemiological models are sensitive to. We developed farm distribution models predicting both 
the location and the number of animals per farm, while accounting for the spatial clustering of farms in data-poor 
countries, using poultry production as an example. We selected four countries, Nigeria, Thailand, Argentina and 
Belgium, along a gradient of intensification expressed by the per capita Gross Domestic Product (GDP). First, we 
investigated the distribution of chicken farms along the spectrum of intensification. Second, we built farm dis-
tribution models (FDM) based on censuses of commercial farms of each of the four countries, using point pattern 
and random forest models. As an external validation, we predicted farm locations and sizes in Bangladesh. The 
number of chicken per farm increased gradually in line with the gradient of GDP per capita in the following 
order: Nigeria, Thailand, Argentina and Belgium. Interestingly, we did not find such a gradient for farm clus-
tering. Our modelling procedure could only partly reproduce the observed datasets in each of the four sample 
countries in internal validation. However, in the external validation, the clustering of farms could not be 
reproduced and the spatial predictors poorly explained the number and location of farms and farm sizes in 
Bangladesh. Further improvements of the methodology should explore other covariates of the intensity of farms 
and farm sizes, as well as improvements of the methodology. Structural transformation, economic development 
and environmental conditions are essential characteristics to consider for an extrapolation of our FDM procedure, 
as generalisation appeared challenging. We believe the FDM procedure could ultimately be used as a predictive 
tool in data-poor countries.   

1. Introduction 

Population and income growth, urbanisation and technological ad-
vances have led to the intensification of livestock production systems 
over the past decades. Although this trend in intensification is observ-
able globally, the level of intensification varies between countries and it 
mainly occurs today in low- and middle-income countries (LMICs). 
Intensification leads to large-scale and specialized production units, 
market-oriented and capital- and input-intensive. Such production units 

make heavy use of feed concentrates, antibiotics and vaccination. The 
increase in production meets the increasing demand for animal source 
food, but it has tremendous effects on livelihoods, animal and human 
health. Concentration of monogastric species have led to pollution of 
land and water due to the overload of improperly managed manure 
(Gerber et al., 2005). In terms of public health, intensive livestock 
production fosters the emergence of infectious diseases (Jones et al., 
2013) and often leads to increased use of antibiotics, which is likely to 
increase antimicrobial resistance (Aarestrup, 2005; Vieira et al., 2011; 
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Chantziaras et al., 2014; Van Boeckel et al., 2015). Livestock also 
traditionally represents an important source of livelihood for rural 
populations in LMICs but the intensification of livestock production 
seldom benefits the local population (FAO, 2018). 

As production intensifies, the geographical distribution of mono-
gastric animal farming changes. At a pre-industrial stage, chickens and 
pigs are mainly associated with human settlements for their role of waste 
converters (Perry et al., 1999; Steinfeld et al., 2006), with farms ho-
mogeneously distributed among rural populations. This situation is 
encountered in traditional production systems of LMICs (Steinfeld et al., 
2006). Production intensification, in parallel to urbanisation, leads 
larger farms to locate within the peri-urban belt of major consumption 
centres (Steinfeld et al., 2006). Livestock products being perishable, the 
production profits from being located close to demand centres. How-
ever, as cities expand, land value in the periphery increases and, with 
improving transport infrastructures, farms move further from peri-urban 
belts, with the advantage of being closer to feed production or trans-
portation areas (Steinfeld et al., 2006), and benefits from agglomeration 
economies (Roe et al., 2002a; Herath et al., 2005; Larue et al., 2011). 
This evolution is particularly pronounced for monogastric species, 
which are raised in landless production systems (Naylor, 2005; Steinfeld 
et al., 2006). 

As the distribution of farms changes as it intensifies, so do the effects 
of livestock raising activities on their surroundings. Highly-detailed 
maps of livestock production allow the assessment of the local effects 
of intensive production (Robinson et al., 2011). In the case of disease 
outbreaks for instance, adequate control is planned based on mathe-
matical modelling of infectious disease which require farm distribution 
and sizes (number of animals) (Hill et al., 2018; Tildesley and Ryan, 
2012). Accurate data on the distribution and stock of farms rarely exist 
as agricultural censuses are time and resource consuming. In 
high-income countries, censuses are usually conducted but data access 
may be restricted due to confidentiality and privacy reasons. In the 
United States for instance, livestock data are only provided as a number 
of animal per county (Tildesley et al., 2010). In LMICs, censuses are not 
systematically carried out and data from occasional censuses are avail-
able as total numbers of animals per administrative units. However, the 
resolution at which these are provided vary greatly across countries 
(Robinson et al., 2011). 

Downscaling procedures that increase the spatial resolution of 
existing livestock data, such as the Gridded Livestock of the World 
(GLW) are available (Wint et al., 2007; Robinson et al., 2014; Gilbert 
et al., 2018). However, these models predict livestock as a continuous, 
gradually varying, density of animals per pixel in a raster. Such data do 
not provide information at farm level, and densities of animal per pixel 
do not specify any information on the production systems. As production 
intensifies, livestock are fed on imported feed concentrates rather than 
on crops produced locally. Livestock production is hence less deter-
mined by environmental characteristics of the surrounding lands (Nay-
lor, 2005; Steinfeld et al., 2006). Moreover, the spatial clustering of 
intensive farms is poorly explained by spatially continuous surfaces (Van 
Boeckel et al., 2012; Robinson et al., 2014). As suggested by Gilbert et al. 
(2015), a method accounting for the spatial clustering of intensive farms 
would be required to predict their distribution. In a previous study, we 
developed farm location models in Thailand, based on point pattern 
analysis methods (Chaiban et al., 2019). Other authors have predicted 
cattle population on individual farms in New Zealand with a 
zero-inflated Poisson regression, but only carried out an internal vali-
dation (van Andel et al., 2017). Burdett et al. (2015) modelled farm 
locations based on detailed geographical information as well as total 
animal and number of farms at county level. In this study, we present a 
methodology to predict both the location and the size of farms even 
where spatial information is scarce and which would account for the 
spatial clustering of farms. 

We selected four countries to develop our farm distribution models, i. 
e. Nigeria, Thailand, Argentina and Belgium (hereafter referred to as the 

“sample countries”). These sample countries were assumed to have 
different levels of intensification as they have increasing levels of Gross 
Domestic Product (GDP) in the following order: Nigeria, Thailand, 
Argentina and Belgium. The GDP per capita (in purchasing power par-
ity) is strongly associated with the level of intensification of livestock 
production of a country (Robinson et al., 2011; Gilbert et al., 2015). As 
farms tend to be more clustered as production intensifies (Abdalla et al., 
1995; Roe et al., 2002a), we hypothesized that intensive farms would be 
spatially more clustered with increasing GDP. In addition to being at 
different stages of the intensification process, these countries present 
different ecological, demographic and socio-economic conditions. 
Developing farm distribution models (FDMs) along a wide range of 
conditions allows to assess how these model compare to each other in 
very different settings. 

We first aimed to investigate the spatial distribution of commercial 
farms along the spectrum of intensification. Second, we built FDMs for 
intensive farms while accounting for the spatial clustering of farms. We 
then assessed the capacity of our modelling procedure to reproduce the 
farm distribution observed in Bangladesh, where farm locations and 
sizes were available. 

2. Material and methods 

2.1. Response variable and predictors 

The modelling procedure used data on size (number of chickens per 
farm) and location of all intensive chicken farms in each country. As 
these data arose from different agricultural censuses, the criteria used to 
consider a farm as "intensive" may differ. Besides, the number of 
chickens recorded for each farm differed from one country to another. It 
can represent the number of chickens present at the time of the census or 
the maximum capacity. Details on the different datasets are presented in 
Table 1. All geographic coordinates originated from an agricultural 
census except in the dataset from Thailand where the farms lacked co-
ordinates but were linked to each village they belong to. Coordinates 
were generated by randomly distributing farms within each village as 
done previously (for more details see Chaiban et al. (2019)). In our 
models, we considered farm size, i.e. the number of chickens per farm, as 
the maximum capacity of the farm. Farms with no chicken recorded 
were thus removed. Different farms having identical geographic co-
ordinates were kept in the datasets (the dataset from Nigeria includes 
440 farms having common coordinates with another farm, and there are 
2226 and 6 farms in the datasets from Argentina and Belgium 
respectively). 

Among the main factors known to influence poultry distribution and 
population (Van Boeckel et al., 2012), we selected spatial predictors 
available at global extent (Table 2): (i) log10-transformed human pop-
ulation density (human population density values were incremented by 
one to avoid infinite values of the logarithm in the case of null human 
population density), (ii) accessibility covariates (iii) percentage of tree 
cover and (iv) percentage of cropland. Three accessibility layers were 
computed based on the global map of travel time from Weiss et al. 
(2018), i.e. accessibilities to the capital city, to main cities and to har-
bours. The geographical coordinates of capital cities, main cities and 
harbours were used to calculate a travel time (at pixel level) for the 
optimal path (the shortest in time) between each pixel and these points 
of interest. This travel time is computed based on a friction surface 
which uses variables such as road properties, railroads, bodies of water, 
rivers, topography, land cover and national borders (Weiss et al., 2018). 
As intensive chicken production is mainly based on imported feed 
(Steinfeld et al., 2006; Neumann et al., 2009; Mulatu and Wossink, 
2014), the proximity to harbours was considered as a favourable factor 
for farm location. We obtained harbour locations from the World Port 
Index database. Accessibilities to the capital city and main cities were 
included as they represent the demand centres. The main cities within 
each country were defined as all cities with a population higher than a 
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threshold based on the estimated population by city in 2000 provided by 
the CIESIN (Balk et al., 2006). We selected as threshold the population 
corresponding to the 97th percentiles of the distribution of the estimated 
population by city. It resulted in a number of 6, 8, 7, 34 and 18 main 
cities in Nigeria, Thailand, Bangladesh, Argentina and Belgium, 
respectively. The corresponding population thresholds were 1 043 211, 
166 989, 274 495, 227 115, and 73 994, respectively. All predictors 
were resampled to 1 km using a bilinear interpolation (resample() 
function from raster R package). 

The Gross Domestic Product (GDP) per capita in purchasing power 
parity (ppp) at country level was added in the farm size model along 
with the other spatial predictors since GDP was shown to be related to 
the proportion of animals raised in intensive systems within a country 
(Gilbert et al., 2015). We used the average of the GDP per capita over the 
period from 2010 to 2017 in ppp for 2011 (Table 2). The GDP ppp was 
used to allow comparability between countries. 

All analyses were conducted with the projections World Geodetic 
System (WGS) 84 – Universal Transverse Mercator (UTM). This system 
of projection divides the world into 60 zones, used to project the co-
ordinates in individual zones. We selected the appropriate zones for 
each country: 32 N, 47 N, 45 N, 20S and 31 N respectively for Nigeria, 
Thailand, Bangladesh, Argentina and Belgium. The Global Administra-
tive Unit Layer (GAUL) database from 2013 was used to define country 
boundaries. To avoid computational problems with the point pattern 
analysis method, islands were excluded and we considered only the 
continental landmass. Country boundaries were simplified with the 
function simplify.owin(dmin = 1000) from spatstat package in R, in which 
dmin indicates the smallest permissible length of a polygon’s edge in 
meters. 

2.2. Characterisation of the spatial pattern of intensive farms – descriptive 
analysis 

We used the L-function to characterize and compare the distribution 
of intensive farms in our sample countries. The Besag’s L-function 

(Besag, 1977) is a summary statistic allowing the characterisation of the 
spatial distribution of point locations (here, farm locations) at various 
scales (Baddeley et al., 2015). In order to characterise a distribution of 
farms, the empirical L-function has to be compared with the corre-
sponding L-function in the case of a random distribution of farms. As 
farms tend to cluster with intensification, we would expect the intensity 
of points to vary across the space, and should therefore be described 
with the inhomogeneous L-function. The distribution is considered as 
clustered, regular or random if the empirical L-function is above, below, 
or close, respectively, to the expected L-function of a random distribu-
tion. A random distribution refers in this paper to a complete spatial 
randomness (CSR). 

2.3. Statistical analysis 

The modelling procedure to predict location and farm size was 
separated in two successive steps. The comprehensive procedure is 
summarized in Fig. 1. 

2.3.1. Farm location modelling procedure 
The procedure for modelling farm locations followed a methodology 

previously developed based on the point pattern analysis method 
(Chaiban et al., 2019). We used a Log-Gaussian Cox Processes (LGCP) 
model with the Palm maximum likelihood method of parameters opti-
misation, which models clustered distribution of points. Spatial pre-
dictors were included in the LGCP model so that the intensity of points 
could be modelled according to landscape and anthropogenic charac-
teristics. The intensity of points is inhomogeneous and modelled through 
an intensity function defined as 

λ(u) = exp
(
β0 + β1pred1(u) + β2pred1

2(u) + β3pred2(u) + β4pred2
2(u) + …

+ βk− 1predn(u) + βkpredn
2(u)

)

where u is any location in the study, β0, β1…, βk are the parameters to 
be estimated, pred the predictors and n the number of predictors. The 
forward stepwise selection of the covariates, was based on the Akaike 
Information Criterion (AIC). The model with the lowest AIC was selected 
for each country. Each predictor was added with its quadratic term to 
account for non-linear effects. The relative importance of each covariate 
within a LGCP model is obtained by taking the exponential of the esti-
mated parameter of a covariate multiplied by the range of values of that 
covariate (Baddeley et al., 2015). Our model was hereafter referred to as 
"iLGCP", for inhomogenous LGCP. 

Point pattern models require distribution of points from a contiguous 
area to fit the model and capture the spatial structure of the observed 
point pattern. Such models can therefore not be fitted on non-adjacent 
countries. One iLGCP model was hence fitted separately for each 
country, with the kppm (clusters = "LGCP", method = "palm") function 
from the spatstat package in R (Baddeley et al., 2015). Based on each 
respective fitted iLGCP model, the distributions of farms could be 
simulated in each country, using simulate.kppm() function form spatstat 
package. As a different distribution is produced each time a simulation is 
run, a fitted model can therefore be considered as a simulator of point 
patterns. 

The iLGCP models per country were first internally assessed in their 
ability to reproduce realistically the distributions of farms they were 

Table 1 
Farm data information and averaged gross domestic product per capita per country in purchasing power parity (GDP ppp 2010–2017).  

Country Census year Number of chicken Location source “Intensive farm” definition criteria Number of farms GDP ppp 

Nigeria 2010 Number of chickens - unspecified Agricultural census Not communicated 4958 5406 
Thailand 2010 Number of chickens - unspecified Random distribution within villages ≥ 500 chickens / farm 6587 14792 
Argentina 2017 Maximum capacity Agricultural census Not communicated 7587 19060 
Belgium 2017 Maximum capacity Agricultural census Not communicated 1042 41578 
Bangladesh 2010 Number of chickens - unspecified Agricultural census Not communicated 53911 2938  

Table 2 
Spatial predictors included in the modelling procedure.   

Initial 
resolution 
(m) 

Units Source 

Human population 
density 

500 Log10 
people per 
hectare 

WorldPop (www.wor 
ldpop.org), 2015 ( 
WorldPop, 2017, 2016, 
2015, 2014) (unavailable 
in Belgium, Landscan was 
used instead) 

Accessibility 1000 Minute Weiss et al. (2018) 
Cropland 1000 Pixel % 

covered by 
crops 

Fritz et al. (2015) 

Tree cover 30 Pixel % 
covered by 
forest 

Hansen et al. (2013) 

Gross domestic 
product (GDP) per 
capita in purchasing 
power parity 

One value/ 
country 

– World Bank  
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fitted on. To do so, the iLGCP models were compared to three other point 
pattern models: (i) “CSR”, a spatially random model, without covariates 
(i.e. homogeneous intensity of points), which distributes the points 
randomly; (ii) “iCSR”, an inhomogeneous random model in which the 
average density of points is spatially varying and explained with cova-
riates (the same set of predictors as the ones used in the iLGCP); and (iii) 
“LGCP”, a clustered model, Log-Gaussian Cox Process, with a homoge-
neous intensity, without any covariate. The functions ppm() and kppm() 
from the spatstat package were used to generate CSR models and LGCP 
models, respectively. We used two goodness-of-fit indices (GoF) to 
compare the models. As a first GoF, we selected the two-sided global 
rank envelope (GRE) test to assess the ability of a model to reproduce 
distributions similar to the observed one. The null hypothesis tests 
whether the model predicts a distribution similar to the observed dis-
tribution. It builds an envelope around the different simulations pro-
vided to the test, to which a p-value and graphical interpretation are 
associated. The p-value decreases as the empirical L-function goes out of 
the envelope. The global rank envelope test (GET) was implemented 
with 8000 simulations and the extreme rank lengths (erl), which 
allowed to run fewer simulations (Mrkvička et al., 2016; Myllymäki 
et al., 2017). It was carried out with the global_envelope_test(x, type= ‘erl’) 
function from the GET package in R (Mrkvička et al., 2017; Myllymäki 
et al., 2017). The number of simulations was selected according to 
preliminary analyses performed on Belgium (Supplementary Material 
Fig. S1), where 8000 simulations could balance the time required to run 
the simulations while obtaining a stable p-value. As a second GoF, we 
used the Pearson correlation coefficient to assess how accurately the 
model could locate the farms. Each country was divided into 16 quad-
rats, and the coefficient of correlation was computed between the 
observed and the simulated number of farms per quadrat. 

2.3.2. Farm size modelling procedure 
In order to predict farm sizes, we used a random forest model, shown 

to produce good levels of accuracy to predict population in the GLW 

(Nicolas et al., 2016; Gilbert et al., 2018) and in WorldPop (Gaughan 
et al., 2013). The two parameters that drive the performance of random 
forest are the number of trees and the minimum number of variables 
randomly selected at each splitting point. We used 500 trees, considered 
as a good rule of thumb (Lawrence et al., 2006) and a minimum number 
of variables (mtry) of two. The mtry value was chosen according to the 
optimising tuneRF() function from the randomForest package. It was 
trained on the entire dataset, made of the datasets of the four sample 
countries. The dependent variable was the log10-transformed number of 
chickens per farm as it showed a distribution close to normal. We used 
the entire set of predictors tested in the point pattern model and the GDP 
per capita. As goodness-of-fit indices, we considered the variance 
explained and the Pearson correlation coefficient between observed and 
predicted farm sizes on the entire dataset. 

We implemented an internal spatial cross-validation procedure to 
assess the predictive capacity of the model on a validation dataset (i.e. a 
dataset not used in training the model). The following procedure was 
implemented 100 times for each country to create a training and a 
validation dataset. Ten points were randomly distributed within a 
country, based on which Voronoi polygons were constructed. All farms 
within four randomly selected Voronoi polygons constituted the vali-
dation dataset. The rest of the farms within the country were included 
along with the data of the other countries into the training dataset. We 
considered the average of the correlation coefficient between observed 
and predicted log10 number of chickens per farm, on the training 
dataset and on the validation dataset. 

2.4. External validation - case study of Bangladesh 

2.4.1. Farm location modelling 
We validated externally the capacity of our protocol to predict farm 

locations and sizes by applying it to Bangladesh. Since point-pattern 
models can only be trained on a continuous territory, only one of our 
sample countries could be selected to subsequently simulate farm 

Fig. 1. Modelling procedure, which includes two successive steps: farm location modelling (based on point pattern model (an inhomogeneous Log-Gaussian Cox 
Processes – iLGCP)) and farm size modelling (based on a random forest model – RF). 
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distribution in Bangladesh. We assessed our procedure using two 
models, fitting one on the Thai data and the other on the Nigerian data, 
as they were the closest to Bangladesh in GDP per capita among the four 
countries (Table 1). We used the same GoF indices, the global rank en-
velope test (comparing the iLGCP model with its corresponding random 
model, the iCSR), and the correlation coefficient by quadrats. 

2.4.2. Farm size modelling 
We trained the random forest on the entire four countries dataset, to 

predict farm size based on the set of predictors in Bangladesh. To assess 
the ability of the model to predict farm sizes in Bangladesh, we predicted 
farm sizes on the real farm locations in Bangladesh, and computed a 
correlation coefficient between observed and predicted sizes. The model 
was also evaluated at a coarser resolution, aggregating the farms at 
district level (second administrative level) and at an artificial finer level. 
The artificial level was created with Voronoi polygons constructed 
around 3000 points randomly distributed within Bangladesh. The 
average area of the Voronoi polygons was 46 km2, and the average area 
of the second administrative level was 307 km2. The Spearman and 
Pearson correlation coefficient and RMSE were computed on the log-10 
transformed of the number of chickens. 

3. Results 

3.1. Characterisation of spatial distribution of intensive farms 

Intensive chicken farms were clustered in all countries. However, the 
level of clustering differed across countries, as highlighted by the L- 
function values (Fig. 2). Chicken farms in Argentina had the most 
clustered distribution. In Nigeria and in Thailand, chicken farms were 
also clustered but less so than in Argentina. While still clustered, chicken 
farms in Belgium were closer to a random distribution. 

3.2. Internal validation - Farm location modelling 

The combinations of predictors showing the lowest AIC in the iLGCP 
model (SM Fig. S2) by country are presented with the parameters 

estimated for each predictor in SM Table S1. The model for Argentina 
did not include the accessibility to the capital city and the tree cover was 
absent from the Thailand model. 

All models were rejected by the global rank envelope test (p < 0.05) 
(Fig. 3 a). The iLGCP model performed better than any other model 
tested in reproducing the level of clustering and farm locations although 
it could not explain the observed data. The iLGCP model predicted the 
level of clustering better than the other models in Nigeria, Thailand and 
Belgium as indicated by the higher p-values (Fig. 3 a), the better enve-
lope shapes and the lower variability (i.e. narrower envelopes) than 
LGCP models (Fig. 4, SM Figs. S3, S4 and S5). The p-value of the LGCP 
model was higher in Argentina, but similar to the iLGCP model. The 
iLGCP model seemed characterising the level of clustering better also in 
Argentina, as the global rank envelope followed the shape of the 
observed L-function well, with a smaller variability than the LGCP 
model (Fig. 4). iLGCP models performed poorly at short range distances 
(below 10 km), where farms were more clustered than predicted, 
especially in Argentina (Fig. 4) and Thailand (SM Fig. S5). This was, 
however, less so in the models for Belgium and Nigeria (SM Figs. S3, S4), 
which had the highest p-values (Fig. 3 a). In all countries, both inho-
mogeneous models (i.e. with covariates), iCSR and iLGCP, located the 
farms better, as shown by the highest correlation coefficients (Fig. 5a). 
The iCSR models had higher correlation coefficients with a lower vari-
ability than iLGCP models. However, accounting for both the level of 
clustering and the location of clusters, the iLGCP model reproduced the 
distribution of farms better in each country. 

The relative importance of each predictor and its shape varied be-
tween countries (Fig. 6 and SM Fig. S6), but human population density 
and accessibility to harbours and capital city had higher weights 
everywhere. Human population density had a high weight in the model 
for Nigeria and was the second or the third variable in the other coun-
tries. The accessibility to harbours had a strong importance in the 
models for Thailand and Argentina. Accessibility to the capital had the 
highest weight in Belgium and had a high weight in Nigeria, following 
closely human population density. The accessibility to main cities had a 
lower weight than the other accessibilities but had still a higher weight 
than cropland and tree cover in all countries except Belgium. Cropland 
and tree covers had low weights in all country models, but in Belgium, 
cropland was the second main predictor. 

3.3. Internal validation – farm size modelling 

The log10-transformed distributions of the number of chicken per 
farm by country were almost unimodal (Fig. 7). The mode increased 
following the gradient of intensification, from Nigeria, through Thailand 
and Argentina to Belgium. 

The random forest model trained on the four sample countries 
explained the observed data well, with an explained variance of 64 % 
and a correlation coefficient of 0.80 between predicted and observed 
farm sizes. However, in the spatial cross-validation, the correlation co-
efficient between observed and predicted had a much lower average of 
0.20. The importance of each predictor in the random forest model 
trained on all commercial farm size of the sample countries is provided 
in SM Fig. S7. 

3.4. External validation – prediction on Bangladesh 

All models underestimated the number of farms observed in 
Bangladesh (53 911 farms). The models fitted on Nigeria predicted on 
average 7922 and 8093 farms with the iLGCP and iCSR models, 
respectively. The models fitted on Thailand predicted an average of 
2518 and 2569 farms with iLGCP and iCSR models. Our models repro-
duced poorly the level of clustering and the clusters locations. Both iCSR 
and iLGCP models had a non-significant p-value of the global rank en-
velope test (Fig. 3b), and lower correlation coefficients by quadrats than 
in the internal validation (Fig. 5b). Despite these poor performances, the 

Fig. 2. Descriptive analysis of the observed farm datasets using the homoge-
neous and inhomogeneous L-functions. Dashed lines represent the stationary L- 
function (Lest) and color lines the non-stationary L-function. Both L-functions 
were estimated by country. The black line represents the theoretical L-function 
of a the completely spatial randomness (CSR) process, i.e. a random distribution 
of the points. A L-function above the random case translate a cluster distribu-
tion while a L-function below shows a regular pattern. 
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iLGCP model could still produce simulations with a spatial clustering 
closer to the observed distribution compared to the random model. This 
is suggested by the higher p-value of the iLGCP model (Fig. 3b) and the 
graphical interpretation of the global rank envelope (SM Fig. S8). 
Moreover, the simulations were also closer to the observed distribution 
of farms in Bangladesh than to the observed distribution of farms in 
Nigeria or Thailand (SM Fig. S8). Although Bangladesh is closer to 
Nigeria in terms of GDP, the iLGCP model reproduced better the spatial 
clustering when fitted on Thailand (SM Fig. S9). 

The random forest model trained on the entire dataset (Nigeria, 
Thailand, Argentina and Belgium) predicted poorly farm sizes, as indi-
cated by the low correlation of 0.14 between the observed and the 
predicted farm size in Bangladesh. Our model could reproduce a dis-
tribution of farm sizes similar to the observed distribution in Bangladesh 
despite a shrinkage of the value range (SM Fig. S9). Predictions were 
more accurate when aggregated, with Pearson correlation coefficients of 
0.90 and 0.93, at the Voronoi level and administrative level 2, respec-
tively (SM – Table S2). RMSE also showed a better performance of the 
model at the aggregated levels, with decreasing values from farm level 
to administrative level 2 (SM – Table S2). 

4. Discussion 

The paper aimed to (i) study the distribution of intensive farms along 
a gradient of intensification and (ii) investigate farm distribution models 
that would predict both location and size of chicken farms, while ac-
counting for spatial clustering of farms in data-poor countries. Our 
model could reproduce only partly the location and size of farms in the 
observed data and poorly in external validation on Bangladesh. Despite 
some disappointing results, we believe our results identify potential for 
this methodology to bring a valuable contribution in countries with 
scarce data upon further improvements. 

Intensive farms were clustered in all sample countries, likely as a 
result of the intensification process. The intensification of monogastric 

production induces a spatial reorganisation of farms since they largely 
rely on manufactured feeds. As production intensifies, a segmentation of 
production stages occurs and each stage can be located to minimise 
operation costs (Steinfeld et al., 2006). This leads to a clustering of in-
dustrial farms close to processing plants benefiting from economies of 
scale (Roe et al., 2002a; Herath et al., 2005; Steinfeld et al., 2006; Larue 
et al., 2011). In Thailand, the process of relocation of intensive pro-
duction toward a clustered distribution around the peri-urban belt of 
Bangkok was already observed in relation to the poultry sector between 
1992 and 2000 (Steinfeld et al., 2006). Moreover, its intensive produc-
tion in 2010 was much more clustered than backyard production 
(Chaiban et al., 2019). 

The gradient of intensification the countries were spread along, as 
described by the GDP per capita, was observed in the number of 
chickens per farm, which is increasing from Nigeria to Belgium. How-
ever, we did not identify a corresponding gradient in clustering. 
Although Belgium has the highest and Nigeria the lowest GDP, Belgium 
had the least clustered distribution among all sample countries and 
Nigeria a higher level of clustering than Belgium and Thailand. The 
distribution of farms in Belgium, although clustered, and better 
explained by a cluster model than a random model, was closer to a 
homogeneous distribution of farms. The small size of the country and the 
quality of the road infrastructure, which allows rapid transportation of 
chicken products from production to consumption centres, may explain 
this. By contrast, the high clustering of intensive farms in Nigeria could 
result from a poor quality of the road network, which could lead to farms 
concentrating around the main cities and demand centres to reduce 
transport time and cost. In Argentina, farms were mainly concentrated 
in provinces with relatively high human population densities (Buenos 
Aires, Entre Rios, Santa Fe and to a lower extent Cordoba). The location 
of the main consumption centres may influence the location of farms, 
whether it is multiple large cities as in Nigeria and Argentina or the 
capital city as in Belgium and Thailand. Comparing the distribution of 
intensive farms in different countries revealed that factors other than the 

Fig. 3. Global rank envelope test with extreme rank lengths results. (a) Internal validation p-values of the global rank envelope test for the different models (CSR, 
iCSR, LGCP iLGCP) by country (Nigeria, Thailand, Argentina and Belgium). (b) External validation p-values of the global rank envelope test the iLGCP and iCSR 
models fitted on Nigeria (BGD Tr NGA) or Thailand (BGD Tr THA) to simulate farms in Bangladesh. 
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level of intensification could affect the level of farm clustering. Our 
observations suggest that while intensive chicken farms are clustered, 
the degree of clustering, the number of clusters and their position are 
affected by the geographic specificities of individual countries, such as 
size, transport infrastructure, population and economic activity distri-
bution. However, the extent of the study areas may affect our results as 
we compared countries of various sizes. Should we consider the extent of 
Europe, farm clusters comparable to those in Argentina may exist, as 
there are known concentration of farms in Europe (e.g. around harbours 
in Belgium and the Netherlands). 

Our modelling procedure had somewhat unconvincing results in 
internal and external validations. First, the predictions of our best point 
pattern models (iLGCP models) differed significantly from the observed 
spatial distribution of farms in internal validation. This contrasts with 
our expectations and previous results in Thailand, where iLGCP models 
explained the observed distribution of farms better at finer scales 
(Chaiban et al., 2019). The complex shape of Thailand could have 
lowered the result quality when considering here the entire country. 
More specifically, iLGCP models could not simulate farm distributions as 
clustered as the observed distributions at short ranges, especially in 
Thailand and Argentina. This may be an issue when interactions at close 

range matter, such as epidemic transmission of infectious diseases be-
tween neighbouring farms. This poor performance at short distances 
could be owing to an incomplete set of predictors as this deviance 
appeared with iLGCP models but was not present in LGCP models in 
Argentina, or less strongly in Thailand. The use of a single model at the 
scale of Argentina may not capture the variability of factors explaining 
farm clustering across the country. Fitting different models on extents 
smaller than the country (i.e. by dividing Argentina into four to ten 
subareas) could potentially improve model performance. This suggest 
that our procedure may perform better at finer scales in large countries, 
as we observed in Thailand (Chaiban et al., 2019). 

The point pattern models poorly predicted farm locations, numbers 
and clustering for Bangladesh. The underestimation of the farms could 
be owing to the high population density of Bangladesh. It peaks close to 
10 persons per hectare, but it is lower than three in Nigeria and 
Thailand. The bell-shape curve of the human population density with 
farm intensity (SM Fig. S6) may prevent the model from predicting a 
sufficient number of farms in Bangladesh as it did not increase linearly. 
This issue may be addressed by including the density of rural population, 
a relative human population density (human population density/ 
average human density per country), or the size of the closest city. The 

Fig. 4. Graphical interpretation of the Global Rank Envelope (GRE) test with extreme rank lengths in Argentina for the four point pattern models (CSR, iCSR, LGCP, 
iLGCP). Dashed lines represent the 95 % global envelope with 8000 simulations; the black line shows the empirical L-function estimated from the observed dis-
tribution of farms and all red points represent the points of the empirical L-function which are outside the envelope. 
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low correlation coefficient by quadrat reflects an underestimation of 
farms that was not constant across space. The failure to predict a realistic 
number of farms and to locate them correctly in Bangladesh, with 
models based on Nigeria or Thailand, could also be owing to an 
incomplete or poorly suited set of predictors, or poorly estimated co-
efficients. Second, when modelling farm sizes, the observed data could 
only be predicted with a high level of accuracy in internal validation, 
with the random forest model trained on the data of the four sample 
countries (Nigeria, Thailand, Argentina and Belgium). In cross- 
validation and in external validation, the correlation coefficient 
computed on the validation datasets showed much lower values than on 
the training datasets. This reflected a low capacity of the set of predictors 
to explain the number of chicken at farm-level. 

The challenge to predict farm locations and sizes was expected as 
production intensification - especially in the case of monogastric species 
– leads to an integration of production into landless systems. Those 
systems are more complex to predict as farms are no longer determined 
by the quality of land but rather by socio-economic factors (Roe et al., 
2002b; Herath et al., 2005; Larue et al., 2011; Neumann et al., 2009; Van 
Boeckel et al., 2012; Robinson et al., 2014). Moreover, the locations of 
farms may sometimes be explained by an opportunity for a business 
arising in an area without any factors favourable to the implementation 
of such a business, in terms of investment capacity or favourable pol-
icies. This was the case of broiler production in the US, which emerged 
as an alternative source of income following entrepreneurship and 
promotional efforts (Lord, 1971). The challenge of explaining farm size 
with environmental variables has been documented previously (Van 
Boeckel et al., 2012; Robinson et al., 2014). This low accuracy in pre-
dicting the number of animals per farm was also observed when pre-
dicting cattle number, even while predicting on known farm locations 
(van Andel et al., 2017). Predicting the exact distribution of farms 

represents a challenging task when considering fine-scale location op-
tions and choices available to individual farms. We therefore attempted 
to provide realistic rather than exact distribution of farms with this FDM 
procedure. Our FDM procedure output should therefore be considered as 
a set of potential farm distributions in a given country. 

We believe our results should be considered in the broader context of 
livestock distribution mapping. In internal and external validation, p- 
values of the global rank envelope test were not far from the rejection 
threshold. Despite the strong underestimation of the number of farms in 
Bangladesh (external validation), the p-values were in the same range of 
values as in the internal validation. Moreover, when predicting farm 
sizes, the correlation increased greatly at both aggregated levels. Simi-
larly, the lower predictability at farm level compared with an aggre-
gated level (3 km) was shown in a previous study (van Andel et al., 
2017). This result, subject to the Modifiable areal unit problem (MAUP) 
effect was expected (Da Re et al., 2020), but it still highlights a higher 
correlation than existing modelling procedure in raster-based model, the 
GLW (Gilbert et al., 2018; Da Re et al., 2020). This confirmed that farm 
size at the individual level can be predicted without major loss in ac-
curacy compared to aggregated distribution. It also confirmed that our 
procedure did not underperform the GLW, an important but expected 
result as the model was trained on finer data (farm locations). 

The models may be improved in both their ability to reproduce farm 
distribution (clustering and location – point pattern model) and farm 
sizes (random forest model) by adding predictors. Our set appeared 
incomplete at several modelling steps. As farms tend to cluster with 
intensification, farm density could be an interesting factor to predict 
farm sizes. We could therefore use a farm density layer to predict farm 
sizes, or alternatively include the output of the farm size modelling step 
as a covariate within the point pattern model. Moreover, in countries 
where subnational livestock census data are available, including them as 
a covariate when modelling either location or size could refine the 
predictions. Intensification being driven, among others, by income 
growth, it would be worth considering the economic status at a subna-
tional level with for instance the gridded GDP per capita (Kummu et al., 
2018). The recently developed Subnational Human Development 
Database (Smits and Permanyer, 2019), could also be assessed as the 
economic development affects the level of intensification (Gilbert et al., 
2015). Another possibility would be to include the Global Human Set-
tlement Built-up layer (GHS-BUILT) (Corbane et al., 2018). The 
GHS-BUILT may better represent the demand centres than human pop-
ulation density, as urban areas account for the majority of the demand 
(Tefft et al., 2017). Finally, the accessibility layer we used, was recently 
refined to account for different farm sizes. Cities with a human popu-
lation below 50 000 were not considered rural as in the previous ver-
sions (Nelson et al., 2019). 

Further technical improvements of the FDM approach could be the 
integration of farm location and farm sizes steps into a common statis-
tical framework. Farm location and size modelling are two distinct steps 
in our FDM procedure. The marked point pattern analysis method would 
be an option, but, it has, to our knowledge, not yet been developed for 
Log-Gaussian Cox-Processes (Baddeley et al., 2015). Another possibility 
would be to consider the Gaussian process stacked generalisation (Bhatt 
et al., 2017) to predict farm locations or sizes, accounting for non-linear 
relationship between the dependant variable and the covariates. Two 
final steps that may improve our model performance would be to first 
add a mask on known unsuitable areas such as national parks, water 
bodies or middle of urban centres, as is developed in the GLW (Gilbert 
et al., 2018). A second step could be to adjust the flock size so that at 
aggregated level it matches the totals recorded in agricultural census, 
since subnational data exist in many countries. 

Bangladesh, chosen due to data availability, could be a suboptimal 
choice to externally validate our FDM approach. Bangladesh stands 
outside of the range of GDP covered by the four sample countries, which 
could explain the low farm size prediction capacity. In a further study, 
testing whether the low predictability in terms of farm numbers, farm 

Fig. 5. Correlation coefficient between the numbers of points per quadrat in 
observed and each simulated pattern. (a) Internal validation. The distribution of 
correlation coefficient values for all 8000 simulations is plotted for the four 
models (completely spatial randomness (CSR), the CSR with covariates (iCSR), 
the Log-Gaussian Cox process (LGCP) and the LGCP with covariates (iLGCP)). 
(b) External validation. The distribution of correlation coefficient values for all 
8000 simulations is plotted for the two models fitted on Nigeria or Thailand to 
simulate farms in Bangladesh, for the inhomogeneous completely spatial 
randomness, a CSR with covariates (iCSR) and the Log-Gaussian Cox process 
(LGCP) with covariates (iLGCP). 
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locations and farm sizes comes from the set of predictors or the approach 
itself by assessing other swaps between training and test countries would 
be valuable (e.g. whether Belgian data could provide good results in 
predicting Argentinean farm data, Argentina to Thailand, Thailand to 
Nigeria, Bangladesh to Thailand). 

Nigeria and Thailand have socio-economic and environmental con-
ditions different from those of Bangladesh. We assumed in our procedure 
that a country whose socio-economic conditions are more comparable 
with those of Bangladesh should provide better results. However, 
Thailand - closer geographically only - provided better results than 
Nigeria, which is closer from Bangladesh in terms of GDP per capita, 
thereby suggesting that both socio-economic and environmental con-
ditions are important to take into account. The GDP per capita was a 
good proxy of the intensification level (Gilbert et al., 2015), but less so 
for the level of clustering. A farm distribution model would be better 
trained on a country with similar socio-economic and environmental 
conditions, and of a comparable extent and population density. Never-
theless, our tests on Bangladesh already highlighted some limits of 
generalisability of our approach. The path of structural transformation 
and economic development taking place in Sub Saharan Africa may 
differ from what occurred in Europe and North America, then in Asia 
and Latin America (Loison, 2015). These differences in path may pose a 
limit in the extrapolation of our model using data from Asia or South 
America to predict farm distribution in Africa. 

Fig. 6. Log10 of the predictors importance in the LGCP model. All covariates importance includes the sum of the importance of each covariate of its quadratic term.  

Fig. 7. Log-transformed distribution of chicken number per farm in Nigeria, 
Thailand, Argentina and Belgium. 
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5. Conclusion 

We attempted to develop a FDM approach predicting both the lo-
cations of individual farms and the flock sizes in the shape of a set of 
potential farm distributions in a given country. This methodology still 
has major issues, especially when extrapolated to a new area, which was 
the main purpose of the procedure. Further improvements should 
include further socio-economic and demographic covariates, and 
methodological modifications. Extrapolation should likely only be 
considered between countries of highly similar socio-economic and 
environmental conditions, but it still has to be assessed. Moreover, 
further assessments of this procedure may consider finer scale than the 
country scale, as it could potentially improve the results. Despite the 
poor performance of our models, we set bases for a methodology and 
identified challenges to the method, which can be improved and even-
tually used as a predictive tool thereby providing realistic distribution 
maps at a farm-level. 
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la Recherche Scientifique de Belgique (F.R.S.-FNRS) (F.R.S.-FNRS) 
under convention 2.5020.11. Daniele Da Re is a research fellow (Aspi-
rant FNRS) at the National Fund for Scientific Research (FNRS), 
Belgium. The funders had no role in study design, data collection and 
analysis, decision to publish, or preparation of the manuscript. 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.prevetmed.2020.10 
5206. 

References 

Aarestrup, F.M., 2005. Veterinary drug usage and antimicrobial resistance in bacteria of 
animal origin. Basic Clin. Pharmacol. Toxicol. 96, 271–281. https://doi.org/ 
10.1111/j.1742-7843.2005.pto960401.x. 

Abdalla, C.W., Lanyon, L.E., Hallberg, M.C., 1995. What we know about historical trends 
in firm location decisions and regional shifts: policy issues for an industrializing 
animal sector. Am. J. Agric. Econ. 77, 1229. https://doi.org/10.2307/1243353. 

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and 
Applications With R. Chapman and Hall/CRC Press. 

Balk, D.L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S.I., Nelson, A., 2006. Determining 
global population distribution: methods, applications and data. In: Hay, Simon I., 
Graham, A., Rogers, D.J. (Eds.), Advances in Parasitology, Global Mapping of 
Infectious Diseases: Methods, Examples and Emerging Applications. Academic Press, 
pp. 119–156. https://doi.org/10.1016/S0065-308X(05)62004-0. 

Besag, J., 1977. Discussion on Dr Ripley’s paper. J. R. Stat. Soc. Ser. B 39, 193–195. 
https://doi.org/10.1111/j.2517-6161.1977.tb01616.x. 

Bhatt, S., Cameron, E., Flaxman, S.R., Weiss, D.J., Smith, D.L., Gething, P.W., 2017. 
Improved prediction accuracy for disease risk mapping using Gaussian process 
stacked generalization. J. R. Soc. Interface 14, 20170520. https://doi.org/10.1098/ 
rsif.2017.0520. 

Burdett, C.L., Kraus, B.R., Garza, S.J., Miller, R.S., Bjork, K.E., 2015. Simulating the 
distribution of individual livestock farms and their populations in the United States: 
an example using domestic swine (Sus scrofa domesticus) farms. PLoS One 10, 
e0140338. https://doi.org/10.1371/journal.pone.0140338. 

Chaiban, C., Biscio, C., Thanapongtharm, W., Tildesley, M., Xiao, X., Robinson, T.P., 
Vanwambeke, S.O., Gilbert, M., 2019. Point pattern simulation modelling of 
extensive and intensive chicken farming in Thailand: accounting for clustering and 
landscape characteristics. Agric. Syst. 173, 335–344. https://doi.org/10.1016/j. 
agsy.2019.03.004. 

Chantziaras, I., Boyen, F., Callens, B., Dewulf, J., 2014. Correlation between veterinary 
antimicrobial use and antimicrobial resistance in food-producing animals: a report 

on seven countries. J. Antimicrob. Chemother. 69, 827–834. https://doi.org/ 
10.1093/jac/dkt443. 

Corbane, C., Florczyk, A., Pesaresi, Martino, Politis, P., Syrris, V., 2018. GHS Built-Up 
Grid, Derived From Landsat, Multitemporal (1975-1990-2000-2014), R2018A. 
European Commission, Joint Research Centre (JRC). https://doi.org/10.2905/jrc- 
ghsl-10007. 

Da Re, D., Gilbert, M., Chaiban, C., Bourguignon, P., Thanapongtharm, W., Robinson, T. 
P., Vanwambeke, S.O., 2020. Downscaling livestock census data using multivariate 
predictive models: sensitivity to modifiable areal unit problem. PLoS One 15, 
e0221070. https://doi.org/10.1371/journal.pone.0221070. 

FAO, 2018. World Livestock: Transforming the Livestock Sector Through the Sustainable 
Development Goals, p. 222. Licence: CC B Y-NC-SA 3.0 IGO. ed. Rome, Italy.  

Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., 
Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood- 
Sichra, U., Herrero, M., Becker-Reshef, I., Justice, C., Hansen, M., Gong, P., Abdel 
Aziz, S., Cipriani, R., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S., Gomez, A., 
Haffani, M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., 
Olusegun, A., Ortner, S., Rajak, D.R., Rocha, J., Schepaschenko, D., 
Schepaschenko, M., Terekhov, A., Tiangwa, A., Vancutsem, C., Vintrou, E., 
Wenbin, W., van der Velde, M., Dunwoody, A., Kraxner, F., Obersteiner, M., 2015. 
Mapping global cropland and field size. Glob. Change Biol 21, 1980–1992. https:// 
doi.org/10.1111/gcb.12838. 

Gaughan, A.E., Stevens, F.R., Linard, C., Jia, P., Tatem, A.J., 2013. High resolution 
population distribution maps for Southeast Asia in 2010 and 2015. PLoS One 8, 
e55882. https://doi.org/10.1371/journal.pone.0055882. 

Gerber, P., Chilonda, P., Franceschini, G., Menzi, H., 2005. Geographical determinants 
and environmental implications of livestock production intensification in Asia. In: 
Bioresour. Technol., The 10th International Conference on Recycling of Agricultural, 
Municipal and Industrial Residues in Agriculture, 96, pp. 263–276. https://doi.org/ 
10.1016/j.biortech.2004.05.016. 

Gilbert, M., Conchedda, G., Van Boeckel, T.P., Cinardi, G., Linard, C., Nicolas, G., 
Thanapongtharm, W., D’Aietti, L., Wint, W., Newman, S.H., Robinson, T.P., 2015. 
Income disparities and the global distribution of intensively farmed chicken and 
pigs. PLoS One 10, e0133381. https://doi.org/10.1371/journal.pone.0133381. 

Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T.P., Vanwambeke, S.O., Wint, G.R.W., 
Robinson, T.P., 2018. Global distribution data for cattle, buffaloes, horses, sheep, 
goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227. https://doi.org/ 
10.1038/sdata.2018.227. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., 
Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 
21st-Century forest cover change. Science 342, 850–853. https://doi.org/10.1126/ 
science.1244693. 

Herath, D.P.B., Weersink, A., Carpentier, C.L., 2005. Spatial dynamics of the livestock 
sector in the United States: do environmental regulations matter? J. Agric. Resour. 
Econ. 30. 

Hill, E.M., House, T., Dhingra, M.S., Kalpravidh, W., Morzaria, S., Osmani, M.G., 
Brum, E., Yamage, M., Kalam, Md.A., Prosser, D.J., Takekawa, J.Y., Xiao, X., 
Gilbert, M., Tildesley, M.J., 2018. The impact of surveillance and control on highly 
pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh. 
PLOS Comput. Biol. 14, e1006439 https://doi.org/10.1371/journal.pcbi.1006439. 

Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M.Y., McKeever, D., 
Mutua, F., Young, J., McDermott, J., Pfeiffer, D.U., 2013. Zoonosis emergence linked 
to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. 110, 
8399–8404. https://doi.org/10.1073/pnas.1208059110. 

Kummu, M., Taka, M., Guillaume, J.H.A., 2018. Gridded global datasets for gross 
domestic product and Human Development Index over 1990–2015. Sci. Data 5, 
180004. https://doi.org/10.1038/sdata.2018.4. 

Larue, S., Abildtrup, J., Schmitt, B., 2011. Positive and negative agglomeration 
externalities: arbitration in the pig sector. Spat. Econ. Anal. 6, 167–183. https://doi. 
org/10.1080/17421772.2011.557773. 

Lawrence, R.L., Wood, S.D., Sheley, R.L., 2006. Mapping invasive plants using 
hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote 
Sens. Environ. 100, 356–362. https://doi.org/10.1016/j.rse.2005.10.014. 

Loison, S.A., 2015. Rural livelihood diversification in Sub-Saharan Africa: A literature 
review. J. Dev. Stud. 51, 1125–1138. https://doi.org/10.1080/ 
00220388.2015.1046445. 

Lord, J.D., 1971. The growth and localization of the United States broiler chicken 
industry. Southeast. Geogr. 11, 29–42. https://doi.org/10.1353/sgo.1971.0000. 
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