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The role of spontaneous emission noise and gain line profile in the dynamics of a multimode semiconductor
laser with weak-to-moderate optical feedback is studied. Two models of such a laser are compared. If the gain
profile is flat and in the absence of noise, model A predicts that all modal intensities are in phase, and model
B predicts antiphase dynamics of the modal intensities. Noise induces out-of-phase solutions in model A and
hardly affects model B. Weakly curved gain profile determines the number of lasing modes but otherwise has
little effect on the laser dynamics in both models.
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I. INTRODUCTION

Recent interest in the dynamics of semiconductor lasers
with optical feedback is due to the potential applications of
such lasers for secure communications by means of chaotic
synchronization. The solitary semiconductor laser usually
displays stable oscillations with steady intensity as many
other class B lasers. External perturbations, such as injected
signal, feedback, or pump current modulation, are required to
achieve a chaotic output. From a practical viewpoint, optical
feedback provided by a backreflecting mirror is one of the
simplest ways to achieve chaotic oscillations from a semi-
conductor laser. Even weak optical feedback leads to com-
plex dynamics[1]. In particular, it can sustain a chaotic re-
gime of low-frequency fluctuations(LFF) with sudden
irregular intensity dropouts followed by a gradual intensity
recovery[2].

In most analyses published on semiconductor lasers, they
are assumed to oscillate on a single longitudinal mode. In
this case the dynamics of the semiconductor laser with weak-
to-moderate coherent optical feedback is well described by
the Lang-Kobayashi equations[3]. However, experiments
have demonstrated that many edge-emitting semiconductor
lasers with optical feedback are multimode, rather than
single mode[4–6], unless frequency selective features are
added. Moreover, antiphase mode dynamics was demon-
strated in such a laser by comparing the power spectral den-
sities of the total and modal intensities[7]. The presence of
antiphase dynamics explains the relative success of the
single-mode interpretation[8].

Modeling a multilongitudinal mode semiconductor laser
is still an open problem. The dynamics of these lasers de-
pends strongly on the mode-mode coupling in active media,
but for semiconductor lasers the nature of the modal interac-
tion is yet unclear. This forces the use of a phenomenological
approach to construct models. Two different multimode gen-
eralizations of the single-mode Lang-Kobayashi equations
were proposed recently. Both use a modal expansion of the
electric field but differ in the role of the carrier density. The

first type of model uses the assumption that carrier diffusion
is very strong and completely washes out the free-carrier
density spatial grating burned by the standing-wave pattern
of each lasing mode in the Fabry-Perot cavity[9–12]. These
models differ in the details of the mode-mode interaction.
The mode coupling is treated either as a gain cross-saturation
process[11,12] or as a mode-dependent gain[10,13]. The
most detailed results on the dynamical behavior for this type
of models were obtained for the model introduced in Ref.
[10]. We will refer to this model as model A. It was shown
analytically that this model has no antiphase solutions
branching from the steady intensity solutions[14]. Numeri-
cal simulations in the LFF regime display only in-phase and
out-of-phase modal dynamics[10]. Another type of multi-
mode extension of the Lang-Kobayashi equations takes into
account the free-carrier density gratings associated with the
Fabry-Perot configuration[14–16]. The model introduced in
Ref. [15] predicts both in-phase and antiphase dynamics
[14,15]. We will refer to this model as model B.

Direct comparison of these two models based on previous
results is impossible, because different parameters and quite
different assumptions were used in the model studies. For
instance, model B was studied with the simplifying assump-
tion of equal modal gains(flat gain line profile) and without
spontaneous emission noise[14,15]. On the contrary, both a
parabolic gain line and a realistic level of spontaneous emis-
sion were included in the consideration of model B[10]. The
main purpose of this paper is to compare the two multimode
models integrated with the same parameters, and to study the
role of spontaneous emission noise and gain line profile in
the dynamics of the LFF regime.

II. MODEL A

In model A, the slowly varying complex amplitude of the
electric field Em of each lasing modem is coupled to the
spatial averageN of the excess free-carrier density

dEm

dt
=

1

2
s1 + iadfGmsNd − gmgEm + kmEmst − t0de−ivt0

+ Fmstd, s1d
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dN

dt
= J −

N

ts
− o

m

M

GmsNduEmu2, s2d

whereGmsNd=GcsN−N0dgm is the modal gain with gain line
profile gm=1−sm−mcd2d, Gc andmc are the gain coefficient
and longitudinal number of gain peak mode, respectively,d
=DvL /Dvg, DvL andDvg are the intermode spacing and the
active medium gain width, andN=N0 at transparency. The
optical modal frequencies arevm, a is the linewidth en-
hancement factor,gm is the modal field losses,ts is the car-

rier lifetime, km and t0 are the modal feedback levels and
round-trip time of the feedback loop, andJ is the pump cur-
rent. The mode indexm varies from 1 toM, the number of
lasing modes.Fmstd is the Langevin force simulating sponta-
neous emission noise. The noise level is determined from
kFm

* stdFnst8dl=Rspdmndst− t8d. In line with previous simula-
tions, gm and km are assumed to be mode independent:gm
;g andkm;k.

With standard normalization, similar to that used for
model B[15], the normalized equations of model A become

dAm

dt
= s1 + iadSgmD −

1 − gm

2
DAm + hAmst − t0d

3e−ivmt0 + fmstd, s3d

FIG. 1. Optical spectra of the semiconductor laser, calculated by
numerical simulation of model A for different rates of spontaneous
emissionrsp: (a) rsp=0; (b) rsp=10−6; (c) rsp=2.5310−5. Other pa-
rameters ared=0.022,P=10−3, h=0.0075,t0=6, a=5, T=103, b
=0.666, andM =7.

FIG. 2. Optical spectra of the semiconductor laser, calculated by
simulation of model B:(a) rsp=0; (b) rsp=2.5310−5. Other param-
eters as in Fig. 1.

FIG. 3. Averaged total laser intensity in the LFF regime for the
two models:(a) and (c) rsp=0; (b) and (d) rsp=2.5310−5. Other
parameters as in Fig. 1.

FIG. 4. Probability distribution function of the time interval be-
tween two consecutive dropouts for model A(a) and model B(b)
from simulations without spontaneous noise,rsp=0, other param-
eters as in Fig. 1.
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T
dD

dt
= P − D − s1 + 2Ddo

n

M

gnuAnu2, s4d

where the dimensionless variables and parameters are de-
fined as

Am = ÎGcts/2Em, D = GcsN − Nthd/2g, t = gt,

Nth = N0 + g/Gc, P =
Gc

2g
sJ − Jthd/Jth, Jth = Nth/ts,

T = gts, h = k/g.

The normalized level of spontaneous emission noisefmstd is
rsp=Rsp

Îts/2 /g.

III. MODEL B

In this model the set of nonlinear modal gainsNm is used
instead of the space averageN. The Nm include both the
uniform component and spatial gratings of the free-carrier
density. Taking into account gain line profile and spontane-
ous emission noise we can write the model B equations as

dEm

dt
=

1

2
s1 + iadsgmNm − gmdEm + kmEmst − t0d

3e−ivmt0 + Fmstd, s5d

dNm

dt
= J −

Nm

ts
− Nmo

n

M

gnbmnuEnu2. s6d

The phenomenological cross-saturation parameters
0,bnm,1 measure the mode-mode coupling due to carrier
density gratings. They are assumed to be mode independent:
bnm=b for mÞn, and bmm=1. The other parameters have
the same meaning as for the first model.

After normalization, the equations of model B become

dAm

dt
= s1 + iadSgmDm −

1 − gm

2
DAm + hAmst − t0de−ivmt0

+ fmstd, s7d

T
dDm

dt
= P − Dm − s1 + 2Dmdo

n

M

gnbmnuAnu2, s8d

where the dimensionless variables and parameters are de-
fined as

Am = Îts/2Em, Dm = sNm − gd/2g, P = sJ − Jthd/2Jth,

Jth = g/ts.

IV. COMPARISON OF THE TWO MODELS

For a small feedback coefficienth, both models have
stable steady-state solutions. However, ash is increased,
these steady-state solutions are destabilized via completely
different mechanisms[14]. Model A exhibits only a standard
self-pulsing instability through a nondegenerate Hopf bifur-
cation associated with the in-phase relaxation oscillation fre-
quencyfR, which is very close to the single-mode relaxation
oscillation frequency. In model B, this instability is also pos-
sible. But there is an additional instability, a degenerate Hopf
bifurcation, associated with the low relaxation oscillation
frequency fL given by fL

2= fR
2s1−bd / f1+bsM −1dg, fR

2.
This bifurcation can generate coexisting periodic and quasi-
periodic attractors that display antiphase dynamics[14,17].

For numerical simulation of Eqs.(3), (4) and Eqs.(7), (8),
we chose two sets of laser parameters corresponding to the

FIG. 5. Same as Fig. 4, but with spontaneous noise,rsp

=2.5310−5.

FIG. 6. Modal intensities for model A:(a) and
(b) correspond to Fig. 3(a) srsp=0d, and (c) and
(d) correspond to Fig. 3(b) srsp=2.5310−5d.
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parameters used in Refs.[10,15] and leading to the LFF
regime:P=10−3, h=0.0075, andt0=6 for the parameters of
Ref. [15], and P=0.12, h=0.077, andt0=3 for the param-
eters of Ref.[10]. The common parameters area=5, T
=103, b=0.666, andM =7. The first set of parameters is used
in this paper for all the figures, while the second set of pa-
rameters is used for the table.

Spontaneous emission noise plays a key role in model A:
this noise is the main cause of cavity multimode oscillations
themselves since, without it, the only stable regime predicted
by the model is single-mode oscillation. Spontaneous emis-
sion leads to changes in the optical spectrum involving side-
band modes in the lasing regime(Fig. 1). On the contrary,
the multimode behavior of model B is due to the spatial
gratings of the population inversion and depends weakly on
the level of spontaneous noise(Fig. 2) even for a sufficiently
high value of the gain profile parameterd.

The effect of the spontaneous emission noise on the total
intensity is quite similar for the two models. LFF regime
without spontaneous noise is slightly different in the both
models. The main difference is in quasiregular dropouts sud-
denly appearing in the time trace of model B averaged inten-
sity, which are absent in model A[Figs. 3(a) and 3(c)]. Out-
side these intervals, the temporal wave forms are very similar
in both models. Such behavior leads to different probability
distribution functions of the interval between consecutive
dropouts, namely to a narrow sharp peak for model B(Fig.
4). Spontaneous noise leads to an increase of the average
time between intensity dropouts, to a decrease of both the
oscillation amplitude during the recovery process and the
dropouts’ depth, i.e., to a more regular LFF regime[Figs.
3(b) and 3(d)]. Periods of quasiregular LFF in the model B
intensity disappear if noise is included. Probability distribu-
tion functions have the same shape for both models and dis-
play only one broad peak(Fig. 5). This dropout statistic is
similar to that calculated in the single-mode case[18].

However, the modal intensities are quite different for the
two models. Without spontaneous emission noise, model A
supports only in-phase oscillations for all lasing modes.
Spontaneous emission changes this behavior and gives rise
to out-of-phase modal dynamics(Fig. 6). On the contrary,
model B predicts antiphase oscillations even without noise.
A modal dependence of the gain profile does not destroy this
behavior if the value ofd allows more than one mode to
oscillate. The spontaneous emission noise leads only to
quantitative changes of the antiphase behavior(Fig. 7).

It was shown[19] that antiphase dynamics could be in-
ferred from the relations between power spectral densities
(PSD) of the total and modal intensities. This approach was
recently refined and applied experimentally[7]. Let PsI j , fd
andPsSI , fd be the PSD of thej th modal intensity and of the
total intensity at frequencyf. The relations can be expressed
as follows: perfect in phase:

PsSI, fd = fo ÎPsI j, fdg2
, s9d

perfect in antiphase:

PsSI, fd = 0, s10d

partial antiphase:

o PsI j, fd . PsSI, fd . 0. s11d

Frequency ranges where the condition of partial antiphase
behavior(11) is satisfied are presented in Table I together
with a value of the relaxation oscillation frequencies. The
results are obtained for the set of parameters used in Ref.
[10]. For both models, without spontaneous emission noise,
relation (9) is verified in the vicinity of the in-phase relax-
ation oscillation frequency, indicating perfect in-phase dy-
namics at these frequencies. Partial antiphase(out-of-phase)
behavior is present only at the low frequencies correspond-
ing to the inverse feedback roundtrip time 0.35 GHz. For a

FIG. 7. Same as in Fig. 6, but for model B:
(a),(b) rsp=0; (c),(d) rsp=2.5310−5.

TABLE I. Frequency ranges where partial antiphase occurs usingP=0.12, h=0.077, t0=3, and the
parameters of Ref.[10].

Model A Model B

In-phase relaxation oscillations frequency fR=3.1 GHz

Antiphase relaxation oscillations frequency no fL=0.83 GHz

Antiphase behavior rsp=0 f ,0.35 GHz f ,1.5 GHz

rsp=2.5310−5 f ,0.9 GHz f ,1.5 GHz
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realistic level of spontaneous noise, the upper boundary of
this behavior shifted close to 1 GHz, indicating the signifi-
cant role of spontaneous noise for the appearance of the an-
tiphase dynamics. On the contrary, model B displays an-
tiphase behavior even without noise, in the frequency range
below the low relaxation oscillation frequency. The effect of
spontaneous emission noise manifests itself only by small
quantitative changes of this behavior. For completeness, we
also display in Fig. 8 the PSD of the total intensity(continu-
ous line) and the incoherent sumSPsI j , fd (dotted line). An-
tiphase dynamics, which implies the inequality
SPsI j , fd. PsSI , fd, occurs in the low-frequency regime ex-
cept for the deterministic version of model A. It is interesting
to note that the use of the PSD only allows to state that the
multimode dynamics is not in phase. It does not distinguish
between the out-of-phase regime and the wealth of antiphase
regimes described, e.g., in Refs.[17,20].

V. CONCLUSION

We have investigated numerically the dynamical behavior
of two multimode models of a semiconductor laser with
weak-to-moderate optical feedback in the LFF regime. Spon-
taneous emission noise plays a key role in the dynamics of
model A. Spontaneous noise leads to changes in the modal

spectrum involving sideband modes in the lasing regime.
Moreover, out-of-phase modal behavior is due to spontane-
ous emission noise only. On the contrary, antiphase behavior
of model B has a dynamical origin and exists even without
noise. The effect of spontaneous emission manifests itself
only in small quantitative changes of this behavior. The gain
line profile leads to a decrease of the sideband mode inten-
sities and plays a minor role in the laser dynamics for the
both models. Let us mention that without external feedback
but for much higher currentsJ=2Jthd than those where LFF
is usually observed, antiphase dynamics and full compensa-
tion have been observed in the numerical simulation of a
simplified rate equation model that accounts for cross- and
self-saturation[21].

Models A and B are not the only attempts to describe the
dynamical behavior of multimode semiconductor lasers in
Fabry-Perot resonators with external feedback. The main
other class of models are the so-called propagation models
which do not rest on a modal expansion of the electric field,
but deal directly with partial differential propagation equa-
tions for the electric field. The relation between microscopic
modeling and these mean-field models has been summarized
in Ref. [22]. A two-level-like mean-field propagation model
has been analyzed[23], while a more systematic study of the
power output of a multimode semiconductor laser has re-
cently been published[24]. Noise has also been modeled
with partial differential equations for more complex types of
lasers, such as a three-section laser comprising two distrib-
uted feedback sections, detuned by the stop band width, and
enclosing an integrated phase detuning section[25]. How-
ever, these papers do not analyze the influence of noise on
the modal antiphase dynamics. An exception is the experi-
mental work reported in Ref.[4], where out-of-phase dynam-
ics is reported for two dominant modes. However, the case of
two modes is degenerate and cannot be used to discriminate
between out-of-phase and antiphase dynamics.
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