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We analyze stationary fronts connecting uniform and periodic states emerging from a pattern-forming
instability. The size of the resulting periodic domains cannot be predicted with weakly nonlinear methods.
We show that what determine this size are exponentially small (but exponentially growing in space) terms.
These can only be computed by going beyond all orders of the usual multiple-scale expansion. We apply
the method to the Swift-Hohenberg equation and derive analytically a snaking bifurcation curve. At each
fold of this bifurcation curve, a new pair of peaks is added to the periodic domain, which can thus be seen
as a bound state of localized structures. Such scenarios have been reported with optical localized
structures in nonlinear cavities and localized buckling.
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In spatially extended dynamical systems featuring sub-
critical Turing instabilities, there generally exists a pa-
rameter value in the vicinity of which stable stationary
fronts separate regions in space where the solution is either
uniform or spatially oscillating. Owing to the wide variety
of patterns that can result, this so-called Maxwell point has
received much attention. Examples of applications are
found in hydrodynamic [1], mechanical [2], vegetation
[3], or nonlinear optical problems [4,5]. A particularly
dramatic feature associated with this situation is a snaking
bifurcation diagram that is composed of an infinite succes-
sion of folds [2,5]. Each fold signals the appearance of a
new pair of peaks in the patterned domain, so that the latter
can be viewed as a bound state of localized structures [6].
Moreover, this curve delimits the ‘‘pinning range’’ of
parameters where localized structures can be found, which
is a useful piece of information if these are to be used for
data processing [7]. The phenomenon is robust and has
been given a geometrical interpretation in the frame of
dynamical system theory [8,9]. However, a key question
that has remained unanswered so far is what determines the
size of the patterned state, or equivalently, how to construct
such a bifurcation curve. A crucial observation in this
respect is that the standard multiple-scale analysis, which
separates the slow spatial scale of the front from that of the
fast-oscillating underlying pattern, is insufficient to resolve
this problem [1]. Indeed, this procedure misses the expo-
nentially small ‘‘nonadiabatic’’ effects that couple the slow
and fast scales. In an attempt to compensate for this short-
coming, several authors have modified the multiple-scale
analysis and did obtain some exponentially small terms
[10,11]. Although some insight can be gained this way,
their method is inconsistent in that the envelope, which is
supposed to depend only on the slow scale, is proposed to
satisfy an equation where the fast scale appears explicitly.
This introduces the nonadiabatic effects after a few orders,
whereas in fact they appear beyond all orders of the
multiple-scale analysis.

The purpose of this Letter is to show how to compute
these effects and to demonstrate their physical relevance by
constructing the snaking bifurcation diagram. We note that
beyond-all-order techniques have been applied in a few
instances to multiple-scale problems: gravity-capillary
solitary waves [12], oscillating shock solutions of the
Kuramoto-Sivashinsky equation [13,14], and strut buck-
ling on an elastic foundation [15]. The last analysis is close
in spirit to the present one but breaks down near the
Maxwell point. Let us also mention the recent alternative
approach combining asymptotic and geometrical argu-
ments in [16], which was successfully applied to a snaking
bifurcation curve involving a saddle point and a focus in
phase space.

Presently, we analyze the Swift-Hohenberg equation

 

@E
@t
� Y � CE� E3 � �1� @2

x�
2E; (1)

relevant to the study of many pattern-forming systems [17].
For example, in nascent optical bistability, E, Y, and C
respectively denote deviations of the cavity field ampli-
tude, the injected field amplitude, and the cooperativity
parameter from the onset of bistability [4]. The unit length
is set by the cavity detuning and the diffraction coefficient.

The homogeneous steady state Ehg satisfies Y � E3
hg �

Ehg � CEhg, and there is a subcritical Turing bifurcation
with unit wave number when 3E2

hg � C. In the following,
instead of Y and C, we will use the equivalent set of
parameters Ehg and "� 1 defined through

 C � 3E2
hg � "

4; E�x; t� � Ehg � "f�x�:

Hence, " sets the order of magnitude of the oscillation at
the Maxwell point. The scaling above is typical for stable
branches of periodic pattern emerging from a subcritical
bifurcation [17]. With this change of variable, the Swift-
Hohenberg equation becomes
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2f� "4f� 3"Ehgf2 � "2f3 � 0: (2)

We want to study (2) for values of Ehg such that homoge-
neous and periodic solutions can be separated by stable
stationary fronts. To this end, we introduce the slow scale
X � "2x and look for a solution of the form

 f�x� �
XN
n�0

"nfn�x; X� � �f�x; X; "�; (3)

 Ehg � E0 � "
2E2 � "

4E4 � � � � � �E: (4)

The power series in (3) being generally divergent, it is
truncated after N terms and we denote the remainder by
�f. On the other hand, the power series in (4) approximates
the Maxwell point, while �E is a small deviation from it.
Substituting (3) and (4) in (2), one obtains a set of linear
differential problems at each order in ", of which the first
few are solved in the usual way: First, setting " � 0, f0 is
seen to be a harmonic function of x with period 2� and
slow-varying complex amplitude, denoted by f0;1�X�.
Second, a solvability condition at O�"2� is that E0 ������������

3=38
p

. Finally, atO�"4�, a new solvability condition yields
the amplitude equation
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for f0;1�X�. This amplitude equation is found to have front
solutions for E2 �

��������������������������
5872=20577

p
� 0:534, and hence,

adopting this value, the leading order solution is

 f0� �x; X� �
��������������
19�=2

q eX=2

�1� eX�1=2�i�=2
ei �x � c:c:; (6)

where � � 1=
��������
734
p

, �x � x� ’, and c.c. means ‘‘complex
conjugate.’’ In this expression, ’ denotes the phase of the
fast oscillations relative to the slow scale and is unknown at
this stage. This solution describes the onset of oscillation
but does not predict a return to the homogenous state as
X ! 1. One could expect to find this piece of information
by computing higher order terms in (3) and introducing
slower space scales. However, no matter how far one
proceeds in this way, no sign of the amplitude of oscillation
going back to zero for large X ever shows up. This means
that the terms responsible for this down-switching lie
beyond all orders of the multiple-scale expansion.

In (3) the magnitude of the terms "nfn first decreases
with n but eventually increases, thus making the series
divergent. In order to capture exponentially small terms,
we truncate the sum in (3) near its smallest term and
compute the remainder �f. Indeed, it is expected that,
for large n, the magnitude of fn will be given roughly by
��n=2� �� 1� for some constant � [18]. Hence, using
Stirling’s formula, "nfn � O	"n�n=2�n=2���1=2e�n=2
 and
the least term, obtained for N=2 � "�2, is thus
O�"�2��1e�1="2

�. This makes the magnitude of the re-
mainder in (3) of the right order to study nonadiabatic
effects. Recently, there has been considerable progress in
the mathematical literature on the optimal choice of
normal-form truncation [19].

Assuming then that we have determined f0, f1; . . . ; fN,
the equation for the remainder is

 	1��@x�"
2@X�

2
2�f�"4�f�6"�E0������f0�"f1������f�3"2�f2
0������f��3"�E�f2

0�2"f0f1������rhsN:

(7)

Since �f is exponentially small, one can safely neglect all
nonlinear terms in �f in (7). The right-hand side is split
into two parts. The first one is due to the deviation from the
Maxwell point and can again be treated by the multiple-
scale method. This produces the contribution �fE in �f,
given by

 

i‘1"�2�Ee3X=2ei �x

�1� eX�3=2�i�=2
	eX��� i� � �� 2i� EDT
 � c:c:;

(8)

where ‘1 �
��������
114
p

�19�=8�3=2 and ‘‘EDT’’ stands for expo-
nentially decaying terms as X ! 1. On the other hand,
rhsN is the remainder obtained after substituting the trun-
cated multiple-scales expansion for f into the equation. It
depends on the large-n terms of this expansion, and its
determination makes up the majority of the effort behind
this work. Here we only sketch the calculation.

Let us first observe that the leading order solution (6) has
the two simple poles X � �i�. Such singularities are

known since [20] to be intimately related to the existence
of exponentially small terms in f. More specifically, these
terms will be shown to emerge from a Stokes line that joins
the two singularities.

One can decompose the nth term in (3) as
P
fn;k�X��

exp�ik �x�, with k � �n� 1; . . . ; n� 1. Equation (2) then
yields a recurrent set of equations for the functions fn;k�X�,
which can be set up as an eigenvalue problem in the limit as
n! 1. In the present case, it quickly emerges that only
harmonics for which n� k is odd are nonzero. For given
n 1, n odd, the eigenvector that is relevant to our dis-
cussion is then found to be

 

fn;0
fn;2

� �
� ‘2

�n��n2� �� 1�

�i�� X�n=2���1

F0�X� �O�1=n�
F2�X� �O�1=n�

� �
; (9)

all other components fn;k with the same n being at least
O�1=

���
n
p
� smaller. In this expression, � �

��
i
p

is the asso-
ciated eigenvalue, � � 2� i�=2, ‘2 is a constant, and
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F1�1�X��
e3X=2

�1�eX�3=2�i�=2

�	6�eX� i��4�4X�4i��eX��EDT
:

(10)

This was derived using 1=
���
n
p

as a small parameter in the
recurrence equations. The value of ‘2 can only be deter-
mined numerically, either by solving the recurrence equa-
tions exactly all the way up to large values of n, or by
solving (2) numerically for an appropriate set of parameter
values. Let us remark that (9) does not represent the full
solution ffn;kg for large n. In particular, there is another
eigenvector, associated with � �

������
�i
p

, and for which the
dominant elements are fn;0 and fn;�2. However, its con-
tribution to rhsN will not affect our result at leading order,
so we will simply ignore it in the present discussion. We
also draw attention to the special role played by X � i� in
(9). Actually, there is a complementary set of eigenvectors
associated with X � �i� such that fn�x; X� is real for real
values of X. These will be taken into account at the end of
this development by requiring that the remainder �f be
real as well.

Using (9), we now compute rhsN in the vicinity of the
Stokes line, which joins X � i� and X � �i�. To this
end, we set X � i�� ir exp�i"�� with r fixed between 0
and 2� and � variable. The latter corresponds to the Stokes
variable in Berry’s treatment of Stokes’s discontinuities
[18]. With this parametrization, X is on the Stokes line
when � � 0. The large-n terms of ffn;kg are then found to
produce

 4i‘2"��F0 � F2e2i �x�
�"��N�2��N=2� �� 2�

�i�� X�N=2���2
(11)

in rhsN, and the key observation [14] is that, at optimal
truncation, where N=2� �� 1 � r="2, the fraction
above is asymptotic to

 i

�������
2�
r

s
"�5 exp

�
��
4
� i� ln"�

�

"2 �
r�2

2
� i

X

"2

�
: (12)

This means that the fraction in (11) is locally equivalent to
the fast-oscillating factor exp��iX="2� � exp��ix�, and
this turns rhsN into a resonant driving term in (7). This is
only true very close to the Stokes line, as attested by the
exp��r�2=2� factor. Because of this fast variation relative
to the X scale, we must solve (7) locally using � instead of
X as the slow scale. In doing so, we find that rhsN produces
the particular solution

 �f� � "�2�‘02
F0e

�i �x � F2e
i �x

2
ei’�i� ln"

Z �

�1

e�rv
2=2�����������

2�=r
p dv

in �f, where � � "�4 exp���="2� and ‘02 � 4�‘2 �

exp���=4�. In this expression, the integral factor vanishes
as �! �1 [corresponding to X � i��� r� � 0�)] and
equals one as �! 1 [corresponding to X � i��� r� �
0�]. Thus �f� is ‘‘switched on’’ upon crossing the Stokes
line towards positive values of X [18]. Finally, having
obtained �f�, the complementary contribution �f� asso-
ciated with the pole X � �i� makes �f real on the real-X
axis. Hence, for X < 0,

 �f � �fE;

but for X > 0,

 �f � �fE � "�2�Re	‘02�F0e
�i �x � F2e

i �x�ei’�i� ln"
:

We now have all the necessary information to construct a
finite spatial domain of oscillation. Indeed, �f, although
exponentially small, is an exponentially increasing func-
tion of X and this ultimately leads to a down-switching
front. Assembling the various pieces of solution we have
obtained thus far, we construct a finite periodic domain of
size d 1. On the left of the domain, the solution is given
by the approximate formula

 f�x; X;’L� � f0�x� ’L; X� � �f�x; X;’L�;

while, by symmetry, the right side is described by the
down-switching front f�d� x; "2d� X;’R�. From (6),
the oscillations in the left part are controlled by the ex-
ponential factor expi�x� ’L � �X=2� as X ! 1, while
in the right part, the corresponding factor is expi�x� d�
’R � �X=2� "2�d=2� as "2d� X ! 1. In order for
these oscillations to smoothly join, we thus have to impose

 ’L � �’R � d� "2�d=2� 2m�;

where m is an arbitrary integer. Considering next slow-
varying amplitudes, the exponentially growing terms in
�f�x; X; ’L� [see (8) and (10)] must match the exponential
start of the down-switching in f0�d� x� ’R; "

2d� X�.
This leads to ’R � ’L and
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2

FIG. 1. Bifurcation diagram for " � 0:55. Thick line: analyti-
cal formula. Thin line: numerical simulation.
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 �E � ��c1 cos
�

2� "2�
4

d� � ln"� c2

�
� 2"2E2e�"

2d: (13)

The latter is the bifurcation equation between the bifurca-
tion parameter �E and the front separation d. The constants
c1 and c2 are proportional to j‘02j and arg‘02 and hence must
be determined numerically. This bifurcation equation ac-
tually defines two interlaced snaking bifurcation curves;
one corresponds to an even number of peaks, the other to
an odd number of peaks.

We checked the prediction from our formula by comput-
ing numerically the bifurcation curve with the continuation
package AUTO [21] and found excellent agreement, even
for moderately small values of " and moderately large
localized structure size d. In Fig. 1, we plot the numerically
and asymptotically determined L2-norm of f. To compute
the latter, we used a composite development based on
f�x; X; ’� and f�d� x; "2d� X;’� and included the
O�"� terms from the weakly nonlinear analysis. From
(13) and (4), the pinning range �E of values of Ehg where
localized structures exist scales like �. This is again fully
confirmed, as shown in Fig. 2. The value c1 can be deter-
mined graphically by plotting 1

2 �E"4 exp��="2�. All the
points in Fig. 2 then appear on an horizontal line of height
c1 � 2:439. Next, c2 � �0:5 provides the best fit in Fig. 1.

In conclusion, a consistent analysis beyond all orders of
the weakly nonlinear analysis elucidates the interaction
between the slow and fast scales in pattern-forming insta-
bilities. This interaction takes places near the Stokes line
that joins the two first poles of the slow-varying front and
leads to the emergence of exponentially small terms in the
solution. These eventually dominate and lead to a second,
down-switching front, thus allowing us to analyze local-
ized structures asymptotically. Furthermore, the analysis

can easily be extended to the study of a larger number of
fronts, to dynamical fronts, and the effect of noise,
whereby d becomes an exponentially slow function of
time. Because the analysis presented is local, it bears the
same generality as any bifurcation analysis and is not
restricted to the particular equations that we have studied
here. In particular, Eq. (1) can be deduced in some limit
from the diffraction-type Ginzburg-Landau equation with
saturable nonlinearity [22]. In principle, it could be applied
to any subcritical Turing instability near the Maxwell
point.
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FIG. 2. Amplitude of the snaking oscillations (pinning range)
in Fig. 1 as a function of ". Dots: numerical; line: analytical.
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