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1. Introduction

Sometimes science is a lot more art than science,

Morty.

— Rick Sanchez, Rick & Morty

Portraying the natural world around us through mathematics is a powerful tool for

advancing our understanding of it. The formalization and rigorous application of this

approach played an immense role in the scientific revolution pioneered by Renaissance

scholars such as Copernicus and Newton, and would ultimately lead to the birth of mod-

ern physics and countless other fields derived from it. As our collective understanding

of mathematics and the problems to which it has been applied grow, so also does the

complexity of the systems under consideration. However, with this increasing complex-

ity comes a reduced ability to obtain useful information: “difficult” problems are those

which contain too many “moving parts”, so that finding their solution is either unfeasi-

ble considering the time it would take to solve them, or pointless if their dependence on

initial conditions is too strong.

The realm of stochastics has provided a suitable workaround for this issue, allowing

problems that are difficult to solve exactly to be reduced to simpler forms, though at the

expense of perfect information. This has in the past proven to be immensely powerful,

with the achievements of statistical physics – relating the behavior of singular molecules

and atoms to the empirically observed laws of thermodynamics – as a proud testament

to its success. It is therefore no surprise that the 20th century saw the application of

stochastic models across countless fields of study, from economics to human behavior,

although accomplishments in such areas have been perhaps more modest. We cannot,

for example, predict as accurately as we might like the outcome of an election, or the
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1. Introduction

influence of a global pandemic on the economy. What makes these systems harder to

predict than those of classical physics is a question which merits its own discussion,

though a simple answer is that their complexity makes them far more chaotic, resulting

in behavior which is observed to be significantly more stochastic.

In contrast, employing stochastic mathematical models in biology may seem less ex-

treme, it being merely a natural progression to apply the techniques honed through the

study of the physical reality to the realm of life. However the issues described above

are intensely present in biological systems as well. Over a century of investigations in

cell biology have taught us that they are in fact tremendously complex machines. The

comparatively “simple” physical laws describing the behavior of the atoms from which

they are constructed – and which an aspiring biophysicist might be primed to apply –

are only present in the same way that electrons are present in the circuit boards of a

computer: They are fragments of a larger whole, which in itself acts as a component

of another encompassing object, which in fact only serves the purpose of yet another

whole, and so forth. The scope of such a system is daunting, however the possibility

of this Russian-doll type of encapsulation simultaneously provides an opportunity: if

we can course-grain the full picture to only consider certain “emergent” objects as the

fundamental particles of the system, we might obtain new empirical “laws” which can

be used to extract information. Still, this can be a challenging task. While, for example,

the atom functions as an excellent model for the underlying interactions of its con-

stituent bosons and fermions, there is no such simple model for a cell. Instead, we must

choose the relevant properties of the desired fundamental “unit” based on the problems

at hand. And given that we ignore so much of the underlying reality, these properties

will often be stochastic in nature. In this sense the biophysical approach to a set of

questions is as much choosing a model as it is solving it. Impressive as some models may

be, the answer might very well be “42” and nobody would quite know what to do with it.

This thesis examines the application of mathematical models to two different systems

in biology, both related to the behavior of human (or more generally mammalian) cells,

12



but both ultimately requiring different sets of questions and models. Though the math-

ematical tools applied are similar, there is little overlap in the models themselves, and

as such these are treated in separate parts.

Part I covers an investigation of hematopoiesis, the process by which precursor cells

of the blood are cultivated and matured in the bone marrow. It is essential to enable

mammalian physiology, from providing oxygen-carrying erythrocytes to ensuring reg-

ular upkeep and preservation of the immune system. The general mechanism follows

a pyramidal architecture, with rare slowly acting multipotent stem cells seeding more

differentiated progenitors through successive levels of maturation. Obtaining a quan-

titative understanding of key aspects of this system can provide valuable insights and

testable predictions concerning the origin and dynamics of various blood-related diseases

such as anemia, hemochromatosis, leukemias, and other. However, in vivo bone marrow

studies pose significant challenges and in vitro studies often provide only limited predic-

tive power, as the hierarchical landscape of differentiation can rapidly lead to non-trivial

dynamics. Such a system is on the other hand well fit to the application of mathematical

and computational techniques relying only on a few basic assumptions and parameters.

In this context three separate research questions are posed and investigated, respectively

discussed in Chapters 5, 6, and 7.

The first question concerns an attempt to gain insight in the dynamics of the rare blood

disorder paroxysmal nocturnal hemoglobinuria (PNH). It is an acquired blood disorder,

clinically characterized by hemolysis (destruction of red blood cells) and a high risk of

thrombosis (obstructive blood clotting). These symptoms are caused by a population

of blood cells presenting a deficiency in several identifying surface proteins, the lack of

which elicits an activation of the complement immune system and consequently their

premature destruction. The origin of this defect has been traced to a somatic mutation

in the PIGA gene, which furthermore is required to occur within the hematopoietic stem

cells (HSCs) for the disease to present. However, to date the question of how this mutant

clone expands in size to contribute significantly to hematopoiesis remains under debate.

One hypothesis posits the existence of a selective advantage of PIGA mutated cells
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1. Introduction

due to an immune mediated attack on normal HSCs, however, the evidence supporting

this hypothesis is inconclusive. An alternative explanation attributes clonal expansion

to neutral drift, in which case selection neither favors nor inhibits the expansion of

PIGA mutated HSCs. In this chapter the implications of the neutral drift model are

examined, both in terms of its likelihood as well as its predicted dynamics. This is done

by modeling the dynamics of the HSC compartment as a stochastic Moran process, and

numerically evolving a Markov chain for the probabilities of all possible outcomes. We

find predictions of the model to agree surprisingly well with the known incidence of

the disease, as well as the average age at diagnosis. Furthermore, we observe that the

predicted dynamical variation of PIGA mutated HSC clones in the model qualitatively

matches what has been observed in human trials, and can be made to quantitatively

fit the observed clonal expansion rates by introducing a coupling between the stem cell

compartment and the blood, as in reality one would expect the extreme loss of cells due

to hemolysis to cause a compensating increase in HSC production.

The second research question entails an attempt to better quantify the properties of

the hematopoietic stem cell pool – as such knowledge can greatly benefit the construction

of specialized models such as those of Chapter 5 and Chapter 7 – by analyzing patterns

of somatic mutation accumulation within the population. As HSCs divide, they contin-

uously acquire novel mutations at random positions in the genome. As most of these are

selectively neutral – conferring neither an advantage nor a disadvantage to their carriers

– their stochastic dynamics follow the same probabilistic trajectory as derived for the

PIGA mutation in Chapter 5, so that the Moran model can (with some alterations)

be similarly applied to obtain the dynamics for any number of mutant clones. How-

ever, the possible outcomes for the system of multiple of stochastically evolving clones

form a highly complex state space, so that structured reductions of this space must be

analyzed. In particular, we investigate the predicted distributions for the number of mu-

tations found in a single cell – the mutational burden – as well as the number of variants

found at a particular frequency – the variant allele frequency (VAF). These predictions

are then applied to a dataset containing high resolution mutational information on a
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sample of 89 human HSCs taken from a single patient, allowing us to estimate certain

fundamental quantities such as the mutation rate per cell division and the rate of cell

divisions. These results furthermore highlight the wealth of information encoded in the

somatic mutational landscape, and the usefulness of the stochastic approach.

Finally, in Chapter 7 we turn our attention to the full hematopoietic system, with the

question of what cellular dynamics can be expected to occur given our current under-

standing of its structure. A handful of models to this end have been proposed previously,

however these have typically been introduced to describe either a particular observed

phenomenon or a proposed gene regulation network, whereas a general characterization

of how the system behaves – both under normal circumstances as well as under stress

– remains lacking. Such a model could prove useful in understanding the dynamics of

blood disorders which are typically non-trivial to predict – even qualitatively – due to

both the hematopoietic system’s pyramidal structure as well as its complex feedback

networks. In order to characterize the possible dynamics following different types of

perturbations, we investigate a generalized model of hematopoiesis which represents the

system as a sequence of compartments covering all maturation stages from stem cells

to committed progenitors, in which cells can both self-renew and differentiate. As the

system’s plasticity is driven by feedback networks which adapt the cell production to

ongoing requirements, we design the model to transparently show the effect of different

feedback types on the overall dynamics. We find that the dynamic character of the

system following a transient perturbation depends on the balance between the altered

differentiation and self-renewal rates, where a simultaneous adaptation of both rates is

required in order for the system to maintain stability. Furthermore, we show that under

continuous disruption – as found in certain hematopoietic disorders – compartment cell

numbers may evolve to new equilibria, implying that chronic illnesses can lead to dis-

torted size distributions of progenitor cell populations in the bone marrow.

In Part II of this thesis we will move away from specific tissues, and instead consider

the mechanical properties of proliferating cell populations. Various cell types exists with
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1. Introduction

some form of locomotive capability, their recruitment occurring for a wide variety of

tasks such as tissue regeneration, vascularization, and wound healing. Recently it has

been found that such motility also occurs in cancer, as a differentiational pathway as-

sociated with cellular changes from an epithelial form to such a motile phenotype has

been related to an increased metastasis risk. The application of stochastic models of

motion can be useful in investigating such phenomena, however, while many models of

self-driven particles (often referred to as active matter) such as cells have been stud-

ied, little has been shown for systems in which the particles simultaneously proliferate,

effectively reducing the space available to them. Such models would be highly useful

though, as increasingly complex culturing experiments investigating motile proliferating

cell types require a robust mathematical framework to extract useful information. To

quantitatively answer the question of how proliferative crowding influences motility, we

approach the problem of growth in a confined space from first principles. Starting from

the basic Langevin equation for Brownian motion, we introduce a dependence on the

cell density through the system’s diffusion coefficient and its relation to the moving par-

ticle’s mean free path. By coupling the density to an appropriate growth curve – such

as the logistic function – we show how apparent sublinear diffusion occurs as a result

of the increasing particle density. As this model represents the influence of dynamic

crowding on a ballistically moving particle, it can be coupled with any other models of

active motion given by a Langevin representation, and may therefore be used to model

proliferating particles with widely different locomotive capabilities. In fact, the notion

of actively moving “agents” in a dynamically crowding environment is not limited to

cells, and may find applications in widely different topics as well; from ecological models

involving populations of animals which both migrate and reproduce, to human behavior

in crowded city streets.
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2. Hematopoiesis: the factory for blood

Can’t you recognize the human in the inhuman?

— Ray Bradbury, The Martian Chronicles

Blood plays a critical role in the machinery of the human body [70]. The expansive

network of vessels and capillaries through which it is pumped spans the entirety of the

body, and as such many responsibilities related to this interconnectivity are performed by

the blood. This includes the transportation of oxygen and nutrients required for various

metabolic processes to all tissues, as well as the removal of any resulting waste products;

providing numerous messenger functionalities through the transport of hormones and

other signaling factors; and performing immunological functions such as the detection

and destruction of foreign cells and materials. The laundry list of tasks relegated to the

blood is expansive, making it perhaps not so surprising to find its composition to contain

a broad collection of cells, highly diverse in both function and phenotype. While there

are different ways to categorize these so called hemocytes, usually either by morphology

or by lineage, hematologists generally classify three major blood cell types: erythrocytes

(red blood cells) – which primarily exist to transport oxygen; thrombocytes (platelets)

– which cause clotting in reaction to bleeding; and leukocytes (white blood cells) –

which are the cells of the immune system, and can themselves be densely partitioned

into various subtypes which fulfill different functions within the body’s natural defense

system. Interestingly, while these different cell types vary drastically in morphology and

function, they share a close familial relationship as products of the same cell production

factory. Specifically, all mature blood cells – irrespective of their type – originated

through successive cell divisions from the same small population of blood specific stem
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2. Hematopoiesis: the factory for blood

cells in the bone marrow, not unlike how during the earliest stages of human development

embryonic cells are tasked with developing the complex and diverse landscape of cells

found throughout the body. The process by which all such hematopoietic cells are

cultivated and primed for a particular type is referred to as hematopoiesis. The need

for such a cell production factory is evident, as most mature blood cells are highly

transient, with many leukocytes living for as little as a few hours up to a handful of

days, and erythrocytes remaining for only 100-120 days in circulation before undergoing

programmed cell death. The generality of the hematopoietic system and how it spans

such a vast landscape of cell types is quite remarkable, and perhaps alludes to the mark

of an evolutionarily crafted system.

2.1. A brief history of hematopoiesis

As with many fields of research, our picture of hematopoiesis has changed throughout

the history of its study, though the bones of our understanding were introduced over

a century ago. While the idea of hematopoiesis as a hierarchical system can be traced

back to turn of the 20th Century, the earliest concepts of a differentiation process by

which cells change from an unspecific template state to a highly specified functional

state first emerged in the field of embryogenesis in the 1860s. It was the eminent Ger-

man biologist Ernst Haeckel who introduced the term stem cell, though in a slightly

different context, referring to a primordial unicellular organism at the root of an in-

tricately branching evolutionary tree – the Stammbaum – wherein all multicellular life

would trace their ancestry [41]. Only later did he use the term to denote an individual’s

first embryonic cell which would catalyze an ontogeny (the transformative development

from embryo to adult) that recapitulated the species’ evolution, the theory known as

Haeckel’s biogenetic-law. While not quite carrying the meaning of the word today, its

captivating imagery proved appealing, leading to the term’s adoption by others in the

field. It was the germ-plasm theory of August Weismann [89] which sparked a revolution

in envisioning a differentiation process during ontogeny. In it, Weismann hypothesized

that early embryogenesis was characterized by germ cells – carefully protected cells which

22



2.1. A brief history of hematopoiesis

passed genetic information on to later offspring – and somatic cells – which make up the

rest of the body. In this theory the former could change into the latter, but not vice

versa, with such a conversion occurring during cell-division. This not only materialized

the notion that hereditary information cannot (easily) be passed on by experience, ef-

fectively banishing ideas related to Lamarckian inheritance, as the germline cells would

pass on genetic information uninfluenced by the somatic cells; it also seeded the more

familiar concept of an omnipotent undifferentiated cell type which can provide differ-

entiated offspring. Though Weismann himself never used the term stem cell the name

was soon applied by others, and it was in the wake of this theory that the idea be-

came popularized in the field of hematology at the turn of the century. The major

cell components of the blood had already been identified, and the hypothesis that these

could share a common ancestor was appealing – especially since it had already been

deduced that they originated in the same tissues – however a debate endured between

the so-called ‘unitarians’ and ‘dualists’, on whether there could be a single ancestor cell

type for al hemocytes, or different stem cells for the lymphocyte and leukocyte lineages

[89]. A prominent figure in the field was Arthur Pappenheim, a strong adherent of

the unitarian hypothesis, conceptualized the stem cell as an embryonic multipotent cell,

meaning it had the potential to differentiate into a variety of different specialized cell

types. Working initially on blood formation in amphibians, Pappenheim became known

for his adept use of cell trees – illustrations of the various (often hypothetical) stages

of differentiation of a cell (Figure 2.1) – the widespread use of which marked a growing

interest in uncovering hematopoietic lineages. This theoretical curiosity was somewhat

relieved by the development of simple tissue culturing methods in the early 20th cen-

tury, which could show the existence of cell differentiation in tissue growth. However,

indisputable proof for the stem cell concept remained lacking, and it wasn’t until after

the second world war that another breakthrough occurred. In the post-war 1950’s great

efforts were being made in search of treatments for radiation sickness, which was found

to significantly impact the lymph nodes and bone marrow. A promising avenue of inves-

tigation came in the form of transfusion and transplantation experiments performed on
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2. Hematopoiesis: the factory for blood

mice, where it was shown that expected lethal irradiation doses could be mitigated by

grafting hematopoietic tissue from healthy specimens [46]. Such insight led James Till

and Ernst McCulloch in 1961 to the discovery that injecting an appropriate amount of

marrow cells from a normal donor into an irradiated host could trigger the formation of

small proliferative cell colonies in the spleen [131]. They later identified these as fully

clonal outgrowths comprising many histologically recognizable differentiated cell types,

each originating from a single injected cell [11]. Originally dubbed colony-forming units,

these cells were found to have the capabilities of long-term self-renewal as well as multi-

potent differentiation – the two properties generally constituting the definition of a stem

cell at the time – making it clear that these were indeed the elusive stem cells which

had been hypothesized half a decade ago. Alongside their experimental findings Till

and McCulloch also provided one of the first mathematical models of cell production

in hematopoiesis [133], which consisted of a system of three differentiation compart-

ments – corresponding to stem cells, early progenitor cells, and the fully differentiated

end products – with cell migration through the compartments modeled as a birth-death

process. Despite the fact that there was no truly effective method for identifying multi-

potent cells other than testing their colony forming ability, the following years showed

impressive advances in the empirical mapping of hematopoietic lineages, combining such

culturing techniques with studies using chromosomal markers as well as some cleverly

designed genetic tracing (e.g. the observation of coexisting cell populations with differ-

ing alleles of the enzyme glucose-6-phosphate dehydrogenase) [132]. However, it was the

development of surface marker detection methods – a technique used to identify cells by

classifying the variety of proteins attached to their surface membrane – which proved

to be invaluable for mapping lineage descent, and eventually led to the isolation and

identification of single hematopoietic stem cells [124]. By the end of the 20th century,

discoveries of numerous surface markers and increasingly detailed detection methods had

given rise to a relatively modern map of hematopoiesis (Figure 2.3a), with lineage paths

and branching points in the differentiation landscape that remain in use today. And yet,

the development of transcriptome measurement technologies – providing insight into the
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expression of a cell’s genome – and their effective large-scale applications in the past

decade have conferred a new perspective on the differentiation process, questioning the

validity of the discrete progenitor model altogether, and introducing what may turn out

to be a new paradigm of hematopoietic differentiation.

2.2. Cellular differentiation

Before entering into the specifics of hematopoiesis, it is useful to take a step back and

briefly review what the process of differentiation exactly means from a modern point of

view, as it forms the cornerstone of the hematopoietic system.

2.2.1. Providing variety and specification

While it is perhaps somewhat of a cliché to say that cells are “the building blocks of life”,

it is undeniably a fitting analogy for their role in the complex multicellular organisms

that make up the biological world around us. Indeed, not only are all the plants and

animals we see in our daily lives “merely” complex machines constructed from millions or

billions or even trillions of cells acting in some form of unison, the countless microscopic

organisms found in the sea and air and even our bodies – pretty much any corner of

the earth – are either made up of or simply are cells. In fact, most definitions of life

constitute the cell as its base unit [110]. Poignant as the “building block” metaphor may

be, a cell is rather more complicated than the average Lego piece, particularly because

it is itself a machine executing most of the processes generally associated with biological

function. In the human body for example, the metabolic processes for the construction of

amino acids and proteins, the production of ATP through the Krebs cycle, the execution

of DNA replication and cell division, and countless other processes are all performed

within the cells themselves. In fact, for many of the tasks that are associated with specific

tissues or organs, it is the cells in their makeup that constitute the actual workforce. This

observation carries a significant implication: different tissues serve different purposes

and as such their constituent cells are required to perform widely varying tasks. For this
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2. Hematopoiesis: the factory for blood

Figure 2.1.: A cell tree of the hematopoietic system by Artur Pappenheim [108], with at

the center the hematopoietic stem cell. Differentiation trajectories are depicted through

the arrows connecting various (hypothetical) progenitor states, with the fully differenti-

ated cells as the endpoints of each lineage.
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2.2. Cellular differentiation

reason it is no surprise that upon observation, cells of a single organism are found to be

differentially specialized to their particular function. This specialization presents itself in

different ways, with variations found in shape and size, activity of metabolic processes,

response to chemical stimulants, and even physical capabilities such as replication or self-

driven motion. While this rich variation of cell types was originally described by visual

characteristics under a microscope, it was later found that cells of a particular function

present similar assortments of proteins externally attached to their cell membrane [9].

The classification of these has proven to be an effective method for identifying (and

classifying) cell types, and has in this context led to them commonly being referred to as

surface markers. But while the existence of different cell types within a single organism

makes sense from a functional perspective, it simultaneously raises the question of how

this variation can occur at all, given that we know the blueprint for all cells to be the

same. In other words, how do such extreme variations between cells in the same organism

arise, even though they all (with some exceptions) carry exact copies of that organism’s

DNA? The answer is surprisingly simple: different parts of the genome (the collection

of all genes described by the DNA) are “activated” for different cell types. Thus each

cell carries the instructions for all necessary functions in the body, however only certain

parts of it are accessible – referred to as the genes which are expressed – specifically those

related to the cell’s current function. From this perspective the pattern of expression of a

cell ultimately determines its type, meaning that measurements of this quantity (through

techniques collectively referred to as transcriptomics) describe another valuable method

for distinguishing cell types.

The question remains how such different expression profiles arise in the first place,

given that patterns of gene expression are generally maintained by cells after a division,

and that even complex organisms such as ourselves begin their lives as a single cell (the

zygote). To obtain the rich variation of cells throughout different tissues and organs,

a process must therefore exist which facilitates the progression (potentially facilitated

by cell divisions) from one cell type to another. This process is called differentiation,

and generally follows a one-directional hierarchical architecture (Figure 2.3a). At the

27



2. Hematopoiesis: the factory for blood

top is an undifferentiated cell – the so-called stem cell – which has the the potential to

develop into a wide variety of cell types, perhaps even all of them (as must clearly be the

case for the zygote), a characteristic described as potency. If it embarks on the path of

differentiation, it progresses through a number of intermediate cell types – often termed

progenitors – which no longer possess the complete potency of their original state, but

still maintain a number of cell fates (i.e. specialized cell types) to choose from. Cells

characterized by such a reduced potency are often referred to as being pluripotent, as

opposed to their previously totipotent (or omnipotent) stem cell state. Finally, after a

number of such branching choices have been made, the cell reaches a fully differentiated

state, which is the functionally specialized cell type discussed earlier. This state (often

referred to as the mature cell) is considered to be final in most human cells in vivo,

though there are organisms in which the differentiation process has been shown to be

reversible on a large scale, for example in plants or animals with regenerative properties

[128]. The entire process of differentiation was famously illustrated (Figure 2.2) by C. H.

Waddington [3] as a pebble rolling down a hill, whereby various grooves in the surface

could cause it to end up in different locations at the bottom corresponding to different

cell fates.

2.2.2. Transitional states and cell fate

While the differentiation process is clearly necessary during ontogenic growth (the de-

velopment of an organism from the zygote to its adult state) it occurs in many systems

of the body throughout adulthood as well, such as the colon [10], the skin [17], and

perhaps most famously: the blood. As each of these ecosystems requires its own set

of specialized cells, they present different trajectories of maturation. While mapping

these so-called cell lineages forms an important part of understanding such systems, an

equally pertinent question is what the mechanisms underlying these epigenetic changes

are.

The oldest models of differentiation pictured various distinct cellular phenotypes –

identified by their visually distinguishable characteristics – which maturing cells would
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2.2. Cellular differentiation

Figure 2.2.: C. H. Waddington’s epigenetic landscape. As a visual metaphor

for the differentiation process, Waddington depicted a cell as a pebble being pulled by

gravity down a hill. As it rolls downward, it encounters a complex topological structure

with various bumps pushing it along different trajectories, ultimately leading to distinct

locations at the foot of the hill, corresponding to distinct cell fates.

transition into and out of in discrete steps (see for example Figure 2.1); however, more

modern methods of surface marker detection and most notably genome expression mea-

surements (transcriptomics) paint a more muddled picture. If the notion of discrete

transition states were true, one might expect to observe distinct patterns of expressed

genes shared by groups of cells, corresponding to their separate states. Instead, single

cell transcriptomics have revealed high degrees of heterogeneity among cells, even those

similarly classified by surface marker methods, implying that progression along a differ-

entiation pathway may have a more continuous character [137, 100]; a concept which is

difficult to reconcile with the idea of distinct states.

While this new paradigm is currently an important topic of debate [76], it does not an-

swer the question of what occurs at branching points in a pathway, where a choice must

be made between two ultimately different cell fates. In fact, the mechanisms which un-

derlie this decision making and their emergent behavioral patterns form another subject

of ongoing research [96]. It is well-known that cell signaling plays an important role in

29



2. Hematopoiesis: the factory for blood

this process [54, 113]. Depending on the external biochemical signals they receive, cells

may initiate specific differentiation programs – sequentially performed epigenetic changes

to their expression patterns – which are driven by so-called gene regulatory networks,

the molecular processes underlying these alterations. The elucidation of such networks

related to specific differentiation paths is an important branch of investigation[80], and

the enforcement of particular cell fates through exposure to known signaling factors can

be performed in vitro [113] for various differentiation pathways. It is however still un-

clear to what extent stochasticity plays a role in the decision process [84]. While the

classical view following Waddington’s interpretation (Figure 2.2) entails a smooth and

(mostly) deterministic transition, a competing view suggests that the competition of

multiple active gene regulation networks results in a type of transition state, whereby

stochastic effects cause highly variable expression profiles [96].

2.2.3. The role of cell divisions in differentiation

Since its theoretical conception cellular differentiation has been associated with cell di-

visions [89], in the sense that (more) differentiated cells arise as daughter cells after a

division. While morphological changes and commitment to a particular cell fate have in-

deed been associated with the cell cycle [47], the continuous landscape of transcriptional

patterns discussed in the previous section complicates this picture, indicating that cells

may continuously undergo development along certain lineages [137]. Nevertheless, the

notion of differentiation accompanying divisions remains useful in describing progression

through established progenitor states [95, 35], and is furthermore important in the be-

havior of stem cells. Since stem cell populations exist in the body throughout adult life,

their own numbers must be replenished given their loss of cells to differentiation. The

first mechanism to ensure this is asymmetric division, whereby a stem cell will divide

with one of its daughter cells maintaining the stem cell phenotype while the other initi-

ates differentiation [73, 62]. Alternatively the stem cell may divide symmetrically [47],

in which case the daughter cells end up identical, both having entered differentiation or

remained stem cells, with the latter process typically referred to as self-renewal.
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2.3. Hematopoietic lineages

Hematopoiesis is perhaps the most (or certainly the longest) studied differentiation sys-

tem in the body. As a result of this longstanding interest, its differentiational landscape

– i.e. the various possible lineages along which maturing cells transition from stem cells

to fully differentiated hemocytes – has been mapped out in extensive detail. Figure

2.3a shows the classical “branching tree” picture of hematopoiesis prevalent by the early

2000’s, whereby the distinct states were categorized throughout the 80’s and 90’s by both

surface marker classifications as well as in vitro experiments probing lineage potential

[95]. The earliest branch following the stem cells occurs with the myeloid and lymphoid

lineages, the latter providing the B- and T-cells of the adaptive immune system (which

mature mostly in the lymph nodes), with the former branching further into macrophages,

granulocytes, and erythrocytes. As discussed in the previous section, novel insights into

the DNA expression profiles of cells at various points in the differentiation pathways

have painted a somewhat different paradigm, as shown in Figure 2.3b, where the dis-

crete states are replaced by a continuous shaping of the cells’ development. Finally,

experiments of the past decade have shown the traditional lineages to be less rigorous

than initially assumed, with the occurrence of various alternative trajectories through

the pictured developmental landscape [102, 76], leading to the notion of a more fluid

formalism, as depicted in Figure 2.3c.

2.4. Hematopoietic stem cells

With a clear picture of the hematopoietic differentiation landscape in mind, we may now

turn our attention to the root of this tree: the hematopoietic stem cells (HSCs). As has

already been touched upon in Sections 2.1 and 2.2, these cells play an incredibly im-

portant role in bodily functioning, both during development and throughout adulthood,

and are to this end endowed with some very unique capabilities. Having already covered

a historical perspective of the stem cell concept, let us here consider a more modern

definition.
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(a)

(b) (c)

Figure 2.3.: Visualization of the hematopoietic lineages under different

paradigms. (a) Branching tree structure obtained by the early 2000’s summarizing the

different lineages and progenitor states identified over the previous decades. Reproduced

from [95]. (b) Alternate depiction of the hematopoietic lineages under the continuous

differentiation paradigm. Reproduced from [76]. (c) Depiction of the system as a fluid

trajectory structure, as suggested by Laurenti and Göttgens [76]. Reproduced from [76].
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Stem cells are in their basest form defined by two characteristics: the ability to self-

renew – i.e. to maintain their stem cell state after a division – and their potency (Section

2.2) – i.e. the variety of differentiational fates available to them. As previously mentioned,

numerous differentiation hierarchies exist in the body which oversee the maintenance of

different tissues, each thus having an associated stem cell type whose potency encom-

passes its constituent cells. From this perspective, the stem cell is a cell with the ability

to – by itself – reconstruct the architecture of its associated tissue, such as for example

the colony forming units discovered by Till and McCulloch [131] which could successfully

reconstitute the bone marrow. This definition is somewhat complicated by an existing

heterogeneity amongst such cells, where the larger fraction fails to maintain such a colony

indefinitely [42]. Such cells are dubbed short term stem cells (ST-HSCs), as opposed to

the long term (LT-)HSCs which can sustain reconstitution for at least a lifetime, though

it appears even these do not possess infinite divisional potential [95].

Extensive study of such LT-HSCs has found them to be not only extremely rare,

but also highly passive in terms of divisions, which much of their number residing in a

quiescent state outside of the cell cycle [25]. However, as opposed to senescence – a state

in which a the cell cycle can no longer be entered – quiescence appears to be reversible in

response to normal physiological stimuli. The functional relevance of this phenomenon

remains debated; originally assumed to be a reaction to adverse circumstances such

as nutrient depletion [25], it has alternatively been proposed that quiescent cells aid

in increasing the longevity of stem cell niches by serving as replacements for damaged

active HSCs [81], however this question has ultimately remained unanswered.

2.5. Differentiational tissues accumulate mutations

It was previously mentioned that hematopoietic cells – while potentially differing in their

expression – still share identical copies of the underlying genome, however, this is not

entirely true. The mechanisms by which the DNA is copied and distributed before and

during mitosis (cell division) are imperfect, and occasionally errors will occur resulting

in slight alterations of the genome of a daughter cell. While such mutations are rare –
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typically estimated on the order of 10−8 to 10−10 times per single basepair [74, 144, 87,

20] – given that there are 6× 109 basepairs one would expect there to be on average at

least one up to a handful of mutations to occur per cell division. This is furthermore

enhanced by the fact that external effects such as radiation and even oxidation [5] can

cause DNA damage as well. While mutations – sometimes also referred to as variants,

as they constitute a variant allele for the gene in which they reside – in the germline

are famously the drivers of evolution, in somatic tissue (cells which are not part of the

germline) the notion of a selective advantage in a cell compared to its peers does not

carry the same implication, and it is instead associated with undesirable consequences

such as cancer [53]. Still, it appears that most mutations are neutral – as is similarly the

case on the scale of the organism – meaning that they will not affect the functionality of

a cell in a significant way. In fact, detrimental mutations are likely to result in a cell’s

premature expiration if they inhibit a cell’s normal functioning, while neutral mutations

will persist and be passed on to future offspring. The result is that cells in the body

accumulate mutations over time [74], though the rate at which this mutational burden

(the total number of mutations in a cell or cell population) grows generally varies for

different tissues [93, 92].

As mutations are acquired by cells, their persistence in the population becomes a

highly stochastic process, given that their extinction or perseverance is entirely depen-

dent on the offspring of their carriers. This can result in interesting patchworks of muta-

tions, which may present unique properties in hierarchical systems such as hematopoiesis.

In the past decade, thanks to advanced sequencing techniques it has become possible for

such mutational landscapes to be observed [93, 92, 77], which presents an opportunity

for new forms of statistical and mathematical analyses.

2.6. Open questions and perspectives

Although current knowledge of the hematopoietic system is extensive, there are clearly

numerous open questions which remain debated or even unaddressed. We have already

touched upon the the current ambiguity surrounding the nature of differentiational states
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2.2.2: which model of cell development and lineage commitment best describes the

differentiation process will likely become more clear in the coming decade. Similarly,

the functional characteristics of HSCs continue to be mapped, and it remains to be seen

whether the current model of their behavior persists.

Importantly, while our qualitative understanding of the hematopoietic process – i.e.

mappings of the various lineages and the mechanistic underpinnings of their existence

– has made great strides in the past decades, a quantitative picture of the cell dynam-

ics lags behind, perhaps in part due to the extreme difficulty of observations in vivo.

Indeed, a decade ago most direct methods of investigation required experimentation in

vitro or invasive procedures in vivo, with no real observations of HSC or progenitor

behavior under normal hematopoiesis. Furthermore, even equipped with basic presump-

tions concerning the dynamics of marrow cells in vivo, there was little clear consensus on

numerical values (or even orders of magnitude) for even the simplest quantities involved

in this picture; such as the total number of active and dormant HSCs, their symmetric

and asymmetric division rates during both normal and perturbed hematopoiesis, and

even their relative contributions to the overall production of mature hemocytes. For-

tunately more recent developments have begun to address these questions. An ongoing

boom in experimental advancements has provided exciting opportunities for obtaining

data closer to the quantities of interest, with two methods in particular showing promise

in paving the way for obtaining quantitative data of unperturbed hematopoiesis in vivo.

The first is unsurprisingly the advancement in high coverage deep genome sequencing

techniques [117], which can be used to quantify the number and distribution of somatic

mutations with a group of cells; the second is the development of heritable genetic mark-

ers which can be used to trace clonal descent, thus depicting the in vivo dynamics of

maturing blood cells [129, 23]. While such methods provide a wealth of novel data, the

interpretation of their results is not trivial, and calls for the application of expressly

devised statistical methods and mathematical models.
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3. Mathematical tools

They’re drills that shoot lasers. They’re totally

believable and cool.

— Stan Marsh/Toolshed, South Park

The incredible complexity of the systems we wish to study will require the use of

abstractions of various underlying processes. For example, instead of directly modeling

mechanistic processes such as the cells’ differentiation cycle or their complex interac-

tions with hormones and growth factors, we take them as statistical black boxes that

output probabilistic quantities. In this chapter we therefore first introduce the stochastic

concepts and models which are applied throughout this part.

3.1. Stochastic processes

A modern treatment of probability theory involves the careful introduction of a proba-

bility space equipped with a σ-algebra and an accompanying probability measure. This

level of rigor is in truth not required for the concepts developed here, and may ultimately

distract from the applied nature of this thesis. We will therefore take a less specialized

approach, generally assuming that the random variables and functions we introduce can

be more rigorously defined if so desired. In this manner the prerequisite knowledge for

this chapter is kept at a minimum, though it is assumed the reader has a basic under-

standing of the concepts of set theory, random variables, and the rules of probability.

For a more expansive treatment of the processes discusses here the interested reader is

referred to the classic book by Feller [44], whereas for more rigorous derivations most

modern introductory texts suffice, such as for example [45].
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3.1.1. The Bernoulli process

The simplest stochastic process to which we will appeal in this thesis – and from which

all the following processes can be conveniently derived – is the Bernoulli process. It is

in essence the mathematical formulation of successively performed coin tosses, with the

added bonus that the coin is allowed to be unfair – i.e. preferring either heads or tail

– as long as the unfairness is consistent with each toss. Stating this in formal terms,

the Bernoulli process describes the independent repetition of an experiment which has

exactly two outcomes, each with the same fixed probability of occurring at each repetition.

Denoting the possible outcomes of a single experiment (typically called a Bernoulli trial)

as success (S) and failure (F ), the result can be visualized as a sequence of length n

(the number of trials performed) with each element in the sequence being one of the

two possible outcomes, as shown in Figure 3.1. Given that the Bernoulli trial has only

two possible outcomes, its probability distribution can be written concisely as P{S} = p

and P{F} = 1 − p, with p thus being the probability of a success. Perhaps the most

interesting quantity related to this process is the probability of k successes occurring

after n repetitions. In order to obtain this, one can take all possible sequences of n trials

in which there are k successes, and sum over their respective probabilities. Since each

“correct” sequence has the same probability pk(1 − p)n−k, the resulting distribution is

given by

P
{
k times S | n trials, P{S} = p

}
≡ B(k;n, p) =

(
n

k

)
pk(1− p)n−k (3.1)

The distribution B(k;n, p) associated with the probabilities of all possible k is generally

known as the binomial distribution. Its mean and variance can be shown to be

E[k] = np (3.2)

Var[k] = np(1− p) (3.3)

Another important result of this description is the probability of obtaining k successes

or failures in a row, which we can see to be pk and (1− p)k respectively.
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Figure 3.1.: From Bernoulli to Poisson processes. A sequence of Bernoulli trials

(top) can also be applied to the occurrence of a stochastic event in discrete time (middle).

In the limit of infinitesimal time steps the Poisson process is obtained (bottom).

Timed process on a grid

While the picture of repeatedly tossing a coin is a useful way to introduce the Bernoulli

process, let us look at another application that will prove useful in the following sections.

Envision a system in which a particular event can occur at any point in time, lets say

for example a coffee being prepared in the office. We might be interested in constructing

a model for the likelihood of coffee’s being prepared at various points in time, or the

total number of coffees prepared in a day. If we divide the time of a workday into finite

increments – for example every half an hour – and assume that the probability of a coffee

being prepared during each time increment is always the same, then this becomes an

application of the Bernoulli process. Indeed, a coffee being made in a time increment can

be interpreted as a success and an unused coffee machine as a failure (Figure 3.1), so that

the total number of coffees made is given by the above derived binomial distribution – k

being the number of coffees and n the number of time increments in a day. Unfortunately,

a problem might arise if it is possible for two coffees be made in a single increment. To

avoid this we can imagine taking this time step small enough – the time it takes to

prepare a single coffee for example – so that this possibility disappears.
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Besides the question of how many coffees are made in a day, we might also be interested

in how much time passes in between preparations – typically referred to as the waiting

time or inter-arrival times. If a coffee was just prepared in the previous time step, we can

think of this waiting time τ as given by the number k of consecutive failures occurring

in the next times, up until the first success. With ∆t the length of the time step, the

waiting time is then given by τ = k ×∆t. We can thus write for the distribution of τ :

P{τ = k∆t} = p(1− p)k (3.4)

Interestingly, we can see that this result holds true for any point in time, irrespective of

whether a coffee was just made or not. This follows from our very first assumption: that

all coin tosses occur independently with the same probabilities of success and failure. In

this context of successive steps in time such a process is referred to as having independent

increments. This leads in our case to a very important property of the system known

as memorylessness or the Markov property, which states that the system’s past history

– i.e. anything that might have occurred previously – cannot influence possible futures

any more than its current state. Or in other terms: if we know the current state of

the system, we have all possible information about its (probabilistic) future, and no

additional information about the past can improve upon this.

3.1.2. The Poisson process

While modeling the probabilistic occurrence of specific events in time as a Bernoulli pro-

cess certainly works (to an extent), it is rarely done, for the simple reason that there is

a much better model for this particular type of problem – one that manages to sidestep

the issue we encountered related to multiple events occurring in a time step: the Pois-

son process. Concretely, it describes the incidence of stochastically occurring events in

continuous time (Figure 3.1), rather than on some discrete grid, while maintaining the

property of ”independence of tosses” (we will see later more specifically what this means

in the context of continuous time).
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To arrive at the Poisson process, let us first return to our example of coffee being

prepared at random times in the office. Whereas in the previous section we modeled

the problem by considering a discrete grid of time points, we can attempt to improve

on this model by moving to a description that is continuous in time. In fact, we have

already hinted at an approach that can be taken to this end: In order to solve the issue

of potentially multiple events occurring in a single time step, we noted that reducing the

length of this increment reduces the likelihood of such an occurrence. While this may

work fine for our example of preparing a coffee – we could conveniently take the time

step as the time it takes for a single preparation – it is not such an elegant solution in

general; some applications might require an immense number of discretizations, which

would make the binomial distribution computationally difficult to solve, or even worse,

the system of interest may allow for events to occur simultaneously. On the other hand,

it turns out that taking an infinitesimally small time step – and thus an infinite number

of discretizations – results in a much simpler description.

It is worth nothing that while we will derive the distributions related to the Poisson

process by taking the limit of the discrete time picture, they can also be found through

other methods which do not require the existence of the various limits performed. In

this sense our current approach might be considered somewhat less rigorous, however it

provides – in my opinion – a clear understanding of what it means to model something

as a Poisson process, and highlights the assumptions being made when applying it to

real systems.

The probability rate

In the previous section, when dividing the time axes into discrete steps we made use of

the fact that in each time increment there is a finite probability p for an event to occur.

However, what was somewhat glossed over is the notion that this probability depends

on the size of the chosen time step. Indeed, the likelihood of a coffee being made in a

time frame of 2 minutes is of course much smaller than in a span of 2 hours. For the

moment, we will remain agnostic as to the exact form of this dependence p(∆t), and
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instead make use of our intuition that the probability decreases for smaller time steps,

which tells us that p(∆t) becomes infinitely small as ∆t goes to 0. Thus in light of our

desired move to a continuous time frame, we introduce the probability rate λ

λ = lim
∆t→0

p(∆t)

∆t
(3.5)

which is – as opposed to the time step and its associated success probability – a finite

quantity; though we will at this point simply assume this limit exists (for a more rigorous

treatment the reader is referred to for example [45]).

The exponential distribution

Recall that in the discrete picture we found the distribution of waiting times by first

considering the probability of k consecutive failures – given by [1− p(∆t)]k – which

amounts to a time tf = k ×∆t wherein not a single event occurs. We can look at what

this quantity becomes in the continuous picture by writing k = tf/∆t and taking the

limit ∆t→ 0:

P{noS in tf} = lim
∆t→0

[
1− p(∆t)

]tf/∆t (3.6)

Noting that in this limit we can rewrite the now infinitesimal probability per time step

as p(∆t) = λ∆t, (3.6) can be easily simplified by looking at the logarithm:

log P{noS in tf} = lim
∆t→0

tf
∆t

log
[
1− λ∆t

]
(3.7)

= lim
∆t→0

tf
∆t

(
−λ∆t− 1

2
(λ∆t)2 + . . .

)
(3.8)

so that we finally obtain

P{noS in tf} = e−λtf (3.9)

Since this quantity represents the probability of an event not having occurred in the

time tf , it can be interpreted as the right tail distribution of the waiting time, or in

other words, 1− P{noS in t} gives the probability of the next event having occurred in

t:

P{τ < t} = 1− e−λt = F (t) (3.10)
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This is the cumulative distribution function F (t) of the waiting time τ : as t increases

so does the likelihood of the next event having occurred. In fact, this is actually the

concrete dependence p(∆t) = F (∆t) which we could not specify earlier when defining

the probability rate in (3.5), and it is now easy to check that this limit is indeed true.

Because we are working in a continuous-time picture, there is no finite probability

associated with the waiting time having the exact value τ = t such as (3.4) for the discrete

picture. However, we can look at the waiting time’s probability density function f(t) –

which can be integrated over an interval [t0, t1] to obtain the probability P{τ ∈ [t0, t1]}

– by taking the derivative of F (t):

f(t) = λe−λt (3.11)

This is the exponential distribution, which to an extent forms the basis of countless

probabilistic models in biology. We can interpret it as the continuous-time analogue of

(3.4), where (with some abuse of notation) P{τ = t} = f(t)dt. It is clear from how we

arrived at it that the only assumptions made are those of a constant probability rate

– equivalent to the fixed probability of a success in the coin toss – and independent

increments – though now these increments are infinitesimally small.

It is fairly simple to show through integration that the mean and variance are given

by

E[τ ] =
1

λ
(3.12)

Var[τ ] =
1

λ2
(3.13)

The Poisson distribution

Now that we have a continuous analogue of the distribution of waiting times, we might

wonder if we can find a similar counterpart to the binomial distribution (3.1), which

would then assign probabilities to the number of events occurring in a chosen span of

time. It turns out there is, and we will derive it in a similar manner as we did the
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exponential distribution: by taking the limit of infinitesimal time steps.

In a discrete picture with time step ∆t, we have that B(k;n, p) provides the proba-

bility for k occurrences in a time t = n∆t. First we note that from (3.1), dividing the

probabilities of successive k’s provides a recursive method for calculating the binomial

distribution:

B(k;n, p) =
np− (k − 1)p

k(1− p)
B(k − 1;n, p) (3.14)

Thus we might investigate the limit of infinitesimal time steps and see if a pattern

emerges. Now, when taking the limit ∆t → 0 we have that simultaneously n → ∞,

however their product remains fixed: lim(n∆t) = t. Given that in the same limit

p(∆t) = λ∆t (3.5), we have np = λn∆t = λt. Thus we may write

lim
∆t→0

B(k;n, p) = lim
∆t→0

(
λt− (k − 1)λ∆t

k(1− λ∆t)
B(k − 1;n, p)

)
=
λt

k
lim

∆t→0
B(k − 1;n, p)

Finally, we note that we have already found the first probability in this sequence for

k = 0, as this is the probability of no event occurring in t, given by (3.9):

lim
∆t→0

B(0;n, p) = e−λt (3.15)

From this we can successively construct

lim
∆t→0

B(1;n, p) = λte−λt

lim
∆t→0

B(2;n, p) =
(λt)2

2
e−λt

...

Introducing the notation P (k;λ) = lim∆t→0B(k;n, p), we see by induction that

P (k;λ) =
(λt)k

k!
e−λt (3.16)

which is the famously known Poisson distribution P (k;λ), describing the probability of

k events occurring in a time t, and constituting our continuous-time analogue of the
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binomial distribution. The mean and variance can be shown to be

E[k] = λt (3.17)

Var[k] = λt (3.18)

This is an interesting result. Recall that we introduced λ as the probability rate of an

event occurring. We now find that for independent increments it can be also interpreted

as the average number of events occurring in a unit of time.

Combining Poisson processes

A useful property is that it turns out to be very easy to combine separate independent

Poisson processes into a single description. Returning to our example of coffees in the

office, we might also be interested in how often a tea is prepared. Assuming these events

occur entirely independently from the coffees – perhaps the coffee drinkers and the tea

drinkers are two separate crowds – it is straightforward to construct a process for the

occurrence of coffee or tea being prepared. In particular, given two independent Poisson

processes with events P and R and rates ϕ and ρ, the joint stochastic process for either

of their respective events occurring is again a Poisson process with rate λ = ϕ+ ρ. This

can be seen from moving to the rate: The probability of either P or R occurring in a

time step dt is Pdt{P ∪R} = Pdt{P}+Pdt{R}−Pdt{P ∩R}; using the independence of

the two processes to write Pdt{P ∩R} = Pdt{P}Pdt{R} and taking the rate of this as in

(3.5) this becomes

λ = lim
dt→0

Pdt{P}+ Pdt{R} − Pdt{P}Pdt{R}
dt

= lim
dt→0

Pdt{P}
dt

+ lim
dt→0

Pdt{R}
dt

= ϕ+ ρ

(3.19)

where the joint term Pdt{P}Pdt{R} goes to zero in the limit as it is of order dt2. It is

clear that the same notion holds for more than two processes, so that for any number

of independent Poisson processes with rates ϕi the process which describes any of their

occurrences is again a Poisson process with rate λ =
∑

i ϕi. It can furthermore be
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shown that for such a joint process with events Pi, given the occurrence of any event,

the probability of it being a specific Pj is ϕj/
∑

i ϕi. A proof for this is found Appendix

A.1.

Poisson everything?

The Poisson process is a powerful tool for modeling stochastic processes, used ubiqui-

tously in models across many domains. It’s core assumption however – namely that the

process is memoryless – can be quite limiting in practice. For example, in the office coffee

system memorylessness implies that the probability of a preparation is always constant,

even immediately after the machine has been used. But some information about human

behavior can tell us this is not entirely true: someone who has just made a coffee is –

barring a catastrophic spilling accident – not likely to make another immediately after.

In fact, some individuals may have a more regular schedule, where their desire for coffee

abates following a consumption and only returns after some amount of time. Specifically,

this means that the success probability p(t) from which we derived the rate in (3.5) de-

pends on what occurred in the past, and the process is therefore no longer memoryless.

In fact, we will encounter this exact problem later when discussing the occurrence of

cell divisions in a population. On the other hand, in the absence of specific information

related to the system’s memory it remains incredibly useful to apply the Poisson model,

in large part due to the fact that its single parameter, the rate, is typically an easily

measurable quantity in a system – i.e. the average number of occurrences in a unit

time. In this sense memorylessness or exponentially distributed waiting times forms a

nice “first guess” to construct a model, though its limitations must be kept in mind.

3.2. Markov Chains

While the Bernoulli and Poisson processes described above allowed us to derive the

powerful probability distributions which provide “perfect information” – in the sense

that they contain the probabilities for any possible outcome of a random variable – the
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system of interest may in many cases be too complex to directly obtain a function for

the probabilities of all possible outcomes. In this section we will examine a more general

method for obtaining such probabilities nonetheless, provided we have some knowledge of

how the system can change over time, and we can identify some form of memorylessness

to exploit.

3.2.1. The state space

We have already used the term “state” somewhat haphazardly throughout the previous

sections, however at this point it is useful to formalize what is exactly meant by it. When

referring to the state of a system, we are actually referring to the result of a particular

observation of that system. For example, when tossing a coin one might go to observe

which side of the coin is facing up; in this context there are only two states in which

the system could possibly be: heads or tails. On the other hand, after tossing the coin

five times, one could have also counted how many times the coin landed on heads; this

is a different question, and has a different set of states associated with it, namely the

integers from 0 to 5. Importantly, the possible states of a system can be visualized as a

discrete set of elements, whereby at any given point in time an observation of the system

would return one such element, as shown in Figure 3.2. Thus we can in general define

a state space to be the set of all possible states – i.e. all possible values of a particular

observation – of the system. Formally, we might say the states Si are elements of the

space S, with i ∈ 1, . . . , N the number of all possible states in the system. Now envision

a system with state space S, that starts in some state S0 ∈ S, and can move to different

states as times passes; though since we are working in a stochastic picture, there is no

certainty as to what state the system will be in at a future time. This notion of the

system moving probabilistically through possible states is known as a Markov chain.

Although the state of the system at a later time is uncertain, we might still construct a

probability distribution over all possible states at a given time t, though to do this we

must furthermore require that these states be disjunct – i.e. the system can only be in
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TH

Figure 3.2.: A Markov chain description for the repeated coin toss experiment. One

possible state space describes the result of the most recent toss (top): the current state

of the system can be heads (H) or tails (T), while after each toss the system transitions

(arrows) to either the other state with probability p = 0.5 or the same state with prob-

ability p = 0.5. Another state space might be the number of heads that occurred after

repeated tosses (bottom): the current state is then an integer, and with each toss either

increases by 1 or remains the same.

one state at a time – so that their probability distribution is correctly normalized:

∑
Si∈S

P{Si at t} = 1 (3.20)

3.2.2. Markov transition probabilties

If the system’s evolution in time is memoryless – i.e. the probabilities of being in future

states only depend on the current state – we can apply a powerful trick, which involves

writing the probability of the system being in a specific state at a future time t through

the probability of its transition via another state at an intermediate time t′ < t:

P{Si at t | S0 at t0} =
∑
Sj∈S

P
{
Si at t | Sj at t′

}
P
{
Sj at t′ | S0 at t0

}
(3.21)
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This is actually a (Markovian) version of an important identity in probability theory

known as the Chapman-Kolmogorov equation, where P{Si at t | Sj at t′} is the proba-

bility of the system being in state Si at time t, given that it is in state Sj at time t′.

At first glance this statement may not seem all that useful, however we will see that for

most systems we are interested in, short time transition probabilities are the quantities

we can deduce from first principles, which we will in turn use to find the state space

probability distribution at a later time. Note that it is the memoryless (or Markovian)

property which allows us to assume such a unique transition probability exists in the first

place: if this were not fulfilled the state of the system at times before t′ could influence

this probability, and thus we would not be able to know its value without knowledge of

this history.

3.2.3. Discrete time Markov chains

Let us, as before, first look at the time evolution in a discrete picture, which could be

the passing of time in finite increments ∆t, or simply the state of the system changing

due to discrete events, such as for example the tossing of a coin (Section 3.1.1). A

realization of the system can thus be seen as a sequence of states St, each existing in

S. If we can somehow figure out the transition probabilities related to a single step

pj,i;∆t = P{Si at t+ ∆t | Sj at t}, given a starting state S0 we can find the probability

of being in a particular state far away in the sequence by repeated calculation of

P{Si at t+ ∆t | S0 at t0} =
∑
j

pj,i;∆tP{Sj at t | S0 at t0} (3.22)

One might colloquially say we are evolving the probability distribution of the state

space over time, by first using P{S0 at t0} = 1 to find P{Si at t+ ∆t}, which we use

to find P{Si at t+ 2∆t}, and so forth. This will prove to be a powerful tool in finding

the dynamics of a system, since even if we cannot obtain a concrete function for the

probability distribution of states at arbitrary times – such as those we found for the

Bernoulli, exponential, and Poisson distributions – we can still compute them iteratively.
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3.2.4. Continuous time Markov chains

We are of course also interested in the continuous-time picture, where the results are

no longer influenced by the size of the chosen time step. By now we know this can be

achieved by carefully taking the limit of the time step ∆t → 0. Thus from the single

step transition probability pi,j;∆t we introduce the transition rate in the same manner

as before (Section 3.1.2):

pi,j = lim
∆t→0

P{Sj at t+ ∆t | Si at t}
∆t

Taking a simplified notation for the state probabilities Pi(t) = P{Si at t | S0 at t0} we

first rewrite (3.22) as a difference, and then take the limit:

lim
∆t→0

Pi(t+ ∆t)− Pi(t)
∆t

= lim
∆t→0

1

∆t

∑
j 6=i

pj,i;∆tPj(t)− (1− pi,i;∆t)Pi(t)

 (3.23)

Furthermore noting that we may write

1− pi,i;∆t =
∑
j 6=i

pi,j;∆t

since the probability of not transitioning to the same state Si → Si must be equal to

the sum over all probabilities of transitioning to other states Si → Sj 6= Si (this follows

from 3.20), we obtain in the limit

dPi(t)

dt
=
∑
j 6=i

[
pj,iPj(t)− pi,jPi(t)

]
(3.24)

This is known as a master equation, and provides us with a recipe for evolving the

probability distribution of the state space in continuous time.

3.2.5. Non-discrete state spaces

So far we have assumed the state space to be discrete, in other words the collection of

states forms a countable set, and we have somewhat carefully chosen our examples to

fit this assumption. But it is easy to imagine a system where this is not the case. Take

for example a Poisson process where we are interested in measuring the time that has
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elapsed after a specified number of events occurring. In this picture the system evolves

discretely – imagine a simple counter which increases by 1 every time an event occurs

– but our states are found from summing the waiting times τ , which are in R so that

the space of all possible states becomes R, which is an uncountable set. In general we

cannot define a probability distribution on such a set (there would be no way of taking

the sum in (3.20)), though for some spaces we could construct a probability density, as

discussed previously. However, generalizing the master equation from the discrete to a

continuous state space – similar to how we moved from discrete to continuous time – is

more complicated without additional knowledge of the space’s properties. We will on

the other hand see a particular example of this later, specifically in the Fokker-Planck

equation [112].

3.3. Stochastic population dynamics with Markov chains

Now that we have covered some basic mathematical tools for constructing and analysing

stochastic systems, we will briefly look at two basic models used to describe the stochastic

dynamics of populations, which rely on the probabilistic concepts we have introduced

in the previous section. Their introduction forms the basis of the modeling done in

Chapters 4, 5, and 6, and thus a careful overview of their properties and assumptions

will benefit us later. For a more in depth discussion of these models the reader is referred

to [44] (for the birth-death process) and [43] (for the Moran model).

3.3.1. The birth-death process

Envision a population of individuals with the ability to reproduce and to die, and imagine

that we are interested in characterizing how the total size of the population changes

over time. This description is general enough that it could apply to many real world

systems, one particular example which we might be interested in being a population of

cells: a cell dividing causes a new cell to be added to the population, while a cell dying

causes it to be removed. If there is some stochasticity involved – i.e. individual cells

51



3. Mathematical tools

divide and die randomly in time – the size of the population at a future time cannot be

known, though given knowledge of the exact stochastic processes involved, its probability

distribution might be obtained. Thus, constructing a model for this system amounts to

choosing a stochastic process for the occurrence of births and deaths by individuals.

The simplest choice has only two assumptions: that the probability of an event (birth or

death) occurring for a single individual is the same at any point in time, and that each

individual acts independently of the others – i.e. the probability of a single individual

reproducing or dying is not influenced by the death or reproduction of other individuals.

Mathematically, the former we know to be characterized by independent increments,

which we have seen to be the Poisson process, and the latter implies we may combine

the separate processes (see Section 3.1.2) for each individual in the manner discussed

earlier. Concretely, for every individual we have a probability rate β for it reproducing

– known as the birth rate – and a rate δ for it dying – known as the death rate – so

that in each infinitesimal time step dt = lim ∆t → 0 there is a probability βdt of it

reproducing and δdt of it dying, just as we showed in Section 3.1.2. Now consider the

entire population; because separate individuals act independently we may take all of

their reproductions into a single Poisson process, and do the same for all of their deaths.

Then the probabilities of any birth or death occurring in the population in dt are given

by nβdt and nδdt (with n the size of the population at that time). Since there can still

only be at most a single event occurring in the infinitesimal time step (see Appendix

A.1), we can construct a Markov chain to describe the process, as shown in Figure

3.3. With the natural numbers N as the state space, in any infinitesimal time step the

population must do one of three things: increase by 1 if a birth occurs, decrease by one

if a death occurs, or remain the same if neither happens. Thus we have the transition

rates:



pn,n−1 = lim
dt→0

dP{n− 1 at t+ dt | n at t}
dt

= nδ

pn,n = lim
dt→0

dP{n at t+ dt | n at t}
dt

= 1− n(β + δ)

pn,n+1 = lim
dt→0

dP{n+ 1 at t+ dt | n at t}
dt

= nβ

(3.25)
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. . .  . . .  

Figure 3.3.: Markov chain visualization of the birth-death process.

with all other pj,i = 0. With these we can construct the master equation (3.24) for the

probabilities Pn(t) of the population having size n ∈ N:

dPn(t)

dt
= (n− 1)βPn−1(t)− n(β + δ)Pn(t) + (n+ 1)δPn+1(t) (3.26)

Solving this differential equation analytically is clearly not easily done for all states

n ∈ N, though a numeric approach is certainly possible. Furthermore, we can use this

expression to find the time evolution of the expected value of n

N(t) = 〈n(t)〉 =

∞∑
n=1

nPn(t) (3.27)

by noting that multiplying (3.26) by n and summing over n = 1, 2, . . . ,∞ we obtain

dN(t)

dt
= (β − δ)N(t) (3.28)

Thus for some known initial size n0 the expected size after a time t is given by

N(t) = n0e
(β−δ)t (3.29)

which is the exponential growth we would expect if we had ignored stochasticity in the

first place.

3.3.2. The Moran process

In many applications of population modeling we are interested in characterizing the

variation of a population’s size with respect to that of another population with which

it is competing. For example two types of predatorial animals hunting the same prey,

53



3. Mathematical tools

or two variant alleles of the same gene existing within a single group of individuals (as

we will see in Chapters 4 and 5). While such problems might be most famous from

a Darwinist perspective where selective advantages drive the dynamics, stochasticity

remains a compelling force if selection is minimal. The Moran model was one of the

first models proposed to study competition in the absence of selection. In its original

form it describes the following: Given two populations A and B with respective sizes

of nA and nB individuals, in each time step a random individual is chosen from the

combined population A ∪ B to reproduce and another is chosen to die. In this manner

the size of the total population NA∪B = nA+nB remains constant in time, while nA and

nB will vary stochastically. The model is similar to the birth-death model in that the

individuals are granted only the two abilities of reproduction and death, however instead

of characterizing the rates at which these occur in time the Moran model can be seen as

a discrete Markov chain, with time measured in the number of simultaneously occurring

birth and death events. Because the total size of the population is constant we need

only know nA to know the state of the system, since nB = NA∪B − nA, so that we may

construct a state space for NA ∈ S of the form S = 0, 1, 2, . . . , NA∪B. To evolve the

probability distribution Pn[i] of these states we can find the transition probabilities for

the single time step, noting that again only a select few possible transitions can occur:

(i) The reproducing individual is not in A, the dying individual is in A

• state transition n→ n− 1

• occurs with probability N−n
N

n
N

(ii) The reproducing individual is in A, the dying individual is not in A

• state transition n→ n+ 1

• occurs with probability n
N
N−n
N

(iii) Reproducing and dying individuals are both in or not in A

• state transition n→ n

• occurs with probability n
N

n
N + N−n

N
N−n
N
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3.4. summary

which leads to the transition probabilities:

pn,n−1 =
N − n
N

n

N
= pn

pn,n+1 =
n

N

N − n
N

= pn

pn,n =
( n
N

)2
+

(
N − n
N

)2

= 1− 2pn

(3.30)

with again all other transitions pi,j = 0. It is worth noting the existence of two absorbing

states – meaning if the system enters this state it can no longer leave – at n = 0 and

n = N , which correspond to either of the subpopulations going extinct.

3.4. summary

In this chapter we have introduced and discussed a number of stochastic processes which

we will lean upon to construct models in the upcoming chapters. We have seen how

many complicated processes involving a random outcome can be derived from the sim-

ple Bernoulli experiment (Section 3.1.1), which amounts to the tossing of a coin. By

interpreting a succession of such trials as a timed process on a grid, and then taking

the number of trials to infinity, we obtained the Poisson process (Section 3.1.2), which

describes the likelihood of occurrences of a stochastic event in continuous time. While

the Poisson process provides powerful tools for modeling random variables, it was dis-

cussed how the implicit assumption of memorylessness can be a limiting factor in its

applicability, and must be taken into consideration when constructing or interpreting

more complex models.

In Section 3.3.1 we introduced the birth-death process, which is a simple model for

the stochastic growth of a population, constructed by taking the births and deaths of

its members to occur as separate Poisson processes. Finally, in Section 3.3.2 we briefly

discussed an alternative approach to population dynamics – the Moran model – which

characterizes a competition between two stochastically varying populations, with the

additional requirement that the sum of their sizes remains constant.
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3. Mathematical tools

These two models of population dynamics will prove especially useful in the following

Chapters, where we will investigate their application to the dynamics of hematopoietic

stem cells.
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4. Hematopoietic stem cells: a neutral

stochastic population

I’m suspicious of people who are certain.

— Josiah Bancroft, Senlin Ascends

Stem cells form the basis of hematopoiesis. Indeed, our entire picture of hemocyte

production hinges on the notion that the 1011 new cells required daily by the blood

originated not so many divisions ago in a multipotent stem cell. Thus any model of

hematopoiesis, be it qualitative or quantitative, must contain at least some basic princi-

ples describing HSC behavior. In fact, given the evidently vital role the stem cells play in

facilitating a recovery from life-threatening disruptions, as well as the numerous blood

disorders that have been linked to complications in their operation, one might argue

that a detailed model of HSC functioning is essential to understanding the hematopoi-

etic process. On the other hand, it is not surprising that observing these properties

has proven particularly difficult. While in vitro experimentation has uncovered many

of the capabilities of HSCs, their behavior in vivo remains to a large degree hidden.

Nevertheless, with computational and mathematical models acting as a bridge between

in vitro characterization and in vivo behavior, certain basic depictions of the system

can be obtained and tested. In fact, one of the first mathematical models describing in

vivo HSC dynamics was by Till and McCulloch themselves [133] – only a few years after

their discovery of HSCs in mice – in which they apply a birth-death process (Section

3.3.1) to characterize the growth of the clonal spleen colonies described in their previous

work. Since then, such models have played an important role in interpreting experimen-

tal findings and extrapolating from novel discoveries [12, 114, 37, 30, 91, 90, 125]. In this
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4. Hematopoietic stem cells: a neutral stochastic population

Figure 4.1.: Rarity of HSCs in mice. Reproduced from Till and McCulloch 1961.

Given that each colony is founded by a single HSC, one can estimate 1 in 104 mouse

marrow cells to be a hematopoietic stem cell.

chapter we will go over what biological characteristics might be relevant for modeling

the dynamics of an HSC population, attempt to formulate what mathematical principles

underlie their quantitative description, and establish what simplifying assumptions must

be made in the process. In particular, our focus will lie on characterizing the stochastic-

ity of the dynamics; on the one hand because the influence of the inherent randomness

in the HSC population appears to be non-negligible in certain circumstances, and on

the other because the predicted stochastic fluctuations can be a powerful tool in verify-

ing a model’s premise and assumptions. A deliberate and conscious introduction of the

mathematical formulations of our biological concepts will prove useful in order to avoid

the pitfalls of applying popular stochastic models naively without careful consideration

of their underlying assumptions.
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4.1. The importance of stochasticity

4.1. The importance of stochasticity

From the seminal paper in which Till and McCulloch demonstrated for the first time ex-

perimentally the existence of hematopoietic stem cells in adult mice [131] it was already

apparent that these cells were rare, even within the confined niches of the bone marrow

(Figure 4.1). This fact only solidified as HSC identification methods in humans became

increasingly available. Even today, where our more detailed picture of “stemness” hints

at subtler ambiguities concerning what constitutes a stem cell (see Section 2.4) [137, 101,

102], it remains undisputed that the total number of active (i.e. non-dormant) HSCs

in an individual at a given point in time is relatively small, though the exact order of

magnitude remains a topic of some debate [32, 78, 16, 76]. This carries an important

implication for the clonal dynamics within an HSC pool: If some degree of randomness

exists within the population dynamics – which data certainly seems to suggest [122, 133,

97, 137] – many emergent quantities will be more susceptible to stochastic fluctuations

the smaller that population is. Indeed, in Chapter 5 we will see how from a simple model

of stochastic divisional dynamics it can be shown that mutants arising in a small stem

cell pool will have a realistic chance of expanding. Assessing the impact of these muta-

tions can be important, since while their majority ends up being harmless – occurring

in regions of little import or having no bearing on the particular function of the cell – it

is no secret that occasionally a more malignant defect slips through the cracks. Cancers

are of course the best known example of somatically acquired diseases, and though a

large selective advantage is generally associated with a fully malignant cell population,

a handful of driver mutations are typically required to achieve this state [138], whereas

the earliest stages of oncogenesis can be subject to larger degrees of stochasticity [53,

146] (more [REF]s?). But there are other diseases originating from somatic mutations as

well – such as paroxysmal nocturnal hemoglobinuria, studied in detail in Chapter 5 – in

which stochasticity of the clonal dynamics plays an important role. Thus obtaining even

a basic quantitative picture of mutational acquisition and the probabilities associated

with clonal expansion in the HSC pool can be useful for improving our understanding of

hematopoietic disorders. Moreover, acquiring a somewhat general picture of the stochas-
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4. Hematopoietic stem cells: a neutral stochastic population

ticity involved in HSC dynamics will also prove incredibly useful for interpreting data

coming from more recent in vivo experimental observations – as will be seen in Chapter

6 – allowing for more rigorous tests of our model assumptions and more direct methods

of estimating the parameter values involved.

4.2. Assumptions for stochastic HSC dynamics

Consider an adult population of hematopoietic stem cells, slow in its activity, yet consis-

tently providing a steady stream of multipotent progenitors embarking along the various

paths of differentiation, as well as replenishing its own numbers through symmetric di-

visions. Although all of the HSCs in the population must trace their divisional ancestry

back to a single zygote, each division in a cell’s past has had the potential to add somatic

mutations to its genome. In fact, the occurrence of such mutations (or variants) happens

surprisingly quickly, with recent estimates suggesting on average 1.14 novel mutations

are acquired per genome per cell division (without triggering apoptosis or other cellular

self-repair mechanisms) in HSCs [145], leading to a rich diversity of somatic mutations

within the population. A new mutation arising from a division is initially unique, how-

ever if the cell by which it is carried divides this mutation is passed on to both daughter

cells, at which point it exists twice in the population. This notion establishes the idea

of a single variant forming a clone – the term referring to a set of cells which share a

particular mutation in the population. This clone, essentially tagged by the mutation

which sets it apart from its ancestors, increases in size whenever one of its constituent

cells divides symmetrically within the HSC pool, or decreases if it instead differentiates.

Thus, given the assumption of stochasticity in its divisions, the expectation is for a clone

to fluctuate randomly in size like a stock market price; sometimes oscillating around a

long term average, other times drifting upwards or downwards for a time. The impor-

tance of such random drift cannot be underestimated, as it constitutes a mechanism for

a somatic variant to expand – no matter how unlikely – within a cell population. Con-

versely, while oscillations around a value may not drastically influence the outcome of

the hematopoietic process as a whole, the character of such fluctuations will (in theory)
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4.2. Assumptions for stochastic HSC dynamics

conform to some predictable probability distributions, which in turn are determined by

the underlying principles driving the dynamics. If experimental observation permits,

such fluctuations can be measurable, thus providing a powerful method for testing the

presumed behavior.

A useful model might tell us something about either of these things – the probability

of events occurring, or the character of the fluctuations resulting from this randomness.

The important characteristic highlighted here is that the fundamental quantity of inter-

est is the number of cells in a clone over time. In this sense any model of HSC dynamics

must in essence convey the mechanisms by which a genetic clone changes in size. We have

already mentioned symmetric division and differentiation as drivers of such change, how-

ever, given what we know of HSCs and cell biology in general, there are other processes

which can achieve the same result. Apoptosis or other forms of cell death can remove a

cell from a population, while senescence could render a cell to be considered equivalently

irrelevant for certain purposes [51]. The creation of new genetic clones occurs by mu-

tations [87], which can only happen during cell divisions, unless extreme cases such as

radiation are taken into account. Finally, it has been shown that differentiation from the

stem cell state can in some cases occur without a cell division [52]. In order to construct

a model, we must therefore decide which processes are most relevant to account for, and

which may be ignored given current biological knowledge or in light of the proposed goal.

We will first adopt two simplifying assumptions which facilitate the construction of

the models used in the following chapters:

• We take the supposition that differentiation away from the stem cell state occurs

alongside a division, even though, as mentioned above, evidence does exist for

differentiation programs which precede division.

• We ignore the effects of cell death and senescence.

While both assumptions may appear quite limiting, they can always be lifted if neces-

sary, their respective influence on the conclusions drawn here by themselves providing

questions of interest for future work. In this simplified picture the cell divisions act as

61



4. Hematopoietic stem cells: a neutral stochastic population

the drivers of change, causing both the arrival of new clones as well as their variability

in size over time. We can now characterize the different ways in which these events alter

the current state of the system. As shown in Figure 4.2, a cell can undergo one of three

types of divisions: the cell can divide symmetrically, where the two daughter cells both

either (i) remain stem cells or (ii) differentiate; or the cell can divide asymmetrically, in

which case (iii) one of the daughter cells maintains the stem cell type while the other

is differentiated. Each of these divisions alters the state of the system in a different

manner:

(i) Symmetric self renewal

• The size of the total population increases by 1.

• The sizes of any clones (i.e. mutations) to which the dividing cell belongs

increase by 1.

• Both daughter cells can acquire new mutations according to some mutation

probability.

(ii) Symmetric differentiation

• The size of the total population decreases by 1.

• The sizes of any clones to which the dividing cell belongs decrease by 1.

(iii) Asymmetric division

• The size of the total populations is unchanged.

• The sizes of any subclones to which the dividing cell belongs are unchanged.

• The daughter cell which remains in the population can acquire new mutations

according to some mutation probability.

Given these possible changes to the system, two things remain to be determined in order

to simulate a population’s history: the rate at which each of these divisions occurs and

the rate at which mutations accumulate during each division.
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4.2. Assumptions for stochastic HSC dynamics

symmetric asymmetric

self-renewal di�erentiation

death

HSC

HSC HSC HPC HPC HPCHSC

HSC HSC HSC

Figure 4.2.: Possible events a single hematopoietic stem cell may undergo. After a

symmetric self-renewal (i) both daughter cells are again stem cells (HSC), while a sym-

metric differentiation (ii) results in both daughter cells becoming progenitors (HPC),

meaning that they are effectively removed from the population. An asymmetric division

(iii) results in one HSC and one HPC. Finally an HSC may also undergo apoptosis or

senescence, however these are not taken into account in the current model.
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4. Hematopoietic stem cells: a neutral stochastic population

4.2.1. Mutation rate

While multiple types of mutations can occur during the copying of a DNA strand,

any variation will be passed on to progeny in future divisions and can thus serve as

the first ancestor to a new clone. To develop a model for mutations acquisition we

envision a cell division as a procedure where each of the n = 3× 109 nucleotides in the

human genome must be copied, and each has the same probability of an error occurring.

Thus each base pair in the daughter cell is a coin flip with a very high probability of

success, but nonetheless a finite chance of failure. This is none other than the Bernouilli

process described in Section 3.1.1, with the probability for m failures in the n trials

given by the binomial distribution. Since the number of trials n is incredibly high, we

can substitute it by the more computationally friendly Poisson distribution to which the

binomial converges. As shown in Section 3.1.2 it is characterized by a single parameter

µ, which is also the distribution’s expected value. In other words, given the average

number of mutations occurring after a single cell division, we immediately obtain the

underlying probability distribution for the more general stochastic process.

4.2.2. Division rate

It is tempting to model the occurrence of divisions as a Poisson process as well, and this

is ultimately what we will do. However, it is worth considering what reasons exist for re-

jecting this model, in part because it is important to be aware of how our models deviate

from the reality, but also because the Poisson rate is so ubiquitous in biological models

that one risks applying it without a conscious realization of its underlying assumptions.

The Poisson process assumes the time between events is exponentially distributed (see

Chapter 3). This implies that an event is equally like to occur at any point in time, in-

dependently of the system’s past history (the Markovian assumption). Thus in a cell

population model, a cell’s probability of dividing immediately after a division is the same

as it would be at any later point in time. But this is untrue in most realistic scenarios.

Most cells typically move through the cell cycle according to some biological clock, and

while the time of each cycle may be subject to stochastic noise, it is by no means uni-
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4.3. Modeling the stochastic dynamics of a mutant clone

formly distributed [140, 18]. So applying this assumption of time independent division

probabilities actually results in overestimating the randomness of the real system. Fur-

thermore, allocating Poisson distributed divisions to each cell individually implies that

all cells divide independently from each other, another strong supposition which may

not always be the case. In spite of all this the Poisson model can still be surprisingly

applicable, even in situations where this independence appears to be violated. While an

in depth mathematical treatment of this topic falls out of the scope of this thesis, we

can already form an intuitive picture of when time-independence can be approximately

assumed. The heart of the argument is this: while time independence breaks down if

the system has memory of its past, if this memory is finite – i.e. only a certain amount

of time is remembered – a process which occurs on a much larger timescale will not be

affected by it. Or in more mathematical terms: if any correlations of a system’s state

with its past are short livid, events which occur sporadically on a larger timescale are

approximately independent in time. In the case of hematopoietic stem cells we can iden-

tify such a decoupling of timescales: While (long term) HSCs indeed undergo divisions

according to a cell cycle, they spend most of their time in the non-proliferative quiescent

state (see Section 2.4), only entering the cell cycle sporadically. The rate at which HSCs

do end up dividing has been estimated on periods of once per few weeks up to as slow

as once per year [76], implying that time-independence may indeed be an acceptable

approximation. As for independence between different cells, this is an assumption we

must take in absence of evidence to the contrary.

4.3. Modeling the stochastic dynamics of a mutant clone

4.3.1. A birth-death model (is not sufficient)

Let us now return to our population of stem cells. Ignoring for the moment the ac-

cumulation of new mutations, the only events which change the system are symmetric

self-renewal – which increases the total population and any clones to which the cell

may belong by 1 – and symmetric differentiation – which decreases these by 1. If we
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4. Hematopoietic stem cells: a neutral stochastic population

assume these divisions all occur independently, then the times between them are expo-

nentially distributed (i.e. Poisson distributed events). This is simply the birth-death

process discussed in Section 3.3.1, where “births” are caused by self-renewal and “deaths”

by differentiation, both occurring at distinct Poisson rates β and δ. Considering that

throughout adulthood the size of the stem cell pool N remains (mostly) constant, we

could set β = δ, which means that on average we would expect there to be an equal

number of self-renewals as there are differentiations. If we then consider different com-

peting subpopulations, each would randomly evolve according to a different trajectory,

with observable competitive dynamics as a result. However, there is a subtle issue with

this approach. Specifically, that fixing the expected value of the size of the population

E(N) does not actually fix the size of the population. Thus, in a system which follows

these dynamics it is perfectly plausible for the total population to change in size (even

though the average for many such systems is fixed), and more importantly there is no

force acting to push the system back to the expected value if it does vary. This does

not fit with what we know of the hematopoietic stem cell pool. While fluctuations on

cell numbers are occasionally observed in hemocyte populations [107], there is clearly

an equilibrium number which is actively maintained, and while the HSC population is

more difficult to observe in this respect, both mathematical arguments [32] as well as

modern estimates of this number suggest this holds true (for the most part) at the stem

level [78, 51]. We will solve this problem in the following manner. Recall that we may

recast the independently occurring Poisson processes as a single combined Poisson pro-

cess equipped with a probability p that determines which of the two occurs during each

combined event (Section 3.1.2). In the birth-death model – with p the probability of a

division resulting in differentiation – our best effort is to set p = 0.5, however this is

clearly not enough to ensure an attracting equilibrium. A generalized method for intro-

ducing this is therefore to loosen the requirement of fixed self-renewal and differentiation

rates, and allow p to depend on the current state of the system. The existence of a stable

equilibrium around N = E(N) then implies p = 0.5 (or β = δ) only if this equilibrium

is reached, while if N > E(N) the next division is more likely to be a differentiation
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4.3. Modeling the stochastic dynamics of a mutant clone

(p > 0.5), and if N < E(N) a self-renewal (p < 0.5). The variation of p and its rela-

tionship with the system’s deviation from equilibrium presents a new question in itself.

Identifying a relationship p(N) could involve either constructing a quantifiable model of

the underlying processes which causes the mean-reverting behavior of N , or performing

statistical analyses of time-resolved data to quantify HSC pool size fluctuations in single

individuals. While both approaches would constitute a valuable study by themselves,

they are somewhat out of the scope of the current research, especially since the simplest

case scenario happens to coincide with one of the most famously studied models in the

field of mathematical population dynamics: Taking p = 1 (certain differentiation) if

N < E(N) and p = 0 (certain self-renewal) if N > E(N), each differentiation is always

followed by a self-renewal, and vice versa – this is (nearly) exactly the Moran process

discussed in Section 3.3.2 (although in the Moran dynamics the birth and death events

are assumed to occur simultaneously).

4.3.2. A Moran model

Considering the above described assumptions naturally lead to the Moran model, we be-

gin our treatment with this approach. Indeed, assuming differentiation and self-renewal

events always come in pairs, there is mathematically no difference in taking them to-

gether in a single event. Furthermore, since the occurrence of division events are the

only way for the system to change state, it is reasonable to consider measuring the time

in number of divisions first and worry about moving to the real time picture later.

We first consider the stochastic dynamics of a single subclone K of size k within the

total population of size NHSC . After each Moran event (one self-renewal and one dif-

ferentiation) the size of the total population remains unchanged, however the size of the

subclone depends on the membership of the cells which divided. From 3.3.2 we know it

may have moved to the states k − 1 or k + 1, or remained in state k according to the
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transition probabilities:

pk,k−1 =
k

NHSC

(
1− k

NHSC

)
= pk

pk,k+1 =
k

NHSC

(
1− k

NHSC

)
= pk

pk,k = 1− (pk,k−1 + pk,k+1) = 1− 2pk

(4.1)

From these a master equation can be constructed denoting how the probability Pk of

each state changes with a division:

Pk[T + 1] = pk−1,kPk−1[T ] + pk,kPk[T ] + pk+1,kPk+1[T ] (4.2)

which for the transition probabilities given in 4.1 results in

Pk[T + 1]− Pk[T ] = pk−1Pk−1[T ]− 2pkPk[T ] + pk+1Pk+1[T ] (4.3)

4.3.3. Moving to real time

While measuring time in the number of division events that have occurred is useful for

stating the dynamics in terms of the transition probabilities, we are still interested in

obtaining a model which evolves in real time. Fortunately our careful introduction of

division events occurring as a Poisson process in Section 4.2.2 allows us to easily extend

the Moran model to a time based picture. Indeed, the independence of time increments

means the Markovian property holds for an infinitesimal time step dt, for which we may

also write state transition probabilities. With a Poisson rate of Moran events ρ per single

cell, and the assumption that all cells divide independently, we may take the total rate

of events in the population as Nρ (see Section 3.1.2). Thus we obtain the infinitesimal

time transition probabilities:
P{k + 1, t+ dt | k, t} = Nρpkdt

P{k − 1, t+ dt | k, t} = Nρpkdt
(4.4)

This allows us to write the master equation as a variation of the states in real time:

1

Nρ

dPk(t)

dt
= pk−1Pk−1(t)− 2pkPk(t) + pk+1Pk+1(t) (4.5)
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It is worth emphasizing that the Poisson rate ρ for Moran events is not the same as

the division rate per cell, as it describes the occurrence of two simultaneous symmetric

divisions – one a self-renewal and the other a differentiation. We might then simply think

of the total division rate as 2ρ, though doing this we must keep in mind an important

property of this Moran based system: The occurrence of divisions irrespective of their

type (self-renewal of differentiation) is not a Poisson process. Indeed, we saw in Section

4.3.1 that a true Poisson process of this form is the birth-death process, and it is the

addition of memory (albeit very short term) that led us to the Moran model. By taking

two division events simultaneously, we have a total number of division events d = 2X

with X ∼ Pois(ρ). Comparing this to a Poisson process Y ∼ Pois(2ρ) we find the same

mean, however for the variance we find

Var(d) =
〈
(2X)2

〉
− 〈2X〉 = 4(ρ+ ρ2)− 4ρ2 = 4ρ (4.6)

which is twice the variance of Y ∼ Pois(2ρ). Thus, while we will sometimes refer to 2ρ

as the total symmetric division rate, we must take care not to apply it as if it described

a Poisson process, since it is by no means a probability rate in the sense of (3.5).

4.3.4. The diffusion approximation

While the set of differential equations in (4.5) provide a useful method for evolving the

system, they can become unwieldy if the population size N is large, since there are

N + 1 coupled equations to be solved. Given that the active HSC pool in an adult

human consists of somewhere between 5 × 102 and 106 cells [32, 78], we may find that

despite their relative scarcity – which ensures the importance of stochasticity – their

total population size can be considered large for the purpose of this computation. There

is however an approximation which can be made to simplify the problem. Consider first
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a rescaling of the states

K = 0, 1, . . . , N → F = 0, 1/N, 2/N, . . . , 1

k 7→ fk = k/N
(4.7)

which conforms to simply moving from the picture of a clone’s absolute size k to its

frequency in the population. The larger the population size is the closer the states

f ∈ F are together, so that if N goes to infinity F becomes a continuous subset of the

real line X = [0, 1]. Thus we might take this as an approximation for large populations.

In Section 3.2.1 we briefly touched upon uncountable state spaces, noting that there is

some trickiness in taking the limit from a discrete space, which is what we are attempting

to do here. Fortunately, this particular type of problem has been well studied, and the

correct solution is known.

Here we will briefly summarize the main aspects of this derivation and its result, and

for an in depth treatment the interested reader is referred to [43] for the case specific to

the Moran model, or [112] for a more rigorous and general approach.

In this picture our state space is the continuous subset of the real line X = [0, 1] ⊂ R.

Now we define the transition p(x′, t′|x, t) as the probability to go from state x ∈ X to

x′ ∈ X in the time interval t′ − t. Because our system is still Markovian, we can write

the following property for this continuous space:

p(x1, t1|x0, t0) =

∫ ∞
−∞

dx p(x1, t1|x, t)p(x, t|x0, t0) (4.8)

From this property a general time evolution of the state probabilities can be obtained.

The entire derivation is somewhat involved and can be found in any relevant reference

([112] is highly recommended) so it is left out here, but – using the shorthand p(x, t) =

p(x, t|x0, t0) – the result is

∂p(x, t)

∂t
= −∂[A(x, t)p(x, t)]

∂x
+

1

2

∂2[B(x, t)p(x, t)]

∂x2
(4.9)

which is the famous Fokker-Planck equation (or the forward Kolmogorov equation, de-
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pending on who you ask), with

A(x, t) = lim
∆t→0

1

∆t

∫
d(∆x) ∆x p(x+ ∆x, t+ ∆t|x, t) (4.10)

B(x, t) = lim
∆t→0

1

∆t

∫
d(∆x) (∆x)2p(x+ ∆x, t+ ∆t|x, t). (4.11)

The integrals in A(x, t) and B(x, t) are the first and second moments of the displacement

∆x for the infinitesimal time step ∆t→ 0. Thus constructing the Fokker-Planck equation

for a system essentially comes down to finding these moments. For our current problem

– i.e. the probability of a clone achieving a particular frequency – a trick to finding these

is to assume these moments can be expanded in the small timestep:

〈∆x〉∆t = 〈∆x〉τ ∆t+ ϑ(∆t2) (4.12)〈
(∆x)2

〉
∆t

=
〈
(∆x)2

〉
τ

∆t+ ϑ(∆t2) (4.13)

where 〈〉τ is the average in the discrete-time picture. Denoting x = k/N we have

〈∆x〉τ = − 1

N
λx(1− x) +

1

N
λx(1− x) = 0 (4.14)

and 〈
(∆x)2

〉
τ

=
1

N2
λx(1− x) +

1

N2
λx(1− x) (4.15)

so that we obtain

A(x, t) = 0 (4.16)

B(x, t) =
2λ

N2
x(1− x) (4.17)

With λ = Nρ the event occurrence rate, the Fokker-Planck equation then becomes:

∂p(x, t)

∂t
=

ρ

N

∂2[x(1− x)p(x, t)]

∂x2
, (4.18)

Given that this continuous picture is an approximation, it is fair to wonder to what

extent it deviates from the true system. It has been shown that this approach is the

least accurate near the boundaries x = 0 and x = 1, which is not entirely surprising: the

states k = 0 and k = N in the true system are absorbing states, whereas in the approx-

imation the system can approach these much closer without fixating. This particular

behavior will not be relevant for our purposes, and the reader is referred to [43] for more

information.
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nocturnal hemoglobinuria

The fact that clonal dynamics can occur even in the absence of selection is an important

realization, as it has implications for the impact the acquisition of malignant mutations

can have on the body. A prime example of this can be found in the hematopoietic disorder

paroxysmal nocturnal hemoglobinuria, or PNH. With the advent of DNA sequencing

techniques this long studied disease was found to be strikingly simple in nature, caused by

a single point mutation in a gene known as PIGA [15], and occurring in the hematopoietic

stem cell pool. As it is an acquired disease, it was for a long time assumed this mutation

must have some selective advantage for its associated clone to reach the sizes found in

patients [85]. However, an alternative explanation – first proposed by Dingli et al. [31]

– is that expansion of the PNH clone could be simply due to neutral drift, or in other

words: plain old bad luck. In this Chapter we use the techniques developed in Chapter

4 to investigate the implications of this hypothesis and how it relates to the available

data, starting from the initial work done by Dingli et al. and expanding on it to obtain

new insights.

5.1. Paroxysmal nocturnal hemoglobinuria

PNH originates from any function breaking mutation of the gene PIGA found on the

X-chromosome [15, 85]. It encodes a protein required for the biosynthesis of GPI (gly-

cophosphatidylinositol), a phospholipid used to anchor various proteins to the cell sur-

face of hemocytes [59, 14]. Among such proteins are CD55 and CD59, both serving as
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regulators of cell-to-cell interactions and acting to protect the bearer from complement

mediated lysis (destruction due to the immune system). Thus a lack or reduced abun-

dance of these on a cell’s surface (here referred to as the GPI- phenotype) results in

its destruction in circulation. Clinical PNH occurs when a large fraction of hemocytes

share the GPI- phenotype, leading to severe intravascular hemolysis and a plethora of

symptoms, the most common of which are anemia (decreased amount of erythrocytes in

circulation), venous thrombosis (blood clotting in veins), and hemoglobinuria (excess of

hemoglobin content in urine).

Because PIGA resides on the X-chromosome and is subject to X-linked inactivation,

a single somatic mutation is sufficient in both males and females to disrupt the GPI pro-

duction pathway [85]. Thus from a probabilistic standpoint one can consider its X-linked

nature to be causative for the disease’s existence. Still, the appearance of a single PIGA

mutant in the hemocyte precursors does not directly lead to PNH, as a clone of sufficient

size is required to produce clinical symptoms; in fact, PIGA mutations can be found in

the blood at low frequency in healthy adults [7]. Furthermore, the observation that in

a single individual a large PIGA clone appears across all hematopoietic lineages [19, 99]

implies such a clone must originate early in the hematopoietic hierarchy, a notion which

is strengthened by our dynamic picture of hematopoiesis: If a PIGA mutant arises late in

the maturation process, its clonal offspring will soon be washed out of the system by new

cells from earlier less committed stages [143]. Thus it is generally accepted that clinical

PNH must be initiated by a PIGA mutation arising in the hematopoietic stem cell pool.

However, what occurs after the first PIGA mutation arises remains debated. Because

clone sizes can be extremely large in patients – ranging up to 90% of all blood cells [123]

– it was initially assumed there must be some selective advantage to the GPI- variant

in the bone marrow, however what mechanism this would be proved difficult to find. So

far it has been shown that PIGA deficient cells are not more resistant to apoptosis [67],

nor do they exhibit a proliferative advantage compared to normal cells [88], and neither

their replication rate [8] nor their mutation rate is altered [6]. In light of this it has

been proposed that a selected advantage of the GPI- phenotype is extrinsic to the cells
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themselves, and is instead mediated by an immune attack on normal GPI+ cells [86].

While this hypothesis is supported by some evidence [24, 49, 48], it is unable to explain

two key observations. Firstly, PIGA and the GPI- phenotype are ubiquitously expressed

in the body, and an explanation as to why an immune attack against the GPI anchor

would be restricted to the HSC population is lacking. Secondly, a significant fraction of

patients with PNH undergo spontaneous reduction and even extinction of the GPI- clone

[60], which is difficult to reconcile with the proposed autoimmune selection. A second

selection-based hypothesis postulates the occurrence of additional mutations in one or

more other genes, which when appearing simultaneously with the PIGA variant in the

same cell confer a fitness advantage to the GPI- phenotype. Indeed, several case reports

of coexisting mutations involving PIGA are available, including two patients with a mu-

tation in HMGA2 [64], one patient with a concomitant JAK2V617F mutation [127], a

mutant NRAS [98], and more recently a patient with PNH and concomitant BCR-ABL

fusion in the same cell population [69]. However, these cases appear to be the exception

rather than the rule, and there is little evidence for a conferred fitness advantage in any

of them. Furthermore, the arrival of a second key mutation in an existing clone required

for its expansion would be an extremely rare event if the clone is still small [135, 34],

while deep sequencing of diagnosed patients has revealed that a significant portion of

PNH clones do not carry additional mutations apart from that in PIGA [118].

Given these observations Dingli et al. showed that with a small enough stem cell

population and the simple assumption of stochastic dynamics, this appeal to selection

may not be necessary, as the disease’s low prevalence can be perfectly explained by

attributing the large clone sizes to stochastic outliers [31]. They demonstrated this

by directly simulating Moran like dynamics: By sampling state transitions from the

appropriate probability distributions, a large ensemble of stochastic trajectories was used

to extract the expected prevalence of the disease under neutral drift, which was shown

to be of the same order as found in a real world population. Here we will reexamine their

model with the more powerful Markov chain method described in Chapter 4, which will
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allow us to investigate a number of additional properties and predictions of the model,

such as the occurrence of PNH during childhood, the spontaneous loss of a clone due

to neutral drift, and the expansion rate of PNH clones. Furthermore, we can apply it

to estimate the likelihood of coexistence of multiple distinct PNH clones (i.e. arising

separately from different mutating cell divisions) in the HSC population, a phenomenon

that has been observed in some patients. In such cases often the two clones present

different levels of severity, e.g. one with complete deficiency of GPI anchored proteins

and another with partial deficiency of GPI [59, 115]. Targeted sequencing of the PIGA

gene can confirm different mutational profiles in the two cell populations [118], implying

they must have arisen due to independently occurring mutations.

5.2. Applying the Moran model

To assess the likelihood of neutral drift expansion, we are interested in obtaining proba-

bilities related to the appearance and growth of sizeable PNH clones in the hematopoietic

stem cell pool of an individual. The Markov chain formulation of the Moran dynamics

of the HSC population introduced in Section 4.3.2 provides the perfect tool for this: in a

two population system – here normal cells and PIGA mutants – it allows us to calculate

the probabilities Pm[T ] of all possible states m ∈ 0, 1, . . . , NHSC corresponding to the

possible size of the PIGA population. To facilitate a close comparison with the results of

[31], we evolve the discrete-time Markov chain of (4.2) rather than the continuous-time

ODE’s (4.5), where (as in the original paper) the real time between division events is

taken to be the expected value 1/λ of its exponential distribution (see Section 4.2.2).

5.2.1. Transition probabilities

As PNH is an acquired disease, we must take into account the fact that a stem cell

pool does not begin with a PIGA mutant. Only when a normal cell divides is there a

probability µ of such a mutation occurring in one of its daughter cells. Thus we require a

slightly altered set of transition probabilities pi,j compared to the standard Moran model
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introduced in (4.1), which we find by listing all possible occurrences during a division

event. Denoting m as the number of PIGA mutated cells in the HSC pool, these are:

• A normal HSC divides without PIGA mutation & a normal HSC differentiates

Effect: m→ m

Occurs with probability:
(
1− m

N

)
(1− µ)

(
1− m

N

)
• A normal HSC divides with PIGA mutation & a normal HSC differentiates

Effect: m→ m+ 1

Occurs with probability:
(
1− m

N

)
µ
(
1− m

N

)
• A normal HSC divides without PIGA mutation & a mutated HSC differentiates

Effect: m→ m− 1

Occurs with probability:
(
1− m

N

)
(1− µ)mN

• A normal HSC divides with PIGA mutation & a mutated HSC differentiates

Effect: m→ m

Occurs with probability:
(
1− m

N

)
µmN

• A mutated HSC divides & a normal HSC differentiates

Effect: m→ m+ 1

Occurs with probability: m
N

(
1− m

N

)
• A mutated HSC divides & a mutated HSC differentiates

Effect: m→ m

Occurs with probability: m
N
m
N

Combining all events which lead to the same effect we obtain the following adapted

transition probabilities:



pm,m−1 =
m

NHSC

(
1− m

NHSC

)
(1− µ)

pm,m+1 =
m

NHSC

(
1− m

NHSC

)
+

(
1− m

NHSC

)2

µ

pm,m = 1− (pm,m−1 + pm,m+1)

(5.1)
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5.2.2. Ontogenic growth

Since we are interested in evolving the system from birth, we must also take into account

the fact that the HSC pool increases in size during ontogenic growth. The growth curve

in an average individual has been documented before [33, 142] – shown in Figure 5.1

– and can be applied to the early time evolution of the system. This is done by – at

predetermined times – inserting additional self-renewal events without an accompanying

differentiation event, which affect both the clone size probabilities as well as the total

population size. During such a self-renewal event the following transition probabilities

qi,j are found: 
qm,m−1 = 0

qm,m+1 =
m

NHSC
+

(
1− m

NHSC

)
µ

qm,m = 1− (qm,m−1 + qm,m+1)

(5.2)

During the growth phase of the system the normal division/self-renewal Moran dynamics

are periodically interrupted by a number of such self-renewal-only events. Since the

growth function NHSC(t) obtained from [33] is given in time intervals ∆t of two weeks,

after each interval NHSC(t)−NHSC(t−∆t) self-renewal events are performed to increase

the population size.

5.2.3. Observing multiple clones

While the above described method provides a powerful way to describe the evolution of a

single PNH population, it does not facilitate tracking the evolution of multiple clones that

arise from separate mutational events. Indeed, the one-dimensional state space described

by m ∈ 0, 1, . . . , N cannot contain information about a third sub-population, although

we might expand the system to account for multiple clones. In particular, the tracking of

M +1 distinct populations ( M mutant clones + the unmutated population) requires an

M -dimensional state space. For large M the system quickly becomes computationally

unsolvable, as the number of states scales with ∼ NM . However, we can take advantage

of previous estimates showing that the likelihood of more than two PIGA clones in

78



5.2. Applying the Moran model

Figure 5.1.: Size of the HSC pool over time during ontogenic growth, derived by Dingli

and Pacheco [33]. The population size remains approximately stable from adulthood.

the same stem cell pool is vanishingly small [135, 34], to limit our state space to two

dimensions and thus account for two different clones. A first thought would be to evolve

a Pm,n[T ] as the probability of the first clone having size m and the second size n. There

is, however, some useful information related to the history of a trajectory not contained

in such a description. Consider for example the initial state (m = 0, n = 0) at T = 0

before any clones exist. If at some point later in time during a trajectory a clone arises

and then disappears, the system is once again in (m = 0, n = 0), and there is no way of

knowing whether a clone ever existed or not; and the same is true if two clones appear

and subsequently vanish. This problem stems from the Markovian property of the time

evolution and the fact that these different scenarios lead to the same state. One way to

circumvent this is by separating the cases we wish to disentangle into different states.

To this end we introduce an extended state space that is divided into three separate

“histories” corresponding to states with different pasts, as shown in Figure 5.2. Each

history comprises a collection of states where a specific number of mutations occurred in

the system’s past – zero, one, or two. In this picture, an evolutionary trajectory in which

a mutation occurred but the resulting clone eventually died ends in a different state than
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one where no mutation occurred in the first place. Note that the master equation (3.22)

must be altered to include transitions to different histories:

P im1,m2
[T + 1] =

∑
m′1,m

′
2,j

pi,j
m′1,m

′
2,m1,m2

× P j
m′1,m

′
2
[T ] (5.3)

where any state is now characterized by the clone sizes m1 and m2, and the appropriate

history i. The tensor elements pi,j
m1,m2,m′1,m

′
2

represent transitions from state (m′1,m
′
2) to

m1,m2 and history i to j, and are found in an identical manner as before, though now

more transitions are possible, as shown in Figure 5.2.

5.2.4. Parameter values and diagnosis threshold

Taking the Moran replication rate of HSCs at 1/cell/year [119] and the known normal

mutation rate of the PIGA gene 5 × 10−7 per replication [6], we can iteratively evolve

the master equation from state P0[0] = 1, Pm[0] = 0 ∀m 6= 0 to obtain probabilities for

all possible size combinations of the mutant clones. However, since the mere existence

of a variant PIGA clone does not yet constitute a clinical diagnosis of PNH, we require a

threshold for the minimum clone size that would lead to diagnosis. In general symptoms

of hemolysis only become mildly present from clones of at least 10% [109], with the affect

varying among individuals, so that we take this threshold at 20%.
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1<m1<N
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Figure 5.2.: The extended state space and allowed transitions. Each history

describes a possible evolution where either 0, 1 or 2 mutations were acquired by distinct

healthy cells. Whenever a mutation occurs the system jumps to the next panel on the

right (to the next history), until the final history is reached where mutations are no longer

allowed. The dark blue arrows represent incoming transitions from nearest neighbor

states in the same history, while the red arrows represent transitions from states in the

previous history. Note that every state also has a transition onto itself, which has been

left out for readability.
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5.3. Results and predictions

Using the model and parameter values described above we can make predictions for

the likelihood of clonal expansion, along with expected clone sizes, expansion rates, the

expected age for acquiring the disease, and more. Whenever possible we compare these

results to available data, much of which comes from the International PNH Registry

[123]. However, for quantities related to incidences within a population – such as the

disease prevalence and average clone size – the probabilities for a single individual are

not immediately comparable with the data, since in the real world the ages of the

individuals that make up any population are non-uniformly distributed. The fact that

the probability state space changes over time implies that prevalences in a population

will be skewed by the age groups which have the highest representation. In order to

perform a meaningful comparison with data from a real world population the projected

age-specific probabilities must therefore be weighed with the relevant age distribution.

To this end we use the reported distribution from the United States 2010 census [21].

5.3.1. Probability and prevalence of PNH

Evolving the system for a long time period (100 years) we find that the probability

for a single individual to develop clinical PNH through neutral drift increases with age

according to the curves shown in Figure 5.3, being especially low early in life. Indeed,

the limited data available suggests that PNH is quite rare in children [139, 27], generally

only occurring in the context of bone marrow failure. While classical hemolytic PNH

(i.e. in the absence of other disorders such as aplastic anemia) represents about 10% of

pediatric patients with a PIGA mutant population, data from the International PNH

registry suggests that perhaps half of adults with PNH have classical hemolytic disease

[123].

We find that the probability of a patient having clinical PNH with two independent

clones arising in the HSC pool is approximately 103 times smaller than the probability

of the same diagnosis with a single clone, while the occurrence of patients with 3 or

more distinct PNH clones contributing to hematopoiesis would be another 2 orders of
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Figure 5.3.: Probability of clinical PNH occurring in a single individual over

time. Absolute probability of clone size ≥20% for 1 or more coexisting clones.

magnitude lower (Figure 5.3). This implies that approximately only 1 in 1000 cases of

clinical PNH would host more than a single mutant clone that arose in the stem cell

compartment. Note that these numbers result from a model dealing only with stem cell

dynamics, and thus do not preclude the occurrence of mutations farther downstream

among progenitor cells, which are present in larger numbers and divide faster than the

HSCs [135, 35]. Moreover, PIGA mutations occurring in early progenitors will also re-

main contributing to hematopoiesis for years before any eventual wash-out [143, 136].

Thus this model estimates that clonally distinct PIGA mutations found in mature cells

are more likely to have originated at later stages of differentiation [135] than in indepen-

dent mutations occurring in the active stem cell population.

Using the population age distribution data from the 2010 United States Census, we

estimate the incidence of clinical PNH for both mono- and multiclonal cases in the USA,

by weighing the clonal size probabilities for each age with the respective prevalence of

that age in the population, the result of which is shown in Figure 5.4. We obtain an
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(a) (b)

Figure 5.4.: Incidence of PNH in an age varying population. (a) Predicted

incidence of PNH clone sizes in the US population, found by folding the Markov chain

probabilities for ages 1-100 with population data from the 2010 US census. Any clone

above the 20% threshold (vertical dashed line) counts as a clinical diagnosis. (b) Pre-

dicted incidence of PNH clone sizes in the US population for all ages separately.

expected total prevalence – calculated by summing over all clones sizes from 20-100%

in Figure 5.4a – of 1.76 cases per 105 citizens for any diagnosis of clinical PNH (mono-

or multiclonal), which is similar to what has been reported in a well-defined population

by Hill et al. [56]. To investigate the likelihood of multiple clones, we also calculate the

expected number of patients with biclonal disease arising at the level of the HSC, obtain-

ing a prevalence of 1.29 per 108 individuals. For the US population, this would amount

to approximately 3000 patients with a single clone and 2 patients with biclonal disease,

respectively. The number of individuals in the population with a subclinical (< 20%)

PIGA mutated clone is estimated to be much higher, at 6.0 per 104 for monoclonal and

1.9 per 107 for biclonal cases, which amounts to respectively 184,495 and 60 individuals

in the US.
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5.3.2. Average clone sizes

Using the census data we can also estimate the average clone size 〈m〉 in individuals

in the US population. If we condition upon the existence of at least one mutant HSC,

the average size is estimated in our model to be at 3.4% of the total pool. The more

interesting statistic however is the average clone size in those suffering from clinical

PNH (m ≥ 20%), as it can potentially be compared to clinical data. For diagnosable

individuals, it is predicted to be 31.1%, with a very large standard deviation of 32.6%.

Comparing this to data from the International PNH registry [123], this appears to fit

well with patients with AA-PNH syndrome (categorized as simultaneously suffering from

aplastic anemia), which shows a mean clone size of 28.3% and standard deviation of

32.8%, though other categories such as classical PNH present much greater average

clone sizes.

5.3.3. Arrival times of mutated clone and clinical PNH

Another useful type of prediction relates to the arrival time of a mutant cell or a clinically

diagnosable clone. We find that the first mutated cell in the HSC pool can occur quite

early in an individual’s life, as shown in Figure 5.5a, and the probability of harboring

a mutant clone in the stem cell population grows one order of magnitude from age 20

(∼ 2 × 10−3) to age 100 (∼ 2 × 10−2). Despite these values appearing quite high, in

a neutral drift picture the second line of defense against PNH is the significantly low

likelihood of clonal expansion, a fact that is illustrated well by comparing the probability

of occurrence of a clone (which is quite common in healthy people [7]) with the probability

of having clinical PNH. For example, in an individual of age 60, the probability of having

acquired a mutant clone is 1 × 10−2, while the probability of having clinical PNH is

2× 10−5, three orders of magnitude smaller.

The average ages of clonal occurrence in an age distributed population are projected

at 41 and 54 years for mono- and biclonal (stem cell) cases respectively Figure 5.5b. In

general, it appears that on average most clones arrive only after adulthood is reached

and the hematopoietic stem cell pool has attained its maximal size.
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Figure 5.5.: Clonal existence and arrival times (a) Likelihood of existence of

clones over time. As a test of accuracy, the probabilities for the existence of the pri-

mary and secondary clones were also calculated analytically from a cumulative negative

binomial distribution. (b) The probability of obtaining a first or second clone in a given

year as well as the probability of reaching the diagnosis threshold (20% of the HSC pool)

folded with the 2010 US population distribution to obtain the age incidence in the pop-

ulation. Each curve has been normalized, so that they may be interpreted as the age

distribution of the clone and diagnosis arrival times. (M.C.: Markov Chain simulations;

an.: Analytical calculations.)

The average age at diagnosis – taken as the time at which the total number of mutated

HSCs reaches 20% for the first time – is found to be 49 years (or 44 years if threshold

for diagnosis is taken at 10%) and is quite similar to what has been reported by the

International PNH registry, with 43.2% of patients diagnosed between 30 and 59 years

of age. [123, 83].

5.3.4. Clonal expansion

A final aspect of the disease we look at is the rate a which a clone changes in size, and

how this relates to the potential spontaneous loss of PNH. This rate can be estimated
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with the Markov chain method by initiating a clone at size m0 with probability 1, and

subsequently observing the probability distribution of the clone size at later time, as

shown in Figure 5.6. This distribution clearly diffuses over time, however it does not

occur entirely symmetrically (note the slight skew to the distributions) as one would

expect from a typical markovian process. The reason for this can be seen from the

Moran transition probabilities (5.1). Ignoring for the moment the small probability of a

mutation occurring (µ ≈ 0), we obtain once again the basic Moran transitions

p[m] = pm,m+1 = pm,m−1 = m/NHSC − (m/NHSC)2 (5.4)

The fact that the probabilities for moving up or down from the current state are identical

implies that the expected value for the state cannot change1, however it does not imply

that the diffusion across all states will be symmetrical. Indeed, interpreting p[m] as

(half) the amount of probability that leaves the state m in a time step, and noting that

p[m] is itself a concave function of m, we see that the rate of change is in fact state

dependent, occurring fastest at the maximum of p[m] (at NHSC/2) and slowest at the

points 0 and N – where it is effectively 0.

We can compare the predicted diffusion over time with measurements from Araten et

al. [8], who reported a ≥ 5% size increase per year in 12 out of 36 patients, while most of

the other patients experienced either a reduction or no change at all; though the authors

did not specify these amounts quantitatively. The study found no significant expansion

or reduction (≈ 0%) when calculating the mean over all patients, which is exactly what

the neutral model predicts. On the other hand, our model projected the fraction of

patients that would experience a ≥ 5% increase after 1 year to be between 5% and 10%

depending on the size of the initial clone, which is significantly lower than their observed

33%. While this discrepancy could be attributed to statistical confounding factors such

as the relatively small size of study’s patient cohort, there may be a more fundamental

explanation, which will be discussed in Section 5.5.

1in probability theory this is known as a Martingale
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5.3.5. Disease reduction

While there is currently no known cure for PNH other than bone marrow transplantation

(though the hitherto successful complement inhibiting therapy eculizumab can possibly

be administered indefinitely to prevent hemolysis [61, 19]), it is nevertheless possible

for the disease to disappear spontaneously without intervention. While this occurrence

is difficult to reconcile with a positive selection acting on the variant PIGA clone, the

neutral hypothesis inherently predicts it, since at any point in time the mutant clone an

would have equal chance of shrinking as is would of growing.

We calculate the probability of a recently diagnosed case of clinical PNH becoming

subclinical again by evolving a system from the state m = 0.2NHSC and observing the

probability of it being in a lower state m < 0.2NHSC at a later time. The result shown

in Figure 5.6b demonstrates that starting from a clone of size 20%, over time it is in fact

more likely for the disease to recede than to persist. This may seem counterintuitive,

since earlier we showed that (ignoring new mutations) the expected value of the size of

an established clone does not change. The reason for this apparent contradiction is found

in the skewness of the diffused distribution. While the expected clone size 〈m〉 remains

fixed at m = 0.2NHSC , the right-sided tail of the distribution (where m > 0.2NHSC)

stretches out farther than the left-sided tail (m < 0.2NHSC) due to the higher diffusion

rate determined by p[m]; thus the fixed expectation value implies there must be more

total probability contained in the m < 0.2NHSC subset of the phase space than in the

m > 0.2NHSC subset. On the other hand, since p[m] is symmetric around 0.5NHSC ,

clones which consist of more than 50% of the HSC population will be less likely the

disappear than to persist.

We find that after diagnosis (m = 0.2NHSC) it would take at least 2-10 years for

significantly smaller clone sizes (< 15% or < 10%) to be reached, while the possibility

of the clone becoming truly extinct is only realizable after 20-50 years, and in reality

clinically detectable extinction will depend on the assay that is used to determine the

presence or absence of the clone. Importantly, the model predicts that after 10 years

from diagnosis, the probability that the clone is small enough not to be associated with
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(a) (b)

Figure 5.6.: Clonal expansion and disappearance. (a) The size probability dis-

tribution for an established clone (m = 0.2NHSC) multiple years after diagnosis. (b)

Probabilities for an established clone to recede or vanish after diagnosis over time.

clinical PNH is upwards of 30% (Figure 5.6b), which is comparable to what Hillmen et

al [60] reported in their cohort of patients, with 12 out of 35 surviving patients having

spontaneous clinical remission within a 10 year followup.

5.4. Discussion

The appearance of mutations in HSCs and their fate over time is an important clinical

problem, since many diseases such as myelodysplastic syndromes and several leukemias

(e.g. chronic myeloid leukemia, some subtypes of acute myeloid leukemia) arise due to

mutations within the HSC. Landmark studies in PNH have shown that it is an acquired

clonal HSC disorder [104] with very interesting dynamic properties, including an uncanny

probability of spontaneous clonal extinction [60]. The mechanism of clonal expansion in

PNH has been a source of great debate and several hypotheses have been proposed to

explain it, such as a selective advantage of the mutant cells due to an immune attack on

normal HSC (extrinsic advantage), or the presence of a second mutation that grants a
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5. Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria

fitness advantage (intrinsic advantage). Some evidence for either hypothesis exists, but

both also suffer from deficiencies as described earlier. In particular, in is unclear how an

extrinsic advantage would be relegated to the HSC compartment alone, and It is also dif-

ficult to argue how a cell could acquire multiple mutations sequentially in the absence of

genomic instability, which has not been observed in PNH [6]. Dingli et al. have proposed

that the PIGA mutant cells generally possess no fitness advantage or disadvantage, and

that clonal expansion is simply a consequence of neutral drift within the (small) active

HSC pool that maintains hematopoiesis [31]. Neutral drift may come as a surprise for

many in the field of hematology and oncology who are accustomed to associate malig-

nant clonal expansions in cancer with some form of selective advantage. Nevertheless,

it is not uncommon for mutations in populations to expand in this way, as suggested

by Kimura many years ago [72]. This hypothesis leads to the simplest of explanations

of PNH, and our stochastic modeling suggests that this could be the case – at least in

some patients – since we are able to predict the prevalence of the disease, average age

at diagnosis, average clone size and the probability of clonal extinction purely from first

principles through a Markov chain evolution of a Moran model of HSCs, with results

quite similar to what has been reported in the literature. Furthermore, two important

observations – finding a non-varying expected clone size in a large cohort of patients,

and the occurrence of spontaneous remission of the clinical disease in a large fraction of

patients – would require complicated explanations in the selection picture, whereas they

are immediate consequences of applying a neutral model. Thus, although it is difficult

to deliver conclusive proof of the neutral hypothesis, the close parallel between these

predictions and the clinical reality provides considerable support for it.

While the Moran model’s predictions match much of the clinical data surprisingly

well, some quantities obtained appear to consistently underestimate what is reported in

the literature. In particular, the average clone size in diagnosed patients with classical

hemolytic PNH is reported at 69.8 ± 32.9% in a cohort of 550 patients – much higher

than the 28.3% calculated here – and the rate of expansion reported by Araten et al. is a
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≥ 5% increase per year in 1/3 of patients [8] – whereas the current model predicts this to

only occur in 1/10 to 1/20 of patients. We might simply gloss over these discrepancies,

attributing them to a failure of the model, or even a knock against the neutral drift

hypothesis, however it is worth digging a bit deeper and considering whether there may

be a more fundamental piece of the true system that we have left out of the model.

5.5. Perspective: HSCs under perturbed hematopoiesis

In constructing the Moran model in this chapter we have, perhaps somewhat unknow-

ingly, made a very important assumption related to the HSC dynamics; one that might

not – or is even unlikely – to be true in reality: that the system always remains in

dynamical equilibrium. In other words, we have assumed that the Moran dynamics do

not change, even as a PNH clone grows or shrinks in size. Considering the effect the

disease can have on the body, in particular a chronic and severe loss of red blood cells

and other hemocytes, one might however expect the hematopoietic system to react ap-

propriately and attempt to mitigate this loss by increased cell production. This type

of reaction from the bone marrow to a perturbation of blood cell counts is well known,

having already been documented as much as 50 years ago [58]. Whether or not the HSC

compartment would become involved in such a response is up for debate, as to my knowl-

edge the literature provides no direct evidence for or against this idea in PNH. There

are however some indirect clues which mark this as a credible possibility, in particular

the well-documented response of the body to bone marrow transplantation or sublethal

radiation of the bone marrow [55, 22, 16]. It has been shown that under such a severe

disruption of the hematopoietic system, the response is an extremely rapid and highly

clonal – i.e driven by a small group of HSCs – repopulation of the bone marrow before

a return to normal hematopoiesis. If the disruption orchestrated by severe PNH were to

cause a similar response, this would result in an increased rate of divisions of the HSC

pool, which in turn would speed up the dynamics of the Moran system we have studied

here.

While the following short discussion is not part of the research paper in which the
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previous results of this chapter are presented, we will briefly look at how the Moran

model might be extended to investigate the effects of a feedback loop where the size of

the PNH clone directly influences the speed of the dynamics.

5.5.1. Feedback driven division rates

In order to capture a dependence of the stem cell dynamics on the severity of the disease,

the main extension to perform is to have the Moran division rate λ no longer constant

in time, but rather a function of some underlying process which causes it to speed up.

Of course, we don’t actually have any tangible knowledge of this underlying mechanism

from which to build a model, other than the qualitative observation that a reduced

number of functional hemocytes in the blood increases the cell production. Luckily this

is enough to build a simple heuristic extension to test our intuition.

Starting from the basic premise that the size of a mutant PIGA clone on the level of

the HSCs should correlate with the size of the GPI deficient population in the blood, and

that the amount of GPI- cells in the blood directly determines the amount of hemolysis,

we take the division rate as a function of the mutant clone size: λ → λ(m), with the

requirement that λ must be an increasing function of m, since a larger PNH clone

causes more hemolysis. Because we have no detailed knowledge of this dependence –

quantitative or qualitative – it suffices to choose the simplest option, which is a linear

function:

λ(m) = λ0 + α
m

NHSC
(5.5)

where λ0 is the Moran division rate under normal hematopoiesis, and α > 0 determines

the strength of the coupling. Since the dependence on m is taken as a fraction of the total

population m/NHSC , α can be interpreted as the difference between the highest possible

division rate at m = NHSC and λ0; or in other words, the HSCs divide maximally at

rate λ0 + α when m = NHSC .

While this extension to the model seems simple enough, it introduces a problem with

respect to the method of solution used in this chapter. In the previous sections we

evolved the probability of each state m ∈ 0, 1, . . . , NHSC at discrete time increments
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corresponding to the times at which divisions occurred. But this discrete evolution was

only possible thanks to the fact that the division rate was the same for each state,

allowing for all states to be evolved simultaneously. This is of course no longer the case

here, given that λ is now a function of m. Fortunately there is a simple solution to this,

which is to apply the continuous-time Markov chain approach introduced in Section

4.3.3. Using equation (4.5) we can write for the time evolution of any state m:

1

λ(m)

dPm(t)

dt
= pm−1,mPm−1(t)− 2pm,mPm(t) + pm+1,mPm+1(t) (5.6)

where the pn,m are given by (5.1) or (5.2), depending on the type of division (with or

without concomitant differentiation). While this set of differential equations for the

Pm may not have an easily obtainable solution, we can still evolve it numerically in

a similar manner to the discrete-time system, though now using an appropriate ODE

solving algorithm.

5.5.2. Heuristic results

Before investigating how the coupling affects the system, it is worthwhile to first check

whether the continuous-time formulation indeed gives the same results as the discrete-

time model used before. A comparison of the predicted population prevalence of PNH

calculated from both methods is shown in Figure 5.7a, and given their nearly identical

result should reassure us that the move to continuous-time is valid.

Introducing the feedback through (5.5), we once again look at the change of an es-

tablished clone over time, as shown in Figure 5.7c. We observe that compared to using

a fixed division rate the feedback driven rate exaggerates both the speed at which the

diffusion occurs, as well as the skewness of the distribution, even though the martin-

gale requirement of a constant expectation value remains fulfilled. Thus, the single new

parameter α – essentially representing the strength of the coupling between the HSC

compartment and the severity of the PNH driven anemia – determines the speed with

which expansion occurs. With this in mind we can revisit the data of Araten et al. [8],

who reported 1/3 of patients experiencing a growth of > 5% of the total HSC pool within
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one year. Whereas in the feedback free model we predicted this fraction to be between

1/20 and 1/10 of patients, we can now vary α to see how this prediction changes for

stronger couplings, as shown in Figure 5.7b. The fact remains that the rate of growth

(or decline) depends on the initial size of the clone; firstly because of the size depen-

dent transition rate given in (5.4), which assigns the highest rate of change to the state

m = NHSC/2, and now secondly because of the size dependent division rate λ(m), which

is maximal at m = NHSC . We could in theory fit α to the value (fraction of patients

with growth > 0.05NHSC) reported by Araten et al. by calculating the predicted frac-

tion for every clone size, and extracting an average value by weighing these with the

expected clone size in the population under the feedback model. However, given the

small sample size in the report, the high standard deviations with respect to clone sizes,

and the handwaving approach with which we constructed the coupling, there would little

interpretive weight to this particular value. On the other hand, from simply eyeballing

the results shown for the two initial clone sizes shown in Figure 5.7b, we can already see

that it would take an α on the order of ∼ 20 to obtain a value similar to what Araten et

al. reported. Thus, it would require the HSCs to increase their Moran divisions (each

equivalent to two divisions, one with and one without differentiation) from 1 up to a

maximum of around 20 times a year, which is not unimaginable, given that they divide

much faster during early ontogenic growth or bone marrow reconstitution [16, 22].
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Figure 5.7.: Feedback driven division rates can increase the speed of clonal

expansion. (a) Comparison of discrete time and continuous time Markov chain evo-

lution for the prevalence within th U.S. population. (b) Probability of a clone expanding

for an increase greater than 5% of the HSC pool within 1 year, calculated for initial clone

sizes 25% and 75%. (c) Probability of clone size at different time points after initiation

at 25%, for constant division rate (no feedback) and for linearly coupled division rate

with α = 8 according to (5.5).
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5.6. Conclusion

In this chapter we have applied the simple Moran model of HSC dynamics to the investi-

gation of clonal expansion in the rare blood disorder paroxysmal nocturnal hemoglobin-

uria. While this disease is known to occur due to a debilitating mutation of the PIGA

gene in the HSC pool, the method of expansion of this clone remains debated, in the

past typically assumed to occur through some selective advantage of the variant popu-

lation. Here, through a simple extension of Moran model introduced in Chapter 4, we

showed that the simplest explanation – neutral drift – need not be discounted, as under

its assumptions we can accurately predict a number of statistical quantities related to

the disease’s prevalence in a population. Furthermore, two clinical observations requir-

ing complicated explanations in a selection picture arise naturally from the neutral drift

hypothesis: the fact that the average variation of clone size in a cohort of individuals

is 0, and the occurrence of spontaneous remission in a significant fraction of patients.

While some clinical observations – such as the disease prevalence in an age distributed

population – were predicted surprisingly well, others – such as average clone sizes and

expansion rates – were underestimated by the model. To understand whether these

dissimilarities occur due to a flaw in the neutral drift hypothesis or could be attributed

to some component of the true system which was not incorporated in the model, we

investigated the possible influence of varying division rates, driven by a bodily response

to the anemia occurring alongside a significantly large PNH clone. We show that the ex-

istence of such a coupling between HSCs and the blood – to some extent hinted at by the

observed behavior after bone marrow transplantation [55, 22, 16] – would indeed likely

imply a expediting of the clonal dynamics, leading to larger clone sizes and expansion

rates.
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stem cells

The shapes are always changing. Changing is their

normal state, like us. Even if we’re not changing on

the outside, we’re changing on the inside constantly.

— Jake The Dog, Adventure Time

In the previous chapter we focused on the stochastic size fluctuations of a single clone

in the HSC pool, defined by a particular mutation which sets its constituent cells apart

from the rest. However, it was already hinted at that in a more detailed picture even

this collection of mutants would be heterogeneous with respect to the entire genome,

given that new somatic mutations are arising constantly [87]. In fact, every time a new

mutation occurs somewhere in the HSC pool, one can consider this a new clone with

the ability to expand and in turn acquire its own subclones. The result is a complex

mosaic of thousands of variants randomly distributed over the stem cells and occurring

at random positions in the genome [93], some appearing in large groups of cells, oth-

ers only in a single cell. Most of these mutations are not particularly adverse, being

synonymous or appearing in non-coding or otherwise unimportant regions; however, in

situations where they are observable, they may provide us with an opportunity to learn

about the stochastic dynamics underlying their existence.

In this chapter we will expand our model of HSC dynamics with the goal of applying

it to this more detailed picture of many competing clones. Such a model will allow

us to characterize the types of stochastic fluctuations we expect to see and predict
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how they might change as an individual ages. To this end we will first formalize what

kind of clonal relationships arise within a cell population and how they are observed

in sampled data (Section 6.1). From here it will become clear that in order to model

this extended picture of clonal competition the asymmetric cell divisions can no longer

be neglected, and as such we will extend the Moran model introduced in Chapter 4 to

account for these (Section 6.2). This extended formalism will be used to derive analytical

expressions for the dynamics of two quantities which can be measured in a sampled

dataset: the single cell mutational burden (Section 6.4) and the variant allele frequency

(VAF) (Section 6.5), both of which are effective (but different) reductions of the full

state space of a multiclonal cell population. Finally, in Section 6.7 we will compare the

resulting predictions of both the mutational burden and the VAF to a recent dataset

containing information on the variants in a single human individual [78], which will allow

us ascertain difficult to measure values of the fundamental parameters involved in the

stochastic dynamics, such as the number of actively proliferating HSCs, their individual

self-renewal and differentiation rates, and the balance of symmetric versus asymmetric

divisions.

6.1. Clonality

When using the term clonality we are referring to the relatedness of cells through their

genome. While a strict definition of the term clone would mean a group of cells with

completely identical genomes, we have so far used it (as is fairly customary in the field)

to also refer to cells which share a specific variant in their genome, such as for example

the mutated PIGA gene discussed in Chapter 5. Given that the picture of clonality we

are interested in here is somewhat more complicated than before, it will prove useful to

first formalize the various types of relatedness we expect to model.

Consider the simple ancestral tree shown in Figure 6.1a, depicting the mutant accu-

mulation of three generations of cell divisions from a single ancestral cell to its progeny

of eight great-granddaughter cells. If we were to observe this population during the last

generation we would only see the final eight cells, however their history is to an extent
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encoded in the pattern of mutations carried by each them. For example, two cells which

share a variant must have a common ancestor which they do not have in common with

a cell that does not have this variant. In a similar vein, a variant that is shared by

very few cells is likely to have occurred more recently than one that is shared by many

cells. There are various existing techniques – based on finding binary conditions for

the order of mutational events – for reconstructing such an ancestral tree from a single

time point observation [20, 78, 120, 29] such as the (albeit extremely simple) example

given in Figure 6.1a. While impressive as accomplishments, such reconstructions do not

immediately provide quantitative information on the fundamental processes (i.e. the

mutations and cell divisions) driving the system, and while they can in turn be analyzed

with various statistical techniques, the small sample size from which they are typically

constructed often results in limited inferences. Here, we will instead attempt to derive

predictions – based on our assumptions for HSC behavior – for simpler quantities related

to the pattern of mutations, such as for example the total number of variants per cell, as

these can directly be compared with the data to infer quantitative aspects of the model.

To this end let us first formalize the observation in the final step of Figure 6.1a. We

might denote each of the cells in the population as a set Ci (i ∈ 1, 2, . . . , 8) with the

respective variants they carry as their elements. This picture is a bit messy, since some

variants appear in multiple cells, and the various sets are thus partially overlapping.

But we can also invert this description, as shown in Figure 6.1b, by taking the cells

themselves as elements Ci of the sets Vj (j ∈ 1, 2, . . . , 14) given by the variants. An

interesting thing to note is that in this view the variants can be subsets of one another

Vi ⊂ Vj – which we might call a subclonal relationship – but can never be partially

overlapping, i.e. Vi ∩ Vj must be either Vi, Vj , or ∅. This follows from the fact that

newborn cells can only appear within an existing clone, and new clones only occur with

new cells.

With the goal of predicting such clonality and comparing it to real world data in mind,

we ask ourselves what state spaces (as defined in Section 3.2.1) can be defined on a system

of the form in Figure 6.1. Considering we are not really interested in what part of the
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genome is affected by each mutation but only that different variants are distinct, a space

which contains all information of the system on observation would cover the possible

numbers of clones, the numbers of cells contained by each clone, and the relationship

between clones, i.e. whether Vi ⊂ Vj , Vj ⊂ Vi, or Vi ∩ Vj = ∅. For a large population

this would be a very high dimensional space, given the possible combinations of clonal

relationships across all variants. An example of this would be the space of all possible

ancestral trees such as the one shown in Figure 6.1a, though as hinted at earlier, its high

dimensionality makes it difficult to analyze quantitatively. Instead, we will forego some

information contained in the observation in order to construct simpler state spaces,

which we will see can already be applied effectively to extract information from real

world data. In particular, we will focus on two measurements which can be performed

on observations such as that of Figure 6.1a. The first is the number of mutations found

in a cell, which we refer to as the single cell mutational burden. From the example it

should be clear that as a stochastic quantity this can vary between cells, depending on

their divisional and mutational past. This variation will end up being quite useful, as

we will see that from the model a predicted probability distribution for the burden can

be derived (Section 6.4) and effectively compared with even a modestly sized dataset

(Section 6.7). The second is the variant allele frequency – essentially the histogram of

all the variant sizes in the population – for which we will also derive a prediction of its

time evolution in Section 6.5. Because these two quantities are different reductions of

the more “information-rich” ancestral tree, we can use them both in tandem to extract

information from a dataset, as illustrated in Section 6.7.

6.2. Moran model with asymmetric divisions

While in the previous chapters we have neglected any effects of asymmetric HSC divi-

sions, it will at this point become important to include them in our treatment. The

reason for ignoring the asymmetric division previously was that it has no effect on the

size of the clone which the dividing cell belongs to: while one of the daughter cells is

removed from the pool the other simply maintains its HSC characteristics, meaning any
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Figure 6.1.: Mutation accumulation in a dividing cell population. (a) The divi-

sional history of a small population of cells shown as a lineage tree. Cells are depicted by

circles, while mother-daughter relationships are shown through connecting lines. Random

mutations (letters a-m) can be acquired during cell divisions and are shown within the

cells by which they are carried. The observable cells after three generations are denoted

by the letters A-H. (b) The observable system shown as a collection of sets associated

with the distinct clones a-m to which the cells A-H belong.
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variants which it might carry are unchanged in size. However, since we are now inter-

ested in accounting for the arrival of any new variants – no matter their location in the

genome – the asymmetric division will play a much greater role: even if existing clones

do not change in size due to such an occurrence, the daughter cell that remains in the

HSC pool still has a probability of acquiring new mutations, which in turn adds new

clones to the system.

One important question that arises then is whether the mutation rate is the same

for the asymmetric division as for the symmetric case. Given that during normal cell

divisions both the original and copied DNA strands are distributed randomly among the

two daughter cells [2], a naive guess would be to take the same rate per daughter cell.

However, the immortal strand hypothesis – for which some evidence exists [111, 141] –

posits that HSC cell divisions include a mechanism for conserving the original strand

within the non-differentiating daughter cell. In our model, this would imply a lower

mutation rate for variants arising during asymmetric divisions. Given that this theory

currently remains a subject of some debate [134], we will take the simplest approach and

assume the (per daughter) mutation rates are equal in symmetric and asymmetric divi-

sions, though it is worth keeping in mind that this can be improved upon in the future,

when a clearer picture of asymmetric HSC divisions exists. On the other hand, there

is no reason to assume the rates at which these divisions occur are in any way related,

so that we will need to introduce a new parameter to denote the asymmetric division rate.

To avoid confusion let us briefly restate the mechanics of our now extended Moran

model to include asymmetric divisions. In Section 4.2 we introduced the possible events

occurring for a single cell in the HSC pool as self-renewal (symmetric division where

both daughter cells remain HSCs), symmetric differentiation, and asymmetric division

(where we ignored cell death or senescence). Recall that in the Moran model we take

every self-renewal to occur simultaneously with a symmetric differentiation, and moving

to a real time picture we have opted to take these Moran events – one self-renewal and

one symmetric differentiation – as Poisson distributed, so that they occur with fixed a
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probability rate ρ per cell in time. Furthermore, adding asymmetric divisions we include

another Poisson process occurring with a different rate φ per cell. From Section 3.1.2 we

know that we can restate the two independent occurrences as a single Poisson process

coupled with a probability, so that alternatively we can introduce λ = ρ+φ as the total

rate of events, and p the probability of an event being an asymmetric division, i.e.:
ρ = λ(1− p)

φ = λp
(6.1)

Note that λ is not to be confused with a “total division rate” which, as discussed in

Section 4.3.3, does not exist for this model in the sense of a Poisson process. Still, we

may also wish to think in terms of the average number of total divisions – i.e. of any

kind – in a unit time. This takes the form λ̃ ≡ 2ρ + φ (since each symmetric Moran

event contains two divisions), though one should keep in mind that it does not describe

the rate of a Poisson process for divisions.

Depending on the context either the (ρ, φ) or the (λ, p) notation might be more con-

venient, and both will be used interchangeably throughout this chapter. Finally, since

all cells act independently, we may state that in the total population simultaneous sym-

metric self-renewals and differentiations occur at rate Nρ = Nλ(1− p) and asymmetric

divisions at rate Nφ = Nλp. For reference, the parameters associated with this model

are given in Table 6.1.

6.3. Testing with simulations

While the main goal of this chapter is to derive expressions for the dynamics of certain

quantities related to the clonality of the HSC pool, it will prove useful to have a mech-

anism for testing the results obtained here. To this end we will make use of a direct

simulation of the Moran based dynamics described above – developed by Marius Möller

(Queen Mary University of London, School of Mathematical Sciences) – that performs

a Gillespie style algorithm to stochastically evolve a population of individual HSCs and

the variants they accumulate. The specifics of the simulation are described in Appendix

103



6. Subclonal dynamics in hematopoietic stem cells

parameter name description

N Total number of cells in the HSC pool

ρ Rate of self-renewal/differentiation events per unit time

φ Rate of asymmetric divisions per unit time

λ Total rate of Poisson events per unit time

p Probability of event being an asymmetric division

µ Rate of mutation accumulation per daughter cell per division

Table 6.1.: Parameter names and description used in extended Moran model.

A.2. A result of this simulation can thus be considered to be a single possible trajectory

of a system which obeys the previously described dynamics exactly. In particular, it

allows for observations of the form exemplified in Figure 6.1, so that we may run such

ensembles of simulations to test the validity of the results obtained hereafter.

6.4. The single cell mutational burden

Mutations accumulate within the HSC pool as time passes and cell divisions continuously

occur. As such we expect the mutational burden (the number of mutations present) to

increase, both in the entire population as well as in each cell separately. However, due to

the stochasticity in divisional events and mutation occurrence, the number of mutations

found in each cell may vary, as can be seen from the example in Figure 6.1a. Still, we

can attempt to find the probability distribution for the burden in a single cell using the

assumptions made in Section 6.2.

6.4.1. Mutational burden as a compound Poisson process

Consider a single HSC carrying mc variants in an adult individual. If we were to somehow

“rewind the tape” and watch this particular cell’s life in reverse, we would witness it
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undergoing a great number of cell divisions – during each of which a random number

of mutations occurred – all the way back to its ancestral zygote that contained the

pristine reference genome. Now if we somehow knew the number of divisions yc this cell

underwent as well as the number of mutations xi that occurred during each division, we

could write the mutational burden as the sum:

mc =

yc∑
i=1

xi (6.2)

In our stochastic picture both yc and xi are random variables, so that the distribution of

mc will depend on the distributions of yc and xi. In Section 4.2 we have already argued

for taking both as Poisson distributed, and thus mc follows a distribution known as the

compound Poisson, which is a sum over random variables whereby the number of terms

in the sum is Poisson distributed. It can be shown (see Appendix A.3) that the mean

and variance of this distribution are given by:

E(mc) = E(yc)E(xi) (6.3)

Var(mc) = E(yc)E(x2
i ) (6.4)

Whereby we have already seen that for a Poisson distribution the mean and variance are

both given by the process’ rate ((3.17) and (3.18)). In the previous section we argued

for taking identical per daughter cell mutation rates for symmetric and asymmetric

divisions, and thus all xi are Poisson distributed with fixed rate µ. To find the number

of divisions yc undergone by the cell we can sum in (6.2) into two parts:

mc =

sc∑
i=1

xi +

ac∑
j=1

xj (6.5)

where sc and ac are the number of self-renewal and asymmetric divisions which occurred

in the cells past. While from Section 6.2 we know ac is Poisson distributed with rate φ, we

might naively take sc ∼ Pois(ρt) as well. However, since a symmetric division introduces

two new HSCs, the total increase in mutational burden in the population comes from

two xi ∼ Pois(µ), which on average results in an effective rate for sc of 2ρ. Since we

may combine the two Poisson processes (see Section 3.1.2) we have yc ∼ Pois([2ρ+ φ]t),
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and can write the mean and variance as

E(mc) = (2ρ+ φ)tµ (6.6)

Var(mc) = (2ρ+ φ)t(µ+ µ2) (6.7)

Obtaining an analytical form of the probability distribution of (6.2) is difficult, however,

its moments are easily calculated, and if the rates ρ, φ, and µ are known it can also be

sampled. On the other hand, given that the manner in which we arrived at the effective

division rate was not entirely rigorous, let us for completeness take another approach to

obtain the probability distribution by evolving a Markov chain.

6.4.2. Markov chain approach

The state space we are interested in evolving is the histogram of single cell mutational

burdens. We thus define the function:

ñ : (M⊂ N)× (T ⊂ R)→
(
Ñ = 0, 1, . . . , N ⊂ N

)
m, t 7→ ñm(t)

(6.8)

which maps the number of mutations m at a time t to the number of cells ñ in the

population with m mutations; we can think of it as the histogram of mutational burdens

of all individual cells. If we know its shape at a time t0, for example ñ(m) = 0, ∀m ∈M,

given a set of transition rates we can evolve it in time. According to our model, the

occurrence of self-renewal/differentiation evens at rate ρ and asymmetric divisions at rate

φ are what change the state of the system. For a single event, each has the following

effect:

(i) Symmetric self-renewal and differentiation

• The differentiating cell with ma mutations is removed and thus decreases ñma

by 1:

ñma → ñma − 1, for one ma ∈M selected with probability qma = ñma/N .

• The self-renewing cell with mb mutations is removed and thus decrease ñmb

by 1:

ñmb
→ ñmb

− 1, for one mb ∈M selected with probability qmb
= ñmb

/N .
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6.4. The single cell mutational burden

• A new daughter cell with u new mutations is added to ñmb+u:

ñmb+u → ñmb+u + 1, for one u ∈ N selected with probability pu = Pois(u;µ)

• A new daughter cell with v new mutations is added to ñmb+v:

ñmb+v → ñmb+v + 1, for one v ∈ N selected with probability pv = Pois(v;µ)

(ii) Asymmetric division

• The dividing cell with ma mutations is removed and thus decreases ñma by

1:

ñma → ñma − 1, for one ma ∈M selected with probability qma = ñma/N .

• A single daughter cell with u new mutations is added to ñmb+u:

ñmb+u → ñmb+u + 1, for one u ∈ N selected with probability pu = Pois(u;µ)

While these changes might be used to find the transition probability to any possible state,

this problem is high dimensional, since ñm varies probabilistically in Ñ = 0, 1, . . . , N

for all possible m ∈ N. Obtaining the probability distribution for mc is much simpler

though, as it should be realized by the normalized histogram ñm in the limit of infinite

cells. Thus we introduce the function nm(t):

n : (M⊂ N)× (T ⊂ R)→ (N = [0, 1] ⊂ R)

m, t 7→ nm(t)
(6.9)

which is similar to ñ except now the image is in R, since the normalized histogram is not

an integer function. In this limit of infinite cells nm(t) can be interpreted as the average

over all cells in ñm(t) for burden m, and the probabilities qm and pk as the fractions of

cells undergoing their respective events. Thus evolving nm(t) we have for each division

event:

(i) Symmetric self-renewal and differentiation

• differentiation: nm → nm − qm : ∀m ∈M

• self-renewal: nm → nm − qm : ∀m ∈M

• daughter cells: nm → nm + 2qk pm−k : ∀k ∈ 0, 1, 2, . . . ,m

(ii) Asymmetric division
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6. Subclonal dynamics in hematopoietic stem cells

• differentiation: nm → nm − qm : ∀m ∈M

• daughter cell: nm → nm + qk pm−k : ∀k ∈ 0, 1, 2, . . . ,m

These changes can be summarized in a master equation, which using the rates ρ and

φ, and qm = nm/N and pk = Pois(k;µ), becomes

N

2ρ+ φ

dnm(t)

dt
= −nm(t) +

m∑
k=0

nk(t)Pois(m− k;µ) (6.10)

While this differential equation can be solved numerically to find the distribution at a

future time, the sum on the right hand side can become extremely long. However, if the

mutation rate µ is low, the Poisson distribution Pois(m − k;µ) goes to zero quickly, so

that in practice only a small number of terms need to be taken into account.

6.4.3. Discussion: single cell mutatational burden

To test the results of Sections 6.4.1 and 6.4.2 we can compare them with direct single

cell simulations of the Moran model, as discussed in Section 6.3. Since we do not have

the exact probabilities for the compound Poisson, we instead sample a large number of

values from it – by sampling from the Poisson distributions for yc and xi in (6.2) – as

its histogram converges to the true probability distribution. A comparison of the three

methods is shown in Figure 6.2, which confirms they all produce the same result. Given

the symmetry of the resulting distribution, at first glance it may appear to have a shape

similar to that of a Poisson distribution, however we can see from (6.6) and (6.7) that

this is not the case: the Poisson distribution has equal mean and variance, whereas the

variance we have derived for the burden is a factor 1 + µ2 higher. Furthermore, it is

worth noting that burden distribution does not depend on the size of the population

N . In fact, for a specified time t, it is entirely determined by the mutation rate per

cell division µ and the quantity 2ρ + φ, which happens to be the total division rate λ̃

introduced earlier.

108



6.5. The variant allele frequency spectrum (VAF)

Figure 6.2.: Distribution of the single cell mutational burden for a HSC population with

parameters N = 500, ρ = 2.5, φ = 2.5, µ = 1.5, and t = 50. The simulation histogram is

the average of 100 simulations, the compound Poisson distribution is found by sampling

equation (6.2) 106 times, and the Markov chain solution is found from evolving (6.10).

6.5. The variant allele frequency spectrum (VAF)

We have seen that the single cell mutational burden contains useful information about

the system dynamics such as the mutation and division rates. However, as previously

discussed, it is a reduction of the complete state of the system and therefore does not

use all of the information encoded in an observation. We now turn to another mea-

surable quantity that is often used to characterize a population’s clonality: the variant

allele frequency (abbreviated as VAF), which describes the number of variants having a

particular frequency in the population:

ṽ : F = 1/N, 2/N, . . . , 1 ⊂ Q → Ṽ = 0, 1, 2, . . . , V ⊂ N

f 7→ ṽf

(6.11)

Where V is the total number of variants in the population. Take as an example the

system in Figure 6.1, from which the VAF can be obtained by counting the number of

cells found in each of the 13 clones, and then distributing the clones into a histogram

where each bin conforms to a fraction of cells in the population: ṽ1/8 = 7, the number
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of variants (g, h, i, j, k, l,m) containing only one cell, ṽ2/8 = 4, the number of variants

(c, d, e, f) containing two cells, and so forth.

6.5.1. Dynamics of the VAF expected value

The state space of the VAF is again of high dimensionality: for each frequency f ∈ F

there are V available values, meaning that a single state in the complete space conforms

to one possible combination of values for every f . Because of this a probability distribu-

tion for the entire space is both difficult to construct and unwieldy to analyze. However,

we can attempt to find the expected value of ṽf for each frequency at a specified time t

– which takes the form of a single “average” VAF – by constructing a (continuous-time)

Markov chain in a similar manner as we did for the single cell mutational burden in

Section 6.4.2). To this end, we introduce vf (t) = 〈ṽf 〉 at time t:

v : (F = 1/N, 2/N, . . . , 1 ⊂ Q)× (T ⊂ R)→ V ⊂ R;

f, t 7→ vf (t)
(6.12)

as the expected VAF at time t. To obtain the dynamics of vf (t), we note that we have

already derived the dynamics of a single clone in Section 4.3.2. Given that only the

symmetric self-renewal/differentiation events influence the sizes of existing clones, the

probability Pk(t) of a single clone having size k varies according to (4.5). Now if we take

a population in which a large number of clones exist, if the clones evolve independently

(we will discuss this supposition more in detail later) we can interpret the transition

probability of a single clone going from size k to l as the expected fraction of clones at

k going to l. In other words, the infinitesimal-time dynamics of vk/N(t) are given by the

transitions pkvk/N (t). However, we must still account for the arrival of new clones in

the system. Specifically, each self-renewal event introduces on average 2µ new clones at

state f = 1/N , while each asymmetric division introduces an expected µ variants, so

that in time we expect the state f = 1/N to increase at rate N(2ρ+ φ)µ on top of the
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existing clonal dynamics. Thus, finally we obtain:
dvm/N (t)

dt
= Nρ

[
pm−1vm−1/N(t)− 2pmvm/N(t) + pm+1vm+1/N(t)

]
dv1/N(t)

dt
= Nρ

[
p0v0(t)− 2p1/Nv1/N(t) + p2/Nv2/N(t)

]
+N(2ρ+ φ)µ

(6.13)

where

pm =
m

N

(
1− m

N

)
(6.14)

Diffusion approximation

As discussed at the end of Chapter 4, such a set of differential equations can become

unwieldy to solve, even numerically, if the population size N is large. Fortunately, we

may resort to the diffusion approximation to recast the system as a partial differential

equation in a continuous state space X = [0, 1] ∈ R. We introduce the function

v : X × T 7→ V; x, t 7→ v(x, t) (6.15)

which represents the VAF in the continuous frequency space picture. We have seen that

the dynamics of a single clone are given by (4.18), though we must now also include the

incoming flux of clones. To this end the source term in 6.13 can be replaced by a Dirac

delta function, so that we obtain:

∂v(x, t)

∂t
=

ρ

N

∂2[x(1− x)v(x, t)]

∂x2
+ δ(x−N−1)N(2ρ+ φ)µ (6.16)

While we have no analytical solution for this expression, numerical approximation tech-

niques can be applied, which prove to be much faster than solving (6.13).

6.5.2. Dynamics of the VAF variance

While we have obtained an expression for the time evolution of the expected value of the

VAF, it would be useful to have information on how a single experiment might deviate

from vf (t). In particular, we would like to know the variance of the VAF for each state

f ∈ F at a future time, which we will denote as rf (t). This is not easily done from the

probabilities dynamics of Section 4.3.3 which we used to derive nm(t) and vf (t), and so
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we will take a different approach here. Unfortunately this attempt will ultimately fail,

however, the reason for its failure will in itself provide an interesting perspective, which

is why it is included here.

Denote the exact number of variants in the system with frequency f (or size k = Nf)

at time t by Vf (t) (the VAF at t is thus given by the Vf (t) for all f ∈ F). We might

write this as an integral over time:

Vf (t) =

∫ t

τ=0
dYf (t− τ) (6.17)

where dYf (t− τ) is the number of variants which appeared in the time span [τ, τ + dτ ]

and have size f at t. This quantity is in itself another sum which we can write as

dYf (t− τ) =

M(dτ)∑
i=1

Fi(t− τ) (6.18)

where the sum goes over all variants i that arose in [τ, τ + dτ ] – the total number of

which is in itself a random variable given by M(dτ) – and where Fi(t − τ) = 1 if that

variant has size f at t and Fi(t− τ) = 0 otherwise. Or more concretely, we have:

F (t− τ) =


1 probability Pf (t− τ)

0 probability 1− Pf (t− τ)
(6.19)

which is a Bernoulli distribution (with Pf (t) the probability found from evolving the

continuous time Moran Markov chain 4.5), and also

M(dτ) =

Q∑
i=1

mi (6.20)

with the number of divisions occurring in dτ given by Q ∼ Pois(N(2ρ + φ)dτ) and

the number of mutations per division by mi ∼ Pois(µ). This is a compound Poisson

distribution, which we already know from (6.3) can be written as
E(M(dτ)) = N(2ρ+ φ)µdτ

Var(M(dτ)) = N(2ρ+ φ)(µ+ µ2) dτ
(6.21)
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As a test of this derivation we might first look at vf (t), the expectation value of Vf (t),

since we have already derived this in another manner earlier. For the expectation value

we may write

vf (t) = E(Vf (t)) =

∫ t

τ=0
E(dYf (t− τ)) (6.22)

Using the law of total expectation we have for the sum of expected values:

E(dYf (t− τ)) = E(M(dτ))E(F (t− τ)) (6.23)

with the same holding for the compound Poisson:

E(M(dτ)) = N(2ρ+ φ)µdτ (6.24)

so that

E(dYf (t− τ)) = N(2ρ+ φ)µPf (t− τ) dτ (6.25)

and thus finally

vf (t) = E(Vf (t)) = N(2ρ+ φ)µ

∫ t

0
Pf (t− τ) dτ (6.26)

= N(2ρ+ φ)µ

∫ t

0
Pf (τ) dτ (6.27)

In order to calculate this expected value we take its derivative to obtain an expression

which we may evolve numerically:

dvf (t)

dt
= N(2ρ+ φ)µPf (t) (6.28)

We may test that this gives the same result as (6.13), which is shown in Figure 6.3.

However it is clear this expression is computationally more expensive, as it requires the

simultaneous evolution of both vf (t) as well as Pf (t).

We may now apply the same approach for the variance, however, taking the variance

inside the integral requires the additional assumption of independence of the dYf (t):

vf (t) = Var(Vf (t)) =

∫ t

τ=0
Var(dYf (t− τ)) (6.29)
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To find the integrand we use the law of total variance to write:

Var(dYf (t− τ)) = Var

(
M∑
i=1

Fi(t− τ)

)
(6.30)

= E(Var[dYf |M ]) + Var(E[dYf |M ]) (6.31)

= E(M Var[F ]) + Var(M E[F ]) (6.32)

= E(M)Var(F ) + (E[F ])2Var(M) (6.33)

Plugging in the variance and expectation values of M (compound Poisson distribution)

and F (Bernoulli distribution) this becomes:

Var(dYf (t− τ)) = N(2ρ+ φ)µ
[
Pf (t− τ)− P 2

f (t− τ)
]
dτ

+ [N(2ρ+ φ)](µ+ µ2)P 2
f (t− τ) dτ

= N(2ρ+ φ)
[
µPf (t− τ) + µ2P 2

f (t− τ)
]
dτ

(6.34)

We can now once again write a differential form to evolve rf (t):

drf (t)

dt
= N(2ρ+ φ)µ

d

dt

[∫ t

0
Pf (t− τ) dτ + µ

∫ t

0
P 2
f (t− τ) dτ

]
(6.35)

= N(2ρ+ φ)µ
d

dt

[∫ t

0
Pf (τ) dτ + µ

∫ t

0
P 2
f (τ) dτ

]
(6.36)

So that finally

drf (t)

dt
= N(2ρ+ φ)µ

[
Pf (t) + µP 2

f (t)
]

(6.37)

Comparing this prediction with an ensemble of simulations, we can see from Figures

6.3a and 6.3c that it greatly underestimates the true variance across many realizations.

However, we saw earlier that the same method did succeed in predicting the expected

value. So what went wrong? The difference lies in the very first step of this derivation,

(6.22) for the expected value versus (6.29) for the variance. Taking the variance operator

into the integral required the assumption of independent evolution of clones, whereas

the expected value did not. Thus our approach succeeded for the expected value because

it is a linear operator irrespective of the dependence of its operands (while the variance

only acts linearly if its operands are independent).
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(a)

(b) (c)

Figure 6.3.: Comparison of the mean Vf and standard deviation σ for the single cell

simulation (averaged of 500 simulations), the Markov chain evolved expected value vf (t)

from (6.16) and (6.28), and the evolved variance estimate rf (t) from (6.37). (a) The

standard deviations are shown as the positive and negative displacement from the expected

value, i.e. Vf±σ and vf (t)±
√
rf (t). (b-c) Direct comparisons of the mean and variance

between the simulations and the evolved predictions.
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6.5.3. Equilibrium distributions

While we now have a method for obtaining the expected VAF of the system at any point

in time, it is worth wondering whether equilibrium solutions exists for this quantity.

Since the partial differential equation representation (6.16) takes the form of a diffusion

with absorbing boundaries coupled with a source term, our intuition might tell us that a

state could exist where the incoming flux of variants exactly balances the amount being

lost to the boundaries (variants which fixate or go extinct), though the boundary states

f = 0 and f = 1 would still continue to increase. In fact, this problem has been studied

before [REF], and it can be shown that for a fixed population

veq(x, t) = (2 + φ/ρ)µ
1

x
(6.38)

if the system is in equilibrium. We can check this result with our approach by evolving

a system for a long time t → ∞, as shown in 6.4a. We note that the system indeed

converges to the ∼ 1/f distribution over time, with the property that the low frequency

variant number stabilize sooner than those at high frequency, as shown in Figure 6.4b.

6.5.4. Discussion: VAF

From the diffusion approximation (6.16) we have seen that the dynamics take the char-

acter of a diffusion process with an added source term. Furthermore, if a system is in a

state with few variants, over time it will evolve towards an equilibrium of the VAF (if the

boundaries are excluded), where the incoming flux of clones completely balances they

clones lost to extinction and fixation. Let us briefly consider the implications of these

findings. The diffusion term in (6.16) drives the system’s evolution towards equilibrium,

meaning that – similar to the single clone picture – increasing the rate of self-renewals ρ

speeds up the overall rate of expansion, whereas increasing the population size N slows

this down. The equilibrium distribution (6.38) on the other hand is mostly determined

by the source term, being independent of N , and ρ only appearing to limit the contri-

bution of φ. Clearly higher mutation or asymmetric division rates result in equilibrium

distributions with more variants, as shown in Figure 6.4c.
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(a)

(b) (c)

Figure 6.4.: Sparsely populated VAFs evolve to an equilibrium over time. (a)

For a population with parameters values N = 500, ρ = 1.0, φ = 5.0, and µ = 5.0, as the

time t increases vf (t) approaches its predicted equilibrium (6.38). (b) Lower frequency

states of the VAF converge relatively faster to the equilibrium distribution. (c) Expected

VAF vf (t) for three populations with N = 500, ρ = 1.0, φ = 5.0, and differing mutation

rate µ. The full lines the denote vf (t) after a time t = 200, while the dotted lines denote

the expected equilibria.
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It may seem a bit paradoxical that we obtain an equilibrium distribution for the

spectrum of mutations while we showed earlier that the single cell burden increases

indefinitely (6.2). The subtle distinction to be made here is that we have ignored the

boundaries of F = [0, 1] when defining the equilibrium VAF, but did no such thing for

the single cell burden. While variants that have gone extinct are of course no longer

present, any fixated mutations still are, which is something that we did not take into

account in the derivation of (6.2). It is straightforward to see how we might account

for these, by taking the fixation probability of a single mutant over time as the fraction

of mutants that are lost. However, we will leave such a treatment for possible future

development.

6.6. The sampling problem

If we wish to compare our predictions to a dataset, complications arise if the sampled

data does not cover the entire population. A naive guess might be that sampling simply

reduces the accuracy with which we can determine the stochastic distributions, an in-

tuition which is true for some quantities. Taking for example the single cell mutational

burden, we have found that the probability of a single cell carrying m variants follows

a compound Poisson distribution; so that whether our sample contains one tenth, one

hundredth, or one thousandth of the total population, the distribution from which we

are sampling remains the same and thus the sample size only influences the resolution

with which we observe it. This is not the case for the VAF, however, as we will see

shortly, making it necessary to quantify in what manner sampling causes the observed

VAF to differ from that of the complete population.

First let us revisit the set oriented perspective of the system introduced in Section

6.1. With a population of N cells Ci ∈ N , we can denote the variants as subsets

Vj ⊆ N with sizes nj corresponding to the number of cells they contain. Now, taking a

random sample of S(< N) cells from this population is akin to taking a subset S ⊂ N .

Denote Uj as the set of cells belonging to the variant Vj that are sampled into S, i.e.
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Uj = S ∩ Vj . Depending on the realization of the sampling, the size sj of Uj can be

anywhere between 0 – if none of its cells are sampled – and nj – if all of its cells are

sampled. The random variable sj can be phrased as the sampling process of obtaining

sj successes after S draws with replacement, for which the probability distribution is the

well-known hypergeometric distribution [45]. In particular, the probability P{s | n} of a

variant of size n in N being sampled to size s in S is given by

P{s | n} =

(
n

s

)(
N − n
S − s

)
(
N

S

) (6.39)

Denoting vn as the number of variants with size n (frequency n/N) in N – i.e. the VAF

in the true population – we can write for the number of variants with size s in S

us =

N∑
n=s

vn · P(s | n) (6.40)

which is the VAF of the sample. We can see from Figure 6.5 that sampling indeed affects

the shape of the expected VAF, as opposed to the single cell mutational burden where

it does not.
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Figure 6.5.: The effect of sampling on the observable VAF. A population with

parameters N = 200, ρ = 1.0, φ = 4.0, and µ = 5.0 is evolved for a time t = 40 and

then sampled to an observation of S = 50 cells. The curves shown for the simulations

are the average of 500 trajectories, each evolved stochastically according to the model

and then sampled randomly. The expected values vf (t) are calculated with (6.13) and

sampled according to (6.40), while the equilibrium states are projected by (6.38) and

sampled through (6.40). Both the dynamical and equilibrium states are affected by the

sampling.
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6.7. Applications to a human HSC dataset

In the previous section of this chapter we have found a number of methods for predicting

the clonal evolution of the hematopoietic stem cell pool, based on the assumption of

stem cell behavior following Moran-like dynamics. In this section we test our model by

comparing its results to a dataset of human HSCs containing information on mutational

variants. In particular, we wish to determine on the one hand to what extent the data

qualitatively fits with the mathematical predictions, and on the other whether we can

infer quantitative properties (such as parameter values) of the system by an appropriate

fitting.

6.7.1. Data: somatic mutations in single HSCs

The dataset used here was created by H. Lee-Six et al. [78] and is publicly available.

It contains high resolution mutational information on the frequency of some 90’000

mutational variants found in a sample of 89 singly identified HSCs drawn from the bone

marrow and peripheral blood of a 59 year old male. The experimental design provided

an accurate method for assessing the mutational burden of the individual cells without

the risk of false positives inherent in single cell sequencing techniques. First a cohort of

hematopoietic stem and progenitor cells (though we are only interested in the former)

were identified from samples by sorting based on known cell surface markers [103], with

the HSCs characterized by a CD34+ CD38− CD90+ CD45RA− profile. All individual

cells were then separately cultured to obtain colonies that were bulk sequenced at high

depth (around 15×), allowing for the accurate detection of somatic mutations that were

present in the originally extracted stem cells, as these would be the variants present

at frequency 1 in each colony. Thus the authors obtained distinct mutational profiles

for 89 individually identified hematopoietic stem cells, an observation equivalent to the

example previously discussed in Figure 6.1. These can be visualized as a boolean matrix,

which for each cell denotes which of the observed variants it carries.
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6.7.2. Single cell mutational burden

We first look at the single cell mutational burden, the distribution of which is shown in

Figure 6.6. At this point we have no knowledge of the parameter values which best fit our

model, however from (6.6) and (6.7) we know that the compound Poisson distribution

is completely determined by its mean and variance, so that we may write

(2ρ+ φ)t =
E(mi)

2

Var(mi)− E(mi)
(6.41)

µ =
Var(mi)− E(mi)

E(mi)
(6.42)

with the mi the single cell burdens in the dataset. Note that both the mutation rate

and the total rate of divisions are completely determined by the data, for which we find

the values µ = 4.3 mutations per division per daughter cell and – using the fact that

the donor was 59 years of age at the time of measurement – 4.2 divisions per year per

cell. The mutation rate is somewhat higher than the 1.2 estimated by Lee-Six et al.

using a different method, and the 1.14 estimated in another study using this dataset

[145], though the order of magnitude is the same. The expected 18.1 mutations per year

fits well with another study performed recently by Osorio et al. where this value was

estimated at 14.2 ± 8.1 [105]. Furthermore, from Figure 6.6 we see that the compound

Poisson provides an excellent fit for the observed burden distribution, whereas a simple

Poisson distribution – what we might consider the naive guess – fails to match the

observation.

6.7.3. Variant allele frequency spectrum: fitting parameters with

Approximate Bayesion Computation

Having extracted the mutation rate µ, let us now turn to the VAF. In our model the

current state of the system is determined by four parameters given in 6.1 – N , λ, p, µ

– and the elapsed time t. However, since the data we work with forms only a (small)

sample of the total population, we have seen in Section 6.6 that we must also take this

sampling into account, meaning that we have a sixth parameter for the sample size S.

Of these, the elapsed time and the sample size are known from the experiment, and the
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6.7. Applications to a human HSC dataset

Figure 6.6.: Single cell mutational burden of the Lee-Six dataset. The distri-

bution of burdens for the 73 bone marrow derived stem cells in the dataset is shown, the

mean and variance of which are used to fit the compound Poisson distribution through

(6.41) and (6.42). As a contrary example, a Poisson distribution obtained by a least-

squares fit to the data is shown as well, which clearly underestimates the variance of the

true distribution.
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6. Subclonal dynamics in hematopoietic stem cells

Figure 6.7.: Variant allele frequency spectrum of the HSCs in the Lee-Six et al. dataset.

The shape of the distribution differs strongly from the ∼ 1/f form associated with an

equilibrium VAF, implying that the system has not yet reached the equilibrium state.

mutation rate and total division rate (λ̃) have already been derived from the distribution

of single cell mutational burdens, leaving only two unknown parameters: the fraction of

“within HSC pool” divisions that are asymmetric p and the population size N . While

the latter has been estimated some few times in the past [32, 78](including the original

work by Lee-Six et al. using this dataset), the former has proven more elusive to gauge,

meaning its value would be of particular interest. Before attempting to fit the model,

we might first check whether an equilibrium state has been reached, since if this is the

case the prediction for the VAF simplifies greatly – the true VAF of the total population

should be proportional to 1/f with the slope given by Nµ, as described in Section 6.5.3,

while the the sampled VAF would be found by applying (6.40) to this. From Figure 6.7

it is clear that this is not the case, meaning that the HSC pool of the dataset is still in

a dynamically evolving regime.

Instead we may attempt to fit the free parameters through (6.13) or (6.16). One

approach to this is to apply a Monte Carlo type of method, where the master equation
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6.7. Applications to a human HSC dataset

is evolved a large number of times for randomly chosen pairs of values for p and N , and

the resulting VAFs which best match the data are recorded. A simple method known as

approximate Bayesian computation (ABC) provides a convenient scheme for this [116,

130]: given a metric for characterizing the distance between the reference ṽ(x, t) (e.g. the

VAF obtained from the measurement) and a predicted vi(x, t) generated by the model

and a parameter pair (Ni, pi), it is straightforward to visualize which pairs fall within a

chosen distance ε. The question remains whether a single unique (N, p) pair determines

v(x, t), or if other combinations might exist leading to the same result. Rewriting the

diffusion picture (6.16) in terms of λ and p

∂v(x, t)

∂t
=
λ(1− p)

N

∂2[x(1− x)v(x, t)]

∂x2
+ δ(x−N−1)Nλ(2− p)µ (6.43)

we can see that for a fixed time t the asymmetric fraction p and the population size N

should decouple, since in the diffusion term they appear in the numerator and denom-

inator respectively, whereas in the source term they are both proportionality factors.

However, when comparing to data we must also account for sampling, and it is not

immediately clear from (6.40) whether this decoupling remains true; or in more mathe-

matical terms: we do not know whether this functional is injective (i.e. no two vi(x, t)

and vj(x, t) can map to the same vs(x, t)) if we ignore the states k = 0 (lost variants) and

k = S (fixated variants). As a simple test for this we can take an expected VAF evolved

with a known parameter set as reference, to see whether the ABC method converges to a

unique (N, p) pair. Taking as a distance metric the sum of the squared relative distances

of each frequency in the VAF

di =
∑
f

(
vi(f, t)− ṽ(f, t)

vi(f, t)

)2

(6.44)

the results of this are shown in Figure 6.8a where no sampling is performed and Fig-

ure 6.8b for a sampled experiment. The correct parameters can clearly be found before

sampling, however after this step we observe the ABC to converge to a line in the pa-

rameter space, indicating that some information may indeed be lost during sampling.

Even if a unique set of parameters cannot be found, achieving a reduced parameter

space such as found in figure Y is a useful result. However, there is another problem
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6. Subclonal dynamics in hematopoietic stem cells

(a) (b)

Figure 6.8.: Inferring parameter values through ABC fitting. (a) A reference

VAF vf (t) constructed through (6.13) was used to infer parameters N = 300 and p = 0.75

using an ABC algorithm. (b) A reference VAF ṽf (t) constructed through (6.13) and

sampled with (6.40) to size S = 89 was used to infer parameters N = 1100 and p = 0.67

using an ABC algorithm.

that arises when using a dataset as reference, which related to the chosen distance

metric di. Where in the previous example the model solutions were compared to an

exact result of the expected VAF, in reality the the observed VAF is subject to stochastic

fluctuations with respect to its expected value, the strength of which are characterized by

the process’ variance. Furthermore, we have seen earlier that the variance r(f, t) grows

with increasing f , meaning that we expect greater uncertainty at higher frequencies.

While the distance di in (6.44) is a sum over all points in the frequency space F , is does

not take into account the expected variation for each point. For example, a fluctuation of

5% might be highly improbable for some state fi, but completely reasonable for another

fj . A much better metric therefore would be:

di =
∑
f

(
vi(f, t)− ṽ(f, t)

ri(f, t)

)2

(6.45)

which takes into account the likelihood of deviation at each point f ∈ F . However now

the problem is clear: we do not yet have a correct method for obtaining the variance of
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6.8. Conclusions and perspective

a solution other than running a great number of simulations, which is too inefficient for

the purpose of sampling numerous parameter sets through the ABC scheme.

6.7.4. Discussion: applications to a dataset

It is clear that the application of this simple model to datasets with high resolution

information on the somatic mutational burden of HSCs can provide useful insights into

the stem cell behavior. In particular, using the model’s projected distribution of single

cell mutational burdens we have estimated the rate of mutations per division at 4.3

per daughter cell – which is on the order of magnitude as other recent estimates [145,

78] – and the average number of divisions (including both symmetric and asymmetric

divisions) per HSC at 4.2 per year. Furthermore, we have shown that the variant allele

frequency spectrum of the HSC population is in a dynamically evolving state before

equilibrium. In principle this state could be fit to the model’s prediction for the expected

value of the VAF through any Monte Carlo style procedure, however we have shown that

this would require an exact prediction of the variance of the VAF, which we do not have

at this time.

6.8. Conclusions and perspective

In this chapter we have extended our inspection of mutations in the hematopoietic stem

cell pool from considering a single variant to approaching the entire network of clonal

relationships. This more detailed picture of clonality has proven useful for testing our

assumptions of the system and estimating the fundamental quantities related to its

behavior. From the few basic assumptions of our model established in Chapter 4 we

obtained predictions for the distribution of single cell mutational burdens in the popu-

lation, as well as the expected form of the variant allele frequency spectrum, however,

using a similar method to predict the variance of the VAF failed. This might be an

indication that separate clones do not evolve independently – an assumption which we

showed was implicit in the variance calculation, but not in the expected value – so that
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6. Subclonal dynamics in hematopoietic stem cells

a different approach is required.

It is worth noting that up to this point we have still ignored a few key aspects of

the hematopoeitic stem cell pool which are worth investigating in future work. First

of all, we have not taken into account the ontogenic growth of the HSC pool, i.e. the

fact that from birth to adulthood the population must increase in size. This can have

a significant influence on the expansion of mutations arising early on, as they occur in

a smaller population in which we have shown it is easier to reach higher frequencies.

Such mosiac mutations are in fact well studied phenomena, given their importance in

genetically acquired diseases [66]. Thus investigating the effect of an initial growth phase

in which the population increases may be worth the effort.

The second process we have ignored is the possibility of cell death or senescence in

the population, which is known to occur as the HSC compartment ages [51, 65]. In

particular it has been shown that the genetic diversity of blood cells decreases with age,

with senescence hypothesized as a major contributor to this phenomenon [121].

Finally, throughout our treatment we have put little consideration into the possibility

of selective advantages occurring in mutations. Given that we were interested in normal

hematopoiesis it has made sense to ignore these, however, investigating their effect in

the model could find useful applications in understanding the occurrence and dynamics

of cancer [146].
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7. Feedback-driven compartmental

dynamics of hematopoiesis

Arthur Dent: What happens if I press this button?

Ford Prefect: I wouldn’t-

Arthur Dent: Oh.

Ford Prefect: What happened?

Arthur Dent: A sign lit up, saying “Please do not

press this button again.”

— Douglas Adams, The Hitchhiker’s Guide to the

Galaxy

In the previous chapters our mathematical treatment of the hematopoietic system has

been restricted to the study of hematopoietic stem cells. At this point we will broaden

the scope of our interest to consider the cellular dynamics of the entire process, as cells

transition from HSCs through various progenitor stages to the mature types released

into the bloodstream.

Because many blood related disorders – often hereditary in origin – are related to

improper development or problematic behavior in the bone marrow [70], it is imperative

to understand how they influence the cellular dynamics of the system which feeds our

transient population of blood cells. Indeed, we have seen that even a disease which

can be entirely attributed to issues occurring in the HSC pool can in its progression be

influenced by the dynamics of cells outside the stem cell niche, as discussed in Section

5.5. And while current understanding of the hematopoietic architecture is qualitatively

detailed, from specific knowledge of maturation lineages [102, 63] to the identification
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7. Feedback-driven compartmental dynamics of hematopoiesis

of various signaling pathways [113, 75, 50, 71, 4] – its quantitative dynamical nature

remains for the most part unknown, in no small part due to the fact that (as was the

case for hematopoietic stem cells) in vivo studies of the bone marrow cell dynamics

present numerous challenges. Thus a model which projects the developmental process’

dynamics based on the established architecture, both during normal hematopoiesis and

if the system is perturbed, could be very useful in understanding and projecting the

progression of related disorders. At face value this may appear overly ambitious given

the complexity of (and time spent on) the stem cell pool alone, however the goal is once

again to find general principles of the system which may be understood without specific

knowledge of the underlying processes. Indeed, the pyramidal architecture discussed in

Chapter 2 suggests that we may in simplistic terms think of the system as describing a

flow (albeit one with peculiar properties) of cells through various sequentially ordered

states of maturation, originating in the stem cell pool and arriving after a certain number

of steps in a familiar blood cell type. Considering the complex differentiation landscape

the cells pass through (Section 2.2) it seems unlikely that different maturation pathways

(the particular sequence of differentiation “choices” made by a cell developing towards a

particular cell type) wouldn’t differ in various quantitative aspects, such as their number

of divisions between the stem and mature states, or the flux of cells passing through

particular progenitor types. However, the structure of the system in itself presents the

possibility of highly non-linear dynamics, which we can study even while remaining

agnostic as to the specific values underlying different lineages.

In the past decades a handful of mathematical models of hematopoiesis have been de-

veloped to this end [12, 13, 1, 35, 91, 82, 40, 107, 36, 39, 79], however these have typically

been constructed to either describe a particular differentiation pathway in equilibrium

[35, 40] or a specific deregulation caused by disease [26, 38, 39], but not to consider

how the system responds to perturbations in general. Still, one such model developed

by Dingli et al. [35] introduces a simple framework which provides a useful starting

point for examining the cell dynamics. It describes the hematopoietic architecture as

a sequence of compartments (corresponding to increasing “levels” of differentiation and
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loss of pluripotency) which cells pass through during maturation. Unfortunately, the

dynamics as proposed in [35] can only describe the system as it behaves close to equi-

librium, as it contains no interactions with the blood compartment which are known to

exist in reality [57, 96]. To this end we will introduce a conceptually simple extension

to the model, by introducing regulatory feedback mechanisms that allow the system

to react to perturbations, for example a loss of cells due to bleeding or hemolysis (de-

structing of red blood cells). The existence of such feedback loops is not in question,

as there are many cytokines and hormones known to be involved in the regulation of

cellular proliferation and differentiation [75, 50, 71, 4]. However, such regulatory pro-

cesses can often in themselves require complex circuit descriptions for the purpose of

modeling, and introducing such parameter heavy components quickly reduces both the

interpretability as well as the applicability of a model. For this reason we will take

an agnostic approach to their functioning, introducing them as black box components

which require no knowledge of the underlying signaling circuitry. Through this extended

formalism we will study the types of behavior which may occur following perturbations

of both transient (for example bleeding) and chronic (for example PNH) nature, as well

as validate the model using data from a quantitative study on erythrocyte dynamics [58].

Finally, note that in this chapter – as opposed to much of the previous work – we will

for the most part ignore stochastic effects and instead take a deterministic approach.

While the processes of division and differentiation are still assumed to occur with some

level of stochasticity, especially on the level of single cells, for the quantities of interest

here we will simply take their rates of occurrence as deterministic on the population

level.

131



7. Feedback-driven compartmental dynamics of hematopoiesis

7.1. A compartmental model of hematopoiesis

7.1.1. Dingli model

The model of Dingli et al. [35] constitutes our starting point. It describes the maturation

process of hematopoietic cells through a fixed number M of discrete compartments

associated with progressive “levels” of differentiation that all cells traverse before leaving

the bone marrow, as shown in Figure 7.1. As differentiation is assumed to occur in

only one direction (with the cell moving farther from its original multipotent stem cell

state, and closer to a final mature state), higher numbered compartments are sometimes

referred to as being downstream with respect to lower numbered compartments which

are considered upstream. Within each compartment j a cell divides at a predefined

rate rj , where each division is considered symmetric (for simplicity), that is, it gives

rise to two identical daughter cells. These are either exact replicas of the parent – with

probability 1−εj – and thus remain in the current compartment j, or have differentiated

– with probability εj – and thus move to the subsequent compartment j+ 1. From these

assumptions the dynamics of the size (or number of cells within) Nj of a compartment

j are given by:

∂tNj = 2εrj−1Nj−1 − (2ε− 1)rjNj (7.1)

Under homeostatic conditions the number of cells in each compartment should remain

approximately constant in time, while compartment sizes increase toward maturity at a

fixed ratio Nj+1/Nj = η to accommodate the expansion of a small number of stem cells

(N0, of the order of several hundred for humans) to the daily output of the bone marrow

(NM ≈ 1011). This exponential increase is mirrored by the division rates: rj+1/rj = ρ,

while the differentiation probability is taken the same for all compartments: εj = ε.

Values for these parameters can be derived by fixing the initial and final compartment

sizes and division rates, and using the equilibrium requirement ∂tNj = 0. (see Appendix

A.4 for how this is done specifically).
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7.1. A compartmental model of hematopoiesis

Figure 7.1.: Compartmental hematopoiesis model of Dingli et al. Successive

compartments k represent discrete stages of differentiation which cells pass through dur-

ing maturation. The number of cells in a compartment Nk at any point in time is denoted

as its compartment size and increases geometrically with k. Similarly the division rate

rk (= 1/time between replications) in each compartment also grows geometrically with

k. This figure was reproduced from [35].
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7.1.2. Introducing feedback

In order to address the coupling between compartments through feedback, we now alter

the existing formalism. First, we formally describe both types of division – self-renewal

(j → j) and differentiation (j → j + 1) – as independent Poisson processes occurring

with rates vj and sj respectively. From Section 3.1.2 we know that this is equivalent to

the description of Dingli et al. through the relations rj = sj + vj and εj = sj(sj + vj)
−1

(see Appendix A.1 for the detailed proof), so that rewriting the dynamics for the number

of cells in each compartment j (7.1) results in

∂tNj = 2sj−1Nj−1 − (sj − vj)Nj (7.2)

Under homeostatic conditions the system is stable with Nj(t) = N∗j and ∂tN
∗
j = 0,

and the division rates are given by their homeostatic values v∗j and s∗j . We introduce

feedback through sequential coupling between successive compartments, by allowing the

rate parameters of each compartment to vary depending on the number of cells in a

neighboring downstream compartment. Given a perturbation ni = (Ni − N∗i )/N∗i on

the cell number in compartment i, we are thus looking for non-negative functions vj(ni)

and sj(ni) that produce a negative feedback response – i.e. opposing the sign of ni.

Furthermore, we assume there is an upper limit to how many divisions a cell can undergo,

thus determining upper bounds on vj(ni) and sj(ni). Naturally, the fact that homeostasis

is maintained in the absence of any perturbation implies that vj(0) = v∗j and sj(0) = s∗j .

From the outset, the functions vj(ni) and sj(ni) are expected to be the solution of

a highly non-linear ecological network of various cell types, nutrients, and signaling

factors [106]. Here, instead, we look for the simplest functional form that fulfills the

requirements above; this leads us to the linear form

u(n) = u∗(1− αn) (7.3)

(where u is either v or s) with α > 0 to ensure negative feedback, such that 0 ≤

u(n) ≤ umax = kuu
∗ (Figure 7.2). A smoother version is easy to define by drawing

inspiration from classical ecological systems, which mirror the competition for promoting
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k

Figure 7.2.: Illustration of linear and logistic differentiation rate functions.

Both are bounded between 0 and ks∗, and have s(0) = s∗.

or inhibiting factors among different cell groups [106, 126] where the logistic function

arises:

u(n)

u∗
=

k

1 + (k − 1)eαn
(7.4)

where the parameters k and α play analogous roles in determining respectively the maxi-

mum and the slope (Figure 7.2). While the rate functions defined above provide a useful

method for coupling any pair of compartments, modeling the full hematopoietic system

requires an interaction network that defines the pairwise connections between compart-

ments. Many complex circuits are possible, and the number of potential interaction

combinations (through pairs or higher orders) increases dramatically with the number

of compartments. Here we explore a simple case, in which all compartments are coupled

sequentially to their downstream neighbors, so that the rate functions have the form

sj(nj+1) and vj(nj+1) for all j. Given this interaction network, as well as the rate func-

tions and their parameters αs, ks, αv, kv ∈ R+, the solution to (7.2) for M compartments

can be obtained numerically through any finite difference method.

135



7. Feedback-driven compartmental dynamics of hematopoiesis

7.2. Analysis

7.2.1. Sequential coupling elicits three types of behavior

We start by examining the case in which hematopoiesis proceeds under homeostasis

when a perturbation occurs in a single compartment. The response in the absence

of feedback mechanisms has been studied previously in [143] and can be recovered in

this model by fixing the division rates to their homeostatic values: vj(t) = v∗j and

sj(t) = s∗j . Equation (7.2) shows that without feedback the compartmental coupling is

entirely one-directional and upstream: the dynamics of Nj depends on Nj−1 but not

on Nj+1, meaning that compartments will not respond to disturbances taking place in

downstream compartments. Still, when a transient perturbation from equilibrium occurs

in a given compartment j, the homeostatic equilibrium is eventually restored (Figure

7.3a), though in the absence of downstream coupling the relaxation time is too long to

match real recovery times (see discussion). While all upstream neighbors j−k remain in

homeostatic conditions (nj−k = 0) all downstream j+k are affected as the perturbation

moves successively through these compartments.

This behavior will change when feedback – as described above – is introduced: A

dependence ofNj onNj+1 is now included and a similar wavelike propagation upstream is

now expected. The key components of our model that determine the dynamics following

a perturbation are the ratio of the coupling strengths of the differentiation/self-renewal

rates sj(nj+1)/vj(nj+1), and the total number of feedback stages in the system. The

latter will be discussed in the next section. To understand the former – the effect of the

relative coupling strengths – we define the simplest possible network with just a single

coupled “pair”, and turn our attention to the state of the system at time t0 immediately

after a perturbation nj+1 is introduced, so that nj is still 0. Then the dynamics (7.2) of

the reacting compartment j can be rewritten as

∂tnj |t0 =
2s∗j−1

η
− (sj(nj+1)− vj(nj+1)) (7.5)

If the outgoing flux is unchanged from the homeostatic case, i.e.

sj(nj+1)− vj(nj+1) = s∗j − v∗j (7.6)
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the equilibrium condition is achieved and we have ∂tnj = 0. If this remains true for

any value of nj+1 then under sequential coupling this condition prevents the perturba-

tion from moving upstream with respect to the first responding compartment, and thus

protects all upstream compartments from deviating from homeostasis while significantly

reducing the time required to return to homeostasis (Figure 7.3a). For the linear rate

functions (7.3), equation (7.2) leads to the following condition to ensure that (7.6) is

fulfilled:

αv =
s∗j
v∗j
αs (7.7)

While in general no such solution exists for the logistic functions, we use this relation

as a first order approximation and denote α∗s and α∗v to indicate parameter values which

fulfill this requirement. Whenever (7.6) is not fulfilled, then ∂tnj 6= 0 and one can expand

the rate functions about nj+1 = 0 which, after cancellation of the zeroth order terms

(due to the homeostatic condition) gives:

∂tnj |t0 = −
(

∂sj
∂nj+1

∣∣∣∣
0

− ∂vj
∂nj+1

∣∣∣∣
0

)
nj+1 + ϑ

(
n2
j+1

)
(7.8)

Ignoring higher order terms and recalling that we have required ∂sj/∂nj+1 < 0 and

∂vj/∂nj+1 < 0 to ensure negative feedback, we see that the sign of ∂tnj |t0 can either

oppose or match the sign of nj+1, depending on the difference in the brackets: ∂nv < ∂ns

or ∂ns < ∂nv respectively. In the latter case the matching sign means the feedback can

actually amplify rather than dampen the perturbation, provided the difference is large

enough, since a loss (or excess) of cells would induce further losses (or excesses) in

upstream compartments that are required to provide the incoming flux of cells; this in

fact corresponds to a positive feedback, as shown in Figure 7.3b. Conversely, if ∂nv < ∂ns

we obtain the desired negative feedback regime. Nonetheless, damped oscillations may

emerge (Figure 7.3c) which, if severe, can prolong the time necessary for the system

to return to homeostasis. Recalling that s and v are strictly decreasing functions, the

condition ∂nv < ∂ns implies that the rate of self-renewal changes faster with n than

the rate of differentiation, while ∂ns < ∂nv implies the contrary. Thus intuitively we

can interpret these conditions as determining whether the response is driven more by
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increased self-renewal (∂nv < ∂ns), increased differentiation (∂ns < ∂nv), or if the

increase is balanced across both processes (∂nv = ∂ns).

7.2.2. Increasing cell amplification between compartments reduces stability

The number of interacting compartments M also influences the overall dynamics. Note

that M need not necessarily be the same as the number of differentiation stages found

through traditional methods such as surface marker identification or transcriptional pro-

filing, as our treatment is flexible enough to loosely describe stages of development which

interact through feedback, and thus these compartments may encompass multiple mat-

uration stages found in other models. To ensure a meaningful comparison, we change

M assuming the same number of cells at the root of the hematopoietic tree and under

circulation. Thus, smaller M implies larger cell amplification rates between consecutive

compartments. Varying M is found to influence the stability of the hematopoietic system

with respect to the rate parameters. Indeed, when deviations from the conditions in (7.6)

and (7.7) take place, one obtains an increase in amplitude of oscillations with decreasing

M (Figures 7.3c and d). The origin for this can be seen even when employing the linear

coupling function in (7.5) (which is equivalent to keeping only the linear terms in the

logistic function): there, the inequality in the first derivative becomes αv/αs 6= s∗/v∗,

meaning that the amplitude of the oscillations is determined by how much αv/αs devi-

ates from s∗/v∗, the ratio of homeostatic division rates. In particular, perturbations on

α∗v or α∗s will have a larger impact the smaller this ratio is. Furthermore, it can be shown

that s∗/v∗ decreases monotonically with increasing cell number amplification η between

compartments, which in our model is akin to decreasing M . In this sense hematopoi-

etic models with lower M are less stable under perturbations on the parameters αs and

αv. It is worth noting here that stability under variation of these parameters forms an

important requirement for the system itself and will be discussed in detail later.
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Figure 7.3.: Compartment number dynamics of logistically coupled feedback

systems following a sudden loss of cells in the bloodstream. The cell number

is expressed in relative perturbation ni = (Ni(t) − N∗i )/N∗i , and the bloodstream and

final three compartments (M − 2, M − 1, M) are shown. Parameters ks, kv, and αs

are obtained from parameterization to Hillman et al. [58] (see main text and Figure

7.4 for details). (a) An M = 5 compartment model without feedback (dotted line) and

with balanced response (∂nv ≈ ∂ns) feedback (full lines). The response is not entirely

without upstream propagation due to the logistic character of the rate functions, for

which no perfectly balanced solution (see (7.6)) exists. (b) differentiation-driven response

(∂ns < ∂nv) with resulting positive feedback (M = 5). (c) self-renewal-driven response

(∂nv < ∂ns) with oscillatory behavior (M = 5). (d) Same as (c) except that M = 3.
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7. Feedback-driven compartmental dynamics of hematopoiesis

7.2.3. Recovery time as a measure of efficiency

The time for a compartment to recover from a perturbation is an important measure

of the efficiency of hematopoiesis, as an expedited recovery can be considered more

advantageous for the host. This recovery time is directly determined by the strength

of the response to a loss of cells, which the model itself sets little restriction on: The

k and α parameters – respectively determining the maximal increase in divisions and

the severity of the perturbation at which this maximal value is reached – can technically

(i.e. as long as (7.6) is fulfilled) be taken arbitrarily high without inducing oscillations or

positive feedback. However, in real hematopoiesis one would expect physical limitations

to apply to these, such as for example the time and/or resources required for cells to

undergo additional divisions.

In addressing the recovery time, we should take all possible recovery types into con-

sideration. Indeed, we should keep in mind that hematopoietic cell numbers fluctuate

in time even under homeostatic conditions [70]. Consequently, it is reasonable to as-

sign some range around the model’s equilibrium value within which a compartment can

be considered “recovered”. For example, while Figure 7.3a shows a greatly improved

response compared to the feedback-free model, the oscillatory behavior in Figure 7.3c

presents a qualitatively superior result with respect to the recovery time – effectively

halved in this scenario – if we consider a compartment to be recovered once it has re-

turned to within approximately 2% of its homeostatic value (well within the range of

normal hematocrit measurements [58]). Thus a slight emphasis on self-renewal rather

than differentiation in the response can be beneficial if the resulting oscillations are small

in amplitude. Conversely, while the regime depicted in Figure 7.3b (emphasis on dif-

ferentiation) also improves upon the feedback-free model, it is less efficient than that of

Figure 7.3a, as the resulting positive feedback always reduces efficiency.

7.2.4. Inclusion of feedback allows prediction of erythrocyte dynamics

To evaluate the predictive power of the model we use data from Hillman et al. [58], who

study the human bone marrow response to a severe loss of erythrocytes. The authors
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mark the increase in erythrocyte production as a function of the normal output for

different levels of depletion of the hematocrit (the volume percentage of erythrocytes in

the blood), noting that the efficiency of the response depends strongly on the amount

of iron available to the patient. We can translate the hematocrit measurements to

perturbations in our model by taking the ratio of the depleted to the normal value; for

example if the patient’s normal hematocrit is 50%, a reduction to 40% would equate to a

20% loss, which is a perturbation in the bloodstream compartment (B) of nB = −0.2. A

summary of their findings is shown in Figure 7.4. We estimate our parameter values by

assuming αv = (s∗j/(v
∗
j )αs and taking ks = kv ≡ k. For this coupling the dynamics of the

perturbed bloodstream compartment can be written as ∂tnB = 2sM − βB(1 +nB), with

βB the constant loss rate of circulating cells; which is independent of the replication

rate function vM of the preceding compartment. Thus αv is fixed by the response

requirement and only k and αs are free. A least-squares fit of the logistic coupling

(7.4) results in parameter pairs for the three patient cohorts defined by the authors

(based on the patients’ body iron stores). The values for the normal patient cohort

(k = 3.5, αs = 7.5) are used in Figure 7.3. Different parameter pairs are found for

the other cohorts, with a clear effect being an increase in maximal production factor

κ for increasing iron availability. This implies that the response relies not only on the

severity of the perturbation but on the availability of essential resources as well, so that

the parameters αs, αv, κs and κv should in fact depend on other parameters reflecting

a dynamic environment. The values for k = kv = ks found here to range between 3.5

(normal cohort) and 7.6 (hemochromatosis) fit with current knowledge of production

rates of mature red blood blood cells, where the highest reported rate increases are 8- to

10-fold the normal rate [58]. For this range of k we thus estimate the slope parameter αs

to be in the range of 7.2–11.3, while αv is then determined by the compartment number

through αv = αs s
∗/v∗.
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Figure 7.4.: Parameter estimates based on Hillman et al. [58]. Three patient

cohorts are defined by the authors based on the size of their available iron stores: a

‘normal’ control group, a group which was administered supplementary iron intakes, and

a number of individuals suffering from hemochromatosis, a disorder characterized by an

increased amount of total body iron stores. Each production factor shown (symbols) is

the center of the range (error bars) measured within a patient cohort, as no individual

measurements or averages are specified. Dashed lines result from a least-squares fit to

the data employing the logistic coupling model (7.4).
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7.2.5. Chronic perturbations lead to new equilibrium states

As a final exploration of the model, we turn our attention to perturbations with a

long-lasting character. These are of particular interest in medicine, as many genetic

disorders such as inherited red cell membrane defects (hereditary spherocytosis, ellip-

tocytosis, ovalocytosis), thalassemia syndromes and hemoglobinopathies (sickle cell dis-

ease, hemoglobin SC disease) all result in a chronic reduction of red cell survival times

and anemia. Autoimmune hemolytic anemia due to autoantibodies against red blood

cell antigens can also cause chronic destruction of red blood cells and anemia. We can

take paroxysmal nocturnal hemoglobinuria (see Chapter 5) as a model example, as it

is characterized by severe hemolysis of the PNH afflicted red blood cell population in

circulation. If the PIGA mutant clone is large enough, a significant portion of circulat-

ing erythrocytes will have a severely reduced lifespan. In our model we can take this

into account by splitting the bloodstream compartment into a healthy (H) and a PNH

afflicted (PNH) population, NB = NH+NPNH , where the death rate of the PNH group

is significantly higher than that of the healthy cells (βPNH > βH). For a clone which

comprises a fraction p of bone marrow cells, we obtain the dynamics
∂tNH = 2sM (nB) (1− p)NM (t)− β∗BNH(t)

∂tNPNH = 2sM (nB) pNM (t)− βPNHNPNH(t)
(7.9)

To determine which values of p might occur in humans, we note that PNH clones

can comprise up to 100 percent of the blood cell population [123], while clones smaller

than 10-20% could be considered subclinical. To obtain a realistic value for the rate at

which these cells are hemolysed we use a study on the in-vivo survival rate of transfused

erythrocytes from a PNH afflicted individual [28]. While no such death rate is derived in

the paper itself, the authors describe a fast initial decay of the transfused population to

50% after only 5 days, followed by a slower decay down to 30% at the 10th day. We can

describe this behavior by means of two exponentially decaying populations to estimate

the donor’s PNH fraction at p ≈ 0.8 and a death rate of βPNH ≈ 0.2, which means

that a PNH erythrocyte will be destroyed after on average 5 days in the bloodstream,

20 times faster than its normal counter-part.
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Using the same parameter set derived in the previous section, we observe that, in

the long term, new steady states emerge for all reacting compartments in any response

regime (Figure 7.5). Using Figure 7.5a as a reference, we observe a marginal improve-

ment in mitigating the loss in the self-renewal-driven regime (∂nv < ∂ns) (Figures 7.5b

and e) whereas, in the differentiation-driven regime (∂ns < ∂nv) (Figures 7.5c and f) a

reduced efficiency is observed. In contrast with the normal recovery that is realized under

transient perturbations (Figure 7.3), the model also predicts a new stationary state for

the bloodstream hemoglobin content, which in general remains below the normal home-

ostatic value. Furthermore, the model captures scenarios where the enduring reduced

hemoglobin and red cell mass in circulation is accompanied by a persistent expansion

of the upstream compartments (Figures 7.5b and e), as often seen in classic hemolytic

PNH as well as other chronic hemolytic disorders [70]. As this expansion does not occur

in the differentiation-driven regime we conclude that the adaptive response in chronic

hemolytic states must (at least) at times take place in a self-renewal-driven regime.

7.3. Discussion and conclusions

The formalism described here provides a simple method for understanding the type of

dynamics that populations of maturing hematopoietic cell precursors undergo in the bone

marrow after being subject to different types of perturbations (from mild to severe), such

as sudden or chronic blood loss. While the starting model of Dingli et al. [35] provides a

useful framework for describing the hematopoietic system under homeostatic conditions,

it does not account for the dynamics under perturbations such as those discussed here, as

the time for a compartment to return to equilibrium is too long to fit clinically observed

timescales [70], and it does not take into account interactions with cell dynamics in

the blood stream. The addition of sequential feedback to the model not only produces

swifter recoveries, but also reproduces observed dynamic behaviors such as the response

to a transient loss of erythrocytes, and the persistence of anemic states following chronic

hemolysis with an associated chronic expansion of precursor cells in the bone marrow.

The increased complexity, on the other hand, calls for a careful analysis of the properties
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Figure 7.5.: Dynamics following a chronic loss of cells in the bloodstream.

Responses of an M = 5 compartmental model employing logistic coupling with normal

parameter values taken from Figure 7.4 (full lines) alongside the feedback-free response

(dashed line). The rate of hemolysis of PNH afflicted erythrocytes is taken at βPNH =

0.2. Two different clone sizes are shown: p = 0.8 (panels (a)-(c)) and p = 0.5 (panels

(d)-(f)). Balanced response to clone of size p is shown in panels (a) and (d), self-

renewal-driven response (∂nv < ∂ns) to clone of size p is shown in panels (b) and (e),

and differentiation-driven response (∂ns < ∂nv) to clone of size p is shown in panels (c)

and (f).
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of the feedback coupling introduced.

We identify three response types for any coupled pair of compartments, determined

by the relative strengths of the differentiation and self-renewal coupling, s(n) and v(n)

respectively. A perfectly balanced response prevents the perturbation from moving fur-

ther upstream, thus providing the simplest reaction profile for hematopoiesis as a whole;

it occurs whenever the equality s(n) − v(n) = s∗ − v∗ is fulfilled, and can intuitively

be associated with a response where both differentiation and self-renewal increase (or

decrease) in a balanced manner such that the compartment’s own cell number remains

constant. This is however a very strict condition which is difficult to meet, even on av-

erage, in hematopoiesis, given its stochastic nature. Thus one expects that, in general,

this detailed balance does not occur, and the dynamic behavior depends on which of the

rates comes to dominate. When the differentiation rate dominates, the cell number in

the compartment will change in the same direction as the perturbation – decreasing if

the perturbation is a loss of cells, increasing if it is an excess – effectively introducing a

positive feedback. When the self-renewal rate dominates, the compartment’s cell number

varies in opposition with the perturbation – increasing with a loss, decreasing with an

excess – which can lead to an overcompensation of the loss/excess followed by damped

oscillations in the cell number. Therefore, if the feedback strengths of self-renewal and

differentiation are not tuned to each other, nearly undamped oscillating cell counts in the

blood can occur, associated with extreme cases found in certain hematologic disorders

such as cyclic neutropenia [107, 39]. It is, however, important to take into consideration

that in real hematopoiesis cell numbers in circulation are subject to stochastic noise,

even under homeostatic conditions [70]. Thus it is appropriate to introduce a range

of values for the cell numbers within which hematopoiesis can be considered to be in

(dynamic) equilibrium. In this sense small oscillations within this range predicted by

our model can be presumed to be undetectable (and even if detectable, irrelevant) in a

clinical setting. This in turn implies the rate parameters have some leeway to be out of

sync without disturbing the bloodstream compartment in a detectable way, adding to

the overall robustness of hematopoiesis.
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The possibility of long lasting disruptions caused by poorly synced feedback loops

highlights the importance of the stability of hematopoiesis with respect to the division

rate parameters. Here, the coupling functions s(n) and v(n) posit a deterministic depen-

dency of the division rates on downstream cell counts. In reality, these dependencies will

be subject to noise from the underlying stochastic biological circuits and – as already

pointed out – are unlikely to have perfectly balanced response solutions in the first place.

Furthermore, since the response also depends on the availability of resources [58] which

may vary or become depleted over time, the balance between s and v adaptation required

for stability may itself change in time. However, an important observation is that this

stability increases with increasing compartment number, or more specifically decreasing

amplification between coupled compartments. The result furthermore adds an interest-

ing angle to the currently favored view that normal hematopoiesis is mostly driven by

‘short-term’ stem cells which would be found further downstream then the small pool

of long term HSCs [129, 23], as such a larger pool of feedback coupled ‘drivers’ would

increase stability.

An important quantifiable characteristic of the feedback driven system is the strength

of the coupling between two compartments (determined by the values of the α and k

parameters), as it governs the speed with which a return to equilibrium is attained. We

find that while balanced responses (Figure 7.3a) allow for arbitrarily strong coupling,

the physical limit of how fast a single cell can divide of course cannot be exceeded.

Furthermore, the coupling strength may also depend on the availability of essential

resources, as can be seen from a human erythropoiesis study where individuals with

increased access to iron present amplified responses [58]. This observation raises the

question of how long a particular response can be maintained, especially in the case of

persistent losses.

Finally, it is worth remarking upon the differences between the compartmental dy-

namics under transient and chronic perturbations. In the former case, a short-lived

perturbation such as bleeding can be swiftly remedied by increased cell divisions in the

higher compartments, without propagating to earlier progenitor stages if the homeo-
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static balance between self-renewal and differentiation is maintained. In this sense the

earliest compartments may not even be requested to respond to an acute loss of blood.

On the other hand, chronic perturbations to the system – found in various hematopoietic

disorders such as paroxysmal nocturnal hemoglobinuria and other hereditary or acquired

hemolytic anemias – lead to the emergence of new equilibrium states that do not corre-

spond to normal homeostasis. For example while the altered dynamics might mitigate a

persistent loss of erythrocytes due to hemolysis by increasing the bone marrow output,

the resulting steady-state number of erythrocytes in circulation may still be significantly

lower than in the unperturbed system – a scenario which fits the observation of anemia

occurring in severe cases of PNH as well as other hereditary or acquired hemolytic states.

Furthermore, experimental data from telomere length analysis in both PNH and sickle

cell disease show that circulating mononuclear cells have shorter telomeres compared

to age matched controls [68, 94]. Given that telomere attrition is generally associated

with cell divisions, this could be explained by our results here, which posit that under

chronic hemolysis progenitor and downstream cells can undergo more replication events

than aged matched cells from healthy individuals. In fact, in one study [68] it was found

that the shorter telomere length occurred in both PNH afflicted and unafflicted cells,

suggesting that the cause indeed lies within the hematopoietic process itself, and that

the feedback intrinsic to hematopoiesis does not discriminate between the PIGA mutant

and normal cells that co-exist in the bone marrow of patients with PNH.
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8. Cell movement as a stochastic process

You have brains in your head.

You have feet in your shoes.

You can steer yourself any direction you choose.

You’re on your own. And you know what you know.

And YOU are the guy who’ll decide where to go.

— Dr. Seuss, Oh! The Places You’ll Go!

Many tasks in the human body require cells to move around, often as part of a coordi-

nated effort to achieve objectives on the tissue level. Obvious examples of this are found

in the earliest stages of human life, during embryonic development and tissue growth

[65]. However even in adults such migratory processes can be identified, for example in

wound healing [19] and vascularization (the creation of blood vessels) [45, 48]. Under-

standing and characterizing the properties of the underlying cell migration, both in the

context of the individual cells as well as the collective population and its environment,

can thus lead to important insights in the fields of medicine and human biology. One

particular application in which the relevance of cell motility has only recently surfaced

is cancer, specifically in the late stage of the disease when additional tumors begin to

arise at different locations in the body [27], where the successful migration of cancerous

cells from the primary location appears to be aided by a phenotypic transformation to

a more motile morphology [40]. As the relevance of this process currently remains a

topic of some debate [57], quantitative models for the cells’ movement can greatly aid

in designing and interpreting experiments [43, 36]. However, the cells which make up

the tissues, organs, malignant tumors, or other collective processes we may be interested

in are in themselves highly complex organisms, so that from the modeling perspective
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8. Cell movement as a stochastic process

we once again run into the now familiar problem of scale: observed phenomena on the

population level may arise due to many interactions on the single cell level, whose be-

havior is in itself similarly emergent from a multitude of processes on a subcellular scale.

Thus, similar to how the divisional behavior of hematopoietic cells was modeled in the

previous chapters, single cells must be envisioned as black box particles endowed with

only a select set of properties that take on a stochastic character.

With possible applications to cell motion in mind, in this part we will make a brief

foray into the field statistical mechanics and its application to biological components,

which in a sense leans closely to the field of active matter [44] – the study of population

mechanics in which the particles of interest transform energy from their environment into

movement. While the statistical study of biological agents such as cells has advanced

rapidly [3], applications in cancer have been somewhat lacking until recently [68]. For

this reason it may be of use to obtain a better understanding of the influence of certain

fundamental differences found in the context of malignant tumors compared to other cell

systems. In particular, inspired by recent experimental developments [35, 68] we will

investigate basic statistical properties of motility in a growing population that is spatially

confined. While this has been previously done for a specific model of active matter –

the run-and-tumble particle [7] – there is little known about the influence of growth in a

more generic context. To expand and generalize our understanding of this phenomenon

we will investigate proliferation effects in what is considered the quintessential model of

stochastic movement: Brownian motion. In this chapter we will motivate and discuss

the application of statistical mechanics in the context of cancer, as well as introduce

the basic mathematical formalism of the Langevin equation by which we will develop

our treatment in Chapter 9. The model we will introduce and discuss there entails a

general method for including growth and its resulting crowding effects in a statistical

mechanics context, whereby specifics of the described moving “particles” are left open.

This agnostic approach to the nature of the system’s constituents means that it can

be applied in many different contexts besides cellular populations, and as such, the
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8.1. Motility in cancer: a motivating example

cancer cell system described in the following section should be considered more as a

motivating example of a possible application, rather the ultimate goal of the forthcoming

mathematical formulation.

8.1. Motility in cancer: a motivating example

Cancer is perhaps the most widely studied disease of the past century. While from a

clinical perspective it is more appropriate to consider it a collection of illnesses – the

specific type depending on its source tissue and the particular properties it has acquired

during its development – the general nature and origin of cancers allows for a rather sim-

ple definition: it is the unchecked proliferation of a population of corrupted cells within

the body, caused by the accumulation of specific somatic mutations which facilitate the

escape from the cell’s preprogrammed purpose within the collective tissue [66, 21]. The

fact that it arises from the host’s own tissue forms an important part of its success at

avoiding destruction, as a cancerous cell population can unlock many of the mechanisms

and processes encoded in the human genome to serve its own survival. Nevertheless,

the body has many built-in defense mechanisms against cancer which must be overcome

before a true tumor is formed, from a low mutation rate and robust DNA repair mecha-

nisms to apoptosis programs (self-induced cell death), and even a well-prepared immune

system [1, 50, 66]. In fact, a single mutation – even in a large group of cells – is in itself

not sufficient to provoke the invasive and disruptive behavior seen in cancer. Instead a

handful of mutations in key genes – so called oncogenes – are typically required for a

population of cells to be considered a tumor [63]. Unfortunately, this generally means

that by the time a cancer is detected, it is already a highly evolved malignant system,

with many properties and abilities which are difficult to combat. In two seminal papers

[22, 21] Douglas Hanahan and Robert A. Weinberg classified the capabilities of cancers

in a number of proposed hallmark traits acquired during oncogenesis (the process of

transformation from a population of normal cells to a cancer), each representing a dis-

tinct barrier the developing malignancy must overcome in order to continue is expansion.

One of these is metastasis – the spread of the cancer from its original location (in solid
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tumors) to colonies at distant locations in the body [27, 20]. Despite being the only

non-essential hallmark for the formation of a tumor – as some tumors never progress to

this stage – it may be considered the most deadly, given the bleak prognosis of metastatic

disease [53]. Unfortunately it has proven to be incredibly difficult to combat, with the

metastatic state associated with increased likeliness of treatment failures and acquired

drug resistances [31]. While the general process appears superficially the same for most

cancer types – a sequence of events involving malignant cells which detach from the

primary tumor and enter the circulatory system, exit though the capillaries into distant

tissues and there successfully establish new cancerous microenvironments [42] – few spe-

cific pathogenic principles have been identified which are shared across different tumor

types, and the biological underpinnings of the various steps in the process are still poorly

comprehended [53]. Some progress towards understanding the pathogenicity has been

made though, with one particular cellular program linked to the metastatic capability of

many cancer types [12] – called the epithelial-to-mesenchymal-transition – which occurs

naturally in the body during embryonic development as well as wound healing [29, 58].

It constitutes a phenotypic transformation of epithelial cells from their normal state to

a more mobile build (a mesenchymal cell) that facilitates migratory behavior [40]. Can-

cers can co-opt this process, whereby it appears the mesenchymal phenotype aids in the

invasion of distant tissues. In this context the cell’s mobility becomes a relevant area of

interest. Even if the success of EMT in metastatic cancers is unrelated to the associ-

ated increased motility – the EMT has been shown to grant other situational benefits to

the cancer cell such as an increased resistance to chemotherapy [52] and evasion of the

adaptive immune system [57, 13] – quantitative models and a heuristic understanding of

the movement are useful for extracting valuable information from various experimental

setups.

The inspiration for this particular project – and an example of a possible applica-

tion of the model we will develop in Chapter 9 – is an experimental design by Lin

et al. [35], in which the behavior is studied of individual cells from a prostate cancer

metastasis derived cell-line PC3 in a complex drug landscape, using a state of the art
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8.1. Motility in cancer: a motivating example

microfluidic cell culture device. The cell population was divisible into two phenotypes,

the first – denoted as PC3-EPI – is an E-cadherin/CDH1 positive/vimentin negative

PC3 clone, while the second – denoted here as PC3-EMT – has an E-cadherin nega-

tive/vimentin positive phenotype that can be induced by culturing in the presence of

human macrophages. While the former is a cancer cell of epithelial origin, the latter –

being a highly mobile and less proliferative phenotype – is characterized as having gone

through the epithelial-to-mesenchymal transition resulting in its enhanced movement

capabilities. It is hypothesized that this phenotype may prove advantageous for the cell

in initiating the first steps of metastasis – such as detachment from the primary lesion

and intravasation in the bloodstream – as well as assist it in escaping immune surveil-

lance. A mixed population of both cell types was placed in a heterogeneous surface

environment in the form of a gradient of docetaxyl (Figure 8.1b) – a chemotherapeutic

drug – and monitored over the course of a few weeks. Both phenotypes suffered effects

of the drug induced stress, especially in areas containing high densities of docetaxyl,

however the PC3-EMT cells were able to sustain their presence under higher doses than

the PC3-EPI phenotype. The use of a state of the art monitoring system allowed for the

precise visualization of the system at short time intervals, including the ability to track

individual cells over long periods of time (see Figure 8.1a). The resulting single cell path

measurements illustrate a highly stochastic picture of motion, where the motility of cells

correlates not only with the subtype but also spatially with the drug concentration. In

particular, the cells’ mean squared displacement (see Section 8.3.1) presents a sublinear

character as shown in Figure 8.1c, presumably due to growth of the cell populations.

The authors furthermore document interesting phenomena such as varying motility dis-

tributions and the formation of protective niches for non-drug resistant cells. However,

distinguishing the contributions of the different experimental factors – the phenotypic

motility, the local drug concentration, and the local population density – to the individ-

ual cell behaviors is difficult to realize from a purely qualitative analysis. A model of

stochastic motion which includes the proliferative behavior would provide a first step in

separating the causal relationships between the observed phenomena.
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a

b

(a) (b)

diameter

(c)

Figure 8.1.: Experimental setup of Lin et al. [35]. (a) The positions of cells

on the hexagonal surface of the culturing device. Untransformed PC3 cells (epithelial

phenotype) are depicted as red circles, while EMT transitioned cells (mesenchymal phe-

notype) are shown in green. The applied drug increases linearly from top to bottom. (b)

Intensity of the drug according to the lines a and b shown in (a) (reproduced from [35]).

Measurement of the mean squared displacement over time of cells grouped per diameter.

All groupings clearly diffuse in a sublinear manner.
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8.2. Cells as motile particles

8.2. Cells as motile particles

Cells are incredibly complex organisms. Across an enormous multitude of phenotypi-

cally differing types they can perform a wide variety of tasks, from sending and detecting

signals to and from their surroundings, to initiating metabolic processes with reactants

from their environment, with some types even capable of certain forms of self-propelled

motion [1]. As such, their behavior is driven by an immense number of internal pro-

cesses. A population level model which attempts to take into account the interactions

and internal decision making of all of its constituent cells would clearly devolve into

an intractable mess long before any useful information can be gleaned from it. Instead

we turn to statistical modeling, where only a handful of key properties are taken into

account and the driving processes are chosen to follow some (sometimes empirically de-

termined) probability distributions. Arguably the earliest of such approaches is the now

widely known model for Brownian motion developed by Albert Einstein at the start

of the 20th century [16], which describes the apparent random movement of a pollen

suspended in a liquid due to stochastically varying force interactions with the (then still

hypothetical) atoms within the liquid. This type of approach later found its way into

many applications in physics, from classical statistical mechanics – Newtonian systems

with too many individual parts to resolve all interactions deterministically – to quantum

field theory and astronomy [32], resulting in a wealth of useful methods and techniques.

Their application in biological systems is a more recent topic of interest. While biochem-

ical systems with more fundamental building blocks – such as for example the diffusion of

macromolecules within cellular compartments [2, 10, 11] – have proven quite amenable

to this approach, systems on larger scales (e.g. bacteria, animals, etc.) have shown

to require some rethinking of the processes applied. In particular, certain fundamental

differences are apparent between the previously studied physical systems of “simple”

interacting particles and those typically found in the microscopic or even macroscopic

biological world. The foremost, which has already been discussed to an extent, is the

complexity. While the properties of the fundamental particles and interactions in physi-

cal systems can often be summarized exactly in a handful of equations, with the number

175



8. Cell movement as a stochastic process

of components under consideration leading to the system’s intractability; the biological

“particles” we consider are already highly complex machines, which we only approxi-

mate as black boxes with simple interactions. This adds a layer of additional questions

and problems that must be addressed, involving which approximations to make and the

extent of their validity under particular circumstances. In the case of describing their

movement there is another perhaps more subtle difference, in the fact that the particles

of interest in biological systems are typically self-propelled, i.e. their motion is driven

by an internal process, whereas the particles in physical systems are generally moved by

external forces. This is an important distinction, as it means that the biological par-

ticles must constantly consume and expend energy. It can result in more complicated

patterns of motion [47] and furthermore implies that unless some external energy source

is modeled – which complicates the construction of tractable models and reduces our

ability to obtain general principles – the very useful property of energy conservation is

effectively violated [5]. In a system of stochastic motion, elementary units with such

an internal driver are typically referred to as active particles, as opposed to the passive

particles whose movement is entirely attributed to external forces [44]. It is clear that

for some applications certain cells may fall under the active moniker, given their ability

to obtain energy from nutrients and, depending on their morphology and function, their

capabilities of self-propulsion.

8.3. Basics of stochastic motion

As discussed previously, the stochastic motion of a particle of interest is principally an

emergent phenomenon, caused by an underlying process which – due to its complexity

or some lack of information – cannot be resolved exactly. In this sense the stochastic

model is an approximation of the true system, one that importantly does not specify a

deterministic prediction of the particle’s future state. Instead, its purpose is to provide

the likelihood of possible futures, which can be used to predict quantities related to the

collective behavior of many particles, or the average behavior of a single particle over a

longer period of time. An example of this is diffusion: the well-known expression for the
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spatial density n(x) of a collection of particles with diffusion coefficient D

∂n(x, t)

∂t
= D∇2n(x, t) (8.1)

can be obtained from certain models of stochastic motion of single particles by consid-

ering the time evolution of their position probability distribution. Similarly one might

examine predicted distributions of the particle velocities, energies, or any other quanti-

ties which may be of interest for the system in question.

8.3.1. Brownian motion

One of the most ubiquitously applied models of random movement is that of Brownian

motion. Its prevalence, while in part due to historical reasons, may also be attributed

to the fact that its associated stochastic fluctuations have turned out to carry a funda-

mental significance in stochastic processes in general, being the only Lévy process with

continuous paths [30]. Here we will introduce the concepts of Brownian motion which

will be used in the following chapter.

The original purpose of the model was the quantitative description of the seemingly

random motion of a pollen immersed in water, described in 1827 by the botanist Robert

Brown to which the process owes its name. Einstein’s original description [16] relied

on the supposition that the motion was caused by interactions of the pollen with the

water molecules surrounding it. In it he considered the time-dependent displacement of

a large density of Brownian particles n(x, t), which in a contemporary context describes

a Fokker-Planck formulation of the stochastic process [46]. A more modern definition of

Brownian motion is that it is a Gaussian Markov process with stationary independent

increments [15]. Specifically, this means that if B(t) is a Brownian motion (i.e. the

position of the particle at time t ≥ 0), it has the properties:

(i) B(t0), B(t1)−B(t0), . . . , B(tn)−B(tn−1) are independent for t0 < t1 < · · · < tn.

(ii) B(t)−B(s) is normally distributed with mean 0 and variance t− s for 0 < s < t.

(iii) t 7→ B(t) is continuous with probability 1.
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As done in Chapter 3, for our purposes we will eschew further levels of mathematical

rigor in favor of a more physical approach, which will facilitate the introduction of a

growing population in Chapter 9. In particular, we will study the process through the

method first presented by Langevin [33] merely a few years after Einstein’s treatment,

which introduces the use of a stochastic differential equation (SDE). Rather than model

the displacement for a statistical ensemble of particles, Langevin formulated the force

acting on a single particle in order to obtain the dynamics of a possible trajectory. To

this end he introduced the differential equation of the form:

m
dv(t)

dt
= −γv(t) + F(t) (8.2)

which contains a driving stochastically fluctuating force F(t) and a viscous frictional

force γv(t) with linear velocity dependence. This was the first of a class of equations

known as Langevin equations (LEs). It may be interpreted in one or more spatial di-

mensions, in which case we will note the components as vi(t). Since (8.2) contains a

random variable its integral is in itself a random value. The mathematical framework

for rigorously constructing such an SDE is somewhat technical and involves selecting

one of two possible definitions – referred to as the Itô and Stratonovich formulations –

for the integral of a random variable [61]. We will not go into detail on this subject,

and instead simply note that where relevant we take the Itô interpretation, and refer the

reader to a more comprehensive reference such as [41] for more information.

As a phenomenological model it is perhaps not immediately clear how (8.2) exactly

represents the system of a microscopic pollen being bombarded by millions of nanoscopic

molecules, however we will later show how the friction and the driving force together

represent this single phenomenon.

The stochastic random force F(t) is specified to be Gaussian distributed. While

this requirement was shown by Ornstein and Uhlenbeck some years later [60], it may

somewhat superficially be argued from the central limit theorem: the large number of

collisions occurring in a short timespan guarantees that the total intensity and direction

of the resulting force converges to a Gaussian. The mean must be zero, so that the

expected position of the particle to be fixed in time (as specified in (ii) of the formal
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definition given above), and the variance is determined by the force’s autocorrelation

function, which is taken to be a delta-function to ensure independent increments in

every direction, (from (i) of the formal definition). Introducing ξ(t) as the noise term

with intensity 1, we write F(t) =
√

2D ξ(t), where the parameter D thus characterizes

the strength of the fluctuating force, which is the same in every direction. We then have

〈ξ(t)〉 = 0〈
ξi(t)ξj(t

′)
〉

= δ(t− t′)δi,j
(8.3)

with the ξi(t) the components in each spatial dimension. For simplicity we will set the

particle mass m to 1, so that we may restate 8.2 as

dv(t)

dt
= −γv(t) +

√
2D ξ(t) (8.4)

Velocity autocorrelation

We can integrate (8.4) to obtain [46]

v(t) = vt0e
−γ(t−t0) +

√
2D

∫ t

t′=t0

e−γ(t−t′)ξ(t′)dt′ (8.5)

The first term shows how the initial velocity is lost over time, meaning that if we are far

enough away from this initial time point, i.e. t − t0 � 1/γ it goes to zero and we may

simplify the expression

v(t) =
√

2D

∫ t

t′=t0

e−γ(t−t′)ξ(t′)dt′ (8.6)

With (8.3) this can be used to calculate the the velocity’s autocorrelation function

〈v(t)v(t+ τ)〉 =

∫ t

t′=t0

∫ t

t′′=t0

e−γ(2t+τ−t′−t′′) 〈ξ(t′)ξ(t′′)〉 dt′dt′′ (8.7)

which by (8.3) results in

〈v(t)v(t+ τ)〉 =
dD

γ
e−γτ (8.8)

where d is the number of spacial dimensions. Thus, while the stochastic force pushes were

taken to be uncorrelated, the particle’s velocity does contain memory, which decreases

at an exponential rate (not coincidentally the rate at which the initial velocity is lost in

(8.5)) with correlation time τ = 1/γ.
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Fluctuation-dissipation relation

From (8.6) we see that the average velocity disappears, while the variance σ2
v results in

σ2
v(t) =

〈
v2(t)

〉
− 〈v(t)〉2 =

〈
v2(t)

〉
(8.9)

Thus from (8.8) we have that the first moment of the velocity can be written as
〈
v2(t)

〉
=

dD/γ. Given that we may write the average energy of the particle as E =
〈
v2(t)

〉
/2

(with m = 1) we obtain the relation

E =
dD

2γ
(8.10)

which relates the strength of the random force pushes D to the friction coefficient γ

through the particle’s average energy. This is known as a fluctuation-dissipation relation,

and it is the mathematical formulation of the fact that, as hinted earlier, the stochastic

and friction terms in (8.2) act as two sides of the same coin: the energy given to the

particle through F(t) is compensated by the energy lost due to friction.

Speed distribution

It can be shown (most easily by transforming to a Fokker-Planck description [46, 47]) that

as the memory of any initial velocities are lost (8.8) the full probability density describ-

ing the Brownian particle’s velocity components converges to the Maxwell-Boltzmann

distribution [49]. While the average of the velocity vi(t) is then zero (as shown previously

from (8.6)), the average speed of the particle – defined as s(t) = |v(t)| =
√∑

i v
2
i – does

not. For example, in two dimensions the speed is given by the Rayleigh distribution [47]

P{s} =
γ

D
s exp

(
−γs

2

2D

)
(8.11)

which has moments

〈s〉 =

√
D

γ

√
π

2
(8.12)

and 〈
s2
〉

= 2
D

γ
(8.13)
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Mean squared displacement

An important metric for characterizing types of stochastic motion is the displacement

of a particle over time. While the expected value of a particle’s position is clearly fixed

in time (from the fact that 〈v(t)〉 = 0), the variance is not, meaning that the second

moment of the particle’s position x2(t) encodes some information about its probabilistic

displacement. The famously linear character of the mean squared displacement [16] can

be found by twice integrating (8.6) to obtain [46]

〈
x2(t)

〉
= 2d

D

γ2

[
t− 1

γ

(
1− e−γt

)]
(8.14)

which reduces to
〈
x2(t)

〉
= (2dDt/γ2)t in the long time limit t � 1/γ. This exactly

matches Einstein’s initial result for the diffusion of a Brownian particle
〈
x2(t)

〉
= 2dDt

[16], which allows us to identify the diffusion coefficient of (8.1) as

D = D/γ2 (8.15)

The linear form of the mean squared displacement is an important result, as it encodes

the classical type of diffusion we are familiar with. Its ubiquity has led to systems which

do not present this behavior to be referred to as sublinear – if the diffusion occurs on

a slower than linear scale – or superlinear – if the mean squared displacement grows

faster. Similarly, particles whose displacement is proportional to time (instead of the

square root) are referred to as ballistic.

Alternative formulations

As discussed at the start of this section, other equivalent formulations of Brownian mo-

tion can be constructed, allowing the researcher to pick whichever is most convenient

for the problem they wish to tackle. Perhaps the most common alternate formula-

tion is through the Fokker-Planck equation, which has already been referred to before.

While the Langevin equation describes the stochastic evolution of a single particle, the

Fokker-Planck equation gives the deterministic evolution of the associated probability

distribution. In fact, it can be shown that for every Langevin equation there is an
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8. Cell movement as a stochastic process

equivalent Fokker-Planck equation [46]. In particular, for a general LE of the form

dx

dt
= h(x, t) + g(x, t)ξ(t) (8.16)

the following Fokker-Planck equation can be constructed (in the Itô convention) [46]

∂

∂t
P (x, t) = − ∂

∂x
[h(x, t)P (x, t)] +

∂2

∂x2

[
g2(x, t)

2
P (x, t)

]
(8.17)

where we have used the shorthand P (x, t) = P{x, t | x0, t0} for the probability density.

Note that if h(x, t) = 0 and g(x, t) is constant, the Fokker-Planck equation reduces to

diffusion equation (8.1), where we identify D = g2(x, t)/2. For the case of the Langevin

equation (8.4), taking the so-called overdamped approximation [47] – which corresponds

to assuming large friction so that inertial effects may be neglected (dv(t)/dt = 0) – the

resulting Langevin equation for the particle position becomes

dx(t)

dt
=

√
2D

γ2
ξ(t) (8.18)

which after transformation to the Fokker-Planck equation becomes exactly the diffusion

equation (8.1), which again provides the relation (8.15).

Finally, another useful formulation of Brownian motion is that it can also be obtained

formally from the limit of a random walk if the number paths in a fixed time interval

goes to infinity [14, 15], a result known as Donsker’s theorem. Without going into too

much details, the heart of the formulation is the following: For a random walk Sn defined

as

Sn =

n∑
i=1

Xi (8.19)

with the Xi independent and identically distributed random values, it can be show that

the rescaled random walk

Wn(t) =
Snt√
n
, t ∈ [0, 1] (8.20)

converges to Brownian motion as n → ∞. This formulation will be illustrative in

motivating our use of the motion in Section 9.2.
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8.3.2. Generalizations and other models

While the formalization of Brownian motion by Einstein [16] and the conception of the

random noise term by Langevin [33] (along with important contributions from contem-

poraries such as Smolukowski [64] and Wiener [67]) kickstarted the study of statistical

motion, the century that followed saw the introduction of many generalizations and re-

lated models in fields concerning fluctuations and noise [23]. Some notable examples

are the introduction of the Lévy process (of which both Brownian motion and the Pois-

son process are well known examples) which formally generalizes the concept of non-

differentiable trajectories [30], the so-called generalized Langevin equation [39] which

introduces memory into the LE through finitely correlated fluctuations, and the formal

development of stochastic differential equations [26, 25, 54], which are ubiquitously used

in mathematical finance.

As mentioned in Section 8.2, the most relevant extension of this formalism for can-

cer cells is perhaps found in active particle models, which attempt to include the self-

propelled character of certain agents such as cells. While our treatment will not fall

entirely in this active category, it is worth briefly describing these extensions. Perhaps

the most noteworthy is the class of particles referred to as active Brownian particles,

whose motion is described by some modified form of (8.4). One such alteration is ob-

tained by allowing a dynamically varying friction coefficient γ(x, v, t) which can reach

negative values [47]; this effective “negative dissipation” of energy can be interpreted

as the result of the active internal motor and the assumption of energy being obtained

from the environment, and thus renders the fluctuation-dissipation relation (8.10) in-

valid. Alternatively, active Brownian models have been proposed where the energy

obtained from the environment is stored internally (the depot model), which is modeled

by a separate balance equation e(t) so that the frictional force becomes [−γ + e(t)]v(t)

[51]. Besides active Brownian motion, another popular model for cellular locomotion is

the run-and-tumble model – phenomenologically inspired by the observed erratic move-

ment of Escherichia coli (a famously studied type of bacteria) [8] – which characterizes

the particle’s movement as short straight lines at constant speed (“runs”) that are occa-
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8. Cell movement as a stochastic process

sionally interrupted at stochastic intervals by random changes of direction (“tumbles”).

Its Langevin equation does not derive from the Brownian form discussed previously, but

rather constitutes a two- (or three-) dimensional form of the telegrapher’s equation [28,

56, 6].
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9. Stochastic motion under population

growth

9.1. The problem of growth

From the experimental example [35] discussed in Section 8.1, we might conclude that

the increased cell density in the confined space reduces the mobility of the individual

cells, resulting in the observed sublinear diffusion. The qualitative argument for this is

that cells cannot move through or over one another and thus act as obstacles to each

other’s motion, over time effectively reducing the available space at random positions.

Some parallel’s can be made to the crowding effects studied in macromolecular solutions

– for example the diffusion of macromolecules inside the cellular cytoplasm, which have

situationally been show to present anomalous (non-linear) diffusion [2, 17, 37] – however

here we are interested in the phenomenon of a dynamically changing density of cells

caused by a varying population size. One approach to model crowding would involve

defining an interaction potential for particles that run into each other, which can be

superimposed on some stochastic motion. Such a system can be probed by evolving a

local density n(x, t) in time [9], as done for the run-and-tumble model by Cates et al.

in [7]. While this can offer highly useful spatial information of the system, it requires

the explicit choice of the single particle dynamics and interaction potential, which can

be cumbersome to work with if these take a complicated form.

In this chapter we show that a simple form of dynamic crowding can instead be

obtained readily from the Langevin equation (8.4). From its interpretation as describing

the dynamics of an ideal gas, we first identify a key physical quantity that is implicitly
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9. Stochastic motion under population growth

encoded and relates to the particle density – the particle mean free time – which we

then use to generalize the LE to allow for a time-varying density. The predictions of

this LE are compared to simulations of two-dimensional hard disk colliding particles

simultaneously undergoing population growth (the specifics of which are described in

Section B.1), with highly convergent results.

9.2. Brownian motion in an ideal gas

While in Section 8.3.1 we introduced Brownian motion as a model for the movement of

a large particle (a pollen) undergoing a multitude of collisions with the various atoms

and molecules surrounding it, it is worth wondering whether it can also serve as a model

for the movement of these smaller particles themselves, as in for example an ideal gas.

Indeed, the erratic trajectory of a single gas molecule is also caused by collisions with

other molecules, and the Maxwell-Boltzmann distribution (8.11) to which the velocities

of an ensemble of Brownian particles were shown to converge was in fact originally derived

to describe the velocities within an ideal gas [38]. However, there is a notable difference in

timescales: The microscopically visible movement of the pollen is caused by the net force

of thousands of collisions with the particles in its suspension – since a push from a single

molecule would not transfer enough momentum to effect a displacement on the scale of

the pollen – which results in the apparent fractal structure of the trajectory. Conversely,

a single collision does cause noticeable displacement of the ideal gas molecule on its own

scale, meaning that its trajectory is perhaps better described by a random walk, i.e. a

succession of short straight displacements in random directions. Recall however that we

saw in Section 8.3.1 that Brownian motion can be constructed from a random walk by

taking “infinitely short” straight lines. Thus, it might accurately depict the long-time

behavior of this short-time random walk. To see where the two descriptions overlap, we

will first derive the velocity autocorrelation for the random walk of the gas particle. To

facilitate a comparison with the particle simulations (see Section B.1) we will from this

point onward constrain our treatment to movement in two spatial dimensions.
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9.2. Brownian motion in an ideal gas

9.2.1. Velocity correlation of the random walk

To obtain the autocorrelation 〈v(t)v(t+ τ)〉 of our test particle’s velocity, we first write

out the scalar product explicity:

v(t)v(t+ τ) = cos θ(τ) s(t)s(t+ τ) (9.1)

with s(t) ≡
√
vx(t) + vy(t) the particle’s speed, and θ(τ) the angle between the velocities

at t and t+ τ . In our simple random walk model the particle moves in a straight line at

constant speed until it collides, at which point it obtains a new direction and possibly

a new speed. If the particle does not undergo a collision in the short time τ , then

θ(τ) = 0, s(t+ τ) = s(t) and thus v(t)v(t+ τ) = s2(t). If on the other hand the particle

has undergone a collision, θ(τ) is a random (uniformly distributed) angle such that the

many particle average disappears 〈cos θ(τ)〉 = 0. For a large ensemble of particles we

can separate the average into those that have and have not collided in τ :

〈v(t)v(t+ τ)〉 =

∑
no coll

cos θi(τ) si(t)si(t+ τ) +
∑
coll

cos θi(τ) si(t)si(t+ τ))

Ncoll +Nno coll

=

∑
no coll

cos θi(τ) si(t)si(t+ τ)

Nno coll

Nno coll

Ncoll +Nno coll

+

∑
coll

cos θi(τ) si(t)si(t+ τ)

Ncoll

Ncoll

Ncoll +Nno coll

= 〈cos θ(τ) s(t)s(t+ τ)〉no coll P{no collision in τ}

+ 〈cos θ(τ) s(t)s(t+ τ)〉coll P{collision in τ}

=
〈
s2(t)

〉
P{no collision in τ} (9.2)

Where the final equality comes from the assumption that the new angle after a collision

is independent of the speed. So what is the probability of no collision occurring in this

finite time τ? A first guess would be that – assuming the gas is in thermal equilibrium

– the occurrence of collisions with a selected particle is a Poisson process (see Section

3.1.2), which would make the time between collisions exponentially distributed. From
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9. Stochastic motion under population growth

(3.10) P{no collision in τ} is then e−λτ , where λ is the probability rate of collisions with

the particle in time. Plugging this into (9.2) gives a familiar result, as we previously

saw that the velocity autocorrelation of the Brownian particle (8.8) contains a similar

exponential decay. Furthermore, having seen the distribution of speeds in the Brownian

model to be Rayleigh distributed, the prefactor in (8.8) can be identified as the second

moment of the speed (8.13), so that the velocity correlation of the Brownian particle

can be rewritten as

〈v(t)v(t+ τ)〉 =
〈
s2(t)

〉
e−γτ (9.3)

This is exactly the autocorrelation function of the random walk velocity upon identifi-

cation of λ ≡ γ.

It is worth taking a moment to summarize what this tells us. We have seen that despite

its “jaggedness” on all scales (i.e. its fractal character), the Brownian path of the LE

still contains memory in the velocity vector (Section 8.3.1), in other words the direction

of motion of the particle is briefly correlated with its past. Here we have shown that

the exponential character of this correlation function is exactly the same as the average

autocorrelation of a particle which moves ballistically but undergoes sudden changes in

velocity at stochastic intervals, where the friction coefficient γ in the Brownian model is

equivalent to the rate of collisions in the random walk. From this we can conclude that

while a single Brownian trajectory differs from that of a random walk on the scale of the

moving particle, an ensemble of random walks presents on average the same speed and

direction changes as the Brownian motion if the timescale on which the measurements

are performed is larger than 1/γ.
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9.3. Coupling the Brownian Langevin equation to the particle density

9.3. Coupling the Brownian Langevin equation to the particle

density

9.3.1. Fixed density populations

If γ is the Poisson rate of collisions in time undergone by a single particle in the gas, then

the average time between collisions is given by 〈τ〉 = 1/γ (the expected value (3.12) of

the exponential distribution). For a particle in a gas, this quantity is sometimes referred

to as the mean free time [18]. It is closely related to another quantity known as the

mean free path – the average distance a particle travels in between collisions, which we

will denote as l – through the relation

l = 〈s〉 〈τ〉 (9.4)

with 〈s〉 the particle’s average speed. The fact that the mean free path is thus encoded

in the Langevin equation (through the friction coefficient and the average speed) will

prove very useful, as it has a simple dependence on the number density n of particles

[18]:

l =
1√
2σn

(9.5)

where σ is the collisional cross-section – the area perpendicular to the direction of

motion covered by two colliding particles – which in two dimensions is simply the sum

of their diameters. This means the Brownian LE for our gas particles can be made to

depend explicitly on the particle density. With γ = 〈s〉/l from (9.4), the average speed

determined by the Rayleigh distribution (8.12), and using the fluctuation-dissipation

relation E = D/γ (8.10) we obtain:
γ =

√
E

l

√
π

2
=
√
πE σn

D =
E3/2

l

√
π

2
=
√
πE3 σn

(9.6)

which completely determines the LE (8.4).
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9.3.2. Growing populations

At this point it should be clear how we intend to model a varying population size. If

we swap out the gas particles for cells, the density which arises in the LE derived in

the previous section can be made to vary according to some growth rate, which would

model the dynamic crowding of a growing population. This of course implicitly fixes the

motion type of the cells: ballistic movement in between circular disk elastic collisions.

In Section 9.3.3 we will discuss how this can be extended to allow for other forms of

movement in between collisions.

Equilibrium in slowly varying populations

Before moving from the fixed to a varying density n → n(t) let us briefly recall an

important presumption we have made in deriving this density dependence. We have at

multiple points – when taking the speeds as Rayleigh distributed and when invoking

the fluctuation-dissipation relation – made use of the assumption that the population of

interacting particles is in equilibrium. This state of the system is of course questionable

if particles are being added: wherever a new particle appears the density becomes (at

that point in time) locally higher than its surroundings, meaning that the new total

density (N + 1)/V does not describe spatial homogeneity until this local “bump” has

diffused. On the other hand, a return to equilibrium might occur very fast depending

on the particle energies, making such a brief variation differ little from the local density

fluctuations one would observe in any case for fixed a particle number. Thus we can

presume a separation of timescales, meaning that we may add (or remove) particles to

the system and still maintain equilibrium as long as this is done slow enough. Under

these circumstances the statistical quantities described in Section 8.3.1 should hold, even

for slowly varying γ(t) an D(t).

Logistic growth

The time dependent particle density n(t) is determined by the growth of the population.

While such growth is inherently an exponentially varying process, biological populations
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9.3. Coupling the Brownian Langevin equation to the particle density

are often found to increase with a sigmoid character – i.e. an “S” shape – over long peri-

ods of time, principally because unrestricted exponential growth cannot be sustained by

their environment. In our case the limited space is clearly such a restricting factor, fur-

ther supported by evidence that cell proliferation in mammalian tissues can be slowed in

response spatial constraints [55] . Many functional forms are used for modeling sigmoid

growth curves in different biological applications, and are typically specific variations

of the logistic model [59], which has an exponential increase whereby the growth rate

decreases over time. For our purpose it is sufficient to consider the simplest form pro-

posed by Verhulst almost two centuries ago [62], characterized by a growth rate λ and a

carrying capacity K which represents the limit to which the population size converges.

For a population of size N(t) it is given by

N(t) =
KN0e

λt

K +N0(eλt − 1)
(9.7)

so that we have for the density n(t) = N(t)/V .

9.3.3. Alternative types of motion

As previously mentioned, the Langevin equation (8.4) with γ and D determined by (9.6)

– while density dependent – only describes a particular form of motion, i.e. that of a

random walk where direction changes are caused by elastic collisions. Let us now briefly

discuss how this may be extended to describe other types of movement as well as possibly

different forms of interactions.

Generalizing the type of trajectory in between collisions fairly simple. It suffices to

add additional terms to account for a different type of motion. For example, to couple

the collisional LE of (9.6) to the LE of an active Brownian particle, the equation of

motion would have some form of

dv(t)

dt
= [γc(n) + γa(x, v, t)]v(t) +

√
2Dc(n)ξc(t) +

√
2Da(x, v, t)ξa(t) (9.8)

where the collisional parameters γc(n) and Dc(n) are given by (9.6) and the active

parameters γa(x, v, t) and Da(x, v, t) depend on the chosen model of motion [47].
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Altering the type of interactions is more complicated, as γc and Dc clearly encode

elastic collisions even though the interaction potential never explicitly appeared in our

derivation in Section 9.3.1. Still, since both depend on the average particle energy E,

allowing it to vary can introduce inelastic effects, while lifting the fluctuation-dissipation

requirement can involve “active” interactions.

9.4. Comparison of the Langevin equation with direct particle

simulations

Having developed a formalism for density dependent motion, let us now compare the

Langevin equation derived here with the exact simulations of individual particles (the

specifics of which are described in Appendix B.1) shown in Figure 9.1. As discussed

in Section 9.3.1, while the single particles in the simulation move in straight lines in

between collisions, we expect the statistical properties of the particle ensemble to be

well-described by the Langevin equation (8.4) if the timescale on which we measure is

much larger than the particle mean free time 1/γ. To assess the accuracy of this model

we first consider the system at fixed density. The quantities described in Section 8.3.1

can be obtained from the particle simulations as direction measurements of the indi-

vidual particle, and can be compared to both their theoretical predictions as well as

numerically simulated trajectories of the Langevin equation [24]. (see Addendum B.2

for specifics).

Note that given the comparative nature of this section, we will refrain from specify-

ing dimensions explicitly when reporting chosen parameter values, as they are usually

implied by the quantities themselves, and their implicit existence removes the need for

defining units of measurement. For example, if a reported particle energy is denoted as

E = 0.5, it is tacitly implied the dimensions are of the form
[
mass× distance2/time2

]
whereby the distinct units for mass, distance, and time are universal to any relevant

comparisons.
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9.4.1. Fixed density results

For a population of fixed density, we saw (in Section 8.3.1) that the speed of the Brownian

particles is expected to be Rayleigh distributed, according to

P{s} =
s

E
e
−s2

2E (9.9)

where E is the average particle energy from the fluctuation-dissipation relation (8.10).

A comparison of the equilibrium Langevin and ballistic particle simulations with (9.9) is

shown in Figure 9.2. Note that this distribution is independent of the particle density and

depends only on the average energy. Conversely, the velocity autocorrelation function

〈v(t)v(t+ τ)〉 = 2Ee−γτ (9.10)

and the mean squared displacement

〈
x2(t)

〉
= 4

E

γ

[
t− 1

γ

(
1− e−γt

)]
≈ 4E

γ
t (9.11)

(obtained from plugging in the fluctuation-dissipation relation E = D/γ in (8.8) and

(8.14)) of the particles do depend on the population density through (9.6), as shown in

Figures 9.3 and 9.4 respectively, shows both models to be in good agreement for different

population densities. We note how the ballistic regime – when e−γt is not yet ≈ 1 – is

clearly visible in the early time of the mean squared displacement, and is shortened for

higher densities where γ is larger.
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Figure 9.1.: Visualization of the particle simulation. An example of a possible

state the system can be in at any given time point. The individual particles are repre-

sented as blue-filled circles at their respective positions in the plane, with their velocities

depicted by the orange arrows.
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Figure 9.2.: Distribution of single particle speeds s(t) =
√
v2(t). The measured

distributions are shown for the particle simulation and the Langevin equation, alongside

the predicted Rayleigh distribution. The particle simulation consisted of 1000 particles

of radius r = 0.08 in a square volume with dimensions 15 × 15, resulting in a particle

number-density of n = 4.44 and a volume-density of ρ = 0.09. The average particle

energy was taken at E = 0.002 by initiating the simulation with fixed particle speeds s(t =

0) = 0.02, and subsequently allowing the system to relax to its equilibrium distribution.

The distribution for the Langevin particles was obtained by numerical simulation of 5000

trajectories of the Langevin equation (8.4) with parameters (9.6) with E, n, and r as

denoted above. Both distributions were obtained from all particle speeds at multiple time

points.
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(a) (b)

Figure 9.3.: Velocity autocorrelation of the single particles in a fixed density

population. The particle simulation was run for a 15× 15 square volume with 500 (a)

and 1000 (b) particles of radius r = 0.08 with initial speed s(t = 0) = 0.02 and thus

energy E = 2 × 10−4. The Langevin simulations were performed for 5000 trajectories

with the same parameter values. The analytical prediction is the function (8.8) obtained

from analytically solving the LE.
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Figure 9.4.: Mean squared displacement for a fixed density population. The

measured quantities are shown for the particle simulation and the simulated Langevin

equation (the analytical prediction (8.14) obtained from the LE matched the numerical

LE simulations almost exactly, and is therefore left out for clarity), each performed for

four different population densities. All simulations were performed for particles with

radius r = 0.08 and initial speed 0.03 (average energy 4.5× 10−4).
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9.4.2. Growing population results

Let us now turn to the case of a varying population. Taking the growth function (9.7)

for the particle density n in (9.5) we obtain the density dependent Langevin equation.

As before, this can be compared with the particle simulation, where growth is imple-

mented as described in B.1.5, the result of which is shown in Figure 9.5. We observe

sublinear diffusion as the population increases, followed by a return to a linear slope as

the carrying capacity K is reached, whereby the Langevin model generally agrees well

with the particle simulation.

9.5. Perspective: localizing the LE for interacting particles

Up until this point we have only considered a spatially homogeneous system – made

possible by the assumption of a slowly varying population size – where density variation

is therefore assumed to occur simultaneously at all points in space. It would be useful

to extend this formalism to a spatially localized model, as this could be effectively used

in modeling experimental conditions with spatial inhomogeneity. One possible route to

achieve this would be by following the method of [9] and [56], where the single particle

Langevin equation is used to obtain a stochastic time evolution of the spatial density

ρ(x, t) by its constructing as a sum of the single particle densities ρ(x) =
∑

i ρi(x) =∑
i δ(x− xi). This avenue of investigation provides an interesting perspective for future

work.
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(a)

(b)

Figure 9.5.: Mean squared displacement in a growing population. For the lo-

gistic growth function (9.7) with maximum occupied volume density K/V = 0.2 different

values of the growth parameter λ were simulated: λ = 0.001, λ = 0.002, and λ = 0.005.

(a) Growth curve for different values of the growth rate λ. (b) Mean squared displace-

ment measured from particle simulations (full lines) and Langevin simulated solutions

(dashed lines)
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9.6. Discussion

In this chapter we have seen how the friction and force intensity parameters γ and D

of the Brownian Langevin equation for a ballistic particle undergoing a random walk

due to collisions can be made to depend explicitly on the density n of the system, by

identification of the mean free path arising in the velocity autocorrelation. Through

numerical simulations of the 2D Langevin equation we tested this model for a growing

population confined to a plane by coupling the density to an appropriate growth curve –

such as the logistic function (9.7) – and comparing the predictions with a 2D simulation

of individually colliding particles in which the particle number increases according to the

projected growth. The Brownian model performed well as an estimate for the averaged

effect of increasing crowding. We propose this Brownian Langevin equation can be used

to model dynamical crowding effects on cell motion in situations where the population

size variation plays a role, whereby possible extensions of the LE can be made to include

active types of motion in between interactions. An interesting perspective is the possi-

bility of constructing a similar Langevin equation for the density field ρ(x, t), in which

spatially localized density variations can be modeled, as such a tool would be useful in

analyzing more complex environments in which there is no spatial homogeneity.

The model introduced here can be useful in interpreting experiments in the field of

cancer such as that by Lin et al. [35] discussed in Section 8.1, where cell proliferation

plays a key role in the systems’ dynamics. Furthermore, because this approach remains

agnostic as to both the characteristics of the particles’ motion in between interactions

(as discussed in Section 9.3.3) as well as the mechanism by which the particle density

varies (Section 9.5), it is potentially applicable in any situation where there is an interest

in studying properties of statistical motility in a population presenting density dynam-

ics. Some examples include spatial ecological systems [4], for example the exploratory

habits of animals of interest could exhibit effects of dynamic crowding as a result of pop-

ulation cycles; epidemiological systems [34], since the quantity of information-spreading

interactions depends on the density of information-carrying individuals; and even human

societal contexts, for example the characterization of mobility in urban locations which
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9.6. Discussion

present crowding dynamics.
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10. Conclusions

In this thesis we have investigated a number of cell-based biological systems through

the application of stochastic mathematical models. In each of these applications the

goal has been to either achieve novel insights into the system’s behavior, test existing

assumptions related to its functioning, or quantify qualitatively understood behavior in

a manner which may contribute to accurate predictions.

The results described in this work were roughly divided into two parts: the first part

concerned three separate investigations of the human hematopoietic system, the process

by which precursor cells of the blood are matured in the bone marrow. The second –

somewhat shorter – part described a study of the effect of proliferation in populations

of motile particles, with the intent of its possible application in growing cell populations

which may be relevant to the occurrence of metastasis in cancer. Here we will recapitulate

the conclusions and perspectives of projects.

10.1. Population dynamics of hematopoiesis

The hematopoietic system has for many decades been an important subject of study,

both due to its importance in the normal functioning of the body, as well as its relevance

in the study of various blood-related diseases. Its hierarchical architecture has been

meticulously mapped over time, with current understanding describing a complex picture

of differentiation lineages which facilitate transitions from the stem cell compartment to

the mature cell types found in the blood. The quantitative underpinnings of this picture

are however to an extent still lacking, and numerous question marks remain with respect
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to the underlying mechanisms that drive the system.

Over the course of three overarching research questions we have studied the behavior

of hematopoietic stem cells and their mutation accumulation through an adapted Moran

model approach, as well as the plasticity of the hematopoietic system as a whole through

the development of a heuristic feedback driven model of its encapsulated cell dynamics.

The first question (Chapter 5) related to the blood disorder paroxysmal nocturnal

hemoglobinuria (PNH) caused by the expansion of a mutant PIGA clone in the hematopoi-

etic stem cell (HSC) pool. While one hypothesis attributes this clonal growth to some

infrequently occurring selective advantage, we have shown the possibility of a simpler

alternative: expansion due to neutral drift. While this may be a highly unlikely event,

we investigated the exact probability of its occurrence by constructing a Markov chain

for the probabilistic arrival and evolution of such a selectively neutral mutant in the

HSC pool. Requiring only a handful of parameters from the literature, among which a

small size N ≈ 400 of the stem cell population, a slow rate of symmetric self-renewal

λ = 1/year and a mutation rate of the gene µ = 5 × 10−7 per cell division, we have

shown that the expected number of individuals in which this neutral expansion would

occur is not negligible, and in fact, after taking into account the distribution of ages

using data from the 2010 United States Census – fits with the incidence of the disease

in a population, where we predict an expected prevalence of 1.76 cases per 105 citizens.

Under the neutral hypothesis, the model furthermore rightly predicts the possibility of a

spontaneous loss of the disease, a phenomenon which is observed in many patients and

is difficult to reconcile with the selection-based hypothesis. On the other hand, we found

that the same model of HSC dynamics alone fails to capture the rate at which clones are

seen to expand in patients, even though the observed distribution of clonal expansion

and reduction qualitatively fits the selection-free hypothesis. We suggest that this can

be explained by the fact that the model does not take into account the cellular dynamics

outside of the stem cell pool, in particular the extreme loss of blood caused by the PNH

phenotype in mature cells, which would through feedback cause a compensating reaction
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10.1. Population dynamics of hematopoiesis

in the HSC pool, increasing the speed of its divisional dynamics thus the rate at which

clones vary in size.

This model, while simple, still required the knowledge of a select few parameter val-

ues. Because of the difficulty of performing in vivo measurements and the complexity

of the hematopoietic system such values are often debated in the literature. Because

the strength of such predictive models may rely heavily on accurate parameterization,

devising methods for obtaining these quantities can be highly beneficial for future re-

search in the field. For this reason, the second research project (Chapter 6) dealt with

the question of extracting this quantitative information from what is ultimately often

noisy experimental data. Focusing our attention on the stem cell pool, we posited that

valuable information on the behavioral processes of HSCs – such as the per-daughter-cell

mutation rate, the symmetric and asymmetric division rates, and the size of the stem

cell pool – is encoded in the stochastic occurrence of somatic mutations, which thanks to

recent advances in genome sequencing techniques and experimental design has become

increasingly observable. Thus, building on the model of a neutrally expanding mutant,

we next examined the clonal landscape of all possible occurring mutations in HSCs.

Given that the space of all outcomes of such a stochastic evolution is too complex to

analyze directly, we considered two reductions of this state space, both containing dif-

ferent information on the underlying quantitative processes. The first was the single cell

mutational burden (the total number of mutations per cell), which encoded both the

mutation rate and the total division rate. The second was the variant allele frequency

(VAF, the distribution of clone sizes within the population), for which we derived an

expression to numerically evolve its expected value, which relies on all underlying param-

eter values at once. We were, however, unable to obtain a prediction for the evolution of

the variance of the VAF. These results were then applied to a recent dataset containing

high resolution mutational information on 89 human HSCs derived from a single patient,

from which we extracted a Poisson mutation rate of 4.3 per daughter cell per division,

as well as a total division rate of 4.2 per year. Fitting the VAF measured from the data
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proved on the other hand difficult, as it was shown that information on the size of the

HSC pool is lost during the process of sampling. These results highlighted the usefulness

of this mutational information for robustly quantifying the processes driving stem cell

dynamics, likely even in other tissues. It is clear that further research into quantifying

this clonality – such as, for example, obtaining a prediction for the time evolution of the

variance on the VAF – can greatly benefit the interpretation of the growing wealth of

experimental data.

Finally, our treatment of the hematopoietic system concluded with an investigation of

its vivo cell dynamics (Chapter 7), with a possible generalization to any differentiation

based systems in the body. While our modern map of hematopoiesis – describing the

various existing lineage pathways – is considerably intricate, there is still little known of

the dynamic character of the system as a whole. It is known that various disorders can

cause great variations in cell numbers in the blood, however the hematopoietic system

presents an uncanny ability to react to these and resume some form of normal function-

ing. To better understand the cell dynamics underlying this plasticity we formulated

a model of hematopoiesis whereby successive stages of differentiation are modeled as

distinct compartments which interact through feedback. This system acts as a flow of

cells from the HSC stage to the mature compartment, whereby the density of cells in

each compartment grows exponentially due to proliferation. Applying a perturbation to

this system, such as for example a loss of cells in a compartment, the preceding com-

partments must alter their behavior in order to mitigate the duration of the disruption

to the system. We found that a precise balance of altered differentiation – providing the

downstream flow – and self-renewal – providing the exponential growth – is required for

stability, as disproportionate responses can lead to oscillations or sudden losses in the

compartment numbers. The former behavior is in fact observed in certain hematopoi-

etic diseases such as cyclic neutropenia in the form of cycling cell numbers in the blood.

Applying long lasting perturbations, as are expected to occur in various chronic diseases

such as PNH or chronic myeloid leukemia, we found the the system evolves to new steady
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states, with moderately to extremely altered cell numbers in the blood, which is in line

with observations in patients.

While this model should not be considered a predictive tool for a specific hematopoi-

etic lineage pathway, it serves as an important illustration for the expected types of

dynamics one would observe under stresses of the hematopoietic system. Through its

investigation we have shown the importance of the effects of feedback when interpreting

observations of disease progression in patients. Indeed, this model illustrates clearly how

the final inclusion of feedback in the previously discussed model of PNH (Chapter 5)

constitutes a far more accurate depiction of the mutational dynamics. A similar obser-

vation can be made for the mutational diversity discussed in Chapter 6: an individual

who has at some point in their life suffered from an extreme perturbation to the blood

may have a more aged stem cell compartment due to its increased activity in the past.

The three research questions addressed here have highlighted both the importance

of the quantitative approach to the complex system of hematopoiesis, as well the many

open questions still remaining. The accumulating wealth of increasingly qualitative data

provides ample opportunity to answer these, and simultaneously necessitates the further

investigation into the mathematical properties of the system’s underlying behaviors.

10.2. Statistical mechanics of proliferating cells

The possibility of self-driven motion in living matter can lead to complex dynamics.

However, while the statistical characteristics of such active motion are the topic of great

scrutiny, little attention has been payed to the influence of proliferation in active pop-

ulations. Such system are abundant though, with a prime example found in motile

cell populations which can occur in regenerating tissues, cell culturing experiments, and

cancer. In Part II of this thesis (Chapters 8 and 9) we have investigated the influence

of such proliferation on the stochastic motion of interacting particles by returning to

the simplest model from first principles: Brownian motion. While this model is tra-

ditionally applied to describe a particle’s stochastic movement caused by an external
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medium such as a fluid, we instead used it as a course-grained model for the ballistic

motion of particles in between collisions in a crowded environment. In this interpreta-

tion, its formulation as a Langevin equation (LE) allowed for the explicit introduction

of a dependence on the density through the friction and force parameters, by identifying

their relation to the particle’s mean free path. In this manner a dynamically varying

density could be introduced, which can be effectively used to model crowding effects in

proliferating populations. For a growing population in a confined environment this led

to the observation of sublinear diffusion, caused by the dynamically reducing availability

of space. We furthermore tested the validity of this approach by comparing numerically

simulated trajectories of the Langevin equation to a direct simulation of elastically col-

liding ballistic particles, for which we found good agreement. A potentially interesting

extension to this formalism would be to construct a spatially localized form of the equa-

tion, allowing for the characterization of non-heterogeneous systems whereby stochastic

fluctuations may play an increased role.

While the Langevin equation investigated here is not active in the sense of the single

particle motion – as we made no inclusion of any auto-locomotive properties – it can

easily be extended to cover such systems by including additional active terms in the LE.

For this reason it can be a useful tool for introducing a proliferative effect in models of

active systems such as, for example, motile cells in culture. Furthermore, thanks to the

generality of the approach the model can be applicable in other fields as well, wherever

there are questions pertaining to stochastic movement in space and a dynamically varying

mobility caused by crowding.

218



Appendix

219





A. Population dynamics of hematopoiesis

A.1. Combining Poisson processes

Consider two independent Poisson processes with respective events V and S, each with

(independent) exponentially distributed waiting times with rates v and s. We have


P{Vt} = 1− e−vt

P{St} = 1− e−st


ftV (τ) = v e−vτ

ftS (τ) = s e−sτ
(A.1)

with P{Xt} the probability of at least one event occurring in a time interval t and ftX (τ)

the density distribution of the waiting times. We now introduce the new event Ṽt as

the occurrence of at least one V , occurring before any S in t; and the complementary

event S̃t with the converse definition. Note that Ṽt and S̃t are mutually exclusive, and

cover all possible outcomes except for those where no S or V occur. We may write them

equivalently as the following sets:

Ṽt = {Vt ∩ Sct , Vt ∩ St ∩ (tv < ts)}

S̃t = {St ∩ T ct , St ∩ Vt ∩ (ts < tv)}
(A.2)

Since both events in each set are mutually exclusive we may write the probabilities of

Ṽt and S̃t as the sum of the probabilities of their respective elements. The first term is

P{Vt ∩ Sct } = P{Vt}P{Sct } = e−st
(
1− e−vt

)
(A.3)
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since Vt and St are independent (with the analogous argument for P{St ∩ V c
t }). For the

second we obtain

P{tv < ts ∩ St ∩ Vt} = P{tv < ts ∩ St}

=

∫ t

0
P{tv < τ}fts(τ) dτ

=

∫ t

0

(
1− e−vτ

)
s e−sτ dτ

= 1− e−st +
se−t(s+v) − s

s+ v

and summing the two gives

P
{
Ṽt

}
=

v

s+ v

(
1− e−(s+v)t

)
(A.4)

From this we identify
(
1− e−(s+v)t

)
= P{Vt ∪ St}, which is the probability of any event

occurring in t. Thus P{Ṽt} and P{S̃t} can readily be interpreted as the probabilities

of an event occurring in t, multiplied by a probability which determines whether that

event is V or S. The above expression can furthermore be expanded for an infinitesimal

timestep dt to obtain a rate:

P
{
Ṽdt

}
=

v

s+ v
(s+ v)dt+ ϑ(dt2) (A.5)

which shows that S and V occur at rates s and v respectively, and allows us to identify

ε =
s

s+ v

r = s+ v

(A.6)

The argument can be extended for more than two processes analogously.

A.2. Simulations of the Moran model with mutant

accumulation

As a check for the correctness of the results on clonality derived in Chapter 6, we make

use of direct simulations of the underlying Moran model, the primary code for which was

developed by Marius Möller (Queen Mary University of London, School of Mathematical
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Sciences). The simulation involves a Gillespie algorithm [2] which stochastically performs

the divisional events described in Section 4.2 in a population of cells, whereby distinct

mutations which occur in the population are tracked.

A.2.1. The cell population

The cell population is modeled as a collection of cells, each of which may carry an

unlimited amount of mutations. Thus the state of the system at any point in time can

be represented by a Boolean matrix A whereby the rows represent distinct cells and the

columns distinct mutations, so that a 1 represents the existence of a particular mutant

(column) in a cell (row) and a 0 depicts its absence. Because the population is constant

the number of rows is fixed, however the number of columns increases as new mutations

are added to the system.

A.2.2. Events which alter the population

Two distinct events can occur which alter the state (A) of the population. Specifically

these are (see Chapter 4.3.2) a simultaneously occurring self-renewal and symmetric

differentiation, and an asymmetric differentiation. Their effect on the population state

is as follows:

self-renewal + symmetric differentiation

• One cell is randomly (with uniform probability) selected for self-renewal:

– This cell is copied (i.e. the copy contains the same set of mutations), and

both the original and the copy undergo mutation.

• One cell is randomly (with uniform probability) selected for symmetric differenti-

ation:

– This cell is removed.

asymmetric differentiation

• One cell is randomly selected (with uniform probability) for asymmetric division:

– This cell undergoes mutation.
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A.2.3. Mutations

Whenever a division is performed in the population a cell undergoes mutation, meaning it

can acquire new mutations (though it cannot lose any existing mutations it carries). Each

new mutation arising in a cell is distinct from the existing mutations in the population,

thus introducing a new column in A. The number of mutations added to a cell during a

division event is drawn from a Poisson distribution with parameter µ the mutation rate.

A.2.4. Time evolution

During time evolution, events occur probabilistically according to their Poisson rates ρ

(self-renewal + symmetric differentiation) and φ (symmetric differentiation). Following

the Gillespie algorithm, at initiation and after each occurrence of an event, the time

until the next event is drawn from the exponential waiting time of all possible events –

Exp(−[ρ+ φ]t) (see Section 3.1.2) – and the specific event is chosen randomly according

to their respective likelihoods ρ/(ρ+ φ) and φ/(ρ+ φ) (see Section 3.1.2).

A.3. Obtaining the mean and variance of the compound

Poisson distribution

The compound Poisson distribution is defined as the distribution of the random variable

m =

y∑
i=1

xi (A.7)

whereby the xi are independent and identically distributed random variables, and y is a

Poisson distributed random variable. The expected value of m can be found using the

law of total expectation [5], which states that

E(m) = E [E (m | y)] (A.8)

With y fixed, E (m | y) is expectation of a sum of random variables, which is given by

the sum of their respective expectation values, so that we obtain

E(m) = E [yE(x)] = E(y) E(x) (A.9)

224



A.4. Compartment model of hematopoiesis: fixing parameter values

To obtain the variance, we similarly use the law of total variance [5], which states that

Var(m) = E[Var(m | y)] + Var[E(m | y)] (A.10)

The first term can be found from the fact that all xi are independently distributed – so

that the variance of the sum can be written as the sum of the variances – which leads to

Var(m) = E[yVar(x)] + Var[yE(x)] (A.11)

= E(y) Var(x) + (E(x))2 Var(y) (A.12)

Now using the fact that since y is Poisson distributed E(y) = Var(y), we obtain

Var(m) = E(y)
[
Var(x) + (E(x))2

]
(A.13)

= E(y) E(x2) (A.14)

A.4. Compartment model of hematopoiesis: fixing parameter

values

In the model of Dingli et al. [1] the dynamics of a compartment j are given by

∂tNj = 2εrj−1Nj−1 − (2ε− 1)rjNj (A.15)

The first term on the right hand side of the equation is the flux of cells coming in

from the nearest upstream compartment j − 1 (where the factor 2 comes from the fact

that two daughter cells are created per division), while the second term is the sum of

the fluxes of cells being removed due to differentiation (at rate εrjNj) and added due

to self-renewal (at rate (1 − ε)rjNj). Given the number of HSCs N0, the number of

(non-HSC) compartments M , and the daily bone marrow output βM ; the homeostatic

values N∗j , r∗j , and ε∗ can be found by simultaneously solving the equilibrium condition

(found by taking ∂Nj = 0) ηρ = 2ε/(2ε− 1), the geometric growth equations Nj = N0η
j

and rj = r0ρ
j , and the bone marrow output rate 2εrMNM = βM for ε, η, and ρ. For

example, given a system with M = 28, N0 = 400, and βM = 3.5 × 1011; the values

ε = 0.82, η = 1.97, and ρ = 1.31 are obtained.
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B.1. Particle simulation

To test the validity of the Langevin equation with parameters (9.6), a simulation of

colliding particles was constructed to perform exact realizations of the system modeled

by the LE. In order to parallel typical cell culturing experimental conditions we consider

a system in two spatial dimensions. From the discussion in Section 9.3.1 the particles

we wish to simulate should exhibit the following behavior:

• They inhabit a finite volume within a confined space.

• Their free trajectories (in between collisions) are straight lines traversed at constant

speed.

• They cannot inhabit the same space, and instead collide elastically.

• They can proliferate resulting in increased number density over time.

With this in mind, a simulation was constructed which evolves the positions of all par-

ticles in the system over time.

B.1.1. Particle properties

We take a set of particles ci ∈ C, each equipped with a velocity vi and a position xi and

inhabiting a circular area of volume πr2
i centered around xi. For simplicity all particles

are taken to have equal size ri = r and mass mi = 1. The vi of a particle is constant in

time until it collides, at which point the new velocity is calculated as an elastic moment

transfer.
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B.1.2. Particle collisions

For a collisions between two particles ci and cj , the new velocity v′i of ci is given by

v′i = vi −
(vi − vj)(xi − xj)

(xi − xj)2
(xi − xj) (B.1)

Collisions themselves are detected as overlapping cells. With time evolved in fixed dis-

crete increments ∆t, the time t′ at which a collision occurred during the increment –

i.e. the point at which the distance between their centers of mass was 2r – can be

found from the individual particle velocity vectors and their Euclidean distance. Thus

the overlap which occurring during the increment can be reversed and the remainder

of their movement can be performed in the new velocities. If a mutual overlap of more

than two cells is detected – for example c1 overlapping both c2 and c3 – the earliest

collision is performed, as the collisions detection algorithm must be run again in order

to correctly identify the any subsequent collisions that occurred in the timestep.

B.1.3. Confined space: minimum image periodic boundaries

The particles are confined to a two-dimensional rectangular plane S ⊂ R2 with minimum

image periodic boundary conditions. Concretely, this means that a particle is allowed

to leave the plane S – i.e. xi may reach any value in R2 – however its interactions are

calculated with its image in S, which is the position it would have if the bounds were

periodic. This convention allows for obtaining displacement measurements which are

much larger than the dimensions of S.

B.1.4. Accounting for center of mass drift

The lack of true boundaries in the simulation implies that any nonzero momentum

associated with the center of mass at initiation will remain present throughout the entire

time evolution. In the ensemble of particles this translates to an average drift in the

particles’ velocity. As the Langevin equation (8.4) assumes there is no drift present, it

is necessary to ensure it is zero at initiation. This is done by measuring the center of

mass velocity V, subtracting it from each individual particle’s velocity, and rescaling all
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velocities to ensure the average energy remain unchanged. This can be summarized as

performing the following operation on the particle velocities vi:

vi →

√
E

E −V2/2
(vi −V) (B.2)

B.1.5. Population growth

The number of particles N(t) in the system follows a predetermined growth curve such

as (9.7). With the time-evolution performed in increments ∆t, particles are added to

the system according to

floor [N(t+ ∆t)]− floor [N(t)] (B.3)

at random non-occupied spaces in S. The particles are added at velocity v = 0 and for

each addition all particle speeds are rescaled according to (B.2).

B.1.6. Sketch of the simulation algorithm

The system is initialized with the number of particles determined by N(t = 0) at ran-

domly distributed unoverlapping positions in S and given initial velocities at fixed speeds

|vi| = s0 and random directions, after which the center of mass distribution is removed

as described in Section B.1.6. The time evolution is then performed in fixed increments

∆t. Each timestep contains the following events:

(i) New particles are added to the system as described in Section B.1.5.

(ii) Each particle in ci ∈ C is moved according to its current velocity vi.

(iii) Collisions detection and resolution is performed successively until no more are

found:

a) Overlapping cells are detected as collisions. If a collision involves more than

2 cells, only the first that occurred is taken into account.

b) Any recorded collisions are resolved as described in Section B.1.2.

(iv) The current state of the system (xi(t) and vi(t)) is recorded.
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B. Statistical mechanics of cell motion

B.2. Numerically simulating the Langevin equation

Stochastic differential equations (SDEs) of the form

dXt = f(t,Xt) dt+ g(t,Xt) dWt (B.4)

whereby dWt is Wiener noise – i.e. Gaussian distributed with mean 0 and variance dt

– can be simulated numerically in a similar manner as for standard ODEs, however

the inclusion of a stochastic term requires adapted algorithms. Any numerical solutions

to a Langevin equation described in this thesis were obtained using the Julia package

DifferentialEquations.jl [3], and the SOSRI algorithm developed by C. Rackauckas and

Q. Nie [4].
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