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Summary

Thanks to the advancement of additive manufacturing, periodic metallic lattice
structures are gaining more and more attention. A major attraction of them is that
their design can be tailored to specific applications by changing the basic repetitive
pattern of the lattice, called the unit cell. This may involve the selection of opti­
mal strut diameters and orientations, as well as the connectivity and strut lengths.
Numerical simulation plays a vital role in understanding the mechanical behavior
of metallic lattices and it enables the optimization of design parameters. However,
conventional numerical modeling strategies in which each strut is represented by
one or more beam finite elements yield prohibitively time­consuming simulations
for metallic lattices in engineering­scale applications. The reasons are that millions
of struts are involved, as well as that geometrical and material nonlinearities at the
strut level need to be incorporated.

The aim of this thesis is the development of multi­scale quasicontinuum (QC)
frameworks to substantially reduce the simulation time of nonlinear mechanical
models of metallic lattices. For this purpose, this thesis generalizes the QC method
by a multi­field interpolation enabling amongst others the representation of varying
diameters in the struts’ axial directions (as a consequence of the manufacturing
process). The efficiency is further increased by a new adaptive scheme that auto­
matically adjusts the model reduction whilst controlling the (elastic or elastoplastic)
model’s accuracy.

The capabilities of the proposed methodology are demonstrated using numerical
examples, such as indentation tests and scratch tests, in which the lattice is modeled
using geometrically nonlinear elastic and elastoplastic beam finite elements. They
show that the multi­scale framework combines a high accuracy with substantial
model reduction that are out of reach of direct numerical simulations.
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Introduction

Periodic lattices are gaining more and more attention for their outstanding
mechanical performances with respect to their weight, and for the flexibility
of tailoring the shape of the lattice unit cell for specific applications. Com­
putational modeling plays an indispensable role in predicting and designing
periodic lattices. The main bottleneck of mechanical simulations of periodic
lattices is the large computational model size for engineering applications: the
direct numerical simulations include millions of struts. The aim of this thesis
is to develop an adaptive generalized quasicontinuum framework that can
achieve accurate and cheaper mechanical models for periodic lattices made
of arbitrary shaped unit cells at a much lower computational cost than that
of direct numerical simulations. The multi­scale quasicontinuum principle is
employed because of its ability to incorporate localized mechanical phenom­
ena in small fully resolved regions, while the lattice is coarse­grained in the
remainder of the domain. This thesis proposes an adaptive generalization
of the conventional quasicontinuum method to a multi­field like interpolation
approach so that truly general, yet periodic unit cells can be incorporated.
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1.1. Periodic lattices
Periodic lattices [1] are superior to bulk material in terms of weight­to­strength ra­
tio because of their configurable sparsity (e.g. strut orientations, diameters and
connectivity). This can ultimately enable their structural optimization for specific
applications by selecting the underlying discrete topology, for instance selecting
stretching dominated or bending dominated topologies. Consequently, more and
more research developments in the automobile, aerospace and biomedical fields fo­
cus on lattice materials, also driven by the advancement of additive manufacturing
technologies. For example, selective laser melting [2] is a relatively mature addi­
tive manufacturing technology for the production of such lattice materials. It has
the capacity to fabricate metallic lattices with a controlled degree of quality (e.g.
porosity) (see Fig. 1.1).

Figure 1.1: Metallic BCC (Body Centered Cubic) lattice on exhibition at II Interna­
tional Conference on Simulation for Additive Manufacturing in Pavia, Italy, 2019.

Topologically, a periodic lattice is organized by repeating a unit cell in three
spatial directions. The unit cell consists of struts with a diameter that possibly
varies along its length: a strut can for instance be manufactured more bulky at its
extremities where it is connected to other struts. To optimize the configuration of
the unit cell for a specific application, several design factors are intertwined, which
include, but are not limited to, the size of the unit cell, the strut diameters, the
strut orientations and the connection patterns of the struts (which also influence
the relative density of the lattice).

A step prior to lattice topology tailoring is the ability to predict and understand
the mechanical behavior of these materials – which are actually structures on the
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small scale. The mechanical behavior of periodic lattices is complex as revealed with
the help of modern investigation methods such as in situ­synchrotron radiation mi­
cro tomography [3]. The progressive failure of lattice structures includes nonlinear
mechanical effects such as elastic and plastic post­buckling (features of structural
mechanics), plasticity and material rupture (features of strut scale material me­
chanics). Such failure modes often appear locally in the lattice, but progressively
lead to total failure of the lattice structure [4]. Tracing rigorously the structural
behavior with buckling involves the incorporation of geometrical nonlinearity in the
computational model. Buckling is dominated by the slenderness, the waviness and
the loading condition of the struts. Plasticity is a material nonlinearity and according
to [3], it is primarily manifested at strut junctions. Therefore, appropriate numeri­
cal models for the mechanical behavior of periodic lattices should incorporate such
geometrical and material nonlinearity at the strut scale for a proper representation
of the lattice response.

The deformation behavior of lattice structures can be classified into two cate­
gories: bending dominated and stretch dominated. In bending dominated lattices
the unit cells deform via the bending moments at the strut junctions and plastic
hinges form in case of a ductile material. In stretch dominated lattices tensile or
compressive forces in the struts dictate and plastic yielding and buckling are domi­
nant in the struts for ductile material.[5]

1.2. Mechanical modeling of periodic lattices
Numerical modeling can play a very useful role in this respect: advanced models
with predictive capabilities yield significantly faster and cheaper design processes
than those based on experimental tests of lattice prototypes. Moreover, simulations
can give more insight into the deformation process, as they for instance enable
an uncoupling of mechanical phenomena that are naturally correlated in reality.
A reliable, fast yet accurate and widely­applicable computational methodology to
simulate and predict the mechanical response of periodic lattice structures is clearly
useful and can accelerate their design for different types of applications.

Finite Element Analysis has been applied intensively in simulating periodic lat­
tices. In FE analyses, lattice struts are represented using either a mesh of solid
finite elements [6–9] (e.g. tetrahedral elements) or a string of beam finite ele­
ments [10–13]. Compared to solid finite element, beam finite elements are less
maneuverable in terms of geometry, but require a significantly lower computation­
ally effort. However, direct FE analyses (or direct numerical simulation–DNS) using
beam finite elements are still computationally prohibitively expensive because: (1)
a large amount of beam finite elements is needed to discretize moderate size lattices
(6 millions for a BCC lattice of 50× 50× 50 unit cells); (2) the governing equations
are substantially non­linear (i.e. Newton’s method is required to iteratively solve
the governing equations – for numerous time steps). As a result, only small lattices
with a limited number of unit cells can in practice be considered.

Typically, using beam finite elements helps to reducing the computational cost,
whereas employing solid finite elements allows for a more accurate description of
the strut geometry. Geometric details include strut curvatures, the varying shapes
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of the cross section along the strut, the powder adhesion on the strut surface and
the actual geometry of the strut junction. Neglecting such geometrical details can
in the same cases compromise the accuracy of the prediction of the simulation [14].
However, in the case of highly porous lattice structures containing high aspect ratio
struts, the resulting 3D mesh of solid finite elements would yield simulations for
other than a few unit cells prohibitively expensive [5].

This makes beam finite element a viable modeling option for problem sizes con­
taining numerous unit cells. Timoshenko beams can be used when the diameter is
larger than 10% of the length, i.e. when the shear effect in the strut can no longer
be neglected [14], which is the modeling choice adopted in this work.

The difficulty of a beam based finite element model to capture the geometrical
details can be addressed using a variety of techniques. Smith et al. [13] used
several Timoshenko beam finite elements to represent each strut in BCC and BCCZ
unit cells. The beam cross section close to the junction is enlarged in their study
to mimic the presence of junctions, as performed in this work. They observed that
the beam model and the solid element model were both sufficiently accurate to
describe experimental results. Liu et al. [11] used a string of randomly aligned
Timoshenko beams to model the non­straightness of the struts and successfully
reproduced experimental lattice responses. In a different approach, Portela et al.
[15] meshed realistic strut junctions using solid elements. The FE model of the
junction was then bridged to Timoshenko beam elements that represent the struts.

It is thus apparent that, although not all forms of geometrical imperfections of
the metallic printed lattices can be accounted for in a beam based representation,
it is a computationally efficient choice for capturing experimentally observed lattice
behaviors. In light of this, the presented work uses a string of Timoshenko beam
elements to model each strut and its cross sectional variation as a result of the
manufacturing process.

1.3. The quasicontinuum method
In order to simulate lattices for engineering applications, conventional FE analy­
ses using beam finite elements cannot be applied. Instead, some type of model
reduction is required.

There are two experimentally observed features that can be exploited for model
reduction for metallic printed lattices. The first one is the periodic lattice pattern.
Although the manufacturing process introduces random imperfections resulting lat­
tices can generally still be considered as periodic on the global scale, before buckling
and damage occurs. The second feature is the locality of the deformation of the
lattice. In experiments, the failure of the lattice structure starts in small local zones
(around the first failing strut). On the strut scale, local deformation modes such as
buckling, plastic hinge formation, rupture (in case of brittle material) initially occur.
These local deformation modes then propagate through the lattice and activate
more global deformation modes such as the occurrence of shear bands. During
these processes however, the remaining part of the lattice most often deform in
relatively homogeneous manner.

The aforementioned locality of the deformation of critical lattice zones and the
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periodicity of the lattice provide conditions for the quasicontinuum method – a
multi­scale model reduction strategy – to be applied, because it features an ap­
propriate division of periodic lattices into so­called fully­resolved domains (with a
high resolution to capture localization) and coarse­grained domains (with simpli­
fied kinematics and a lower resolution in order to achieve computational savings).
The quasicontinuum method is a concurrent multi­scale method that was initially
proposed for simulating large scale atomic lattice systems at an affordable com­
putational cost [16–19]. Particularly, the subsequent development of the virtual­
power­based quasicontinuum method [20] enables accurate and efficient modeling
of structural lattices with dissipative mechanisms and motivates the tailoring of this
approach to the correct application incorporating struts with varying diameters and
their elastoplastic behavior.

The quasicontinuum features two model reduction steps: interpolation and sum­
mation. During the interpolation step, all the kinematic variables of the lattice are
preserved in the fully­resolved domains (FRDs), much like in a DNS, so as to be kine­
matically rich to describe localized deformation phenomena. In the coarse­grained
domains (CGDs) however, the kinematic variables of the lattice are interpolated us­
ing finite element shape functions and a reduced set of kinematic variables that are
defined at the representative lattice nodes. This yields large domains with simpli­
fied kinematics, to describe slowly fluctuating (linear and non­linear) deformations.
The summation step constructs the governing equations of the system using a re­
duced set of interactions (e.g. trusses in a truss lattice, inter­atomic interactions
in atomistic lattices): each interaction in the FRDs is accounted for, but a limited
number of sampling interactions is used in the CGDs.

It needs to be emphasized that the quasicontinuum method is primarily applied
to address periodic lattices although its application to irregular lattices was also
reported in [21]. The requirement of periodicity for the unit cell is needed in the
CGDs due to the interpolation and summation operations. Periodicity however does
not limit the FRDs, e.g. a strut can deform in this domain in a way that the local
periodicity of the lattice is no longer satisfied.

The conventional quasicontinuum method only allows for a single beam per
strut [22]. The ability to describe buckling and the representation of geometrical
variations along the strut axis however necessitate the use of multiple beam finite
elements along a strut, being the first main identified gap in the literature and the
first main contribution to the state of the art. Moreover, to trace the evolution of
local deformation in a computationally efficient way, an accurate and robust adjust­
ment of the FRDs and CGDs during a simulation, referred to as adaptive scheme, is
also missing for the generalized quasicontinuum method developed in this thesis.
The second and third main contributions of this work are the implementation of
such adaptive scheme for elastic and elastoplastic lattice behaviors, respectively.

1.4. The multi­scale methods
Since the quasicontinuummethod falls into the category of the multi­scale methods,
it is worth mentioning the position of the quasicontinuum method within the family
of the multi­scale methods.
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Multi­scale methods are capable of bridging the material behavior and the struc­
tural geometries at small scales with the physical behaviors at higher scales. A
variety of materials ranging from metals, ceramics, polymers (both synthetic and
biological) are by essence multi­scale and thus necessitate multi­scale methods for
analysis [23]. According to [24], multi­scale methods can be broadly categorized
into two groups: (1) hierarchical (e.g. the FE2 method); (2) concurrent methods
(e.g. the quasicontinuum method). Hierarchical methods allow for bidirectional
passage of information between fine and coarse scales. In FE2 methods, the con­
dition of scale separation is a prerequisite. The macroscopic deformation is passed
onto the representative volume element (RVE) of the material micro­structure. An
independent boundary value problem is defined and solved at the RVE scale. The
average stress of the RVE is passed back to the macroscopic model. The solution of
the boundary value problems at the quadrature points makes FE2 methods compu­
tationally demanding. Moreover, the incorporation of local behaviors (e.g. cracks)
in FE2 methods requires additional complexities [25].

Concurrent methods employ the fine and coarse scales simultaneously and there­
fore entail a “handshake” procedure between different co­existing scales at the in­
terface. No scale separation is needed, nor postulating macro­to­micro and micro­
to­macro relations. Local behaviors/deformation can be more naturally accounted
for as they simply need to be embraced at the fine scale.

The quasicontinuum method investigated in the presented work is a kind of
concurrent multi­scale method. In particular, the interaction at the fine scale is
modeled using beam finite elements. The response of beams are local (in contrast
to the non­local inter­atom interaction in the quasicontinuum modeling of atomic
lattices that leads to the spurious forces) so that the spurious forces across the
FRD­CGD interfaces are less prevalent. Moreover, an innovative adaptive scheme is
proposed for the quasicontinuum method so as to automatically deploy FRDs and
CGDs whenever and wherever needed.

1.5. Objectives & Originalities
This thesis presents an adaptive (FRD/CGD automatic adjustment) generalized qua­
sicontinuum method (incorporating multiple diameter struts) that can describe the
nonlinear mechanical response of periodic lattices of arbitrary shaped unit cells with
computational efficiency, allowing for the simulation of lattice volumes out of reach
with DNS.

The simulations conducted using the method proposed in this work can serve to
predict the loading bearing capacity of different unit cell designs such as the unit cell
shape, strut connectivity and strut diameters, for large and geometrically complex
macroscopic domains with relatively little computational costs. A possible applica­
tion is the prediction of the mechanical behaviour of orthopedic implants [26]. The
adaptive updating of FRDs and CGDs furthermore enable localized deformation to
evolve through the entire domain, whilst the accuracy and computational savings
remain high.

From a material engineer’s perspective, the quantities of interest in the mechan­
ical model that can investigated include, and are not limited to, the load bearing
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capacity (i.e. the peak strength), the loading curve until damage occurs, which can
be used to assess the energy absorption of the lattice, the location and the orien­
tation of the potential shear bands, particularly for lattices under complex loading,
the failure of the lattices caused by strut bending, and the occurrence of plastic
hinges at strut junctions.

Even though strut rupture and the inter­strut contact in the stages of failure
and densification are out of consideration in the proposed numerical model, it in­
corporates a set of ingredients to yield relevant results. Note that incorporating
strut rupture and contact into the adaptive generalized quasicontinuum method is
possible without modifying the framework, considering that these phenomena are
generally limited to the FRDs and involve the micro model itself and not the QC
methodology.

Although naturally present in the real world, random distributions of defects in
the lattice are not considered in the proposed numerical model as they are consid­
ered to be out of scope. It is worth noting that since a string of beam elements is
used to represent a single strut, it is possible to misalign the centroid axes of the
beams to mimic strut waviness. However, the prerequisite of applying the quasi­
continuum method is the periodicity of the unit cell in the CGDs. Therefore, unless
the strut waviness is considered to be a periodic feature or if it merely appears in
the FRDs, strut waviness cannot be easily accounted for in the proposed numerical
model.

The developed tool accounts for

• geometrical variability along the strut;

• localized deformation/failure induced by the buckling and plastic bending of
individual struts;

• automatic adaptation of the quasicontinuum model (FRD/CGD adjustment)
following the evolution of lattice deformation during a simulation.

To this end, original computational developments are reported that are relevant
contributions to the state of art, bridging the identified gaps in the literature. The
main computational developments are summarized as follows:

• formulation and implementation of two types of 3D co­rotational elastoplastic
beam finite elements;

• formulation and implementation of a generalized quasicontinuum method in­
corporating several beam finite elements with different diameters along a
single strut;

• formulation and implementation of an adaptive scheme for the generalized
quasicontinuum method, based on a novel and general refinement indicator
for elastic and elastoplastic lattice behaviors.

The resulting computational tool is applied to relevant mechanical problems, and
its accuracy and computational efficiency are assessed by comparing the frame­
work’s results and time requirements to those of the DNS. The performance of the
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framework is furthermore demonstrated by simulating lattice volumes that are well
beyond of the reach of DNS.

Similar efforts are carried out by Phlipot and Kochmann[27] using 3D co­rotational
Euler­Bernoulli beam finite elements to model the struts of multi­lattices and em­
ploying a similar multi­field like interpolation and incorporating adaptivity. There­
fore, it is useful to highlight the significant differences of this work:

(i) elastic Euler­Bernoulli beam FEs are used in [27] whereas elastoplastic Tim­
oshenko beam FEs are adopted here;

(ii) [27] focuses on a multi­lattice (by adopting terminology from atomistics
[28], unit cells with multiple unique nodes are referred to as multi­lattices), which
is decomposed into several single Bravais lattices and an individual strut in the single
lattice is represented using one beam FE, while a string of several beam FEs are
used here to represent single struts to account for a more realistic strut geometry;

(iii) in [27], the sampling unit cells are placed at the nodes of the interpolation
element and an additional Cauchy­Born rule based sampling unit cell is chosen at the
barycenter of the interpolation elements, while, in the presented work, the sampling
unit cells are selected at the Gauss quadrature points of the interpolation elements
and each type of beam node family comes with its own interpolation function and
separately stored kinematic variables are used for each beam node family;

(iv) the refinement indicator in [27] uses the second invariant criterion from
atomistic lattice [19], while in this thesis a refinement indicator based on measuring
the strain energy is proposed, together with an new adaptive scheme.

1.6. Outline
In Chapter 2, the generalization of the quasicontinuum method (GQC) is reported,
incorporating a multi­field like interpolation scheme, which categorizes the beam
nodes into different groups according to the beam properties and interpolate their
kinematic variables group­wise. This enables multiple beam finite elements of dif­
ferent geometrical properties to represent a single strut with a spatially varying
diameter. A 3D co­rotational beam finite element with embedded plastic hinges is
developed in this chapter to capture the buckling and plastic bending of individual
struts.

In Chapter 3, a novel and general refinement indicator and an adaptive scheme
are proposed for the generalized quasicontinuum method for elastic lattice behav­
ior. The refinement indicator is general in the sense that it is also applicable to the
conventional quasicontinuum method. Based on the defined refinement indicator,
an adaptive scheme is established for the GQC. The adaptive scheme triggers (1)
the transformation of coarse­grained domain into fully­resolved domain and (2) the
refinement of the interpolation in the coarse­grained domain – wherever the refine­
ment indicator exceeds a user defined tolerance. A thorough study of the effect
of the tolerance on the accuracy and efficiency of the generalized quasicontinuum
modeling is conducted. Guidance on choosing appropriate threshold values for the
parameters of the refinement indicator is also provided.

In Chapter 4, the adaptive scheme of Chapter 3 is extended to account for
elastoplastic lattice behavior. The extension of the adaptive scheme is based on
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restricting plasticity to the FRDs, being an additional criterion to the ones developed
in Chapter 3. The upgraded adaptive GQC is successfully applied to model the
scratch of an elastoplastic Kelvin lattice in an accurate and efficient manner.

Finally, conclusions are drawn in Chapter 5, complemented with some sugges­
tions for future developments.
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2
Generalized quasicontinuum
modeling of metallic lattices

with geometrical and material
nonlinearity and variability∗

In this chapter, a generalized quasicontinuum method is proposed to model
the mechanical response of 3D lattice structures. The method relies on the
spatial coupling of fully­resolved domains and coarse­grained domains. In
the fully­resolved domain, the full micro­structure is taken into account. In the
coarse­grained domain, the kinematics of the micro­structure are individually
interpolated based on their connectivity. On top of that, the contributions of
the micro­structure to the governing equations in the coarse­grained domain
are sampled using only a few unit cells. In both domains, geometrical and
material variability along the strut can be naturally taken into account using
a 3D co­rotational beam finite element with embedded plastic hinges. The
approach is applied for BCC lattices, demonstrating that the new method
can capture both material and geometrical non­linearities of single struts at
a fraction of the cost of a direct numerical simulation.

∗ Parts of this chapter have been published in Computer Methods in Applied Mechanics and Engineering
366, 112878 (2020) [1].
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2.1. Introduction
Additive manufacturing enables the fabrication of metallic lattice structures layer
by layer. Metallic lattice structures consist of repeating geometrically similar units,
known as unit cells, and are of interest thanks to their high strength­to­weight ratio.
A unit cell is composed of struts that are connected through a prescribed pattern.
Fig. 2.1 illustrates a Body Centered Cubic (BCC) metallic lattice. The BCC unit cell
consists of 8 struts with varying cross sections. Unit cells can be adjusted and
optimized to desired mechanical responses.

(a) Size comparison between a metallic BCC lattice and
a paper clip. Reprinted from [2] with permission from
Elsevier.

(b) Definition of a BCC lattice, 𝐿 is the size of the BCC
unit cell and 𝑁 denotes the number of unit cells along
one spatial dimension.

Figure 2.1: Illustration of a BCC metallic lattice.

The main failure modes of metallic lattice structures include the buckling and
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the plastic bending of individual struts [3, 4]. Both failure modes can be observed in
the tomographic reconstructions of Fig. 2.2 and clearly occur within a strut. There­
fore, the failure of metallic lattice structures can largely be attributed to localized
geometrically and materially non­linear behavior of individual struts.

(a) (b)

(c) (d)

Figure 2.2: 3D images of deformed lattice structures. The 3D tomographic images
show a Rhombic Dodecahedron (RD) and an Octet Truss (OT) before (left) and after
deformation (right). Images in (2.2a, 2.2c) show the crushing or yielding behavior
of the RD structure, and images in (2.2b, 2.2d) show the buckling observed in OT
structures with low relative densities (10%). Reprinted from [4] with permission
from Elsevier.

Predicting the mechanical behavior with simulation software avoids the manu­
facturing and experimental testing of physical prototypes. If mechanical simulations
of virtual prototypes are to replace the experimental testing of physical prototypes,
time and money are saved. On top of that, simulation results reveal more detailed
information. Computational approaches to simulate the mechanical behavior of
metallic lattice structures have therefore been addressed in several studies.

Noor [5, 6] homogenized the beam­like lattice structure to obtain an effec­
tive material model. The continuum­based analogy may however be considered
to contradict the inherent discrete nature of metallic lattice structures. This en­
tails amongst others that predicting localized deformation/failure in the continuum
model is challenging. Ushijima [7] and Gümrük [8] instead focused on a single unit
cell. Using beam theory and the plastic bending moment of beams with circular
cross section with a bi­linear elastoplastic material, they derived closed­form ex­
pressions to predict the initial stiffness and the plastic collapse strength of a BCC
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lattice structure. Nevertheless, the approach must be suitably adapted to each new
type of unit cell to be studied. Moreover, localization cannot be considered. Other
approaches discretized each strut with many 3D finite elements [9–12], but come
with the obvious disadvantage that not more than a few unit cells can be modeled
due to the significant computational costs. An advantage is that they are able to
include small­scale strut and lattice imperfections. Consequently, localized defor­
mation/failure can be captured, but at a high, often prohibitive computational cost.
As a compromise, FE discretizations using beam elements [13–16] were proposed.
Each strut is then modeled using one or more beam elements in which imperfec­
tions can be incorporated to some extent. This can be achieved by misaligning the
axes of the beam elements (to mimic strut waviness), and by varying the cross
sectional radius (to mimic strut thickness variation) [14].

Leveraging the periodic characteristics of lattice structures, Beex and co­workers
[17–20], Kochmann and Amelang [21], and Phlipot and Kochmann [22] used the
quasicontinuum method [23–26] to establish multi­scale models of lattice struc­
tures. In the quasicontinuum method [17–22], each strut in the unit cell of the
lattice is simulated using one truss/beam element. The lattice is then divided into a
so­called fully­resolved domain and a coarse­grained domain. In the fully­resolved
domain, all kinematic variables of the truss/beam elements are represented. In
the coarse­grained domain, the kinematic variables are interpolated to reduce the
number of degrees of freedom. On top of that, only a few truss/beam elements
are sampled in the coarse­grained domain so that less computational efforts are
required to construct the governing equations. The concurrent character of the
quasicontinuum method, i.e. the use of fully­resolved and coarse­grained domains,
allows localized deformation and failure of lattices to be relatively accurately de­
scribed.

If the quasicontinuum method in its current state is to be applied to metallic
printed lattices, each strut must be represented with a single beam element. Be­
sides the fact that complex strut deformations such as buckling cannot accurately
be described with a single beam element, essential strut characteristics such as a
spatially varying cross sectional radius cannot be accounted for.

To alleviate these limitations, we propose an essential enhancement of the qua­
sicontinuummethod such that several beam elements per strut can be incorporated,
where the geometrical and material properties of each beam element can vary. We
achieve this by assigning beam nodes to specific families and interpolating the kine­
matic variables of these families independently of each other in coarse­grained do­
mains. The coarse­grained domains are kinematically coupled to regions in which
the beam model is fully resolved. As the coarse­grained domain is substantially
complexified compared to conventional quasicontinuum approaches, we also study
which unit cells in the coarse­grained domain need to be sampled to approximate
the governing equations accurately, yet efficiently.

It can be noted that the generalized quasicontinuum that we propose here, only
allows large deformation fluctuations (e.g. caused by fracture) in the fully resolved
region. From that perspective, the method is not different from the conventional
quasicontinuum method, or most other nested multi­scale methods for that matter.
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The remainder of this contribution is organized as follows. Section 2.2 introduces
the concepts of the generalized quasicontinuum method. Section 2.3 explains the
3D co­rotational beam element with embedded plastic hinges. Section 2.4 presents
a performance study while Section 2.5 summarizes the conclusions of this work.

2.2. Generalized quasicontinuum method
Metallic lattice structures can be deemed multi­scale. One can then distinguish the
meso­scale as the scale of a single unit cell (or a few) and the micro­scale as the
scale of a single constituent of a unit cell (a strut, a beam, a spring, etc.). The
macro­scale refers to the whole lattice structure, which is built up by repeating the
unit cell in the three spatial directions (see Fig. 2.1b). This section presents a novel
multi­scale method that is applicable to such periodic metallic lattice structures.

Multi­scale approaches can be classified in many ways. One way is to group
them in nested and non­nested approaches. In non­nested approaches, macro­
scopic deformations (deformation paths in case of dissipation) are applied to a
unit cell and the macroscopic stress–deformation responses are measured. A con­
stitutive description is then fitted to the measured response which is used for a
computation at the macro­scale (in which the unit cell is homogenized). In nested
computations, the macroscopic deformation at each quadrature point is applied to
a unit cell and the homogenized stress (and its derivative) is extracted and sent
back to the macro­scale computation. Nested approaches thus consider the micro­
structural model at each quadrature point, which makes them more computation­
ally expensive compared to non­nested approaches. On the other hand, nested
approaches make no assumptions about the homogenized constitutive model.

Nested and non­nested approaches can each be subdivided into concurrent and
non­concurrent schemes. In concurrent schemes, the micro­structure is fully re­
solved in small regions in which high deformation fluctuations occur. In the remain­
der of the domain, the homogenization approach (nested or non­nested) ensures
that the computational efficiency remains acceptable. Non­concurrent schemes do
not use a domain in which the micro­structure is fully resolved.

The approach here is a nested, concurrent approach. It coarse­grains the micro­
structure in the largest part of the domain and fully resolves it in small regions of in­
terest. Computational homogenization is however not applied in the coarse­grained
domain, since no scale­separation is present. This makes the method more straight­
forward to apply (the ratio between the size of the macro­scale elements and the
size of the unit cell is not important) and to implement for high­order macro­scale
elements (the method is as easy to implement for linear interpolation elements as
for cubic interpolation elements at the macro­scale for instance). The disadvantage
is that the computational costs are larger than for computational homogenization
approaches.

The proposed method is termed as the generalized quasicontinuum (QC) method.
As indicated by the name, it is the result of a generalization of the quasicontinuum
method. The quasicontinuum method was originally developed by Tadmor et al.
[23, 24] as a mixed continuum and atomistic approach for the simulation of poly­
crystalline materials. It was extensively used and improved by Luskin and Ortner
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[27–29] for the simulation of crystal defects. They also performed a comprehen­
sive study on the accuracy and stability of the quasicontinuum method [30]. The
quasicontinuum method was later extended to model discrete structural lattices af­
ter being reformulated to deal with dissipative spring models [31] and variational
approaches [32]. Applications include 2D truss/beam lattices [17–19, 33, 34] and
3D truss lattices [21, 22]. The generalized quasicontinuum method inherits the
two model reduction steps of the quasicontinuum method, i.e. ‘interpolation’ and
‘summation’.

For illustration, the generalized quasicontinuum method is applied to a demon­
strative 1D truss lattice in Fig. 2.3. The truss lattice consists of 29 unit cells, each
consisting of two interconnecting truss finite elements ( and ) and a defect unit
cell (𝑎18 − 𝑎19) comprised of a single truss finite element( ). Each unit cell thus
contains three nodes (two • and one •. Since these nodes are present inside a unit
cell on the micro­scale, we refer to them as micro­structural nodes. The defect unit
cell will provoke strain localization because different properties are assigned to the
three types of trusses, with truss ( ) being the most compliant (Table 2.1). The
1D truss lattice is fixed at the left end and a tensile force with a magnitude of 0.1N
is exerted at its right end. The values in Table 2.1 are of no physical significance
here and are only used for numerical demonstration purposes.

Truss color green magenta red
Length (mm) 0.6 0.4 1
Cross section area (mm2) 0.1 0.1 0.05
Young’s modulus (N/mm2) 10 20 10

Table 2.1: The geometrical dimensions and material properties of the three types
of trusses.

This model is referred to as the ‘direct model’. The solution of this direct model
can be obtained by minimizing the total potential energy, e.g. by using Newton’s
method. Let u and fext denote the column vectors of the displacements and of the
external forces of all micro­structural nodes and m be the total number of trusses.
The total potential energy includes the work of the externally applied forces and
the potential energy of each truss, i.e. Ei(u):

u∗ = argmin
u

(−f𝑇ext u+
𝑚

∑
𝑖=1

E𝑖(u)) . (2.1)

Solving the direct model including all trusses is referred to as the direct numerical
simulation (DNS). The displacement profile obtained by solving Eq. (2.1) is shown
in Fig. 2.4. The strain localization appears in the defect truss as expected.

The computational cost for the direct numerical simulation of this demonstrative
1D truss lattice is no issue. However, we should bear in mind two fundamental
characteristics of the direct numerical simulation. First, the kinematic variables of
all the micro­structural nodes are present in the governing equations. Second, in
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Figure 2.3: The generalized quasicontinuum (QC) modeling of a 1D truss lattice.
Direct model: The 1D truss lattice consisting of 29 normal unit cells ( ) and a
defect unit cell ( ) and 60 nodes. The nodes are linked by three types of trusses,
i.e. the green truss ( ), the magenta truss ( ) and the red truss ( ). The
nodes are classified into two types, i.e. • and •. Each blue node is connected to a
green truss on its RHS and a magenta truss on its LHS. Each red node is connected
to a magenta truss on its RHS and a green truss on its LHS. Generalized QC
interpolation: Intervals [𝑎1, 𝑎6] and [𝑎16, 𝑎21] are considered as the fully­
resolved domains (FRDs), intervals [𝑎6, 𝑎16] and [𝑎21, 𝑎31] are considered as the
coarse­grained domains (CGDs). In each CGD, there is one linear macro­scale
interpolation element. The DoFs of the blue and red nodes after the interpolation
are shown. At each macro­scale interpolation node, i.e. 𝑎6, 𝑎16, 𝑎21, 𝑎31, two
representative DoFs are stored, each used to interpolate the corresponding nodes.
Generalized QC summation: The trusses that are sampled to construct the
governing equations are shown with their weights.

the construction of the governing equations, all the trusses need to be sampled to
compute their contributions to the governing equations. Since DNS of 3D lattices
for macro­scale (i.e. engineering scale) applications can require billions of degrees
of freedom (DoFs) and trusses, they are computationally prohibitive, especially for
highly nonlinear analyses.

This is the main motivation of the generalized quasicontinuum method that al­
leviates the computational demand of the DNS. We discuss the generalized quasi­
continuum method in the next two subsections.

2.2.1. Interpolation
This section elaborates on the first model reduction step, the interpolation of the
kinematic variables of the direct model. This step aims at reducing the number of
DoFs of the DNS in Eq. (2.1).

To implement ‘interpolation’, the direct model is divided into two kinds of nonover­
lapping sub­domains: they are fully­resolved domains (FRDs) and coarse­grained
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Figure 2.4: The displacement profiles of the micro­structural nodes in the 1D truss
lattice obtained by the (1) DNS, (2) generalized QC interpolation, (3) generalized
QC interpolation & summation. Because only a subset of micro­structural nodes
possess DoFs (i.e. nodal displacement) in the interpolated model, post­processing
is performed to show the nodal displacements of all micro­structural nodes.

domains (CGDs). Fig. 2.3 illustrates this for the aforementioned 1D example.
In the FRD, the kinematic variables of each micro­structural node are preserved

as DoFs. Therefore, localised lattice behaviour such as the failure of a single strut
can be incorporated. The FRD [𝑎16, 𝑎21] in Fig. 2.3 is used to capture the lattice
behavior around the defect unit cell.

In the CGD, the kinematic variables of the micro­structural nodes are interpo­
lated by the overlapping macro­scale interpolation elements. In the 1D truss lattice
example in Fig. 2.3, each CGD is allocated one macro­scale linear interpolation
element.

A macro­scale interpolation element uses finite element shape functions to inter­
polate the kinematic variables of the micro­structural nodes, using the representa­
tive kinematic variables stored at the finite element nodes appearing in the macro­
scale interpolation mesh. The micro­structural nodes enveloped by the macro­scale
interpolation elements are of different types. The kinematic variables of each type
of micro­structural node are individually interpolated by corresponding representa­
tive kinematic variables of the macro­scale interpolation elements. In Fig. 2.3, the
linear macro­scale interpolation element in domain [𝑎6, 𝑎16] has two macro­scale
interpolation nodes, i.e. 𝑎6 and 𝑎16, each bearing two representative kinematic
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variables: one for red and one for blue micro­structural nodes.
The reduced model after implementing interpolation is referred to as the “inter­

polated model”.
Let u denote the column vector of the kinematic variables of all of the micro­

structural nodes. Let ur denote the column vector which stores the reduced kine­
matic variables, i.e. the DoFs of the interpolated model, after the interpolation. The
reduced kinematic variables can be related to the conventional kinematic variables
by interpolation matrix N through

u = N ur. (2.2)

The minimization problem for the interpolated system now reads:

u∗r = argmin
ur

(−f𝑇ext N ur +
𝑚

∑
𝑖=1

E𝑖(N ur)) . (2.3)

For the 1D truss lattice example, the 60 kinematic variables of the direct model
are reduced to 26 in the interpolated model. Interpolation reduces the computa­
tional demand by decreasing the number of DoFs in the governing equations.

The generalized quasicontinuum method is a concurrent multi­scale method,
because the kinematic variables at the micro­scale (i.e. the kinematic variables of
the micro­structural nodes in the fully­resolved domain) and the kinematic variables
at the macro­scale (i.e. the representative kinematic variables of the macro­scale
interpolation nodes) co­exist in the governing equations. The fine and coarse scales
are solved concurrently, as in [35, 36].

Care is required when imposing the boundary conditions (BCs) of the direct
model onto the interpolated model. If the BCs are applied at the macro­scale in­
terpolation nodes, the correct representative kinematic variables must be selected.
The same care is required when applying external loads.

The displacement profile obtained by solving Eq. (2.3) exactly matches that of
the DNS (Fig. 2.4).

2.2.2. Summation
The interpolated model has far fewer DoFs than the direct model and the amount
of reduction increases with the spatial dimensions, being most beneficial in 3D.
However, to solve the minimization problem of Eq. (2.3), all the trusses need to be
sampled. It is worth noting that fro m now on, when a truss is said to be ‘sampled’,
it means it is selected to construct the total potential energy of the system. In
other words, sampled trusses/beams contribute to the governing equations (i.e. the
internal forces and tangent stiffnesses), whereas non­sampled trusses/beams do
not (and are instead represented by sampled ones). The approach proposed here
consists of selecting a limited number of representative trusses and corresponding
weights to represent the contributions of all the other trusses in the CGDs. This
model reduction step is referred to as ‘summation’ and is akin to hyper­reduction
in model order reduction [35–38]. In [37], a particular general approach to this
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discrete optimization problem is proposed which also allows directly identifying the
non­linear zone within the domain whilst optimizing the selection of hyper­reduced
integration points.

Let S be the set of the trusses that are sampled to approximate the governing
equations. Let 𝜔𝑖 b the number of trusses that truss 𝑖 represents. After summation,
the minimization problem in Eq. (2.4) becomes:

u∗r = argmin
ur

(−f𝑇ext N ur +∑
𝑖∈S
𝜔𝑖E𝑖(N ur)) . (2.4)

The main question is how to select the sampling trusses and how to determine
their weights 𝜔𝑖. In the fully­resolved domain, each truss is selected as a sampling
truss. Their corresponding weights are set to one because they only represent
themselves (Fig. 2.3).

In the coarse­grained domain, different approaches to select the sampling trusses
were formulated [17, 19, 33, 36, 39]. Specifically, [33] is based on an in­depth un­
derstanding of how the linear interpolation influences the potential energy of the
interpolated lattice. [17, 19] consider the non­trivial effect of higher order inter­
polation on the potential energy of the interpolated lattice and propose to select
the trusses which are positioned at the Gauss quadrature points as the sampling
trusses.

Although a linear interpolation is used in the 1D truss example, the macro­scale
interpolation nodes store the kinematic variables of several types of micro­structural
nodes, which is similar to higher order interpolation in terms of the number of kine­
matic variables per element. Therefore, the sampling trusses are selected in a
manner that is analogous to the manner proposed in [17] and [19] which inves­
tigated the preferential summation rule for quasicontinuum methods with higher
order interpolation schemes. [17] and [19] proposed to select the trusses that are
closest to the Gauss quadrature points as the sampling trusses for quasicontinuum
methods with higher order interpolation schemes. Specifically, a sufficient number
of Gauss quadrature points (GQPs) are determined for a macro­scale interpolation
element. Here, a sufficient number of Gauss quadrature points means an appropri­
ate number that can guarantee the convergence of the simulation while minimizing
the number of sampling trusses in a macro­scale interpolation element. For higher
order interpolation schemes and its analogies (e.g. the multi­field like interpolation
scheme that is proposed in our method), too few Gauss quadrature points results
in insufficient number of sampling trusses and thus diverges the simulation. How­
ever, if too many Gauss quadrature points are used, the computational efficiency is
compromised due to the unnecessarily large number of sampling trusses. Then a
unit cell centered at the position of each Gauss quadrature point of this macro­scale
interpolation element is assumed. The trusses inside this unit cell are selected as
the sampling trusses of this macro­scale interpolation element.

Let 𝑉e and 𝑉UC be the volume of the macro­scale interpolation element and of
the unit cell, respectively, and WGQP the normalized Gauss quadrature weight [40].
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The weights of all of the sampling trusses in this unit cell equate

𝜔𝑖 = WGQP ⋅
𝑉e
𝑉UC
, with ∑WGQP = 1. (2.5)

In Eq. (2.5), 𝑉e/𝑉UC gives the nominal number of unit cells that are present in
the macro­scale interpolation element. Eq. (2.5) guarantees that each unit cell in
the macro­scale interpolation element is represented by sampling unit cells.

For the 1D truss lattice example in Fig. 2.3, two Gauss quadrature points are
used for each macro­scale interpolation element. The positions and the normalized
weights of the two Gauss quadrature points are (𝜉1 = − 1

√3 , WGQP1
= 0.5) and

(𝜉2 =
1
√3 , WGQP2

= 0.5) respectively in the 1D parent coordinate system 𝜉 ∈ [−1, 1].
The sum of the normalized weights of GQPs equals 1 in Eq. (2.5). This ensures
that the sum of weights of the sampling unit cells in a macro­scale interpolation
element equals the nominal number of unit cells within the macro­scale interpolation
element. In 2D and 3D settings however, an error is introduced at each FRD­CGD
interface that is not aligned with the unit cell stacking.

The length of each macro­scale interpolation element is 10mm and the length
of a unit cell is 1mm. According to Eq. (2.5), the weight of each sampling truss in
the macro­scale interpolation element is 5. The direct model and the interpolated
model require all 59 trusses of the truss lattice example to be considered. In the
generalized quasicontinuum model (the interpolated and summed model) however,
only 27 trusses need to be sampled in Fig. 2.3.

The displacement profile obtained by solving Eq. (2.4) is shown in Fig. 2.4 with
a maximum relative error of 1.81% with respect to that of the DNS. The generalized
quasicontinuum method results in a decrease of 56.7% (60 → 26) in the number of
DoFs and in 54.2% (59 → 27) fewer sampling trusses.

Summation is thus a key step for nonlinear models to increase the computational
efficiency, without which interpolation is relatively ineffective. In fact, it was shown
that interpolation (model reduction) without summation (hyper reduction) may lead
to an increase in the overall computational expense [39] due to the worsening of
the stiffness matrix’ condition number.

Thanks to the proposed generalized quasicontinuum method, we are able to
use multiple beam elements with different geometrical and material parameters
to model a single strut in the metallic printed lattices (one can imagine each unit
cell in the 1D truss lattice of Fig. 2.3 consists of a single strut that is represented
using three different beam elements). This is achieved by assigning beam nodes
to specific families and interpolating the kinematic variables of these families in­
dependently of each other in coarse­grained domains. It amounts to a significant
improvement compared to the conventional quasicontinuum method. The conven­
tional quasicontinuum method does not have such a multi­field like interpolation
mechanism and as a result, each strut can only be represented using one beam el­
ement. Consequently, the inherent material and geometrical variation along a single
strut in the metallic printed lattices cannot be captured using the conventional qua­
sicontinuum method. Therefore, the applicability of the proposed method is larger
than that of existing quasicontinuum implementations.
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2.3. 3D co­rotational beam element with embedded
plastic hinges

In this work, the struts of the metallic lattice structure are modeled using a string of
beam finite elements. To reproduce the basic failure modes of the metallic lattice
structure, i.e. the buckling and the plastic bending of individual struts, 3D co­
rotational beam finite elements (FEs) with embedded plastic hinges are developed
and implemented based on [41, 42].

The co­rotational framework uses the formulation proposed by Rankin and Omid
[43, 44] and further developed by Battini and Pacoste [41, 45] to treat structural
instabilities and by Bui and Bordas [46, 47] for real time simulation of soft tissues.
The plastic hinge model proposed by Powell and Chen [42, 48] was adopted here
within the co­rotational framework to allow for capturing material nonlinearity of the
metallic lattice. This combination is unprecedented to the authors’ best knowledge,
and it highlights one of the novelties of this paper.

2.3.1. Co­rotational framework for 3D beam element
This section presents how the overall motion of the beam finite element is decoupled
into the rigid body movement and the deformation using a co­rotational approach.
The kinematic variables and the coordinate frames in the co­rotational formulation
are shown in Fig. 2.5. The global coordinate frame is defined by orthogonal basis
[e1,e2,e3] and origin 𝑂. In the undeformed configuration, the initial orientation of
the straight beam element is [e01,e02,e03]. In the deformed configuration, the orien­
tations of the two beam extremities become [t11, t12, t13] and [t21, t22, t23] respectively.
Rotation matrix R0 denotes the 3D finite rotation from [e1,e2,e3] to [e01,e02,e03] and
orientates the reference beam configuration with respect to the global basis.

The kinematic variables describing the deformed beam configuration consist
of: (1) the displacements of the beam extremities relative to the reference beam
configuration, i.e. u𝑔1 and u

𝑔
2 ; (2) the rotation matrices at the beam extremities,

i.e. R𝑔1 and R
𝑔
2 . R

𝑔
1 denotes the 3D finite rotation from [e01,e02,e03] to [t11, t12, t13].

R𝑔2 denotes the 3D finite rotation from [e01,e02,e03] to [t21, t22, t23].
The key idea of the co­rotational formulation is to introduce a properly defined

‘local coordinate frame’ defined by orthogonal basis [r1, r2, r3]. Its origin is posi­
tioned at one extremity of the beam.

The basis vector r1 aligns with the central axis of the beam element. Therefore,
it can be expressed as:

r1 =
x𝑔2 + u

𝑔
2 − x

𝑔
1 − u

𝑔
1

‖x𝑔2 + u
𝑔
2 − x

𝑔
1 − u

𝑔
1‖

(2.6)

where x𝑔𝑖 , 𝑖 = 1, 2 denotes the coordinates of the beam extremities in the unde­
formed configuration. The basis vectors r2 and r3 are defined as:

r3 =
r1 ×

t12+t22
2

∥ r1 ×
t12+t22
2 ∥

, r2 = r3 × r1. (2.7)
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Figure 2.5: Coordinate frames and kinematic variables in the co­rotational formu­
lation for a 3D beam element.

The ‘local coordinate frame’ is attached to the beam FE and therefore decouples
the pure deformation of the beam from the rigid body movement.

The kinematic variables describing the rigid body movement are (1) the dis­
placement of the origin of the ‘local coordinate frame’, i.e. u𝑔1 ; (2) The rotation
matrix Rr that denotes the 3D finite rotation from [e1,e2,e3] to [r1, r2, r3]. The
kinematic variables describing the deformation of the beam are (1) nominal beam
elongation u𝑙, which is defined as:

u𝑙 = ‖x𝑔2 + u
𝑔
2 − x

𝑔
1 − u

𝑔
1‖ − ‖x

𝑔
2 − x

𝑔
1‖. (2.8)

and (2) rotation matrices of the beam extremities, i.e. R𝑙1 and R
𝑙
2. R

𝑙
1 denotes the

3D finite rotation from [r1, r2, r3] to [t11, t12, t13]. R𝑙2 denotes the 3D finite rotation
from [r1, r2, r3] to [t21, t22, t23].

The orientations of the beam extremities in the deformed configuration can be
obtained through two rotation sequences. The first rotation sequence is

e𝑖
R0−−→ e0𝑖

R𝑔𝑗−−→ t𝑗𝑖 (𝑖 = 1, 2, 3, 𝑗 = 1, 2).

Starting from e𝑖 which is the global Cartesian axes, we apply initial orientation
matrix R0 and arrive at the follower axes e0𝑖 . Measured from the follower axes,
we apply the global nodal rotation R𝑔𝑗 and arrive at the current beam extremity
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orientation t𝑗𝑖 . The second rotation sequence is

e𝑖
Rr−−→ r𝑖

R𝑙𝑗−−→ t𝑗𝑖 (𝑖 = 1, 2, 3, 𝑗 = 1, 2).

Starting from e𝑖 we apply finite rotation matrix Rr and arrive at the local Cartesian
axes r𝑖. From r𝑖 we apply the local nodal rotation R𝑙𝑗 and arrive at the current beam
extremity orientation t𝑗𝑖 . The latter should be viewed as the rotation around fixed
axes, i.e. the rotation axes remain fixed but the rotation sequence itself is inverted.
Interested readers can refer to Battini’s work [49] (Sections 4.1 and 4.2.1) and
more retrospectively Argyris’ work [50] (Section 2) for elaboration pertaining to the
rotation axes and the rotation sequence. Therefore, the rotation from e𝑖 to t

𝑗
𝑖 can

be parameterized either as R𝑔𝑗 R0 or as RrR
𝑙
𝑗 (for the latter case, the multiplication

of rotation matrices is inverted). The equivalence of R𝑔𝑗 R0 = RrR𝑙𝑗 decouples the
strain inducing rotation R𝑙𝑗 from the overall rotation R𝑔𝑗 for both beam extremities:

R𝑙𝑗 = R𝑇r R
𝑔
𝑗 R0 (𝑗 = 1, 2). (2.9)

To summarize, the kinematic variables of the beam element in the global co­
ordinate frame and the local co­rotational coordinate frame (i.e. rotating with the
beam) are aggregated as d𝑔 and d𝑙 in Eq. (2.10):

d𝑔 = (u𝑔1 ,R
𝑔
1 ,u

𝑔
2 ,R

𝑔
2) , d𝑙 = (u𝑙 ,R𝑙1,R𝑙2) . (2.10)

In the implementation, Rodrigues’ formula is used to express each rotation ma­
trix in a 3 × 1 rotation vector Ψ [51]. This rewrites Eq. (2.10) as

d𝑔 = (u𝑔1 , Ψ
𝑔
1 ,u𝑔2 , Ψ

𝑔
2) d𝑙 = (u𝑙 , Ψ𝑙1, Ψ𝑙2) . (2.11)

The internal force and the tangential stiffness conjugate with d𝑔 and d𝑙 can
be established by resorting to the equality of virtual work. For details about this
transformation, the reader is referred to [41].

2.3.2. Plastic hinge model
Powell and Chen’s plastic hinge model [42, 48] defines the beam deformation as
shown in Fig. 2.7 for a beam bundle in an infinitesimal strain and displacement
formulation. In this work, the proposed beam FE with embedded plastic hinges is
defined in the local frame of the co­rotational formulation.

The kinematic variables are: (1) the transverse bending curvatures at both ex­
tremities, i.e. 𝜃1r2 and 𝜃1r3 for the first beam extremity, 𝜃2r2 and 𝜃2r3 for the second
beam extremity; (2) twist angle 𝜓r1; and (3) axial strain 𝜀r1 . The correspond­
ing energy conjugate quantities are: (1) the transverse bending moments at both
extremities, i.e. 𝑀1r2 and 𝑀1r3 for the first beam extremity, 𝑀2r2 and 𝑀2r3 for the
second beam extremity; (2) the torque 𝑇r1; (3) the axial force 𝐹r1 . More detailed
information can be found in [42].
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Figure 2.6: Equating the rotation vector to the twist and the transverse curvatures.
[r1, r2, r3] denotes the triad of the local coordinate frame. Ψ𝑙𝑖 = [Ψ𝑙𝑖,r1 , Ψ

𝑙
𝑖,r2 , Ψ

𝑙
𝑖,r3],

𝑖 = 1, 2 denotes the rotation vector of the beam extremity. 𝜓𝑖r1 , 𝑖 = 1, 2 is the twist
around r1 axis. 𝜃𝑖r2 , 𝑖 = 1, 2 denotes the curvature around r2 axis. 𝜃𝑖r3 , 𝑖 = 1, 2
denotes the curvature around 𝑟3 axis.

The strain definitions above are projected to the kinematic variables of the local
frame in the co­rotational formulation by introducing the approximation to equate
the three components of the rotation vector to the three rotating angles with respect
to the orthogonal basis [r1, r2, r3] of the local coordinate (see Fig. 2.6).

Ψ𝑙𝑖 = [Ψ𝑙𝑖,r1 , Ψ
𝑙
𝑖,r2 , Ψ

𝑙
𝑖,r3] ≈ [𝜓

𝑖
r1 , 𝜃𝑖r2 , 𝜃𝑖r3] 𝑖 = 1, 2. (2.12)

Using Eq. (2.12), the relation between the kinematic variables can be written
as:

⎡
⎢
⎢
⎢
⎢
⎣

𝜃1r3
𝜃2r3
𝜃1r2
𝜃2r2
𝜓r1
𝜀r1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 −1 0 0 1 0 0
1
𝑙0

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑙
Ψ𝑙1,r1
Ψ𝑙1,r2
Ψ𝑙1,r3
Ψ𝑙2,r1
Ψ𝑙2,r2
Ψ𝑙2,r3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.13)

where 𝑙0 denotes the original length of the beam.
A beam bundle consists of three components (Fig. 2.7): an elastic beam ele­

ment and two plastic hinges. The deformation of the ensemble is thus the sum
of the elastic deformation of the elastic beam and the plastic deformation of the
plastic hinges. Table 2.2 and Fig. 2.7 illustrate how the deformations of the elastic
beam and the plastic hinges are aggregated into the beam bundle. Superscript
1/2 denotes the first/second beam extremity. Subscript 𝑒/𝑝 denotes the elastic or
plastic deformation.
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Figure 2.7: The definition and the composition of the beam deformation.

Beam
bundle

Elastic
beam

Plastic
hinge 1

Plastic
hinge 2

𝜃1r2 = 𝜃1𝑒,r2 + 𝜃1𝑝,r2

𝜃2r2 = 𝜃2𝑒,r2 + 𝜃2𝑝,r2

𝜃1r3 = 𝜃1𝑒,r3 + 𝜃1𝑝,r3

𝜃2r3 = 𝜃2𝑒,r3 + 𝜃2𝑝,r3

𝜓r1 = 𝜓𝑒,r1 + 𝜓1𝑝,r1 + 𝜓2𝑝,r1

𝜀r1 = 𝜀𝑒,r1 + 𝜀1𝑝,r1 + 𝜀2𝑝,r1
Table 2.2: Decomposition of the total deformation of the beam bundle.
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The Timoshenko beam formulation is adopted for the elastic beam element be­
cause the strut of the metallic lattice is usually not slender (Fig. 2.2), which makes
the shear effect non­negligible. The use of Timoshenko beam FEs formulation is
rather common for the modeling of lattice structures [15, 16, 52].

The plastic constitutive setting uses Mróz’s multi­layer 𝐽2­plasticity kinematic
hardening model [53–56]. It consists of several inclusive and homologous yield
surfaces in the generalized stress space and a rigid piecewise linear hardening ap­
proximation (Fig. 2.8). This allows for solving the plastic problem efficiently without
requiring an iterative return­mapping algorithm.

 

Figure 2.8: The plastic hinge behavior projected onto the plane spanned by bend­
ing moments 𝑀r2 and 𝑀r3 .

The generalized stress space of the plastic hinge is four­dimensional as it in­
cludes the two transverse bending moments (𝑀r2 and 𝑀r3), the torque (𝑇r1), and
the axial force (𝐹r1).

The 𝑗th yield surface YS𝑗 is assumed to be defined by the yield function 𝜙𝑗 as
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[42]:

𝜙𝑗(𝑀𝑟2 , 𝑀r3 , 𝑇r1 , 𝐹r1) = [
𝑀r2 −𝑀

0,YS𝑗
r2

𝑀YS𝑗
r2

]

2

+ [
𝑀r3 −𝑀

0,YS𝑗
r3

𝑀YS𝑗
r3

]

2

+

[
𝑇r1 − 𝑇

0,YS𝑗
r1

𝑇YS𝑗r1

]

2

+ [
𝐹r1 − 𝐹

0,YS𝑗
r1

𝐹YS𝑗r1

]

2

− 1

= 0

(2.14)

where [𝑀0,YS𝑗r2 , 𝑀0,YS𝑗r3 , 𝑇0,YS𝑗r1 , 𝐹0,YS𝑗r1 ] and [𝑀YS𝑗
r2 , 𝑀

YS𝑗
r3 , 𝑇

YS𝑗
r1 , 𝐹

YS𝑗
r1 ] denote the center and

the size of the 𝑗th yield surface in the generalized stress space.
Fig. 2.8 shows an arbitrary configuration of the plastic hinge in the generalized

stress space when it is projected onto the plane formed by 𝑀r2 and 𝑀r3 axes. Here
the plastic hinge is predefined using four yield surfaces, i.e. YS1, YS2, YS3 and YS4.
Constant hardening moduli are associated with each yield surface so that when
the 𝑗th yield surface is active, the hardening modulus of the plastic hinge becomes
[𝐻YS𝑗𝑀r2 , 𝐻

YS𝑗
𝑀r3 , 𝐻

YS𝑗
𝑇r1 , 𝐻

YS𝑗
𝐹r1 ]. Inside the first yield surface YS1, the plastic hinge is rigid.

Therefore, the behavior of the plastic hinge is piecewise­linear­rigid­plastic­strain­
hardening.

The solution procedure of the plastic hinge model in case of uniaxial loading
is illustrated in Fig. 2.9. Supposing that the beam bundle is initially elastic and in
equilibrium (𝜀𝑛, 𝐹𝑛), where 𝜀𝑛 denotes the deformation of the beam bundle (i.e. the
collection of the transverse bending curvatures, axial twist and axial strain), 𝐹𝑛
denotes the corresponding load level (i.e. the collection of the transverse bending
moments, torque and axial force). The two plastic hinges remain rigid and 𝜀𝑒𝑛 is
purely elastic, i.e. 𝜀𝑛 = 𝜀𝑒𝑛. With a total strain increment Δ𝜀 prescribed, a new
equilibrium is achieved with 𝜀𝑛+1 = 𝜀𝑛 + Δ𝜀 and 𝐹𝑛+1 denotes the unknown to be
solved for.

The total strain increment is decomposed into the incremental deformation of
the elastic beam Δ𝜀𝑒, and the incremental deformation of the first and second plastic
hinges Δ𝜀𝑝1 , Δ𝜀𝑝2 , respectively. The permissible solution satisfies the following
constraint:

Δ𝜀 = Δ𝜀𝑒 + Δ𝜀𝑝1 + Δ𝜀𝑝2 . (2.15)

Thanks to the predefined piece­wise linear responses for the elastic beam and
the two plastic hinges (Fig. 2.9), (𝐹 − Δ𝜀𝑒, 𝐹 − Δ𝜀𝑝1 , 𝐹 − Δ𝜀𝑝2) are linear between
adjacent deflection points (deflection points are the load levels where the response
curve of either of the two plastic hinges changes its slope). This enables Eq. (2.15)
to be readily fulfilled in an incremental way, i.e. to accumulate the deformation
increments between adjacent deflection points until Eq. (2.15) is satisfied. The
internal force of the new equilibrium 𝐹𝑛+1 can then be determined. This rules out
the necessity of an iterative return mapping procedure. Furthermore, the tangential
stiffness of the beam bundle is computed by inversing the system compliance, which
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Figure 2.9: Solution procedure of the plastic hinge model illustrated in case of
uniaxial loading. Δ𝜀𝑒𝑖 , Δ𝜀

𝑝2
𝑖 and Δ𝜀𝑝1𝑖 are the deformation increments of the elastic

beam and the two plastic hinges. Subscript 𝑖 indexes the intervals between adjacent
deflection points 𝑖 − 1 and 𝑖.

is the sum of the compliance of each component. This avoids solving an system
that can be ill­conditioned due to the infinite stiffness of the rigid plastic hinges.
For details on the used plastic hinge model the reader is referred to [42].

A drawback of the formulation is that the quadratic rate of convergence is lost.
This is attributed to two reasons: (1) Eq. (2.12) is an approximation rather than
rigorous and consistent derivation; (2) the plastic hinge behavior is piecewise linear
and more iterations are needed to switch between the segments.

2.4. Performance study
In this section, we verify the performance of the proposed generalized quasicontin­
uum method for BCC lattice structures.

2.4.1. Beam representation of a single BCC unit cell
To model the BCC lattice structure using beam finite elements, we first establish
the beam representation for a single BCC unit cell.

The same geometric dimensions and material properties are used here as pro­
posed in [16] for metallic BCC lattice structures fabricated out of 316L stainless
steel powder through Selective Laser Melting (SLM) procedure. The unit cell is of
dimensions 2mm×2mm×2mm. The beam discretization scheme of the BCC unit
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Figure 2.10: Beam discretization of the BCC unit cell and the classification of the
types of the micro­structural nodes. Each of the eight struts is represented using
six beam elements of equal length. These beam elements are of two kinds. The
blue beams ( ) are connected to the junctions of the struts with a larger cross
section to mimic material concentration at the strut junctions. The green beams
( ) represent the intermediate parts of the struts with a smaller cross section.
Node types are indicated with numbers below each micro­structural node.

cell is illustrated in Fig. 2.10.
Each strut of the unit cell is represented using six beam finite elements of equal

length with a circular cross section. To model the inherent material concentration at
the junctions of the struts, different diameters are assigned to the beam elements
adjacent to the junctions (with a diameter of 0.23 mm) and in the intermediate part
of the struts (with a diameter of 0.185 mm) as in [16].

Consequently, 49 micro­structural nodes are present in a unit cell, which are
classified into 21 types due to their connectivity (Fig. 2.10). The kinematic variables
of each type of micro­structural node are interpolated using the same representative
kinematic variables of the macro­scale interpolation elements. How to optimally
classify the micro­structural nodes into the lowest number of types is part of future
work. Here, the optimal classification of the micro­structural nodes means the
micro­structural nodes in a unit cell are classified into the smallest number of types
at no compromise of the accuracy. In the most extreme case, each micro­structural
node in a unit cell would be considered as an individual type. Such a classification
scheme would generate the most accurate results but would surely compromise
the computational efficiency. For the current classification scheme, the authors
performed a sensitivity analysis by comparing the results of the current classification
scheme with that of the most extreme classification scheme and the results were
almost the same. This at least confirms that the current classification scheme is
better than the most extreme one. Yet how to determine the optimal classification
scheme is considered out of scope for the current contribution.

The material parameters of the proposed 3D co­rotational beam with embedded
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plastic hinges include the material parameters of the elastic beam component and
the two plastic hinges. For the elastic beam component, its Young’s modulus is set
to 𝐸 = 140 GPa and its Poisson’s ratio is set to be 𝜈 = 0.3.

For the plastic hinges, it is assumed that the plastic bending of the struts/beams
is the only irreversible deformation, neglecting the effects of torque 𝑇r1 and axial
force 𝐹r1 from the yield function in Eq. (2.14). This is because the current work
aims at reproducing plastic bending failure of metallic printed lattices. Another
reason is the lack of knowledge about how the torque and normal force may influ­
ence the bending behavior of the strut, which has made us decide to ignore them.
Consequently, only the piecewise linear rigid­plastic­strain­hardening curves of the
bending moments 𝑀r2 and 𝑀r3 (as in Fig. 2.8) are needed to define the behavior
of the plastic hinges.

To configure the piecewise linear rigid­plastic­strain­hardening curves of the
bending moments 𝑀r2 and 𝑀r3 , the initial yield limit (i.e. 𝑀

YS1r2 and 𝑀YS1r3 in Fig. 2.8)
and the hardening responses (i.e. 𝑀YS2

r2/r3 , 𝑀
YS3
r2/r3 , 𝑀

YS4
r2/r3 , 𝐻

YS1
Mr2/r3

, 𝐻YS2Mr2/r3
, 𝐻YS3Mr2/r3

,

𝐻YS4Mr2/r3
in Fig. 2.8) need to be defined.

The initial yield limit of the bending moments 𝑀r2 and 𝑀r3 of the plastic hinge
(i.e. 𝑀YS1r2 and 𝑀YS1r2 in Fig. 2.8) is determined from the plastic bending moment of
a circular cross section with a bi­linear material model (with Young’s modulus 𝐸 =
140 GPa, hardening modulus 𝐸𝑇 = 1 GPa and yield stress 𝜎0 = 140MPa) [57]. The
initial yield limit of𝑀r2 and𝑀r3 is assumed to be the bending moment of the circular
cross section when the distance between the neutral axis and the initially yield
fiber amounts to 95% of the radius. Using the geometrical and material properties
given earlier and the closed form expression for the plastic bending moment in [57],
values of 0.9050N ⋅mm and 1.7391N ⋅mm are determined for beams with diameters
of 0.185mm and of 0.230mm, respectively.

The hardening responses are shown in Fig. 2.11, which using four yield sur­
faces. To approximate perfect plasticity while facilitating numerical stability, the
hardening modulus for the four yield surfaces are set to small values and gradually
decrease (the slopes of the four hardening segments are set to be 4∘, 3∘, 2∘ and 1∘
respectively).

2.4.2. Unconstrained compression of a BCC lattice
In this section, the response of a BCC lattice under unconstrained compression is
simulated. The results of the generalized quasicontinuum method are compared to
those of the DNS to assess its computational efficiency and accuracy.

The lattice consists of 6 × 6 × 6 BCC unit cells, each of which is sized 2mm ×
2mm×2mm, and the imposed compression depth is 2mm. The bottom of the lattice
is constrained in the normal direction and the prescribed displacement is imposed
at the top of the lattice. Rigid body movement is eliminated.

Two interpolation schemes are investigated as shown in Fig. 2.12. In Fig. 2.12a,
half of the lattice is fully resolved (FRD), and the other half of the lattice is coarse­
grained (CGD) using six linear tetrahedral interpolation elements. The behavior of
the lattice in the FRD and the CGD are monitored simultaneously. In Fig. 2.12b, the
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Figure 2.11: The piecewise linear rigid­plastic­strain­hardening curves of the plas­
tic hinge for beams with diameter of 0.230mm and 0.185mm. 𝑀YS𝑖 and 𝐻YS𝑖 are
the yield bending moment and hardening modulus of 𝑖th yield surface.

entire lattice is coarse­grained using six linear tetrahedral interpolation elements.
In each tetrahedral interpolation element, five Gauss quadrature points (GQPs)

are used (a convergence analysis is performed in advance and it is found that five
Gauss quadrature points is the minimum number of Gauss quadrature points that
guarantees convergence). The locations of the sampling beams are presented in
Figs. 2.12c and 2.12d. Purely elastic and elastoplastic computations are performed
using the parameters set described above.

Table 2.3 compares the different simulations in terms of the number of DoFs
and sampling beams, accuracy and computational time spent on relevant sub­
procedures. To measure the error induced by the coarse­graining, the external
work is compared (based on the curves in Fig. 2.13 using the trapezoidal rule). The
relative error in terms of the external work is 3.76% for the elastic analysis and
2.60% for the elastoplastic analysis.

The reaction force versus the downward displacement is plotted in Fig. 2.13.
Fig. 2.14 shows the deformed shape obtained from the generalized quasicontinuum
method. The following conclusions can be drawn from the results: The coarse­
graining of the generalized quasicontinuum method can significantly reduce the
size of the computer model and alleviate the computational demand.

When the entire lattice is coarse­grained, the number of DoFs is reduced by
98.17% and the number of sampling beams is reduced by 86.11%. The reduction
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(a) first interpolation scheme (b) second interpolation scheme

(c) Distribution of sampling beams of first
interpolation scheme

(d) Distribution of sampling beams of
second interpolation scheme

Figure 2.12: Interpolation and summation schemes of the generalized quasicon­
tinuum modeling for the unconstrained compression of the BCC lattice.

in the number of DoFs implies less efforts in solving the governing equations, as
can be observed from the time for ‘solving governing equations’ in Table 2.3. The
reduction in the number of sampling beams implies less efforts for the assembly
of the ‘stiffness matrix’, the assembly of the ‘internal force vector’ and the update
of the ‘history variables’ in Table 2.3. The time consumptions of ‘assemble stiff­
ness matrix’ and ’assemble force vector’ are comparable because the most time
consuming operation of the 3D co­rotational beam formulation is the uncoupling
of the rigid body movement and the deformation, which is performed in both the
stiffness matrix and the internal force vector. For the elastic analysis, the required
total computational time is reduced by 87.50% (an acceleration factor of 8) while
for the elastoplastic analysis, it is reduced by 97.29% (an acceleration factor of 37).
The observed symmetry between the left and the right half of the deformed lattice
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Items Elastic analysis Elastoplastic analysis

DNS 1
2FRD+

1
2CGD CGD DNS 1

2FRD+
1
2CGD CGD

Overall computational time 655,2 368,1 81,9 44 916,3 14 378,7 1 218,7

Configure interpolation &
select sampling beams / 3,1 0,8 / 3,3 0,8

Assemble stiffness matrix 320,5 193,7 42,3 24 430,1 7 821,2 660,9

Solve governing equations 6,2 3,2 0,3 471,3 125,5 4,1

Assemble force vector 257,6 155,4 33,7 19 926,7 6 408,3 547,5

Update history variables 4,3 2,6 0,6 4,2 3,1 0,6

Overhead 66,5 9,9 4,3 84,1 17,3 4,8

External work (N⋅mm) 994,5 1 016,0 1 031,9 445,8 453,4 457,4

Number of DoFs 55 194 28 458 1 008 55 194 28 458 1 008

Number of sampling beams 10 368 6 624 1 440 10 368 6 624 1 440

Table 2.3: Comparison of DNS and the generalized quasicontinuum simulations
in terms of computation time, size and accuracy. Computational time is measured
in seconds when running the MATLAB based in­house code with a DELL desktop
equipped with Intel i7­7700 4.2GHz CPU. Overhead includes the time elapses in
reading in model and allocating DoFs, generating output files etc.

in Fig. 2.14 also demonstrates the sufficient accuracy of the generalized quasicon­
tinuum approximation for this example.

As expected, coarse­graining makes the structure stiffer. The stiffness of the
lattice and the predicted reaction force are positively correlated with the size of
the coarse­grained domain (Fig. 2.13) because the kinematic approximation in the
coarse­grained domain is generally poorer than in the fully­refined domain.

Interesting is that the speed up factors for the elastic and elastoplastic simula­
tions are completely different (8 vs.37), indicating that the method is more useful
for elastoplastic than for elastic analyses. The convergence criterion we use is based
on measuring the relative error of the out­of­balance force residual. The number
of structural iterations (as shown in Fig. 2.15) is significantly higher because of
the way plasticity is treated in the hinges, as a natural consequence of the use
of the chosen formulation (i.e. the piecewise linear rigid­plastic­strain­hardening
responses). The source of the larger number of iterations has been identified to
be the passing from one linear segment to the other in the plastic hardening de­
scription, this happening simultaneously in a large number of hinges of the model.
Therefore, the more hinges are incorporated, the more structural iterations are re­
quired to solve the equilibrium problem, leading to an additional advantage of the
generalized quasicontinuum method with respect to the DNS. Therefore, the gener­
alized quasicontinuum modeling achieves higher speed up factors for elastoplastic
simulations as it requires less iterations per increment in the elastoplastic regime.
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Figure 2.13: Reaction force versus top surface displacement for unconstrained
compression of the BCC lattice, ‘­e’ denotes the elastic analysis, ‘­ep’ denotes the
elastoplastic analysis.

2.4.3. Three point bending of a notched BCC lattice
In this section, the efficiency of the generalized quasicontinuum method with re­
spect to the choice of the coarse­grained domain (CGD) is investigated for an ex­
ample with more complex kinematics. The mechanical behavior of a notched BCC
lattice under three point bending is simulated.

The lattice consists of 5 × 62 × 5 BCC unit cells and a notch of size 5 × 2 × 2
unit cells at the center of the lattice (Fig. 2.16). The lattice is simply supported
at both ends and a prescribed displacement of 15mm is introduced in the middle
of the specimen on the opposite side of the notch (Fig. 2.16). Strain localization
is expected close to the notch while a more homogeneous displacement field will
develop close to the left and right extremities of the lattice.

There is no easy a priori method to identify the appropriate size of the do­
main that can be coarse­grained without a loss of accuracy [58]. therefore, five
candidate interpolation schemes are investigated (Fig. 2.17). Each cube shaped
coarse­grained domain is of size 5×5×5 unit cells, divided into six macro­scale lin­
ear tetrahedral interpolation elements with five Gauss quadrature points. Table 2.4
lists the model size of the direct numerical simulation (DNS) and the five generalized
quasicontinuum models.

Elastoplastic analyses are performed using the previous material and geomet­
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Figure 2.14: Deformed shape of the BCC lattice viewed from the X axis. The
part of lattice in the fully­resolved domain (FRD) is rendered in blue and the other
half of lattice in the coarse­grained domain (CGD) is rendered in red. To show the
symmetry, the part of lattice in FRD is mirrored and superimposed onto CGD using
dashed lines.

Model
Number of
DoFs

Number of
sampling
beams

External
work
relative
to DNS

Initial
stiffness
relative
to DNS

Reaction force
at maximum
strain relative
to DNS

DNS 389 916 73 440 100% 100% 100%
83.3% FRD 327 840 64 320 102.5% 106.7% 100.2%
66.7% FRD 265 188 55 200 104.4% 112.2% 100.3%
50.0% FRD 202 536 46 080 108.1% 123.9% 100.9%
33.3% FRD 139 884 36 960 114.0% 149.6% 101.4%
16.7% FRD 77 232 27 840 122.8% 211.5% 102.1%

Table 2.4: Comparison of DNS and generalized quasicontinuum simulations in
terms of model size and accuracy as a function of the volumetric percentage of the
fully­resolved domain (FRD).

rical parameters. The reaction force is presented as a function of the imposed
displacement in Fig. 2.18. The error induced by the coarse­graining procedure
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Figure 2.15: Number of iterations versus load increment.

(a) Front view. and • denotes the simple support. Δ𝑑 denotes the prescribed displace­
ment. The boundary conditions are imposed throughout the thickness.

(b) Side
view.

Figure 2.16: Dimensions of the notched BCC lattice and the boundary conditions
of the three point bending test.

is quantified by the external work calculated from the force–displacement curves
using the trapezoidal rule (Table 2.4). At the end of the loading procedure, the
reaction force appears to reach a plateau, which results from the plastic bending
of the beam elements in the proximity of the notch. Although the five interpolation
schemes lead to varying initial stiffnesses, the predicted reaction forces at the end
of the loading process are relatively consistent. When the final reaction force is con­
sidered, the 5th interpolation scheme can reduce the number of DoFs by 80.19%,
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(a) 1st interpolation scheme (b) 1st summation scheme

(c) 2nd interpolation scheme (d) 2nd summation scheme

(e) 3rd interpolation scheme (f) 3rd summation scheme

(g) 4th interpolation scheme (h) 4th summation scheme

(i) 5th interpolation scheme (j) 5th summation scheme

Figure 2.17: The five interpolation schemes for the generalized quasicontinuum
modeling of the three point bending of the notched BCC lattice and distribution of
sampling beams.

the number of sampling beams by 62.09% while introducing a relative error of only
2.12%. Coarse­graining stiffens the structure, which is the reason why the initial
stiffnesses predicted by the interpolation schemes are different than that predicted
by the DNS. The generalized quasicontinuum method provides a good approxima­
tion of the developed plastic response, but the elastic stiffness is sensitive to the
CGD size in this example.

Since the required size of FRD and CGD are generally not known a priori, this
leaves the determination of the appropriate sizes of FRD and CGD when applying
the generalized quasicontinuum method an empirical job for the users. Adaptive
coarse­graining strategies as those of [35, 58] will further enhance the generalized
quasicontinuum method by eliminating the human factor, which we may consider
in the future.

It is worth noting that both examples in Sections 2.4.2 and 2.4.3 confirm the
stiffening effect of coarse­graining. This is because the coarse­graining procedure
introduces the model error, which arises when the division of the fully­resolved
domain and the coarse­grained domain as well as the prescribed interpolation pat­
tern in the coarse­grained domain does not fully represent the actual deformation
distribution in the model. The model error can be minimized if the following two
conditions are satisfied: (1) the fully­resolved domain is large enough to embrace
the localized deformation/failure while the fluctuation caused by the localized de­
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Figure 2.18: Reaction force versus imposed mid­span displacement for the three
point bending of the notched BCC lattice.

formation/failure disappears at the borders of the fully­resolved domain and the
coarse­grained domain; (2) the interpolation pattern (including the order of inter­
polation and the layout of the interpolation mesh) in the coarse­grained domain
matches the actual deformation distribution in the coarse­grained domain. The
larger the model error, the more severe the stiffening effect. For the example in
Section 2.4.2, the beam nodes displace relatively uniformly and this can be well
captured by the prescribed interpolation pattern. Therefore, the stiffening effect
induced by coarse­graining is not a big concern (see Fig. 2.13) for that example.

For the example in Section 2.4.3 however, during the elastic loading stage, the
notch inflicts a non­uniform elastic deformation field with a far­reaching fluctuation
and this could not be adequately captured by all the five coarse­graining schemes.
Therefore, the model error is large and reflects itself through the disparity of the
predicted elastic stiffness. When advancing to the elastoplastic loading stage, the
load bearing capacity essentially depends on the elastoplastic behavior in the prox­
imity of the notch, which is fully resolved in all the five coarse­graining schemes
with the coarse­grained domain progressively subjected to more and more uniform
stress states; Hence, the predicted load levels are comparable. The authors will
study the stiffening impact of coarse­graining, which in essence reflects the reduc­
tion of the model error, in a quantitative manner by resorting to adaptive coarse­
graining strategies in the future work, whereas it is only described qualitatively in
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the presented work.

2.4.4. Indentation of a BCC lattice
In the last example, we consider the indentation of a BCC lattice, corresponding to
a localized full 3D loading of the structure. The failure of a metallic lattice structure
under indentation is attributed to the buckling of the struts under the indenter (for
small indentation depths). Elastoplasticity is considered and due to the high compu­
tational cost of the DNS, only the generalized quasicontinuum model is computed.

The buckling of the struts results in a local collapse of the lattice and does not
propagate far from the loading zone.

Figure 2.19: Dimensions of the BCC lattice for the simulation of indentation. The
indentation is imposed on the red area. Due to symmetry, only a quarter of the
lattice is simulated.

The BCC lattice simulated here consists of 50 × 50 × 50 unit cells (Fig. 2.19).
Modeling such a large lattice using direct numerical simulation would indeed require
significant computational resources (i.e. around 6 millions beam elements and
31.5 millions DoFs). However, this structure can be simulated at a reasonable
computational cost using the generalized quasicontinuum method.

A flat punch indentation is modeled by imposing the vertical displacement of a
surface area of 2 × 2 unit cells (Fig. 2.19). A final indentation depth of 0.3mm is
imposed. All of the faces of the lattice except for the top face are constrained from
displacement perpendicular to them. The material and geometrical parameters of
the lattice are assumed to be the same as earlier. A small fully­resolved domain of
10 × 10 × 10 unit cells is allocated in the proximity of the indenter. The remainder
of the lattice is coarse­grained using linear tetrahedral interpolation elements with
5 GQPs (Fig. 2.20). The generalized quasicontinuum model contains 279 090 DoFs
and 226 560 sampling beams, yielding a reduction of 99.12% and 96.22% relative
to those of DNS.

The reaction force is presented as a function of the indentation depth in Fig. 2.21.



2.4. Performance study

2

43

(a) Interpolation scheme: The fully­resolved domain is a cubic region in the vicinity of the
indenter, the remaining part of the lattice is coarse­grained.

(b) Distribution of sampling beams.

Figure 2.20: The generalized quasicontinuum model of the indentation problem.

The reaction force reaches a peak before it decreases. Observing the deformed
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Figure 2.21: Reaction force versus indentation depth for the generalized quasi­
continuum modeling of the indentation of the BCC lattice.

shape of the lattice in the vicinity of the indenter (before and after the peak force),
the decrease of the reaction forces is caused by the buckling of the struts under
the indenter. Three snapshots of the deformed shape of the 2 × 2 × 2 unit cells in
the vicinity of the indenter are presented in Fig. 2.22.

In agreement with experimental observations, the initial plasticity induced buck­
ling of the struts would propagate towards adjacent struts, leading to the local col­
lapse of the lattice [59, 60]. In addition to capturing the geometrical nonlinear
behavior of the lattice [22], this contribution captures the cross section variability
along the strut as well as the plastic behavior (both are observed in experiments
[4, 14]).

The generalized quasicontinuummethod can achieve significant model reduction
and alleviate the computational demand (e.g. 99.12% and 96.22% reduction in
the number of DoFs and sampling beams respectively) whilst it is able to capture
localization (e.g. the buckling of individual struts and local collapse of the lattice).

2.5. Conclusions
This work presents a generalization of the multi­scale quasicontinuum method,
which we have called the generalized quasicontinuum method. In contrast to con­
ventional FE2­approaches, the method avoids the requirement of scale­separation
and is therefore convenient to use in a concurrent manner. It is also as straightfor­
ward to implement for higher­order macro­scale FEs as for linear FEs. The downside
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(a) Point A: Beams bend.

Figure 2.22: Local deformation of the lattice in the vicinity of the indenter. Δ𝑑
denotes the nodes where indentation displacement is applied. The reference shape
of the lattice is shown in green dashed line, the deformed shape of the lattice is
shown in red solid line. The snapshots correspond to points 𝐴, 𝐵 and 𝐶 on the
force­displacement curve in Fig. 2.21.

is that it is computationally somewhat more costly than computational homogeniza­
tion approaches.

The method is applied to BCC metallic lattice structures as they can be produced
by additive manufacturing. We have shown that the basic fine scale failure modes
of the metallic lattice structures (the buckling and the plastic bending of individual
struts) are well captured thanks to a 3D co­rotational beam finite element with
embedded plastic hinges, which is also presented in this contribution.

If we stick to the quasicontinuum terminology, we have shown that the number
of DoFs and the number of sampling beam elements can be drastically decreased
using the generalized quasicontinuum method (compared to the direct numerical
simulations), whilst maintaining a high accuracy. In case of unconstrained com­
pression of rather small BCC lattice for instance, the generalized quasicontinuum
method reduces the number of DoFs by 98.17% and the number of sampling beams
by 86.11%. As a consequence, the computational time is reduced by 97.27% while
the induced error is only 3.76%, demonstrating a favorable trade­off. We therefore
conclude that the generalized quasicontinuum method is a promising framework
to efficiently simulate the mechanical behavior of large lattice structures at a high
accuracy.

As most nested, concurrent multi­scale approaches, the generalized quasicon­
tinuum method requires smooth deformation fluctuations in the coarse­grained do­
mains. Consequently, fully­resolved domains must be large enough to embrace
localization (e.g. due to fracture). The approach is thus computationally most ben­
eficial if the fully resolved domain is small compared to the coarse­grained domain
(as is the case for conventional nested, concurrent approaches).

The following points require future work: Dividing metallic lattice structures into
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(b) Point B: Buckling appears below the indentation area.

(c) Point C: Buckling propagates and local collapse occurs.

Figure 2.22: Local deformation of the lattice in the vicinity of the indenter. Δ𝑑
denotes the nodes where indentation displacement is applied. The reference shape
of the lattice is shown in green dashed line, the deformed shape of the lattice is
shown in red solid line. The snapshots correspond to points 𝐴, 𝐵 and 𝐶 on the
force­displacement curve in Fig. 2.21.

fully­resolved domains and coarse­grained domains at no observable reduction of
the accuracy requires information about localization. This information is generally
not known a priori. Thus, developing an adaptive coarse­graining strategy would
be useful. Classifying the micro­structural nodes of a unit cell into different types
needs to be elaborated. The influence of different classification schemes on the
computational efficiency and accuracy needs to be investigated. Applying the pro­
posed generalized quasicontinuum method to other types of unit cells can be an
extension.
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3
A refinement indicator for
adaptive computations of

conventional and generalized
quasicontinuum frameworks∗

The quasicontinuum method is a concurrent multi­scale approach in which
latticemodels are fully resolved in small regions of interest and coarse­grained
elsewhere. Since the method was originally proposed to accelerate atomistic
lattice simulations, its refinement criteria – that drive refining coarse­grained
regions and/or increasing fully resolved regions–are generally associated
with quantities relevant to the atomistic scale. In this contribution, a new and
general refinement indicator is presented, based on the energies of dedicated
unit cells at coarse­grained domain surfaces. This indicator is incorporated
in an adaptive scheme of a generalization of the quasicontinuummethod able
to consider periodic representative volume elements, like the ones employed
in most computational homogenization approaches. However, this indicator
can also be used for conventional quasicontinuum frameworks. Illustrative
numerical examples of elastic indentation and scratch of different lattices
demonstrate the capabilities of the refinement indicator and its impact on
adaptive quasicontinuum simulations.

∗ Submitted to International Journal for Numerical Methods in Engineering on May 12, 2020.
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3.1. Introduction
The quasicontinuum (QC) method is a concurrent multi­scale approach that aims
to decrease the computational costs of meso­structural, micro­structural or nano­
structural lattice models. The approach fully resolves the lattice model in small
regions of interest (fully­resolved domains: FRDs), whereas in the remainder of
the domain the degrees of freedom (DoFs) of the lattice model are interpolated
(coarse­grained domains: CGDs). The CGDs are subdivided into non­overlapping
interpolation elements (IPEs), inside each of which the shape functions of finite
elements are used to interpolate the DoFs. As the interpolation decreases the
number of DoFs, the efforts to solve the governing equations are significantly re­
duced. A second reduction step, often called summation or sampling, is necessary
to decrease the efforts to construct the governing equations. Summation in QC
terminology means that only a few lattice interactions are sampled to approximate
the contributions of all lattice interactions in the CGDs to the governing equations.

The QC method was originally proposed to decrease the computational expenses
of atomistic lattices simulation – characterized by conservative interactions [1–11].
Later, it was reformulated by Beex et al. [12–14] using a virtual­power­statement
to incorporate dissipative phenomena. Rokoš et al. [15–17] have subsequently
demonstrated that dissipation can also be incorporated using variational state­
ments. These reformulations have widened the method’s applicability to lattice
models of discrete and fibrous materials in which each yarn, fiber or strut is repre­
sented using a series of consecutive springs or beams.

Another enhancement was recently proposed by Mikeš et al.[18–21], who have
made the approach applicable to geometrically irregular lattices – albeit the me­
chanical behaviour of each interaction is the same. A disadvantage of this ap­
proach is that summation cannot truly be exploited to decrease the construction of
the governing equations because each interaction is evaluated to get a homoge­
nized material tensor. The approach was recently used by Ghareeb and Elbanna
[22] to investigate networks of polymer chains.

Traditionally, the interpolation in the CGDs is performed indiscriminately: the
DoFs of all lattice nodes are interpolated in the same manner – without regarding
the connectivity pattern of the lattice. Consequently, the QC method is tradition­
ally only exploited for regular lattices, where each lattice node is connected to its
neighbouring lattice nodes in the same manner.

Recently however, Chen et al. [23] and Phlipot and Kochmann [24] have pro­
posed generalization in which a more complex connectivity of the lattice is consid­
ered. As a result, the method can also be applied to more complex lattice models,
in which each lattice node inside a periodic unit cell is connected to its neighboring
nodes in different patterns – using interactions of which the mechanical response
can vary. Consequently, this particular QC framework can be used for any type of
micro­structural model, as long as its micro­structural arrangement is periodic.

The generalization are based on interpolating the DoFs of each lattice node in a
periodic unit cell (i.e. the repeating geometrically similar units in a periodic lattice)
individually. Thus, a disadvantage of the generalization is that many more DoFs
remain – relative to the macro­models of computational homogenization (FE2) ap­
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proaches [25–28]. Another disadvantage is that more unit cells must be sampled in­
side each IPE. Advantages over nested approaches based on computational homog­
enization are that: (i) macro­to­micro and micro­to­macro relations are avoided, (ii)
no micro­structural boundary conditions are necessary, and (iii) scale­separation
does not need to hold.

It is worth explaining the necessity of incorporating adaptivity to QC for metal­
lic periodic lattices. The deformation of metallic lattices features, among others,
buckling and plastic hinge appearance (in case of ductile material). These occur
locally on the strut level before propagating wider into the lattice. Therefore, com­
putational savings are improved if the initial FRD can evolve in order to encapsulate
the local deformation which changes location during a simulation. A measure for
localized behavior is a high local deformation gradient. The fundamental idea of
the refinement indicator presented in this work is to monitor the discrepancy of
the strain energy at newly introduced ‘signaling unit cells’ placed at interfaces of
interest. If it exceeds a user­defined threshold, either the local interpolation ele­
ments are refined, or they are fully resolved to increase the local kinematic richness.
Evolving FRDs will then be able to reproduce strut buckling and the formation of
plastic hinges at different locations in the model domain. Therefore, the main goal
of the presented work is to develop an adaptive scheme that avoids unnecessary
refinement due to rigid body deformations and assess its performance. Because of
this focus, only elastic co­rotational beam FEs are employed in this chapter.

Adaptivity of QC approaches is mainly investigated in the context of atomistic
lattices for metals [3, 18, 29–31]. For this reason, most of the refinement indicators
are based on quantities that are relevant for regular atomistic lattices and metals
[3, 18, 30, 31]. For instance, Phlipot and Kochmann [24] have used a refinement
indicator based on the (continuum derived) 𝐽2 invariant of the deformation, even
though their meso­structural lattice represents a discrete multi­lattice [32]. A disad­
vantage of this indicator is that refinement may also be triggered for homogeneous
deformations and rigid body rotations.

To the best of the authors’ knowledge, only three studies have presented truly
different refinement indicators for QC methods. First, Memarnahavandi et al. [29]
have presented a goal­oriented adaptive QC approach in which not only the triangu­
lation of IPEs (triangular shapes and corresponding finite element shape functions
are used to interpolate the DoFs) was adapted, but also the size of the clusters of
summation/sampling interactions. The disadvantage of this approach is that the
cluster QC method is known to be relatively inaccurate [12–14, 17, 33, 33–36],
even if many sampling interactions are used.

Second, Rokoš et al. [16, 17] have presented adaptive QC formulations for
damageable lattices, where the evolution of FRDs and CGDs was triggered by the
development of damage in the lattice interactions. This indicator thus is only appli­
cable to damageable lattices, and such a approach thus only triggers refinement in
regions where damage occurs, whereas refinement in other regions may also im­
prove the accuracy for complex stress distributions – regardless of the occurrence
of damage.

Third, Mikeš et al. [18] have formulated adaptivity based on the Zienkiewicz­
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Zhu indicator. The resulting adaptive scheme appears to be generally applicable
and does not suffer from any of the drawbacks. A disadvantage for its use in the
generalized variant of the QC method, which effectively superimposes as many
finite element shape functions as classes of lattice nodes present in the lattice, is
that no macroscopic deformation gradient can be recognized. One possibility would
therefore be to combine the Zienkiewicz­Zhu indicator of Mikeš et al. [18] with the
approach of Phlipot and Kochmann [24] in which as many macro­scale deformation
gradient tensors are distinguished as classes of lattice nodes are present.

Instead, the present contribution proposes a completely different, yet entirely
general refinement indicator that can be applied to both conventional QC methods
as well as to its generalized variant (although we only demonstrate its use for
the generalized variant here). The need for refinement is indicated by placing a
‘signaling’ unit cell on each communicating IPE surface, and by determining two
stored energies for each signaling unit cell: first by governing the signaling unit
cell deformation according to the first IPE, and second by governing the signaling
unit cell deformation according to the second IPE (i.e. the neighboring IPE that
shares the same external surface). If the difference between the signaling unit cell
energies reaches a user­defined threshold, both IPEs are refined. At the periphery
of the FRDs, some additional technicalities must be incorporated, but the approach
effectively remains the same.

If the volume of a newly created IPE reaches a user­defined minimum, it will be
replaced by an FRD. This automatically increases the size of FRDs, but also enables
FRDs to be created independently out of a cluster of IPEs (as the illustration results
will reveal).

As mentioned before, the resulting adaptive scheme is demonstrated here for
the generalized QC method, but because conventional QC methods are a subset
of the generalized QC framework, the refinement indicator is also applicable for
conventional QC approaches. The indicator’s capabilities are demonstrated for 3D
structures consisting of body­centered­cubic (BCC) and Kelvin unit cells of elastic,
geometrically non­linear co­rotational beams. Within the unit cell, each strut is
discretized with several beam elements, which are given independent geometrical
and material parameters.

The remainder of this work is organized as follows. Section 3.2 outlines the
generalized QC method. Section 3.3 presents the adaptive scheme including the
detailed implementation of the refinement indicator. Section 3.4 illustrates the
adaptive generalized QC method using numerical examples. Section 3.5 concludes
the presented work.

3.2. Generalized QC method
For demonstration purposes, we explain the generalized QC method for the periodic
unit cell in Fig. 3.1. However, it is emphasized that the approach is applicable to
any type of unit cell, as long as it is periodic.

For the sake of a simple illustration let us consider the structural lattice of
Fig. 3.2, which consists of an X shaped 2D unit cell of Fig. 3.1. The unit cell of
Fig. 3.1 consists of four diagonal struts. Each strut is represented by a series of
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three beam elements. Each central beam element is given different geometrical
and material parameters than the outer ones – as presented by the cyan and green
colors. Beam finite elements [37] are used as structural models in the computation.

Figure 3.1: Beam representation of an X shaped 2D unit cell. All cyan beams
are given the same geometrical and material parameters and the green beams are
given their own geometrical and material parameters. Beam node (•) types are
indicated as 1 − 5. Beam types are indicated as 1⃝− 6⃝.

Figure 3.2: Two dimensional sketch of a large system of X­shaped unit cells.

We are interested in systems of large numbers of unit cells, because those
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typically appear in engineering applications. However, they are computationally
demanding because of the large number of DoFs.

As we restrict ourselves to (non­linear) elastic systems, the system can be solved
by minimizing a total potential energy according to:

u∗ = argmin
u

(−f𝑇extu+
𝑚

∑
𝑖=1

E𝑖(u)) . (3.1)

In Eq. (3.1), u and fext denote the column matrices of the beam nodes DoFs and
external forces (including moments), respectively. E𝑖(u) denotes the elastic strain
energy of beam 𝑖 and 𝑚 denotes the total number of beam elements. Eq. (3.1) is
referred to as the direct numerical simulation (DNS).

QC methods were proposed in order to decrease the computational costs of
DNS, while keeping a reasonable accuracy. The method incorporates two model
reduction steps: interpolation and summation.

3.2.1. Interpolation in the generalized QC method
The interpolation step of the generalized QC method divides the system into non­
overlapping fully resolved domains (FRDs) and coarse­grained domains (CGDs).

In the FRDs, the micro­structural beam representation is preserved. This implies
that high fluctuations of the DoFs can be described in FRDs at a high computational
cost. Therefore, FRDs are typically restricted to small sub­domains in which local­
ized responses occur (e.g. strain localization and beam failures).

On the other hand, CGDs are employed in the remainder of the model domain in
which the deformation fluctuations are substantially less local. The CGDs are further
divided into interpolation elements (IPEs) to apply an interpolation of kinematics
within each IPE. (although any type of interpolation technique may of course be
used, see e.g. [38]). The DoFs of all beam nodes in the IPEs are interpolated using
FE shape functions and the representative DoFs defined at the nodes of the IPEs
(same number and nature of DoFs as for a single beam node for each beam type
convoluted in an IPE nodal vector). When the FRD­CGD interface cuts through the
lattice, there are beams that are sectioned by the interface (or one beam end lies
exactly on the interface). As for beams with one of the beam ends in the CGD and
the other end in the FRD, the DoFs of the beam end in the FRD are preserved while
the DoFs of the beam end in the CGD are interpolated.

Fig. 3.3 illustrates a possible interpolation scheme for the system of Fig. 3.2.
Since deformation localization will appear near the concentrated force, the region
near the location of the external force is fully resolved. The remainder of the system
which may be exempt from deformation localization (i.e. smooth strain gradients)
is designated as coarse grained domains (CGDs). In Fig. 3.3 triangular patches
are used to create the IPEs and linear triangular finite element shape functions are
used to interpolate the DoFs of the underlying beam nodes.

As a result of interpolation, only the DoFs of the beam nodes in the FRDs and
of the nodes of the IPEs are preserved in the governing equations. This leads to
a reduced set of DoFs (denoted as ur) and decreases the number of governing
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Figure 3.3: Illustration of interpolation in QC methods. @ denote the nodes of the
IPEs.

equations and hence, the number of DoFs to solve for. ur is related to the DoFs of
all beam nodes, u, using condensation matrix N, i.e.

u = Nur. (3.2)

In the condensation matrix N, each row is associated with the DoF of a beam
node in the DNS model and, each column is associated with the DoFs of either the
beam nodes in the FRDs or the nodes of the IPEs in the interpolated model. The
sub­blocks of N that are associated with the DoFs of the beam nodes in the FRDs
are identity matrices. The sub­blocks of N that are associated with the DoFs of the
nodes of the IPEs contain the finite element shape function evaluations.

Consequently, the minimization problem of Eq. (3.1) is revised as

u∗r = argmin
ur

(−f𝑇extNur +
𝑚

∑
𝑖=1

E𝑖(Nur)) . (3.3)

Essential to realize is that the beam nodes in the unit cell of Fig. 3.1 are con­
nected to their neighboring beam nodes in different ways. As a distinctive character,
the generalized QC method [23] classifies the beam nodes of a unit cell into differ­
ent types – based on their connectivity. The DoFs of each type of beam node are
interpolated independently. To facilitate this, the nodes of the IPEs store multiple
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sets of DoFs – one set per type of beam node. These are used to independently
interpolate the DoFs of the corresponding type of beam nodes.

For the unit cell of Fig. 3.1 for instance, a total of 13 beam nodes and 12 beam
elements are present. After incorporating the orientations of the struts and the
type of beam element (‘cyan’ or ‘green’) along each strut, 5 different types of beam
nodes are classified. Moreover, differentiated by the beam node types of both ends,
the 12 beam elements are subdivided in 6 types. The beam type classification will
play a role in the adaptivity scheme of Section 3.3.

Interpolation decreases the number of governing equations to solve for. Con­
sequently, interpolation decreases the computational efforts to solve the governing
equations. However, the computational costs to construct the governing equations
remains unaffected by interpolation: still all 𝑚 beams of the system need to be
visited (cf. Eq. (3.1) and (3.3)). Even worse is that if the (interpolated) minimiza­
tion problem of Eq. (3.3) is solved using Newton’s method, the condition number of
the stiffness matrix of the interpolated system is worse than the condition number
of the stiffness matrix of the DNS [39]. Hence, interpolation alone may actually
increase the computational time.

3.2.2. Summation in the generalized QC method
The summation step of the QC methods aims to reduce the cost of the construction
of the governing equations, by approximating the governing equations using much
less beam elements. The few beam finite elements that remain in the system are
used to sample the contributions of all beams to the governing equations. For
this reason we refer to the remaining beams as sampling beams. Each sampling
beam is associated with a weight factor, which measures the number of beams it
represents.

After summation, the minimization problem of Eq. (3.3) is revised as

u∗r = argmin
ur

(−f𝑇extNur +∑
𝑖∈𝑆
𝜔𝑖E𝑖(Nur)) (3.4)

where 𝑆 denotes the set of sampling beams and 𝜔𝑖 denotes the weight factor of
sampling beam 𝑖.

The selection of the sampling beams (including the determination of the weight
factors) is governed by a summation rule. The summation rule proposed by Chen
et al.[23] is used here and can be summarized as follows.

First, all beam elements that are either partially or completely inside FRDs are
selected as sampling beams. Their weight factors are set to 1, since they only
represent themselves. Since it is possible that the FRD­CGD interface cuts through
the lattice, there are beams that are sectioned and these beams are by definition
sampling beams of FRDs.

Second, in CGDs, a sufficient number of Gauss quadrature points (GQPs) are
selected inside each IPE. A unit cell is centered at each GQP (which entails that
the center of the unit cell does not necessarily match a center of a unit cell of the
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underlying system). The beam elements of these unit cells are also selected as
sampling beams. The weight factors of these sampling beams are determined as

𝜔 = W𝑗
GQP ⋅

𝑉IPE
𝑉UC

, with

𝑛GQP

∑
𝑗=1

W𝑗
GQP = 1, (3.5)

where 𝑉IPE and 𝑉UC denote the volume of the IPE and the volume of a single unit
cell, respectively. W𝑗

GQP denotes the normalized weight of Gauss quadrature point
(GQP) 𝑗 and 𝑛GQP denotes the number of GQPs.

Figure 3.4: Illustration of summation in the generalized QC method. @ denote the
nodes of the IPEs.

An illustration of summation is presented in Fig. 3.4, where three GQPs are used
per IPE. Note that the sufficient number of GQPs refers to the minimum number of
GQPs to guarantee convergence.

3.3. Adaptive scheme
This section presents the novel adaptive scheme, including the proposed refine­
ment indicator. The adaptive scheme can be used for both conventional as well as
generalized QC frameworks.

The adaptive scheme is proposed in this contribution to achieve refinement,
coarsening being part of future work. Refinement involves both the refinement of
IPEs into smaller IPEs and the transformation of IPEs into FRDs. Consequently, it



3

62 3. Adaptive generalized QC for elastic lattices

hinges on the following: (1) the discretization of IPEs is automatically adjusted, (2)
the size of FRDs is automatically increased, and (3) FRDs are automatically created.

3.3.1. Refinement indicator
In this section, a new refinement indicator is proposed. The indicator quantifies
energy discrepancies at the surfaces of IPEs (IPE edges in 2D) and it is specified
for two situations. In the first situation, the energy discrepancy is measured for
the interface between two adjacent IPEs. Such an interface is termed as an IPE­
IPE interface. In the second situation, the energy discrepancy is measured for the
interface between an IPE and a neighboring FRD. This type of interface is termed
as an IPE­FRD interface.

At each IPE­IPE interface, a unit cell is placed at the center of the interface (see
Fig. 3.5a for 2D illustration), referred to as signaling unit cell. This unit cell does
not contribute to the governing equations (i.e. its beams are not sampling beams),
it is merely used to decide whether the two IPEs need to be refined or not.

The DoFs of the beams in a signaling unit cell are first assumed to be completely
governed by the first IPE (this involves interpolation as well as extrapolation because
part of the signaling unit cell is inevitably outside the governing IPE (see Fig. 3.5a))
and its stored energy, 𝐸1, is determined. Second, the DoFs of the beam nodes in
the signaling unit cell are interpolated/extrapolated according to the second IPE.
Its stored energy, 𝐸2, is again quantified and the following measure for energy
discrepancy is then computed:

𝜅 = |𝐸1 − 𝐸2|
1
2(𝐸1 + 𝐸2)

. (3.6)

In the ideal theoretical case there would be no energy discrepancy.
For each IPE­FRD interface, a signaling unit cell is also centered at the interface

(see Fig. 3.5b). The DoFs of the signaling unit cell’s beam nodes are now only
governed by a single IPE. Accordingly, the energy stored in each beam of the unit
cell is computed. Meanwhile, due to the summation rule (Section 3.2.2), there are
numerous sampling beams of FRD, which intersect the IPE­FRD interface and/or
touch the IPE­FRD interface (i.e. their beam nodes are located on the interface).

Of each FRD beam intersecting (and touching) the IPE­FRD interface, the beam
type is determined according to the beam type classification. Then, the average
stored energy of each beam type is calculated according to Table 3.1. Let 𝐸̄uc
and 𝐸̄int be the average beam energy for a certain type of beam. 𝐸̄uc is obtained
by averaging the energies of the corresponding type of beams in the signaling
unit cell. 𝐸̄int is obtained by averaging the energies of the corresponding type of
beams among the aforementioned sampling beams of FRD. The energy discrepancy
is first evaluated according to Eq. (3.6) for each type of beam element that exists
among the intersecting/touching sampling beams of FRDs. Subsequently, all energy
discrepancies (𝜅𝑖 in Table 3.1) are averaged. This averaged energy discrepancy is
used to indicate whether or not refinement is required.

In summary, refinement takes place:
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(a) IPE­IPE interface.

(b) IPE­FRD interface.

Figure 3.5: The scenarios in which the energy discrepancy is measured to drive
IPE refinement. @ denote the nodes of the CGDs.
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Beam
type

Averaged beam strain energy Energy
discrepancyFrom the unit cell

that is centered on
IPE­FRD interface

From the sampling
beams with 𝜔 = 1 that
cross IPE­FRD interface

1 𝐸̄1uc =
1
𝑛1uc
∑𝑛

1
uc
𝑗=1 𝐸1𝑗 𝐸̄1int =

1
𝑛1int
∑𝑛

1
int
𝑗=1 𝐸1𝑗 𝜅1 = |𝐸̄1uc−𝐸̄1int|

1
2 (𝐸̄

1
uc+𝐸̄1int)

2 𝐸̄2uc =
1
𝑛2uc
∑𝑛

2
uc
𝑗=1 𝐸2𝑗 𝐸̄2int =

1
𝑛2int
∑𝑛

2
int
𝑗=1 𝐸1𝑗 𝜅2 = |𝐸̄2uc−𝐸̄2int|

1
2 (𝐸̄

2
uc+𝐸̄2int)

⋯ ⋯ ⋯ ⋯

𝑖 𝐸̄𝑖uc =
1
𝑛𝑖uc
∑𝑛

𝑖
uc
𝑗=1 𝐸𝑖𝑗 𝐸̄𝑖int =

1
𝑛𝑖int
∑𝑛

𝑖
int
𝑗=1 𝐸𝑖𝑗 𝜅𝑖 = |𝐸̄𝑖uc−𝐸̄𝑖int|

1
2 (𝐸̄

𝑖
uc+𝐸̄𝑖int)

⋯ ⋯ ⋯ ⋯
Average – – 𝜅 = 1

𝑏 ∑
𝑏
𝑖=1 𝜅𝑖

Table 3.1: Determination of energy discrepancy for a IPE­FRD interface. 𝐸𝑖 de­
notes the strain energy of a type 𝑖 beam element. 𝑛𝑖uc and 𝑛𝑖int denote the numbers
of type 𝑖 beam elements in the signaling unit cell and among the intersecting (and
touching) FRD sampling beams, respectively. 𝑏 denotes the number of different
beam types.

• If 𝜅 > 𝜅tol for a IPE­IPE interface, both IPEs are refined. If the volume
of a newly created IPE is below the threshold 𝑉tol, the newly created IPE is
transformed into an FRD.

• If 𝜅 > 𝜅tol for a IPE­FRD interface, the relevant IPE is fully resolved.

3.3.2. Refinement of the spatial discretization
Once the refinement criterion identifies which IPEs need refinement, a refinement
algorithm governs how the IPEs will be refined or transformed into FRDs. It must
be noted that we want to avoid ‘hanging’ IPE nodes (see Fig. 3.6). Usually with
a conforming discretization the IPE nodes are shared with their other neighboring
IPEs, but the central IPE node does not belong to the bottom IPE. We call this IPE
node a hanging IPE node.

The refinement algorithm obviously depends on the type of IPE kinematics and
the used finite element shape functions. Different IPE orders are employed in QC
frameworks: first and higher order triangular finite element shape functions in 2D
[17, 18, 29, 30, 34–36] and linear tetrahedral and hexahedral shape functions in 3D
[17, 23, 24]. A linear tetrahedral interpolation is used in this work for the 3D IPEs
and the refinement algorithm is an extension of the one proposed by Suárez et al.
[40]. The additional originality compared to [40] is that if the volume of a newly
created IPE is below 𝑉tol, the newly created IPE becomes an FRD. The pseudo code
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Figure 3.6: Illustration of hanging IPE node. @ denote the nodes of the IPEs.

of the refinement algorithm is detailed in Alg. 1.

Algorithm 1: Refinement algorithm
Input: 𝜏 – Tet(tetrahedral) IPEs before refinement
Input: 𝜏𝑟 – Tet IPE(s) to be refined
Output: 𝜏 – Tet IPEs after refinement

1 for each tet t ∈ 𝜏𝑟 do
2 Divide t into two tets from the midpoint of the longest edge of t;
3 Update 𝜏;
4 Identify hanging IPE nodes in 𝜏 and collect them in set 𝐿;
5 while 𝐿 ≠ ∅ do
6 Let p be a hanging node in set 𝐿;
7 Let e be the edge on which p is located;
8 Let 𝑀 be the set of tets that share edge e (excluding the tets that have

resulted in the creation of p);
9 for each tet t ∈ 𝑀 do

10 Divide t into two tets from the midpoint of the longest edge of t;
11 Update 𝜏;
12 Identify hanging nodes in 𝜏 and collect them in set 𝐿;
13 for each tet t ∈ 𝜏 do
14 Let 𝑉t be the volume of t;
15 if 𝑉t < 𝑉tol then
16 Transform t into FRD;
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Figure 3.7: Illustration of key concepts of the adaptive QC method. Inside each
IPE, kinematic interpolation using FE shape functions is performed.

Symbol Description
𝑡k The kth time step in a Newton scheme.

ΩFRDk The FRDs at 𝑡k.
𝜕ΩFRDk The boundary of the FRDs at 𝑡k.
ΩCGDk The CGDs at 𝑡k.
𝜕ΩCGDk The boundary of the CGDs at 𝑡k.
𝜏k The IPE & FRD configuration at 𝑡k.
Sk The set of sampling beams at 𝑡k.
ukr The reduced DoFs after interpolation at 𝑡k.
fkint The internal force vector corresponding to ukr .

Φk­1k The interpolation matrix relating ukr to uk­1r .

𝜅tol The threshold of the energy discrepancy.

𝑉tol The minimally acceptable area/volume of a IPE.

Table 3.2: Glossary of the notations.

3.3.3. Adaptive scheme
This section presents the proposed adaptive scheme. Table 3.2 lists a glossary of
symbols that are used in the pseudo code of the adaptive scheme of Alg. 2. Also for
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better illustration, the concepts of FRDs, CGDs, IPEs, IPE nodes, IPE­IPE interface
and IPE­FRD interface are illustrated in Fig. 3.7.

Algorithm 2: Adaptive scheme.

1 Initialization: configure ΩFRD0 , ΩCGD0 , 𝜏0, 𝑆0, set u0r = 0, f0int = 0.
2 for k = 1,2,…,n do
3 Inherit configurations of previous time step, i.e. ΩFRDk = ΩFRDk­1 ,

ΩCGDk = ΩCGDk­1 , 𝜏k = 𝜏k­1, 𝑆k = 𝑆k­1, ukr = uk­1r , fkint = fk­1int .
4 Apply boundary conditions of 𝑡k to 𝜕ΩFRDk and 𝜕ΩCGDk .
5 Equilibrate the unbalanced system by solving Eq. (3.4).
6 Evaluate energy discrepancy 𝜅 for IPE­IPE interfaces in 𝜏k, identify the

IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏refine.
7 while 𝜏refine ≠ ∅ do
8 Apply Alg. 1.
9 Update ΩFRDk , ΩCGDk , 𝜏k, 𝑆k.

10 Compute interpolation matrix Φk­1k , reset initial guess as
ukr = Φ

k­1
k uk­1r , update fkint accordingly.

11 Equilibrate the unbalanced system by solving Eq. (3.4).
12 Evaluate energy discrepancy 𝜅 for IPE­IPE interfaces in 𝜏k, identify

the IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏refine.
13 Evaluate energy discrepancy 𝜅 for IPE­FRD interfaces in 𝜏k, identify the

IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏resolve.
14 while 𝜏resolve ≠ ∅ do
15 Transform the IPEs in 𝜏resolve into FRDs.
16 Update ΩFRDk , ΩCGDk , 𝜏k, 𝑆k.
17 Compute interpolation matrix Φk­1k , reset initial guess u𝑘r = Φ

k­1
k uk­1r ,

update fkint accordingly.
18 Equilibrate the unbalanced system by solving Eq. (3.4).
19 Evaluate energy discrepancy 𝜅 for IPE­FRD interfaces in 𝜏k, identify

the IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏resolve.
20 Store output data of current time step: ΩFRDk , ΩCGDk , 𝜏k, 𝑆k, ukr , fkint.

Two issues in Alg. 2 are are clarified here. First, the interpolation matrix Φk­1k
denotes the matrix necessary to give an appropriate initial guess to a new (i.e. re­
fined) IPEs & FRD configuration in order to solve the current time step (𝑡k) in a
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Newton algorithm. This is accomplished by projecting the converged solution at
𝑡k­1, uk­1r , as initial guess for time step 𝑡k with the new IPE & FRD configuration,
ukr . In other words, the only goal of Φ

k­1
k is to equip newly created nodes (i.e. new

beam nodes in FRDs and new IPE nodes) with an initial guess that is in accordance
with the converged solution at 𝑡k­1 for the previous IPE & FRD configuration.

A second issue that needs clarification is that the energy discrepancy is first mea­
sured for IPE­IPE interfaces (lines 6–12 in Alg. 2) and subsequently for IPE­FRD in­
terfaces (lines 13–19). The reason to split the measuring of the energy discrepancy
in two stages is that IPE refinement only results in a few more DoFs and sampling
beams, whereas transforming IPEs into FRDs yields considerably more DoFs and
sampling beams. It is therefore computationally more beneficial to prioritize the
refinement of the IPEs.

3.3.4. Choice of the adaptivity parameters
The appropriate values for the threshold of the energy discrepancy, 𝜅tol, and the
volume threshold to fully resolve an IPE, 𝑉tol, are case specific.

Different shapes of unit cells, beam discretization of unit cells and sizes of lattices
were observed to require different [𝜅tol, 𝑉tol] sets. The choice of 𝜅tol and 𝑉tol actually
depends on the trade­off between the accuracy of the results and the computational
saving. In this section some recommendations for tuning the adaptivity parameters
are given.

Generally, a small 𝜅tol promotes the accuracy of the simulation because the
energy discrepancy across the IPE­IPE and IPE­FRD interfaces is reduced. However,
excessively small 𝜅tol risks over refinement for the AGQC (i.e. tendency for large
FRD and small IPEs) and thus compromises the computational saving.

In a similar fashion 𝑉tol should not be too large, because this would result in the
direct transformation of large IPEs into FRD (promoting a DNS like simulation). On
the other hand, 𝑉tol should not be too small, because a too low value can result
in IPEs having more sampling beams than the underlying number of lattice beams
in the IPE volume, i.e. the computational effort would be larger for the IPE than
considering the same volume as FRD. To avoid this, one possible solution could
be to track the actual number of lattice beams inside an IPE on the fly to decide
whether or not fully resolving it. This can however be a computationally expensive
practice and may be considered in future work. A second, simpler option used in
this work, is to set the lower bound of 𝑉tol as the product between the volume of one
unit cell and the number of Gauss quadrature points in an IPE. A higher 𝑉tol than
this lower bound is used in the simulations. It is noteworthy that in the simulations
choosing a 𝑉tol close to its lower bound was observed to yield more accurate results
when compared to DNS. This can be explained by a small 𝑉tol resulting in small IPEs
around the FRDs creating a kinematically rich (but computationally efficient) zone
near the region of main interest, as well as a sound transition from FRDs to large
IPEs through IPEs with gradually increasing size further from this region.

The optimal values of 𝜅tol and 𝑉tol were chosen in this work by trial­running a
few increments in the AGQC simulation using several options of 𝜅tol and 𝑉tol and
observing the resulting range and intensity of the refinement. The improvement
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of the computational saving and the difference in accuracy can then be accessed
by comparing the overall response of different AGQC simulations (as explained in
Section 3.4.2) to choose the most promising [𝜅tol, 𝑉tol] set.

3.4. Application of adaptive GQC
In this section, five numerical examples are presented. The example of Section
3.4.1 demonstrates that the proposed refinement indicator is insensitive to uniform
deformation and rigid body rotation. The example of Section 3.4.1 illustrates the
capabilities of the adaptive generalized QC method by indenting a BCC lattice, and
a procedure for choosing [𝜅tol, 𝑉tol] is proposed. The examples of Section 3.4.3 and
3.4.4 show that the adaptive scheme is also able to treat on the fly progressive
refinement during the simulation of a BBC and a Kelvin lattice scratched by a rigid
sphere. The example of Section 3.4.5 showcases the ability of AGQC to simulate
the scratch of a large Kelvin lattice, which is computationally too demanding for
DNS.

Figure 3.8: Beam representation of a BCC unit cell. All blue beams are given the
same geometrical and material parameters and the green beams are given their
own geometrical and material parameters. Beam node (•) types are indicated as
1 − 9. Beam types are indicated as 1⃝–12⃝ .

The beam representation of the BCC unit cell we adopt is shown in Fig. 3.8.
All beams have circular cross sections. However, the diameter of the blue beams
is 0.230 mm, whereas that of the green beams is 0.185 mm. The beams are for­
mulated as elastic, geometrically non­linear co­rotational beams, with a Young’s
modulus of 140 GPa and a Poisson’s ratio of 0.3. These geometrical and material
parameters are the same as used in [41].

The beam representation of the Kelvin unit cell we consider is shown in Fig. 3.9.
Each of the 36 struts, which are of equal length, is represented using one beam finite
element. Each beam is assumed to have a circular cross section with a diameter of
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Figure 3.9: Beam representation of the Kelvin unit cell. Beam node types are
indicated as 1 – 12. Beam element types are indicated as 1⃝ – 24⃝ .

0.230 mm, a Young’s modulus of 140 GPa and a Poisson’s ratio of 0.3.
In order to apply the interpolation of the generalized QC method, the beam

nodes of a unit cell are classified into different types in the light of the periodicity.
Differentiated by the beam node type of both ends, the beam elements in a unit
cell are also categorized into several types. The classification of beam nodes and
beam elements are indicated in Fig. 3.8 for the BCC unit cell and Fig. 3.9 for the
Kelvin unit cell.

It is also worth noting that the lattice is obtained by repeating the unit cell in X,
Y, Z directions. For BCC unit cell, the stacking will not lead to overlapping struts. But
for the Kelvin unit cell, there will be overlapping struts (i.e. the beams of types 1⃝
– 12⃝). When we use this unit cell as the sampling unit cell at the Gauss quadrature
points in IPEs, the overlapping beams are assigned with half of the area and the
inertia of the beam. When a Kelvin unit cell is used as the signaling unit cell, these
overlapping beams are considered with their actual diameter for the measurement
of the elastic strain energy.

Linear tetrahedral IPEs are used in all simulations. Five GQPs per IPE are used to
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generate sampling beams, because this was observed to be the minimum number
that guarantees convergence [23].

3.4.1. Uniaxial compression of a BCC lattice
This section aims to show that the new refinement indicator does not trigger re­
finement if homogeneous deformation and/or rigid body rotation occur.

(a) Sketch of Scheme 1. (b) Render of Scheme 1.

(c) Sketch of Scheme 2. (d) Render of Scheme 2.

Figure 3.10: The interpolation schemes for the lattice under uniaxial compression.
𝑙𝑢𝑐 denotes the length of one unit cell, which equals 2 mm.
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Particularly, we study uniform compression. The studied BCC lattice is illus­
trated in Fig. 3.10, together with the FRD and IPEs. Two IPE­FRD interfaces and
four IPE­IPE interfaces interfaces can be distinguished for the model of Fig. 3.10a,
3.10b. Two IPE­FRD interfaces and six IPE­IPE interfaces are present in the model
of Fig. 3.10c, 3.10d. During the simulation the energy discrepancies at all these
interfaces are monitored.
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Figure 3.11: Force­displacement response of the lattice under uniaxial compres­
sion.

The DNS (i.e. full FRD representation of the model) and the adaptive generalized
QC method results are compared. Fig. 3.11 shows that both force­displacement
curves practically match.

Fig. 3.11 presents the evolution of the energy discrepancy at the different inter­
faces. The energy discrepancies at the IPE­IPE interfaces remain zero throughout
the loading process. The energy discrepancies of the IPE­FRD interfaces are non­
zero, yet they are relatively small. The reason is a (small) error induced by the
summation rule, i.e. the ways of constructing the governing equations in the CGDs
and the FRDs are different.

It is emphasized that because this error is inherent to the method, the energy
discrepancy remains practically the same during loading. Hence, no refinement is
triggered in case of homogeneous deformation of arbitrary magnitude (assuming
𝜅tol is set high enough). 𝜅tol = 0.2 gives satisfactory result for the considered BCC
lattice in the simulations performed in this work.

It is also worth noting that the refinement indicator is insensitive to rigid body
translations and rotations because of using 3D co­rotational beam finite elements
to represent the lattice structure, capable of handling large displacements and finite
rotations [37, 42].
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Figure 3.12: Energy discrepancies for different interfaces. Top: scheme 1
(Fig. 3.10a, 3.10b), bottom: scheme 2 (Fig. 3.10c, 3.10d).

3.4.2. Spherical indentation of a BCC lattice
In this section, the adaptive generalized QC method is applied to simulate the in­
dentation of a BCC lattice with a rigid sphere. The model consists of 36 × 36 × 36
BCC unit cells (see Fig. 3.13). The radius of the rigid sphere (𝑟sp) is 10 mm, which
is 5 times the length of one unit cell (𝑙𝑢𝑐). As indentation occurs in the center of
the model, both the lattice itself and the boundary conditions are symmetric, only
a quarter of the model was considered thanks to symmetrical boundary conditions.
As is indicated in Fig. 3.13, the beam nodes on the bottom are constrained from
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Figure 3.13: Quarter model for the indentation of a BCC lattice.

moving in the normal direction (i.e. 𝑈𝑧 = 0). For the two symmetrical faces (i.e.
the yellow and green faces in Fig. 3.13), beam nodes are constrained from normal
displacement and out­of­plane rotations (i.e. 𝑈𝑦 = 𝜃𝑥 = 𝜃𝑧 = 0 for the green face,
𝑈𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 for the yellow face). All the other DoFs of the beam nodes are
free. The final indentation depth is set to 2 mm, which equals the unit cell length.
The indentation is achieved in 100 increments.

Contact between the lattice and the rigid sphere is modeled using a node­to­
segment scheme. The penalty approach is used to incorporate the unilateral fric­
tionless contact conditions [43–47]. The penalty parameter is set to 103 N/mm in
all simulations in this contribution and not updated during the simulation.

Two non­adaptive QC simulations are considered in order to obtain more refer­
ence results than only those of the DNS. In the first non­adaptive QC simulation,
an FRD of 6×6×6 unit cells is incorporated below the rigid sphere (Fig. 3.14a). In
the second non­adaptive QC simulation, the FRD is enlarged to 12 × 12 × 12 unit
cells (Fig. 3.14b).

For the adaptive generalized QC simulations, the scheme of Fig. 3.14a is chosen
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(a) FRD 6 𝑙𝑢𝑐 × 6 𝑙𝑢𝑐 × 6 𝑙𝑢𝑐 (b) FRD 12 𝑙𝑢𝑐 × 12 𝑙𝑢𝑐 × 12 𝑙𝑢𝑐

Figure 3.14: Interpolation schemes of the lattice under indentation. 𝑙𝑢𝑐 denotes
the length of one unit cell.

as the initial configuration. The control parameters of the adaptivity are set as
follows. To study the influence of 𝜅tol, we fix 𝑉tol to be five times the volume of a
unit cell (i.e. 5 𝑙3𝑢𝑐) and set 𝜅tol to be 0.8, 0.6, 0.4, 0.2 in different simulations. To
study the influence of 𝑉tol, we fix 𝜅tol to be 0.2, 0.4 and set 𝑉tol to be 5 𝑙3𝑢𝑐, 10 𝑙3𝑢𝑐,
15 𝑙3𝑢𝑐 in successive simulations.

Fig. 3.15 plots the curves of the normal contact force versus the indentation
depth under constant 𝑉tol (Fig. 3.15a) and 𝜅tol (Fig. 3.15b and 3.15c) respectively.
As can be seen, the force – displacement curves include several kinks that are
attributed to the progressive establishment of contacts during the indentation. In
other words, the deeper we indent the rigid sphere, the more beam nodes come in
contact with the rigid sphere. In Fig. 3.15a, there are two apparent kinks: kink 1
happens because the number of contact points between the rigid sphere and the
lattice jumps from 1 to 3; kink 2 happens because the number of contact points
jumps from 4 to 6.

To illustrate the difference between the models, the initial contact stiffness was
calculated up to 0.02 mm indentation depth (Fig. 3.18). The initial stiffness is
notably different and it can be used to decide on 𝜅tol in a first few increments:
𝜅tol = 0.4 and 𝜅tol = 0.2 yield close results (hence 𝜅tol = 0.4 could be chosen for a
complete simulation).

The value of 𝜅tol has a more significant impact on the accuracy in the considered
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(a) 𝑉tol = 5 𝑙3𝑢𝑐
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(b) 𝜅tol = 0.2

Figure 3.15: The normal contact force versus the indentation depth. 𝑙𝑢𝑐 denotes
the length of one unit cell.

range compared to 𝑉tol. The smaller the values of 𝜅tol and 𝑉tol are (within the bounds
defined in Section 3.3.4), the more accurate the result is.

To visualize the refinement procedure throughout the AGQC simulations, Fig. 3.16
and Fig. 3.17 monitor three quantities denoted as KV%, SB% and 𝑉CGD%. KV% de­
notes the ratio between the number of DoFs (kinematic variables) in the QC model
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(c) 𝜅tol = 0.4

Figure 3.15: The normal contact force versus the indentation depth. 𝑙𝑢𝑐 denotes
the length of one unit cell.
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(a) 𝑉tol = 5 𝑙3𝑢𝑐

Figure 3.16: The evolution of KV% and SB% during the indentation of the BCC
lattice. 𝑙𝑢𝑐 denotes the length of one unit cell.

and the number of DoFs in the DNS. SB% denotes the ratio between the number
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(b) 𝜅tol = 0.2
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(c) 𝜅tol = 0.4

Figure 3.16: The evolution of KV% and SB% during the indentation of the BCC
lattice. 𝑙𝑢𝑐 denotes the length of one unit cell.

of sampling beams in the QC model and the number of beams in the DNS. 𝑉CGD%
denotes the volumetric fraction of CGD.

Table 3.3 provides a detailed comparison among the different modeling schemes
in terms of the model scales, the error and the required computational time. The
required computational time is the walltime of running the in­house MATLAB codes
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(a) 𝑉tol = 5 𝑙3𝑢𝑐
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(b) 𝜅tol = 0.2. The results of 𝑉tol = 10𝑙3𝑢𝑐 and 𝑉tol = 15𝑙3𝑢𝑐 are consistent.

Figure 3.17: The evolution of 𝑉FRD% during the indentation of the BCC lattice. 𝑙𝑢𝑐
denotes the length of one unit cell.

on the HPC Hydra (https://hpc.ulb.be/). The codes of both AGQC and DNS
are parallelized and are running using 12 cores. In Table 3.3, the DNS result serves
as the reference solution. The discrepancy between the results of the different
QC models and the DNS solution is quantified as the difference of external work,
which is computed from the force­displacement curves in Fig. 3.15 using the trape­
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(c) 𝜅tol = 0.4. The results of 𝑉tol = 10𝑙3𝑢𝑐 and 𝑉tol = 15𝑙3𝑢𝑐 are consistent.

Figure 3.17: The evolution of 𝑉FRD% during the indentation of the BCC lattice. 𝑙𝑢𝑐
denotes the length of one unit cell.
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Figure 3.18: Comparison of initial stiffness of the variant model schemes.

zoidal rule. Also, because progressive refinement can be observed in Fig. 3.16 and
Fig. 3.17, the average number of DoFs, the average number of sampling beams and
the average volume fraction of CGDs are shown in Table 3.3. They are obtained by
computing the mean value of the corresponding items out of the 100 increments.
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We choose to calculate the average values because the number of DoFs, the num­
ber of sampling beams and the volume fraction of CGDs can vary from increment to
increment during the progressive refinement. Note that in Table 3.3, not only the
absolute values of different items are provided, but also the percentage difference
between the absolute values and the value of DNS are listed. The refined config­
urations of the IPEs and FRDs at the end of the loading are shown in Fig. 3.19.
Fig. 3.20 plots the contour of displacement components for the DNS lattice at the
end of the loading.

The following conclusions can be derived from the above results. When a fixed
value is chosen for 𝑉tol, reducing the value of 𝜅tol can improve the accuracy. When
a fixed value is chosen for 𝜅tol, reducing the value of 𝑉tol also benefits the accuracy
in the studied range of 𝑉tol. However, this does not mean that a pair of as small as
possible values for 𝜅tol and 𝑉tol gives the optimal results. As can be seen from Table
3.3, when 𝜅tol and 𝑉tol are set to 0.2 and 5 𝑙3𝑢𝑐 respectively, excessive refinement
is obtained. As a result, almost the whole lattice is fully resolved and because of
the refinement procedure (Alg. 2), more computational time is required than that
of DNS. The values for 𝜅tol and 𝑉tol should be chosen after analyzing their effects
on the accuracy and on the computational savings.

The observed trend that smaller 𝑉tol benefits the accuracy is against the intuition
that larger 𝑉tol makes it easier for CGDs to be fully resolved and improve the accuracy
(because of the positive correlation between accuracy and the size of FRDs). In this
example as shown from Fig. 3.19g to Fig. 3.19r, it turns out to be that larger 𝑉tol
results in less transformation from CGDs to FRDs. More tests are needed to confirm
whether it is a general trend and if so the underlying reason for that. This shows
that the effect of 𝑉tol on the adjustment of CGD/FRD ratio and therefore on the
accuracy of AGQC is more complicated than expected.

For the current example, 𝑉tol was fixed first to the lower bound (i.e. 𝑉tol = 5 𝑙3𝑢𝑐)
and one increment was run using different values for 𝜅tol. Observing the initial
stiffness (see Fig. 3.18) allowed choosing 𝜅tol ≤ 0.4. Then for a fixed 𝜅tol, 𝑉tol was
increased to 10 𝑙3𝑢𝑐 and 15 𝑙3𝑢𝑐 and the first increment recomputed. Based on the
obtained initial stiffness and the intensity of the refinement (e.g. the reduction of
the number of DoFs and the number of sampling beams) the refinement parameter
set [𝜅tol, 𝑉tol] can be chosen. In the current example, [𝜅tol = 0.4, 𝑉tol = 10/15 𝑙3𝑢𝑐]
and [𝜅tol = 0.2, 𝑉tol = 10/15 𝑙3𝑢𝑐] both achieve a satisfactory balance between the
accuracy and the magnitude of model reduction. In Fig. 3.16, KV% and SB% are
below 1 which should be the upper bound of KV% and SB% since it indicates the
reduction of model scale after applying QC (this shows that 𝑉tol lower bound was
chosen appropriately).

When 𝜅tol is 0.2, tweaking the value of 𝑉tol from 5 𝑙3𝑢𝑐 to 10 𝑙3𝑢𝑐 presents a
significant improvement for the required computational time while the result is still
quite accurate. On the contrary, when 𝜅tol is 0.4, tweaking the value of 𝑉tol from 5 𝑙3𝑢𝑐
to 10 𝑙3𝑢𝑐 presents a mild improvement for the required computational time but a
mild deterioration to the accuracy. In this case, the loss may not outweigh the gain.
Also, when 𝜅tol is 0.2/0.4, setting 𝑉tol to be 10 𝑙3𝑢𝑐 and 15 𝑙3𝑢𝑐 gave identical results.
The above shows the complex interplay between the refinement parameters.
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Modeling
scheme

External
work
(N ⋅ mm)

Average
number
of DoFs

Average
number of
(sampling)
beams

Average
volume
fraction of
CGDs (%)

Computational
time
(hour)

DNS 595.66 1 269 870 279 936 0 8.4

GQC
(FRD
6 × 6 × 6)

698.75
(+17.31%)

29 322
(­97.69%)

43 344
(­84.52%) 98.15

1.1
(­86.90%)

GQC
(FRD
12 × 12 × 12)

652.09
(+9.47%)

192 240
(­84.86%)

74 592
(­73.35%) 85.19

2.0
(­76.19%)

AGQC
𝜅tol = 0.8
𝑉tol = 5 𝑙𝑢𝑐3

683.86
(+14.81%)

64 574
(­94.91%)

50 063
(­82.11%) 95.09

1.4
(­83.33%)

AGQC
𝜅tol = 0.6
𝑉tol = 5 𝑙𝑢𝑐3

648.32
(+8.84%)

213 014
(­83.23%)

90 026
(­67.84%) 83.06

3.9
(­53.57%)

AGQC
𝜅tol = 0.4
𝑉tol = 5 𝑙𝑢𝑐3

602.70
(+1.18%)

567 522
(­55.31%)

156 905
(­43.95%) 54.44

4.9
(­41.67%)

AGQC
𝜅tol = 0.4
𝑉tol = 10 𝑙𝑢𝑐3

626.19
(+5.13%)

433 552
(­65.86%)

122 004
(­56.42%) 65.68

3.5
(­58.33%)

AGQC
𝜅tol = 0.4
𝑉tol = 15 𝑙𝑢𝑐3

626.19
(+5.13%)

433 552
(­65.86%)

122 004
(­56.42%) 65.68

3.6
(­57.14%)

AGQC
𝜅tol = 0.2
𝑉tol = 5 𝑙𝑢𝑐3

595.53
(­0.02%)

1 222 217
(­3.57%)

272 259
(­2.74%) 3.48

11.2
(+33.33%)

AGQC
𝜅tol = 0.2
𝑉tol = 10 𝑙𝑢𝑐3

604.31
(+1.45%)

646 259
(­49.10%)

163 903
(­41.45%) 48.95

4.9
(­41.67%)

AGQC
𝜅tol = 0.2
𝑉tol = 15 𝑙𝑢𝑐3

604.31
(+1.45%)

646 259
(­49.10%)

163 903
(­41.45%) 48.95

5.1
(­39.29%)

Table 3.3: Comparison of model scale, accuracy and required computational time
among the different modeling schemes.
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(a) 𝜅tol = 0.8, 𝑉tol = 5 𝑙3𝑢𝑐 (b) 𝜅tol = 0.8, 𝑉tol = 5 𝑙3𝑢𝑐 (c) 𝜅tol = 0.8, 𝑉tol = 5 𝑙3𝑢𝑐

(d) 𝜅tol = 0.6, 𝑉tol = 5 𝑙3𝑢𝑐 (e) 𝜅tol = 0.6 , 𝑉tol = 5 𝑙3𝑢𝑐 (f) 𝜅tol = 0.6, 𝑉tol = 5 𝑙3𝑢𝑐

(g) 𝜅tol = 0.4, 𝑉tol = 5 𝑙3𝑢𝑐 (h) 𝜅tol = 0.4, 𝑉tol = 5 𝑙3𝑢𝑐 (i) 𝜅tol = 0.4, 𝑉tol = 5 𝑙3𝑢𝑐

Figure 3.19: Refined IPEs & FRDs for the indentation example at the last incre­
ment. Only the the tetrahedral IPEs in the CGDs are visible, together with red lines
outlining the model domain. The void in the model domain represents the FRDs.
The left column lists the front views, the middle column lists the side views, the
right column lists the back views.
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(j) 𝜅tol = 0.4,
𝑉tol = 10/15 𝑙3𝑢𝑐

(k)
𝜅tol = 0.4, 𝑉tol = 10/15 𝑙3𝑢𝑐

(l) 𝜅tol = 0.4,
𝑉tol = 10/15 𝑙3𝑢𝑐

(m) 𝜅tol = 0.2, 𝑉tol = 5 𝑙3𝑢𝑐 (n) 𝜅tol = 0.2, 𝑉tol = 5 𝑙3𝑢𝑐 (o) 𝜅tol = 0.2, 𝑉tol = 5 𝑙3𝑢𝑐

(p) 𝜅tol = 0.2,
𝑉tol = 10/15 𝑙3𝑢𝑐

(q)
𝜅tol = 0.2, 𝑉tol = 10/15 𝑙3𝑢𝑐

(r) 𝜅tol = 0.2,
𝑉tol = 10/15 𝑙3𝑢𝑐

Figure 3.19: Refined IPEs & FRDs for the indentation example at the last incre­
ment. Only the the tetrahedral IPEs in the CGDs are visible, together with red lines
outlining the model domain. The void in the model domain represents the FRDs.
The left column lists the front views, the middle column lists the side views, the
right column lists the back views.
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(a) 𝑈𝑥

(b) 𝑈𝑦

Figure 3.20: Contour of displacement components [mm] for the BCC lattice from
DNS. The maximum of 𝑈𝑧 is not exactly 2 mm because of the penalty treatment of
the contact condition.

As for this example, no significant progressive refinement was observed. The
majority of the refinement is accomplished in the first few increments (see Fig. 3.16
and 3.17). This was beneficial because running a few increments for a given pair
of 𝜅tol and 𝑉tol could be used as a trustworthy indicator for their optimal choice. In
simulations where progressive refinement is significant (Section 3.4.4 & 3.4.5), trial­
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(c) 𝑈𝑧

Figure 3.20: Contour of displacement components [mm] for the BCC lattice from
DNS. The maximum of 𝑈𝑧 is not exactly 2 mm because of the penalty treatment of
the contact condition.

running the first few increments was still observed to be able to indicate optimal
adaptivity parameters. The rapid and extensive refinement can be explained by BCC
lattices that exhibit strongly non­local deformation modes (see Fig. 3.20, where the
indentation prompts far­reaching strain fluctuation). This can be attributed to the
orientations of struts in the BCC unit cell as the diagonal struts propagate the load
along preferential direction.

Note that although the contours of 𝑈𝑥 (Fig. 3.20a) and 𝑈𝑦 (Fig. 3.20b) are
more heterogeneous than the contour of 𝑈𝑧 (Fig. 3.20c), the magnitudes of 𝑈𝑥
and 𝑈𝑦 are much smaller. Therefore, it is the distribution of 𝑈𝑧 that can be looked
upon as relevant for the refinement of QC modeling. In Fig. 3.20c, the induced
fluctuation of 𝑈𝑧 is concentrated in the upper part of the lattice with the lower part
of the lattice less significantly impacted. This is the reason why the QC models
with [𝜅tol = 0.4, 𝑉tol = 5 𝑙3𝑢𝑐] (Figs 3.19g, 3.19h, 3.19i), [𝜅tol = 0.4, 𝑉tol = 10/15 𝑙3𝑢𝑐]
(Figs 3.19j, 3.19k, 3.19l) and [𝜅tol = 0.2, 𝑉tol = 10/15 𝑙3𝑢𝑐] (Figs 3.19p, 3.19q, 3.19r)
give relatively accurate results (with the percentage error of external work below
5.13%) by only resolving the upper part of the lattice.

3.4.3. Scratching a BCC lattice with a rigid sphere
In this section, the adaptive generalized QC method is applied to simulate the
scratching of an elastic BCC lattice using a rigid sphere. Fig. 3.21 presents some
geometrical aspects of the simulation. A difference with the previous example is
that the model consists of 5×150×20 BCC unit cells. The radius of the rigid sphere
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is set be 100 mm, which is 50 times the length of a unit cell.

(a) Geometry of the scratch simulation, 2D view. The rigid sphere is moved along the
sample surface by 𝑈𝑦 = 150 𝑙𝑢𝑐.

(b) 3D view.

Figure 3.21: Problem setup for the elastic BCC lattice scratching with a rigid
sphere.

The rigid sphere is placed so that its lowest point is 0.02 mm (0.01 𝑙𝑢𝑐) below
the top face of the lattice. Symmetry boundary conditions are introduced in order
to only consider half of the lattice (Fig. 3.21). The penalty approach is used to
incorporate the frictionless contact conditions between the lattice and the sphere.
The boundary conditions are also indicated in Fig. 3.21b.

In the adaptive QC simulation, 𝑉tol is set to five times the volume of a unit cell and
𝜅tol is set to 0.7 (𝑉tol and 𝜅tol are chosen after studying their marginal improvement
like the one in Section 3.4.2). Fig. 3.22 depicts the initial configuration of the
adaptive generalized QC simulation, where an FRD of 5 𝑙𝑢𝑐 ×5 𝑙𝑢𝑐 ×5 𝑙𝑢𝑐 is initially
used close to the rigid sphere to allow smooth contact establishment. In all the
simulations, 100 increments are adopted.

Fig. 3.23 shows the curves of the vertical contact force versus the horizontal
displacement of the rigid sphere. Oscillations can be observed because the lattice
is inherently discrete. They correspond to the establishment and loss of contact
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Figure 3.22: Initial discretization for the QC simulation.
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Figure 3.23: The contact force versus the displacement of the rigid sphere for
DNS and AGQC approaches of the BCC lattice.

beam­by­beam in the FRD. Also, the force – displacement curve can be divided into
three stages, i.e. the stage of contact establishment (𝑈𝑦 ≤ 50 mm), the stage of
“stable” contact regime (50 mm ≤ 𝑈𝑦 ≤ 250 mm) and the stage of final loss of
contact (𝑈𝑦 ≥ 250 mm). Contact establishment and final loss of contact span a
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displacement range of 50 mm corresponding to the radius of the rigid sphere. The
consistency between the DNS result and AGQC results is better for the stage of final
loss of contact compared to the stage of contact establishment because almost the
whole AGQC model is fully resolved at this stage.
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Figure 3.24: Details of the refinement with 𝜅tol = 0.7 and 𝑉tol = 5 𝑙3𝑢𝑐 for the BCC
lattice.

Fig. 3.24 illustrates how KV%, SB% and 𝑉CGD% evolve as the simulation pro­
gresses. As can be seen from Fig. 3.24, during the stage of contact establishment,
the portion of the model that is fully resolved leaps to around 90%. This shows
that the establishment of contact has far­reaching influence compared to the phys­
ical size of the model. BCC unit cells indeed exhibit nonlocal response because
of the layout of diagonal struts that provide far­reaching normal force transmission
along the diagonal directions. The displacement contours (Figs. 3.25c, 3.25f, 3.25i)
illustrate the non­local deformation response of the BCC lattice.

Fig. 3.25 reveals more details of the refinement. As can be seen, the proposed
adaptive generalized QC method can successfully adapt the spatial representation
of FRDs & IPEs progressively during the simulation.

Because of the non­local deformation response of of the BCC lattice and the
relative small size of the lattice (so that DNS can be affordable), a large portion of the
lattice is fully resolved and the computational saving is not particularly impressive.
Naturally, with larger model sizes, more significant computational savings can be
expected and AGQC can allow simulating model sizes that are out of reach for DNS.
The example also highlights the importance of coarsening in the wake of refinement,
which is part of future work.

3.4.4. Scratching a Kelvin lattice with a rigid sphere
In this section, the scratching test of Section 3.4.3 is performed (same lattice size
& boundary conditions) for a lattice comprised of Kelvin unit cells to illustrate that
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(a) 𝑈𝑦 = 3 mm (b) 𝑈𝑦 = 3 mm, AGQC (c) 𝑈𝑦 = 3 mm, DNS

(d) 𝑈𝑦 = 27 mm (e) 𝑈𝑦 = 27 mm, AGQC (f) 𝑈𝑦 = 27 mm, DNS

(g) 𝑈𝑦 = 51 mm (h) 𝑈𝑦 = 51 mm, AGQC (i) 𝑈𝑦 = 51 mm, DNS

Figure 3.25: Results of the BCC lattice. Left column: the CGDs and the FRDs
(void within the red outline) as a function of the displacement (𝑈𝑦) of the rigid

sphere. Middle column: contour of displacement magnitude (i.e. √𝑈2𝑥 + 𝑈2𝑦 + 𝑈2𝑧 )
of the lattice from adaptive QC simulation. Right column: contour of displacement
magnitude of the lattice from the DNS.

the proposed adaptive generalized QC method is applicable to any shape of unit cell
as long as it is periodic. We also intend to demonstrate that for different types of
lattices, the deformation can be substantially more local and that the QC framework
therefore will result in different computational savings depending on the shape and
therefore the stress transformation of the unit cell.

All the parameters of Section 3.4.3, except for 𝜅tol and 𝑉tol, were preserved in
the adaptive QC simulation. 𝜅tol is set to 1.3 and 𝑉tol is set to 10 𝑙3𝑢𝑐 (tuned in a
preliminary step). Fig. 3.26 plots the curves of the normal contact force versus
the tangential displacement of the rigid sphere. Similar to Fig. 3.23, the force –
displacement curve of Fig. 3.26 can be divided into three stages, i.e. the stage of
contact establishment, the stage of “stable” contact regime and the stage of final
loss of contact. A big difference between Fig. 3.23 and Fig. 3.26 is that for BCC
unit cell, the transition between the stage of contact establishment and the stage
of “stable” contact regime (also between the stage of “stable” contact regime and
the stage of final loss of contact) is characterized by a drop (leap) of the contact
force. For the Kelvin unit cell, the transition is relatively smooth. This can be
explained by the more local response of Kelvin lattice attributed to the different
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layout of struts in the Kelvin unit cell. Kelvin unit cells have more diversified strut
orientations compared to the BCC unit cell and Kelvin lattice lacks long continuous
diagonal strut.
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Figure 3.26: The contact force versus the displacement of the rigid sphere for
DNS and AGQC approaches of the Kelvin lattice.

The maximum contact force of the Kelvin unit cell is almost five times higher
than that of the BCC unit cell and the magnitude of oscillation of the contact force
of the Kelvin unit cell is also larger than that of the BCC unit cell. This can be
explained by the effective density of the Kelvin unit cell being 2.08 times that of the
BCC unit cell (computing the overall volume of all struts in a unit cell corresponding
to the different unit cell topology).

Fig. 3.27 shows how KV%, SB% and 𝑉CGD% change during the simulation for
the Kelvin lattice. Compared to the BCC unit cell in Fig. 3.24, the refinement for
the Kelvin unit cell is much more progressive. This can be explained by that the
response of the Kelvin unit cell response being much more local compared to the
BCC unit cell. This also means more efficient model reduction for unit cells that
exhibit localized responses.

Fig. 3.28 plots the discretization of IPE & FRD and the displacement contours
as a function of the location of the rigid sphere. Again, the proposed adaptive
generalized QC method can successfully adapt the configuration of CGDs and FRDs
during the simulation. The displacement contour also verifies the local deformation
response of Kelvin unit cell.

Table 3.4 provides a detailed comparison between the model scale, the accu­
racy and the required computational time for the scratch tests of BCC lattice and
Kelvin lattice. For both scratch tests, the AGQC simulations take longer time to fin­
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Figure 3.27: Details of the refinement with 𝜅tol = 1.3 and 𝑉tol = 10 𝑙3𝑢𝑐 for the
Kelvin lattice.

Unit
cell
shape

Model
scheme

External
work
(N ⋅ mm)

Average
number
of
DoFs

Average
number of
(sampling)
beams

Average
volume
fraction of
CGDs (%)

Computational
time
(hour)

BCC DNS 1497.5 1 644 156 360 000 0 8.4

BCC AGQC
1503.3
(+0.39%)

1 541 864
(­6.22%)

350 581
(­2.61%) 5.63

81.3
(+867.86%)

Kelvin DNS 6690.8 1 172 400 375 400 0 30.2

Kelvin AGQC
6728.5
(+0.56%)

756 510
(­35.47%)

296 670
(­20.97%) 35.55

77.2
(+155.63%)

Table 3.4: Comparison of model scale, accuracy and required computational time
between the scratch tests of BCC lattice and Kelvin lattice.

ish compared to the DNS because of the iterations of refinement. It is noteworthy
to point out that the simulation domains were chosen small enough to allow direct
comparison with DNS, corresponding to model sizes disadvantageous for showing
the performance gain of AGQC. As the Kelvin lattice yields a more localized re­
sponse than the BCC lattice, the Kelvin lattice is progressively refined and resolved
throughout the simulation and therefore results in a more significant reduction of
model scale (Fig. 3.24 and Fig. 3.27). It is also worth noting in Table 3.4 that the
DNS simulations of the BCC lattice and the Kelvin lattice need quite different com­
putational times. This is partially because each increment of the BCC lattice takes
around three iterations to converge while each increment of the Kelvin lattice takes
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(a) 𝑈𝑦 = 63 mm (b) 𝑈𝑦 = 63 mm, AGQC (c) 𝑈𝑦 = 63 mm, DNS

(d) 𝑈𝑦 = 126 mm (e) 𝑈𝑦 = 126 mm, AGQC (f) 𝑈𝑦 = 126 mm, DNS

(g) 𝑈𝑦 = 189 mm (h) 𝑈𝑦 = 189 mm, AGQC (i) 𝑈𝑦 = 189 mm, DNS

Figure 3.28: Results of the Kelvin lattice. Left column: the IPEs and the FRDs
(void within the red outline) as a function of the displacement (𝑈𝑦) of the rigid

sphere. Middle column: contour of displacement magnitude (i.e. √𝑈2𝑥 + 𝑈2𝑦 + 𝑈2𝑧 )
of the lattice from adaptive QC simulation. Right column: contour of displacement
magnitude of the lattice from the DNS.

around five iterations to converge.

3.4.5. Scratching a large Kelvin lattice with a rigid sphere
In this section, the scratching test of Section 3.4.4 is performed for a relatively large
elastic Kelvin lattice. The lattice consists of 20×150×80 Kelvin unit cells along the
thickness, length and depth, respectively, resulting in a DNS model with 17 678 400
DoFs and 5 826 400 beam FEs. Such a simulation is no longer feasible by DNS in the
current implementation because of the resulting system size but also because of
the computational effort of the stiffness matrix assembly. This computational model
size makes AGQC preferable to DNS. The boundary conditions were the same as
in the previous scratch examples, to allow comparing results to Section 3.4.4, only
the lattice size was increased. In the model of Section 3.4.4 the contact zone
was already fully enveloped in the FRD. This, together with the local Kelvin lattice
response, implies that a similar scratch response is expected for the larger lattice
of this section.

The initial discretization of IPEs & FRD of the AGQC simulation is shown in
Fig. 3.29. 𝑉tol was set to 30 𝑙3𝑢𝑐 and 𝜅tol to 1.5 (tuned in a preliminary step). Note
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Figure 3.29: Initial discretization for the QC simulation of the Kelvin lattice. The
refinement happens in all three spatial directions in comparison to Fig. 3.22.

that the parameters used in Section 3.4.4 [𝜅tol = 1.3, 𝑉tol = 10 𝑙3𝑢𝑐] were found to
cause over­refining for this large Kelvin lattice while the force–displacement curves
of the initial few increments remained almost identical with both sets.

Fig. 3.30 plots the curve of the normal contact force versus the tangential
displacement of the rigid sphere from AGQC simulation. Note that the force–
displacement curve of DNS in Section 3.4.4 is also incorporated in Fig. 3.30 for
comparison, sharing a good match, as expected.

Fig. 3.31 illustrates the evolution of KV%, SB% and 𝑉CGD% throughout the sim­
ulation. In comparison with Fig. 3.27, more significant model reduction is achieved,
as expected, since this simulation operates in a model size domain in which QC type
of approaches are intended and proved to be useful. Fig. 3.32 plots the discretiza­
tion of IPEs & FRD as well as the corresponding displacement contour as a function
of the location of the rigid sphere. Again, successful adaptation of the IPEs & FRD
can be observed and, as opposed to the smaller example of Section 3.4.4, this
large model could also be used to tackle deeper scratch simulations with automatic
adaptivity for a model size that would be prohibitive for DNS. It is pointed out that
in Fig. 3.32 not the whole depth of the lattice is fully resolved compared to that of
Fig. 3.28.
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Figure 3.30: The normal contact force versus the tangential displacement of the
rigid sphere for the large Kelvin lattice. Only a displacement of up to 48 mm is
shown as the trend is apparent.
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Figure 3.31: Details of the refinement with 𝜅tol = 1.5 and 𝑉tol = 30 𝑙3𝑢𝑐 for the
large Kelvin lattice. Only a displacement of up to 48 mm is shown as the trend is
apparent.

3.5. Conclusions
This work presented a refinement indicator for adaptive simulations of conventional
and generalized quasicontinuum (QC) methods. The refinement indicator is gen­
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(a) 𝑈𝑦 = 3 mm (b) 𝑈𝑦 = 3 mm, AGQC

(c) 𝑈𝑦 = 27 mm (d) 𝑈𝑦 = 27 mm, AGQC

(e) 𝑈𝑦 = 48 mm (f) 𝑈𝑦 = 48 mm, AGQC

Figure 3.32: Results of the large Kelvin lattice. Left column: the IPEs and the
FRDs (void within the red outline) as a function of the displacement (𝑈𝑦) of the rigid

sphere. Middle column: contour of displacement magnitude (i.e. √𝑈2𝑥 + 𝑈2𝑦 + 𝑈2𝑧 )
of the lattice from adaptive QC simulation.

eral, because it is applicable to all types of lattices without making any assumption
about the lattice – albeit dissipation is yet to be accounted for. Our results show
that the indicator does not trigger refinement in case of homogeneous deforma­
tions, rigid body translations and rigid body rotations (the latter being the result of
the co­rotational beam formulation employed in the structural simulations).

The novel refinement indicator measures the discrepancy of the energy of sig­
naling unit cells at interpolation element (IPE) surfaces (or edges in 2D). IPE re­
finement is triggered when the difference between the energies of a signaling unit
cell reaches a user defined threshold, 𝜅tol. If the volume of a newly created IPE
falls below a user defined minimum, 𝑉tol, the IPE is transformed into a fully resolved
domain (FRD). This prompts FRDs to both evolve and be created where necessary.
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The examples revealed that the user defined threshold for [𝜅tol, 𝑉tol] have a
fundamental impact on the performance of the adaptive generalized QC method
(AGQC) and a procedure for choosing them was proposed.

The proposed AGQC was applied to study BCC lattice and Kelvin lattices. The
former showed a more non­local response while the latter exhibited a relatively lo­
cal structured response. The difference was attributed to the distinct layouts and
orientations of the struts in the unit cells. It was also shown that the local re­
sponse of unit cells favors more significant model reduction when applying AGQC.
By simulating two Kelvin lattices of different sizes, it was shown that AGQC is ca­
pable of tackling model sizes out of reach of DNS, keeping a satisfactory accuracy
by employing an automatic adaptation of the spatial discretization (IPEs in CGDs
and FRDs are updated on the fly). It was also demonstrated that the adaptivity
parameters [𝜅tol, 𝑉tol] are case specific and depend on the shape of the unit cell,
the beam discretization of the unit cell and the size of the lattice.

Future work will focus on generalizing the indicator to incorporate dissipation
(e.g. elastoplastic behavior). Since coarsening can further reduce the computa­
tional costs, a new coarsening indicator may also be formulated in the future.
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4
An adaptive multiscale

quasicontinuum approach for
mechanical simulations of

elastoplastic periodic lattices∗

In this chapter, an essential extension of the adaptive generalized quasicon­
tinuum method (AGQC) of Chapter 3 for elastoplastic lattices is presented.
The extension is based on restricting plasticity to the fully­resolved domains
(FRDs) of the AGQCmodel. This extension is achieved by raising a plastic flag
for an interpolation element (IPE) in the AGQC model if any sampling beam
of the IPE experiences plastic deformation. Once a plastic flag is active, the
corresponding IPE is directly transformed into a FRD. Illustrative numerical
examples for a scratch test of an elastoplastic a Kelvin lattice demonstrate
the capabilities of the resulting framework.

∗ In preparation for submission to Computational Mechanics.
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4.1. Introduction
Metallic periodic lattices [1] have attracted more and more attention due to the
progress in additive manufacturing and their outstanding mechanical properties
(e.g. high strength­to­weight ratio, excellent energy absorption property). Topo­
logically, a periodic lattice is organized by repeating a unit cell in three spatial di­
rections. The unit cell consists of struts with a diameter that may desirably and/or
undesirably vary in the struts’ axial direction. Undesirable diameter variations for
instance appear if selective laser melting is employed as the manufacturing process
– in that case, the diameter is larger at the struts’ extremities where the struts
are connected to each other [2]. Experiments [3, 4] have attributed the failure of
metallic periodic lattices to local nonlinear effects such as elastic and plastic buckling
of individual struts, which progress in plasticity and ultimately in failure observable
at the macroscale.

Finite element analysis (FEA) is widely applied for modeling/predicting the me­
chanical response of metallic periodic lattices. In FEA, the modeling work consists
of discretizing the struts of lattices by finite elements (FEs) and employing the ap­
propriate constitutive model for the problem at hand (e.g. elasticity, elastoplasticity
and damage) [5–13]. Particularly useful for moderate to medium sized problems
are beam FE models because of their computational efficiency, necessary for tack­
ling multi millions strut problems. The main challenge of applying full FEA to model
lattices (referred to as direct numerical simulation or DNS) remains the associated
prohibitive computational cost for engineering scale problems. This drawback is
obviously even more critical if a nonlinear structural response is considered, inde­
pendently of the solution scheme, restricting the field of application of nonlinear
DNS to small lattice volumes.

To simulate the nonlinear mechanical behavior of periodic lattices at the scale of
products, model reduction is unavoidable. Thanks to the periodicity of lattices and
the fact that localized straining/failure is most often observed, concurrent multi­
scale methods can be exploited. In particular, the quasicontinuum method (QC)
is a promising solution because QC makes use of small fully­resolved domains
(FRDs) to track localized deformation/failure, and coarse­grained domains (CGDs)
in zones undergoing more homogeneous deformation for computational efficiency.
The work of [14–17] extends classical QC (proposed for conservative atomic lat­
tices) to simulate truss lattices (i.e. structural lattices) with dissipative mechanisms
(e.g. elastoplasticity, damage). Until recently, the main bottleneck of this approach
was that only a single FE (beam, spring) could be used to represent a strut. As a
result, varying cross sections could not be represented. This limitation was miti­
gated in [18], which generalized QC (the resulting method is termed as GQC) with
a multi­field interpolation feature. Consequently, each strut can currently be more
realistically modeled using a string of beam FEs with varying diameters.

Adaptivity (i.e. adjustment of the spatial reduction of the QC method based on
the deformation) is crucial if the (local) deformation spatially evolve during simula­
tions. In Chapter 3, an adaptive version of GQC (termed as AGQC), which exploits
a novel refinement indicator to refine CGDs and transform CGDs into FRDs, was
proposed and critically assessed for elastic beams with geometrical nonlinearities.
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The capabilities and limitations of the refinement indicator for elastoplastic (geo­
metrically nonlinear) beams have however not been investigated.

The main focus of this chapter is therefore the extension of the adaptive GQC
(AGQC) framework of Chapter 3 towards elastoplastic lattice behavior. This exten­
sion significantly widens the applicability of AGQC: for metallic periodic lattices it
would for instance yield more realistic lattice response predictions. Note that this
chapter (similar to Chapter 3) only focuses on refinement of the spatial representa­
tion. In other words, coarsening, i.e. the FRD → CGD transition, is not considered
here, being part of future work.

The structure of this contribution is as follows: in Section 4.2, the key concepts
of AGQC are briefly revisited as to make this chapter self­contained. In Section 4.3,
the development of AGQC for elastoplastic lattices is presented; the justification for
employing a different elastoplastic beam FE than in Chapter 3 is also provided (al­
though the proposed AGQC remains independent of the underlying FE formulation).
In Section 4.4, a numerical example is used to assess the proposed AGQC scheme.
This is followed by conclusions drawn in Section 4.5, together with an outlook on
future work.

4.2. Summary of AGQC concepts
This section gives a brief recap of the generalized quasicontinuum method (GQC).
A periodic lattice structure of which the struts are discretized using beam FEs is
considered and it is subjected to external forces. Let u and fext denote the column
matrices storing the kinematic variables of beam nodes and the corresponding ex­
ternal forces, respectively. Let z denote the column matrix that stores the plastic
strain history variables of all beam FEs. The direct numerical simulation (DNS) of
the lattice is performed by solving the following equations using Newton’s method:

𝛿u𝑇(fint(u∗,z∗) +K(u∗,z∗)𝑑u) = 𝛿u𝑇fext (4.1)

where u∗ denotes an estimate of u, 𝑑u represents the correction of u. z∗ denotes
an estimation of z. 𝑑u is fed into the plasticity theory to generate an correction of
z. fint(u,z) denotes the column of internal forces and is obtained as:

fint(u,z) =
𝑚

∑
𝑖=1
∫
𝑉𝑖
𝜎(u,z)𝑑𝑉 (4.2)

with 𝑚 representing the total number of beam FEs in the lattice. 𝑉𝑖 and 𝜎 are the
volume and stress tensor of beam 𝑖, respectively. K denotes the tangential stiffness
matrix and is obtained as:

K(u,z) =
𝑚

∑
𝑖=1
∫
𝑉𝑖

𝜕𝜎(u,z)
𝜕u 𝑑𝑉 (4.3)

The DNS is computationally too expensive to model large periodic lattices be­
cause (1) the large number of DoFs involved; (2) the large amount of beam FEs
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which need to be visited to construct Eq. (4.2) and Eq. (4.3) in Newton’s incremental­
iterative procedure. The GQC proposed in Chapter 2 is a promising alternative to
DNS by mitigating the computational cost and maintaining a satisfactory accuracy.
GQC performs model reduction in two steps, i.e. interpolation and summation.

Interpolation divides the lattice into fully­resolved domains (FRDs) and coarse­
grained domains (CGDs). In the FRDs, all the kinematic variables of the beam nodes
(i.e. displacements and rotations) are preserved. In the CGDs, a mesh of interpo­
lation elements (IPEs) is introduced so that only a few representative kinematic
variables are allocated to the IPE nodes. The kinematic variables of all beam nodes
within an IPE are interpolated from their representative counterparts at the IPE
nodes using FE shape functions. Moreover, the beam nodes are categorized into
different groups based on periodicity. The IPE nodes store a set of representative
kinematic variables for each type of beam node so as to interpolate the kinematic
variables of corresponding type of beam node independently. Fig. 4.1 represents a
lattice with a × shaped unit cell with a GQC spatial representation. After interpola­
tion, the preserved kinematic variables (i.e. the displacements and rotations of the
beam nodes in the FRDs and the representative displacements and rotations of all
node types at the IPE nodes) are stored in column matrix ur, which can be related
to u via interpolation matrix N through

u = Nur. (4.4)

After interpolation, Eq. (4.1) is revised as

𝛿u𝑇r (N𝑇fint(Nu∗r ,z∗) + N𝑇K(Nu∗r ,z∗)N𝑑ur) = 𝛿u𝑇r N𝑇fext (4.5)

with u∗r denoting an estimate of ur and 𝑑ur the correction of ur.
In summation, rather than visiting all beam FEs in the lattice according to

Eqs. (4.2) and (4.3), only a selection of beam FEs are sampled to approximate
fint and K:

f̄int(us,zs) =∑
𝑖∈𝑆
𝜔𝑖∫

𝑉𝑖
𝜎(us,zs)𝑑𝑉 (4.6)

K̄(us,zs) =∑
𝑖∈𝑆
𝜔𝑖∫

𝑉𝑖

𝜕𝜎(us,zs)
𝜕us

𝑑𝑉 (4.7)

where 𝑆 denotes the set of sampling beams, 𝜔𝑖 denotes the weight of sampling
beam 𝑖, and us the column matrix that stores the kinematic variables of the nodes
of the sampling beams. zs represents the column matrix that stores the plastic
strain history variables of all sampling beam FEs. Note that us can be interpolated
from ur using interpolation matrix Ns,

us = Nsur. (4.8)

The governing equations of Eq. (4.5) can then be further revised as

𝛿u𝑇r (N𝑇s f̄int(Nsu∗r ,z∗s) + N𝑇s K̄(Nsu∗r ,z∗s)Ns𝑑ur) = 𝛿u𝑇r N𝑇fext. (4.9)
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Figure 4.1: Illustration of key concepts of adaptive GQC method.

The reader is referred to Section 2.2.2 for details on how the sampling beams and
their weights are selected in this thesis.

In order to trace the evolution of localized deformation/failure, an adaptive GQC
(AGQC) framework was proposed in Chapter 3 for elastic periodic lattices. Elastic
AGQC is based on monitoring a sum of energy discrepancies, 𝜅, at IPE­IPE interfaces
and IPE­FRD interfaces using signalling unit cells (See Fig. 4.1). The calculation
of 𝜅 is detailed in Section 3.3 and is not repeated here for the sake of brevity.
Within each increment, whenever the GQCmodel is equilibrated by solving Eq. (4.9),
𝜅 is evaluated for all IPE­IPE/IPE­FRD interfaces and compared to user defined
threshold 𝜅tol. If the 𝜅 of an IPE­IPE interface exceeds 𝜅tol, the associated IPEs
are refined into smaller IPEs. If the volume of the refined IPEs are smaller than
user defined volume threshold 𝑉tol, the associated IPEs are transformed into FRDs
instead. If the 𝜅 of an IPE­FRD interface exceeds 𝜅tol, the associated IPEs are
directly transformed into FRDs.

Either the refinement of IPEs or the transformation of IPEs into FRDs prompts
the governing equations of Eq. (4.9) to be solved again for the current increment
with the new GQC spatial representation in a so­called re­equilibration step.

4.3. Adaptive GQC scheme for elastoplastic periodic
cellular lattices

This section upgrades the adaptive generalized quasicontinuum method (AGQC) of
Chapter 3 so that elastoplastic behavior can be considered in lattices. The pre­
sented work thus combines the work in Chapter 2 (generalized QC for elastoplastic
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behavior) and Chapter 3 (adaptive generalized QC for elastic behavior). The adap­
tive scheme is based on the novel refinement indicator of Chapter 3, complemented
by a plastic flag. Note that the proposed AGQC scheme is of course independent
from the used beam FE formulation (technical details may differ for the detection
of plastic strain).

Each lattice strut is modeled using a string of elastoplastic 3D co­rotational beam
FEs, for which the plasticity is implemented here through cross sectional discretiza­
tion and a multi­axial yield surface [19]. Employing a different beam FE from Chap­
ter 2 is motivated by its superior convergence rate compared to the embedded
plastic hinge model of Chapter 2. For the embedded plastic hinge FE a consis­
tent stiffness relationship cannot be formulated for general loading. The reason for
this is that in the local coordinate frame, the nodal rotation of the 3D co­rotational
framework is represented using a rotation vector. On the other hand, the embed­
ded plastic hinge model requires the angular rotations as variables to evaluate the
corresponding internal forces. Instead of deriving a rigorous transformation be­
tween the rotation vector and the angular rotations they are approximated to be
equal. Such an approximation breaks the consistency of the tangential stiffness
relationship, which is detrimental for the convergence rate (generally observed to
be linear).

On the contrary, the new beam FE implementation [19] ensures a quadratic
convergence rate in the implicit Newton scheme used in this work. The beam FE
is assumed with a constant circular cross section. To avoid shear locking for the
Timoshenko beam FE, integration points are seeded in only one cross section (i.e.
the central cross section). 100 quadrature points are used in the circular beam
cross section at which the elastoplastic stress update takes place (See Fig. 4.2).
For more details about the Gauss quadrature rules in a circular domain, readers
are referred to [20]. The 3D co­rotational framework elaborated in Section 2.3.1
decouples the overall beam motion (i.e. the nodal displacements and rotations at
the beam ends in the global coordinate frame) into a rigid body movement (i.e. the
displacements and rotations of the local coordinate frame) and a pure deformation
(i.e. the displacements and rotations at the beam ends in the local coordinate
frame). The displacements and rotations at the beam ends in the local coordinate
frame are then used to interpolate the normal and shear strains at each integration
points of the central cross section. Afterwards, a backward Euler scheme is used
to enforce the incremental plastic flow and consistency condition with a von Mises’s
yield criterion. Once the stress components and the tangential material stiffness of
each integration point are obtained from the return mapping procedure, they are
integrated to generate the internal forces and the consistent stiffness relationship.
For more details of the formulation, readers are referred to [19].

4.3.1. Specific features of elastoplastic AGQC
It is emphasized that in AGQC, new sampling beams emerge when the spatial rep­
resentation of GQC is adjusted in the refinement process. The newly introduced
sampling beams emerge from (1) the sampling unit cells of the refined IPEs and
(2) the IPEs that are transformed into FRDs.
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Figure 4.2: The integration scheme of the beam finite element. X1, X2, X3 span
the local coordinate frame. Along the beam length direction, only the middle cross
section is used for integration. In the central cross section, 100 Gauss quadrature
points (×) are adopted.

Evaluating the internal forces and the tangential stiffness for these new sampling
beams is required to solve the governing equations in Eq. (4.9). In case of elasticity,
the evaluation of the internal forces and the tangential stiffness is independent of
the deformation history. Consequently, in the elastic AGQC of Chapter 3, retrieving
the internal forces and the tangential stiffness of new sampling beams is simple and
performed in two steps: interpolating their kinematic variables (i.e. the initial guess)
and re­equilibrating the unbalanced structural system by performing the structural
computation of the current increment again with the updated spatial discretization.
It is useful to note that this re­equilibration step was observed to always converge
thanks to the history­independent behavior allowing for easy stress redistribution in
the lattice. In case of elastoplasticity, the evaluation of the internal forces and the
tangential stiffness is dependent on the cumulative plastic strain history variables
that can only grow to remain physically acceptable.

Recall that the new sampling beams of AGQC come from either newly refined
interpolation elements (IPEs) in CGDs or IPEs in CGDs that are transformed into
FRDs. In both cases, the new sampling beams emerge from CGDs. This prompts
two approaches to tackle plasticity in AGQC. The first is to allow plasticity in CGDs,
in which case a carefully designed transfer of history variables is necessary. The
second is to restrict plasticity to FRDs only, for which the transfer of history variables
is circumvented and new sampling beams emerging from CGDs are presumed to
be elastic before the re­equilibration step.

To assess the first approach, i.e. to allow plasticity in CGDs, uniaxial com­
pression of an elastoplastic BCC lattice is considered first. Fig. 4.3 shows both
the DNS and GQC results of a 12 × 12 × 12 BCC lattice (comprising a volume of
24×24×24mm3) under unconstrained uni­axial compression (see Section 3.3.4 for
the geometrical configuration and the cross sections of BCC unit cell). The nominal
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strain in the direction of compression in this example amounts to 20%, defined as
𝜖𝑧 = 𝑈𝑧/𝐿𝑧 × 100%. Beyond this strain local buckling in the CGD sampling unit
cell would occur and at much. At large compression strains (e.g. above 50%),
the lattice enters the stage of densification where the inter­strut contact plays an
important role. In that case the legitimacy of the current model is questionable be­
cause of the assumption of periodicity and smooth, non­localized strains supposed
in the CGDs. The material parameters in all simulations in this chapter are: Young’s
modulus of 97 GPa, Poisson’s ratio of 0.3, an initial yield stress of 325 MPa and a
hardening modulus of 9.7 GPa. Linear hardening and the von Mises’s yield criterion
are employed.

The compression example in Fig. 4.3 shows that GQC can accurately capture
the force–displacement curve (the defection at the displacement of 2.88 mm is to
be investigated in future work), but fails to capture the deformation localization in
Fig. 4.3b if plasticity in CGD is allowed. In further efforts aiming at plastic CGD­
to­FRD transformation through transferring plastic strain history variables (one per
cross sectional quadrature point) between sampling beams, the above led to sig­
nificant convergence issues. It is believed that the lack of convergence is related to
a failure of redistributing stresses from the homogeneously deformed plastic CGD
pattern to an FRD pattern. Such a redistribution is expected to show strain lo­
calization at CGD­to­FRD transformation, while respecting the requirement of the
monotonous increase of the accumulated plastic strain history variable. For these
reasons, the framework of this chapter forbids the development of plasticity in
CGDs. An extension of the framework in which plasticity can develop in CGDs may
be part of future work.

Plasticity is thus restricted in the following to FRDs only. Because plasticity
should more often than not be treated as a localized phenomenon in metal lattices
(see strain localization in Fig. 4.3b), this option corresponds well to the fundamental
idea of classical QC utilizing FRDs to trace localized deformation/failure. Under the
assumption of restricting plasticity to FRDs, the adaptive scheme of Chapter 3 (see
Section 3.3.3) was revised as Alg. 3 to account for elastoplasticity. The glossary
of the symbols that are involved in the pseudo codes of Alg. 3 and its subroutine
(i.e. Alg. 4) is in Table 3.2. The same definitions of the refinement indicator 𝜅 and
the refinement of spatial discretization (IPE → smaller IPE; IPE → FRD) are used as
given in Section 3.3.1 and 3.3.2 and are not recalled here for the sake of brevity.

Alg. 3 starts from an initial division of FRDs (i.e. ΩFRD0 , does not exist when no
FRD is assigned) and CGDs (i.e. ΩCGD0 ), the initial mesh of IPEs in the CGDs (i.e.
𝜏0) and the initial selection of sampling beams (i.e. 𝑆0). The initial configuration is
undeformed and stress­free.

For a given increment, 𝑡𝑘, the GQC model of the last converged increment,
𝑡𝑘−1, is preserved as the starting point of 𝑡𝑘 (i.e. ΩFRD𝑘 ⇐ ΩFRD𝑘−1, ΩCGD𝑘 ⇐ ΩCGD𝑘−1,
𝜏𝑘 ⇐ 𝜏𝑘−1 and 𝑆𝑘 ⇐ 𝑆𝑘−1). Moreover, the kinematic variables and internal forces of
the last converged increment (i.e. u𝑘−1r and f𝑘−1int ) serve as the initial guesses for
their counterparts at 𝑡𝑘. The boundary conditions (BCs) at 𝑡𝑘 (i.e. 𝜕ΩFRD𝑘 for BCs
on ΩFRD𝑘 , 𝜕ΩCGD𝑘 for BCs on ΩCGD𝑘 ) are also imposed. The obtained GQC model is
then solved for the equilibrium equations in Eq. (4.9).
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(a) Force–displacement curve.

(b) Diagonal cut contour plot of averaged
plastic strain of beams in DNS with sample
compression strain of 0.2.

(c) Contour of averaged plastic strain of
sampling beams in GQC with sample com­
pression strain of 0.2.

Figure 4.3: Unconstrained vertical compression of a BCC lattice modeled using
elastoplastic 3D co­rotational beam FEs.

Once the GQC model is in equilibrium after solving Eq. (4.9), it goes through
three loops successively, i.e. Loop 1 (lines 6–10 in Alg. 3), Loop 2 (lines 11–15 in
Alg. 3) and Loop 3 (lines 16–20 in Alg. 3). The three loops are identical, except for
the different criteria that are applied to determine the target IPEs for refinement
and a minor difference of refinement strategies. Loop 1 checks the sampling beams
of all IPEs and targets the IPEs with plastified sampling beams for full resolution:
IPEs flagged for plasticity are not refined but always transformed into FRDs. Loop
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2 on the other hand checks the energy discrepancy, 𝜅 for IPE­IPE interfaces and
flags the IPEs with 𝜅 > 𝜅tol for refinement: IPEs to smaller IPEs and the refined
IPEs with smaller volumes than 𝑉tol are transformed into FRDs. Loop 3 checks the
energy discrepancy, 𝜅 for IPE­FRD interfaces and flags the IPEs with 𝜅 > 𝜅tol for
full resolution.

Either the full resolution (Loop 1 & 3) or the IPE refinement (Loop 2) generates
a refined GQC model with new division of FRDs (ΩFRD𝑘∗ ) and CGDs (ΩCGD𝑘∗ ), a new
mesh of IPEs in CGDs (𝜏𝑘∗) and a new selection of sampling beams (𝑆𝑘∗). This
also creates new kinematic variables (u𝑘∗r ) and corresponding internal forces (f𝑘

∗
int).

Note that such a refined but not yet equilibrated GQC model at 𝑡𝑘 is characterized by
subscript/superscript 𝑘∗ in order to distinguish it from the GQC model in equilibrium.

The refined GQC model is generally no longer in equilibrium, and structural
equilibrium needs to be found for the new spatial discretization by solving again
Eq. (4.9). First, the initial guesses of u𝑘∗r and f𝑘∗int are required. An interpolation
matrix Φ𝑘−1𝑘∗ between u𝑘−1r and u𝑘∗r is constructed (in the same manner as con­
structing N in Eq. (4.4)) so that the initial guess of u𝑘∗r is set to Φ𝑘−1𝑘∗ u𝑘−1r . As
for the initial guess of f𝑘∗int, the history variables of plastic sampling beams in 𝑆

𝑘−1

are transferred to their counterparts in 𝑆𝑘∗ . It is worth noting that since only re­
finement is considered and plasticity is restricted to FRDs, the FRDs monotonically
increase and all sampling beams of FRDs in 𝑆𝑘−1 are also sampling beams in 𝑆𝑘∗ ,
which enables a straightforward transfer of beam history variables (see Fig. 4.4).
Afterwards, the transferred history variables and the initial guess of u𝑘∗r are put into
Eq. (4.6) to generate an initial guess for f𝑘∗int.

In the following section, the proposed adaptive scheme will be applied to model
the elastoplastic response of periodic lattices.

Figure 4.4: Illustration of transforming IPEs with plastic sampling beams into
FRDs.

4.4. Elastoplastic response of large lattice structure
The upgraded AGQC is applied to simulate the elastoplastic scratching of a Kelvin
lattice using a rigid sphere (the geometrical configuration of the Kelvin unit cell is
the same as in Section 3.4). The categorizations of node types (for the purpose
of applying GQC multi­field interpolation) and of beam types (for the purpose of
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Algorithm 3: Adaptive scheme. The difference with Alg. 2 of Chapter 3
is indicated in blue.

1 Initialization prior to simulation: configure GQC model ( ΩFRD0 , ΩCGD0 , 𝜏0,
𝑆0), u0r = 0, f0int = 0.

2 for k = 1,2,…,n do
3 Inherit GQC model (ΩFRD𝑘 ⇐ ΩFRD𝑘−1, ΩCGD𝑘 ⇐ ΩCGD𝑘−1, 𝜏𝑘 ⇐ 𝜏𝑘−1, 𝑆𝑘 ⇐ 𝑆𝑘−1),

set initial guesses u𝑘r ⇐ u𝑘−1r , f𝑘int ⇐ f𝑘−1int .
4 Apply boundary conditions at 𝑡𝑘.
5 Equilibrate the GQC model by solving Eq. (4.9).
6 Identify the IPEs with plastic sampling beams and collect them in set

𝜏resolve.
7 while 𝜏resolve ≠ ∅ do
8 Fully resolve IPEs in 𝜏resolve.
9 Invoke subroutine in Alg. 4.

10 Identify the IPEs with plastic sampling beams and collect them in
set 𝜏resolve.

11 Evaluate energy discrepancy 𝜅 for IPE­IPE interfaces in 𝜏k, identify the
IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏refine.

12 while 𝜏refine ≠ ∅ do
13 Invoke refinement algorithm in Alg. 1 (see Section 3.3.2).
14 Invoke subroutine in Alg. 4.
15 Evaluate energy discrepancy 𝜅 for IPE­IPE interfaces in 𝜏k, identify

the IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏refine.
16 Evaluate energy discrepancy 𝜅 for IPE­FRD interfaces in 𝜏k, identify the

IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏resolve.
17 while 𝜏resolve ≠ ∅ do
18 Fully resolve IPEs in 𝜏resolve.
19 Invoke subroutine in Alg. 4.
20 Evaluate energy discrepancy 𝜅 for IPE­FRD interfaces in 𝜏k, identify

the IPEs with 𝜅 > 𝜅tol and collect them in set 𝜏resolve.
21 Store output data of current time step: ΩFRD𝑘 , ΩCGD𝑘 , 𝜏𝑘, 𝑆𝑘, u𝑘r , f𝑘int.

evaluating the refinement indicator 𝜅) in the Kelvin unit cell are shown in Fig. 3.9
and are not repeated here for the sake of brevity. Fig. 4.5 depicts the setup of the
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Algorithm 4: Subroutine of structural re­equilibration.

Input: Refined by yet equilibrated GQC model (ΩFRD𝑘∗ , ΩCGD𝑘∗ , 𝜏𝑘∗ , 𝑆𝑘
∗
, u𝑘∗r ,

f𝑘∗int).
Input: GQC model of last converged increment (ΩFRD𝑘−1, ΩCGD𝑘−1, 𝜏𝑘−1, 𝑆𝑘−1,

u𝑘−1r , f𝑘−1int ).
Output: Equilibrated GQC model (ΩFRD𝑘 , ΩCGD𝑘 , 𝜏𝑘, 𝑆𝑘, u𝑘r , f𝑘int).

1 Compute interpolation matrix Φ𝑘−1𝑘∗ between u𝑘∗r and u𝑘−1r . Set the initial
guess of u𝑘∗r to be Φ𝑘−1𝑘∗ u𝑘−1r .

2 Transfer history variables of plastic sampling beams in 𝑆k­1 to their
counterparts in 𝑆k.

3 Set the initial guess for f𝑘∗int by solving Eq. (4.6).
4 Equilibrate the GQC model by solving Eq. (4.9).

scratch simulation. The depth of scratch (i.e. the penetration between the lowest
point of the sphere and the surface of the lattice) is set to 0.1 𝑙uc (𝑙uc denotes the
length of a unit cell, 𝑙uc = 2 mm). Only half of the lattice is considered thanks to the
mirror plane symmetry. The contact between the rigid sphere and the beam FEs is
frictionless and enforced using the penalty approach with a penalty stiffness of 103
N/mm. The (horizontal) displacement increment of the rigid sphere is set to 1.5 𝑙uc
and an automatic refinement of the increment is performed in case of divergence.
The DNS includes 738 800 beam FEs and 2 272 800 DoFs and was not performed
due to the required resources.

The initial setup of the AGQC model is shown in Fig. 4.6. An FRD of 10×10×10
unit cells is located near the initial position of the rigid sphere, because contact
is implemented between the sphere and the beams and not between the sphere
and the IPEs. The rest of the domain is a CGD with a structured mesh of linear
tetrahedral IPEs. 5 Gauss quadrature points (i.e. sampling unit cells) are adopted
in each IPE.

4.4.1. Choice of control parameters of AGQC
Two control parameters (𝜅tol and 𝑉tol) need to be chosen for the AGQC simulation.
𝜅tol is the threshold of energy discrepancy for IPE­IPE and IPE­FRD interfaces. 𝑉tol
is the threshold below which an IPE is full resolved. Following the conclusion of
Chapter 3 that a 𝑉tol closer to its lower bound (5𝑙3uc in this case) yields more accurate
results, and while ensuring that the IPEs (with volumes of 166𝑙3uc in the initial mesh
of Fig. 4.6) can be moderately refined before being fully resolved, 𝑉tol is set to 10𝑙3uc
in this study.

The procedure for choosing an appropriate value for 𝜅tol is presented in the
following. Specifically, to choose an appropriate 𝜅tol, the 1st increment (during
which contact is established) of the AGQC model of Fig. 4.6 is computed. The
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(a) Geometry of the scratch simulation, 2D view.

(b) 3D view.

Figure 4.5: Setup for scratching the Kelvin lattice using a rigid sphere.

Figure 4.6: Initial configuration of the AGQC model for the elastoplastic scratch
test. The distribution of sampling unit cells is also shown in blue.
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Figure 4.7: Distribution of energy discrepancy 𝜅 for IPE­IPE and IPE­FRD inter­
faces after the 1st increment of the AGQC model of Fig. 4.6. It is used to determine
an appropriate value for 𝜅tol and predict corresponding extent of refinement.

resulting energy discrepancies of the IPE­IPE and IPE­FRD interfaces are presented
in Fig. 4.7. It shows the range of the energy discrepancy at the beginning of the
simulation. Three candidate values for 𝜅tol (0.15, 0.25 and 0.35) are chosen, which
are expected to trigger different extents of refinement.

The CGDs and FRDs after refinement in the first increment are shown in Fig. 4.8.
As expected, a small value for 𝜅tol value yields an increase of refinement. The overall
time elapses of computing the 1st increment (on a server with a 18 cores Intel Xeon
Gold 6140 @ 2.3 GHz CPU and 128 GB Kingston DDR4 @ 2666 MHz memory) are
3 224 seconds for 𝜅tol = 0.35, 6 043 seconds for 𝜅tol = 0.25 and 8 768 seconds for
𝜅tol = 0.15.

Fig. 4.9 shows the percentage difference of 𝐹𝑧 (relative to 𝐹𝑧 of 𝜅tol = 0.15), of
the DoFs (relative to the DNS), of the sampling beams (relative to the DNS) and
of the CGDs’ volume (relative to the entire volume) as function of 𝜅tol for the 1st
increment. 𝐹𝑧 denotes the vertical contact force applied by the rigid sphere and
is used as an indicator of the overall structural response. Smaller values for 𝜅tol
yield more accurate simulations, but compromise the model reduction as it (most
notably) increases the sizes of the FRDs.

As the vertical contact force hardly changes for the considered values for 𝜅tol,
0.35 is chosen as the optimal value for 𝜅tol to maximise the computational efficiency.
However, since the DNS result is not available as reference, 𝜅tol = 0.25 is also
considered in order to serve as reference.
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(a) 𝜅tol = 0.35, 𝑉tol = 10 𝑙3uc.

(b) 𝜅tol = 0.25, 𝑉tol = 10 𝑙3uc.

(c) 𝜅tol = 0.15, 𝑉tol = 10 𝑙3uc.

Figure 4.8: IPEs after the 1st increment for different values for 𝜅tol. Voids represent
FRDs.

4.4.2. Computational results of the elastoplastic scratch
The evolution of the IPEs and FRDs, of the deformation and of the plastic strains
computed for the scratch test are presented in Fig. 4.10, clearly showing that the
scratching induces strain localization just below the rigid sphere. The remaining
(plastic) localization only reaches a few unit cells deep.



4

118 4. Adaptive generalized QC for elastoplastic lattices

0.15 0.2 0.25 0.3 0.35

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

60

70

80

90

100

Figure 4.9: Percentage difference of: 𝐹𝑧 (relative to 𝐹𝑧 of 𝜅tol = 0.15), of the DoFs
(relative to the DNS), of the sampling beams (relative to the DNS) and of the CGDs’
volume (relative to the entire volume) as functions of 𝜅tol after refinement of the
1st increment.

The evolving IPEs and FRDs in the left column of Fig.4.10 clearly show the
capacity of the enhanced AGQC to adapt the GQC model in the elastoplastic domain.
The reasons for refinement are analyzed in detail later.

The vertical contact force versus the (horizontal) displacement of the rigid sphere
is presented in Fig. 4.11, together with the number of active contact points. A
comparison of the vertical and horizontal contact forces is shown in Fig. 4.12. In
Fig. 4.11, the number of active contact points fluctuates. This is caused by the
discrete nature of the lattice as beams come in and lose contact with the sphere
during the sphere’s horizontal movement. Note that the results for 𝜅tol = 0.35 and
𝜅tol = 0.25 are quite similar. This shows that 𝜅tol = 0.35 already leads to sufficiently
accurate results. Synchronized periodic spikes can be observed for both 𝐹𝑦 and 𝐹𝑧 in
Fig. 4.12. Although it is believed that the periodicity of the force response is caused
by the periodicity of the lattice, a more thorough investigation will take place in the
near future. Note furthermore that 𝐹𝑧 is not presented in Fig. 4.12 as it is zero due
to mirror plane symmetry.

Fig. 4.13 characterizes the progressive refinement of AGQC using the percentage
of the DoFs, of the sampling beams and of the volume of the CGD. Throughout the
scratch, more than 70% of the lattice is coarse grained. The number of sampling
beams remains less than 50% of the DNS and the number of DoFs never exceeds
30% of the DNS. This constitutes a significant computational saving. The AGQC
model for 𝜅tol = 0.25 is more refined compared to that of 𝜅tol = 0.35 because the
percentages of the DoFs, of the sampling beams and of the volume of the CGDs are
larger for 𝜅tol = 0.25. As can be seen, almost identical force–displacement curves
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(a) 𝑈𝑦 = 15 mm (b) 𝑈𝑦 = 15 mm (c) 𝑈𝑦 = 15 mm

(d) 𝑈𝑦 = 75 mm (e) 𝑈𝑦 = 75 mm (f) 𝑈𝑦 = 75 mm

(g) 𝑈𝑦 = 135 mm (h) 𝑈𝑦 = 135 mm (i) 𝑈𝑦 = 135 mm

Figure 4.10: Results of AGQC simulation for 𝜅tol = 0.35 and 𝑉tol = 10 𝑙3uc as a
function of the displacement of the rigid sphere (𝑈𝑦). Left column: IPEs. Central

column: displacement magnitude (i.e. √𝑈2𝑥 + 𝑈2𝑦 + 𝑈2𝑧 ) of sampling beams. The
color bar ranges from 0 mm (blue) to 1.8 mm (red). Right column: average plastic
strains in the sampling beams. The color bar ranges from 0 (blue) to 0.019 (red).

are obtained for 𝜅tol = 0.35 and 𝜅tol = 0.25, yet 𝜅tol = 0.25 leads to a substantially
larger FRD volume fraction and hence, less computational savings. This confirms
the validity of the aforementioned strategy when choosing the optimal value for 𝜅tol.
Fig. 4.14 shows the number of refinement iterations per increment as the simulation
proceeds. The total number of refinement iterations per increment is broken down
into refinement iterations that occur in Loop 1 (refinement to forbid plasticity occur­
ring in IPEs), Loop 2 (refinement because 𝜅tol is exceeded at IPE­IPE interfaces) and
Loop 3 (refinement because 𝜅tol is exceeded at IPE­FRD interfaces), respectively.
Fig. 4.14 shows that Loop 1 is a necessary enhancement to the refinement criterion
of Chapter 3 if plasticity is to be restricted to FRDs. The AGQC of Chapter 3 alone
was also applied to the scratch test but failed to converge. As can be seen from
Fig. 4.14b, the refinement because 𝜅tol is exceeded at IPE­IPE interfaces occurs
more often than refinement because 𝜅tol is exceeded at IPE­FRD interfaces. The
latter, however, seems to occur more regularly. The refinement triggered by plas­
ticity occurring in IPEs starts when the displacement of the rigid sphere reaches 20
mm and occurs regularly afterwards. The overall computational time of this exam­
ple is approximately 360 hours with an in­house parallelized MATLAB codes running
on 12 cores on the Hydra cluster (https://hpc.vub.be/hydra.php).

This computational example shows that the enhanced AGQC method is a pow­
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Figure 4.11: The vertical contact force 𝐹𝑧 and the number of contact points as a
function of the displacement of the rigid sphere. Only a displacement of up to 81
mm is considered for 𝜅tol = 0.25.
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Figure 4.12: The vertical and horizontal contact forces as a function of the dis­
placement of the rigid sphere for 𝜅tol = 0.35, 𝑉tol = 10𝑙3uc.

erful numerical tool to study the elastoplastic behavior of large structural lattices
as it reduces the model size in terms of the number of DoFs and the number of
sampling beams. More computational savings will occur for models in which lo­
calization occurs in smaller regions relative to the entire modelling domain. Vice
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Figure 4.13: Percentages of the DoFs (relative to the DNS), of the sampling beams
(relative to the DNS) and of the CGDs’ volume (relative to the entire volume) as a
function of the displacement of the rigid sphere. Only a displacement of up to 81
mm is considered for 𝜅tol = 0.25.

versa, if localization (e.g. long shear bands) appears throughout larger parts of the
domain, less savings can be expected.

4.5. Conclusion and outlook
This work presents an essential improvement for the elastic adaptive generalized
quasicontinuum method (AGQC) of Chapter 3 so that AGQC can account for elasto­
plastic periodic lattices with plasticity restricted to FRDs. To implement this improve­
ment, all the sampling beams of interpolation elements (IPEs) in an AGQC model
are monitored for plastic deformation. If any sampling beam of an IPE undergoes
plastic deformation, the IPE is transformed into an FRD. Such an arrangement sim­
plifies the transfer of history variables of sampling beams between the unrefined
and refined GQC models. Because the history variables may only be non­zero in
sampling beams of FRDs and the size of the FRDs monotonically increase, a plastic
sampling beam of an FRD in the unrefined GQC model remains a sampling beam in
the FRDs in the refined GQC model, for which the history variable can be directly
inherited.

The enhanced AGQC was applied to study the behavior of an elastoplastic Kelvin
lattice when it is scratched by a rigid sphere on the surface. It was shown that
the lattice behavior can be simulated at a lower computational effort than direct
numerical simulation (DNS) thanks to adaptive refinement. A detailed explanation
of how to choose appropriate values for the control parameters (i.e. 𝜅tol and 𝑉tol)
of AGQC was also presented.
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(a) The vertical contact force 𝐹𝑧 and the number of refinement iterations as a function of
the displacement of the rigid sphere. Each circle and bar corresponds to one increment.
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(b) Breaking down the number of refinement iterations according to the three loops in
Alg. 3.

Figure 4.14: Refinement iterations in AGQC simulation of the scratch test using
{𝜅tol = 0.35, 𝑉tol = 10 𝑙3uc}.

In future work, rather than restricting plasticity to the FRDs, the possibility of
incorporating plasticity in coarse­grained domains (CGDs) can be further investi­
gated. The coarsening of the elastoplastic AGQC model in the wake of refinement
is a promising option to further boost the computational efficiency of AGQC, that
can be examined in the future.
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5
Conclusions & Outlook

This chapter summarizes the conclusions that are derived from the develop­
ment and application of the proposed adaptive generalized QC approach and
lists a selection of identified future improvements.

125



5

126 5. Conclusions & Outlook

The aim of this work was to develop a multi­scale computational tool to pre­
dict the mechanical behavior of periodic metallic lattices. Discrete geometrically
nonlinear beam finite element (FE) networks were used to represent the unit cell
(i.e. the smallest repeating volume of the periodic lattice) by representing each
strut as a string of beam FEs. Since struts can have a varying diameter along their
length due to the additive manufacturing process, the beam FEs in the numerical
model can have different radii. Directly exploiting the discrete beam network de­
scription for industrially relevant (i.e. large) models is computationally prohibitive.
To decrease the computational times, this thesis presents a generalization of the
quasicontinuum (QC) method incorporating adaptivity in the elastoplastic domain.

Conventional QC does not allow incorporating several beam FEs along a strut,
which substantially restricts the method’s applicability. The presented work has suc­
cessfully closed this gap in the literature by the proposal of a multi­field generaliza­
tion of the method (Chapter 2). Moreover, a new adaptive refinement of the spatial
representation (i.e. the division of the fully­resolved domains and coarse­grained
domains, as well as the mesh of the interpolation elements in the coarse­grained
domains) for the proposed generalized QC was proposed to enhance computational
efficiency while maintaining a controlled accuracy for elastic (Chapter 3) and elasto­
plastic (Chapter 4) simulations in which localization spatially evolves. Whereas most
previous refinement indicators for adaptivity in QC are defined in terms of quantities
relevant for atomistics, the refinement indicators proposed in this thesis are widely
applicable, as they can be exploited for elastic and elastoplastic lattices and for
conventional as well as for the generalized QC method. The refinement indicators
are original as they utilize so­called signalling unit cells, whose purpose is to flag
domains for refinement. Thanks to the signalling unit cells employing co­rotational
beam FE, the proposed refinement indicator is furthermore insensitive to rigid body
rotations and translations, as well as to homogeneous deformation – something
that cannot be said for all indicators in the literature.

Although metallic BCC (body centered cubic) and Kelvin lattices were considered
in this work, it is emphasized that the proposed computational framework is inde­
pendent from the base material and the shape of the unit cell for the lattice structure
(although for other base materials and unit cell configurations differences in com­
putational saving and accuracy may be observed). It is also worth to mention that
besides the computational developments on the adaptive generalized QC method,
two 3D co­rotational elastoplastic beam FEs were formulated and implemented in
order to account for the geometrical and material nonlinear strut behaviors.

Other salient conclusions can be listed as follows:

• (1) Compared to conventional multi­scale approaches based on the compu­
tational homogenization, the generalized QC method does not require scale­
separation. It is also as straightforward to implement for interpolation el­
ements with higher­order polynomial interpolations as for interpolation ele­
ments with linear interpolation scheme. As most nested, concurrent multi­
scale approaches, the generalized QC method requires smooth deformation
fluctuations in the coarse­grained domains. Consequently, fully­resolved do­
mains must be large enough to embrace localization (e.g. due to plasticity or
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fracture). The approach is thus computationally most beneficial if the fully­
resolved domain is small compared to the coarse­grained domain (as is the
case for conventional nested, concurrent approaches).

• (2) The (adaptive) generalized QC frameworks were applied to elastoplastic
lattice structures, which has shown that adaptive generalized QC is able to
predict the failure modes of metallic lattice structures, e.g. buckling and plas­
tic bending of individual struts. The number of degrees of freedom (DoFs)
and the number of sampling beams (i.e. the beams exploited to approximate
the governing equations) relative to the direct numerical simulations (DNS)
were drastically reduced, whilst a high accuracy was maintained. It is worth
noting that the lattices investigated in the present work remain of limited
size, implying that an even larger computational saving is expected for true
product­size models.

• (3) If the response of the unit cells is local (e.g. Kelvin unit cell), more sig­
nificant model reduction can be achieved using the adaptive generalized QC
framework, compared to lattices with a more nonlocal response (e.g. BCC
unit cell). It was shown that the adaptive generalized QC frameworks are
capable of tackling model sizes out of reach of DNS, by employing an auto­
matic adaptation of the spatial discretization (interpolation elements in the
coarse­grained domains and fully resolved domains are updated on the fly).

• (4) Interpolation element refinement is triggered when the relative difference
between the energies of a signaling unit cell reaches a user defined threshold.
If the volume of a newly created interpolation element falls below a user
defined minimum, the interpolation element is fully resolved. This prompts
fully­resolved domains to both evolve and be created where necessary.

• (5) The examples have revealed that the two user defined thresholds of the
adaptivity have a fundamental impact on the performance. The influence of
the selected values for the two thresholds is however case specific and depend
on the shape of the unit cell, the beam discretization of the unit cell and the
size of the lattice. A detailed explanation of how to choose appropriate values
for the two thresholds was presented for the studied cases.

• (6) In the current implementation plasticity is restricted to the fully­resolved
domains and therefore all sampling beams in interpolation elements are mon­
itored for any plastic deformation. If any sampling beam in an interpolation
element deforms plastically, the interpolation element is fully resolved. The
advantage of restricting plasticity to develop in fully­resolved domains is the
straightforward transfer of history variables between current and future re­
finements.

Based on the presented work, it seems beneficial to improve the adaptive gen­
eralized QC framework as follows:
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• Rather than restricting plasticity to the fully­resolved domains, it is expected
that if plasticity can also take place in coarse­grained domains, the result­
ing computational savings are higher. This would require i) a robust, yet
more complicated transfer of the history variables between plastified sam­
pling beams in an interpolation element and the new sampling beams that
are generated as a result of the refinement of this interpolation element, as
well as, ii) an extension of the refinement indicator towards dissipation.

• The coarsening of the adaptive generalized QC model in the wake of local­
ization (e.g. behind the contact zone in a scratch simulation) is a promising
option to further boost the computational efficiency. This would require i), a
coarsening indicator in contrast to a refinement indicator, which decides on
whether 1) smaller interpolation elements can be merged into larger interpo­
lation elements, 2) fully­resolved domains can be replaced using interpolation
elements at no expense of accuracy; ii) another type of transfer of history vari­
ables in which history variables of many sampling beams must be condensed
to those of a few sampling beams.

To further assess the performance of the adaptive generalized QC framework
it would also be interesting to validate the framework based on an experimen­
tally tested lattice. More specifically, the compression test on pre­damaged lattices
would be of great interest. To have a guided initiation of failure, removing certain
struts to deliberately create weak spots in the lattice at which damage is triggered
would make the experiments easier to model by QC. In this way, not only can the
comparison between the experimental and numerical results be set on a sound ba­
sis, but the performance of the proposed adaptivity can be assessed by a direct
experimental­numerical comparison of the evolution of localized deformation.

Other than the experimental validation, it would be scientifically challenging and
useful if the beam representation of the struts could directly be obtained from 3D
CT scans. This would require the development of a methodology, which statistically
relates the strut morphology observed in the scans to the beam geometry in QC.

Another relevant future work is to compare the mechanical behavior of bending
dominated and stretch dominated lattices using the proposed numerical framework.
For bending dominated lattices the structural response is mainly determined by the
bending resistance of the struts, while for stretch dominated lattices the structural
response is more impacted by the tensile or compressive strength and local buck­
ling in the struts. It would be interesting to see how these different underlying
mechanisms can be captured by QC.
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