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Introduction

The story of the Delta conjecture is one with three sides. It is a combinatorial
formula for a certain symmetric function, that is intimately related to some repre-
sentation of the symmetric group.

The ring of symmetric functions ΛK over a field K is the ring of formal power
series with coefficients in K, of bounded degree in a countably infinite amount of
variables, invariant by any permutation of those variables. This ring is naturally
graded, i.e. ΛK = ⊕n∈NΛ

(n)
K , where Λ

(n)
K is the subspace of homogeneous symmetric

functions of degree n. The dimension of Λ
(n)
K is equal to the number of partitions λ

of n, denoted λ ` n , which are vectors of positive integers whose entries are weakly
decreasing and sum to n. There are many interesting bases of this space, indexed
by partitions λ, like the elementary symmetric functions eλ, the homogeneous
symmetric functions hλ, the power symmetric functions pλ and the Schur function
s sλ.

Given the n-th symmetric group Sn, denote C(Sn) the space of its class func-
tions (i.e. the space of functions f : Sn → C that are constant on conjugacy
classes). As two permutations are conjugate if and only if they have the same cycle
type, there are exactly as many conjugacy classes of Sn as there are partitions of
n. For χ ∈ C(Sn), denote by χλ the constant value of χ on the permutations of
cycle type λ. The Frobenius characteristic map is

F : C(Sn)→ Λ
(n)
C

χ 7→
∑
λ`n

1

zλ
χλpλ,

where zλ ∈ N is the size of the conjugacy class of cycle type λ. This map is an
isomorphism of vector spaces (see [Sag01, Theorem 4.7.4]). It thus provides a re-
markable correspondence between finite dimensional representations V of Sn and
symmetric functions. Indeed any such V is determined up to isomorphism by its
character χV (see [Sag01, Corollary 1.9.4]), a class function of Sn, which bijectively
corresponds to a symmetric function F(χV ). Frobenius showed, that under this
correspondence, the characters of the irreducible representations of Sn (of which
there are as many as there are partitions of n) map exactly onto the Schur func-
tions sλ (see [Sag01, Theorem 4.6.4]). By Maschke’s theorem (see [Sag01, 1.5.3]),
all finite dimensional representations V of Sn can be decomposed into a finite di-
rect sum of irreducible representations. Since χV⊕W = χV +χW , this implies that
χ is the character of a representation of Sn if and only if F(χ) is Schur positive,
i.e. the coefficients of its expansion in the Schur basis are non-negative integers.
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Thus, Frobenius provides a correspondence between finite dimensional represen-
tations of Sn and Schur positive symmetric functions. The type of symmetric
group representations V that interest us will be bi-graded, i.e. V = ⊕i,j∈NV (i,j) for
some representations V (i,j) of Sn. The bi-graded Frobenius characteristic of the
character1χV of such a representation is defined to be

Fq,t(V ) = Fq,t(χ
V ) :=

∑
i,j∈N

qitjF(χV
(i,j)

),

which is an element of Λ
(n)
C(q,t). The coefficients of its expansion in the Schur basis

are elements of N[q, t], which gives an updated notion of Schur positivity in Λ
(n)
C(q,t).

Macdonald positivity and the n! theorem

In 1988, Macdonald introduced a family of symmetric functions2 (see [Mac88],
[Mac95]), with coefficients in Q(q, t) that form a basis of ΛQ(q,t). These polynomials
have attracted a lot of attention over the years, for many reasons. First, they play
a unifying role in symmetric function theory, as for suitable choices of q and t,
Macdonald’s polynomials specialise to a number of other important families of
symmetric functions: Schur functions, Hall-Littlewood symmetric functions, Jack
symmetric functions and zonal symmetric functions. Furthermore, there seem to be
deep connections between Macdonald’s theory and other fields including statistical
physics, affine Hecke algebras, and Hilbert schemes (see for example [LV96], [Hai06]
and [Hai99], respectively).

Also, Macdonald introduced a slightly modified version of his polynomials which
he conjectured to be Schur positive. In [GH93], Garsia and Haiman defined a nor-
malised version of Macdonald’s modified polynomials, denoted Hλ in this text, and
defined a family of bi-graded Sn-modules, Hλ, the bi-graded Frobenius character-
istic of which they conjectured to equal Hλ. Their conjecture resisted proof for
more than a decade, during which time it was reduced to the question of showing
that the dimension of Hλ, for any λ, equals n!; this became known as the n! con-
jecture. This conjecture finally became a theorem due to Haiman [Hai01], whose
proof uses an algebraic theoretical approach, originally outlined by Procesi. With
it the Schur positivity of the Hλ was established.

Garsia and Haiman’s conjecture and the search for its proof revealed remarkable
connections between Macdonald polynomial theory and representation theory of the
symmetric group. For example, the same authors introduced the space of diagonal
harmonics DHn, which essentially contains all theHλ as subrings, and is defined as
follows. Consider the ring Rn := C[x1, . . . , xn, y1, . . . , yn] and the diagonal action
of Sn defined as

σ · f(x1, . . . , xn, y1, . . . , yn) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n))

1By slight abuse of terminology and notation, we will use “(bi-graded) Frobenius characteristic
of a representation V ” denoted F(V ) or Fq,t(V ) to mean the (bi-graded) Frobenius characteristic
of its character, F(χV ) or Fq,t(χV )

2See [GR05] for a historical review of some notable results concerning Macdonald’s polynomi-
als.
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Figure 1: An element of LD(6).

for f ∈ Rn and σ ∈ Sn. Next set In to be the ideal of constant-free invariants
with respect to this action. The diagonal harmonics are DHn := Rn/In. The ring
Rn is naturally bi-graded by the homogeneous bi-degree of the x and y variables.
Since In is a homogeneous ideal, this bi-grading is inherited by DHn and so we
may construct its bi-graded Frobenius characteristic Fq,t(DHn), a Schur positive
symmetric function. Bergeron an Garsia noticed that, up to simple multiplicative
constant before each term, the Macdonald expansion of Fq,t(DHn) is very similar
to the one of en. This inspired them to define the ∇ operator [BG99], as the linear
operator satisfying∇Hλ = TλHλ, for any partition λ, where Tλ is a simple constant
in N[q, t] (see Definition 2.29). They conjectured that Fq,t(DHn) = ∇en, which
Haiman showed to be a consequence his n! theorem [Hai02].

The shuffle theorem

The third side of the story, the combinatorics, solidified when– building on Haiman’s
assertion that dim(DHn) = (n + 1)n−1 [Hai02]– Haglund, Haiman, Loehr, Rem-
mel and Ulyanov proposed a combinatorial formula for ∇en [HHL+05] in terms of
labelled Dyck paths of size (or the closely related parking functions, of which there
are (n+ 1)n−1). Their prediction became known as the shuffle conjecture 3 4 and
it reads

∇en =
∑

P∈LD(n)

qdinv(P )tarea(P )xP ;

where LD(n) is the set of labelled Dyck paths P of size n, dinv and area are statistics
that encode some combinatorial information about such paths and xP is a monomial
naturally obtained from the labelling of P (see Chapter 4 for the precise definitions
and Figure 1 for an illustration of a labelled Dyck path). Some special cases of this
formula were already known at the time, most famously the q, t-Catalan positivity

3See Section 5.3 for an explanation of this term.
4See [vW20] for a very nice account of its history.



theorem, predicted by Haglund in [Hag03] and proved by himself and Garsia in
[GH02]. Several years passed before Haglund, Morse and Zabrocki conjectured
what they called a “compositional” refinement of the shuffle conjecture [HMZ12].
They introduced a family of symmetric functions Cα, indexed by compositions α
of n (i.e. a vector of positive integers summing to n, denoted α � n) with the
property that

∑
α�n Cα = en. They then posited that ∇Cα equals the the same

combinatorial formula as the shuffle conjecture above except that the sum is taken
only over the paths with diagonal composition α (see Definition 4.16). It was this
compositional formula that Carlsson and Mellit proved in [CM18], implying the
shuffle theorem. Their proof is an impressive feat, introducing many new tools
such as the Dyck path algebra and their raising and lowering operators. The
publication of their paper marked the end of the very successful story of the shuffle
theorem.

The Delta conjecture

While Carlsson and Mellit were working on their proof of the shuffle conjecture,
Haglund, Remmel and Wilson formulated the Delta conjecture [HRW18]. The
Delta operators, first introduced in [BGHT99], are are two families of closely related
linear operators of ΛQ(q,t) defined by

∆fHλ = f [Bλ]Hλ ∆′fHλ = f [Bλ − 1]Hλ

for any f ∈ ΛQ(q,t), where f [Bλ] and f [Bλ − 1] are some constants in Q(q, t) (see
Section 1.5 and Definition 2.29). They generalise ∇ in the sense that on Λ

(n)
Q(q,t),

we have ∆en = ∆′en−1
= ∇. The Delta conjecture is a pair of combinatorial

formulas for the symmetric function ∆′en−k−1
en, of the same general form as the

shuffle theorem, except that the sum is over decorated labelled Dyck paths of size
n with k decorations on rises (first formula) or valleys (second formula). These
decorations have an impact on the area and dinv statistics (see Chapter 4 for the
precise definitions). For k = 0, the Delta conjecture reduces to the shuffle theorem.
The general case is still open today. In the Delta conjecture paper, the authors
established the easy fact that the rise version of the combinatorics is a positive
sum of LLT-polynomials, which were defined in [LLT97], and shown to be Schur
positive in a preprint by Grojnowski and Haiman [GH07].

Theta operators

In [DIV20], we introduced a family of operators, Θk, (see Defintition 2.37) that
satisfy Θk∇en−k = ∆′en−k−1

en (see Theorem 3.36). There are many reasons why
these operators are interesting, one of them being that Θk∇Cα, for α a composition
of n−k, seems to be the appropriate symmetric function for a compositional version
of the Delta conjecture (see Conjecture 5.10). This brings us one step closer to a
potential generalisation of Carlsson and Mellit’s proof to the Delta context.

For several years, there was no representation theoretic aspect to the Delta
conjecture. That is, even though its truth would imply the Schur positivity of



∆′en−k−1
en and thus we might construct a direct sum of irreducible representa-

tions of Sn whose bi-graded Frobenius characteristic coincides with this symmetric
function, there was no known “naturally occurring” module of which we could say
the same. This changed when Zabrocki [Zab19] introduced the module of super-
diagonal coinvariants. In [DIV20], we used Zabrocki’s breakthrough to define a
more general5 moduleMn,2 which we describe here. Consider

C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn, η1, . . . , ηn]

where the θ and η variables are sets of n anti-commuting orGrassmanian variables6.
As before, the diagonal action of Sn permutes the 4 sets of variables simultane-
ously. ThenMn,2 is the quotient of this ring by the constant-free invariants of this
action. If M(k,l)

n,2 is the homogeneous subspace of degree k, l in the θ, η variables,
respectively, then we conjectured that

F(M
(k,l)
n,2 ) = ΘkΘl∇en−(k+l).

For l = 0, we recover Zabrocki’s conjecture for Θk∇en−k = ∆′en−k−1
en. The fact

that Zabrocki’s conjecture seems to generalise so naturally using the Θk operators
is another argument in favour of studying of these operators.

More Delta conjectures

The Delta conjecture described above is far from the only combinatorial formula
for (seemingly) Schur positive symmetric functions that was formulated since and
inspired by the shuffle theorem. For instance, the Delta conjecture paper [HRW18]
containes another generalised Delta conjecture: a formula for ∆hm∆′en−k−1

en in
terms of decorated partially labelled Dyck paths (see Chapter 4).

What is more, developments remarkably similar to the shuffle and Delta con-
jecture, with combinatorics based on square paths7 instead of Dyck paths and
symmetric functions relating to pn instead of en, started in 2007. In that year,
Loehr and Warrington formulated their square conjecture [LW07], a formula for
∇(−1)n−1pn in terms of labelled square paths (see Chapter 4). It contained their
q, t-square theorem [CL06] as a special case (which is to the square conjecture what
the q, t-Catalan theorem is to the shuffle theorem). In [Ser17], Sergel proved that
the shuffle theorem implies the square conjecture, which thus became a theorem.
Her proof used a schedule formula (see section 7.1) for square paths, that allowed
for an expression of the combinatorics of square paths in terms of Dyck paths. In
[DIV19] and [IV20], we proposed a combinatorial formulas for

• [n−k]t
[n]t

(−1)n−1∆en−kpn in terms of rise decorated labelled square paths,

• [n−k]q
[n]q

(−1)n−1∆en−kpn in terms of valley decorated labelled square paths.

5Zabrocki’s moduleMn,1 has only one set of Grassmanian variables
6We have θiθj = −θjθi, ηiηj = −ηjηi for all i, j ∈ {1, . . . , n}, any other product of variables

commutes.
7Square paths are lattice paths from (0, 0) to (n, n) using unit north and east steps, ending

with an east step.



• (−1)n−1Θk∇pn−k also in terms of valley decorated labelled square paths, be
it a slightly modified version of them.

We refer to these formulas the Delta square conjecture. In the same papers, we
formulate generalised versions of these conjectures: we predict that applying ∆hm

to the symmetric function yields similar combinatorics but with partial labellings.
In [IV20] we show, using the same strategy as Sergel for the square conjecture, that
valley version of the generalised Delta conjecture implies the valley version of the
generalised Delta square conjecture (modified version).

Content and organisation

This thesis focuses on the symmetric function and combinatorial aspects of the
Delta and related conjectures.

• Chapter 1 and Chapter 2 set the stage by providing classical definitions and
results related to symmetric function theory in general (Chapter 1) and Mac-
donald polynomials in particular (Chapter 2). Section 2.4 contains our defi-
nition of the Theta operators, which first appeared in [DIV20].

• Chapter 3 is dedicated to symmetric function identities. Sections 3.1 and
3.2 lay out relevant identities from the literature. Section 3.3 establishes
a key summation formula which was originally proved in [DIV18]. Sec-
tion 3.4 contains the proof of some key results concerning the Theta operators
from [DIV20].

• Chapter 4 sets up the combinatorial definitions related to Dyck and square
paths. Most of these are not original, except for some relating to our original
conjectures (see the next chapter).

• Chapter 5 lists all the formulas (conjectural and otherwise) related to the
Delta conjecture. Our contributions are: the generalised Delta square con-
jecture (both versions) and all the conjectures involving the Theta operators.

• In Chapter 6, we prove the generalised shuffle theorem, i.e. the interpretation
of ∆hm∇en in terms of partially labelled Dyck paths. Actually we prove a
refinement of this result called its touching refinement whose combinatorics
specify how many times the Dyck paths touch the line x = y. We first put
out this result in [DIV20].

• In Chapter 7 we show that the valley version of the touching generalised Delta
conjecture implies our formula for (−1)n−1Θk∇pn−k in terms of partially la-
belled valley decorated square paths. We use the same general strategy that
Sergel used to prove that the shuffle theorem implies the square theorem
[Ser17]. As in Sergel’s paper we formulate a schedule formula for our com-
binatorics, which was inspired by the one in [HS19]. Our formula however
is for labelled paths and not for parking or preference functions, in other
words we allow for repeated labels. So it also provides a new factorisation of
all the previously discovered schedule formulas concerning square and Dyck
paths. This conditional result, combined with the one in Chapter 6, gives



a formula for ∆hm(−1)n−1pn, which we call the generalised square theorem.
This chapter contains the results of [IV20].

• In Chapter 8 we extend the combinatorial framework of the proof of the
compositional shuffle conjecture [CM18] to rise decorated Dyck paths. In
particular, we prove an extension of the “main recursion” in their paper that
relates decorated Dyck paths to the raising and lowering operators. In this
way, we reduce the rise version of the compositional Delta conjecture to a
conjectural identity of operators. The content of this Chapter appears in
[DIV20].

Finally, we include some ideas for future research (page 121).





Chapter 1

Symmetric function theory: an
introduction

We give an introduction to symmetric function theory, highly catered to the needs
of this thesis. The main sources used are [Ber09], [Mac95],[Sag01],[Sta99], where
the interested reader can find more details.

Consider a field K and let X = (x1, x2, . . . ) be an alphabet of a countably
infinite amount of variables. Let P be the set of positive numbers (i.e. N \ {0}) and
NP the be functions P → N, or equivalently the set of sequences (α1, α2, . . . ) with
αi ∈ N. The support of an integer sequence α ∈ NP is the set of i ∈ N such that
αi 6= 0. Set xα :=

∏
i∈P x

αi
i . Now define

K[[X]] :=

{∑
α∈NP

cαx
α | cα ∈ K, α has finite support

}
the ring of formal power series with coefficients in K and variables X. Given

a monomial cαx
αi1
i1
· · ·xαikik

∈ K[[X]], its degree is αi1 + · · · + αik . The degree of
an arbitrary element of K[[X]] is the supremum of the degrees of its monomials,
which might be infinite. We denote by BK[[X]] the subring of K[[X]] of elements
of finite (or bounded) degree.

Let S∞ be the group of bijections P→ P with the composition operation. We
define an action of S∞ on BK[[X]] as the permutation of its variables: for σ ∈ S∞
and f ∈ BK[[X]] define

σ · f(x1, x2, . . . ) := f(xσ(1), xσ(2), . . . , . . . ).

Definition 1.1. A symmetric function is an element f ∈ BK[[X]] such that for
all σ ∈ S∞, σ · f = f . The set of symmetric functions with coefficients in K is
denoted by ΛK.

In other words, a symmetric function is a polynomial series of bounded degree
in an infinite number of variables, stable by any permutation of these variables.

Remark 1.2. The invariants of BK[[X]] under S∞ (i.e. symmetric functions) are
the same as the invariants under the subgroup of bijections P → P that fix all

1



2 CHAPTER 1. SYMMETRIC FUNCTION THEORY: AN INTRODUCTION

but a finite number of elements, denoted by S(∞). Indeed, consider
∑
α∈NP cαx

α

and element of BK[[X]]. It is invariant by S∞ if and only if cα = cσ·α for all
σ ∈ S∞ where σ·(α1, α2, . . . , ) = (ασ(1), ασ(2), . . . ). Since the α have finite support,
invariance by S(∞) implies invariance by S∞. There is a natural isomorphism
S(∞) ' ∪n∈NSn where an element in Sn of the left hand side corresponds to the
permutation of P fixing all integers strictly n.

The ring ΛK has a natural grading.

Definition 1.3. An element f ∈ BK[[X]] is called homogeneous of degree n if all
its monomials have degree n. The set of symmetric functions with coefficients in
K, homogeneous of degree n is denoted Λ

(n)
K .

It is clear that
ΛK =

⊕
n∈N

Λ
(n)
K .

Definition 1.4. Given k ∈ N and λ = (λ1, . . . , λk) ∈ Pk such that λ1 ≥ · · · ≥ λk
we set

mλ :=
∑

xλ1
i1
· · ·xλkik ,

where the sum is over all (i1, . . . , ik) ∈ Pk yielding distinct monomials xλ1
i1
· · ·xλkik .

We call mλ the monomial symmetric function associated to λ. We set m∅ = 1.

Example. If λ = (2, 1, 1) then

m2,1,1 = x21x2x3 + x22x1x3 + x22x1x3 + x21x2x4 + · · ·

It is not hard to see that the monomial symmetric functions are indeed sym-
metric. In fact, upon some reflection, one notices that the mλ, indexed by λ =
(λ1, . . . , λk) ∈ Pk for some k ∈ N and such that λ1 ≥ · · · ≥ λk and

∑k
i=1 λi = n,

are a linear basis for the vector space Λ
(n)
K over K.

This suggests that the objects denoted here by λ, which are called partitions,
will play a central role in the theory of symmetric functions. So we elaborate on
these objects in the next section.

1.1 Partitions and tableaux

Definition 1.5. Let n ∈ N. A partition of n is a vector λ = (λ1, . . . , λk) of positive
integer entries such that λ1 ≥ · · · ≥ λk and |λ| :=

∑k
i=1 λi = n. We will use the

notation λ ` n for partitions of n.
The parts of λ are its components and its length, `(λ) is its number of parts.

The set of all partitions is denoted by Par and the set of partitions of n by Par(n).
The size of the set Par(n) is referred to by p(n).

The following is a related but distinct notion.

Definition 1.6. A composition of n is a vector (α1, . . . , αk) of positive integer
entries such that

∑k
i=1 αi = n. We denote α � n and set `(α) = k to be the length

of the composition. The size n of a composition is denoted by |α|.
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c

Figure 1.1: A Young diagram.

The set of partitions is a subset of the set of compositions.

Definition 1.7. Given α and β two composition, its concatenation is the compo-
sition αβ := (α1, . . . , α`(α), β1, . . . , β`(β)).

Convention 1.8. There is exactly one composition of 0, the empty partition, de-
noted by λ = ∅.

Let us associate some pictures to these objects.

Definition 1.9. We associate a partition λ = (λ1, . . . , λk) to the subset of N× N

Sλ :={(0, 0), . . . , (λ1 − 1, 0), (0, 1), . . . , (λ2 − 1, 1),

(0, k − 1), . . . , (λk − 1, k − 1)}.

Now for each (i, j) ∈ Sλ, draw the square with vertices (i, j), (i + 1, j), (i, j + 1)
and (i + 1, j + 1). We call such a square a cell or a square of λ, with coordinates
(i, j). The resulting diagram is called the Young diagram of λ1. In other words the
Young diagram of λ consisting of k rows of squares, where the i-th row from the
bottom consists of λi squares and the rows are aligned to the left.

We will often identify a partition λ with the set Sλ or its Young diagram.

Example. The Young diagram of the partition (5, 3, 3, 2, 1) is shown in Figure 1.1.
The cell c has coordinates (1, 2).

Definition 1.10. Given the Young diagram of a partition λ, perform the orthog-
onal symmetry with respect to the line x = y. We obtain the Young diagram of
the conjugate partition of λ, denoted by λ′.

Example. If λ = (5, 3, 3, 2, 1) then Figure 1.2 is the Young diagram of its conjugate
λ′, so λ′ = (5, 4, 3, 1, 1).

Notation 1.11. We define a shorthand for some partitions that will turn up a lot.

• (1n) := (1, . . . , 1︸ ︷︷ ︸
n times

), which is called a column partition due to the shape of its

Young diagram. For example, we draw the Young diagram of (13), see the
left diagram of Figure 1.3 .

1We use the French convention, which uses of cartesian coordinates, as opposed to the English
convention, which uses matrix-like coordinates.
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Figure 1.2: Conjugate of the diagram in Figure 1.1.

Figure 1.3: The row partition (13) (left) and hook partition (4, 12) (right).

• (n− k, 1k) := (n − k, 1, . . . , 1︸ ︷︷ ︸
k times

), which is called a hook shape partition due to

the shape of its Young diagram. For example, we draw here (4, 12), see the
right diagram of Figure 1.3. Be careful, when k = n we get (0, 1n) which is
not a partition and not equal to (1n).

Partition constants

Given (a cell of) a partition, there are a number of constants in that will come up
frequently.

Definition 1.12. Given a cell of the Young diagram of a partition λ we define its
arm aλ(c), co-arm a′λ(c), leg2 lλ(c) and co-leg a′λ(c) to be the number of cells that
lie strictly to the east, west, north, and south of c, respectively.

Example. The cell labelled c in the partition λ = (9, 8, 7, 7, 4, 4, 3, 2) in Figure 1.4
has aλ(c) = 4, a′λ(c) = 2, lλ(c) = 3 and l′λ(c) = 3.

Definitions 1.13. Let λ = (λ1, . . . , λk) be a partition, then we set

• n(λ) :=
∑k
i=1(i− 1)λi

• mi(λ) := |{j | λj = i}|

• zλ :=
∏k
i=1 i

mi(λ)mi(λ)!.

Here are some observations about these quantities.
2This terminology makes sense for the upside down English convention.
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Figure 1.4: Limbs and co-limbs of a partition.

• The quantity zλ is exactly the number of permutations of {1, . . . , n} of cycle
type λ.

• For all the λi cells in the i-th row of λ, the co-leg equals i− 1. So we have

n(λ) =
∑
c∈λ

l′λ(c) =
∑
c∈λ

lλ(c), (1.14)

where the second equality is obtained from the obvious fact that for any
column of λ the sum of the co-legs of its cells equals the sum of the legs of
its cells.

Ordering partitions

Definition 1.15. We denote λ ⊆ µ if the Young diagram of λ is “contained” in
the Young diagram of µ, in other words, λi ≤ µi for all i. This defines a partial
order on Par called the containment order.

Definition 1.16. We define the dominance order on Par(n) as follows: suppose
λ, µ are partitions of n, then we denote λ�µ if and only if for all j ∈ P

i∑
j=1

λj ≤
i∑

j=1

µj

where we consider λj = 0 for j > `(λ).

Remark 1.17. For any partition λ there are but a finite amount of partitions that
are strictly smaller than λ, with respect to ⊆ or �. It follows that (Par,⊆) and
(Par(n),�) are well founded3posets and thus we may use inductive proofs of state-
ments about these spaces.

We will need the following is an elementary fact about �, see [Mac95, 1.11]

Proposition 1.18. Suppose λ, µ are partition of n, then λ � µ if and only if
µ′ � λ′.

3A poset is said to be well founded if all of its subsets contain a minimal element



6 CHAPTER 1. SYMMETRIC FUNCTION THEORY: AN INTRODUCTION

Figure 1.5: The Young diagram of the skew partition (4, 4, 4, 2)/(3, 3, 1).

Skew partitions

Definition 1.19. A skew partition λ/µ is a pair of partitions µ ⊆ λ. Its size is
|λ| − |µ|.

The Young diagram Sλ/µ of a skew partition λ/µ is Sλ \ Sµ. For example, we
draw the diagram of (4, 4, 4, 2)/(3, 3, 1) in Figure 1.5. We identify a partition λ
with the skew partition λ/∅ so that the set of skew partitions contains the set of
partitions.

Young tableaux

Related to partitions are the following objects.

Definition 1.20. Given a (skew) partition λ/µ, a filling of its Young diagram is a
function f : Sλ/µ → P, in other words for every cell c of λ a filling f picks a positive
integer f(c). For every cell c of Sλ/µ draw f(c) inside the square corresponding to
c. A filling is said to be

• standard if it is strictly increasing in rows (from left to right) and columns
(from bottom to top).

• semi-standard if it is weakly increasing in rows and strictly increasing in
columns.

A Young tableau or YT is a pair (λ/µ, f) where f is a filling of the Young diagram
of λ/µ. A (semi)-standard Young tableau or (S)SYT is a YT whose filling is
(semi)-standard.

The set of standard (respectively semi-standard) Young tableau with diagram,
or shape, λ/µ is denoted SYT(λ/µ) (respectively SSYT(λ/µ)).

Definition 1.21. The content of a YT is the vector of integers obtained by setting
its i-th component to the number of i’s in its filling.

Example. In Figure 1.6 are represented a standard Young tableau (left) and a
semi-standard Young tableau (right). The content of the left tableau is (0, 2, 0, 2, 0, 3, 2, 3)
and the content of the right one is (1, 1, 3, 0, 2, 2, 0, 2, 1).

We introduce some very interesting numbers related to tableaux.

Definition 1.22. Given λ, µ ∈ Par we define the Kostka number

Kλ,µ = # SSYT of shape λ and content µ.
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8

6 8

2 7 8

4 6

2 4 6 7

9

8 8

5 6 6

2 5

1 3 3 3

Figure 1.6: A standard Young tableau (left) and a semi-standard Young tableau.

4

3 3 3

2 2 2 2

1 1 1 1 1 1

Figure 1.7: The only tableau of shape and content (6, 4, 3, 1).

We make some observations about these numbers.

Proposition 1.23. Let λ, µ ∈ Par then

(i) Kλ,λ = 1

(ii) Kλ,µ 6= 0 if and only if |λ| = |µ| and µ � λ.
Proof. (i) The only tableau of shape and content λ is the tableau whose bottom

row of cells are filled with 1’s, the second to bottom row with 2’s and so on.
See Figure 1.7 for an illustration.

(ii) If λ ≺ µ in the dominance order, there must exist a k such that µ1+· · ·+µk >
λ1 + · · ·+ λk. It follows that there must be a k in a row above the k-th row
from the bottom of λ. This is in contradiction with the condition of strictly
increasing labels in columns.
When µ � λ then the filling of λ row by row from left to right bottom to top
with µ1 1’s, µ2 2’s and so on, gives a SSYT of shape λ and filling µ.

1.2 Some standard bases and results

We turn our attention back to symmetric functions. We have already observed
that {mλ}λ`n is a linear basis for the space Λ

(n)
K , which is thus of dimension p(n).

There are several other notable basis.

Definition 1.24. The n-th elementary symmetric function is

en(X) :=
∑

1≤i1<i2<···<in

xi1xi2 · · ·xin
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for n ∈ P and e0 := 1.

Definition 1.25. The n-th (complete) homogeneous symmetric function is

hn(X) :=
∑

1≤i1≤i2≤···≤in

xi1xi2 · · ·xin

for n ∈ P and h0 := 1.

This function is the sum of all monomials of degree n, hence the adjective
“complete”.

Definition 1.26. The n-th power symmetric function is

pn(X) :=
∑
i∈P

xni

for n ∈ P and p0 := 1.

Convention 1.27. We extend the definitions of these function to indices in Z by
setting en = hn = pn = 0 for all n < 0. This convention will make for nicer
formulas.

Example. For n = 3 we get

e3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + · · ·
h3 = x31 + x21x2 + x1x

2
2 + x32 + x21x3 + x1x2x3 + x22x3 + x1x

2
3 + x2x

2
3 + x33 + · · ·

p3 = x31 + x32 + x33 + x34 + · · ·

We extend these definitions to partition indexes by applying the following mul-
tiplicative rule

eλ := eλ1
· · · eλk

hλ := hλ1
· · ·hλk

pλ := pλ1
· · · pλk

using the convention e∅ = h∅ = p∅ = 1.
Let’s introduce another, arguably the most important4, family of symmetric

functions.

Definition 1.28. Let λ ∈ Par. The Schur function associated to λ is

sλ(X) :=
∑

T∈SSYT(λ)

xT ,

where xT := xµ1

1 xµ2

2 · · ·xµkk where µ = (µ1, . . . , µk) is the content vector of T .
Notice that s∅ = 1.

4The Schur functions are central to the theory since they are the image of the irreducible
representations of the symmetric group by the Frobenius characteristic map.



1.2. SOME STANDARD BASES AND RESULTS 9

2

1 1

2

1 2

3

1 1

3

1 2

2

1 3

3

2 2

3

1 3

3

2 3

Figure 1.8: SSYT of shape (2, 1).

Remark 1.29. We may define in an analogous manner the notion of skew Schur
function, sλ/µ where the sum is taken over SSYT(λ/µ), for λ/µ a skew partition.
For µ ⊃ λ, we define sλ/µ = 0.

Example. We have

s(2,1)(X) = x21x2 + x1x
2
2 + x21x3 + 2x1x2x3 + x22x3 + x1x

2
3 + x2x

2
3 + · · ·

We draw in Figure 1.8 the semi-standard Young tableau corresponding to the mono-
mials specified above.

It is easy to see that for all n ∈ N

s(n) = hn s(1n) = en. (1.30)

Contrary to the other families we introduced, it is not immediately clear from
their definition that Schur functions are symmetric.

Proposition 1.31. Schur functions are symmetric functions.

Proof. We will describe a combinatorial involution

αi : SSYT(λ)→ SSYT(λ)

that maps a tableau T of content µ = (µ1, . . . , µk) to a tableau αi(T ) of content
µ̃ := (µ1, . . . , µi−1, µi+1, µi, µi+2, . . . , µk). From the existence of this involution it
will follow that

sλ(X) =
∑

T∈SSYT(λ)

xT =
∑

αi(T )∈SSYT(λ)

xT = τi,i+1 · sλ.

Where τi,i+1 is the consecutive transposition (i, i+1). Since the consecutive trans-
positions generate S(∞), this will imply that sλ is symmetric (see Remark 1.2).

Let us now describe this involution. Take T a SSYT. Look for all the occurrences
of i and i+ 1 in the filling of T . If i and i+ 1 occur as a pair in the same column,
they are fixed by αi. For the remaining occurrences, call them free occurrences,
we can safely switch i and i + 1 without breeching the condition on the columns
of SSYT. We proceed as follows. For each row, if there are a free occurrences of
i and b free occurrences of i + 1, we replace them with from left to right with b
occurrences of i and a occurrences of i+ 1. This operation will yield a SSYT and
the multiplicities of i and i + 1 are switched, indeed we made it so for the free
occurrences and the fixed ones occur in pairs. It is clear that this operation is an
involution. See Figure 1.9 for an example.
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4 4

2 2 3 3 3 4 4

1 1 1 2 2 2 3 3 3

4 4

2 3 3 3 3 4 4

1 1 1 2 2 2 2 2 3

Figure 1.9: A SSYT (left) and its image by α2 (right)

Remark 1.32. This argument also holds for skew shapes, thus skew Schur functions
are likewise symmetric.

Corollary 1.33. We have the following identity

sλ =
∑
µ∈Par

Kλ,µmµ =
∑
µ�λ

Kλ,µmµ

Proof. Take λ, µ = (µ1, . . . , µk) ∈ Par. By definition of sλ and Kλ,µ the coefficient
of the monomial xµ1

1 · · ·xµkk in sλ equals Kλ,µ. Since by Proposition 1.31 sλ is
symmetric and all monomials in mµ are obtained by acting on xµ1

1 · · ·xµkk with
some element of Sk, we must have the first equality. The second equality follows
from Proposition 1.23.

Remark 1.34. Since the inverse of a lower-triangular matrix is lower-triangular,
the fact that sλ can be expanded in terms of {mµ}µ�λ implies that mλ can be
expanded in terms of {sµ}µ�λ.
Example. We have

s3,2,1 = 16m1,1,1,1,1,1 + 8m2,1,1,1,1 + 4m2,2,1,1 + 2m2,2,2 + 2m3,1,1,1 +m3,2,1

As suggested by the title of this section, all the families we have encountered
are of interest because they form basis of the space of symmetric functions.

Theorem 1.35. For n ∈ N

(i) {eλ}λ`n is a linear basis of Λ(n);

(ii) {hλ}λ`n is a linear basis of Λ(n);

(iii) {pλ}λ`n is a linear basis of Λ(n);

(iv) {sλ}λ`n is a linear basis of Λ(n).

Proof. For the a proof of the statements (i), (ii) and (iii) we refer to [Sag01, The-
orem 4.3.7].

Point (iv) can be deduced easily from Corollary 1.33 and Proposition 1.23.
Indeed, the former suggests a matrix identity expressing the Schur functions in
terms of the monomial basis (use the dominance order on partitions) and the latter
implies that the matrix in question is unitriangular, and is thus invertible.

Corollary 1.36. The algebra ΛK is minimally generated by {ei}i∈N, {hi}i∈N and
{pi}i∈N.
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Generating functions

Upon some reflexion on the expansions of the right hand sides, we see that we have
the following generating functions

E(ζ) :=
∑
n∈N

enζ
n =

∏
i∈P

(1 + xiζ) (1.37)

H(ζ) :=
∑
n∈N

hnζ
n =

∏
i∈P

1

1− xiζ
(1.38)

P (ζ) :=
∑
n∈N

pnζ
n =

∑
i∈P

1

1− xiζ
. (1.39)

These formal power series can lead to elementary proofs of interesting identities.

Theorem 1.40. We have the following expansions

hn =
∑
λ`n

pµ
zµ

(1.41)

en =
∑
λ`n

(−1)n−`(µ)
pµ
zµ
.; (1.42)

Proof. We prove (1.41) here, (1.42) is obtained using similar techniques. Using the
Taylor expansions of exp(x) and ln

(
1

1−x

)
and some formal power series magic (see

[Wil94] for more details on why and how these manipulations work) we obtain the
string of identities

H(ζ) = exp

(
ln

(∏
i∈P

1

1− xiζ

))
= exp

(∑
i∈P

ln

(
1

1− xiζ

))

= exp

(∑
i∈P

∑
k∈P

(xiζ)k

k

)
= exp

(∑
k∈P

ζk

k

(∑
i∈P

xki

))

= exp

(∑
k∈P

pk
k
ζk

)
=
∏
k∈P

exp
(pk
k
ζk
)

=
∏
k∈P

(∑
l∈N

plk
kl
ζkl

l!

)

=

(
1 + p1ζ +

p21
2!
ζ2 + · · ·

)(
1 +

p2
2
ζ2 +

p22
222!

ζ2·2 + · · ·
)
· · ·

The coefficient of ζn on the left hand side is hn by definition. On the right hand
side a term of the series is obtained by multiplying a term from each parenthesis.
Say we pick the ni-th term from the i-th parenthesis. The resulting term equals∏

i

pi
inini!

ζ
∑
i ni·i.

Let λ be the unique partition such that mi(λ) = ni and we get that the coefficient
of ζn on the right hand side is

∑
λ`n

pλ
zλ
.
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Jacobi-Trudi identities

The expansion of the Schur functions in terms of complete homogeneous or ele-
mentary functions, is given by a pair of elegant determinant formulas.

Theorem 1.43 (Jacobi-Trudi identity). For any partition λ we have the two equiv-
alent identities

sλ = det
(

(hλi+j−i)
`(λ)
i,j=1

)
sλ′ = det

(
(eλi+j−i)

`(λ)
i,j=1

)
The fact that one is equivalent to the other is easily deduced by applying the

ω-involution, see Section 1.4.

Pieri rules

Definition 1.44. A skew partition is said to be a horizontal strip if it does not
contain a and a vertical strip if it does not contain a .

We state here the Pieri rules (see for example [Mac95, I.5.16 and 17]), which
are are special cases of the classical Littlewood-Richardson rule (see for example
[Sag01, Theorem 4.9.4]).

Proposition 1.45 (Pieri rules). Let λ ∈ Par and n ∈ N

hnsλ =
∑
µ

sµ ensλ =
∑
ν

sν

where the first sum is over all µ ⊇ λ such that µ/λ is a horizontal strip of size n
and the second over all ν ⊇ λ such that µ/λ is a vertical strip of size n.

Murnaghan-Nakayama rule

Definitions 1.46. A skew partition λ/µ is said to be connected all of its squares
share at least one edge with at least one other square. A border strip (some authors
use rim hook or ribbon) is a connected skew partition that does not contain a .

The height ht(B) of a border strip B is its number of rows minus one.

The following is a special case of the more general result known as the Murnaghan-
Nakayama rule. We refer to [Sta99, Theorem 7.17.1].

Theorem 1.47. For λ ∈ Par and n ∈ N

sλpn =
∑
µ

(−1)ht(µ/λ)sµ

where the sum is over all partitions µ ⊇ λ such that µ/λ is a border strip of size n.
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1.3 Hall scalar product

We may further develop the structure of the symmetric function ring by defining a
scalar product. We do this by specifying its effect on the power symmetric function
basis.

Definition 1.48. Define the Hall scalar product on ΛK by setting

〈pλ, pµ〉 := zλδλ,µ

where δa,b is the widely used Kronecker delta, equal to 1 when a = b and 0 when
a 6= b.

Duality

Armed with a scalar product, certain basis of ΛK are in special relation to each
other.

Definition 1.49. A pair of basis {uλ}λ`n, {vλ}λ`n of Λ
(n)
K is called dual, if for all

λ, µ ` n we have 〈uλ, vλ〉 = δλ,µ.

The defining feature of the Hall scalar product is that {pλ}λ`n and
{
pλ
zλ

}
λ`n

are dual basis of Λ
(n)
K . We have some nice result characterising dual basis. For this,

we will need two sets of variables X := (x1, x2, . . . ) and Y := (y1, y2, . . . ).

Proposition 1.50. A pair of basis {uλ}λ`n, {vλ}λ`n of Λ
(n)
K is dual if and only if

∑
λ`n

uλ(X)vλ(Y ) =
∑
λ`n

pλ(X)pλ(Y )

zλ
.

Proof. Let A and B be the matrices of size |Par(n)| × |Par(n)| and coefficients in
K defined by

uλ =
∑
α`n

Aα,λpα vµ =
∑
β`n

Bβ,µ
pβ
zβ
.

It follows that

〈uλ, vµ〉 =
∑
α`n

∑
β`n

Aα,λBβ,µ

〈
pα,

pβ
β

〉
=
∑
α`n

Aα,λBα,µ

= (BTA)µ,λ

It follows that {uλ}λ`n and {vλ}λ`n are dual if and only if BTA = Id.
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On the other hand we have∑
λ`n

uλ(X)vλ(Y ) =
∑
λ`n

∑
α`n

∑
β`n

Aα,λBβ,λ
pα(X)pβ(Y )

zβ

=
∑
α`n

∑
β`n

(∑
λ`n

Aα,λBβ,λ

)
pα(X)pβ(Y )

zβ

=
∑
α`n

∑
β`n

(BTA)β,α
pα(X)pβ(Y )

zβ
.

Thus, the equality in the thesis holds if and only if BTA = Id. This obviously
implies that the two statements are equivalent.

It turns out that there is a very nice factorisation of this common product of
formula of dual basis.

Proposition 1.51. We have the following formal power series equality∑
λ∈Par

pλ(X)pλ(Y )

zλ
=
∏
i,j∈P

1

1− xiyj
.

Proof. Let’s play with the formal power series:

∏
i,j∈P

1

1− xiyj
=
∏
i,j∈P

exp(− ln(1− xiyi)) =
∏
i,j∈P

exp

(∑
k∈P

xiyj
k

)

= exp

 ∑
k,i,j∈P

xiyj
k

 = exp

(∑
k∈P

pk(X)pk(Y )

k

)

=
∑
n∈N

1

n!

(∑
k∈P

pk(X)pk(Y )

k

)n

=
∑
n∈N

1

n!

∑
|α|=n

(
n

α1, . . . , α`

) l∏
k=0

(
pk(X)pk(Y )

k

)αk
=
∑
λ∈Par

pλ(X)pλ(Y )

zλ
.

This last step was obtained by collecting all the compositions α whose rearrange-
ment give the same partition λ.

Let us summarise the duality results on the standard basis.5

Theorem 1.52. The following pairs of basis are dual.
5It might seem that we are forgetting a duality result of standard basis. Indeed we have not

mentioned the dual basis of the elementary symmetric functions. Of course such a basis exists
and is known as the forgotten basis of symmetric functions and are usually denoted by fλ. We
have not mentioned this basis since we have no need of it.
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(i) {pλ}λ`n and
{
pλ
zλ

}
λ`n

;

(ii) {hλ}λ`n and {mλ}λ`n;

(iii) {sλ}λ`n is dual to itself.

Proof. (i) Trivial by definition.

(ii) Replacing ζ by yj in the definition of the generating series for the homoge-
neous symmetric functions (1.38), we get∑

n∈N
hn(X)ynj =

∏
i∈P

1

1− xiyj
.

Taking the product over j ∈ P, we obtain∏
j∈P

∑
n∈N

hn(X)ynj =
∏
i,j∈P

1

1− xiyj
.

Notice that the right hand side of this equation is symmetric in the Y vari-
ables. We can thus expand the right hand side in terms of the monomial
basis in the Y variables. It is not hard to see that the coefficient of mλ(Y )
must be hλ(X). Thus, we obtain∑

λ∈Par

hλ(X)mλ(Y ) =
∏
i,j∈P

1

1− xiyj
,

which by Proposition 1.50 and Proposition 1.51 implies that the monomial
and homogeneous symmetric functions are dual to each other.

(iii) We do not prove it here. See for example [MR15, Theorem 5.6] for a nice
combinatorial proof using the RSK algorithm.

A defining property of Schur basis

The orthogonality of the Schur basis turns out to be one of a pair of properties
that uniquely defines them.

Proposition 1.53. For any partition λ, the Schur function sλ are the unique
symmetric function satisfying

(I) 〈sλ, sµ〉 = 0 whenever λ 6= µ;

(II) sλ = mλ +
∑
µ≺λ�λµmµ

where the �λµ are some elements in K.

Proof. We have already discussed the fact that Schur functions satisfy these two
properties, see Theorem 1.52 and Corollary 1.33. What we must show is that these
two properties in fact determine them. We will use an induction argument on �
(see Remark 1.17).
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Set n = |λ|. When we take the sum over µ ≺ λ, this implicitly supposes µ ` n,
since � is a partial order on Par(n). For the base case of the induction, we take
λ = (1n) the minimal element of (Par(n),�). Since there are no µ ` n such that
µ ≺ (1n), the unique symmetric function satisfying (II) is m(1n) = en = s(1n).

Now suppose that for all µ ≺ λ we have shown that sµ is the unique function
satisfying the two properties. Using the fact that sλ satisfies (II), we may write

sλ = mλ +
∑
µ≺λ

�λµmµ

for some �λµ ∈ K. Using the induction hypothesis, we may expand

mµ = sµ −
∑
ν≺µ

�µ,νmν for all µ ≺ λ.

Iterating this process, we may express mµ in terms of {sµ}µ≺λ (indeed after a finite
number of steps the only term in the sum will be m(1n) = s(1n)). In other words,
there exist coefficients �λ,µ such that

sλ = mλ +
∑
µ≺λ

�λµsµ.

Applying 〈·, sµ〉 to this equation, with µ ≺ λ and using (I) we get

0 = 〈mλ, sµ〉+ �λ,µ〈sµ, sµ〉

⇔ �λ,µ = −〈mλ, sµ〉
〈sµ, sµ〉

.

(we know that 〈sµ, sµ〉 = 1 but we do not actually need this fact to prove the result,
we just need it to be 6= 0, which follows from the fact that the Hall scalar product
is positive definite). Thus, the set {sµ}µ≺λ uniquely determines sλ.

Perp operator

Definition 1.54. Given f ∈ ΛK, we define f⊥, pronounced f perp, as the adjoint
operator of the multiplication. In other words, for all g, h ∈ ΛK

〈f⊥g, h〉 = 〈g, fh〉

This operator often has a nice combinatorial interpretation. The following result
is an example of such.

Proposition 1.55. For any λ ∈ Par and k ∈ N with k ≤ λ1 ,

sλ/(k) = h⊥k sλ.

Proof. Take µ any partition and consider

〈h⊥k sλ, hµ〉 = 〈sλ, hkhµ〉 = 〈sλ, hν〉;



1.4. THE ω INVOLUTION 17

where ν is the partition obtained from µ by inserting k in the appropriate spot.
Since the homogeneous and monomial symmetric functions are dual to each other
(Proposition 1.50), 〈sλ, hν〉 is the coefficient of mν , which is the number SSYT of
shape λ and content ν, which in turn –by symmetry– must be equal to the number
of SSYT of shape λ and content (k, µ1, . . . , µ`(µ)).

On the other hand, since k ≤ λ1, we have (k) ⊆ λ and so we may consider
sλ/(k). By similar reasoning 〈sλ/(k), hµ〉 is the number of SSYT of shape λ/(k) and
filling µ.

We can easily construct a bijection between the set of SSYT of shape λ and
content (k, µ) and the set of SSYT of shape λ/(k). Indeed, given a SSYT of the
second kind, augment by 1 all the fillings. We obtain a SYT of shape λ/(k) and
content (0, µ). Complete this tableau by adding the k missing boxes and filling
them with 1’s and we obtain a SSYT of shape λ and content (k, µ). The inverse
map is easily divined and so this transformation is bijective.

2 3

1 2 2 3

1 1

3 4

2 3 3 4

2 2

3 4

2 3 3 4

1 1 1 2 2

Thus we have shown that 〈h⊥k sλ, hµ〉 = 〈sλ/(k), hµ〉 for all partitions µ and so the
thesis follows from the fact that the hµ form a basis of Λ and the linearity of the
scalar product.

1.4 The ω involution

In this section we discuss a very significant operator on the algebra of symmetric
functions.

Definition 1.56. Set ω(pn) := (−1)n−1pn for all n ∈ N and extend ω : ΛK → ΛK
by requiring it to be an algebra morphism.

Clearly, ω is an involution. This map has some interesting properties.

Proposition 1.57. Let λ be a partition. We have the following

(i) ω(pλ) = (−1)|λ|−`(λ)pλ;

(ii) ω(eλ) = hλ;

(iii) ω(sλ) = sλ′ ;6

(iv) ω is an isometry.

Proof. (i) This is almost immediate from the definition:

ω(pλ) = ω(pλ1
) · · ·ω(pλ`(λ)) = (−1)λ1−1pλ1

· · · (−1)λ`(λ)−1pλ`(λ)

= (−1)|λ|−`(λ)pλ.
6One basis seems to be missing from this list, indeed we have not given ω(mλ). In fact, the

monomial symmetric functions get sent to the forgotten symmetric functions by ω, and of course
vice versa.
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(ii) We can easily show that ω(en) = ω(hn) for all n ∈ N by taking ω of both
equations in Theorem 1.40 and using point (i). The full statement then
follows by algebraic extension.

(iii) Now this is an easy consequence of Theorem 1.43 (the Jacobi-Trudi identities)
and point (ii).

(iv) Using point (i), we get for any partitions λ, µ that

〈ω(pλ), ω(pµ)〉 = (−1)|λ|−`(λ)(−1)|µ|−`(µ)〈pλ, pµ〉

=
(

(−1)|λ|−`(λ)
)2
zλδλ,µ = zλδλ,µ = 〈pλ, pµ〉.

And so the result follows from the linearity of the scalar product and the fact
that the pλ linearly generate ΛK.

1.5 Plethysm

Plethysm is a type of notation that will make many symmetric function identities
easier to write down and play with. Its approach is to think of symmetric functions
as processes on some expressions involving some set of variables. In particular, we
interpret pk as the process that elevates all the variables to the power k. We then
use the fact that any symmetric function can be expressed in terms of the pk, to
extend this process to any element of ΛK. Let us now be a bit more precise.

Consider f ∈ Λ
(n)
K . Since {pλ}λ`n linearly generates Λ

(n)
K , we may write

f =
∑
λ`n

fλpλ

for some fλ ∈ K. By Q((z1, z2, . . . )) we denote the formal Laurent series with
variables z1, z2, . . . and coefficients in Q.

Definition 1.58. Given f ∈ Λ
(n)
K and A ∈ Q((z1, z2, . . . )) we define the plethystic

substitution of A in f by

f [A] :=
∑
λ`n

fλ

`(λ)∏
i=1

A(zλi1 , z
λi
2 , . . . ) (1.59)

Clearly, for all k we have pk[A] = A(zk1 , z
k
2 , . . . ) so we can rewrite (1.59) as

f [A] :=
∑
λ`n

fλ

`(λ)∏
i=1

pλi [A]

In this sense, we can think of plethystic evaluation in A as the unique process that
is additive, multiplicative, and which is specified of the pk generators of ΛK.

We insist on the fact that here we denote the variables of A by z1, z2, . . . , but
these are just arbitrary names of course. In what follows its variables might be
named x1, x2, . . . , q, t, u, y1, y2, . . . or anything else.
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It is important to note that in general, plethystic substitution does not commute
with other operations. For example, it does not commute with the evaluation of
some variable at a number (see Remark 1.64). This strange behaviour often causes
the mathematician first encountering plethysm some confusion. However, the tool
is too useful and important to do without.

It is not hard to see that, given f ∈ ΛK, if g ∈ Λ ⊆ Q((x1, x2, . . . )) then
f [g] ∈ Λ. Furthermore, this operation is associative.

Example 1.60. If A = X := x1 + x2 + · · · we have

f [X] =
∑
λ`n

fλ

`(λ)∏
i=1

(xλi1 + xλi2 + · · ·︸ ︷︷ ︸
pλi (x1,x2,... )

) =
∑
λ`n

fλpλ(x1, x2, . . . ) = f(x1, x2, . . . )

Notation 1.61. Until now we have used the capital letters X = (x1, x2, . . . ) and
Y = (y1, y2, . . . ) to denote countably infinite alphabets of variables. In light of the
example above, when using plethysm, we will from now on identifyX := x1+x2+· · ·
and Y := y1+y2+· · · so that f [X] indicates the symmetric function in this alphabet.

Definition 1.62. We introduce a special formal variable ε which has the property
εd = (−1)d.

This is essentially an artifice to introduce a notion of −1 that is treated as a
variable and not a number during plethystic substitution.

Let us prove some general facts about plethysm.

Proposition 1.63. For f ∈ Λ
(d)
K and u a variable we have

(i) f [uX] = udf [X]

(ii) f [εX] = (−1)df [X]

(iii) f [−X] = (−1)dωf [X]

(iv) f [−εX] = ωf [X]

Proof. (i) Since u is an variable, we understand uX as an element ofQ((u, x1, x2, . . . )).
It follows that

f [uX] =
∑
λ`d

fλ

`(λ)∏
i=1

pλi [uX] =
∑
λ`d

fλ

`(λ)∏
i=1

uλipλi [X]

=
∑
λ`d

fλu
λ1+···+λ`(λ)pλ[X] = udf [X]

(ii) This now follows from the previous point and the definition of ε.

(iii) We have

f [−X] =
∑
λ`d

fλ

`(λ)∏
i=1

pλi [−X] =
∑
λ`d

fλ

`(λ)∏
i=1

(−pλi [X]) =
∑
λ`d

fλ(−1)`(λ)pλ[X]

=
∑
λ`d

fλ(−1)2d(−1)−`(λ)pλ[X] = (−1)d
∑
λ`d

fλ (−1)d−`(λ)pλ︸ ︷︷ ︸
ω(pλ)

[X]

= (−1)dω

(∑
λ`d

fλpλ[X]

)
= (−1)dωf [X]
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(iv) This follows easily from applying (iii) followed by (ii) for X 7→ εX.

Remark 1.64. Here we see why, in general, plethystic substitution involving a vari-
able, and substitution of that variable do not commute. For example take f ∈ Λ(n)

then

f [u]
∣∣
u7→2

= (unf [1])
∣∣
u7→2

= 2nf [1] f [2] = 2f [1].

However there are some variable substitutions that do commute with plethystic
substitution. Consider f [A(u)], for some A(u) ∈ Q((u, z1, z2, . . . )). Then the sub-
stitution u 7→ vk yields the same result when applied before or after the plethystic
substitution, and this for all k ∈ N. In particular, this holds for u 7→ 1. Indeed, we
see from the definition of plethysm that u and vk get treated in the same way by
plethystic evaluation. The same may be said for u 7→ 0 or u 7→ vk1v

l
2.

Plethystic Cauchy formula

A very simple application of plethysm coupled with the results concerning dual
basis discussed above, yields the following nontrivial result.

Theorem 1.65 (Cauchy identity). For every pair of dual bases {uλ | λ ` n, n ∈
N}, {vλ | λ ` n, n ∈ N} of ΛK (with respect to the Hall scalar product), we have

hn[XY ] =
∑
λ`n

uλ[X]vλ[Y ].

Proof. It is clear from their definition (see Notation 1.61) that XY designates the
expression

∑
i,j∈P xiyj and so hn[XY ] is the symmetric function hn evaluated in

the alphabet {xiyj}i,j∈P. Evaluating the generating function of hn[XY ] at ζ = 1
then gives (see (1.38)) ∑

n∈N
hn[XY ] =

∏
i,j∈P

1

1− xiyj
.

Thus the conclusion follows from extracting the degree n part of Propositions 1.51
and applying 1.50.

Corollary 1.66. For all n ∈ N,

hn[XY ] =
∑
λ`n

sλ[X]sλ[Y ] en[XY ] =
∑
λ`n

sλ′ [X]sλ[Y ]

Proof. The first identity follows directly from Theorem 1.65 and Proposition 1.50.
The second identity is obtained from the first by applying ω, but only to the X
variables. In other words, consider the base field K to contain the Y variables. The
result then follows from the fact that ω(sλ) = sλ′ (Proposition 1.57).

Corollary 1.67. For any f ∈ ΛK with K a field containing variables y1, y2, . . . we
have

f [Y ] =

〈
f [X],

∑
n∈N

hn[XY ]

〉
.
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Proof. Consider {uλ}λ∈ Par and {vλ}λ∈ Par a pair of dual basis of ΛK then by The-
orem 1.65 〈

f [X],
∑
n∈N

hn[XY ]

〉
=
∑
n∈N

vλ[Y ]〈f [X], uλ[X]〉 = f [Y ],

where the last equality comes from the duality of the uλ and vλ.

1.6 Addition formula

It will often be useful to consider symmetric functions in the concatenation of two
alphabets of variables, eg. (x1, x2, . . . ) and (y1, y2, . . . ). Plethystically, we write
this as f [X + Y ] (see Example 1.60). We denote the indices 1 < 2 < · · · < 1 <
2 < · · · of this concatenated alphabet, where the unbarred letters index X and
the barred letters index Y . With this index convention, we give a sense to the
definitions of mλ, en, hn, pn above. For Schur functions, we extend the definition
of semi-standard Young tableau to fillings in alphabet that is the union of barred
and unbarred positive integers, ordered as above.

Proposition 1.68. For λ ∈ Par,

sλ[X + Y ] =
∑
µ⊆λ

sµ[X]sλ/µ[Y ]

Proof. Consider the semi-standard filling of the Young diagram of λ in the alphabet
1 < 2 < · · · < 1 < 2 < · · · . The cells filled with an unbarred letter form a partition
µ ⊆ λ and the cells filled with a barred letter form a skew tableau of shape λ/µ.
The result now follows from the definition of Schur functions.

See [LR11] for a more formal proof. Using the fact that s(1n) = en and s(n) =
hn, we immediately deduce the following special cases.

Corollary 1.69. The following summation formulae hold

en[X + Y ] =

n∑
i=0

ei[X]en−i[Y ] hn[X + Y ] =

n∑
i=0

hi[X]hn−i[Y ]

Corollary 1.70. The following subtraction formula holds

en[X − Y ] =

n∑
i=0

ei[X]hn−i[Y ].

Proof. This follows directly from Proposition 1.69 combined with point (ii) of
Proposition 1.57 and point (iii) of Proposition 1.63.

Proposition 1.68 may be used to establish the following non-trivial result.

Theorem 1.71. For λ, µ, ν ∈ Par we have,

〈sµsν , sλ〉 = 〈sν , sλ/µ〉.
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Proof. Define the coefficients cλµν and c̃λµν via the expansions

sµsν =
∑
λ

cλµνsλ sλ/µ =
∑
ν

c̃λµνsν .

Consider three alphabets of variables X,Y and Z. Then we have∑
λ,µ,ν

c̃λµνsµ[X]sν [Y ]sλ[Z] =
∑
λ,µ

sµ[X]sλ/µ[Y ]sλ[Z]

(by 1.68) =
∑
λ

sλ[X + Y ]sλ[Z]

(by 1.66) =
∑
n∈N

hn[(X + Y )Z] =
∑
n∈N

hn[XZ + Y Z]

(by 1.69) =
∑
n∈N

n∑
i=1

hi[XZ]hn−i[Y Z]

=

(∑
n∈N

hn[XZ]

)(∑
m∈N

hn[Y Z]

)

(by 1.66) =

(∑
µ

sµ[X]sµ[Z]

)(∑
ν

sν [Y ]sν [Z]

)
=
∑
µ,ν

sµ[X]sµ[Z]sν [Z]sν [Y ]

=
∑
µ,ν,λ

cλµνsµ[X]sλ[Z]sν [Y ].

It follows that7 cλµν = c̃λµν and so the thesis is true.

Remark 1.72. Theorem 1.71 gives another proof of Proposition 1.55.

Finally, we detail another special case of Proposition 1.68.

Corollary 1.73. For all λ ` n and variable z

sλ[1− z] =

{
(−z)k(1− z) if λ = (n− k, 1k) for some k ∈ {0, . . . , n− 1}
0 otherwise.

Proof. Using Proposition 1.68, with X = 1 and Y = −z we get

sλ[1− z] =
∑
µ⊆λ

sµ[1]sλ/µ[−z]

(by 1.63.(iii)) =
∑
µ⊆λ

sµ[1](−1)|λ/µ|s(λ/µ)′ [z]

By the definition of a Schur function (1.28), sµ[1] = 0 unless µ = (r) for some
r ∈ N. Similarly s(λ/µ)′ [z] = 0 unless (λ/µ)′ = (s) or equivalently, λ/µ = (1s),

7These common coefficients are called the Littlewood-Richardson coefficients.
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for some s ∈ N. Given a λ ` n that is not a hook partition, it is clear that for
any (r) ⊆ λ, the skew partition λ/(r) is not a column partition. This implies the
second statement.

Now consider λ = (n− k, 1k), there are exactly two r ∈ N such that λ/(r) is a
column partition: r = n− k in which case λ/(r) = (1)k and r = n− k− 1 in which
case λ/(r) = (1k+1). So

s(n−k,1k) = sn−k[1](−1)ks(1k)′ [z] + sn−k−1[1](−1)k+1s(1k+1)′ [z]

= (−1)ks(k)[z] + (−1)k+1s(k+1)[z]

= (−1)kzk + (−1)k+1zk+1 = (−z)k(1− z).

1.7 Translation and multiplication operator

This section follows [GHT99].

Definition 1.74. Define two linear operators ∂sµ , sµ on Λ defined on the Schur
basis by

∂sµsλ := sλ/µ sµsλ := sµsλ

Definition 1.75. For Z an alphabet of variables, we define the translation opera-
tor , denoted τZ by τZ(f [X]) := f [X + Z]8.

Definition 1.76. For Z an alphabet of variables, we define the multiplication
operator , denoted ρZ by ρZ(f [X]) :=

∑
n∈N hn[XZ]f [X].

We give an alternate description.

Proposition 1.77. We have the following expansions

(i) τZ =
∑
µ sµ[Z]∂sµ ;

(ii) ρZ =
∑
µ sµ[Z]sµ.

Proof. We show (i) on the Schur basis and conclude by linearity of τZ . For all
partitions λ, using Definition 1.75 and Proposition 1.68 we get

τZsλ[X] = sλ[X + Z] =
∑
µ

sµ[Z]sλ/µ[X] =
∑
µ

sµ[Z]∂sµsλ[X].

For (ii), take f [X] ∈ Λ. We have

ρZf [X] =
∑
n∈N

hn[XZ]f [X] =
∑
λ

sλ[X]sλ[Z]f [X] =
∑
λ

sλ[Z]sλ(f [X]).

8The τz operator replaces X by X + Z in any plethystic expression. For example we have
τZf [−X] = f [−(X + Z)] 6= f [−X + Z].
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Combined with Theorem 1.71, these expansions imply that τZ et ρZ are adjoint
operators for the Hall scalar product.

Corollary 1.78. For any f, g ∈ Λ, we have 〈τZf, g〉 = 〈f, ρZg〉.

Proof. We show that the equality holds on the Schur basis and extend by linearity.
Consider λ, µ ∈ Par and apply Proposition 1.77.(i)

〈τZsλ, sµ〉 =
∑
ν

sν [Z] 〈∂sνsλ, sµ〉

(by 1.74) =
∑
ν

sν [Z]
〈
sλ/ν , sµ

〉
(by 1.71) =

∑
ν

sν [Z] 〈sλ, sνsµ〉

(by 1.74) =
∑
ν

sν [Z] 〈sλ, sνsµ〉

(by 1.77.(ii)) = 〈sλ, ρZsµ〉

Corollary 1.79. For z a single variable we have τz =
∑
k∈N z

kh⊥k .

Proof. For Z = {z}, Proposition1.77.(i) yields

τz =
∑
µ

sµ[z]∂sµ

and sµ[z] = 0 except for µ = (k) for some k ∈ N. The thesis thus follows from
Proposition 1.55.



Chapter 2

Macdonald Polynomials

In 1988, I. G. Macdonald introduced the family of symmetric functions that is most
central to this thesis (see [Mac88] and Chapter VI of [Mac95]). These remarkable
polynomials, depending on two parameters q and t, play a unifying role with respect
to other important families of symmetric functions. Indeed, for suitable choices of
q and t, they specialise to Schur functions, elementary symmetric functions, mono-
mial symmetric functions, Hall-Littlewood symmetric functions, Jack symmetric
functions and zonal symmetric functions. Furthermore, Macdonald’s polynomials
have deep relations to affine Hecke algebras and Hilbert schemes. Accommodating
these parameters, from now on we will work over the field Q(q, t).

Definition 2.1. Let Λ denote the ring ΛQ(q,t). The default variables of an element
of Λ are x1, x2, . . . . An element of this ring will thus be denoted by f , f [X] or
f [X; q, t], depending on the context.

Careful! In this last notation, the order of q and tmatters: in general f [X; q, t] 6=
f [X; t, q].

Example. If f [X; q, t] = qs(1,1) + ts(2) then f [X; t, q] = ts(1,1) + qs(2).

2.1 Definition

There are multiple closely related families of symmetric functions that are referred
to as Macdonald polynomials. We present here Macdonald’s original definition,
followed by the variant we will be studying throughout the text, called modified
Macdonald polynomials.

Original definition

Previously (Proposition 1.53), we proved that the Schur functions are the unique
symmetric functions obtained from an orthogonalisation process using the Hall
scalar product. Applying the same process but using a different scalar product en-
genders a number of well-known symmetric function families (e.g. Hall-Littlewood
and Jack polynomials). Macdonald’s original definition of his polynomials follows
the same tune.

25
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Let us start by extending the definition of the Hall scalar product (1.48) to the
q, t-setting.

Definition 2.2. Given a partition λ, we set

Zλ(q, t) := zλ

`(λ)∏
i=1

1− qλi
1− tλi ∈ Q(q, t).

Define the q, t-scalar product on Λ by setting

〈pλ, pµ〉q,t = δλ,µZλ(q, t)

and extending linearly.

We can rewrite this scalar product using plethysm. Indeed Zλ(q, t) = zλpλ

[
1−q
1−t

]
and so by linearity, for all f, g ∈ Λ we get

〈f, g〉q,t = 〈f [X], g[X]〉q,t =

〈
f [X], g

[
X

1− q
1− t

]〉
.

One readily concludes that whenever q = t, the q, t-scalar product coincides
with the Hall scalar product.

Theorem 2.3. [Mac95, Chapter VI, (4.7)] There is a unique symmetric function
basis {Pλ}λ∈Par of ΛQ(q,t) that satisfies the following properties

(I) 〈Pλ, Pµ〉 = 0 whenever λ 6= µ

(II) Pλ = mλ +
∑
µ≺λ�λµmµ

where the �λµ are some elements in Q(q, t). These symmetric functions are known
as Macdonald Polynomials.

The proof of this statement involves first showing the existence of such polyno-
mials by constructing a self-adjoint linear operator on Λ of which the eigenvectors
satisfy the wanted properties. Next, the argument for the unicity of these operators
is entirely analogous to the one made for Schur functions; see Propostition 1.53.

This definition is quite useless for actually computing these objects, for which
something called the tableau formula is much more suited. For a nice exposition of
this formula see the “Macdonald P polynomials” entry in Alexandersson’s excellent
symmetric function catalog [Ale].

We have the following specialisations

Pλ(X; q, q) = sλ Pλ(X; q, 1) = mλ Pλ(X; 1, t) = eλ′

Example. We give here the (computer-generated) Schur expansions of the Mac-
donald polynomials of degree 3. Not because we will need them but just to get
some idea of what they look like.

P3 =

( −q3 + q2t+ qt− t2
−q3t2 + q2t+ qt− 1

)
s1,1,1 +

(
q2 − qt+ q − t
−q2t+ 1

)
s2,1 + s3

P2,1 =

(
qt− t2 + q − t
−qt2 + 1

)
s1,1,1 + s2,1

P1,1,1 =s1,1,1
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Modified version

It turns out that a slightly modified version of Macdonald’s definition yields a
family of even more interesting functions, that are more “combinatorial” than their
counterparts.

Definition 2.4. Given a partition λ the modified Macdonald polynomials1are ob-
tained from Pλ via the following normalisation and substitution:

Hλ[X; q, t] := Pλ

[
X

1− 1/t
; q, t−1

](
tn(λ)

∏
c∈λ

(1− qa(c)t−l(c)−1)

)
.

Remark 2.5. It is important to clarify some ambiguous notation. When f ∈ Λ and
A(q, t, x1, x2, . . . ) ∈ Q((q, t, x1, x2, . . . )), the expression

f [A(q, t, x1, x2, . . . ); q, t
−1]

can reasonably refer to two distinct objects, depending if the substitution of t by
t−1 occurs before or after the plethystic evaluation. We have encountered both rules
in the literature. In this text, we follow [Hai99] and intend that the t substitution
occurs before the plethystic evaluation, i.e.

f [A(q, t, x1, x2, . . . ); q, t
−1] := f

∣∣
t=t−1 [[A(q, t, x1, x2, . . . )]

6= f [[A(q, t, x1, x2, . . . )]
∣∣
t=t−1 .

We will use the same convention for other substitutions of q or t denoted in this
manner. Here we have

Pλ
∣∣
t=t−1

[
X

1− 1/t

]
= Pλ

[
X

1− t

] ∣∣∣∣∣
t=t−1

.

Example. Let us look at the Schur expansions of the modified Macdonald poly-
nomials of degree 3:

H3 = q3s1,1,1 +
(
q2 + q

)
s2,1 + s3

H2,1 = qts1,1,1 + (q + t) s2,1 + s3

H1,1,1 = t3s1,1,1 +
(
t2 + t

)
s2,1 + s3

We immediately notice that the coefficients look much nicer here, indeed they all
live in N[q, t].

This observation holds in general. Set Kλ,µ(q, t) ∈ Q(q, t) to be the coefficients
such that

Hλ =
∑
µ

Kλ,µ(q, t)sλ, (2.6)

1In the majority of the literature, these polynomials are denoted by H̃λ. We depart from this
notation in this thesis, since we will have no need for the other family of polynomials that are
usually denoted by Hλ.
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called the modified q, t-Kostka coefficients2. Then Kλ,µ(q, t) ∈ N[q, t], i.e. the
modified Macdonald polynomials are Schur positive. This is a very deep fact that
was eventually proved by Haiman, using tools from algebraic geometry [Hai01].

We record two important properties of these polynomials, of which we omit the
proof.

• [Hai99, Proposition 2.5] For all λ ∈ Par,

Hλ[X; q, t] = Hλ′ [X; t; q]. (2.7)

• [GH96, Theorem 2.7] For all λ ∈ Par,

Hλ[X; q, t] = qn(λ
′)tn(λ)ωHλ[X; q−1, t−1]. (2.8)

The next result, see [Hai99, Proposostion 2.6], gives a characterisation of the
modified Macdonald polynomials.

Proposition 2.9. Let λ ` n. The modified Macdonald polynomials Hλ satisfy and
are uniquely characterised by

(I) Hλ[X(1− q)] =
∑
µ�λ�λ,µsµ;

(II) Hλ[X(1− t)] =
∑
µ�λ′ �λ,µsµ ;

(III) 〈Hλ, s(n)〉 = 1;

for some �λ,µ,�λ,µ ∈ Q(q, t).

Proof. We focus on the left hand side of (II).

Hλ[(1− t)X] = Hλ[−t(1− 1/t)X]

(by 1.63.(i)) = t|λ|Hλ[(1− 1/t)(−X)]

(by 2.4) = tnPλ

[
(1− 1/t)(−X)

1− 1/t
; q, t−1

](
tn(λ)

∏
c∈λ

(1− qa(c)t−l(c)−1)

)

= tn

(
tn(λ)

∏
c∈λ

(1− qa(c)t−l(c)−1)

)
Pλ[−X; q, t−1].

In other words, Hλ[(1− t)X] is merely a scalar multiple of Pλ[−X; q, t−1] and thus
–using Proposition 1.63.(iii)– a multiple of ωPλ[X; q, t−1]. By definition Pλ[X, q, t]
can be expanded in terms of {mµ}µ�λ and thus –using Remark 1.34– in terms of
{sµ}µ�λ. Since Schur functions do not depend on t the same holds for Pλ[X; q, t−1].
Taking ω of the Schur expansion of Pλ[X; q, t−1] gives an expansion in terms of
{sµ′}µ�λ = {sµ}µ′�λ = {sµ}µ�λ′ , where the second equality follows from Proposi-
tion 1.18; this proves (II). Now (I) can be deduced directly by switching q and t in
(II) and using Equation (2.7). As for the final point, in [Mac95, page 362] one can
find a fact about q, t-Kostka polynomials that when translated to their modified
counterparts implies (III).

2Again, the more common notation for these coefficients is K̃λ,µ(q, t)
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We conclude by proving that these three properties in fact determineHλ uniquely.
Suppose that there exist H ′λ that satisfy the same properties. Using (I) for H ′λ im-
plies that for some coefficients �λµ ∈ Q(q, t)

H ′λ[X(1− q)] =
∑
µ�λ

�λµsµ

From (I) applied to the Hλ and the fact that the inverse of an upper triangular
matrix is upper triangular, we know that for all µ ` n, sµ may be expanded in the
{Hµ[X(1− q)]}ν�µ, so there exist �̃µν ∈ Q(q, t) such that

H ′λ[X(1− q)] =
∑
µ�λ

�λµ
∑
ν�µ

�̃µνHν [X(1− q)]

In other words H ′λ[X(1 − q)] can be expanded in {Hν [X(1 − q)]}ν�λ and thus,
setting X 7→ X

1−q , we have that H ′λ can be expanded in {Hν}ν�λ.
Similarly, using (II) for H ′λ implies that for some coefficients �λµ ∈ Q(q, t)

H ′λ[X(1− t)] =
∑
µ�λ′

�λµsµ.

From (I) applied to the Hλ and the fact that the inverse of a lower anti-triangular3
matrix is upper anti-triangular, we know that for all µ ` n, sµ may be expanded
in the {Hµ[X(1− t)]}ν�µ′ , so there exist �̃µν ∈ Q(q, t) such that

H ′λ[X(1− t)] =
∑
µ�λ′

�λµ
∑
ν�µ′

�̃µνHν [X(1− t)].

By Proposition 1.18, this implies that H ′λ may be expanded in terms of {Hµ}ν�λ.
Therefore (III) implies H ′λ = Hλ.

Let us immediately put this characterisation to use and establish a nice little
lemma.

Lemma 2.10. For all n ∈ N, we have

hn[X] = hn

[
1

1− q

]
H(n)[(1− q)X].

Proof. Since (n) is the maximal element of (Par(n),�), Proposition 2.9 (I) implies
that there exists some c(q, t) ∈ Q(q, t) such that H(n)[(1 − q)X] = c(q, t)s(n)[X].
Replacing X by X

1−q we obtain

H(n)[X] = c(q, t)s(n)

[
X

1− q

]
.

3We define a lower anti-triangular matrix to be any M ∈ Matn×n(K) such that Mi,j = 0 for
all j ≤ n− i and an upper anti-triangular matrix is any N ∈ Matn×n(K) such that Ni,j = 0 for
all j > n− i+ 1.
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Taking the scalar product with s(n)[X] and using Proposition 2.9 (III), we get

1 = c(q, t)

〈
s(n)[X], s(n)

[
X

1− q

]〉
and thus, since s(n) = hn

1

c(q, t)
=

〈
s(n)[X], hn

[
X

1− q

]〉
Using 1.65 with Y = 1

1−q

1

c(q, t)
=

〈
s(n)[X],

∑
λ`n

sλ[X]sλ

[
1

1− q

]〉

(by self-duality of the Schur) = s(n)

[
1

1− q

]
= hn

[
1

1− q

]
and the thesis follows.

2.2 q-analogues

Since we are now working with symmetric functions over the two parameter field
Q(q, t), we will often run into particular expressions involving one of these param-
eters that deserve some attention.

The q-analogue of a formula is a generalisation involving a parameter q that
reduces to the original form when q → 1. In this section, we introduce some
standard q-analogues and some notable results about them.

Definition 2.11. Let n, k ∈ N with 0 ≤ k ≤ n. We define

• [n]q := 1 + q + · · ·+ qn−1 = 1−qk
1−q ;

• [n]q! :=
∏n
i=1[i]q;

•
[
n
k

]
q

:=
[n]q !

[k]q ![n−k]q ! .

The following notation will facilitate the discussion.

Definition 2.12. For n ∈ N and any x we define the q-Pochammer symbol

(x; q)n :=

n−1∏
i=0

(1− qix).

Cauchy gave us the following result (see [Hag08, Corollary 1.8.1] .

Theorem 2.13 (q-binomial Theorem). For any x and n ∈ N

(x; q)n =

n∑
k=0

(−1)kq(
k
2)
[
n

k

]
q

xk.
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Let us make some observations.

(q; q)n = (1− q)(1− q2) · · · (1− qn)

[n]q! =
(q; q)n

(1− q)n[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
=

(qn−k+1; q)k
(q; q)k

(2.14)

This motivates the following extension of the definition of
[
n
k

]
q
.

Definition 2.15. For n, k ∈ Z, we set[
n

k

]
q

:=

{
(qn−k+1;q)k

(q;q)k
when k ≥ 0

0 when k < 0
.

This is an extension of Definition 2.11, because both definitions coincide when
0 ≤ k ≤ n.

We make some further observations.

• If n ≥ 0 and k > n, then k − n − 1 ≥ 0 and k − n − 1 ≤ k − 1 so the
product (qn−k+1; q)k =

∏k−1
i=0 (1− qn−k+1+i) contains the factor (1− q0) and

so
[
n
k

]
q

= 0.

• For any x, (x; q)0 is the empty product, equal to 1. So for all n ∈ Z,
[
n
0

]
q

= 1.

• Clearly,

for 0 ≤ k ≤ n:
[
n

k

]
q

=

[
n

n− k

]
q

. (2.16)

This does not always hold for more general k and n. For example if n = −1

and k = 1 then
[
n
k

]
q

=
[−1

1

]
q

= (q−1;q)1
(q;q)1

= 1−q−1

1−q and
[
n

n−k
]
q

=
[−1
−2
]

= 0.

Proposition 2.17 (q-Pascal identities). For any n, k ∈ Z[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

. (2.18)

and,

for 0 ≤ k ≤ n:
[
n

k

]
q

=

[
n− 1

k

]
q

+ qn−k
[
n− 1

k − 1

]
q

. (2.19)

Proof. Equation (2.19) is easily deduced from (2.18) and (2.16). Thus it suffices to
prove (2.18).

• For k < 0, we get 0 + 0 = 0.

• For k = 0 and any n, we get 1 = 1 + 0.
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• For k > 0 and n = 0, we already observed that
[
n
k

]
q

= 0. So we have to show
that

qk
[−1

k

]
q

+

[ −1

k − 1

]
q

= 0.

We do this by showing that for all k ≥ 0[−1

k

]
q

=
(q−k; q)k

(q; q)k
=

k−1∏
i=0

1− q−k+i
1− qi+1

= q
∑k−1
i=0 (−k+i)

k−1∏
i=0

qk−i − 1

1− qi+1

= q−
∑k
i=1 i(−1)k

k−1∏
i=0

1− qk−i
1− qi+1

= q−(k+1
2 )(−1)k

∏k
i=1 1− qi∏k
i=1 1− qi

= (−1)kq−(k+1
2 ).

Thus the result follows from the identity k −
(
k+1
2

)
= −

(
k
2

)
.

• For k > 0 and n 6= 0, we use the identity

1 =
qk(1− qn−k)

1− qn +
1− qk
1− qn

to write [
n

k

]
q

=
qk(1− qn−k)

1− qn
(qn−k+1; q)k

(q; q)k
+

1− qk
1− qn

(qn−k+1; q)k
(q; q)k

= qk
(qn−k; q)k

(q; q)k
+

(qn−k+1; q)k−1
(q; q)k−1

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

.

We close the section with the following classical result (see [Sta99, Theorem 7.21.2,
Corollary 7.21.3]).

Proposition 2.20. For n, k ∈ N

ek[[n]q] = q(
k
2)
[
n

k

]
q

hk[[n]q] =

[
n+ k − 1

k

]
q

.

Furthermore,

ek

[
1

1− q

]
= q(

k
2) 1

(q; q)k
hk

[
1

1− q

]
=

1

(q; q)k
.

2.3 Star scalar product

We define another scalar product on Λ for which the modified Macdonald polyno-
mials are orthogonal.
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Definition 2.21. We define the star scalar product on Λ by setting

〈pλ, pµ〉∗ := (−1)|λ|−`(λ)zλ

`(λ)∏
i=1

(1− qλi)(1− tλi)

 δλ,µ.

Definition 2.22. Set M := (1− q)(1− t), we define the operator φ on Λ by the
plethysm4

φf [X] := f [MX].

We will also use the following notation

f∗ = f∗[X] := φ−1f [X] = f

[
X

M

]
The following result [GHT99, Proposition 1.8] is an elegant way to express the

star scalar product in terms of the Hall scalar product 1.48.

Proposition 2.23. For all f, g ∈ Λ we have

〈f, g〉∗ = 〈φωf, g〉 = 〈ωφf, g〉

Proof. Let us first show that φ and ω commute, and thus that the second equality
holds. Indeed, using Proposition 1.57.(iv)

ωφf [X] = ωf [MX] = f [−εMX] = f [M(−εX)] = φf [−εX] = φωf [X].

Now Consider λ, µ partitions and consider

〈ωφ−1pλ, pµ〉∗ =

〈
ω

(
pλ

[
X

(1− q)(1− t)

])
, pµ

〉
∗

=
1∏`(λ)

i=1 (1− qλi)(1− tλi)
〈ωpλ[X], pλ〉∗

by 1.57.(i) =
(−1)|λ|− `(λ)∏`(λ)

i=1 (1− qλi)(1− tλi)
〈pλ[X], pµ〉∗

by 2.21 =
(

(−1)|λ|− `(λ)
)2 ∏`(λ)

i=1 (1− qλi)(1− tλi)∏`(λ)
i=1 (1− qλi)(1− tλi)

zλδλ,µ

= zλδλµ = 〈pλ, pµ〉.

Since {pλ}λ∈Par linearly generates Λ and ωφ−1 is a linear bijection, the result
follows.

Next, we translate Theorem 1.65 to the 〈·, ·〉∗-setting.
Proposition 2.24. For all n ∈ N and {uλ}λ`n, {vλ}λ`n a pair of dual basis for
the star scalar product we have

en

[
XY

M

]
=
∑
λ`n

uλvλ

4The φ operator replaces X by MX in any plethystic expression. For example we have
φf [X + 1] = f [MX + 1] 6= f [M(X + 1)].
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Proof. By duality and Proposition 2.23 we have

δλ,µ = 〈vλ, uλ〉∗ = 〈φωvλ, uµ〉

In other words {φωvλ}λ`n and {uλ}λ`n are dual for the Hall scalar product. Using
the Cauchy identity 1.52 we may conclude that

hn[XY ] =
∑
λ`n

φωvλ[X] · uλ[Y ].

Finally, we will apply ωφ−1 to this equation, but only to the X variables. More
precisely, we consider K = Q(q, t, y1, y2, . . . ) and apply the morphism ωφ−1 : ΛK →
ΛK. For any f ∈ ΛK we have

ωφ−1(f [XY ]) = f

[
−ε X

M
Y

]
= (ωφ−1f)[XY ]

so on the left hand side, we get ωhn
[
XY
M

]
= en

[
XY
M

]
. On the right hand side, by

linearity, we get ∑
λ`n

ωφ−1 (φωvλ[X]) · uλ[Y ] =
∑
λ`n

vλ[X]uλ[Y ].

The following is the star scalar product equivalent of Corollary 1.67. Using
Proposition 2.24, the proof is entirely analogous.

As mentioned above, our interest in the scalar product comes mainly from the
following result (see [GHT99, Corollary 1.4]).

Proposition 2.25. The modified Macdonald polynomials are orthogonal with re-
spect to the star scalar product:

〈Hλ, Hµ〉∗ := wλδλ,µ

where wλ :=
∏
c∈λ

(
qaλ(c) − tlλ(c)+1

) (
tlλ(c) − qaλ(c)+1

)
Therefore, using Proposition 2.24 we get the following formula.

Corollary 2.26. For all n ∈ N we have

en

[
XY

M

]
=
∑
λ`n

Hλ[X]Hλ[Y ]

wλ

Corollary 2.27. For all n ∈ N we have

en

[
XY

M

]
=
∑
λ`n

Hλ[X]Hλ[Y ]

wλ

We close this section by studying the effect of the f⊥ operator in the star scalar
product context.
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Proposition 2.28. For f, g, h ∈ Λ

〈(φωf)⊥g, h〉∗ = 〈g, fh〉∗.
In other words (φωf)⊥ is the dual of the multiplication with respect to the star
scalar product.

Proof. Indeed using Proposition 2.23 and Definition 1.54 we get

〈(φωf)⊥g, h〉∗ = 〈(φωf)⊥g, φω(h)〉 = 〈g, φω(f)φω(h)〉 = 〈g, φω(fh)〉 = 〈g, fh〉∗.

2.4 Nabla, Delta and Theta

In this section, we introduce a number of interrelated operators, for whom the
modified Macdonald polynomials are eigenvectors. These symmetric function op-
erators, and the combinatorics related to them, form the central object of this text.
We start by introducing shorthands for some partition constants (in Q(q, t)) that
will simplify their definition.

Definitions 2.29. For a nonempty partition λ we set

Tλ :=
∏
c∈λ

qa
′
λ(c)tl

′
λ(c) = qn(λ

′)tn(λ)

Bλ :=
∑
c∈λ

qa
′
λ(c)tl

′
λ(c)

Dλ := (1− q)(1− t)Bλ − 1

Πλ :=
∏

c∈λ\{(0,0)}

(
1− qa′λ(c)tl′λ(c)

)
.

We also set B∅ := 0 and T∅ := 1. See Definitions 1.12 and 1.13 for a reminder on
the notations used here.

Notice that
Tλ = e|λ|[Bλ]. (2.30)

Example. For λ = (4, 2) we have

λ =
T4,2 = q7t2

B4,2 = q3 + q2 + qt+ q + t+ 1

Π4,2 = (1− q)(1− q2)(1− q3)(1− t)(1− qt).
In [BGHT99, BG99], the authors introduced the first incarnation of the afore-

mentioned operators, opening up the field of study of q, t-combinatorics related to
symmetric function coefficients.

Definition 2.31. We define the nabla operator , ∇ : Λ→ Λ by setting

∇Hλ = TλHµ

and extending linearly.
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A particularly interesting instance of this operator is ∇en, which is the bi-
graded Frobenius characteristic of the module of diagonal harmonics [GH96, Hai02].
Furthermore, it has been conjectured in [HHL+05] conjectured a combinatorial
formula for this symmetric function, called the shuffle conjecture, now a theorem
[CM18].

Also in [BGHT99], the authors introduced closely related, more general families
of operators.

Definition 2.32. For f ∈ Λ we define the Delta operator and Delta prime operator
∆f ,∆

′
f : Λ→ Λ by setting

∆fHλ := f [Bλ]Hλ ∆′fHλ := f [Bλ − 1]Hλ

and extending linearly.

Recently, these operators have been getting a lot of attention since [HRW18]
conjectured combinatorial interpretations of ∆′en−k−1

en. In [Zab19], Zabrocki pro-
posed a module for which this symmetric function is conjectured to be its Frobenius
characteristic.

Proposition 2.33. For f ∈ Λ(n) and 1 ≤ k ≤ n, we have

(i) ∆enf = ∇f ;

(ii) ∆ekf = ∆′ekf + ∆′ek−1
f

(iii) ∆enf = ∆′en−1
f

Proof. (i) Indeed for any λ ` n, Bλ has exactly n terms so

∆enHλ = en[Bλ]Hλ = TλHλ = ∇Hλ,

(see Example 1.60) which suffices since {Hλ}λ`n is a basis of Λ(n).

(ii) This result relies on the elementary identity

for k ≥ 1 ek[Bλ] = ek[Bλ − 1] + ek−1[Bλ − 1], (2.34)

which is easily obtained by noticing that Bλ = 1 + · · · and so we get ek[Bλ],
by interpreting the two terms of ek[Bλ − 1] + ek−1[Bλ − 1] as either “leaving
or picking” this 1.

Thus checking on modified Macdonald polynomial basis

∆ekHλ = ek[Bλ]Hλ = (ek[Bλ − 1] + ek−1[Bλ − 1])Hλ

= ∆′ekHλ + ∆′ek−1
Hλ

(iii) This follows easily from the fact that

λ ` n⇒ en[Bλ] = en−1[Bλ − 1] = Tλ.



2.5. REFINEMENTS 37

The Delta and Nabla operators are self adjoint with respect to the star scalar
product. This follows directly from the fact that they are diagonal on the Mac-
donald polynomials, who form an orthogonal basis with respect to the star scalar
product (Proposition 2.25).

Lemma 2.35. For α an operator in {∇,∆f ,∆
′
f | f ∈ Λ} and g, h ∈ Λ we have

〈α(g), h〉∗ = 〈g, α(h)〉.

Finally, in [DIV20], we introduced a new family of related operators. First, a
preliminary definition.

Definition 2.36. Define the linear operator Π : ⊕n>0Λ(n) → ⊕n>0Λ(n) by setting,
for any nonempty partition λ

Π : Hλ 7→ ΠλHλ

and extending linearly.

Definition 2.37. For f ∈ Λ, we define the Theta operator Θf : Λ→ Λ by setting,

Θfg :=


Πf∗Π−1g if deg(g) > 0

Θfg = 0 if deg(g) = 0 and deg(f) > 0

Θfg = fg if deg(g) = 0 and deg(f) = 0.

We will mostly use one particular instance of this operator, Θek which we will
denote for short by Θk.

Here are some easy observations about this operator.

• Θf is linear for all f ∈ Λ.

• If f ∈ Λ(k) then Θf (Λ(n)) ⊆ Λ(n+k).

• Θ0 = Id.

2.5 Refinements

This section is devoted to the introduction of some interesting refinements of the n-
th elementary symmetric function. These particular refinements are so interesting
because they inherit some key properties from en, e.g. some sort of positivity on
application of ∇. More details will follow in later chapters.

The En,k refinement

In [GH02], the authors introduced the following family of symmetric functions (see
also [Hag08, 3.24]).
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Definition 2.38. Take n, k ∈ P with k ≤ n. We define the symmetric functions
En,k by way of the following expansion

en

[
X

1− z
1− q

]
=

n∑
k=1

(z; q)k
(q; q)k

En,k.

It is convenient to extend this definition to n, k ∈ N by setting En,0 = δn,0 and
En,k = 0 for k > n. We thus have, for all n, k ∈ N,

en

[
X

1− z
1− q

]
=
∑
k∈N

(z; q)k
(q; q)k

En,k

The following special cases are of particular interest.

• For z = qs+1 (see Remark 1.64) we get, by (2.14)

en[X[s+ 1]q] =

n∑
k=0

(qs+1; q)k
(q; q)k

En,k =

n∑
k=0

[
k + s

k

]
q

En,k. (2.39)

• For z = q we get

en =

n∑
k=0

En,k. (2.40)

Let us study the special case k = n.

Proposition 2.41. For n ∈ N

En,n =
(q; q)n

q(
n
2)

hn

[
X

1− q

]
.

Proof. Using Proposition 1.69, we may write

en

[
X

1− z
1− q

]
=

n∑
i=0

en−i

[
X

1− q

]
ei

[−zX
1− q

]

(by 1.63, 1.57) =

n∑
i=0

en−i

[
X

1− q

]
(−z)ihi

[
X

1− q

]
.

Thus, the coefficient of zn in this expression is

(−1)nhn

[
X

1− q

]
.

On the other hand, in the expression
n∑
k=0

(z; q)k
(q; q)k

En,k

the coefficient of zn is equal to∏n−1
i=0 (−qi)
(q; q)n

En,n = (−1)n
q(
n
2)

(q; q)n
En,n.

By Definition 2.38, these coefficients must coincide and the result follows by iso-
lating En,n.
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In [CL06], the authors prove an interesting link between the En,k and ω(pn),
which we will be relevant later.

Proposition 2.42. For n ∈ N

ω(pn) =

n∑
k=1

[n]q
[k]q

En,k.

Proof. On the one hand, using Corollary 1.66 we have

en

[
X

1− z
1− q

]
=
∑
λ`n

sλ

[
X

1− q

]
sλ′ [1− z]

(by 1.73) =
∑
λ`n

λ′=(n−k,1k):k∈{0,...n−1}

sλ

[
X

1− q

]
(−z)k(1− z)

=

n∑
k=1

s(k,1n−k)

[
X

1− q

]
(−z)k−1(1− z)

On the other hand, using Definition 2.38 we have

en

[
X

1− z
1− q

]
=

n∑
k=1

(z; q)k
(q; q)k

En,k

(by 2.12) =

n∑
k=1

(1− z)(zq; q)k−1
(q; q)k

En,k.

Combining these two expansions and simplifying (1 − z) before setting z = 1, we
get

n∑
k=1

(−1)k−1s(k,1n−k)

[
X

1− q

]
=

n∑
k=1

(q; q)k−1
(q; q)k

En,k =

n∑
k=1

1

(1− qk)
En,k. (2.43)

Using Theorem 1.47 with λ = ∅ we know that

ω(pn) = (−1)n−1pn = (−1)n−1
∑
µ

(−1)ht(µ)sµ

where the sum is over all border strips µ = µ/∅ of size n. But a partition that is a
border strip is simply a hook partition. So we get

ω(pn) = (−1)n−1
n∑
k=1

(−1)n−ks(k,1n−k) =

n∑
k=1

(−1)k−1s(k,1n−k)

Injecting this into (2.43) and using the linearity of plethystic evaluation we get

ω(pn)

[
X

1− q

]
=
ω(pn)[X]

1− qn
n∑
k=1

1

(1− qk)
En,k

which clearly implies the result.
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The Cα refinement

In [HMZ12] the authors stated a further important refinement.

Definition 2.44. For m ∈ N and f ∈ Λ, set

Cmf [X] := −q−m+1
∑
r∈N

q−rhm+r[X]hr[X(1− q)]⊥f [X].

Then for α ∈ Pk, define
Cα := Cα1Cα2 · · ·Cαk(1).

Example. We list Cα for all compositions α of 3:

C(3) =
1

q2
h3

C(2,1) =

(
1

−q

)
h(2,1) +

(−q + 1

−q2
)
h3

C(1,2) = − 1

q2
h(2,1) +

(−q + 1

−q3
)
h3

C(1,1,1) = h(1,1,1) +

(−2q2 + q + 1

q2

)
h(2,1) +

(
q3 − q2 − q + 1

q3

)
h3.

In Section 5 of the same paper the authors prove that the Cα are a refinement
of the En,k and thus of en.

Theorem 2.45. For n, k ∈ N and k ≤ n

En,k =
∑
α�n
`(α)=k

Cα

Using (2.40), the we deduce the following.

Corollary 2.46. For n ∈ N
en =

∑
α�n

Cα.



Chapter 3

Symmetric function identities

The way one tends to get theorems about symmetric functions is by playing around
with a whole lot of technical identities. This makes giving a self-contained presen-
tation of contemporary research in this subject a Sisyphean task. All the same,
omitting the ways in which the symmetric function identities we use are obtained
would make the discussion sterile; since without them, there would be no results.
We thus aim to walk a middle ground: we will state older and more involved iden-
tities without proof (but with a reference to one), whereas new or simpler ones will
be accompanied by an explanation.

3.1 Classical identities

We start by stating [GHT99, Theorem I.2], which turns out to be quite powerful
and underpins many a result in this thesis.

Theorem 3.1. For any f ∈ Λ and λ ∈ Par

〈f, τ1Hλ〉∗ = (∇−1τ−εf [X])
∣∣
X 7→Dλ

.

Corollary 3.2. For λ ∈ Par

Hλ[X + 1] =
∑
n,m∈N

hm

[
X

M

]
∇−1en

[
XDλ

M

]
.

Proof. Using Corollary 1.67 with Y = Dλ we get for any f ∈ Λ

(∇−1τ−εf [X])
∣∣
X 7→Dλ

=
∑
n∈N
〈∇−1τ−εf [X]), hn[DλX]〉

(by 2.23) =
∑
n∈N

〈
∇−1τ−εf [X], en

[
DλX

M

]〉
∗

(by 2.35) =
∑
n∈N

〈
τ−εf [X],∇−1en

[
DλX

M

]〉
∗

41
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(by 2.23) =
∑
n∈N

〈
τ−εf [X], φω∇−1en

[
DλX

M

]〉
(by 1.78) =

∑
n∈N

〈
f [X], ρ−εφω∇−1en

[
DλX

M

]〉
(by 1.76) =

∑
n,m∈N

〈
f [X], hm[−εX]φω∇−1en

[
DλX

M

]〉

(by 1.63, 2.22) =
∑
n,m∈N

〈
f [X], φω

(
hm

[
X

M

]
∇−1en

[
DλX

M

])〉

(by 2.23) =
∑
n,m∈N

〈
f [X], hm

[
X

M

]
∇−1en

[
DλX

M

]〉
∗

=

〈
f [X],

∑
n,m∈N

hm

[
X

M

]
∇−1en

[
DλX

M

]〉
∗

.

Since this string of equalities holds for all f ∈ Λ, Theorem 3.1 implies the thesis.

Macdonald-Koornwinder reciprocity

The following famous identity can be derived from [Mac95, VI (6.6)], but we give
a simpler proof from [GHT99, Theorem 3.3].

Theorem 3.3. (Macdonald-Koornwinder reciprocity) Let λ, µ ∈ Par and z any
variable, then

Hλ[1 + zDµ]∏
c∈λ(1− zqa′(c)tl′(c)) =

Hµ[1 + zDλ]∏
c∈µ(1− zqa′(c)tl′(c))

Proof. First of all, we remark that for all partitions λ

1∏
c∈λ(1− zqa′(c)tl′(c)) =

∑
n∈N

hn[zBλ]. (3.4)

To see this, consider (1.38) at ζ = 0 and the definition of Bλ (Definition 2.29).
Next we calculate, using Corollary 1.69, that for any pair of alphabets of vari-

ables X and Y

∑
n∈N

hn[X + Y ] =
∑
n∈N

n∑
i=0

hi[X]hn−i[Y ] =
∑
n,m∈N

hn[X]hm[Y ]. (3.5)

Using Corollary 1.67, with Y = zDµ we have

Hλ[1 + zDµ] =
∑
m∈N
〈Hλ[1 +X], hm[zDµX]〉. (3.6)
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So using (3.4) we get

Hλ[1 + zDµ]∏
c∈λ(1− zqa′(c)tl′(c)) =

∑
n∈N

hn[zBλ]Hλ[1 + zDµ]

(by 3.6) =
∑
n,m∈N

hn[zBλ] 〈Hλ[X + 1], hm[zDµX]〉

(by 3.2) =
∑

n,m,k,l∈N
hn[zBλ]

〈
hk

[
X

M

]
∇−1el

[
XDλ

M

]
, hm[zDµX]

〉

(by 1.76) =
∑

n,m,l∈N
hn[zBλ]

〈
ρ1/M∇−1el

[
XDλ

M

]
, hm[zDµX]

〉

(by 1.78) =
∑

n,m,l∈N
hn[zBλ]

〈
∇−1el

[
XDλ

M

]
, τ1/Mhm[zDµX]

〉

=
∑

n,m,l∈N
hn[zBλ]

〈
∇−1el

[
XDλ

M

]
, hm

[
zDµX +

zDµ

M

]〉

(by 3.5) =
∑

n,m,l,k∈N
hn[zBλ]hk

[
zDµ

M

]〈
∇−1el

[
XDλ

M

]
, hm [zDµX]

〉

(by 2.29) =
∑

n,m,l,k,r∈N
hn[zBλ]hk[zBµ]hr

[−z
M

]〈
∇−1el

[
XDλ

M

]
, hm [zDµX]

〉
(by 2.23)

(by 1.63) =
∑

n,m,l,k,r∈N
hn[zBλ]hk[zBµ]hr

[−z
M

]
zm
〈
∇−1el

[
XDλ

M

]
, hm [DµX]

〉

(by 2.23) =
∑

n,m,l,k,r∈N
hn[zBλ]hk[zBµ]hr

[−z
M

]
zm
〈
∇−1el

[
XDλ

M

]
, em

[
DµX

M

]〉
∗
.

By Lemma 2.35, this last expression is symmetric in λ and µ, which is what we
wanted to show.

Corollary 3.7. For λ, µ ∈ Par \ {∅}

Hλ[MBµ]

Πλ
=
Hµ[MBλ]

Πµ
.

Proof. Use Theorem 3.3 and Definition 2.29, cancel the common factor (1 − z)
(corresponding to c = (0, 0)) from both denominators and evaluate at z 7→ 1 (see
Remark 1.64) .

Macdonald expansions

The following is a consequence of Theorem 3.3.

Corollary 3.8. For λ ` n and k ∈ N

〈Hλ, s(n−k,1k)〉 = ek[Bλ − 1].
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Proof. On the one hand, for µ = ∅, Theorem 3.3 becomes

Hλ[1− z] =
∏
c∈λ

(1− zqa′(c)tl′(c)) = (1− z)
∏

c∈λ\{(0,0)}

(1− zqa′(c)tl′(c))

(by 2.29) = (1− z)
n−1∑
k=0

(−z)kek[Bλ − 1].

On the other hand, setting X = 1 − z (see Remark 1.64) in the defining equation
of the q, t-Kostka coefficients (2.6)

Hλ[1− z] =
∑
µ`n

Kλµ(q, t)sµ[1− z]

(by Corollary 1.73) =

n−1∑
k=0

Kλ(n−k,1k)(q, t)(−z)k(1− z).

Comparing the z-coefficients of these two equations we get that Kλ(n−k,1k) =
〈Hλ, s(n−k,1k)〉 = ek[Bλ − 1].

Corollary 3.9. For λ ` n and k ∈ N

〈Hλ, ekhn−k〉 = ek[Bλ].

Proof. We use an easy consequence of one of Pieri’s rules (Proposition 1.45):

ekhn−k = s(n−k,1k) + s(n−k+1,1k−1). (3.10)

So applying Corollary 3.8 twice, we get

〈Hλ, ekhn−k〉 = ek[Bλ − 1] + ek−1[Bλ − 1] = ek[Bλ],

where the second equality is (2.34).

Proposition 3.11. For n, k ∈ N

hk

[
X

M

]
en−k

[
X

M

]
=
∑
λ`n

ek[Bλ]Hλ[X]

wλ
.

Proof. Since {Hλ}λ∈Par and
{
Hλ
wλ

}
λ∈Par

are dual basis of Λ with respect to the star
scalar product, the expression is equivalent to〈

hk

[
X

M

]
en−k

[
X

M

]
, Hλ

〉
∗

= ek[Bλ].

By Proposition 2.23〈
hk

[
X

M

]
en−k

[
X

M

]
, Hλ

〉
∗

= 〈ω(hk[X]en−k[X]), Hλ〉

(By 1.57 ) = 〈ek[X]hn−k[X], Hλ〉

and so the result follows from Corollary 3.9.
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The following result was first stated in [GH02].

Lemma 3.12. For λ ∈ Par \ {∅} and k ∈ N

Hλ[(1− t)(1− qk)] = (1− qk)Πλhk[(1− t)Bλ].

Proof. For k = 0 and λ ∈ Par \ {∅} we get 0 = 0, so we may assume k > 0.
By Lemma 2.10 and Proposition 2.20 we have, for all k ∈ N

H(k)[(1− q)X] = (q; q)khk[X],

which implies

H(k)[X] = (q; q)khk

[
X

1− q

]
.

Using Corollory 3.7 with µ = (k), we get

Π(k)Hλ[MB(k)] = ΠλH(k)[MBλ]

= Πλ(q; q)khk

[
MBλ
1− q

]
(by Definition 2.22) = Πλ(q; q)khk [(1− t)Bλ] .

It is clear form their definitions (see 2.12 and 2.29) that

B(k) = [k]q =
1− qk
1− q Π(k) = (q; q)k−1.

The thesis thus follows from some easy cancellations.

Proposition 3.13. For n, k ∈ N with n > 0

en [X[k]q] = (1− qk)
∑
λ`n

Πλhk[(1− t)Bλ]Hλ[X]

wλ

Proof. Using Corollary 2.27 with Y = (1− t)(1− qk) we get∑
λ`n

Hλ[X]Hλ[(1− t)(1− qk)]

wλ
= en

[
X(1− t)(1− qk)

M

]
= en

[
X

1− qk
1− q

]
= en[X[k]q]

and so the result follows immediately from Lemma 3.12.

We will often use the special case k = 1.

Corollary 3.14. For n ∈ P

en =
∑
λ`n

MΠλBλHλ

wλ
.

In the same vein, we have the following Macdonald expansion of ω(pn), of which
we omit the proof (which can be found here [GHS11, Proposition 2.3.d] ).

Proposition 3.15. For n ∈ P

ω(pn) = [n]q[n]t
∑
λ`n

MΠλHλ

wλ
.
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Nabla identities

Finally, we calculate the image by ∇ of some symmetric functions.

Proposition 3.16. For n ∈ N,

(i) ∇en
[
X
M

]
= hn

[
X
M

]
;

(ii) ∇hn
[
X

1−q

]
= q(

n
2)hn

[
X

1−q

]
.

Proof. (i) Write Proposition 3.11 for k = 0.

en

[
X

M

]
=
∑
λ`n

Hλ[X]

wλ
.

Taking ∇ of this expression and aplying Proposition 3.11 again, we conclude

∇en
[
X

M

]
=
∑
λ`n

TλHλ[X]

wλ
=
∑
λ`n

en[Bλ]Hλ[X]

wλ
= hn

[
X

M

]
.

(ii) Using Lemma 2.10 with X 7→ X
1−q we get

hn

[
X

1− q

]
= hn

[
1

1− q

]
H(n)[X].

Since T(n) = q(
n
2), applying ∇ to this equation yields

∇hn
[
X

1− q

]
= hn

[
1

1− q

]
q(
n
2)H(n)[X] = q(

n
2)hn

[
X

1− q

]
.

3.2 Pieri coefficients

Another extremely useful tool for deriving identities are the following coefficients.

Definition 3.17. For f ∈ Λ and λ ∈ Par the Pieri coefficients, denoted cf
⊥

λµ , d
f
µλ ∈

Q(q, t) are defined by the expansions

f⊥Hλ =
∑
µ

cf
⊥

λµHµ fHλ =
∑
µ

dfµλHµ.

We introduce special notation for two particular instances of these coefficients:

c
(k)
λµ := c

h⊥k
λµ d

(k)
µλ := d

ek[X/M ]
µλ .

These coefficients determine one another.

Proposition 3.18. For all f ∈ Λ and λ, µ ∈ Par, wµc
f [X]⊥

λµ = wλd
ωf [X/M ]
λµ .
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Proof. Since 〈Hλ, Hµ〉∗ = wλδλµ and by Proposition 2.28 we have

wµc
f [X]⊥

λµ = 〈f [X]⊥Hλ, Hµ〉∗ =

〈
Hλ, (ωf)

[
X

M

]
Hµ

〉
∗

= wλd
ωf [X/M ]
λµ .

In particular we have
wµc

(k)
λµ = wλd

(k)
λµ . (3.19)

Theorem 3.20. Take f ∈ Λ(n) and λ, µ ∈ Par. Let µ⊂nλ denote µ ⊆ λ and
|λ| − |µ| = n. Then

(i) cf
⊥

λµ 6= 0 implies that µ ⊂n λ. Thus f⊥Hλ =
∑
µ⊂nλ c

f⊥

λµHµ.

(ii) dfµλ 6= 0 implies that µ ⊃n λ. Thus fHλ =
∑
µ⊃nλ d

f
µλHµ.

The second point is a consequence of [Mac95, VI.6.7] and the first follows from
the second combined with Proposition 3.18.

We record an important recursive formula that first appeared in [BH13, Propo-
sition 5], but using the notation of [GHXZ16, Theorem 3.2].

Proposition 3.21. For k ∈ N and λ, µ ∈ Par

c
(k+1)
λµ =

1

Bλ/µ

∑
µ⊂1ν⊂kλ

c
(k)
λν c

(1)
νµ

Tν
Tµ

where Bλ/µ = Bλ −Bµ.
For the remainder of this section we give the proofs of some identities involving

Pieri coefficients that we will need later on.

Lemma 3.22. For any n ∈ N and λ ` n

Bλ =
∑
µ ⊂1λ

c
(1)
λµ

Proof. For n ≥ 1, using Corollory 3.9 (twice) and Theorem 3.20 we readily obtain

Bλ = e1[Bλ] = 〈Hλ, e1hn−1〉 = 〈Hλ, h1hn−1〉 = 〈h⊥1 Hλ, hn−1〉
=
∑
µ⊂1λ

c
(1)
λµ〈Hµ, hn−1〉 =

∑
µ⊂1λ

c
(1)
λµ ,

where the last equality uses Proposition 2.9.(III) and the identity hn−1 = s(n−1).
For n = 0 the identity becomes 0 = 0.

The following is [GH02, Theorem 3.2]

Lemma 3.23. Let f ∈ Λ(d) and λ ` n. Then

∑
µ⊂dλ

cωf
⊥

λµ =

(
∇−1f

[
X − ε
M

]) ∣∣∣∣∣
X 7→Dλ

.



48 CHAPTER 3. SYMMETRIC FUNCTION IDENTITIES

Proof. Replacing f by f∗ in the formula of Theorem 3.1 we get.

〈f∗, τ1Hλ〉∗ = (∇−1τ−εf∗[X])
∣∣
X=Dλ

.

Since τ−εf∗[X] = τ−εf [X/M ] = f [(X − ε)/M ], the right hand side coincides with
the right hand side of the thesis. We consider the left hand side and apply Propo-
sition 2.23

〈f∗, τ1Hλ〉∗ = 〈ωφf∗, τ1Hλ〉
(by def of φ and f∗ 2.22 ) = 〈ωf [X], τ1Hλ〉

(by def of ⊥ 1.54 ) = 〈1, (ωf)⊥τ1Hλ〉 = 〈1, τ1(ωf)⊥Hλ〉

(by 3.17, 3.20 ) =

〈
1, τ1

∑
µ⊂dλ

cωf
⊥

λµ Hµ

〉 =
∑
µ⊂dλ

cωf
⊥

λµ 〈1, τ1Hµ〉.

Now, using Proposition 1.79, we calculate

〈1, τ1Hµ〉 =

〈
1,
∑
k∈N

h⊥k Hµ

〉
=
∑
k∈N
〈hk, Hµ〉 =

∑
k∈N
〈s(k), Hµ〉 = 1;

where the last equality comes from Proposition 2.9.(III).

We can use this to deduce the following (see [Zab16, Lemma 12]).

Lemma 3.24. For k ∈ N and λ ∈ Par∑
µ⊂kλ

c
e⊥k
λµ = ek[Bλ].

Proof. Applying Lemma 3.23 with ωf = ek, i.e. f = hk, we obtain

∑
µ⊂kλ

c
e⊥k
λµ =

(
∇−1hk

[
X − ε
M

]) ∣∣∣∣∣
X 7→Dλ

Using Proposition 1.69, we may write

∇−1hk
[
X − ε
M

]
=

k∑
i=0

∇−1hi
[
X

M

]
hk−i

[−ε
M

]

(by 3.16, 1.57) =

k∑
i=0

ei

[
X

M

]
ek−i

[
1

M

]
(by 1.69) = ek

[
X + 1

M

]
.

Since by definition Dλ = MBλ − 1, the thesis now follows easily.

Lastly, we consider [GH02, Proposition 3.1]
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Lemma 3.25. For f =
∑
λ cλ(q, t)sλ ∈ Λ set f̃ :=

∑
λ c(q

−1, t−1)sλ. Then

cf
⊥

λµ (q−1, t−1) =
Tµ
Tλ
c
(ωf̃)⊥

λµ (q, t).

Proof. We start by showing the easy fact that for all g, h ∈ Λ, ω(g⊥h) = (ωg)⊥(ωh),
indeed for any b ∈ Λ

〈ω(g⊥h), b〉 = 〈g⊥h, ω(b)〉 = 〈h, g · ω(b)〉 = 〈h, ω((ωg) · b)〉
= 〈ω(h), (ωg) · b〉 = 〈(ωg)⊥ω(h), b〉.

By Definition 3.17, we have

f⊥Hλ =
∑
µ

cf
⊥

λµHµ.

Applying ω to this equation, we get

(ωf)⊥ωHλ[X; q, t] =
∑
µ

cf
⊥

λµ (q, t)ωHµ[X; q, t]

We substitute q → q−1 and t→ t−1. Notice that since sλ does not depend on q, t,
f̃ is just f after these substitutions.

(ωf̃)⊥ωHλ[X; q−1, t−1] =
∑
µ

cf
⊥

λµ (q−1, t−1)ωHµ[X; q−1, t−1].

Multiply this equation by Tλ and use (2.8) to write

(ωf̃)⊥Hλ[X; q, t] = Tλ
∑
µ

cf
⊥

λµ (q−1, t−1)
1

Tµ
Hµ[X; q, t].

On the other hand, again by Definition 3.17, we have

(ωf̃)⊥Hλ[X; q, t] =
∑
µ

cωf̃
⊥

λµ Hµ[X; q, t].

Comparing the coefficients of Hµ, the thesis follows.

3.3 A summation formula

This section is dedicated to a summation formula involving Macdonald polynomials
that underpins many of the strongest results concerning the Delta conjectures. It
first appeared in [DIV18].

Theorem 3.26. For n,m, s ∈ N∑
λ`m+n

Hλ[X]

wλ
hs[(1− t)Bλ]em[Bλ]

=

m∑
l=0

tm−l
s∑

k=0

q(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

hl+k

[
X

1− q

]
hm−l

[
X

M

]
en−k

[
X

M

]
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The case m = 0 was know to Haglund [Hag04, Equation 2.38].

Lemma 3.27. Let n,m, s ∈ N. If f ∈ Λ is such that

〈f, τ1Hλ〉∗ = hs[(1− t)Bλ]em[Bλ] (3.28)

then ∑
λ`n

Hλ

wλ
hs[(1− t)Bλ]em[Bλ] =

n∑
k=0

e∗n−k(f)k (3.29)

where (f)k denotes the degree k homogeneous component of f .

Proof. Using (3.28) we get∑
λ`n

Hλ

wλ
hs[(1− t)Bλ]em[Bλ] =

∑
λ`n

Hλ

wλ
〈f, τ1Hλ〉∗

(by 1.79) =
∑
λ`n

Hλ

wλ

〈
f,

n∑
k=0

h⊥k Hλ

〉
∗

(by 2.28) =
∑
λ`n

Hλ

wλ

〈
n∑
k=0

e∗kf,Hλ

〉
∗

= · · ·

Since λ ` n, and 〈Hµ, Hλ〉∗ = 0 if |µ| 6= |λ|, the scalar product of e∗kf with Hλ

is only non-zero on one of the homogeneous components: (e∗kf)n = e∗k(f)n−k. It
follows that

· · · =
∑
λ`n

Hλ

wλ

〈
n∑
k=0

e∗k(f)n−k, Hλ

〉
∗

= · · ·

Using the fact that {Hλ}λ∈Par and
{
Hλ
wλ

}
λ∈Par

are dual basis of Λ with respect to
the star scalar product we may conclude

· · · =
n∑
k=0

e∗k(f)n−k =

n∑
k=0

e∗n−k(f)k.

Proof of Theorem 3.26. Notice that the left hand side of (3.29) almost exactly
coincides with the left hand side of the identity we want to prove. Our strategy
therefore is to find a function f that satisfies (3.28); its thesis will then yield the
desired identity. Thus recall the hypothesis of this lemma: f ∈ Λ such that

〈f, τ1Hλ〉∗ = hs[(1− t)Bλ]em[Bλ].

The left hand side of the equation inspires us to apply Theorem 3.1:

〈f, τ1Hλ〉∗ = (∇−1τ−εf [X])
∣∣
X 7→Dλ

.

So, let us look for a symmetric function f such that

∇−1τ−εf [X] = hs

[
X + 1

1− q

]
em

[
X + 1

M

]
;
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indeed, setting X 7→ Dλ in this equation gets us the desired hypothesis. In other
words

f [X] =τε∇
(
hs

[
X + 1

1− q

]
em

[
X + 1

M

])

(by 1.69) =τε∇

 s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

]
hi

[
X

1− q

]
ej

[
X

M

] = · · ·

To continue, we need the following formula, which we will prove on page 55.

Lemma 3.30. For i, j ∈ N

∇
(
hi

[
X

1− q

]
ej

[
X

M

])
=

j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]
hi+r

[
X

1− q

]
hj−r

[
X

M

]
.

Using this result, we get

· · · =τε
(

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

]

×
j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]
hi+r

[
X

1− q

]
hj−r

[
X

M

])

(by def of τε) =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

]

×
j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]
hi+r

[
X + ε

1− q

]
hj−r

[
X + ε

M

]

(by 1.69) =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]

×
i+r∑
u=0

hi+r−u

[
ε

1− q

]
hu

[
X

1− q

] j−r∑
v=0

hj−r−v

[ ε
M

]
hv

[
X

M

]

(by 1.63, 1.57) =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]

×
i+r∑
u=0

ei+r−u

[ −1

1− q

]
hu

[
X

1− q

] j−r∑
v=0

ej−r−v

[−1

M

]
hv

[
X

M

]
.

We extract the homogeneous part of degree d, i.e. u+ v = d. Recall that 0 ≤ d ≤
i+ j. In the notation of Lemma 3.27 we write

(f [X])d =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]

×
i+r∑
u=0

ei+r−u

[ −1

1− q

]
hu

[
X

1− q

]
ej−r−d+u

[−1

M

]
hd−u

[
X

M

]
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We make the substitutions d 7→ m+k and u 7→ l+k, where k and l are new indices.

(f [X])m+k =

s∑
i=0

m∑
j=0

hs−i

[
1

1− q

]
em−j

[
1

M

] j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]

×
i+r∑
l+k=0

ei+r−l−k

[ −1

1− q

]
hl+k

[
X

1− q

]
ej−r−m+l

[−1

M

]
hm−l

[
X

M

]
.

Since for l > i+ r − k, ei+r−l−k
[
−1
1−q

]
= 0 and for l > m, hm−l

[
X
M

]
= 0, we may

replace
∑i+r
l+k=0 by

∑m
l=−k.

(f [X])m+k =

s∑
i=0

m∑
j=0

j∑
r=0

m∑
l=−k

hs−i

[
1

1− q

]
em−j

[
1

M

]
tj−rq(

i
2)
[
i+ r

r

]

× ei+r−l−k
[ −1

1− q

]
hl+k

[
X

1− q

]
ej−r−m+l

[−1

M

]
hm−l

[
X

M

]
(j 7→ m− j) =

s∑
i=0

m∑
j=0

m−j∑
r=0

m∑
l=−k

hs−i

[
1

1− q

]
ej

[
1

M

]
tm−j−rq(

i
2)
[
i+ r

r

]

× ei+r−l−k
[ −1

1− q

]
hl+k

[
X

1− q

]
el−r−j

[−1

M

]
hm−l

[
X

M

]
We have l−j ≤ m−j so r > m−j gives el−r−j

[−1
M

]
= 0. Thus we may replace∑m−j

r=0 with
∑m
r=0. For j > l − r we again have el−r−j

[−1
M

]
= 0. Furthermore

r ≥ 0, l ≤ m implies l − r ≤ m. Thus, we may replace
∑m
j=0 by

∑l−r
j=0.

(f [X])m+k =

s∑
i=0

m∑
r=0

m∑
l=−k

hs−i

[
1

1− q

]
tm−l

 l−r∑
j=0

ej

[
1

M

]
tl−r−jel−r−j

[−1

M

]
× q(i2)

[
i+ r

r

]
q

ei+r−l−k

[ −1

1− q

]
hl+k

[
X

1− q

]
hm−l

[
X

M

]

(by 1.63) =

s∑
i=0

m∑
r=0

m∑
l=−k

hs−i

[
1

1− q

]
tm−l

 l−r∑
j=0

ej

[
1

M

]
el−r−j

[−t
M

]
× q(i2)

[
i+ r

r

]
q

ei+r−l−k

[ −1

1− q

]
hl+k

[
X

1− q

]
hm−l

[
X

M

]

(by 1.69) =

s∑
i=0

m∑
r=0

m∑
l=−k

hs−i

[
1

1− q

]
tm−lel−r

[
1− t
M

]
× q(i2)

[
i+ r

r

]
q

ei+r−l−k

[ −1

1− q

]
hl+k

[
X

1− q

]
hm−l

[
X

M

]
Since for l < r, el−r

[
1−t
M

]
= 0, and r ≥ 0 we may replace

∑m
l=−k by

∑m
l=0. Also,
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l ≤ m so we may replace
∑m
r=0 with

∑l
r=0.

(f [X])m+k =

m∑
l=0

hl+k

[
X

1− q

]
hm−l

[
X

M

]
tm−l

×
s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]
The second line of this formula can be simplified considerably. We state the needed
identity here. Since its proof is quite technical and not particularly insightful, we
postpone it to Appendix A.

Lemma 3.31. For l, s, k ∈ N we have

q(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

=

s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]
.

Using this lemma, we get

(f [X])m+k =

m∑
l=0

tm−lq(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

hl+k

[
X

1− q

]
hm−l

[
X

M

]
.

By construction, this f satisfies (3.28), so by Lemma 3.27 we have (3.29):

∑
λ`m+n

Hλ[X]

wλ
hs[(1− t)Bλ]em[Bλ] =

m+n∑
k=0

em+n−k

[
X

M

]
(f [X])k

(k 7→ m+ k ) =

n∑
k=−m

en−k

[
X

M

]
(f [X])m+k

=

s∑
k=0

en−k

[
X

M

]
(f [X])m+k;

where the last equality is justified by the fact that for k > s or k < 0, we have
(f [X])m+k = 0, since one of the two q-binomials becomes 0, and when k > n,
en−k

[
X
M

]
= 0. Combining the last two equations, we get exactly what we wanted

to show.

We still have to prove Lemma 3.30, for which we need two identities, the first
one of which is the case n = 0 of the main theorem of this section.

Lemma 3.32. For m, s ∈ N

∑
λ`m

Hλ[X]

wλ
hs[(1− t)Bλ]Tλ =

m∑
r=0

tm−r
[
r + s− 1

s

]
q

hr

[
X

1− q

]
hm−r

[
X

M

]
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Proof. First notice that for m = 0 the equation becomes δs,0 = δs,0 as on the left
B∅ = 0 and so hs[(1− t)B∅] = hs[0] = δs,0, and on the right

[
s−1
s

]
q

= δs,0 (see the
comments after Definition 2.15). Thus we may suppose m > 1.

We need the following equation [Hag08, Theorem 7.2]. For m, r ∈ N with
0 < r < m

∇Em,r = tm−r(1− qr)
∑

µ`m−r

Tµ
wµ

∑
λ⊃rµ

ΠλHλd
hr[X/(1−q)]
λµ ;

which can be rewritten, using 3.20, 3.11 and 2.36

∇Em,r = tm−r(1− qr)Π
(
hm−r

[
X

M

]
hr

[
X

1− q

])
. (3.33)

We show that this expression also holds for r = 0 and r = m. Indeed

• for r = 0 we get 0 = 0 (by definition of Em,0 2.38);

• for r = m, combine Proposition 2.41 and Proposition 3.16 to deduce that
∇Em,m = (q; q)mhm

[
X

1−q

]
. Now thanks to Lemma 2.10 and Proposition 2.20

we know (q; q)mhm

[
X

1−q

]
= H(m)[X]. Since Π(m) = (q; q)m−1, we may con-

clude that ∇Em,m = (1− qm)Π
(
hm

[
X

1−q

])
.

Applying ∇ to (2.39) gives:

∇em[X[s]q] =

m∑
r=0

(qs; q)r
(q; q)r

∇Em,r;

which combined with (3.33) implies

∇em[X[s]q] =

m∑
r=0

(qs; q)r
(q; q)r

tm−r(1− qr)Π
(
hm−r

[
X

M

]
hr

[
X

1− q

])

(by 2.12) =
m∑
r=0

(qs+1; q)r−1(1− qs)
(q; q)r−1

tm−rΠ

(
hm−r

[
X

M

]
hr

[
X

1− q

])

(by 2.15 ) =(1− qs)
m∑
r=0

[
r + s− 1

r − 1

]
q

tm−rΠ

(
hm−r

[
X

M

]
hr

[
X

1− q

])
.

On the other hand applying ∇ to the formula of Proposition 3.13 gives

∇em [X[s]q] = (1− qs)
∑
λ`m

ΠλHλ[X]

wλ
hs[(1− t)Bλ]Tλ.

Thus the thesis follows from equating the right hand sides of the last two equations,
dividing by (1− qs) and applying Π−1 .

The second result we need to prove Lemma 3.30 is [GHS11, Proposition 2.6].
Its proof is somewhat technical and not new, thus we postpone it to Appendix A.
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Proposition 3.34. For i, j ∈ N

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
λ`i+j

Hλ[X]

wλ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bλ]

Let us restate the lemma we want to prove.

Lemma 3.30. For i, j ∈ N

∇
(
hi

[
X

1− q

]
ej

[
X

M

])
=

j∑
r=0

tj−rq(
i
2)
[
i+ r

r

]
hi+r

[
X

1− q

]
hj−r

[
X

M

]
.

Proof of Lemma 3.30. Clearly, a good place to start is applying ∇ to the formula
in Proposition 3.34.

∇
(
hi

[
X

1− q

]
ej

[
X

M

])
=
∑
λ`i+j

TλHλ[X]

wλ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bλ]

(by 3.32) = q−(i2)
i∑

k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

×
i+j∑
r=0

ti+j−r
[
r + k − 1

k

]
q

hr

[
X

1− q

]
hi+j−r

[
X

M

]
= · · ·

We need the following q-binomial identity, the proof of which can be found in
Appendix A.

Lemma 3.35. For r, i ∈ N we have

qi(i−1)
[
r

i

]
q

=

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

[
r + k − 1

k

]
q

.

Thanks to this lemma, we get

· · · = q−(i2)
i+j∑
r=0

qi(i−1)
[
r

i

]
q

ti+j−rhr

[
X

1− q

]
hi+j−r

[
X

M

]

=

i+j∑
r=0

q(
i
2)
[
r

i

]
q

ti+j−rhr

[
X

1− q

]
hi+j−r

[
X

M

]

and so the thesis follows by substituting r 7→ r + i.
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3.4 Theta identities

The goal of this section is to prove the following significant results, which relate
the Theta to the Delta operators. They first appeared in [DIV20].

Theorem 3.36. For n, k ∈ N with n > 0 and k < n

Θk∇en−k = ∆′en−k−1
en

Theorem 3.37. For n, k ∈ N with n > 0 and k < n

[n]q
[n− k]q

Θk∇ω(pn−k) =
[n− k]t

[n]t
∆en−kω(pn).

They require a lemma each.

Lemma 3.38. For n, k ∈ N with 0 < k < n and λ ` n∑
µ⊂kλ

c
(k)
λµBµTµ = en−k−1[Bλ − 1]Bλ

Proof. We will prove this result by induction on n − k. Since by hypothesis 0 <
k < n, we have n− k ≥ 1.

For n− k = 1, we have k = n− 1. So∑
µ⊂n−1λ

c
(n−1)
λµ BµTµ = c

(n−1)
λ(1) B(1)T(1) = c

(n−1)
λ(1)

By Theorem 3.20 we have cn−1λ(1)H(1) =
∑
µ⊂n−1λ

cn−1λµ Hµ = h⊥n−1Hλ. Thus using
Proposition 2.9.(III), we compute

c
(n−1)
λ(1) = c

(n−1)
λ(1) 〈H(1), s(1)〉 = 〈h⊥n−1Hλ, e1〉

(by def of ⊥) = 〈Hλ, hn−1e1〉
(by 3.9) = e1[Bλ] = Bλ = e0[Bλ − 1]Bλ;

which is what we wanted to prove.
For n− k ≥ 2 start by using Proposition 3.22

∑
µ⊂kλ

c
(k)
λµBµTµ =

∑
µ⊂kλ

c
(k)
λµ

(∑
ν⊂1µ

c(1)µν

)
Tµ =

∑
ν⊂k+1λ

 ∑
ν⊂1µ⊂kλ

c
(k)
λµ c

(1)
µν Tµ


=

∑
ν⊂k+1λ

TνBλ/ν

 1

Bλ/ν

∑
ν⊂1µ⊂kλ

c
(k)
λµ c

(1)
µν

Tµ
Tν


(by 3.21) =

∑
ν⊂k+1λ

TνBλ/νc
(k+1)
λν

(by def of Bλ/ν) = Bλ
∑

ν⊂k+1λ

Tνc
(k+1)
λν −

∑
ν⊂k+1λ

TνBνc
(k+1)
λν
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This formula contains the following summation which we develop using (2.30)

∑
ν⊂k+1λ

Tνc
(k+1)
λν =

∑
ν⊂k+1λ

c
(k+1)
λν en−k−1[Bν ]

(by 3.9) =
∑

ν⊂k+1λ

c
(k+1)
λν 〈Hν , en−k−1〉

(by 3.17, 3.20) = 〈h⊥k+1Hλ, en−k−1〉
(by def of ⊥ 1.54 ) = 〈Hλ, en−k−1hk+1〉

(by 3.9) = en−k−1[Bλ]

So combining these two calculations we get

∑
µ⊂kλ

c
(k)
λµBµTµ = Bλen−k−1[Bλ]−

∑
ν⊂k+1λ

TνBνc
(k+1)
λν . (3.39)

By the induction hypothesis, we know that

∑
ν⊂k+1λ

c
(k+1)
λν BνTν = en−k−2[Bλ − 1]Bλ. (3.40)

Thus, using (3.39) and (3.40) give

∑
µ⊂kλ

c
(k)
λµBµTµ = Bλen−k−1[Bλ]− en−k−2[Bλ − 1]Bλ

= (en−k−1[Bλ]− en−k−2[Bλ − 1])Bλ

(by (2.34) ) = en−k−1[Bλ − 1]Bλ

Proof of Theorem 3.36. For k = 0 we have, by Proposition 2.33

Θ0∇en = ∇en = ∆enen = ∆′en−1
en.

So we may suppose 0 < k < n, (and thus apply Lemma 3.38). We start by using
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Corollory 3.14 to write

Θk∇en−k = Θk∇
( ∑
λ`n−k

MΠλBλHλ

wλ

)

(by definition of ∇) = Θk

( ∑
λ`n−k

MΠλBλTλHλ

wλ

)

(by definition of Θk) = Πe∗kΠ
−1

( ∑
λ`n−k

MΠλBλTλHλ

wλ

)

(by definition of Π) = Πe∗k

( ∑
λ`n−k

MBλTλHλ

wλ

)

(by 3.17, 3.20) = Π

 ∑
λ`n−k

MBλTλ
wλ

∑
µ⊃kλ

d
(k)
µλHµ


(by (3.19)) = Π

 ∑
λ`n−k

MBλTλ
wµ

∑
µ⊃kλ

c
(k)
µλHµ


= Π

∑
µ`n

M

wµ
Hµ

∑
λ⊂kµ

BλTλc
(k)
µλ


(by 3.38) = Π

∑
µ`n

M

wµ
Hµen−k−1[Bµ − 1]Bµ


(by definition of Π) =

∑
µ`n

en−k−1[Bµ − 1]
MBµΠµHµ

wµ

(by definition of ∆f and 3.14) = ∆′en−k−1

∑
µ`n

MBµΠµHµ

wµ

 = ∆′n−k−1en.

Lemma 3.41. For n, k ∈ N, with 0 < k < n and λ ` n

en−k[Bλ] =
∑
µ⊂kλ

c
(k)
λµTµ.

Proof. Using the definitions of Bλ and Tλ (Definition 2.29), we may write

en−k[Bλ] = Tλek[Bλ(q−1, t−1)]

(by 3.24) = Tλ
∑
µ⊂kλ

c
e⊥k
λµ(q−1, t−1)
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We will now use Lemma 3.25. Using the notation of that lemma. Since ek does
not depend on q, t, we have ẽk = ek. Thus

en−k[Bλ] = Tλ
∑
µ⊂kλ

Tµ
Tλ
c
h⊥k
λµ (q, t) =

∑
µ⊂kλ

Tµc
(k)
λµ .

Proof of Theorem 3.37. For k = 0, the equation reduces to the following identity,
which holds thanks to Proposition 2.33:

∇ω(pn) = ∆enω(pn).

Let us now suppose 0 < k < n. Using Proposition 3.15

Θk∇
[n]q

[n− k]q
ω(pn−k) = [n− k]t[n]qΘk∇

( ∑
λ`n−k

MΠλHλ

wλ

)

(by definition of ∇) = [n− k]t[n]qΘk

( ∑
λ`n−k

MΠλTλHλ

wλ

)

(by definition of Θk) = [n− k]t[n]qΠe
∗
kΠ
−1

( ∑
λ`n−k

MΠλTλHλ

wλ

)

(by definition of Π) = [n− k]t[n]qΠe
∗
k

( ∑
λ`n−k

MTλHλ

wλ

)

(by 3.17, 3.20) = [n− k]t[n]qΠ

 ∑
λ`n−k

MTλ
wλ

∑
µ⊃kλ

d
(k)
µλHµ


(by (3.19) ) = [n− k]t[n]qΠ

 ∑
λ`n−k

MTλ
wµ

∑
µ⊃kλ

c
(k)
µλHµ


= [n− k]t[n]qΠ

∑
µ`n

M

wµ
Hµ

∑
λ⊂kµ

Tλc
(k)
µλ



(by 3.41) = [n− k]t[n]qΠ

∑
µ`n

M

wµ
en−k[Bµ]Hµ


(by definition of Π and ∆f ) = [n− k]t[n]q∆en−k

∑
µ`n

MΠµ

wµ
Hµ


(by 3.15) = [n− k]t[n]q∆en−k

(
ω(pn)

[n]q[n]t

)
=

[n− k]t
[n]t

∆en−kω(pn)
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Chapter 4

Lattice paths

In this chapter, we introduce families of combinatorial objects, whose enumeration
will give nice formulas for the symmetric functions that are the focus of this text,
that is ∆′en−k−1

en and ∆en−kω(pn) and related symmetric functions.

4.1 The objects

Definition 4.1. Given S ⊆ N2, a lattice path in the plane with steps in S is some
sequence p0p1 · · · pk such that pi ∈ N2 and pi − pi−1 ∈ S for all i ∈ {1, . . . , k}.

Definition 4.2. Let n ∈ N. A square path of size n, is a lattice path p0 . . . p2n
with steps in {E := (1, 0), N := (0, 1)} such that p0 = (0, 0), p2n = (n, n) and
p2n − p2n−1 = E. Given any such path, its E,N -sequence is a sequence of length
2n whose i-th element is pi − pi−1 ∈ {E,N}. We refer to the elements of this
sequence as steps of the path, call steps equal to N north or vertical steps and
steps equal to E east or horizontal steps. We call pi−1 and pi the starting point
and endpoint of the step pi − pi−1, respectively. It is clear that a square path is
entirely determined1 by its E,N -sequence. The set of square paths of size n is
denoted by SQ(n).

It is not hard to see that there are exactly
(
2n−1
n

)
square paths of size n, indeed

its E,N -sequence is a sequence of 2n steps, with n east steps and n north steps,
the last of which must be an east step, so choosing n of the remaining 2n− 1 steps
to be north steps uniquely determines the path.

Definition 4.3. Let n ∈ N. A Dyck path of size n is a square path p0 · · · p2n such
that pi ∈ {(k, l) ∈ N2 | l ≥ k} for all i ∈ {0, . . . , 2n}. We denote the set of such
paths by D(n).

We think of D(n) as a subset of SQ(n).
The number of Dyck paths of size n is one of the many incarnations of the

famous Catalan numbers. That is #D(n) = 1
n+1

(
2n
n

)
. See [Sta15] for a long list of

objects counted by these numbers.
1We will often identify a square path with its E,N -sequence.

61
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Figure 4.1: An element of SQ(5) (left) and of D(5) (right).

Figure 4.2: Column, row and diagonal of (R≥0)2.

We encourage the reader to think about these objects visually. We draw a
square path p0 . . . p2n by plotting the pi in the first quadrant of the plane, (R≥0)2,
and connecting pi−1 to pi with a line segment. Thus, an E (respectively N) in
the E,N -sequence of a path corresponds to a horizontal (respectively vertical) line
segment of length 1. Visualised in this way, Dyck paths are square paths that stay
weakly above the line x = y.

Example. Figure 4.1 contains and example of a square path that is not a Dyck
path (left) and a Dyck path (right). The E,N -sequence of the path on the left is
ENNEENENNE.

Definition 4.4. • A square of (R≥0)2 is any square of area 1 contained in
(R≥0)2 whose vertices have integer coordinates.

• For i ∈ P, the i-th column of (R≥0)2 is {(x, y) ∈ (R≥0)2 | x ∈ [i− 1, i]}.
• For i ∈ P, the i-th row of (R≥0)2 is {(x, y) ∈ (R≥0)2 | y ∈ [i− 1, i]}.
• For i ∈ Z, the i-th diagonal of (R≥0)2 is the union of its squares that have two
vertices on the line y = x+ i. The 0-th diagonal is called the main diagonal .

Example. In Figure 4.2, we shaded the 3-rd column (left), the 5-th row (middle)
and −1-th diagonal (right) of (R≥0)2.

Definition 4.5. A vertical step of a square path π is said to be at height i if its
starting and endpoint are vertices of the left edge of a square in the i-th diagonal of
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(R≥0)2. Take m to be the minimum of the heights of all vertical steps of a square
path π then the m-th diagonal is called the base diagonal of π, and its shift is
shift(π) := |m|.

Dyck paths are exactly the square paths of shift 0, thus their main and base
diagonal always coincide.

Example. The square path on the left in Figure 4.1 has base diagonal y = x− 1.

Definition 4.6. Given π ∈ SQ(n), let ai(π) ∈ Z be such that the i-th north step
of π lies at height ai(π). The tuple a(π) := (a1(π), . . . , an(π)) ∈ Zn is called the
area word of the path and its components ai(π) are called its letters.

Example. The area word of the path on the right in Figure 4.1 is 01011.

We make some observations about area words.

• A square path is completely determined by its area word.

• If (a1, . . . , an) is the area word of a square path then ai+1 ≤ ai + 1 for all
1 ≤ i ≤ n− 1; and a1 ≤ 0.

• The last letter of the area word of a square path must be ≥ 0.

• Any sequence of n integers that satisfies the previous two properties is the
area word of some square path.

• The area word of a square path is the area word of a Dyck path if and only
if it contains only non-negative letters.

Definition 4.7. Take π ∈ SQ(n) of shift s. A partial labelling of π is a tuple
w ∈ Nn such that

• ai(π) < ai+1(π) implies wi < wi+1;

• a1(π) = 0 implies w1 6= 0;

• there exists i such that ai(π) = −s and wi 6= 0.

A labelling of a square path is a partial labelling whose entries are non-zero (thus
the two last conditions are trivially satisfied). Denote the set of partial labellings
of π with exactly m zeros by La(π,m) and the set of labellings of π by La(π).

We distinguish between partial labellings (using 0) and labellings (not using 0),
as the zero and non-zero labels are really intended to be two distinct attributes.
Indeed, the word “partial” comes from the fact that one might think of steps labelled
0 as unlabelled steps (see Definition 4.17). However, the zero label is a useful
artifice, as it is smaller than all the other labels, a property which we will often use
(see Defintion 4.19).

Visually, we will draw wi in the square directly to the right of the i-th north step
of the path. Thus, the first condition of the definition of says that labels lying in
the same column are strictly increasing from bottom to top. The second condition
states that if a path starts with a vertical step, the label of this step may not be
0. The third condition ensures that at least one of the vertical steps starting from
the base diagonal has a non-zero label. See Figure 4.3 for an example of a partially
labelled square path (left) and a labelled Dyck path (right).
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Figure 4.3: An element of LSQ(2, 3) (left) and of LD(5) (right).

Definition 4.8. A rise of π ∈ SQ(n) is an index i ∈ {2, . . . , n} such that ai(π) >
ai−1(π). We identify this index i with the i-th vertical step of the path, so that a
rise is a vertical step preceded by another vertical step. The set of these indices is
denoted by Rise(π).

Definition 4.9. A valley of a π ∈ SQ(n) is an index i ∈ {2, . . . , n} such that
ai(π) ≤ ai−1(π). We identify this index i with the i-th vertical step of the path, so
that a valley is a vertical step preceded by horizontal step. The set of these indices
is denoted by Val(π).

Definition 4.10. A (contractible) valley of a pair (π,w) where w is a partial
labelling of a square path π is an index i ∈ {1, . . . , n} such that one of the following
holds:

• i = 1 and either a1 < −1, or a1(π) = −1 and w1 > 0;

• i > 1 and ai < ai−1;

• i > 1 and ai = ai−1 and wi > wi−1.

We identify this index i with the i-th vertical step of the path. The set of these
indices is denoted by Val(π,w).

Thus (disregarding the first vertical step which is special) a vertical step is
a valley if it is either preceded by two horizontal steps or preceded by a single
horizontal step which is preceded by a vertical step whose label is strictly smaller
than its own label. Thus if we were to remove the horizontal step preceding valley
and add it to the end of the path, we would obtain a valid (partially) labelled
square path, hence the word “contractible”.

Definition 4.11. A rise-valley decorated square path is a triple (π, dr, dv) where π
is a square path, dr is a subset of Rise(π) and dv a subset of Val(π). The set of such
triples where π is of size n, #dr = k and #dv = l is denoted by SQ(n)∗k•l. Define
the subset D(n)∗k•l ⊆ SQ(n)∗k•l of elements (π, dr, dv) such that π is a Dyck path.

Definition 4.12. A rise-valley decorated partially labelled square path is a quadru-
ple (π,w, dr, dv) where π is a square path, w is a partial labelling of π, dr is
a subset of Rise(π) and dv a subset of Val(π,w). The set of such quadruples



4.1. THE OBJECTS 65

2

1

3

0

1

2

∗

∗

1

2

3

2

1

2

•

•

Figure 4.4: An element of LSQ(1, 5)∗2 (left) and of LD(6)•k (right).

where π is of size m + n, w has exactly m zero entries (and thus n positive en-
tries), #dr = k and #dv = l is denoted by LSQ(m,n)∗k•l. Define the subset
LD(m,n)∗k•l ⊆ LSQ(m,n)∗k•l of elements (π,w, dr, dv) such that π is a Dyck path.

Visually, for all i ∈ dr we draw a ∗ in the square directly to the left of the i-th
vertical step of π. And for all i ∈ dv we draw a • in the same way.

The sets of objects whose enumeration will provide combinatorial interpreta-
tions of our symmetric functions are all special cases or subsets of SQ(n)∗k•l or
LSQ(m,n)∗k•l. In particular, in this text we never actually decorate both rises and
valleys simultaneously. We list here all such sets, whose notation we aimed to make
intuitive.

SQ(n)∗k := SQ(n)∗k•0 D(n)∗k := D(n)∗k•0

SQ(n)•k := SQ(n)∗0•k D(n)•k := D(n)∗0•k

LSQ(n) := LSQ(0, n)∗0•0 LD(n) := LD(0, n)∗0•0

LSQ(m,n) := LSQ(m,n)∗0•0 LD(m,n) := LD(m,n)∗0•0

LSQ(n)∗k := LSQ(0, n)∗k•0 LD(n)∗k := LD(0, n)∗k•0

LSQ(n)•k := LSQ(0, n)∗0•k LD(n)•k := LD(0, n)∗0•k

LSQ(m,n)∗k := LSQ(m,n)∗k•0 LD(m,n)∗k := LD(m,n)∗k•0

LSQ(m,n)•k := LSQ(m,n)∗0•k LD(m,n)•k := LD(m,n)∗0•k.

Remark 4.13. The elements of these sets are technically either triples (π, dr, dv) or
quadruples (π,w, dr, dv), but in a context where dv or dr is always empty, we will
often consider them as pairs or triples. This should not lead to any confusion when
the set is clearly specified.

We will also need the following slightly modified version of LSQ(m,n)•k.

Definition 4.14. Set LSQ′(m,n)•k ⊆ LSQ(m,n)•k, to be the subset of (π,w, ∅, dv)
such that there exists 1 ≤ i ≤ m+n such that ai(π) = −shift(π), wi 6= 0 and i 6∈ dv.
In other words, there exists a vertical step starting from the base diagonal that is
neither a decorated valley nor labelled with a 0.

Next, we introduce definitions that will be used to partition these combinatorial
sets.
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Definition 4.15. Take P ∈ D(n)∗k•l t LD(m,n)∗k•l. A touching point is the
starting point of a vertical step at height 0 that is neither a decorated valley nor
labelled with a 0 (if P is labelled). The number of touching points of a path is
denoted as touch(P ).

Definition 4.16. Given P ∈ D(n)∗k•l t LD(m,n)∗k•l, consider {t0, t1, . . . } to be
the increasing set of abscisse coordinates of the touching points of P . For P ∈
LD(m,n)∗k,•l with2m · l = 0 and labelling w, set

αi := #{j ∈ {ti−1, . . . , ti} | j 6∈ Rise(P ) ∪ Val(P ), wj 6= 0}.

For P ∈ D(n)∗k,•l, set

αi := #{j ∈ {ti−1, . . . , ti} | j 6∈ Rise(P ) ∪ Val(P )}.

The diagonal composition of P is defined as dcomp(P ) := (α1, α2, . . . ), a composi-
tion of n− k − l. Clearly, we have `(dcomp(P )) = touch(P ).

Given n,m, k, l ∈ N with m · l = 0 and a composition α � n − k − l, we define
the following sets

D(α)∗k•l := {P ∈ D(n)∗k•l | dcomp(P ) = α}
LD(m,α)∗k•l := {P ∈ LD(m,n)∗k•l | dcomp(P ) = α}

of which we will use only the following special cases.

D(α)∗k := D(α)∗k•0 D(α)•k := D(α)∗0•k

LD(m,α)∗k := LD(m,α)∗k•0 LD(α)∗k := LD(0, α)∗k LD(α)•k := LD(0, α)∗0•k.

We will use these objects to build symmetric functions via the following con-
struction.

Definition 4.17. For w ∈ Nn the monomial associated to w is

xw :=

m+n∏
i=1

xwi

∣∣∣
x0=1

.

For a path P := (π,w, dr, dv) ∈ LSQ(m,n)∗k,•l the monomial associated to it is the
monomial associated to its labelling: xP := xw. Since w ∈ Nm+n and there are m
labels equal to 0, xP is a monomial of degree n.

Example. The monomial of the path on the left in Figure 4.4 is x21x22x3.

4.2 Statistics

Now that we have defined the sets of combinatorial objects, we introduce some
statistics on these sets. Given a combinatorial set S, a statistic on this set is just
a function S → N, essentially a counting function of some attribute of the object.

2We do not venture a definition for the diagonal decomposition of paths that have both zero
labels and decorations on valleys, as we have not yet found a valley version of Conjecture 5.12.
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Definition 4.18. Given π a square path and dr ⊆ Rise(π), we define

area(π, dr) :=
∑
i 6∈dr

(ai(π) + shift(π)) .

In other words, the area is the number of whole squares between the path and
the base diagonal, that are not in a row containing a rise. For P := (π, dr, dv) ∈
SQ(n)∗k•l or Q := (π,w, dr, dv) ∈ LSQ(m,n)∗k•l, we define area(P ) = area(Q) =
area(π, dr) so that the area of a path is independent of its valley decorations and
partial labelling.

Example. The path on the left in Figure 4.4 has area equal to 3.

Definition 4.19. Given π ∈ SQ(m+ n), w ∈ La(π,m) and dv ⊆ Val(π,w) define

• a primary inversion as a pair (i, j) with i 6∈ dv such that 1 ≤ i < j ≤ m+ n,
ai(π) = aj(π) and wi < wj ;

• a secondary inversion as a pair (i, j) with i 6∈ dv such that 1 ≤ i < j ≤ m+n,
ai(π) = aj(π) + 1 and wi > wj ;

• bonus dinv as an index i such that ai(π) < 0 and wi > 0.

We then set

dinv(π,w, dv) :=#primary inversions + #secondary inversions
+ bonus dinv−#dv

For P := (π,w, dr, dv) ∈ LSQ(m,n)∗k•l we set dinv(P ) := area(π,w, dv) so that the
dinv of a path does not depend on its rise decorations.

Example. The path on the right in Figure 4.4 has 2 primary inversions, (1, 6) and
(5, 6), 2 secondary inversions, (2, 5) and (3, 4), no bonus dinv (no Dyck path does)
and two decorated valleys. Thus its dinv is 2.

From the definition, it is not immediately clear that the dinv of a path is always
a non-negative quantity.

Proposition 4.20. For all P ∈ LSQ(m,n)∗k•l, dinv(P ) ≥ 0.

Proof. We will show that each decorated valley of P implies at least one unit of
primary, secondary or bonus dinv.

Consider a decorated valley at height i. By definition, it is preceded by a
horizontal step. For the remainder of the proof, “decorated valley” will refer to the
decorated vertical step and the horizontal step that precedes it.

Step 0. Suppose the valley is part of a string of decorated valleys, labelled
As, . . . , A1 from left to right, see Figure 4.5a. Since the valleys are contractible we
must have As < · · · < A1. This string is then directly preceded either by a vertical
step that is not a decorated valley (as otherwise this would be part of the string),
or by a horizontal step.

Step 1. If the string is preceded by a vertical step, then this step’s label, say B,
must be such that B < As < · · · < A1 since the step labelled by As is a contractible
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(d) Step 2.1.2.

Figure 4.5: Dinv is non-negative.

valley, see Figure 4.5b. Thus, the step labelled B creates primary dinv with each
of the decorated valleys in the string following it

Step 2. If the string is preceded by a horizontal step, consider two subcases.
Step 2.1. First suppose that the valley labelled As is preceded by a leftmost

vertical step at height i that is not a decorated valley (which is always true for
i ≥ 0). This implies that the step labelled As must be preceded at some point by
two consecutive vertical steps, at height i and i+ 1, labelled C and B respectively,
see Figure 4.5c. For all j, if B > Aj , then the step labelled B creates secondary
dinv with the step labelled Aj . If B ≤ Aj then C < Aj .

Step 2.1.1. If the step labelled C is not a decorated valley then it creates
primary dinv with the step labelled Aj .

Step 2.1.2. If, however the step labelled C is a decorated valley, rename
its label As+1 and consider it as part of the “string” of decorated valleys, see
Figure 4.5d. Restart the argument from Step 1 (since the path is finite, this loop
must terminate).

Step 2.2. The step labelled As is not preceded by a vertical step at height i
that is not a decorated valley. This implies that i < 0. Thus, decorated valleys at
height i that are not labelled 0 contribute to the bonus dinv. So we are exclusively
concerned with the decorated valleys labelled 0. Decorated valleys labelled 0 that
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are not the first step at height i must create secondary dinv with a step to its
left: indeed, they must be preceded by two horizontal steps, otherwise they would
not be contractible. Since they are not the first step at height i, they must be
preceded by two consecutive vertical steps, at height i and i + 1, labelled B and
C respectively, as in Figure 4.5c. Since B labels a rise, it must be positive and
therefore must create secondary dinv with steps labelled 0 to its right.

Thus, we are left with a decorated valley labelled 0 that is the first step at
height i. By the definition of a contractible valley (4.10), this implies that i 6= 1.
Since the square path must end east, there must be a rise at height i+1 < 0, which
creates one unit of bonus dinv.

4.3 Combinatorics of q-analogues

In this section, we develop a general combinatorial framework for some q-binomial
expressions that will come up often in our discussion. The formulas are q-analogues
of classical combinatorial identities.

Definition 4.21. Given a set S and a statistic stat : S → N on that set, we say
that stat is q-counted on S by

∑
s∈S q

stat(s).

Definition 4.22. Suppose a, b ∈ N. An interlacing of a and b is a function
f : {1, . . . , a + b} → {0, 1} such that #f−1(0) = a and #f−1(1) = b. In other
words, it is a word in of length a + b with a letters 0 and b letters 1. When
a = b = 0 there is one interlacing which is the empty function (or word). An
inversion of f is a pair (i, j) such that 1 ≤ i < j ≤ a + b and f(i) > f(j). We
denote by inv(f) the number of inversions of f . In other words, inv(f) is the number
of times a 1 precedes a 0 in the interlacing.

Proposition 4.23. For a, b ∈ N∑
f

qinv(f) =

[
a+ b

a

]
q

=

[
a+ b

b

]
q

,

where the sum is over all interlacings f of a and b.

Proof. The second equality follows directly from the q-binomial definition (2.11).
We show the fist equality by double induction on a and b. The case where a = 0 or
b = 0 trivially gives 1 = 1. Now suppose a > 1 and b > 1. The set of interlacings
f of a and b may be divided into two parts: the first containing the interlacings
such that f(1) = 1 and the second the ones with f(1) = 0. Interlacings of the
former kind may be uniquely obtained from an interlacing of a and b−1 by placing
a 1 in front of the word. Adding this 1 creates exactly a inversions. Inversions
of the second kind may be obtained uniquely from an interlacing of a − 1 and b
by placing a 0 in front, which creates no inversions. The q-binomial identity of
Proposition 2.17, [

a+ b

a

]
q

= qa
[
a+ b− 1

a

]
q

+

[
a+ b− 1

a− 1

]
q

,

combined with the induction hypothesis thus implies the thesis.
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In other words, the inv statistic on the set of interlacings of a and b is q-counted
by
[
a+b
a

]
q
.

Definition 4.24. For a, b ∈ N, a strict interlacing of a and b is an interlacing that
contains no 00 substring.

Proposition 4.25. For a, b ∈ N∑
f

qinv(f) = q(
b
2)
[
a

b

]
q

where the sum is over all strict interlacings f of b and a such that f(a+ b) = 1.

Proof. If a < b then there are no strict interlacings of a and b and so the identity
is 0 = 0. So we may suppose a− b ≥ 0. By Proposition 4.23,[

a

b

]
q

=

[
b+ (a− b)

b

]
q

=
∑
f

qinv(f),

where the sum is over all interlacings f of b and a− b. Given such an interlacing,
insert a 1 immediately after every occurrence of a 0. It is clear that we obtain a
strict interlacing between b and a ending with a 1; and that any such interlacing
may be obtained in this way. Adding the 1 after the first occurrence of a 0 creates
an inversion with the b− 1 remaining 0’s to its right. Similarly, the insertion of a 1
after the second 0 creates b−2 inversions. We may induce that the total number of
inversions that were created by the insertion is (b− 1) + (b− 2) + · · ·+ 2 + 1 =

(
b
2

)
;

and the thesis is proved.



Chapter 5

Delta conjectures and Theta
refinements

We give an overview of (conjectured) combinatorial formulas for symmetric func-
tions obtained via Delta or Theta operators.

5.1 Delta conjectures

In [HHL+05], the authors conjectured a combinatorial formula in terms of labelled
Dyck paths for the symmetric function ∇en. Their formula was know as the shuffle
conjecture and became the shuffle theorem after the proof was found by Carlsson
and Mellit [CM18]. See Section 5.3 for an explanation of the term “shuffle”.

Theorem 5.1 (shuffle theorem). For n ∈ N

∇en =
∑

P∈LD(n)

qdinv(P )tarea(P )xP .

This formula was conjecturally generalised in [HRW18], where the authors pro-
pose two different combinatorial formulas for the symmetric function ∆hm∆′en−k−1

en,
which reduces to ∇en for m = k = 0. The combinatorial objects are rise decorated
and valley decorated labelled Dyck paths. These twin conjectures are known as
the generalised Delta conjecture, the case m = 0 being the Delta conjecture.

Conjecture 5.2 (generalised Delta conjecture, rise version). For m,n, k ∈ N with
k < n

∆hm∆′en−k−1
en =

∑
P∈LD(m,n)∗k

qdinv(P )tarea(P )xP .

Conjecture 5.3 (generalised Delta conjecture, valley version). For m,n, k ∈ N
with k < n

∆hm∆′en−k−1
en =

∑
P∈LD(m,n)•k

qdinv(P )tarea(P )xP .

71
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In [LW07], the authors posited that the symmetric function ∇ω(pn) can be
described combinatorially in terms of labelled square paths: the square conjecture.
In [Ser17], Sergel proved that the Shuffle theorem implies the square conjecture,
which thus became a theorem.

Theorem 5.4 (square theorem). For n ∈ N

∇ω(pn) =
∑

P∈LSQ(n)

qdinv(P )tarea(P )xP .

It was natural to look for a generalisation of the square theorem, analogous to
the (generalised) Delta conjecture. This took some tinkering, because the simply
decorated version of the combinatorial objects does not give the expected symmetric
function. In [DIV19], we state the anticipated generalisation of the rise version as
follows.

Conjecture 5.5 (generalised Delta square conjecture, rise version).
For m,n, k ∈ N with k < n

[n− k]t
[n]t

∆hm∆en−kω(pn) =
∑

P∈LSQ(m,n)∗k

qdinv(P )tarea(P )xP .

In [IV20], we conjecture two formulas that may reasonable be called valley
versions of the generalised Delta square conjecture.

Conjecture 5.6 (generalised Delta square conjecture, valley version).
For m,n, k ∈ N with k < n

[n− k]q
[n]q

∆hm∆en−kω(pn) =
∑

P∈LSQ(m,n)•k

qdinv(P )tarea(P )xP .

By Theorem 3.37, we know that ∆en−kω(pn) and Θk∇ω(pn−k) are the same, up
to a scalar. Slightly adapting the set of combinatorial objects (see Definition 4.14)
seems to give the following formula.

Conjecture 5.7 (modified generalised Delta square conjecture, valley version).
For m,n, k ∈ N with k < n

∆hmΘk∇ω(pn−k) =
∑

P∈LSQ′(m,n)•k
qdinv(P )tarea(P )xP .

5.2 Refinements

What Carlsson and Mellit actually proved in [CM18] is the compositional refine-
ment of the shuffle formula, conjectured in [HMZ12].

Theorem 5.8 (compositional shuffle theorem). For n ∈ N and α � n

∇Cα =
∑

P∈LD(α)

qdinv(P )tarea(P )xP .
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This result clearly implies the Shuffle theorem by Corollary 2.46. Using Theo-
rem 2.45 and Definitions 4.15 and 4.16, we also get the following.

Corollary 5.9 (touching shuffle theorem). For n, r ∈ N

∇En,r =
∑

P∈LD(n)
touch(P )=r

qdinv(P )tarea(P )xP

How do these refinements generalise to the Delta context? Simply applying
∆′en−k−1

to Cα or En,k does not coincide with an obvious combinatorial inter-
pretation analogous to the undecorated case. This is where the Theta opera-
tors of [DIV20] come into play. This paper contains all the remaining conjec-
tures of the current section. The symmetric function of the Delta conjecture is
∆′en−k−1

en = Θk∇en−k, by Theorem 3.36. Therefore the following formulas, refine
the Delta conjecture.

Conjecture 5.10 (compositional Delta conjecture, rise version). For n, k ∈ N with
k < n and α � n− k

Θk∇Cα =
∑

P∈LD(α)∗k

qdinv(P )tarea(P )xP .

Conjecture 5.11 (compositional Delta conjecture, valley version). For n, k ∈ N
with k < n and α � n− k

Θk∇Cα =
∑

P∈LD(α)•k

qdinv(P )tarea(P )xP .

Now we would like to apply ∆hm to get a generalised version, but unfortunately,
this does not quite work: the dinv does not match. We can state only a partial
conjecture.

Conjecture 5.12. For m,n, k ∈ N with k < n and α � n− k

∆hmΘk∇Cα
∣∣
q=1

=
∑

P∈LD(m,α)∗k

tarea(P )xP .

We do not have a valley version of this partial conjecture. However, we do have
a touching version of the generalised Delta conjecture.

Conjecture 5.13 (touching generalised Delta conjecture, rise version). Form,n, k, r ∈
N with k < n

∆hmΘk∇En−k,r =
∑

P∈LD(m,n)∗k

touch(P )=r

qdinv(P )tarea(P )xP
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Conjecture 5.14 (touching generalised Delta conjecture, valley version). For
m,n, k, r ∈ N with k < n

∆hmΘk∇En−k,r =
∑

P∈LD(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP .

Next, we shift our attention to refinements of the (generalised) Delta square
conjecture. We do not, as of yet, have a “compositional” version. However, a
touching version seems to hold, but only for the rise version. Proposition 2.42
states that the [n]q

[r]q
En,r are building blocks of ω(pn). Therefore the following is a

refinement of the generalised Delta square conjecture.

Conjecture 5.15 (touching generalised Delta square conjecture, valley version).
For m,n, k, r ∈ N with k < n

[n]q
[r]q

∆hmΘk∇En−k,r =
∑

P∈LSQ(m,n)∗k

touch(P )=r

qdinv(P )tarea(P )xP .

[DIV18] [DIV20] [IV20]

5.3 Shuffle theory

The conjectures of the previous sections can be rephrased using shuffle theory. To
this end, we need some definitions.

Definition 5.16. Given two pairwise distinct finite sequences (a1, . . . , an) and
(b1, . . . , bm), their shuffle (a1, . . . , an)�(b1, . . . , bm) is the set of sequences (c1, . . . , cm+n)
such that

• {ci | 1 ≤ i ≤ m+ n} = {ai | 1 ≤ i ≤ n} ∪ {bi | 1 ≤ i ≤ m};

• if j < k and cj = ar, ck = as then r < s;

• if j < k and cj = br, ck = bs then r < s.

Example. The shuffle of (1, 2) and (3, 4) is

{(12, 3, 4), (1, 3, 2, 4), (1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2)}.

Definition 5.17. Given a composition α a α-shuffle is an element of (1, . . . , α1)�
(α1 + 1, . . . , α1 + α2)� · · · .

Definition 5.18. Consider a path P = (π,w, dr, dv) ∈ LSQ(m,n)∗k•l with shift
s. The reading word of P is the permutation of w obtained as follows: read the
labels in the i-th diagonal, from left to right, for i = −s,−s + 1, . . . ; then reverse
this word (i.e. read it from right to left).

Example. The path on the left in Figure 5.1 has reading word 213201.
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Figure 5.1: An element of LSQ(1, 5)∗2 (left) and its standardisation (right) in
Pref(1, 5)∗2.

Definition 5.19. Given a composition α, an element of LSQ(m,n)∗k•l is said to
be an α-shuffle if its reading word, without the zeros, is an α-shuffle.

Definition 5.20. A (generalised decorated) preference function is an element of
LSQ(m,n)∗k•l such that its non-zero labels are exactly 1, 2, . . . , n. The set of such
paths is denoted by Pref(m,n)∗k•l. A preference function whose underlying lattice
path is a Dyck path is called a parking function and the subset of such paths is
denoted by Park(m,n)∗k•l.

Definition 5.21. Consider P = (π,w, dr, dv) ∈ LSQ(m,n)∗k•l with reading word
u. Suppose α is the composition of n such that w contains α1 letters equal to 1,
α2 letters equal to 2 and so forth. Let ũ by the word obtained from u by replacing,
from left to right, its 1’s by 1, 2, . . . α1; its 2’s by α1 + 1, . . . , α1 + α2 and so forth.
The standardisation of P the unique element (π, w̃, dr, dv) ∈ Pref(m,n)∗k•l whose
reading word is ũ.

Proposition 5.22. Consider P ∈ LSQ(m,n)∗k•l and Q its standardisation. Then
area(P ) = area(Q) and dinv(P ) = dinv(Q).

The proof is simple: since Q is simply a relabelling of P and the area of a
path does not depend on its labels, the first statement is obvious. The second
statement follows easily from the definitions of dinv (4.19), reading word (5.18)
and standardisation (5.21).

Proposition 5.23. Consider f ∈ Λ(n) and let S be LSQ(m,n)∗k•l, LSQ′(m,n)∗k•l

or LD(m,n)∗k•l. Let S̃ be the set obtained from S by standardising its elements.
The following statements are equivalent.

(i) f =
∑
P∈S q

dinv(P )tarea(P )xP ;

(ii) For all λ ` n,
〈f, hλ〉 =

∑
P∈S̃

P is a λ-shuffle

qdinv(P )tarea(P ).
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Proof. Since {hλ}λ`n and {mλ}λ`n are dual basis of Λ(n) with respect to the Hall
scalar product (see Proposition 1.50), 〈f, hλ〉 corresponds to the coefficient of mλ

in the monomial basis expansion of f . By definition of mλ, this must be the same
coefficient found in front of the monomial xλ1

1 · · ·x
λ`(λ)
`(λ) of f .

Suppose that (i) holds. Then for any λ ` n the coefficient in front of xλ1
1 · · ·x

λ`(λ)
`(λ)

of f is ∑
P∈S(λ)

qdinv(P )tarea(P ),

where S(λ) is the subset of S whose paths have λ1 labels equal to 1, λ2 labels equal
to 2 and so forth. Standardising the elements of S(λ), we get exactly the elements
of S̃ that are λ-shuffles. Thus using Proposition 5.22, we get (ii).

Now suppose that (ii) holds. By the same arguments as before we have〈∑
P∈S

qdinv(P )tarea(P )xP , hλ

〉
=

∑
P∈S̃

P is a λ-shuffle

qdinv(P )tarea(P ).

Since {hλ}λ`n is a basis of Λ(n), this implies that (ii) ensures (i).



Chapter 6

The touching generalised
shuffle theorem

In this chapter we will prove the case k = 0 of the touching generalised Delta
conjecture (5.13 and 5.15).

Theorem 6.1 (touching generalised shuffle theorem). For m,n, r ∈ N

∆hm∇En,r =
∑

P∈LD(m,n)
touch(P )=r

qdinv(P )tarea(P )xP .

As the En,r are the building blocks of en (Equation (2.40)), taking the sum
over r will yield the following immediate consequence of Theorem 6.1.

Corollary 6.2 (generalised shuffle theorem). For m,n ∈ N, with n > 0

∆hm∇en =
∑

P∈LD(m,n)

qdinv(P )tarea(P )xP .

In order to prove this result, we will provide a combinatorial interpretation of
the symmetric function ∆hm∇en[X[s + 1]q] in terms of augmented Dyck paths by
using a key symmetric function identity for h⊥j ∇en[X[s+ 1]q].

6.1 Symmetric function identity

This section is dedicated to the proof of the following symmetric function identity.

Theorem 6.3. For n,m, s ∈ N with n > 0 and m ≤ n

h⊥m∇en[X[s+ 1]q] =

m∑
l=0

tm−l
[
s+ l

l

]
q

∆hm−l∇en−m[X[s+ l + 1]q].

77
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Proof. For m = n, the right hand side is a constant

h⊥n∇en[X[s+ 1]q] =

〈
∇en

[
XM [s+ 1]q

M

]
, hn

〉
(by 2.27) =

∑
λ`n

Hλ[M [s+ 1]q]

wλ
〈∇Hλ[X], hn〉

(by 2.31) =
∑
λ`n

Hλ[M [s+ 1]q]

wλ

〈
TλHλ[X], s(n)

〉
(by 2.9.(III)) =

∑
λ`n

TλHλ[M [s+ 1]q]

wλ

(by 3.11) = hn

[
M [s+ 1]q

M

]
= hn[[s+ 1]q]

(by 2.20) =

[
n+ s

n

]
q

Since ∆hm−l∇e0 = δl,m, this is what we wanted to show.
Let us now assume that m < n. To begin we use the Macdonald expansion of

en[X[k]q] (Proposition 3.13) and the definition of ∇ (2.31) .

h⊥m∇en [X[s+ 1]q] = (1− qs+1)
∑
λ`n

Πλhs+1[(1− t)Bλ]Tλ
h⊥mHλ[X]

wλ

(by 3.17, 3.20) = (1− qs+1)
∑
λ`n

∑
µ⊂mλ

Πλhs+1[(1− t)Bλ]Tλ
c
(m)
λµ Hµ[X]

wλ

(by (3.19)) = (1− qs+1)
∑

µ`n−m

Hµ[X]

wµ

∑
λ⊃mµ

d
(m)
λµ Πλhs+1[(1− t)Bλ]Tλ

= · · ·

We need an extra identity, [Hag04, Equation 79], the proof of which we included
in Appendix A.

Lemma 6.4. For f, g homogeneous elements of Λ with deg(f) = m and µ ∈
Par \ {∅}, we have ∑

λ⊃mµ

dfλµΠλg[MBλ] = Πµ(∆f [MX]g)[MBµ].

We apply this formula with f [X] = em
[
X
M

]
and g[X] = hs+1

[
X

1−q

]
en
[
X
M

]
so

that dfλµ = d
(m)
λµ (see Definition 3.17) and g[MBλ] = hs+1[(1 − t)Bλ]Tλ. Thus we

get

· · · = (1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ∆em

(
hs+1

[
Z

1− q

]
en

[
Z

M

]) ∣∣∣
Z 7→MBµ
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Proposition 3.34 gives the Macdonald expansion of the parenthetical, which allows
for an explicit formulation of its image by ∆em . We recall the formula here:

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
λ`i+j

Hλ[X]

wλ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bλ].

Using this, we get

· · · =(1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ

∑
ν`s+n+1

em[Bν ]
Hν [MBµ]

wλ
q−(s+1

2 )

×
s+1∑
k=0

(−1)s+1−kq(
s+1−k

2 )
[

s

s+ 1− k

]
q

hk[(1− t)Bν ].

Since
[
s
s+1

]
q

= 0 and
[

s
s+1−k

]
q

=
[
s

k−1
]
q
for all k such that 0 ≤ s + 1 − k ≤ s, i.e.

1 ≤ k ≤ s+ 1 we may rewrite

· · · =(1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ

∑
ν`s+n+1

em[Bν ]
Hν [MBµ]

wλ
q−(s+1

2 )

×
s+1∑
k=1

(−1)s+1−kq(
s+1−k

2 )
[

s

k − 1

]
q

hk[(1− t)Bν ]

=(1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ

s+1∑
k=1

q−(s+1
2 )(−1)s+1−kq(

s+1−k
2 )

[
s

k − 1

]
q

×
∑

ν`s+n+1

Hν [MBµ]

wλ
hk[(1− t)Bν ]em[Bν ] = · · ·

Next, we apply the summation formula of Theorem 3.26:∑
λ`m+n

Hλ[X]

wλ
hs[(1− t)Bλ]em[Bλ]

=

m∑
l=0

tm−l
s∑

k=0

q(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

hl+k

[
X

1− q

]
hm−l

[
X

M

]
en−k

[
X

M

]
which gives

· · · = (1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ

s+1∑
k=1

q−(s+1
2 )(−1)s+1−kq(

s+1−k
2 )

[
s

k − 1

]
q

×
m∑
l=0

tm−l
k∑
r=0

q(
r
2)
[
l + r

r

]
q

[
l + k − 1

k − r

]
q

hl+r[(1− t)Bµ]hm−l[Bµ]es+n+1−m−r[Bµ].

Since es+n+1−m−r[Bµ] = 0 if s+ n+ 1−m− r > |µ| = n−m, i.e. if r < s+ 1, all
the terms are 0 except for k = r = s+ 1. Thus

· · · =(1− qs+1)
∑

µ`n−m

Hµ[X]

wµ
Πµ

m∑
l=0

tm−l
[
l + s+ 1

s+ 1

]
q

× hl+s+1[(1− t)Bµ]hm−l[Bµ]en−m[Bµ] = · · ·
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We now use the following elementary q-binomial identity, whose proof can be found
in Appendix A.

Lemma 6.5. For l, s ∈ N

(1− qs+1)

[
l + s+ 1

l

]
q

= (1− qs+l+1)

[
s+ l

l

]
q

.

Since
[
l+s+1
s+1

]
q

=
[
l+s+1
l

]
q
for all l, s ∈ N we may use this lemma, and the fact

that en−m[Bµ] = Tµ for all µ ` n−m to write

· · · =
∑

µ`n−m

Hµ[X]

wµ
Πµ

m∑
l=0

tm−l(1− qs+l+1)

[
l + s

l

]
q

hl+s+1[(1− t)Bµ]hm−l[Bµ]Tµ

=

m∑
l=0

tm−l
[
l + s

l

]
q

(1− qs+l+1)
∑

µ`n−m

hm−l[Bµ]TµHµ[X]

wµ
Πµhl+s+1[(1− t)Bµ]

= · · ·

Using the definitions of ∆f and ∇ (2.31, 2.32), combined with the Macdonald
expansion of en[X[k]q] (Proposition 3.13), we may conclude

· · · =
m∑
l=0

tm−l
[
l + s

l

]
q

∆hm−l∇en−m[X[s+ l + 1]q].

6.2 Augmented Dyck paths

Definition 6.6. An augmented Dyck path is a pair (π,w) with π a Dyck path and
w a labelling of π with entries in N ∪ {∞}, such that the steps labelled ∞ are all
at height zero and so they are the only labels in their columns. Furthermore, we
require that ∞ labels are not directly followed by a 0 label and that the leftmost
finite label on the main diagonal is non-zero. The set of such paths of size m+n+s
with m labels equal to 0, n positive finite labels and s infinite labels is denoted by
LD(m,n, s).

We draw an example in Figure 6.1.

Definition 6.7. Let P ∈ LD(m,n, s) we define dinv(P ) in exactly the same way
as Definition 4.19, where we consider that

• i <∞ for i ∈ P;

• 0 and ∞ are incomparable.

As usual, the area is not influenced by the labels so for (π,w) ∈ LD(m,n, s), we
define area(π,w) to be the same expression as in Definition 4.18, with shift(π) = 0
and dv = ∅, i.e. the number of whole squares between the path and the main
diagonal.
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Figure 6.1: An element of LD(1, 3, 2).

Example. The path in Figure 6.1 has 3 primary dinv, (1, 2), (3, 5) and (5, 6), and
1 secondary dinv, (4, 5), so total dinv 4. Its area is 1.

Finally, we define the monomial of an augmented Dyck path.

Definition 6.8. If P ∈ LD(m,n, s) then the monomial associated to P is

xP :=

m+n∏
i=1

xwi

∣∣∣∣∣ x0=1
x∞=1

.

Since there are m labels equal to 0 and s labels equal to ∞, this is a degree n
monomial.

Example. The monomial of the path in Figure 6.1 is x1x22.

6.3 The proof

In this section, we prove Theorem 6.2, passing by a combinatorial interpretation in
terms of augmented Dyck paths of ∆hm∇em+n+n[X[s + 1]q]. To begin, we apply
∇ to Equation (2.39), which gives

∇en[X[s+ 1]q] =

n∑
k=0

[
k + s

k

]
q

∇En,k. (6.9)

The touching shuffle theorem (Corollary 5.9) states that

∇En,k =
∑

P∈LD(n)
touch(P )=k

qdinv(P )tarea(P )xP . (6.10)

Combinatorially, we have the following.
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Proposition 6.11. For n, s ∈ N with n > 0∑
P∈LD(m,n,s)

qdinv(P )tarea(P )xP =

n∑
k=0

[
k + s

k

]
q

∑
P∈LD(m,n)
touch(P )=k

qdinv(P )tarea(P )xP .

Proof. Start from a path P ∈ LD(m,n) with touch(P ) = k. We will insert s vertical
steps labelled ∞, directly followed by a horizontal step. In this way we obtain all
the elements of LD(m,n, s). Since all steps labelled ∞ must by definition lie on
the main diagonal, the only places we may insert (a consecutive string of) ∞’s is
right before a vertical step at height 0 with a non-zero label, i.e. at the touching
points of P , of which there are k. Encode the choice of where to insert the∞ steps
with an interlacing of s and k where the 0’s correspond to the ∞’s and the 1’s to
the touching points. Since a touching point is followed by a vertical step that is
labelled by a positive integer, each time a 1 precedes a 0 a unit of primary dinv is
created. Since the ∞’s do not create secondary dinv, nor primary dinv with 0’s,
this is the only contribution to the dinv. Thus the inv of the interlacing corresponds
exactly to the dinv added to the path by the insertion. Clearly, this insertion does
not change the area of the path and thus Proposition 4.23 concludes the proof.

Combining equations (6.9), (6.10) and Proposition 6.11 with m = 0, we may
conclude the following

Proposition 6.12. For n, s ∈ N with n > 0

∇en[X[s+ 1]q] =
∑

P∈LD(0,n,s)

qdinv(P )tarea(P )xP .

Next, we use the theory of shuffles to deduce a combinatorial formula for
h⊥m∇em+n[X[s + 1]q]. We need to extend the vocabulary of Section 5.3 to aug-
mented paths: given a path P in LD(m,n, s), we define its reading word in exactly
the same way as regular Dyck paths (5.18). Define also its standardisation and
what is means for P to be a α-shuffle analogously to 5.21 and 5.19, where the ∞’s
are disregarded, like the 0’s. Lastly an element of LD(m,n, s) is an augmented
parking function if its non-zero non-infinity labels are exactly 1, . . . , n and the set
of such paths is denoted by Park(m,n, s).

The same1argument as in the proof of Propostition 5.23, applied to Proposi-
tion 6.11 implies

〈h⊥m∇em+n[X[s+ 1]q], hλ〉 = 〈∇em+n[X[s+ 1]q], hmhλ〉
=

∑
P∈Park(0,n,s)

P is a λ(m)-shuffle

qdinv(P )tarea(P );

for all λ ` n, where λ(m) is the concatenation (λ1, . . . , λ`(λ),m). Since

〈h⊥m∇em+n[X[s+ 1]q], hλ〉
is the coefficient of mλ in the monomial basis expansion of h⊥m∇em+n[X[s + 1]q]
we may immediately deduce the following.

1There is one subtlety: (λ,m) might not be a partition but a composition; but since ∇en[X[s+
1]q ] is symmetric, permuting the variables does not influence the coefficient.
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Proposition 6.13. Consider m,n, s ∈ N with n > 0. Let S ⊆ LD(0,m + n, s) be
such that P ∈ S if P has exactly m maximal finite labels and set maxP to be the
value of this maximal finite label, then

h⊥m∇em+n[X[s+ 1]q] =
∑
P∈S

qdinv(P )tarea(P )xP
∣∣
xmaxP

7→1
.

Let us reformulate the right hand side of this equation.

Lemma 6.14. For m,n, s ∈ N with n > 0, using the notation of Proposition 6.13,
we have∑

P∈S
qdinv(P )tarea(P )xP

∣∣
xmaxP

7→1
=

m∑
l=0

tm−l
[
s+ l

l

]
q

×
∑

P∈LD(m−l,n,s+l)

qdinv(P )tarea(P )xP .

Proof. We start from P ∈ S and let l be the number of maximal finite labels of P
at height 0. We will transform P via a “pushing algorithm” and obtain a path in
LD(m−l, n, s+l), keeping track of the modifications to the statistics. See Figure 6.2
for a visual aid. By their nature, the vertical steps labelled with a maximal finite
label must be followed by a horizontal step. The pushing algorithm consists of two
operations.

• Replace the l maximal finite labels at height 0 with ∞ labels.

• By definition of S, 0 ≤ l ≤ m and P has exactly m − l maximal finite
labels that are not at height 0. Replace the vertical step labelled with these
maximal finite labels, and the horizontal step that follows it, by a horizontal
step followed by a vertical step, labelled with 0.

Thus we obtain a path in LD(m−l, n−m, s+l), indeed: any 0 on the main diagonal
came from a rise at height 1, so the label right before it must be finite. It is not
hard to see that any path of this set can obtained via the pushing algorithm.

The first operation is simply a relabelling so does not affect the area. Nor
is the secondary dinv affected since maximal finite labels on the main diagonal
do not create any. The primary dinv with finite labels in not affected either as
it is conserved when changing the label to infinity. However, the primary dinv
between maximal finite labels and infinity labels disappears since infinity labels do
not create dinv among each other. Given an interlacing of s (the number of ∞’s
that were already present) and l, we may interpret it as the relative positioning
of these two kind of steps. Each time a maximal finite label precedes an infinity
label, a unit of dinv will be lost after the pushing algorithm. Thus the inv of the
interlacing corresponds exactly to the lost dinv, which accounts for the factor

[
s+l
l

]
q

(see Proposition 4.23).
The second operation does not affect the dinv since primary becomes secondary

and vice versa. It affects the area though: it is easy to see that the area goes down
by exactly m− l units.
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Figure 6.2: Pushing algorithm.

We are now ready to prove the generalised version of Proposition 6.12.

Theorem 6.15. For all m,n, s ∈ N with n > 0

∆hm∇en[X[s+ 1]q] =
∑

P∈LD(m,n,s)

qdinv(P )tarea(P )xP .

Proof. We proceed by induction on m. The base case, m = 0 is exactly Proposi-
tion 6.12. Now suppose m > 0. We will provide a combinatorial interpretation for
the symmetric function identity of Theorem 6.3 with n 7→ m+ n:

h⊥m∇em+n[X[s+ 1]q] =

m∑
l=0

tm−l
[
s+ l

l

]
q

∆hm−l∇en[X[s+ l + 1]q]. (6.16)

Combining Proposition 6.13 and Lemma 6.14, we know that the left hand side
equals

h⊥m∇em+n[X[s+ 1]q] =

m∑
l=0

tm−l
[
s+ l

l

]
q

∑
P∈LD(m−l,n,s+l)

qdinv(P )tarea(P )xP . (6.17)

By the induction hypothesis, we know that

∆hm−l∇en[X[s+ l + 1]q] =
∑

P∈LD(m−l,n,s+l)

qdinv(P )tarea(P )xP for l > 0. (6.18)

Combining (6.16), (6.17) and (6.18) we get

m∑
l=0

tm−l
[
s+ l

l

]
q

∑
P∈LD(m−l,n,s+l)

qdinv(P )tarea(P )xP = tm∆hm∇en[X[s+ 1]q]

+

m∑
l=1

∑
P∈LD(m−l,n,s+l)

qdinv(P )tarea(P )xP ,

which readily implies our thesis.
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Now, applying ∆hm to Equation (6.9), we get

∆hm∇en[X[s+ 1]q] =

n∑
k=0

[
k + s

k

]
q

∆hm∇En,k. (6.19)

This gives a system of linear equations expressing {∆hm∇en[X[s + 1]q]}0≤s≤n
in terms of {∆hm∇En,k}0≤k≤n with transition matrix

[[
k+s
s

]
q

]
k,s=0,...,n

. Call this

system L.
The following is an elementary fact about Pascal matrices (see [Wik20]), a proof

of which can be found in Appendix A.

Lemma 6.20. If M :=
[(
i+j
i

)]
i,j=0,...,n

∈ Mat(n+1)×(n+1)(N) then det(M) = 1.

By definition of the q-binomials we obtain the determinant
[(
k+s
k

)]
k,s=0,...,n

by

setting q = 1 in the determinant of
[[
k+s
s

]
q

]
k,s=0,...,n

. So this lemma implies that

both these matrices are invertible. So the linear system L has a unique solution.
Combining Theorem 6.15 and Proposition 6.11 (the combinatorial counterpart of
(6.19)) determines this unique solution. Therefore, we may deduce the result stated
at the top of this chapter.

Theorem 6.1 (touching generalised shuffle theorem). For m,n, r ∈ N

∆hm∇En,r =
∑

P∈LD(m,n)
touch(P )=r

qdinv(P )tarea(P )xP .
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Chapter 7

The valley Delta square

In this chapter we will show an implication between two of the conjectures stated
in Chapter 5: Conjecture 5.14 implies Conjecture 5.7. We restate them here.

Conjecture 5.14 (touching generalised Delta conjecture, valley version). For
m,n, k, r ∈ N with k < n

∆hmΘk∇En−k,r =
∑

P∈LD(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP .

Conjecture 5.7 (modified generalised Delta square conjecture, valley version).
For m,n, k ∈ N with k < n

∆hmΘk∇ω(pn−k) =
∑

P∈LSQ′(m,n)•k
qdinv(P )tarea(P )xP .

Chapter 6 is dedicated to the proof of the case k = 0 the former statement.
Thus this implication will establish the case k = 0 of the latter one: the generalised
square theorem.

Theorem 7.1 (generalised square theorem). For m,n ∈ N

∆hm∇ω(pn) =
∑

P∈LSQ′(m,n)

qdinv(P )tarea(P )xP .

7.1 Schedule numbers

In this section we provide a combinatorial formula for the right hand side of Conjec-
ture 5.7. The formula uses schedule numbers, a notion that was developed in [HL05],
[Hic13], [Ser17], [HS19]. Contrary to these publications, our formula enumerates
labelled square paths and not preference functions, i.e. it allows for repeated labels.
It thus provides a new factorisation of previous schedule formulas.

Definition 7.2. Let P ∈ LSQ(m,n)•k and s := shift(P ). For i ≥ 0, consider the
multiset of labels contained in the (s + i)-th diagonal of P , where the labels of

87
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Figure 7.1: An element of LD(2, 6)•2

decorated valleys are decorated with a •. Let ρi be the decorated word obtained
from arranging this multiset in increasing order, considering c <

•
c < c + 1. The

diagonal word of P is dw(P ) := ρ` . . . ρ1ρ0, where ` = max{i | ρi 6= ∅} .

Example. The path in Figure 7.1 has ρ0 =
•
01, ρ1 =

•
14, ρ2 = 3 and ρ3 = 024 and

so its diagonal word is 0243
•
14
•
01.

A run of a word is a maximal increasing substring of that word. Since square
paths end east, all its diagonals (except the base diagonal) contain a label that
lies on top of a (strictly smaller) label contained in the diagonal right below it. It
follows that the ρi are the runs of the diagonal word of P .

Definition 7.3. Consider P ∈ LD(m,n)•k and set dw(P ) = ρ` · · · ρ0, where the
ρi’s are its runs. We define its i-th run multiplicity functions zi, z•i : N→ N, where
for any c ∈ N

zi(c) = # of undecorated c’s in ρi
z•i (c) = # of decorated c’s in ρi.

Clearly, each function zi has finite support.

Definition 7.4. Consider P ∈ LSQ(m,n)•k and set dw(P ) = ρ` · · · ρ0, where the
ρi’s are its runs. For c ∈ N, we define its schedule numbers wi,s(c) as follows:

wi,s(c) :=


∑
d>c zi(d) +

∑
d<c zi−1(d) if i ∈ {s+ 1, . . . , `}∑

d>c zi(d) + 1− δc,0 if i = s∑
d<c zi(d) +

∑
d>c zi+1(d) if i ∈ {0, . . . , s− 1}

w•i,s(c) :=
∑
d<c

zi(d) +
∑
d>c

zi+1(d)− δc,0δi,s−1
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At this point, this definition seems technical and mysterious. The proof of the
main result of this section will clarify this choice.

Definition 7.5. Let p1, . . . , pk be a sequence of integers. We define its descent set

Des(p1, . . . , pk) := {1 ≤ i ≤ k − 1 | pi > pi+1}

and its major index maj(p1, . . . , pk) to be the sum of the elements of the descent
set.

Convention 7.6. If w is the diagonal word of some path in LSQ(m,n)•k it is a
decorated word with letters in the alphabet N. For a decorated word w, we define
maj(w) and xw to be computed as usual, simply ignoring the decorations.

Theorem 7.7. Let z = ρ` · · · ρ0 be a decorated word in the alphabet N so that the
ρi are its runs. Let b(z, s) :=

∑
c>0

∑
i<s zi(c) +

∑
i<s−1(−z•i (0)). Then∑

P∈LSQ(m,n)•k

shift(P )=s
dw(P )=z

qdinv(P )tarea(P )xP

= tmaj(z)qb(z,s)
∏̀
i=0

(∏
c∈N

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

q(
z•i (c)

2 )
[
w•i,s(c)

z•i (c)

]
q

)
xz.

Proof. The right hand side of this equation consists of a finite number of terms
different from 1. Indeed zi(c) = z•i (c) = 0 for all but a finite number of elements
of N and thus all but a finite number of q-binomials are equal to 1, which means
that the product is actually finite.

For any P ∈ LSQ(m,n)•k with dw(P ) = z we trivially have xP = xz. It is also
not difficult to see that for any such path maj(z) = area(P ), indeed

area(P ) = ` ·#ρ` + (`− 1) ·#ρ`−1 + · · ·+ 1 ·#ρ1
= ρ` + (ρ` + ρ`−1) + · · ·+ (ρ` + ρ`−1 + · · ·+ ρ1) = maj(z).

This takes care of the factor tmaj(z).
For the dinv, we will construct all the paths of a given diagonal word and shift,

starting from the empty path, all the while keeping track of the dinv. We outline
the different steps of the construction. We only describe the placement of the
(decorated) labels in the lattice, as each such placement is the labelling of a unique
square path.

1. For i = s, s + 1, . . . ` insert the zi(c) labels equal to c into the (i − s)-th
diagonal, for all c ∈ N, in decreasing order.

2. For i = s − 1, s− 2, . . . 0 insert the zi(c) labels equal to c into the (i − s)-th
diagonal, for all c ∈ N, in increasing order.

3. For all i insert the z•i (c) decorated labels equal to c into the (i−s)-th diagonal,
for all c ∈ N, in decreasing order (the order of i is unimportant).
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In other words in the first step we construct undecorated Dyck paths, in the second
we turn them into undecorated square paths and in the third we add decorated
labelled steps.

Call a (i, c)-insertion (respectively (i, c)•-insertion) the insertion of zi(c) (re-
spectively z•i (c)) labels equal to c into the (i− s)-th diagonal. We will now study,
for each insertion the numbers of ways it may be executed, and the contribution
to the dinv each of these ways engenders.

We made figures illustrating the construction of some of the paths with diagonal
word 44223

•
3
•
3
•
011
•
2 and shift 1. We included them in Appendix B.

Dyck paths. First consider i = s. Right before the (s, c)-insertion, there are∑
d>c zs(d) labels in the 0-th diagonal. If c 6= 0 the zi(c) labels may be inserted

anywhere between them, i.e. the number of insertions is equal to the number of
interlacings of

∑
d>c zs(d) = ws,s(c)−1 and zi(c). If c = 0, since the leftmost label

in the 0-th diagonal may never be 0, the number of insertions equals the number
or interlacings between

∑
d>0 zs(d) − 1 = ws,s(0) − 1 and zi(0). In both cases,

any time one of the inserted c precedes one of the d with d > c, a unit of dinv
is created. Thus the dinv created by an insertion is the inv of the corresponding
interlacing. By Proposition 4.23, the dinv of all possible insertions is q-counted by[ws,s(c)+zi(c)−1

zi(c)

]
q
. See Figure B.1.

For i > s, consider the path right before the (i, c)-insertion. We identify two
kinds of insertion spots: a smaller label in the (i−s−1)-th diagonal or a label in the
(i− s)-th one (which must be bigger than c because of the insertion order). There
are

∑
d<c zi−1(d) labels of the first and

∑
d>c zi(d) of the second kind, and so the

total number of insertion spots comes to wi,s(c). Any (i, c)-insertion corresponds
uniquely to an interlacing of wi,s(c)− 1 and zi(c): indeed

• the first occurrence of c in the (i − s)-th diagonal must be preceded by an
insertion spot;

• there is a unique way of inserting a string of consecutive c’s right after any
insertion spot. Say we want to insert k consecutive c’s. Shift the labels
following the insertion spot k squares to the north-east. Then insert the first
of the string of c’s into the square on top of an insertion spot of the first kind
or in the square north-east of an insertion spot of the second kind;

• between two strings of consecutive c’s there must be an insertion spot.

Any time an occurrence of c precedes an insertion spot of the first (respectively
second) kind, a unit of secondary (respectively primary) dinv is created. So as
before, by Proposition 4.23, the dinv of all possible insertions is q-counted by[
ws(c)+zi(c)−1

zi(c)

]
q
. See Figure B.2.

Square paths. For the (i, c)-insertion with i < s the insertions spots are either
bigger labels in the diagonal directly above the (i − s)-th one, of which there are∑
d>c zi+1(d), or labels in the (i− s)-th diagonal (which are smaller than c due to

the insertion order), of which there are
∑
d<c zi(d). Thus there are wi,s(c) insertion

spots. We have that

• the last occurrence of c must be followed by an insertion spot;
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• there is an unique way of inserting a string of consecutive c’s right before any
insertion spot. Say we want to insert k consecutive c’s. Shift the insertion
spot and the labels following it k squares to the north-east. Insert the last of
the string of c’s in the square below an insertion spot of the first kind or in
the square south-west of the insertion spot of the second kind;

• between two strings of consecutive c’s there must be an insertion spot.

So the (i, c)-insertion corresponds uniquely to an interlacing of zi(c) and wi,s(c)−1.
An insertion spot of the first (respectively second) creates secondary (respectively
primary) dinv with all following c’s. Furthermore, any non-zero label that gets
inserted under the main diagonal creates a unit of bonus dinv. Thus the dinv of
all possible insertions is q-counted by q(1−δc,0)zi(c)

[
ws(c)+zi(c)−1

zi(c)

]
q
. See Figure B.3.

Decorations. Now we treat (i, c)•-insertions. For all i define the dinv markers
to be the

∑
d<c zi(d) undecorated labels smaller that c in the (i − s)-th diagonal

and the
∑
d>c zi+1(d) undecorated labels bigger than c in the (i−s+1)-th diagonal.

These dinv markers are exactly the labels with which a decorated c inserted to its
right would create primary or secondary dinv.

First consider i ≥ s. The number of dinv markers equals w•i,s(c). We claim that
(i, c)•-insertions correspond bijectively to strict interlacings of z•i (c) and w•i,s(c),
starting with a 1. The map is naturally defined: the relative order of the w•i,s(c)
dinv markers and z•i (c) inserted c’s defines the interlacing. We show that this map
is a well defined bijection.

Well defined. We have to show that for any (i, c)•-insertion, the corresponding
interlacing is always a strict interlacing beginning with a 1. In the proof of Propo-
sition 4.20, it is argued that a decorated valley at height ≥ 0 is alway preceded by
a label with which it creates primary or secondary dinv, i.e. a dinv marker; and so
the interlacing must start with 1. Next, we need to argue that the interlacing is
always strict, i.e. that there is always a dinv marker between two inserted c’s. If
the step labelled by an inserted c is followed by a vertical step, its label must be
bigger that c and so it is a dinv marker. If it is followed by a horizontal step, it
might be followed by a string of decorated labels at the same height: B1, . . . , Bl.
We must have c < B1 < · · · < Bl since the valleys are contractible. If the step
labelled Bl is followed by a vertical step, its label must be bigger than Bl and so
an dinv marker. If the step labelled Bl is followed by a horizontal step the step
after this horizontal step cannot be a decorated valley labelled c (not contractible)
so it must either be a vertical, undecorated step, or another horizontal step. In the
latter case, the next label at height i− s is a rise and so undecorated. Thus, there
is an undecorated label at height i − s between our inserted c and the next one.
Again, we may use the arguments in the proof of Proposition 4.20 to conclude that
there must be an dinv marker before the next occurrence of an inserted decorated
c.

Injectivity. Suppose that there are two different insertions with the same in-
terlacing. This implies that between two (or after all) dinv markers there are
two different ways to insert a decorated c. Combining these two ways, one would
obtain a path with two inserted c’s that are not separated by a dinv marker, in
contradiction to what is shown in the previous paragraph.

Surjectivity. We must show that it is always possible to insert a decorated c
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between two (or after all) dinv markers. We describe an insertion procedure for all
possibilities.

S

B

S

c

B

→ •

(a)

S

S̃

B

S

S̃

c

B

→
•

(b)

p

S

S̃

S

S̃

c

→
•

(c)

S → S

c•

(d)

B

B̃ →

B

B̃
• c

(e)

B

→
B

• c

(f)

Figure 7.2: Surjectivity for i ≥ s.

First consider a dinv marker of the first kind, i.e. a label S at height (i − s)
smaller than c.

• If the dinv marker is followed by a vertical step, whose label B is bigger than
c, then insert the decorated label c directly north-east of S, right under B.
See Figure 7.2a.

• Suppose that the dinv marker is followed by a vertical step, whose label S̃
is smaller than c and before the path crosses the (i − s + 1)-th diagonal
horizontally, there is dinv marker of the second kind, i.e. a label B bigger
than c at height i−s+1. If the step labelled S is followed by another vertical
step, the path crosses the (i− s+ 1)-th diagonal vertically. Thus, since i ≥ s,
the path will cross the same diagonal horizontally, after the vertical crossing.
Insert the decorated c such that it lies right below this B. See Figure 7.2b.

• Suppose that the dinv marker is followed by a vertical step, whose label S̃ is
smaller than c and there is no dinv marker of the second kind between S̃ and
the point p where the path crosses the (i − s + 1)-th diagonal horizontally.
At p, insert a horizontal step followed by a decorated vertical step labelled c.
See Figure 7.2c.
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• Suppose that the dinv marker is followed by a horizontal step. Then insert
the decorated label c in the square north-east of S. See Figure 7.2d.

Next, consider a dinv marker of the second kind, i.e. a label B at height (i− s+ 1),
bigger than c. Since i ≥ s, we know the path will cross the (i− s+ 1)-th diagonal
horizontally, after the dinv marker.

• Suppose that before the path crosses the (i− s+ 1)-th diagonal horizontally,
there is a second dinv marker labelled B̃ of the second kind. Insert the
decorated c such that it lies right below B̃. See Figure 7.2e.

• Suppose that there is no dinv marker of the second kind between B and the
point p where the path crosses the (i− s+ 1)-th diagonal horizontally. At p,
insert a horizontal step followed by a decorated vertical step labelled c. See
Figure 7.2f.

This completes the list of possibilities and thus the the argument for bijectivity.
By the definition of dinv markers, each time a dinv marker precedes an inserted c
a unit of secondary or primary dinv is created, which corresponds to the inv of the
interlacing. Furthermore, for each z•i (c) decorated c’s that are inserted there is a
−1 contribution to the dinv. So the total contribution to the dinv is q-counted by

q−z
•
i (c)

∑
f

qinv(f)

where the sum is over strict interlacings of z•i (c) and w•i,s(c), starting with a 1.
This first 1 contributes z•i (c) to the inv and so if we change the sum to be over the
strict interlacings ending with a 1 we get

q−z
•
i (c)qz

•
i (c)

∑
f

qinv(f) = q(
z•i (c)

2 )
[
w•i,s
z•i (c)

]
q

,

where the equality comes from Proposition 4.25.
Now for i < s. Using the same map as for the previous case, we will show that

(i, c)•-insertions correspond bijectively to strict interlacings of z•i (c) and w•i,s(c),
ending with a 1.

Well defined. There are three things to show. First, that the interlacing corre-
sponding to an insertion is always strict. Exactly the same argument as for i ≥ s
applies. Second, we show that the interlacing corresponding to any insertion ends
with a 1. Consider c an inserted label at height i−s. If the step c labels is followed
by a vertical step, this must be labelled with a label bigger that c and so this is a
dinv marker. Suppose that the inserted c is followed by a horizontal step.

Since the path must end east, there must be two consecutive vertical steps, at
height i− s and i− s+ 1, after c. If the label of the second of these steps is bigger
than c it is a dinv marker. If not, the label S1 of the first vertical step must be
smaller than c, so if it is not decorated, it is a dinv marker. If it is decorated it may
be preceded by a string of decorated valleys at height i−s, labelled S2, . . . , Sl with
S1 > · · · > Sl (by contractibility). The step labelled Sl is preceded by a horizontal
step; if this step is preceded by an undecorated vertical step its label must be
smaller than c and is thus a dinv marker. If it is preceded by a second horizontal
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F c

F

→ •

(a)

→
F

c

F

•

(b)

B
→ B

• c

(c)

Figure 7.3: Surjectivity for i < s.

step we may deduce the existence of two consecutive vertical steps (at height i− s
and i − s + 1) between c and Sl. We have arrived at the same situation as at the
beginning of the paragraph. Since the path is finite this loop must terminate and
a dinv marker exists after c.

Finally, for i = s − 1 and c = 0, w•s−1,s(0) is equal to the number of dinv
markers minus 1. Indeed, the interlacing corresponding to the (s− 1, 0)•-insertion
must start with a 1: by definition the path may not start with a decorated 0 at
height −1 so the first decorated 0 at height −1 must be preceded by two horizontal
step and thus a positive label at height 0. Therefore, disregarding this first 1 of
the interlacing, an (s−1, 0)•-insertion corresponds to an interlacing of z•s−1(0) and
w•s−1,s(0).

Remark 7.8. Keep in mind that this disregarded 1 creates z•s−1(0) units of dinv
with all the 0’s that followed it in the interlacing.

Injectivity. The argument is the same as for i ≥ s.
Surjectivity. The fact that there must be a dinv marker to the right of all

inserted c’s ensures that the insertion algorithms for i ≥ s also apply here. So
the only thing left to show is that, if i 6= s − 1 or c 6= 0, we may always insert a
decorated c to the left of all dinv markers. We consider the first label at height
i− s, denote it F and consider the following cases.

• Suppose that F is a dinv marker or appears before all dinv markers, is pre-
ceded by a horizontal step. Then this step must be preceded by another
horizontal step, else the step labelled F would not be the first at its height.
Insert a horizontal step followed by a decorated vertical step labelled c be-
tween these two horizontal steps. If F is decorated, the insertion order ensures
that c < F and so F labels a contractible valley. See Figure 7.3a.

• Suppose F is a dinv marker or appears before all dinv markers and is preceded
by a vertical step. Since the path starts at (0, 0) this implies that before F
there must be point were the path crosses the (i−s)-th diagonal horizontally.
The two consecutive horizontal steps of this crossing must be preceded by
a third horizontal step, since if there was a vertical step preceding them, F
would not be the first label at its height. Insert a horizontal step followed
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by a decorated vertical step labelled c after the first (from the left) of these
three horizontal steps. See Figure 7.3b.

• Suppose F is preceded by a dinv marker, a label B > c at height i − s + 1.
Then the step labelled B must be preceded by a horizontal step, for if it were
preceded by a vertical one, F would not be the first label at its height. Insert
a horizontal step followed by a decorated vertical step labelled c after this
horizontal step, underneath B. See Figure 7.3c.

So the bijective correspondence between (i, c)•-insertions and strict interlacings
of z•i (c) and w•i,s(c), ending with a 1 is established. Clearly, the inv of the interlacing
equals the primary and secondary dinv created by the insertion, with the exception
of the z•s−1(0) units of primary dinv created with the first dinv marker and the
0’s at height −1 (see Remark 7.8), which is not accounted for in the interlacing.
Next, for c 6= 0 and i < s any (i, c)•-insertion creates z•i (c) units of bonus dinv.
Furthermore, each inserted decorated valley contributes −1 to the dinv. It follows
that the contribution to the dinv for all possible (i, c)•-insertions is q-counted by

qz
•
s−1(0)δi,s−1δc,0q(1−δc,0)z

•
i (c)q−z

•
i (c)q(

z•i (c)

2 )
[
w•i,s
z•i (c)

]
q

See Figures B.4 and B.5.
Taking the product over all possible i and c and using∑

i<s

∑
c∈N

(
(1− δc,0)zi(c) + z•s−1(0)δi,s−1δc,0 + (1− δc,0)z•i (c)− z•i (c)

)
=
∑
i<s

∑
c>0

(zi(c) + z•i (c)− z•i (c)) +
∑
i<s−1

(−z•i (0)) + z•s−1(0)− z•s−1(0)

=
∑
c>0

∑
i<s

zi(c) +
∑
i<s−1

(−z•i (0)) = b(z, s).

we finally obtain the announced formula.

7.2 The implication

We relate the combinatorics of square paths to the combinatorics of Dyck paths,
using the schedule formula of the previous section.

Notation 7.9. For the remainder of the chapter, let z be the diagonal word of an
element of LSQ′(m,n)•k. We suppose z = ρ` · · · ρ0 where the ρi are its runs. We
also set ri :=

∑
c>0 zi(c), i.e. the number of undecorated, non-zero numbers in ρi.

Since z is the diagonal word of a square path ri > 0 for all 0 < i ≤ `. Indeed any
but the base diagonal must contain a rise, which may not be decorated or labelled
0. The main diagonal must contain an undecorated step that is not labelled 0 by
definition. If z is the area word of an element in LSQ′(m,n)•k then we also have
r0 > 0.
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Furthermore 0 ≤ s ≤ ` define
LSQq,t;x(z, s) :=

∑
P∈LSQ(m,n)•k

shift(P )=s
dw(P )=z

qdinv(P )tarea(P )xP .

Using the schedule formula of Theorem 7.7, we will establish the following result,
relating LSQq,t;x(z, s) and LSQq,t;x(z, s′). For this we need some lemmas.

Lemma 7.10. Let 0 < s ≤ ` and suppose that rs−1 > 0. Then we have

∏
c∈N

[ws,s(c)+zs(c)−1
zs(c)

]
q[ws−1,s−1(c)+zs−1(c)−1

zs−1(c)

]
q

=
[rs]q

[rs−1]q

[rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!

m∏
c=0

[zs−1(c)]q!

[zs(c)]q!
.

Proof. Recall that

ws,s(c) =
∑
d>c

zs(d) + 1− δc,0 ws−1,s−1(c) =
∑
d>c

zs−1(d) + 1− δc,0.

And so we have

∏
c∈N

[ws,s(c)+zs(c)−1
zs(c)

]
q[ws−1,s−1(c)+zs−1(c)−1

zs−1(c)

]
q

=
∏
c∈N

[zs−1(c)]q!

[zs(c)]q!

[ws,s(c) + zs(c)− 1]q!

[ws,s(c)− 1]q!

[ws−1,s−1(c)− 1]q!

[ws−1,s−1(c) + zs−1(c)− 1]q!

=
∏
c∈N

[zs−1(c)]q!

[zs(c)]q!

[
∑
d≥c zs(d)− δc,0]q!

[
∑
d>c zs(d)− δc,0]q!

[
∑
d>c zs−1(d)− δc,0]q!

[
∑
d≥c zs−1(d)− δc,0]q!

=
[
∑
d≥0 zs(d)− 1]q!

[
∑
d>0 zs(d)− 1]q!

[
∑
d>0 zs−1(d)− 1]q!

[
∑
d≥0 zs−1(d)− 1]q!

∏
c∈N

[zs−1(c)]q!

[zs(c)]q!

×
∏
c>0

[
∑
d≥c zs(d)]q!

[
∑
d>c zs(d)]q!

[
∑
d>c zs−1(d)]q!

[
∑
d≥c zs−1(d)]q!

= · · ·

Since [
∑
d≥c zs(d)]q! = (

∏zs(c)
j=1 [

∑
d>c zs(d) + j]q)[

∑
d>c zs(d)]q! and

∏
c>1

zs(c)∏
j=1

[∑
d>c

zs(d) + j

]
q

=

[∑
c>0

zs(c)

]
q

! = [rs]q!

we may simplify the last product to obtain

· · · = [rs + zs(0)− 1]q!

[rs − 1]q!

[rs−1 − 1]q!

[rs−1 + zs−1(0)− 1]q!

m∏
c=0

[zs−1(c)]q!

[zs(c)]q!

[rs]q!

[rs−1]q!

=
[rs]q

[rs−1]q

[rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!

m∏
c=0

[zs−1(c)]q!

[zs(c)]q!
.

The denominators are clearly non-zero since they are either the q-analogue of pos-
itive integers or the q-factorials of non-negative integers.
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Lemma 7.11. Let 0 < s ≤ `. Then we have

∏
c∈N

[ws−1,s(c)+zs−1(c)−1
zs−1(c)

]
q[ws,s−1(c)+zs(c)−1

zs(c)

]
q

=
[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!

m∏
c=0

[zs(c)]q!

[zs−1(c)]q!

Proof. Recall that

ws−1,s(c) = ws,s−1(c) =
∑
d<c

zs−1(d) +
∑
d>c

zs(d)

Set m := max{c | zs(c) 6= 0 or zs−1(c)}. We have the following

∏
c∈N

[ws−1,s(c)+zs−1(c)−1
zs−1(c)

]
q[ws,s−1(c)+zs(c)−1

zs(c)

]
q

=

m∏
c=0

[zs(c)]q!

[zs−1(c)]q!
· [ws−1,s(c) + zs−1(c)− 1]q!

[ws,s−1(c) + zs(c)− 1]q!

=

m∏
c=0

[zs(c)]q!

[zs−1(c)]q!
·

[
∑
d≤c zs−1(d) +

∑
d>c zs(d)− 1]q!

[
∑
d<c zs−1(d) +

∑
d≥c zs(d)− 1]q!

=

∏m
c=0[

∑
d>c zs(d) +

∑
d≤c zs−1(d)− 1]q!∏m

c=0[
∑
d>c−1 zs(d) +

∑
d≤c−1 zs−1(d)− 1]q!

·
m∏
c=0

[zs(c)]q!

[zs−1(c)]q!

=

∏m
c=0[

∑
d>c zs(d) +

∑
d≤c zs−1(d)− 1]q!∏m−1

c=−1[
∑
d>c zs(d) +

∑
d≤c zs−1(d)− 1]q!

·
m∏
c=0

[zs(c)]q!

[zs−1(c)]q!

=
[
∑
d>m zs(d) +

∑
d≤m zs−1(d)− 1]q!

[
∑
d>−1 zs(d) +

∑
d≤−1 zs−1(d)− 1]q!

·
m∏
c=0

[zs(c)]q!

[zs−1(c)]q!

=
[
∑
d≤m zs−1(d)− 1]q!

[
∑
d≥0 zs(d)− 1]q!

·
m∏
c=0

[zs(c)]q!

[zs−1(c)]q!

=
[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!

m∏
c=0

[zs(c)]q!

[zs−1(c)]q!
.

As the denominators are q-factorials of non-negative integers, they are non-zero.

We now combine these two lemmas to get the following.

Lemma 7.12. Let 0 ≤ s′ < s ≤ ` and suppose that rs′ > 0. Then we have

∏̀
i=0

∏
c∈N

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c∈N

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

.

Proof. First suppose s′ = s − 1. By definition, for all c ∈ N and i 6∈ {s − 1, s} we
have wi,s(c) = wi,s−1(c), thus it suffices to show that∏
c∈N

[
ws−1,s(c) + zs−1(c)− 1

zs−1(c)

]
q

[
ws,s(c) + zs(c)− 1

zs(c)

]
q

=
[rs]q

[rs−1]q
·
∏
c∈N

[
ws−1,s−1(c) + zs−1(c)− 1

zs−1(c)

]
q

[
ws,s−1(c) + zs(c)− 1

zs(c)

]
q

. (7.13)
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By Lemma 7.10 we have

∏
c∈N

[
ws,s(c) + zs(c)− 1

zs(c)

]
q

=
[rs]q

[rs−1]q
· [rs + zs(0)− 1]q!

[rs−1 + zs−1(0)− 1]q!
·
∏
c∈N

[zs−1(c)]q!

[zs(c)]q!

×
[
ws−1,s−1(c) + zs−1(c)− 1

zs−1(c)

]
q

and by Lemma 7.11 we have

∏
c∈N

[
ws−1,s(c) + zs−1(c)− 1

zs−1(c)

]
q

=

[rs−1 + zs−1(0)− 1]q!

[rs + zs(0)− 1]q!
·
∏
c∈N

[zs(c)]q!

[zs−1(c)]q!
·
[
ws,s−1(c) + zs(c)− 1

zs(c)

]
q

so after the obvious simplifications the statement for s′ = s − 1 follows. Now,
applying Equation 7.13 repeatedly, we get

∏̀
i=0

∏
c∈N

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q

[rs−1]q
·
∏̀
i=0

∏
c∈N

[
wi,s−1(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q

[rs−1]q

[rs−1]q
[rs−2]q

·
∏̀
i=0

∏
c∈N

[
wi,s−2(c) + zi(c)− 1

zi(c)

]
q

= . . .

=
[rs]q

[rs−1]q
· · · [rs′+1]q

[rs′ ]q
·
∏̀
i=0

∏
c∈N

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c∈N

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

as desired.

We need one final lemma before proving the theorem.

Lemma 7.14. Let 0 ≤ s′ < s ≤ ` and suppose that rs − z•s−1(0) > 0 and rs′ −
z•s′−1(0) > 0. Then we have

[rs]q
[rs − z•s−1(0)]q

∏̀
i=0

∏
c∈N

[
w•i,s(c)

z•i (c)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

∏̀
i=0

∏
c∈N

[
w•i,s′(c)

z•i (c)

]
q

.

Proof. Recall that

w•i,s(c) =
∑
d<c

zi(d) +
∑
d>c

zi+1(d)− δc,0δi,s−1.
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For c 6= 0, w•i,s(c) does not depend on s, and w•i,s(0) = w•i,s′(0) ≥ 0 for i 6∈
{s− 1, s′ − 1}. Thus it suffices to show that

[rs]q
[rs − z•s−1(0)]q

[
w•s−1,s(0)

z•s−1(0)

]
q

[
w•s′−1,s(0)

z•s′−1(0)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
w•s−1,s′(0)

z•s−1(0)

]
q

[
w•s′−1,s′(0)

z•s′−1(0)

]
q

.

We have

w•s−1,s(0) = rs − 1 w•s′−1,s(0) = rs′ w•s−1,s′(0) = rs w•s′−1,s′(0) = rs′ − 1

so

[rs]q
[rs − z•s−1(0)]q

[
w•s−1,s(0)

z•s−1(0)

]
q

[
w•s′−1,s(0)

z•s′−1(0)

]
q

=
[rs]q

[rs − z•s−1(0)]q

[
rs − 1

z•s−1(0)

]
q

[
rs′

z•s′−1(0)

]
q

=
[rs]q

[rs − z•s−1(0)]q

[rs − 1]q!

[rs − z•s−1(0)− 1]q![z•s−1(0)]q!

[rs′ ]q!

[rs′ − z•s′−1(0)]q![z•s′−1(0)]q!

=
[rs]q!

[rs − z•s−1(0)]q![z•s−1(0)]q!

[rs′ ]q!

[rs′ − z•s′−1(0)]q![z•s′−1(0)]q!

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[rs]q!

[rs − z•s−1(0)]q![z•s−1(0)]q!

[rs′ − 1]q!

[rs′ − z•s′−1(0)− 1]q![z•s′−1(0)]q!

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
rs

z•s−1(0)

]
q

[
rs′ − 1

z•s′−1(0)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

[
w•s−1,s′(0)

z•s−1(0)

]
q

[
w•s′−1,s′(0)

z•s′−1(0)

]
q

as desired.

We now have all the preliminary result necessary to prove our theorem.

Theorem 7.15. Let 0 ≤ s′ < s ≤ ` and suppose that rs′ > 0

[rs′ − z•s′−1(0)]q · LSQq,t;x(z, s) = q
∑s−1

i=s′ (ri−z
•
i−1(0))[rs − z•s−1(0)]q · LSQq,t;x(z, s′).

Proof. For any square path there must be an undecorated, positively labelled step
at height 0 preceding all, between any pair, and following all decorated valleys
labelled 0 at height −1. Indeed every decorated valley labelled 0 is preceded by two
horizontal steps so there must be a rise in between any two such steps. Furthermore
by definition a square path may not start with two horizontal steps followed by
a decorated valley labelled 0. Thus there must be a label at height 0 before the
first occurence of such a step at height −1. The first label at height 0 of a path
may never be zero. Finally, since the path must end with an east step, a rise must
follow all steps at height −1.
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So if z is the diagonal word of some path of shift s, rs − z•s−1(0) > 0. Thus, if
rs − z•s−1(0) = 0 we have LSQq,t;x(z, s) = ∅ and the equation in the thesis is 0 = 0.
Since the the same argument applies to s′, we may suppose rs − z•s−1(0) > 0 and
rs′ − z•s′−1(0) > 0 from now on.

By Theorem 7.7, we have

LSQq,t;x(z, s)

= tmaj(z)qb(z,s)
∏̀
i=0

(∏
c∈N

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

q(
z•i (c)

2 )
[
w•i,s(c)

z•i (c)

]
q

)
xz.

and

LSQq,t;x(z, s′)

= tmaj(z)qb(z,s
′)
∏̀
i=0

(∏
c∈N

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

q(
z•i (c)

2 )
[
w•i,s′(c)

z•i (c)

]
q

)
xz.

By definition we have

b(z, s) = b(z, s′) +
∑
c>0

s−1∑
i=s′

zi(c) +

s−2∑
i=s′−1

(−z•i (0))

= b(z, s′) +

s−1∑
i=s′

ri +

s−1∑
i=s′

(−z•i−1(0)) = b(z, s′) +

s−1∑
i=s′

(ri − z•i−1(0)).

Lemma 7.12 states that

∏̀
i=0

∏
c∈N

[
wi,s(c) + zi(c)− 1

zi(c)

]
q

=
[rs]q
[rs′ ]q

·
∏̀
i=0

∏
c∈N

[
wi,s′(c) + zi(c)− 1

zi(c)

]
q

.

Lemma 7.14 states that

[rs]q
[rs − z•s−1(0)]q

∏̀
i=0

∏
c∈N

[
w•i,s(c)

z•i (c)

]
q

=
[rs′ ]q

[rs′ − z•s′−1(0)]q

∏̀
i=0

∏
c∈N

[
w•i,s′(c)

z•i (c)

]
q

.

Combining these last five equations we get

[rs]q
[rs − z•s−1(0)]q

· LSQq,t;x(z, s)

= q
∑s−1

i=s′ (ri−z
•
i−1(0))

[rs]q
[rs′ ]q

· [rs − z•s−1(0)]q

[rs]q
· [rs′ ]q

[rs′ − z•s′−1(0)]q
· LSQq,t;x(z, s′),

which gives the thesis after obvious cancellations.

Corollary 7.16. If r0 6= 0, then

LSQq,t;x(z, s) = qb(z,s)
[rs − z•s−1(0)]q

[r0]q
LSQq,t;x(z, 0).
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Proof. It follows immediately by applying Theorem 7.15 with s′ = 0 (using z•−1(0) =
0).

Corollary 7.17. For n, k, r ∈ N with r > 0,∑
P∈LSQ′(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP =
[n− k]q

[r]q

∑
P∈LD(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP .

Proof. Summing the equation from Corollary 7.16 over all possible values of the
shift we get∑̀

s=0

∑
P∈LSQ(m,n)•k

shift(P )=s
dw(P )=z

qdinv(P )tarea(P )xP

=
∑̀
s=0

qb(z,s)
[rs − z•s−1(0)]q

[r0]q

∑
P∈LD(m,n)•k

dw(P )=z

qdinv(P )tarea(P )xP

=
[
∑`
s=0(rs − z•s−1(0))]q

[r0]q

∑
P∈LD(m,n)•k

dw(P )=z

qdinv(P )tarea(P )xP .

By definition, for any path P , touch(P ) = r0. So now take the sum over all the
decorated words z of length n with k decorations and r0 = r > 0. In this way we
obtain all the elements of LSQ′(m,n)∗k on the left hand side.

We have, for any such z, that
∑`
s=0 rs = n − k +

∑`
s=0 z

•
s−1(0); indeed it is

the total number of nondecorated positive labels (z•` (0) = 0 since a decorated step
labelled 0 must always be preceded by two horizontal steps, which is not possible
in the top diagonal).

Theorem 7.18. If Conjecture 5.14 holds, then so does Conjecture 5.7

Proof. Conjecture 5.14 is

∆hmΘk∇En−k,r =
∑

P∈LD(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP .

Using Corollary 7.17, we get

[n− k]q
[r]q

∆hmΘk∇En−k,r =
∑

P∈LSQ(m,n)•k

touch(P )=r

qdinv(P )tarea(P )xP .

Since LSQ′(m,n) contains exactly the paths with at least one touching point, taking
the sum over r > 0 and applying Proposition 2.42 gives exactly Conjecture 5.7:

∆hmΘk∇ω(pn−k) =
∑

P∈LSQ′(m,n)•k
qdinv(P )tarea(P )xP .
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Chapter 8

The compositional Delta
conjecture

We extend the combinatorial framework of the proof of the compositional shuffle
conjecture [CM18] to rise decorated Dyck paths. In particular, we prove an exten-
sion of the “main recursion” of their paper that relates decorated Dyck paths to
their “raising and lowering” operators. In this way, we reduce the compositional
Delta conjecture 5.10 (rise version) to a conjectural identity of operators.

This chapter is the least self-contained of this thesis and should really be read
in tandem with [CM18]. See also [HX17]: a more detailed exposition of the same
paper.

8.1 Diagonally labelled decorated Dyck paths

In this section, we introduce a new type of lattice path: the diagonally labelled
decorated Dyck paths. As the name suggests, this is a kind of labelled Dyck path,
but instead of labelling vertical steps, the labels are contained in the main diagonal.
The interest in these paths comes from a bijection between rise decorated labelled
Dyck paths and valley decorated diagonally labelled Dyck paths. We will introduce
a new statistic, ninv, on this new set and recall the definition of the classic bounce
statistic on Dyck paths. The bijection will send dinv to ninv and area to bounce.

Definition 8.1. A diagonal labelling of π ∈ D(n) is an element w ∈ Pn such that
for all i ∈ Val(π), wi > wj(i) where j(i) is the index of the column containing the
horizontal step preceding the i-th vertical step of π. The set of diagonal labellings
of π is denoted by DLa(π).

Definition 8.2. A (valley) decorated, diagonally labelled Dyck path is a triple
P := (π,w, dv) where π is a Dyck path, w a diagonal labelling of π, and dv a
subset of Val(π). The set of such triples where π is of size n, and #dv = k is
denoted by DLD(n)•k. As usual, the monomial of P is defined by xP := xw.

See Figure 8.1 for an example of such a path.
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Figure 8.1: An element of DLD(6)•2.

Definition 8.3. Let (π,w) be a pair in D(n) × Pn and represent w in the main
diagonal of π. A pair of indices (i, j) with 1 ≤ i < j ≤ n is called a non-inversion
of (π,w) if wi < wj and the cell in the i-th column and j-th row lies underneath
π. The number of non-inverions of (π,w) is denoted by ninv(π,w).

For P := (π,w, dr, dv) ∈ DLD(n)∗k•l we set ninv(P ) := ninv(π,w) so that the
ninv of a path is independent of its decorations.

Example. For example, the path in Figure 8.1 has only one non-inversion: (2, 3).
Thus its ninv is 1.

Next, we define a decorated version of Haglund’s bounce statistic (see [Hag03]).

Definition 8.4. Take π ∈ D(n). Its bounce path is a lattice path from (0, 0) to
(n, n) defined as follows: it starts at (0, 0) and travels north until it hits an east
step of π, whereupon it changes direction and travels eastward until it hits the main
diagonal. Then it travels north again and repeats this process until it arrives at
(n, n). The sections of a bounce path are the portions between its touching points.

The bounce word is an increasing word (b1(π), . . . , bn(π)) ∈ Nn that has as
many 0’s as the height of the first section of the bounce path, as many 1’s as the
height of its second section and so forth. Take dv ⊆ Val(π) and define

bounce(π, dv) :=
∑
i 6∈dv

bi(π).

For P := (π, dr, dv) ∈ D(n)∗k•l orQ := (π,w, dr, dv) ∈ DLD(n)∗k•l we set bounce(P ) =
bounce(Q) := bounce(π, dv) so that the bounce of a path is independent of its dec-
orated rises or diagonal labelling.

The ζ map

The following map first appeared in [HL05].

Theorem 8.5. There exists a bijection

ζ : LD(n)∗k → DLD(n)•k
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such that for all P ∈ LD(n)∗k

dinv(P ) = inv(ζ(P )) area(P ) = bounce(ζ(P )).

Proof. Figure 8.2 contains a path (left) and its image by ζ (right) as a visual aid.
Let us define an auxiliary map

ζ0 : D(n)→ D(n).

Take π ∈ D(n) and rearrange its area word in ascending order. This new word, call
it u, will be the bounce word of ζ0(π). We construct ζ0(π) as follows. First draw
the bounce path corresponding to u. The first vertical stretch and last horizontal
stretch of ζ0(π) are fixed by this bounce path. For the section of the path between
consecutive peaks1 of the bounce path we apply the following procedure: place a
pen on the top of the i-th peak of the bounce path and scan the area word of D
from left to right. Every time we encounter a letter equal to i − 1 we draw an
east step and when we encounter a letter equal to i we draw a north step. By
construction of the bounce path, we end up with our pen on top of the (i + 1)-th
peak of the bounce path. Note that in an area word a letter equal to i 6= 0 cannot
appear unless it is preceded somewhere by a letter equal to i− 1. This means that
starting from the i-th peak, we always start with a horizontal step which explains
why u is the bounce word of ζ0(π). It is not hard to describe the inverse of this
map and thereby conclude that it is bijective.

Next, we show that ζ0 induces a bijection ζ∗π : Rise(π) → Val(ζ0(π)) for all
π ∈ D(n). Let j ∈ Rise(π). It follows that aj(π) = aj−1(π) + 1. Take i such that
aj−1(π) = i− 1. While scanning the area word to construct the path between the
i-th and (i + 1)-th peak of the bounce path, we will encounter aj−1(π) = i − 1,
directly followed by aj(π) = i. This will correspond to a horizontal step followed
by a vertical step in ζ0(π) and thus to an element of ζ∗π ∈ Val(ζ0(π)). Again, the
inverse map is easily divined.

Fix P ∈ LD(n)∗k and P1 its first component, i.e. its underlying Dyck path. We
now define each component of ζ(P ).

• We set ζ1(P ) := ζ0(P1).

• Set ζ2(P ) to be the reverse reading word of P , i.e. the labels of P in the
i-th diagonal read from left to right for i = 0, 1 . . . . We have to show that
ζ2(P ) ∈ DLa(ζ0(π)). The labels of ζ(P ) underneath (i+ 1)-th section of the
bounce path of ζ0(π) are exactly the labels of P at height i, in the same
relative order left to right. In fact when representing ζ2(P ) in the main
diagonal, we ensure that the label contained in the column (respectively row)
of a horizontal step (respectively vertical step) s is the label of the step of P1

encountered in the construction of ζ0(P1) at the moment of drawing s. Thus,
under ζ∗P1

, the condition on the labels of rises of P1 corresponds exactly to
the condition on the labels of valleys of ζ0(P1).

• Naturally, we set ζ3(P ) = ζ∗P1
(dr).

1A peak of a path is the endpoint of a vertical step and the starting point of a horizontal step.
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Figure 8.2: An element of LD(8)∗3 with its area word (left) and its image by ζ in
DLD(8)•3 with its bounce word.

So we have defined ζ, whose inverse is easily described following the procedures
backwards. Let us now study the effect of ζ on dinv and area.

We start with the dinv statistic. Take 1 ≤ i < j ≤ n and conside the square
s in the i-th column and j-th row of (R≥0)2. The pair (i, j) is a non-inversion of
ζ(P ) if and only if wi < wj and s lies underneath ζ1(P ). Suppose s lies under the
bounce path of ζ1(P ). Then wi and wj label steps at the same height in P , say the
i′-th and j′-th vertical steps respectively, with i′ < j′ (by the ζ correspondence).
Thus (i′, j′) is a primary inversion of P if and only if wi < wj . Now suppose that
s lies under ζ1(P ) and above its bounce path. Then in P , the step labelled wj
(say the j′-th vertical step) must lie one unit higher that the step labelled wi (say
the i′-th vertical step). The condition that s lies underneath ζ1(P ) is equivalent to
j′ < i′ and so (i′, j′) is a secondary inversion of P if and only if wi < wj .

Now for the area. Since the bounce word of ζ1(P ) is a rearrangement of the area
word of P1,

∑
i ai(P1) =

∑
i bi(ζ1(P )). Furthermore, if i ∈ Rise(P1) is at height

j then ζ∗P1
(i) decorates a step in the same row as a vertical step in the (j + 1)-th

section of the bounce path. Thus bζ∗P1
(i)(ζ1(P )) = j and we must have∑

i 6∈Rise(P1)

ai(P1) =
∑

i 6∈Val(ζ1(P ))

bi(ζ1(P )),

which is what we wanted to show.

We can also easily formulate an unlabelled version of the zeta map: it suffices
to send (π, dr) ∈ D(n)∗k to (ζ0(π), ζ∗π(dr)). By slight abuse of notation, we use the
same name for both the labelled and unlabelled version of the map.

Corollary 8.6. There exists a bijection

ζ : D(n)∗k → D(n)•k

such that for all P ∈ D(n)∗k

dinv(P ) = area(ζ(P )) area(P ) = bounce(ζ(P )).
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A second diagonal decomposition

We think of DLD(n)•k mainly as the image of LD(n)∗k by ζ. Hence we use the map
to transfer a definition from the latter set to the former.

Definition 8.7. For a decorated Dyck path (π, dv) ∈ D(n)•k, let dcomp′(π, dv) :=
dcomp(ζ−1(P )) (see Definition 4.16). For a diagonally labelled path (π,w, dv) ∈
DLD(n)•k we set dcomp′(π, dv, w) := dcomp′(π, dv), i.e. the labelling does not affect
the diagonal composition.

In Lemma 8.32, we will describe a way to compute dcomp′(P ) directly from P .

Given a composition α � n− k, we set

D′(α)•k := {P ∈ D(n)•k | dcomp′(P ) = α}
DLD′(α)•k := {P ∈ DLD(n)•k | dcomp′(P ) = α},

where the prime indicates the use of dcomp′ instead of dcomp.
We may now use Theorem 8.5 to reformulate the combinatorial side of the

compositional Delta conjecture (Conjecture 5.10) as follows.

Corollary 8.8. For n, k ∈ N∑
P∈LD(α)∗k

qdinv(P )tarea(P )xP =
∑

P∈DLD′(α)•k

qninv(P )tbounce(P )xP .

8.2 Weighted characteristic functions

To a Dyck path and a weight function on its valleys we associate a symmetric
function called its weighted characteristic function. These can be used as the
building blocks of the combinatorial side of the compositional Delta conjecture.

Definition 8.9. Take π ∈ D(n) and a function wt : Val(π)→ Q(q, t). The weighted
characteristic function of π is

χ(π,wt) =
∑
w∈Pn

qninv(π,w)

 ∏
i∈Val(π)
wi≤wj(i)

wt(i)

xw

where j(i) is the column containing the horizontal step preceding the valley i (as
in Definition 8.1).

Two special cases are of particular interest.

• For wt = 0, the constant zero function, by Definition 8.1, we get

χ(π, 0) =
∑

w∈DLa(π)

qninv(π,w)xw.
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It follows by Definitions 8.2 and 8.3 that∑
P∈DLD′(α)•k

qninv(P )tbounce(P )xP =
∑

(π,dv)∈D′(α)•k
tbounce(π,dv)χ(π, 0). (8.10)

This is relevant because it is the combinatorial side of the compositional Delta
conjecture (see Corollary 8.8).

• For the constant function wt = 1, we define the unweighted characteristic
function χ(π) := χ(π, 1). It happens that any weighted characteristic may be
expressed in terms of unweighted characteristic functions of different paths.

The following is [CM18, Proposition 3.7].

Proposition 8.11. For all π ∈ D(n) and wt : Val(π) → Q(q, t), the weighted
characteristic function χ(π,wt) is a symmetric function.

Next we establish [CM18, Example 3.8].

Definition 8.12. For π ∈ D(n) and S ⊆ Val(π) define πS to be the path whose
E,N -sequence is obtained from the E,N -sequence of π by replacing the EN sub-
sequences corresponding to the valleys in S by NE. We refer to this process as
“flipping the valleys in S”.

Proposition 8.13. For π ∈ D(n), we have

χ(π, 0) = (1− q)−#Val(π)
∑

S⊆Val(π)

(−1)#Sχ(πS , 1).

Proof. Start from any weight function wt : Val(π) → Q(q, t) and let k ∈ Val(π).
We define wt1 to coincide with wt except that wt(k) = 1. Then define wt2 :
Val(π{k}) → Q(q, t) to coincide with wt on all valleys of π{k} that are also valleys
of π and to be 1 on the remaining valleys of π{k}. We will show the following

χ(π,wt) =
q · wt(k)− 1

q − 1
χ(π,wt1) +

1− wt(k)

q − 1
χ(π{k}, wt2). (8.14)

Take w ∈ Pn. On the left hand side, the coefficient of xw is

qninv(π,w)
∏

i∈Val(π)
wi≤wj(i)

wt(i).

On the right hand side we get, by the definitions of wt1, π{k} and wt2∏
i∈Val(π)\{k}
wi≤wj(i)

wt(i)

(
qninv(π,w) q · wt(k)− 1

q − 1
+ qninv(π{k},w) 1− wt(k)

q − 1

)
.

If wk ≤ wj(k) then ninv(π,w) = ninv(π{k}, w) and so the parenthetical becomes
qninv(π,w)wt(k) . If wk > wj(k) then ninv(π,w) + 1 = ninv(π{k}, w) in which case



8.2. WEIGHTED CHARACTERISTIC FUNCTIONS 109

the parenthetical is simply qninv(π,w). In both cases, the expression coincides with
the left hand side of (8.14).

Now we apply Equation (8.14) with wt = 0, iteratively. We apply it #Val(π)
times, each time picking a different valley of π. Thus we end up with 2#Val(π)

terms, i.e. the number of subsets S of Val(π). For each iteration, think of the first
term as “not putting k in S” and of the second as “putting k in S”. Thus, the term
corresponding to an S ⊆ Val(π) is (−1)#Val(π)−S

(q−1)#Val(π) χ(πS , 1), which is what we wanted
to show.

Raising and lowering operators

We introduce some key operators from [CM18]. In this text, the only fact we will
use about them is stated in Theorem 8.17, which expresses the combinatorics in
terms of these algebraic operators.

Definition 8.15. Given a polynomial P depending on variables u,w, define the
operator Υuw as2

(ΥuwP )(u,w) :=
(q − 1)vP (u,w) + (w − qu)P (w, u)

w − u

Definition 8.16. For k ∈ N, define Vk := Λ[y1, . . . , yk] = Λ⊗Q[y1, . . . , yk]. Let

Ti := Υyiyi+1 : Vk → Vk for 1 ≤ i ≤ k − 1.

We define the operators d+ : Vk → Vk+1 and d− : Vk → Vk−1: for F [X] ∈ Vk

(d+F )[X] := T1T2 · · ·Tk(F [X + (q − 1)yk+1])

(d−F )[X] := −F [X − (q − 1)yk]
∑
i≥0

(−1/yk)iei[X]
∣∣
yk−1 .

The following is Theorem 4.4 of [CM18].

Theorem 8.17. Let π ∈ D(n) and ε1 . . . ε2n the word in the alphabet {+,−} ob-
tained from the E,N -sequnece of π by the substitutions E 7→ + and N 7→ −. Then

χ(π) = dε1 · · · dε2n(1)

Corollary 8.18. Let π ∈ D(n) and ε̃1 . . . ε̃m the word in the alphabet {+,−, v}
obtained from the E,N -sequence of π by the substitutions EN 7→ v followed by
E 7→ + and N 7→ −. It follows that m = 2n−#Val(π). Define

dv :=
[d−, d+]

q − 1
=
d−d+ − d+d−

q − 1
.

Then

χ(π, 0) = dε̃1 · · · dε̃m(1)

2In [CM18] this operator is called ∆uv , but we changed the notation in order to avoid confusion
with the ∆f operator defined on Λ.
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Proof. By Proposition 8.13, we have

χ(π, 0) = (1− q)−#Val(π)
∑

S⊆Val(π)

(−1)#Sχ(πS , 1).

Take k = min(Val(π)), then

χ(π, 0) = (1− q)−#Val(π)
∑

S⊆Val(π)\{k}

(−1)#Sχ(πS , 1) + (−1)#S+1χ(πS∪{k}, 1).

Let ε1 . . . ε2n be as in Theorem 8.17 and εlεl+1 the +− corresponding to the EN
sequence corresponding to the valley k and its preceding east step. Applying The-
orem 8.17, we get

χ(π, 0) = (1− q)−#Val(π)
∑

S⊆Val(π)\{k}

(−1)#S(dε1 · · · dεldεl+1
· · · dε2n(1)

− dε1 · · · dεl+1
dεl · · · dε2n(1))

= (1− q)−#Val(π)
∑

S⊆Val(π)\{k}

(−1)#S(−dε1 · · · [dεl+1
, dεl ] · · · dε2n(1))

= (1− q)−#Val(π)+1
∑

S⊆Val(π)\{k}

(−1)#Sdε1 · · · dv · · · dε2n(1).

Iterating this argument for all elements of Val(π) (from bottom to top), we get the
desired result.

Partial Dyck paths

Definition 8.19. For n, ` ∈ N, we define PD`(n) to be the set of lattice paths
p0 . . . p2n−` with steps in {E := (1, 0), N := (0, 1)} such that p0 = (0, `), p2n−` =
(n, n), p1 − p0 = E and pi ∈ {(k, l) ∈ N2 | l ≥ k}. The elements of this set are
called partial Dyck paths.

Convention 8.20. In this chapter, we will identify (partial) Dyck paths with their
E,N -sequences.

Notation 8.21. The terminology of the previous definition is explained by the fact
that for all π ∈ D(n) there exists a unique ` ∈ N and pd(π) ∈ ED` such that
π = N `pd(π).

Definition 8.22. Take π ∈ ED`(n). As in Corollary 8.18, let ε̃1 . . . ε̃m the word in
the alphabet {+,−, v} obtained from the E,N -sequence of π by the substitutions
EN 7→ v followed by E 7→ + and N 7→ −. We define

d(π) = dε̃1 · · · dε̃m(1) ∈ V`.

Using this notation, Corrolary 8.18 states that for all π ∈ D(n) = PD0(n),
χ(π, 0) = d(π).
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Figure 8.3: An element of D(12)∗3 (left) and its image by ψ in D(11)∗2.

8.3 ψ and γ maps

We will define two related families of maps, that will be essential in formulating
the recursion that is the main result of this chapter.

The ψ maps

Definition 8.23. We define ψ : D(n)∗k → D(n − 1)∗k t D(n − 1)∗k−1 as follows:
given (π, dr) ∈ D(n)∗k take the portion of π between the first two touching points
(or the whole path if there is only one touching point), remove its first (north) step
and its last (east) step, and attach it to the end of the path. If the first rise was
decorated we remove the decoration since it is no longer a rise.

See Figure 8.3 for an example.
We are interested in the restriction of ψ to the compositional pieces of D(n)∗k.

Take a ∈ P and α a composition such that the concatenation (a)α � n − k. Then
it is obvious from the definitions of ψ and dcomp (4.16) that

ψ : D((a)α)∗k →
⋃

β�a−1

D(αβ)∗k t
⋃
β�a

D(αβ)∗k−1.

This map is not invertible. Indeed it is not injective: a path P with touch(P ) > 1
is the image by ψ of more than one path. However, there exists a family of maps
that are essentially right inverses of ψ. To formulate them, we need to define some
notation for what will be the diagonal composition of the image.
Notation 8.24. Take α a composition and r ∈ N. Then we denote

αr :=

((
1 +

∑
i>r

αi

)
, α1, α2, . . . , αr

)
for 0 ≤ r ≤ `(α)

αr,∗ = αr,• :=

((∑
i>r

αi

)
, α1, α2, . . . , αr

)
for 0 ≤ r < `(α) .
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Definition 8.25. Let k ∈ N and α a composition. We define two similar maps:

ψr : D(α)∗k → D(αr)∗k for 0 ≤ r ≤ `(α)

ψ∗r : D(α)∗k → D(αr,∗)∗k+1 for 0 ≤ r < `(α).

Given (π, dr) ∈ D(α)∗k and 0 ≤ r < `(α), call π1 and π2 the portions of π below
and above its (r+ 1)-th touching point, respectively. For r = `(α), set π1 = π and
π2 = ∅. Notice that if π2 6= ∅ then it necessarily starts with a north step. To define
ψr(π, dr) = (π′, dr′) we set

π′ := Nπ2Eπ1.

We use the same definition for ψ∗r (π, dr). For the decorations, we keep the deco-
rations on the rises in the same place, relative to π1 and π2. When π2 6= ∅, i.e.
r < `(α), π′ must start with two north steps, so the second step of π′ is a newly
created rise, which we can choose to decorate or not. This choice is the differ-
ence between ψr and ψ∗r : for the former we do not decorate the new rise while for
the latter we do. It is clear from the definitions that dcomp(ψr(π, dr)) = αr and
dcomp(ψ∗r (π, dr)) = αr,∗.

By construction, we have the following.

Proposition 8.26. For k ∈ N and α a composition

ψ ◦ ψr = Id
∣∣
D(α)∗k

for 0 ≤ r ≤ `(α)

ψ ◦ ψ∗r = Id
∣∣
D(α)∗k

for 0 ≤ r < `(α).

The γ maps

We translate the ψ maps to the context of valley decorated Dyck paths using the
ζ map.

Definition 8.27. We define γ : D(n)•k → D(n− 1)•k t D(n− 1)•k−1 which, for a
path in D(n)•k, deletes its first NE subsequence. If the E of this subsequence was
the horizontal step preceding a decorated valley, then γ removes this decoration as
it no longer decorates a valley. See Figure 8.4.

Lemma 8.28. For n, k ∈ N the following diagram commutes

D(n)∗k D(n)•k

D(n− 1)∗k t D(n− 1)∗k−1 D(n− 1)•k t D(n− 1)•k−1

ζ

ψ γ

ζ

.

Proof. Let P be an element of D(n)∗k. It is easy to see that the first rise of P is
decorated if and only if the first valley of ζ(P ) is decorated. Thus the stipulations
on decorations carry through nicely in the diagram. For the sake of completeness,
we sketch the proof for the undecorated case, see [HX17, Corollary 2.7].

Consider π ∈ D(n). From its area word a(π) construct the permutation σπ ∈ Sn

by reading, from left to right, the indices of the 0’s of a(π), followed by the indices
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•

•

•

•

•

Figure 8.4: An element of D(12)•3 (left) and its image by γ in D(11)•2.

of the 1’s, and so forth. Now construct the word u(π) ∈ Nn such that its i-th letter
ui(π) is the number of j > σπ(i) such that (σπ(i), j) is a primary inversion plus
the number j < σπ(i) such that (j, σπ(i)) is a secondary inversion. Recalling the
(unlabelled equivalent) of the proof of dinv(π) = area(ζ(π)) (see Theorem 8.5), we
know that ui(π) is exactly the number of area squares of π in the i-th column.

Consider the effect of ψ on the area word of a path. The area word of a Dyck
path always starts with a 0. The area word of ψ(π) is obtained from a(π) by taking
the all its letters strictly before the second occurrence of 0 (and all the letters if
there is no such second occurrence), deleting the 0 at the start, subtracting 1 from
the remaining letters and moving this modified subword to the end of the word.
We have that ui+1(π) = ui(ψ(π)) for all i = 1, . . . , n − 1. We illustrate this fact
with an example that shows how the inversion pairs get transferred from π to φ(π).

Example. Let P := (π, dr) be the path on the left in Figure 8.3. We compute
a(π) = 0112321 01101. For ψ(π), the path on the right in the same figure, we get
a(ψ(P )) = 01101 001210. We have σπ(6) = 7 because there are three 0’s in a(π)
and the third occurence of 1 in a(π) has index 7. The primary inversions of π to the
right of 7 are (7, 9), (7, 10), (7, 12) and the secondary inversions to the left of 7 are
(4, 7), (6, 7). It follows that u6(π) = 5. On the other hand σψ(π)(5) = 11, the fifth
occurence of 0. There are only secondary inversions of ψ(π) involving 11: (2, 11),
(3, 11), (5, 11), (8, 11), (10, 11). The first three come from the primary inversions
of π to the right of 7 and the last two from the secondary inversions to the left of
7. So u5(ψ(P )) = 5.

The equality ui+1(π) = ui(ψ(π)) ensures that the number of area squares in
the i+ 1-th column of ζ(π) equals the number of area square is the i-th column of
ζ(ψ(π)). Since applying γ to ζ(π) essentially means deleting its first column, this
implies that ζ(ψ(π)) equals γ(ζ(π)).

Again, we have a family of right inverses. We start by describing them implicitly,
using ψr and ζ. We will give an explicit description later.
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Definition 8.29. For k ∈ N and α a composition.

γr := ζ ◦ ψr ◦ ζ−1 : D′(α)•k → D′(αr)•k for 0 ≤ r ≤ `(α)

γ•r := ζ ◦ ψ∗r ◦ ζ−1 : D′(α)•k → D′(αr,•)•k+1 for 0 ≤ r < `(α).

In other words, we define these maps so that the following diagrams commute

D(α)∗k D′(α)•k

D(αr)∗k D′(αr)•k

ζ

ψr γr

ζ

D(α)∗k D′(α)•k

D(αr,∗)∗k+1 D′(αr,•)•k+1.

ζ

ψ∗r γ•r

ζ

Proposition 8.30. For k ∈ N and α a composition we have

γ ◦ γr = Id
∣∣
D′(α)•k

for 0 ≤ r ≤ `(α)

γ ◦ γ•r = Id
∣∣
D′(α)•k

for 0 ≤ r < `(α).

Proof. By Proposition 8.26, Definition 8.29 and Lemma 8.28

Id
∣∣
D(α)∗k

= ψ ◦ ψr = ψ ◦ ζ−1 ◦ γr ◦ ζ = ζ−1 ◦ γ ◦ γr ◦ ζ
⇔γ ◦ γr = ζ ◦ Id

∣∣
D(α)∗k

◦ ζ−1 = Id
∣∣
D′(α)•k

.

The proof for γ•r is exactly analogous.

Lemma 8.31. For any P ∈ D′(α)•k, γr(P ) and γ•r (P ) start with r + 1 vertical
steps followed by a horizontal step.

Proof. By definition γr(P ) = ζ ◦ψr ◦ ζ−1(P ). We have ψr(ζ−1(P )) ∈ D(αr)∗k and
so by definition of αr, the area word of ψr(ζ−1(P )) contains r + 1 letters 0. Thus,
upon applying ζ we obtain a path starting with r + 1 vertical steps followed by a
horizontal step. The proof for γ•r (P ) is the same.

Proposition 8.30 and Lemma 8.31 uniquely determine γr and γ•r . We give an
explicit description of their effect.

Take (π, dv) ∈ D′(α)•k and set ` := `(α). By definition of ζ and dcomp′, π
starts with ` north steps followed by an east step. Define π̃ to be the portion of π
following its ` first vertical steps. Set dv+j := {i+ j | i ∈ dv}. We define

γr(π, dc) :=
(
NrNEN `−rπ̃, dc+1

)
,

i.e. we add one NE sequence after the first r north steps and we keep the decorated
valleys as they are, relative to π. Similarly

γ•r (π, dc) :=
(
NrNEN `−rπ̃, {r + 2} ∪ dc+1

)
,

i.e. the path is defined in the same way as before, and we decorate the only new
valley.

Next, we would like to explicitly describe the compositional pieces of the set
γ(D′(α)•k). To this end we describe how to compute dcomp′(P ) directly from
P ∈ D(n)•k (without passing by ζ).
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Lemma 8.32. Given k ∈ N, a composition α , P ∈ D′(α)•k and 1 ≤ r ≤ `(α)

αr = bounce(γr−1(P ))− bounce(γr(P )).

Furthermore, if r 6= `(α) we have

αr = bounce(γ•r−1(P ))− bounce(γ•r (P )).

Proof. It follows easily from ψr’s definition that for any Q ∈ D(α)∗k

area(ψr(Q)) = area(Q) +
∑
i>r

αi.

And so it follows that for 1 ≤ r ≤ `(α)

αr = area(ψr−1(Q))− area(ψr(Q)).

Now given P ∈ D′(α)•k we have α = dcomp′(P ) = ζ−1(P ) by definition. Taking
Q = ζ−1(P ) in the last equation we get

αr = area(ψr−1 ◦ ζ−1(P ))− area(ψr ◦ ζ−1(P ))

(by 8.29) = area(ζ−1 ◦ γr−1(P ))− area(ζ−1 ◦ γr(P ))

(by 8.6) = bounce(γr−1(P ))− bounce(γr(P )).

The second affirmation is implied by the first one and the fact that

bounce(γr(P )) = bounce(γ•r (P )) + 1.

Lemma 8.33. For a, k ∈ N with a > 0 and α a composition

γ : D′((a)α)•k →
⋃

β�a−1

D′(αβ)•k t
⋃
β�a

D′(αβ)•k−1.

Proof. Take P ∈ D′((a)α). Set dcomp′(γ(P )) = α̃. We have to prove that α̃r = αr
for 1 ≤ r ≤ `(α); in fact, if this is true, then we necessarily get α̃ = αβ for some
β � a− 1 if the first valley of π is decorated, or β � a if it is not. Indeed, the size
of a path is the size of its composition plus the number of decorations, we have
α � n− k − a, and applying γ decreases the size of the path by exactly one unit.

Since αr is the (r+ 1)-th part of the composition (a)α, by Lemma 8.32 we have
for 1 ≤ r ≤ `(α)

αr = bounce(γr(P ))− bounce(γr+1(P )).

Using the same lemma we have

α̃r = bounce(γr−1(γ(P )))− bounce(γr(γ(P ))).

So it will be sufficient to show that

bounce(γr(P )) = bounce(γr−1(γ(P )))

for 1 ≤ r ≤ `(α)+1, as it implies our thesis by simply taking the relevant differences.
The two bounce paths are identical from the second section onwards by construction
(as the extra column lies above the first section, see the black steps of Figure 8.5).
Since the first section does not contribute to the bounce the result follows.
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•

•

•

•

•

Figure 8.5: γ2(P ) (left) and γ1(γ(P )) (right). The red steps are inserted by γr, the
black steps are deleted by γ.

From this lemma we may deduce one last fact about these combinatorial sets
and maps.

Corollary 8.34. For k, a ∈ N with a > 0 and ` := `(α)

D′((a)α)•k =
⊔

β�a−1

γ`(D
′(αβ)•k) t

⊔
β�a

γ•` (D′(αβ)•k−1)

Proof. Take P ∈ D′((a)α)•k. Then P starts with `+ 1 north steps followed by an
east step. By Lemma 8.33, there are two possibilities.

• Either γ(P ) ∈ ⊔β�a−1 D′(αβ)•k in which case P = γ`(γ(P )).

• Or, γ(P ) ∈ ⊔β�aD′(αβ)•k−1 and so P = γ•` (γ(P )).

This implies that “⊆” holds. For the other inclusion, if P ∈ D′(αβ)•k, for some
β � a−1, then γr(P ) ∈ D′((a)α)•k since (αβ)r = (1+

∑
i βi, α1, . . . , αr). Similarly,

if P ∈ D′(αβ)•k−1, for some β � a, then γ•r (P ) ∈ D′((a)α)•k since (αβ)r,• =
(
∑
i βi, α1, . . . , αr).

8.4 The recursion

With the combinatorial tools from the previous sections in hand, we now get to
the goal of this chapter: proving the following recursion.

Theorem 8.35. Take k ∈ N, α a composition and ` := `(α), then we have∑
P∈DLD′(α)•k

qninv(P )tbounce(P )xP = d`−M
∗k
α (8.36)

where M∗kα ∈ V` is defined by the recursive relations

M∗k(1)α = d+M
∗k
α + dvM

∗k−1
α(1) , (8.37)
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and for a > 1

M∗k(a)α = ta−1dv

 ∑
β�a−1

d
`(β)−1
− M∗kαβ +

∑
β�a

d
`(β)−1
− M∗k−1αβ

 , (8.38)

with initial conditions M∗k∅ = δk,0.

Proof. By Equation (8.10) Corollary 8.18 and Definition 8.22 and the fact that all
elements of DLD′(α)∗k start with `(α) = ` vertical steps followed by a horizontal
step, we have∑

P∈DLD′(α)•k

qninv(P )tbounce(π,dv)xP =
∑

(π,dv)∈DLD′(α)•k

tbounce(P )d(π)

(by 8.21) =
∑

(π,dv)∈DLD′(α)•k

tbounce(π,dv)d(N `pd(π))

(by 8.22) = d`−
∑

(π,dv)∈DLD′(α)•k

tbounce(π,dv)d(pd(π)).

So, in view of (8.36), it suffices to prove

M∗kα =
∑

(π,dv)∈DLD′(α)•k

tbounce(π,dv)d(pd(π)). (8.39)

We prove this by induction on |α|+ k, i.e. the size of the paths.
We start with the initial conditions. If |α|+ k = 0 then α = ∅. We have

LD(∅)∗k =

{
{empty path} if k = 0

∅ if k 6= 0

because the empty path has no decorations and any nonempty path starts with
a vertical step that may not be decorated and so its diagonal decomposition
is nonempty. Taking the image by ζ we get the same for DLD′(α)•k. Since
d(empty path) = 1 the right hand side of (8.39) is δk,0 which matches M∗k∅ .

Suppose |α|+ k > 0. We may suppose |α| > 1 because if α = ∅ we may apply
the previous argument. So take any nonempty composition (a)α with a ∈ P, where
α is some composition which may be empty. Set r = `(α). The right hand side of
(8.39) is ∑

(π,dv)∈DLD′((a)α)•k

tbounce(π,dv)d(pd(π)) = · · ·

Given (π, dv) ∈ DLD′((a)α)•k, by Corollary 8.34 we have

• either (π, dv) = γr(π
′, dv′) for some (π′, dv′) ∈ D′(αβ)•k, β � a− 1,

• or (π, dv) = γ•r (π′, dv′) for some (π′, dv′) ∈ D′(αβ)•k−1, β � a.
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In both cases the underlying Dyck path is

γr(π
′, dv′)1 = γ•r (π′, dv′)1 = N `(α)NEN `(β)pd(π).

Since pd(N `(α)NEN `(β)pd(π)) = EN `(β)pd(π), it follows that

· · · =
∑
β�a−1

∑
(π,dv)∈DLD′(αβ)•k

tbounce(γr(π,dv))d(EN `(β)pd(π))

+
∑
β�a

∑
(π,dv)∈DLD′(αβ)•k−1

tbounce(γ
•
r (π,dv))d(EN `(β)pd(π))

= · · ·

Let us compute the bounce of γr(π, dv) and γ•r (π, v) in terms of the bounce of
(π, dv) ∈ D′(αβ)•k t D′(αβ)•k−1. By Lemma 8.32, we have

bounce(γr(π, dv)) = bounce(γr−1(π, dv))− αr = bounce(γr−2(π, dv))− αr−1 − αr

= · · · = bounce(γ0(π, dv))−
r∑
i=1

αi = bounce(γ0(π, dv))− |α|

The same identity holds when replacing γr with γ•r and γ0 with γ•0 .

• Clearly, for β � a − 1 and (π, dv) ∈ D′(αβ)•k, we have bounce(γ0(π, dv)) =
bounce(π, dv) + |αβ| and so

bounce(γr(π, dv)) = bounce(π, dv) + |β|
= bounce(π, dv) + a− 1.

• Similarly, for β � a and (π, dv) ∈ D′(αβ)•k−1 we have bounce(γ•0(π, dv)) =
bounce(π, dv) + |αβ| − 1 and so we get

bounce(γ•r (π, dv)) = bounce(π, dv)− 1 + |β|
= bounce(π, dv) + a− 1.

Therefore we may continue

· · · =ta−1
( ∑
β�a−1

∑
(π,dv)∈DLD′(αβ)•k

tbounce(π,dv))d(EN `(β)pd(π))

+
∑
β�a

∑
(π,dv)∈DLD′(αβ)•k−1

tbounce(π,dv)d(EN `(β)pd(π))

)
= · · · (8.40)

If a > 1 then for all β � a− 1 or β � a, `(β) ≥ 1 and so

EN `(β)pd(π) = ENN `(β)−1pd(π).

The definition of d (Definition 8.22) thus gives
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· · · =ta−1dv

 ∑
β�a−1

d
`(β)−1
−

 ∑
(π,dv)∈DLD′(αβ)•k

tbounce(π,dv))d(pd(π))


+
∑
β�a

d
`(β)−1
−

 ∑
(π,dv)∈DLD′(αβ)•k−1

tbounce(π,dv)d(pd(π))


= · · ·

Using the induction hypothesis we have

M∗kαβ =
∑

(π,dv)∈DLD′(αβ)•k

tbounce(π,dv)d(pd(π)) for β � a− 1 (8.41)

M∗k−1αβ =
∑

(π,dv)∈DLD′(αβ)•k−1

tbounce(π,dv)d(pd(π)) for β � a. (8.42)

and so

· · · =ta−1dv

 ∑
β�a−1

d
`(β)−1
− M∗kαβ +

∑
β�a

d
`(β)−1
− M∗k−1αβ


(by (8.38) ) = M∗k(a)α,

which is exactly the left hand side of (8.39) for our case.
Finally we must prove the case a = 1. If β � a− 1 then `(β) = 0 and if β � a,

`(β) = 1 and so continuing from (8.40) we get

· · · =ta−1
( ∑

(π,dv)∈DLD′(αβ)•k

tbounce(π,dv)d(Epd(π))

+
∑

(π,dv)∈DLD′(αβ)•k−1

tbounce(π,dv)d(ENpd(π))

)

(by 8.22) =ta−1

d+
 ∑

(π,dv)∈DLD′(αβ)•k

tbounce(π,dv)d(pd(π))


+ dv

 ∑
(π,dv)∈DLD′(αβ)•k−1

tbounce(π,dv)d(pd(π))


(by (8.41),(8.42)) =d+M

∗k
α + dvM

∗k−1
α(1)

(by (8.37)) =M∗k(1)α.

We have now shown that (8.39) holds for any composition α.

8.5 Operator Delta conjecture

The result of the previous section generalises the combinatorial framework in
[CM18] to rise decorated Dyck paths. It therefore reduces the problem of the
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(compositional) Delta conjecture to an identity of operators.

Conjecture 8.43 (Operator compositional Delta conjecture, rise version). If α is
a composition of length `, then

Θk∇Cα = d`−M
∗k
α , (8.44)

with M∗kα defined as in Theorem 8.35.

The following proposition is an immediate consequence of Theorem 8.35 and
Corollary 8.8.

Proposition 8.45. The rise version of the compositional Delta conjecture, i.e.
Conjecture 5.10, is equivalent to Conjecture 8.43.



Future directions

It suffices to look at the list of conjectures in Chapter 5 to realise that a lot of
problems remain open. One obvious next step towards solving some of these would
be to generalise Carlsson and Mellit’s algebraic argument in [CM18] to prove Con-
jecture 8.43. This would establish the rise version of the Delta conjecture and its
refinements.

In Chapter 6, we showed that the touching shuffle theorem implies the gen-
eralised shuffle theorem. It might be possible to use similar techniques to show
that the Delta conjecture implies the generalised Delta conjecture. For the valley
version, we have some (conjectural) symmetric function identities suggesting that
this might be a fruitful avenue. Some of these identities are strongly suggested by
the combinatorics. The truth of this implication combined with Chapter 7, would
make the valley version of the generalised Delta square conjecture conditional only
upon the valley version of the Delta conjecture.

The rise version of the (generalised) Delta (square) conjecture, lacks a schedule
formula. Finding such a formula might make the rise equivalent of Theorem 7.18
accessible, thus reducing the proof of the rise version of the (generalised) Delta
square conjecture to the rise version of the (generalised) Delta conjecture.

Furthermore, using the Theta operators, a unified formula for both the rise and
valley version of the Delta conjecture might be achievable. We have computational
evidence suggesting that for n, k, l ∈ N with n > 0 and k + l < n the following
equality holds ∑

P∈LD(n)∗k,•l

tarea(P )xP = ΘlΘk∇en−k−l
∣∣
q=1

.

Finding a q-statistic to complete this formula would give what we call a Theta
conjecture, lifting the Delta conjecture to a more general framework.

In general, we believe that the study of the Theta operators will yield more in-
teresting mathematics. Some computer experiments seem to indicate that applying
Θsλ to some Schur positive images of nabla yields more Schur positive symmet-
ric functions. For example Θsλ∇Cα and (−1)|µ|−`(µ)Θsλ∇mµ seem to be Schur
positive.

On the representation theoretic side, there is our conjecture of the Frobenius
characteristic of the module Mn,2 in terms of Theta operators (see page xi). It
might be feasible to get at least a partial proof of this result (e.g. for t or q = 0),
in the vein of [HRS19] and [HRS18]. Also, it is a long standing open problem is to
find a module whose Frobenius characteristic gives ω(pn).
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Appendix A

Missing proofs

Lemma 3.31. For l, s, k ∈ N we have

q(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

=

s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]
.

Proof. We will actually prove that the statement holds for all k ∈ Z such that
l + k ≥ 0, which is clearly sufficient. The argument will be a double induction on
s and l + k. We start with the base cases.

For l = 0, the statement becomes

q(
k
2)
[
s− 1

s− k

]
q

=

s∑
i=0

q(
i
2)hs−i

[
1

1− q

]
ei−k

[ −1

1− q

]
.

Using Definition 2.15,

q(
k
2)
[
s− 1

s− k

]
q

= q(
k
2) (qk; q)s−k

(q; q)s−k

(by 2.13) = q(
k
2) 1

(q; q)s−k

s−k∑
i=0

(−1)i(qk)iq(
i
2)
[
s− k
i

]
q

;

using the easy identity
(
k
2

)
+
(
i
2

)
+ ik =

(
i+k
2

)
, gives

· · · = 1

(q; q)s−k

s−k∑
i=0

(−1)iq(
i+k
2 )
[
s− k
i

]
q

Now, substituting i 7→ i− k, we get

· · · = 1

(q; q)s−k

s∑
i=k

(−1)i−kq(
i
2)
[
s− k
i− k

]
q

=
1

(q; q)s−k

s∑
i=0

(−1)i−kq(
i
2)
[
s− k
i− k

]
q

;
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where this last equality holds because
[
s−k
i−k
]
q

= 0 for i < k. Using (2.14), we rewrite

· · · = 1

(q; q)s−k

s∑
i=0

(−1)i−kq(
i
2) (q; q)s−k

(q; q)i−k(q; q)s−i

(by 2.20) =

s∑
i=0

(−1)i−kq(
i
2)hi−k

[
1

1− q

]
hs−i

[
1

1− q

]

(by 1.63,1.57) =

s∑
i=0

q(
i
2)ei−k

[ −1

1− q

]
hs−i

[
1

1− q

]
,

as desired.
For s = 0 the statement becomes

δk,0 =

l∑
r=0

el−r

[
1

1− q

]
er−l−k

[ −1

1− q

]

since for k 6= 0 the product of binomials
[
l+k
k

]
q

[
l−1
−k
]
q
must be 0. The right hand

side is almost the addition formula 1.69. Indeed substituting r 7→ l − r we get

l∑
r=0

el−r

[
1

1− q

]
er−l−k

[ −1

1− q

]
=

l∑
r=0

er

[
1

1− q

]
e−k−r

[ −1

1− q

]
(by 1.69) = e−k

[
1

1− q +
−1

1− q

]
= e−k[0] = δk,0;

which is what we wanted to show.
For l + k = 0 the statement becomes

δk,0δl,0 =

s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r

[ −1

1− q

]
.

We will use the following fact: for all a, b ∈ Z[
a

b

]
ha

[
1

1− q

]
=

(qa−b+1; q)b
(q; q)b(q; q)a

=
(qa−b+1; q)b(q; q)a−b
(q; q)b(q; q)a(q; q)a−b

=
(q; q)a

(q; q)b(q; q)a(q; q)a−b
= hb

[
1

1− q

]
ha−b

[
1

1− q

]
. (A.1)

First, by 1.63 and 1.57 we have

s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r

[ −1

1− q

]

=

s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

r

]
hs−i

[
1

1− q

]
el−r

[
1

1− q

]
(−1)i+rhi+r

[
1

1− q

]
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(by (A.1))

=

s∑
i=0

l∑
r=0

q(
i
2)hs−i

[
1

1− q

]
el−r

[
1

1− q

]
(−1)i+rhi

[
1

1− q

]
hr

[
1

1− q

]
(by 1.63, 1.57)

=

s∑
i=0

l∑
r=0

q(
i
2)hs−i

[
1

1− q

]
el−r

[
1

1− q

]
(−1)ihi

[
1

1− q

]
er

[ −1

1− q

]

=

(
s∑
i=0

(−1)iq(
i
2)hs−i

[
1

1− q

]
hi

[
1

1− q

])( l∑
r=0

el−r

[
1

1− q

]
er

[ −1

1− q

])
(by (A.1))

=

(
hs

[
1

1− q

] s∑
i=0

(−1)iq(
i
2)
[
s

i

]
q

)(
l∑

r=0

el−r

[
1

1− q

]
er

[ −1

1− q

])
(by 2.13, 1.69)

= hs

[
1

1− q

]
(1; q)sel

[
1

1− q +
−1

1− q

]
= hs

[
1

1− q

]
(1; q)sel [0]

(by definition of (x; q)n)
= δs,0δl,0

Now for the inductive step, consider s, l + k > 0. We will use the easy identity(
k
2

)
− k + 1 =

(
k−1
2

)
a few times.

q(
k
2)
[
l + k

k

]
q

[
l + s− 1

s− k

]
q

(by (2.18)) = q(
k
2)
[
l + k

k

]
q

(
qs−k

[
l + s− 2

s− k

]
q

+

[
l + s− 2

s− k − 1

]
q

)

(by (2.18)) = q(
k
2)
[
l + k

k

]
q

[
l + s− 2

s− k − 1

]
q

+ q(
k
2)qs−k

[
l + s− 2

s− k

]
q

(
qk
[
l + k − 1

k

]
q

+

[
l + k − 1

k − 1

]
q

)

= q(
k
2)
[
l + k

k

]
q

[
l + s− 2

s− k − 1

]
q

+ q(
k−1
2 )qs−1

[
l + s− 2

s− k

]
q

(
qk
[
l + k − 1

k

]
q

+

[
l + k − 1

k − 1

]
q

)

= q(
k
2)
[
l + k

k

]
q

[
l + s− 2

s− k − 1

]
q

+ q(
k
2)qs

[
l + s− 2

s− k

]
q

[
l + k − 1

k

]
q

+ q(
k−1
2 )qs−1

[
l + s− 2

s− k

]
q

[
l + k − 1

k − 1

]
q
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= q(
k
2)
[
l + k

k

]
q

[
l + (s− 1)− 1

(s− 1)− k

]
q

+ qsq(
k
2)
[
(l − 1) + k

k

]
q

[
(l − 1) + s− 1

s− k

]
q

+ qs−1q(
k−1
2 )
[
l + (k − 1)

(k − 1)

]
q

[
l + (s− 1)− 1

(s− 1)− (k − 1)

]
q

.

We can now invoke the induction hypothesis–and use
[
i+r
r

]
q

=
[
i+r
i

]
q
– to write

· · · =
s−1∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

i

]
q

hs−1−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

+ qs
s∑
i=0

l−1∑
r=0

q(
i
2)
[
i+ r

i

]
q

hs−i

[
1

1− q

]
el−1−r

[
1

1− q

]
ei+r−(l−1)−k

[ −1

1− q

]

+ qs−1
s−1∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

i

]
q

hs−1−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−(k−1)

[ −1

1− q

]
.

In the first line, for i = s, hs−1+i
[

1
1−q

]
= 0, so we may replace

∑s−1
i=0 by

∑s
i=0.

In the second line, shift the index r 7→ r − 1. In the third line, shift the index
i 7→ i− 1.

· · · =
s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

i

]
q

hs−1−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

+ qs
s∑
i=0

l∑
r=1

q(
i
2)
[
i+ r − 1

i

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

+ qs−1
s∑
i=1

l∑
r=0

q(
i−1
2 )
[
i− 1 + r

i− 1

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]
.

Next, in the first line, we use hs−i−1
[

1
1−q

]
= (1− qs−i)hs−i

[
1

1−q

]
. Using the fact

that
[
i−1
i

]
q

=
[
r−1
−1
]
q

= 0, we may replace
∑l
r=1 by

∑l
r=0 in the second line and∑s

i=1 by
∑s
i=0 in the third line.

· · · =
s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r

i

]
q

(1− qs−i)hs−i
[

1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

+ qs
s∑
i=0

l∑
r=0

q(
i
2)
[
i+ r − 1

i

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

+ qs−1
s∑
i=0

l∑
r=0

q(
i−1
2 )
[
i− 1 + r

i− 1

]
q

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

=

s∑
i=0

l∑
r=0

hs−i

[
1

1− q

]
el−r

[
1

1− q

]
ei+r−l−k

[ −1

1− q

]

×
(
q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qsq(
i
2)
[
i+ r − 1

i

]
q

+ qs−1q(
i−1
2 )
[
i+ r − 1

i− 1

]
q

)
.
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Since

q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qsq(
i
2)
[
i+ r − 1

i

]
q

+ qs−1q(
i−1
2 )
[
i+ r − 1

i− 1

]
q

= q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qs−1qiq(
i−1
2 )
[
i+ r − 1

i

]
q

+ qs−1q(
i−1
2 )
[
i+ r − 1

i− 1

]
q

= q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qs−1q(
i−1
2 )

(
qi
[
i+ r − 1

i

]
q

+

[
i+ r − 1

i− 1

]
q

)

(by (2.18)) = q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qs−1q(
i−1
2 )
[
i+ r

i

]
q

= q(
i
2)
[
i+ r

i

]
q

(1− qs−i) + qs−iq(
i
2)
[
i+ r

i

]
q

= q(
i
2)
[
i+ r

i

]
q

;

this concludes the proof.

Proposition 3.34. For i, j ∈ N

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
λ`i+j

Hλ[X]

wλ
q−(i2)

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

hk[(1− t)Bλ]

Proof. Consider f a homogeneous symmetric function and λ a partition. We show
that

〈fhj , Hλ〉 =
(
∇−1τ−εωf∗[X]

) ∣∣
X 7→Dλ

where j + deg(f) = |λ| (A.2)

Indeed, using Theorem 3.1 with f 7→ ωf∗

(∇−1τ−εωf∗[X])
∣∣
X=Dλ

= 〈ωf∗, τ1Hλ〉∗
(by 2.23) = 〈f, τ1Hλ〉

(by 1.79, 1.54 ) =
∑
k∈N
〈hkf, τ1Hλ〉.

By homogeneity, only one of these summands is different from 0, i.e. k = j where
j + deg(f) = |λ|. Now using (A.2) with f = ei[(1− t)X] gives

〈ei[(1− t)X]hj [X], Hλ〉 =

(
∇−1hi

[
X − ε
1− q

]) ∣∣∣∣∣
X 7→Dλ

i+ j = |λ|.

This identity will be helpful since, by the duality of the bases {Hλ }λ∈Par and{
Hλ
wλ

}
λ∈Par

for the star scalar product,

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
λ`i+j

Hλ

wλ

〈
hi

[
X

1− q

]
ej

[
X

M

]
, Hλ

〉
∗

(by 2.23) =
∑
λ`i+j

Hλ

wλ
〈ei [X(1− t)]hj [X] , Hλ〉
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Thus, using the previous equation

hi

[
X

1− q

]
ej

[
X

M

]
=
∑
λ`i+j

Hλ

wλ

(
∇−1hi

[
X − ε
1− q

]) ∣∣∣∣∣
X 7→Dλ

(A.3)

Using Corollary 1.69, we may write

∇−1hi
[
X − ε
1− q

]
= ∇−1

(
i∑

k=0

hi−k

[
X

1− q

]
hk

[ −ε
1− q

])

(by 1.63, 1.57) = ∇−1
(

i∑
k=0

hi−k

[
X

1− q

]
ek

[
1

1− q

])

(by 3.16, 2.20 ) =

i∑
k=0

q−(i−k2 )hi−k

[
X

1− q

]
q(
k
2)

(q; q)k
.

Since Dλ := MBλ − 1 it follows that(
∇−1hi

[
X − ε
1− q

]) ∣∣∣∣∣
X 7→Dλ

=

i∑
k=0

q−(i−k2 )+(k2)

(q; q)k
hi−k

[
MBλ − 1

1− q

]

(by 1.69) =

i∑
k=0

q−(i−k2 )+(k2)

(q; q)k

i−k∑
l=0

hl [Bλ(1− t)]hi−k−l
[ −1

1− q

]

(by 1.63, 1.57, 2.20) =

i∑
k=0

q−(i−k2 )+(k2)

(q; q)k

i−k∑
l=0

hl [Bλ(1− t)] (−1)i−k−l
q(
i−k−l

2 )

(q; q)i−k−l

=

i∑
l=0

(−1)i−lhl [Bλ(1− t)]
i−l∑
k=0

(−1)kq(
k
2) q(

i−k−l
2 )−(i−k2 )

(q; q)i−k−l(q; q)k
= · · ·

We use the identity
(
i−k−l

2

)
−
(
i−k
2

)
=
(
l+1
2

)
+ kl − li to write

· · · =
i∑
l=0

(−1)i−lq(
l+1
2 )−lihl [Bλ(1− t)]

i−l∑
k=0

(−1)kq(
k
2)(ql)k

1

(q; q)i−k−l(q; q)k

=

i∑
l=0

(−1)i−l
q(
l+1
2 )−li

(q; q)i−l
hl [Bλ(1− t)]

i−l∑
k=0

(−1)kq(
k
2)(ql)k

[
i− l
k

]
q

(by 2.13) =

i∑
l=0

(−1)i−l
q(
l+1
2 )−li

(q; q)i−l
hl [Bλ(1− t)] (ql; q)i−l

(by 2.15) =

i∑
l=0

(−1)i−lq(
l+1
2 )−li

[
i− 1

i− l

]
hl [Bλ(1− t)]

= q−(i2)
i∑
l=0

(−1)i−lq(
i−l
2 )
[
i− 1

i− l

]
hl [Bλ(1− t)] ;
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where the last equality follows from
(
l+1
2

)
− li =

(
i−l
2

)
−
(
i
2

)
. Thus, setting l 7→ k

we have(
∇−1hi

[
X − ε
1− q

]) ∣∣∣∣∣
X 7→Dλ

= q−(i2)
i∑

k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
hk [Bλ(1− t)] ;

which–combined with (A.3)– gives the thesis.

Lemma 3.35. For r, i ∈ N we have

qi(i−1)
[
r

i

]
q

=

i∑
k=0

(−1)i−kq(
i−k
2 )
[
i− 1

i− k

]
q

[
r + k − 1

k

]
q

.

Proof. We start by applying Proposition 2.20.

qi(i−1)
[
r

i

]
q

= qi(i−1)hi[[r − i+ 1]q]

(by def of hk and [·]q) = hi[q
i−1[r − i+ 1]q]

(by def of [·]q) = hi

[
qi−1 · 1− qr−i+1

1− q

]
= hi

[
qi−1 − qr

1− q

]
(by 1.69) =

i∑
k=0

hk

[
1− qr
1− q

]
hi−k

[
−
(

1− qi−1
1− q

)]

(by 1.63,1.57) =

k∑
k=0

hk

[
1− qr
1− q

]
(−1)i−kei−k

[
1− qi−1

1− q

]

(by def of [·]q) =

i∑
k=0

hk[[r]q](−1)i−kei−k[[i− 1]q]

Thus the conclusion follows from Proposition 2.20.

Lemma 6.4. For f, g homogeneous elements of Λ with deg(f) = m and µ ∈
Par \ {∅}, we have ∑

λ⊃mµ

dfλµΠλg[MBλ] = Πµ(∆f [MX]g)[MBµ].

Proof. By Definition 3.17 and Theorem 3.20 we have∑
λ⊃mµ

dfλµHλ = fHµ.

Let ν be any partition. Evaluate the above equation at X = 1 + z(MBν − 1) and
apply Macdonald-Koornwinder reciprocity (3.3) on both sides:∑

λ⊃mµ

dfλµHν [1 + z(MBλ − 1)]

∏
c∈λ(1− zqa′(c)tl′(c))∏
c∈ν(1− zqa′(c)tl′(c))

= f [1 + z(MBν − 1)]Hν [1 + z(MBµ − 1)]

∏
c∈µ(1− zqa′(c)tl′(c))∏
c∈ν(1− zqa′(c)tl′(c))
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The denominators cancel out. Next, since µ 6= ∅ and thus λ 6= ∅, there is a
common factor 1− z on both sides. Cancelling this factor and then setting z 7→ 1
(see Remark 1.64) we get∑

λ⊃mµ

dfλµHν [MBλ]Πλ = f [MBν ]Hν [MBµ]Πµ

(by definition of ∆f 2.32) =
(
∆f [MX]Hν

)
[MBµ]Πµ.

Since {Hν}ν`i forms a basis of Λ(i) this identity can be extended linearly to hold
for any g ∈ Λ(i).

Lemma 6.5. For l, s ∈ N

(1− qs+1)

[
l + s+ 1

l

]
q

= (1− qs+l+1)

[
s+ l

l

]
q

.

Proof. For l = 0, the statement is clearly true so we may suppose l > 0. We will
use Equations (2.18) and (2.16).

(1− qs+1)

[
l + s+ 1

l

]
q

=

[
l + s+ 1

l

]
q

− qs+1+l

[
l + s

l

]
q

− qs+1

[
l + s

l − 1

]
q

=

[
l + s+ 1

s+ 1

]
q

− qs+1+l

[
l + s

l

]
q

− qs+1

[
l + s

s+ 1

]
q

= qs+1

[
l + s

s+ 1

]
q

+

[
l + s

s

]
q

− qs+1+l

[
l + s

l

]
q

− qs+1

[
l + s

s+ 1

]
q

= (1− qs+l+1)

[
s+ l

l

]
q

.

Lemma 6.20. If M :=
[(
i+j
i

)]
i,j=0,...,n

∈ Mat(n+1)×(n+1)(N) then det(M) = 1.

Proof. We define two more matrices

L =

[(
i

j

)]
i,j=0,...,n

U =

[(
j

i

)]
i,j=0,...,n

.

Clearly L and U are lower and upper triangular, respectively, and all their diagonal
entries are 1. Thus, det(L) = det(U) = 1. We will show that M = LU , which
readily implies the thesis. We have to show that for all i, j = 0, . . . , n

(LU)i,j =

n∑
k=0

(
i

k

)(
j

k

)
=

(
i+ j

i

)

⇔
n∑
k=0

(
i

i− k

)(
j

k

)
=

(
i+ j

i

)
;

which clearly holds since a choice i among i + j can be decomposed into i − k
choices among i and k choices among j for some k = 0, . . . , i and the rest of the
terms are zero.



Appendix B

Figures for schedule numbers

This appendix contains figures illustrating the construction of some of the square
paths of LSQ(1, 8)•2 with diagonal word 44 223

•
011

•
2 and shift 1. They serve as

visuals for the proof of Theorem 7.7.

∅

3

3

2

2

2

3

2

2

2

3

Figure B.1: (1, 3) and (1, 2)-insertion
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4

4

3
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4
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4
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2
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3
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2
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4

· · ·

Figure B.2: (2, 4)-insertion
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1
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3
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4

2
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1

3

1

2

4
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2

4

2
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· · ·

Figure B.3: (0, 1)-insertion
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1

1

3

2

4

2

4
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1

1

3
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4

2

4

• 1

2

1

3

2

4

2

4

•
1

1

2

3

2

4

2

4

•

· · ·

Figure B.4: (0, 2)•-insertion
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3

0

2

4

2

4

•

•

2
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(1n) (1, . . . , 1)︸ ︷︷ ︸
ntimes

3
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a′λ(c)tl
′
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f [Bλ]Hλ
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36

dinv dinv statistic 67
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=
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H(ζ) generating function of homogeneous symmetric
functions
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Hλ modified Macdonald polynomial 27
hλ homogeneous symmetric function 8
hn n-th homogeneous symmetric function 8
K a field 1
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Young tableau of shape λ and weight µ
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Kλ,µ(q, t) modified q, t-Kostka constant 27
a′λ(c) co-leg of a cell c of a partition λ 4
La(π) Labellings of π 63
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65
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65
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65
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80

LD(n) Labelled Dyck paths of size n 65
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65
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LSQ(m,n) Labelled square paths of size m+n with m labels
equal to 0

65

LSQ(m,n)∗k labelled square paths of size m+ n with m labels
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65

LSQ(m,n)•k labelled square paths of size m+ n with m labels
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65

LSQ(n) Labelled square paths of size n 65
LSQ(n)∗k labelled square paths of size n with k decorated
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65
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65
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i=1(i− 1)λi 4
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∇ symmetric function operator defined by ∇Hλ =

TλHλ
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n
k

]
q

[n]q !
[k]q ![n−k]q ! 30

[n]q [n]q 30
[n]q!

∏n
i=1[i]q! 30

ω algebra morphism of Λ defined by ω(pn) =
(−1)n−1pn

17

P stricly positive, natural numbers, i.e. N \ {0} 1
p(n) size of the set of partitions of n 2
P (ζ) generating function of power symmetric functions 11
Par set of partitions 2
Par(n) set of partitions of n 2
pd(π) partial Dyck path associated to π 110
φ symmetric function operator defined by φf [X] =

f [MX]
33

Π symmetric function operator defined by ΠHλ =
ΠλHλ

37
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∏
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(
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)
35
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Rise(π) the set of rises of the path π 64
sλ Schur symmetric function 8
Sn n-th symmetric group 2
SQ(n) square paths of size n 61
SQ(n)∗k square paths of size n with k decorated rises 65
SQ(n)•k square paths of size n 65
SSYT(λ/µ) set of semi-standard Young tableau of shape λ/µ 6
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⊂n µ ⊆ λ and |λ| − |µ| = n 47
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Θf symmetric function operator 37
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88
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area word, 63
augmented Dyck path, 80
augmented parking function, 82

bonus dinv, 67
border strip, 12
bounce, 104
bounce path, 104
bounce word, 104

Catalan numbers, 61
Cauchy identity, 20
column partition, 3
complete homogeneous symmetric func-

tion, 8
composition, 2
compositional shuffle theorem, 72
concatenation, 3
conjugate partition, 3
connected skew partition, 12
contractible valley, 64

degree, 1
Delta conjecture, 71
Delta operator, 36
Delta prime operator, 36
descent set, 89
diagonal labelling, 103
diagonal word, 88
dual basis, 13
Dyck path, 61

elementary symmetric function, 8

forgotten basis, 14

generalised Delta conjecture, 71
generalised Delta square conjecture, 72

height
border strip, 12

homogeneous, 2
homogeneous symmetric function, 8
hook shape, 4
horizontal strip, 12

interlacing, 69
inversion

interlacing, 69

Jacobi-Trudi identity, 12

Kostka number, 6
Kronecker delta, 13

labelling, 63
lattice path, 61

Macdonald Polynomials, 26
main diagonal, 62
major index, 89
modified Macdonald polynomials, 27
monomial symmetric function, 2
multiplication operator, 23

nabla operator, 35
non-inversion, 104

order on partitions
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dominance, 5

parking function, 75
partial Dyck paths, 110
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partition, 2
perp, 16
Pieri coefficients, 46
Pieri rule, 44
plethystic substitution, 18
power symmetric function, 8
preference function, 75
primary inversion, 67

reading word, 74
ribbon, 12
rim hook, 12
rise, 64
run, 88

scalar product
q, t, 26
star, 33
Hall, 13

Schur function, 8
Schur positive, viii
secondary inversion, 67
section of a bounce path, 104
shift, 63
shuffle, 74
shuffle theorem, 71
skew Schur function, 9
square path, 61
square theorem, 72
SSYT, 6
standardisation, 75
strict interlacing, 70
symmetric function, 1
SYT, 6

Theta operator, 37
touching generalised Delta conjecture, 73
touching generalised shuffle theorem, 77,

85
touching point, 66
touching shuffle theorem, 73
translation operator, 23

valley, 64
vertical strip, 12

weighted characteristic function, 107

Young diagram, 3
Young tableau, 6


	Acknowledgements
	Introduction
	Symmetric function theory: an introduction
	Partitions and tableaux
	Some standard bases and results
	Hall scalar product
	The  involution
	Plethysm
	Addition formula
	Translation and multiplication operator

	Macdonald Polynomials
	Definition
	q-analogues
	Star scalar product
	Nabla, Delta and Theta
	Refinements

	Symmetric function identities
	Classical identities
	Pieri coefficients
	A summation formula
	Theta identities

	Lattice paths
	The objects
	Statistics
	Combinatorics of q-analogues

	Delta conjectures and Theta refinements
	Delta conjectures
	Refinements
	Shuffle theory

	The touching generalised shuffle theorem
	Symmetric function identity
	Augmented Dyck paths
	The proof

	The valley Delta square
	Schedule numbers
	The implication

	The compositional Delta conjecture
	Diagonally labelled decorated Dyck paths
	Weighted characteristic functions
	 and  maps
	The recursion
	Operator Delta conjecture

	Future directions
	Missing proofs
	Figures for schedule numbers
	Bibliography
	List of symbols and notations
	Index

