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Abstract

This paper studies application of different constrained control concepts for the control of Depth of Hypnosis (DOH) in closed-loop
anesthesia to guarantee patient safety, while ensuring acceptable tracking performance. The core idea is to formulate Overdosing
(OD) prevention and Blood Pressure Decrease (BPD) prevention as operational constraints, and then use a constrained control
scheme to enforce the constraints satisfaction at all times. In this paper, three methods are studied: 1) Explicit Reference Governor
(ERG), 2) Safety Preserving Control (SPC), and 3) Model Predictive Control (MPC). The performance of the methods is assessed
with respect to a simulated surgical procedure for 44 patients whose models have been identified using clinical data. In particular,
three realistic clinical scenarios are studied in this paper: 1) normal mode, 2) stimulation, and 3) low clearance. The results
demonstrate cons and pros of each method in closed-loop anesthesia according to clinically relevant assessments.
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1. Introduction

During surgical procedures, anesthesiologists continuously
adjust the dosage of anesthetic drugs to reach an acceptable
level of anesthesia. From a technical point of view, their ac-
tions can be interpreted as manual feedback control. Motivated
by this observation, automated (closed-loop) administration of
anesthetics has received increasing attention over the last two
decades. Several articles have reported the technical and clini-
cal aspects of this technology [1, 2, 3, 4, 5, 6, 7, 8].

To bring this technology to routine clinical practice, safety
concerns associated with closed-loop anesthesia need to be ad-
dressed. One of the main safety concerns is drug overdosing
which must be avoided during closed-loop anesthesia, despite
inter-patient variability. Another concern is hypotension, as low
blood pressure is common in the period following the induction
of anesthesia [9, 10].

Several control schemes have been proposed to maintain pa-
tients’ physiological variables within safe limits to avoid drug
overdosing during closed-loop anesthesia [11, 12, 13, 14, 15,
16, 17, 18, 19, 20]. Constraints on blood pressure to avoid hy-
potension have also been considered [21, 22]. These schemes
use varying control objectives, and are designed and evaluated
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using different models. The performance of the constrained
control solutions is therefore confounded by design choices,
variability in the models, and considered performance metrics.
This work aims to provide a comprehensive comparison among
three constrained control techniques, namely, Explicit Refer-
ence Governor (ERG), Model Predictive Control (MPC), and
Safety-Preserving Control (SPC), which were previously pro-
posed in the context of closed-loop anesthesia to avoid drug
overdosing and hypotension [20, 22, 23]. To limit confounding
factors, these methods are compared using the same model set,
same safety constraints, and comparable unconstrained perfor-
mance.

The above-mentioned techniques can employ the same con-
straints on physiological variables; however, their constrained-
control objectives are different and they provide different levels
of safety guarantees. For a given closed-loop system, ERG de-
termines a dynamic auxiliary reference signal which gradually
converges to the actual reference signal, while ensuring that the
states remain within the safe region. MPC is a receding horizon
control technique that solves a constrained optimization prob-
lem over a prediction horizon to find a feasible control input
that satisfies the constraints, while optimizing control objec-
tives. SPC, on the other hand, provides a formal proof of the
existence of a control input (called safety-preserving) which
maintains the states within the safe region. SPC calculates a
subset of the constrained (safe) region or states, from which a
safety-preserving controller exists.

We compare the performance and characteristics of the
above-mentioned techniques in constrained closed-loop anes-
thesia, including constraints to avoid drug overdosing and hy-
potension. For this purpose, we employ a set of 44 patient mod-
els identified in [24] based on clinical data. Moreover, we com-
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Nomenclature

AW Anti Windup

BP Blood Pressure

BPD Blood Pressure Decrease

DOH Depth of Hypnosis

DSM Dynamic Safety Margin

ERG Explicit Reference Governor

IT Induction Time

LBM Lean Body Mass

MPC Model Predictive Control

NF Navigation Field

OD Overdosing

OS Overshoot

PKPD PharmacoKinetic-PharmacoDynamic

RT Rise Time

SPC Safety Preserving Control

ST Settling Time

UDI Used Drug for Induction

pare the closed-loop behaviour of these methods in three realis-
tic clinical scenarios as proposed in [15]. We show that all three
methods are capable of maintaining the system within the safety
constraints during closed-loop anesthesia for all members of the
44-patient model set. However, there are significant differences
in the transient responses. We conclude the paper by discussing
the practical benefits and limitations of each method and the
level of safety guarantee that each method provides. Contribu-
tions of this paper are: 1) to extend the ERG scheme proposed
in [20] to prevent OD and BPD simultaneously, 2) to compare
the performance of the three constrained control schemes in re-
alistic clinical scenarios, and 3) to indicate how state-of-the-art
constrained control methods need to be improved to meet per-
formance requirements for clinical practice.

The rest of the paper is organized as follows. Section 2 de-
scribes the models used in the propofol delivery system. Sec-
tion 3 describes the PID controller used as a precompensator.
Design details of the ERG, SPC, and MPC are briefly discussed
in Section 4, 5 and 6, respectively. In Section 7, simulations are
carried out using the proposed schemes and comparison results
are discussed. Finally, Section 8 provides concluding remarks.

2. Modeling of Pharmacological Effects of Propofol

The relationship between dose and pharmacological effects
of administered anesthetic drug (propofol in this paper) can be
described by the PharmacoKinetic-PharmacoDynamic (PKPD)
model. The input to this process is the dose of administered
drug, and the outputs are the clinical effect, in this paper the
effect on DOH and BP in terms of the BPD.

The effect of propofol is commonly modeled using the fol-
lowing PKPD model, consisting of two parts: 1) the PK model,
and 2) the PD model (see Figure 1). The PK model relates the
drug plasma concentration with the administered dose. The PK
model regarding the hypnotic effect can be expressed as

PKH(s) =
Cp,H(s)

I(s)
= KH

(s+ z1,H)(s+ z2,H)

(s+ p1,H)(s+ p2,H)(s+ p3,H)
, (1)

Figure 1: PKPD model block diagram.

where KH , zi,H , i= 1,2, and p j,H , j = 1,2,3 are the gain, zeros,
and poles of the model, respectively, and can be determined us-
ing, for example, the relations proposed by Schüttler and Ihm-
sen [25] or by Schnider et al. [26].

The PD model relates the plasma concentration with the
pharmacological end-effect. In other words, the PD model de-
scribes the distribution of the propofol in the brain. For hyp-
notic effect, a first-order plus time-delay PD model is used as
proposed by [24]:

PDH(s) =
Ce,H(s)
Cp,H(s)

= e−Tds kd,H

s+ kd,H
, (2)

where Cp,H(t) =C1(t), and Td and kd,H are the transport delay
and rate of propofol distribution between the plasma concentra-
tion and the brain, respectively. In addition, a nonlinear satu-
ration function, called Hill function, is used to describe the re-
lation between Ce,H(t) and the clinical hypnotic effect Eo,H(t),
which is expressed as

Eo,H(t) =
Ce,H(t)γH

ECγH
50,H +Ce,H(t)γH

, (3)

where EC50,H is the steady-state plasma concentration to obtain
50% of the hypnotic effect, and γH is the cooperativity coeffi-
cient. Note that Eo,H(t) is bounded between 0 and 1, where 0
means no hypnotic effect, and 1 is associated with the maxi-
mum effect of hypnosis that can be identified.

As discussed in [9], the PK model associated with BPD effect
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can be expressed as

PKB(s) =
Cp,B(s)

I(s)
= KB

(s+ z1,B)(s+ z2,B)

(s+ p1,B)(s+ p2,B)(s+ p3,B)
, (4)

where KB, zi,B, i = 1,2, and p j,B, j = 1,2,3 are the gain, ze-
ros, and poles of the model, respectively. Also, the PD model
describing the BPD effect can be expressed by the following
first-order system

PDB(s) =
Cp,B(s)
Ce,B(s)

=
kd,B

s+ kd,B
, (5)

preceding the following nonlinear saturation function

Eo,B(t) =
Ce,B(t)γB

ECγB
50,B +Ce,B(t)γB

, (6)

where kd,B is the rate of propofol distribution, EC50,B is the
steady-state plasma concentration to obtain 50% of the effect
on blodd pressure, and γB is the cooperativity coefficient. The
percentage of the BPD can then be computed as 100 ·Eo,B(t).

Finally, the drug-pharmacological effect relationship of the
propofol can be expressed by combining the PK models (1) and
(4), and PD models (2)-(3) and (5)-(6) to come up with a PKPD
model, as shown in Figure 1. It is assumed that the demograph-
ics are known and consequently the PK model (1) is known.
For PKB(s), PDB(s) and the nonlinear function (6), we use the
parameters provided in [9], which means that PD model (5)-(6)
is assumed known. On the contrary, the PD model (2)-(3) is un-
known and introduces significant inter-patient variability, since
its parameters cannot be easily determined based on patient’s
characteristics. However, the parametric uncertainty is limited
to an interval with known bounds.

3. Precompensating the System

Both ERG and SPC assume a precompensating (perfor-
mance) controller is available, in this case for the control of
DOH in closed-loop anesthesia. In this paper, we use the PID
controller that has been clinically evaluated in over 100 cases
[27]. The block diagram of the precompensating structure is
shown in Figure 2. In the SPC and ERG solution, the system is
compensated by this controller, and then augmenting it with an
add-on unit to enforce constraints satisfaction.

This controller uses feedback from the NeuroSENSE moni-
tor whose dynamics is usually modeled as a second-order low-
pass filter [28]:

S(s) =
Y1(s)

Eo,H(s)
=

1
(8s+1)2 , (7)

where Y1(s) is the Laplace transform of the WAVCNS index, the
cortical index that reflects the level of consciousness of the pa-
tient [29].

In the PID controller, the infusion rate I(t) is calculated as

I(t) =k (v(t)− y1(t))+ ki

∫
(v(t)− y1(t))dt

+ kd

(
0.8

d
dt

v(t)− d
dt

y1(t)
)
, (8)

Figure 2: Block diagram of the precompensating control structure. Red lines
and blocks are active only in ERG scheme, and blue lines and blocks are active
only in SPC scheme.

where the parameters k, ki, and kd are calculated based on Lean
Body Mass (LBM) which can be computed as [30]:{

LBM = 0.3281W +0.33929H−29.5336, if male
LBM = 0.29569W +0.41813H−43.2933, if female

,

(9)

with W as the weight of the patient (in [kg]) and H as the height
of the patient (in [cm]). Once the LBM of the patient is com-
puted, corresponding PID parameters can be calculated as

k = 0.081 · c f , ki = 0.0055 · c f , kd = 45 · c f , (10)

where c f = 60 LBM
Con is the scaling factor, with Con = 10 [mg/ml]

as the concentration of the used proporol.
Since it is necessary to protect the controller from integral

windup, particularly when the infusion rate is nil, a back-
calculation Anti-Windup scheme [31] is implemented that re-
sets the integrator dynamically with a time constant Tt = 60 [s].

To attenuate the high frequency noise, measured effect is
passed through a second-order low-pass measurement filter
Fm(s), expressed as:

Fm(s) =
1

(Tms+1)2 , (11)

where Tm = 15 [s] is the time constant. In order to smooth
out any step-like changes, the reference signal is also passed
through the filter Fm(s).

Propofol will be delivered using an infusion pump, with a
lower bound Imin = 0 [ml/h] and an upper bound Imax = 1200
[ml/h]. The saturation block is used in Figure 2 to represent this
limitation.

Finally, for notational compactness, the overall dynamic
model of the system can be expressed as{

ẋ(t) = f (x(t),v(t))

y(t) = h(x(t),v(t))
, (12)

where x(t) ∈ Rn is the state of the system, y(t) =[
y1(t) y2(t)

]T is the output of the system with y1(t) as the
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level of hypnosis and y2(t) = Ce,B(t), and v(t) ∈ [0,1] is the
reference level of hypnosis.

As shown in [28, 32], this PID controller provides adequate
robustness against the intra- and inter-patient variability ob-
served in the target population. The achieved robust perfor-
mance without additional constraints is clinically sufficient and
achieves sufficiently fast induction of anesthesia. However,
high plasma concentrations following induction of anesthesia
may occur, and treatment for hypotension is required in some
cases [27]. In the following, in order to prevent OD and BPD,
we describe constrained control schemes based on the ERG
framework, the SPC framework, and the MPC framework.

4. Enforcing Safety with ERG

Clinical anesthesia can be seen as a constrained control prob-
lem which includes a number of constraints that must not be
violated. Constraints on the amplitude of the propofol infusion
rate I(t) are mostly due to hard physical constraints of the sys-
tem [33] and to safety requirements: 1) the infusion rate can
obviously not be negative, and 2) the maximum infusion rate is
limited to keep hemodynamics changes bounded. By assuming
that Con= 10 [mg/ml], the infusion rate is typically constrained
between 0 and 600 [ml/h] [20], i.e.,

0≤ I(t)≤ 600 [ml/h]. (13)

Safety bounds on the propofol plasma concentration Cp,H(t)
and effect-site concentration Ce,H(t) can be defined using the
therapeutic window [34] for propofol. Safety bounds on Cp,H(t)
and Ce,H(t) used in this paper are [35, 36]

0≤Cp,H(t)≤ 10 [µg/ml], (14)
1.5≤Ce,H(t)≤ 8 [µg/ml]. (15)

In addition to constraints (14)-(15) that correspond to OD
prevention, for safety purposes the patient’s BPD also needs to
be bounded. As shown in [21], BPD should be limited to be
less that 50%, i.e., Eo,B(t) ≤ 0.5. Since (6) is monotonically
increasing, its inverse can be used to map the constraint on the
BPD to a constraint on Ce,B(t), as follows:

0≤ y2(t) =Ce,B(t)≤Ω [µg/ml]. (16)

where Ω is 4.61 for the patients that are in the age range from
20 to 39 years, and is 4.13 for those in the age range from 40 to
59 years.

At this stage, we define the following control problem:

Problem 1. Consider system (12) which is subject to con-
straints (13)-(16). For suitable x(0) and v(0)1, find an auxiliary
reference signal v(t) such that constraints (13)-(16) are satis-
fied at all times, and v(t) tends to the desired reference.

1By the term “suitable”, we mean any set of initial conditions for system
(12), which by starting from them, constraints (13)-(16) are never violated (See
[37] for more details). Note that in this specific application, for any patient
state, x(0) = 0 and v(0) = 0 is always feasible.

As shown in [37, 38], Problem 1 can be solved by manip-
ulating the auxiliary reference v(t) according to the following
differential equation:

v̇(t) = κ ·∆(t) ·ρ(t), (17)

where κ > 0 is a tuning parameter, and ∆(t) and ρ(t) are the
two fundamental components of the ERG scheme, called the
Dynamic Safety Margin (DSM) and the Navigation Field (NF),
respectively.

The NF represents the direction along a feasible path that
leads from the current auxiliary reference v to the desired refer-
ence r. Since in this paper the reference is mono-dimensional,
we use the most intuitive choice for NF [39], which is:

ρ(t) =
r− v(t)

max{|r− v(t)|,η}
, (18)

where η > 0 is a smoothing factor.
The DSM represents a distance between the constraints (13)-

(16) and the trajectory of the system (12) that would emanate
from the current condition of the system for a constant reference
v. In other words, ∆(t)≥ 0 implies that if the current auxiliary
reference v(t) is maintained constant, constraints (13)-(16) are
satisfied at all times. Moreover, ∆(t) > 0 implies that v(t) can
be perturbed without causing constraint violation.

The most intuitive way to compute the DSM is to solve at
each time instant the following differential equation:{

˙̂x(τ) = f (x̂(τ),v(t))

x̂(0) = x(t)
, (19)

and then to compute ∆(t) as

∆(t) = min
i∈{1,··· ,8}

{∆i(t)}, (20)

where ∆i(t) is the distance between the i-th constraint2 and the
trajectory of system (19), computed as

∆1(t) = min
τ∈[t,∞)

{Î(τ|t)}, (21)

∆2(t) = min
τ∈[t,∞)

{600− Î(τ|t)}, (22)

∆3(t) = min
τ∈[t,∞)

{Ĉp,H(τ|t)}, (23)

∆4(t) = min
τ∈[t,∞)

{10−Ĉp,H(τ|t)}, (24)

∆5(t) = min
τ∈[t,∞)

{Ĉe,H(τ|t)−1.5}, (25)

∆6(t) = min
τ∈[t,∞)

{8−Ĉe,H(τ|t)}, (26)

∆7(t) = min
τ∈[t,∞)

{ŷ2(τ|t)}, (27)

∆8(t) = min
τ∈[t,∞)

{Ω− ŷ2(τ|t)}, (28)

2Note that upper and lower bounds in (13)-(16) need to be treated separately,
meaning that we have 8 constraints in total.
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with Î(τ|t), Ĉp,H(τ|t), Ĉe,H(τ|t), and ŷ2(τ|t) as variables com-
puted via (19) with initial condition x(t).

Clearly, computing ∆i(t), i = 1, · · · ,8 at each time instant
over an infinite horizon is inapplicable in practice. As shown in
[19] and [20], since for a linear system whose state is bounded
(which is realistic to consider in our case, as we use the robust
PID controller for precompensation) it is easy to characterize
the worst case peak time T and to solve (19) up to T , one possi-
ble way to tackle the mentioned problem is to approximate the
system (12) with a linear system and to provide a closed-form
solution for ∆i(t), i = 1, · · · ,8.

In particular, first, the system (12) can be approximated with
the following linear system3{

˙̃x(t) = Ax̃(t)+Bv(t)

ỹ(t) =Cx̃(t)
, (29)

where

A =



A1 0 0 0 0 0 0

B21C1 A2 0 0 0 −B22C6 0

B3D21C1 B3C2 A3 0 0 −B3D21C6 0

0 0 B4C3 A4 0 0 0

0 0 0 B5C4 A5 0 0

0 0 0 0 B6C5 A6 0

B7D21C1 B7C2 0 0 0 −B7D21C6 A7


,

(30)

B =
[
BT

1 0 0 0 0 0 0
]T

, (31)

C =

[
0 0 0 0 C5 0 0
0 0 0 0 0 0 C7

]
, (32)

with (A1,B1,C1,D1), (A2, [B21 B22],C2, [D21 D22]),
(A3,B3,C3,D3), (A4,B4,C4,D4), (A5,B5,C5,D5),
(A6,B6,C6,D6), and (A7,B7,C7,D7) as state-space real-
ization matrices of the set-point filter (11), the control law (8),
the PK model (1), the PD model (2), the sensor model (7), the
measurement filter (11), and the PK model (4) augmented with
the PD model (5), respectively. See [19] and [20] for more
details on the linearization procedure.

Then, x̃(τ|t) can be computed for τ ∈ [t, t +T ] as

x̃(τ|t) = eA(τ−t)x(t)+
∫

τ

t

(
eA(τ−σ)Bv(t)

)
dσ , (33)

where T is bigger than the peak time of closed-loop system (29)
for all possible initial conditions (see [40] for more details).
Finally, Ĩ(τ|t), C̃p,H(τ|t), C̃e,H(τ|t), and ỹ(τ|t) can be computed
accordingly.

The main advantage of the mentioned formulation is that, be-
ing based on the prediction of a linear system, it has a closed-
form solution and consequently it is not computationally oner-
ous. However, since possible approximation errors can degen-
erate the DSM (20) such that resulting DSM might not be valid,

3The control law (8) is implemented as a two-input-one-output linear time-
invariant system. To compute (A4,B4,C4,D4), the time-delay operator in (2) is
approximated by Padè approximant.

the DSM (20) should be modified to guarantee constraints sat-
isfaction at all times. For this purpose, we can restrict the ∆i(t)s
in (21)-(28) as

∆i(t) = ∆i(t)−δi, i = 1, · · · ,8, (34)

where δi ≥ 0, i = 1, · · · ,8 can be interpreted as static safety
bounds to take into account the mismatch between (19) and
(29). Note that since the PD model (2)-(3) is unknown and
we have to use a nominal PD model to calculate the realiza-
tion matrices (A4,B4,C4,D4) in (30)-(32), δis should also cover
possible uncertainties in the PD model of patients.

In order to determine the value of δis, let define e1(t) ,
I(t)− Ĩ(t), e2(t),Cp,H(t)−C̃p,H(t), e3(t),Ce,H(t)−C̃e,H(t),
e4(t) , y2(t)− ỹ2(t). Then, δi, i = 1, · · · ,8 can be determined
as

δ1 = δ2 = max
n∈{1,··· ,N}

sup
t≥0
|e1(t)|, (35)

δ3 = δ4 = max
n∈{1,··· ,N}

sup
t≥0
|e2(t)|, (36)

δ5 = δ6 = max
n∈{1,··· ,N}

sup
t≥0
|e3(t)|, (37)

δ7 = δ8 = max
n∈{1,··· ,N}

sup
t≥0
|e4(t)|, (38)

where N is the number of patients. Note that in ei(t), i =
1, · · · ,4, tilded variables are computed through (33) where ma-
trices A, B, and C are built using a nominal PD model, whereas
non-tilded variables are computed using actual PKPD model
(1)-(6).

In this paper, in order to determine the value of δi, i =
1, · · · ,8, we consider 44 patient models identified from clini-
cal data as described in [24]. As discussed in [17, 41], patient
age can be used as a criterion to reduce the inter-individual vari-
ability of the PKPD models. Hence, a 10-years bracket is se-
lected and the 44 patients are subdivided into four age groups,
as Group 1: 18-29 years, Group 2: 30-39 years, Group 3: 40-
49 years, and Group 4: 50-60 years. Then, a nominal model for
each age group is identified using the averaging method [17].
In order to make sure that the method is robust against larger
uncertainties that may exist in different sets of patients, 1000
“virtual patients” for each age group have been generated us-
ing the method presented in [20]. More precisely, we have then
generated the “virtual patients” by randomly selecting the pa-
rameter p in the range p− 1.1φ and p+ 1.1φ , where φ is the
maximal distance between the nominal value of the parameter
p and the actual values of the same parameter. Finally, a Monte
Carlo simulation study was carried out by generating a random
step-wise reference signal with random number of steps, dura-
tions, and levels. Simulation results are shown in Figure 3, and
obtained values for δi, i = 1, · · · ,8 are 0.35, 0.35, 1.2, 1.2, 1.2,
1.2, 0.9, and 0.9, respectively.

Note that, in this paper, we use the PK model proposed by
Schüttler and Ihmsen [25], as the parameters of the 44 patients
are identified using this model [24]. However, since the PK
model proposed by Schnider et al. [26] is commonly used in
clinical target-controller infusion systems to report the plasma
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Figure 3: Illustration of determining safety bounds δi, i = 1, · · · ,8; black lines:
Group 1, yellow lines: Group 2, green lines: Group 3, blue lines: Group 4, and
red dashed lines: obtained values for δis.

and effect-site concentrations [42], we employ the PK model
given in [26] to study the constraints on Cp,H(t) and Ce,H(t),
i.e., constraints (14)-(15). It should be remarked that to study
the constraints (14)-(15), as reported in [26], PD model (2)
is identical for all patients with Td = 0 [s] and kd,H = 0.456
[min−1], i.e., the constraints are known.

In summary, the ERG-based constraint enforcement unit is
implemented as (17), where ρ(t) is computed through (18), and
∆(t) is computed through (20) with ∆i(t) as in (34). It should
be remarked that the main advantage of the proposed method is
its simplicity and low computational complexity, which makes
it applicable for real-time drug delivery purposes.

In the following remark, two modifications to the basic ERG
are presented, which are used in this paper to ensure an extra
level of safety.

Remark 1. As shown in [43], in the presence of a bounded ex-
ternal disturbance d(t) (i.e., supt≥0 ‖d(t)‖<∞), the ∆i(t) needs
to be updated as

∆i(t) = ∆i(t)−δi−δ
d
i , (39)

where δ d
i should cover uncertainty due to the external distur-

bance. The value of δ d
i can be computed via a Monte Carlo

simulation study by assuming the upper-bound of the distur-
bance d(t).

Remark 2. The ERG guarantees constraints satisfaction at all
times. In other words, ERG guarantees that the states of the sys-
tem remain within a safe region in which ∆≥ 0. In some cases
(e.g., the scenario studied in Subsection 7.3) an unwanted devi-
ation in the trajectory of the system can happen due to unmod-
eled uncertainty or unforeseen external disturbance exceeding
the design guaranteed bounds. This deviation may cause the
states of the system to enter the unsafe region in which ∆ < 0.
One intuitive way to cope with this problem is to modify the
ERG scheme given in (17) as{

v̇ = κ ·∆ ·ρ ∆≥ 0
v̇ = κ̄ ·∇v∆ ∆ < 0

, (40)

where κ̄ is a design parameter, and ∇v∆ denotes the gradient
of ∆ with respect to v. This new control scheme is so that when

the states of the system are in the safe region, the auxiliary ref-
erence v(t) changes as the basic ERG formulation (17), but,
when the states enter the unsafe region (i.e., ∆ < 0), the auxil-
iary reference v(t) changes in accordance with the gradient of
∆. More precisely, when ∆ < 0, the auxiliary reference changes
such that the value of the dynamic safety margin ∆ increases,
and consequently states of the system reenter the safe region.

5. Enforcing Safety with SPC

SPC employs Formal Methods [44] to approximate the vi-
ability kernel. For a dynamic system X with K and I as
convex-compact sets of safety constraints on its states and in-
puts, respectively, the viability kernel Viab(K ,I ,X)[t,τ] is a
set of states at time t starting from which there exists an input
within I that maintains the states of X within K for all time
in [t,τ], i.e.,4:

Viab(K ,I ,X)[t,τ] = {x(0) ∈K | ∃I(·) : [t,τ]→I , such that

x(t) = x(0) & x(t ′) ∈K , ∀t ′ ∈ [t,τ]}.
(41)

If the viability kernel is empty, there exists no feasible con-
trol solution for the given constrained control problem. On the
other hand, if the viability kernel is not empty, SPC synthe-
sizes a constrained controller (called safety-preserving) to find
an appropriate input for the constrained control problem. This
controller is guaranteed to maintain safety as the feasibility of
the constraints is demonstrated through the viability kernel ap-
proximation. Several safety-preserving controllers have been
proposed in the literature (e.g. [48, 49, 50, 51, 52]).

For the sake of comparison with MPC and ERG, we employ
the safety-preserving controller presented in [22] which is for-
mulated to avoid drug overdosing and hypotension in closed-
loop anesthesia. In this scheme, the closed-loop control input is
calculated as follows:

I(t) = (1−βα)Ipr(t)+βα Isp(t). (42)

where Ipr is a performance control input which is calculated by
a closed-loop controller to satisfy performance criteria. In the
case of the closed-loop anesthesia problem, Ipr is calculated by
the PID controller as discussed previously. In (42), Isp refers to
a safety-preserving control action which is guaranteed to main-
tain the states within the safe region, and βα is determined as

βα =


0 , α < ϑ(x(t))

α−ϑ(x(t))
α

, 0 < ϑ(x(t))≤ α

1 , ϑ(x(t))≤ 0

, (43)

where α ∈ [0,1) is a design variable and ϑ(x(t)) is a signed
distance between the state vector x(t) and boundaries of
Viab(K ,I ,X)[t,τ] [52]. The distance is negative if x(t) <
Viab(K ,I ,X)[t,τ]. Accordingly, as the states approach the

4For different methods of viability kernel approximation, see [45, 46, 47]
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boundaries of Viab(K ,I ,X)[t,τ] the safety-preserving con-
troller contributes more and pushes the states inside the safe
region.

To calculate the safety-preserving control input in (42), we
employ the safety-preserving control policy formulated by [53].
Accordingly, assuming the constraint set is compact, con-
vex and h-continuous5, the following control policy is safety-
preserving:

Isp(t) = argmin
I(t)
{〈l◦(t),BI(t)〉|I(t) ∈I }, (44)

where

l◦(t) = argmax
l
{〈l,x(t)〉−θ(l,Viab(K ,I ,X)[t,τ])| ‖l‖ ≤ 1},

(45)

with 〈·, ·〉 as the inner product of two vectors, and
θ(l,Viab(K ,I ,X)[t,τ]) as the support function of
Viab(K ,I ,X)[t,τ] in direction l.

The details of using the above-mentioned safety-preserving
control policy in closed-loop anesthesia can be found in [22].
We also refer the readers to [22] for the details of the approxi-
mated viability kernel for the 44-patient model set.

6. Enforcing Safety with MPC

The MPC scheme in this paper was designed specifically for
a comparison with ERG and SPC. The design objective is to
achieve an unconstrained closed-loop response similar to the
response with the PID controller described above, for the pop-
ulation of 44 virtual patients as presented by [24]. It was not
designed to optimize performance in any way, other than to
achieve similar performance as the PID controller. To achieve
this, the MPC scheme was manually tuned.

The MPC scheme utilized in this paper is based on the
SISO propofol controller detailed in [23]. Note that sev-
eral MPC schemes have been presented in the literature, e.g.,
[12, 14, 54, 55, 56, 57, 58]. These schemes cannot be used di-
rectly to compare constrained control performance, as results
are confounded by design choices, variability in the models
considered, and the reported performance metrics. We therefore
design an MPC controller with the objective to achieve compa-
rable performance to the PID controller described in Section 3,
for the model set described in Section 2.

The controller includes the nominal model detailed in [23],
whose realization matrices are (Ap,Bp,Cp,Dp). To achieve
similar unconstrained closed-loop responses as the PID con-
troller, the delay of this nominal model is reduced to one time
sample, limiting the internal delays in the MPC controller. The
model is augmented with the sensor model and integral action
is included by using optimizing the change in input ∆up(t). The
augmented model of the controller also includes a step distur-
bance model and feedback is introduced using unity state feed-
back on this disturbance state (see [23] for more details).

5See [53] for the definition of h-continuity.

With a discrete state-space description of the model relating
∆up(t) to the the level of hypnosis given by (Ap,Bp,Cp,Dp),
sampled at 5 seconds, the prediction model is given by:{

x̂(t +1) = Ax̂(t)+B∆uP(t)

ŷ(t) =Cx̂(t)
, (46)

where ŷ(t) represents the predicted level of hypnosis, x̂(t) =[
xp(t) d̂(t)

]T
, with xp corresponding to the states of the propo-

fol model, and d̂ is the estimation of the disturbance which rep-
resents the effect of model uncertainties, and

A =

[
Ap 0
0 1

]
, B =

[
Bp

0

]
, C =

[
Cp 1

]
. (47)

The disturbance state (i.e., model uncertainties) is estimated
using a Luenberger observer with L = [0 1], and as seen in (46),
it is assumed to be constant during prediction horizon.

The standard MPC optimization criterion is minimized at
each time step, using weight matrices for the prediction error
and the control effort, as follows:

JE(t) =
Hp

∑
i=1

(r(t + i)− ŷ(t + i|t))2 qp(i)

+
Hc

∑
k=1

(∆uP(t + k−1|t))2 rp(k), (48)

where Hp is the prediction horizon, Hc is the control horizon,
and the weights are given by qp(i) and rp(i). Note that ∆uP(t +
k|t) = 0,∀k > Hp.

The tuning structure proposed in [23] was used, where
rp(k) = 10R for k = 1, rp(k) = 500R for k > 1, qp(i) = 0 for
i = 1, qp(i) = Q for i ∈ [2,Qcut ], and qp(i) = 100Q for i > Qcut .
The horizon lengths Hp and Hc, and the tuning parameters Q,
R, and Qcut , were determined using a grid search. The ten tun-
ing combinations with the 10 lowest mean square errors com-
pared to the unconstrained PID implementation (for the com-
plete population of 44 virtual patients) were selected and the re-
sponses were visually inspected. Finally, the controller that best
represented the overshoot and Induction Time (IT)6 achieved
by the PID controller was selected. The tuning parameters of
this controller are Hp = 240, Hc = 3, Q = 1000, R = 1, and
Qcut = 80.

Since the constraints are based on different PKPD models
than the nominal model, an additional state space model is in-
troduced for the constraints. The constrained MPC scheme op-
timizes the resulting constrained quadratic program at each time
step, i.e., it minimizes the cost function (48) subject to con-
straints (13)-(16).

7. Results and Discussion

To compare the performance of the ERG, SPC, and MPC
schemes, we consider the set of 44 patient models identified

6Induction Time (IT) is defined as the time taken by y1(t) to reach 0.4 and
stays above it for more than 30 [sec] [22].
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in [24], and we simulate the clinical scenarios, i.e.: 1) normal
mode as used in [22], and 2) stimulation and 3) low clearance
as proposed in [15]. The simulations are run using the values
T = 50 [min] and r = 0.5, with the ERG parameters κ = 1,
η = 0.01 and α = 0.2.

7.1. Scenario 1: Normal Mode (Constraints on Cp,Ce and
BPD)

In this scenario, all 44 PKPD patient models with the struc-
ture described in equation (1)-(6) are considered. For the sake
of simplicity and convenience, the DOH is defined as follows

DOH(t), 100 · (1− y1(t)), (49)

where maximum and minimum hypnotic effects correspond to
DOH(t) = 0 and DOH(t) = 100, respectively. Also, BPD is
defined as

BPD(t), 100 ·Eo,B. (50)

Simulation results are shown in Figure 4. All schemes en-
sure that the constraints are satisfied, with the DOH converging
to the reference signal. Table 1 compares performance of the
ERG, SPC, and MPC schemes with respect to indices: 1) IT,
2) Rise Time (RT), which is defined as the time taken by DOH
to change from 95 [%] to 55 [%] [28], 3) Settling Time (ST),
which is defined as the time taken by DOH to enter the inter-
val [40,60] [%] and stay there [17], 4) Overshoot (OS), which
represents the maximum peak value of DOH measured from 50
[%] [28], and 5) Used Drug for Induction (UDI), defined as the
total amount of drug used during induction phase [20].

The time-profile of the auxiliary reference signal v(t) in the
ERG framework, Figure 5, illustrates how ERG manipulates
the auxiliary reference v(t) only when the manipulation does
not lead to constraint violation. In simple terms, by using the
ERG, instead of applying the desired DOH instantly, we apply
the auxiliary reference v(t) that automatically converges to the
desired DOH so that OD prevention and BPD prevention are
guaranteed at all times.

The transient responses of the DOH to satisfy the constraints
are different for the three methods. ERG exhibits a slower re-
sponse to induction of anesthesia with smooth profiles (see Fig-
ure 4), with a maximal induction time of over 30 minutes (Ta-
ble 1). This slow induction would be clinically unacceptable.
The maximal induction times achieved with SPC and MPC are
11.6 and 7.2 minutes, respectively, which would also introduce
clinical challenges, as it could delay the anesthesiologists abil-
ity to secure the airway and it could delay the start of surgery.
However, IT below 5 minutes may not be achievable with these
constraints.

For some patients the achieved DOH shows an increase to
> 60 when the constraints are active in SPC and MPC, after an
initial decrease to below 60 and completed induction of anes-
thesia. This behaviour could be clinically undesired as DOH
> 60 may risk inter-operative awareness [28], and DOH > 60
at the start of the procedure can be particularly problematic and
delay surgery. Note that the corresponding DOH in the ERG

Table 1: Comparing Performance Indices.

Index ERG SPC MPC
IT [min]
mean±SD 7.09±6.28 5.28±1.70 4.30±0.80
[min,max] [3.69,30.92] [3.47,11.60] [3.17,7.17]
RT [min]
mean±SD 7.91±10.44 8.42±11.84 5.06±7.45
[min,max] [2.17,43.16] [2.30,49.53] [1.75,39.58]
ST [min]
mean±SD 9.83±6.44 9.85±6.88 7.477±5.52
[min,max] [3.88,30.91] [3.95,27.07] [3.25,22.50]
OS [%]
mean±SD 13.99±10.49 14.32±8.51 14.48±7.34
[min,max] [0,30.26] [0,30.94] [0,26.67]
UDI [ml]
mean±SD 19.19±11.28 17.22±5.60 15.82±3.60
[min,max] [8.97,58.38] [8.88,33.37] [9.16,23.94]

scheme remains > 60, where the constraints led to longer in-
duction times (IT). Settling times (ST) are more comparable
between methods. This may indicate that a faster settling time
may not be achievable with these constraints.

MPC introduced short-period high-frequency oscillations in
the infusion rate for some patients when the constraints were
reached, while the ERG and the SPC provide smooth injection
overall (see Figure 4). MPC achieves faster induction, with sim-
ilar overshoot and less drug use than ERG and SPC. Note that
the unconstrained controller in the MPC implementation is sim-
ilar but not equivalent to the PID controller used in the SPC and
ERG schemes.

7.2. Scenario 2: Stimulation

In this scenario, closed-loop anesthesia is simulated for the
patient #35. It is assumed that the disturbance shown in Figure 6
is applied to the system, which results in reaching the upper
bound of the effect-site concentration Ce,H .

Simulation results are shown in Figure 7. Note that for this
scenario the ERG scheme is modified to be robust against the
external disturbance by adding an extra static safety margin as
discussed in Remark 1. The ERG solution is conservative com-
pared to the SPC and MPC solution: drug infusion is lower and
consequently induction of anesthesia is slower using the ERG
scheme compared to the SPC scheme. Note that the constraint
is not reached in the MPC solution.

When the constraint is approached in the SPC scheme, the
control policy that drives the states away from the bound is
more aggressive than the MPC or ERG policy, and the input
saturates at the lower limit (zero infusion). The system states
are forced well away from the bounds as shown in the predicted
effect site concentration in Figure 7.
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ERG SPC MPC

Figure 4: The simulated responses of the 44 patients; left column: results with ERG, middle column: results with SPC, and right column: results with MPC.

7.3. Scenario 3: Low Clearance
To simulate reduced clearance, the non-linear model of pa-

tient #15 is multiplied by

G2(s) = 1+
0.8

(700s+1)(800s+1)2 , (51)

which increases the gain at low frequency, and consequently,
due to the reduced clearance, the lower bound of Ce,H is
reached. Furthermore, the disturbance shown in Figure 6 is ap-
plied to the system.

This scenario includes multiple challenges. The model with
reduced clearance is significantly different at low frequencies
compared to any nominal model used for controller design for
the population. Furthermore, even though the control action
is limited due to an active lower bound, the controller needs
to be responsive to the increase in measured DOH to provide
sufficient anesthesia in the presence of the disturbance.

Simulation results are shown in Figure 8. Note that for this
scenario the ERG scheme is modified as discussed in Remark

Figure 5: Time profile of the auxiliary reference signal v(t).

2. The ERG scheme (based on the uncertain closed-loop sys-
tem) is conservative for this patient, i.e., induction of anesthesia
is slower than the unconstrained PID controller while the pre-
dicted effect site concentration remains well clear of the bound.
This slow induction and prolonged DOH near 60 is clinically
undesired. Once the lower bound is reached, all three meth-
ods maintain the system within bounds, while the unconstrained
system would not meet the safety constraints.
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Figure 6: Disturbance profile used in Scenarios 2 and 3.

Figure 7: Simulation results for Scenario 2; blue line: ERG, black line: MPC,
yellow line: SPC, and green line: unconstrained control.

Following the disturbance after 70 minutes, the SPC con-
troller allows for a rapid increase in drug infusion that can
compensate for the increased stimulation. The drug infusion
shows high frequency oscillation when the bound is reached.
The MPC scheme leads to a lower drug infusion in response
to stimulation than the SPC controller, likely due to the model-
patient mismatch and consequent inaccurate predictions used
for optimization. The ERG scheme overdoses this patient fol-
lowing the disturbance, with infusion rates that are significantly
higher than the unconstrained solution. When the lower bound
is reached, the ERG scheme adjusts the reference signal to re-
duce the drug infusion and to remain within the bounds. When
the disturbance increases the measured DOH value, this low-
ered reference to the same PID controller leads to higher infu-
sion rates and consequent overdosing.

8. Concluding Remarks

This paper investigates application of different constrained
control schemes in closed-loop anesthesia to control the DOH.
To ensure patient safety, operational constraints are formulated

Figure 8: Simulation results for Scenario 3; blue line: ERG, black line: MPC,
yellow line: SPC, and green line: unconstrained control.

to avoid OD and BPD. A constrained control method is then
used to enforce constraints satisfaction. In this paper, three
methods were studied: ERG, SPC, and MPC. The schemes
were verified according to three clinical scenarios: 1) normal
mode, 2) stimulation, and 3) low clearance.

In this application, with the considered constraints, a robust
controller is required to control the uncertain system (patient
model). In this work, robustness for the unconstrained system
is ensured using a robust PID controller for SPC and ERG, and
an MPC controller designed to achieve similar unconstrained
performance, and therefore similar robustness merits. The con-
straints are known, deterministic and do not introduce any un-
certainty. The addition of the constraints does not introduce
conservatism to the solution of MPC and SPC, as the con-
straints are known and not affected by the uncertainty in the
closed-loop. The ERG scheme uses the uncertain closed-loop
system to ensure constraints satisfaction. The solution is there-
fore conservative, manifested in slower induction of anesthesia.
However, ERG guarantees safety even in the presence of a large
(unrealistic) model uncertainty.

All three methods maintained the system considered within
the constraints, but the transient responses in specific clinical
scenarios were significantly different. Similar to model-based
anti-windup scheme considered in [15], MPC may not behave
as designed (for the nominal model) in the cases where the
constraints are most likely to be met, i.e., where the patient-
model mismatch is large. An advantage of ERG and SPC is
that these schemes can be added to any (precompensating) con-
troller. ERG might be advantageous in terms of transparency
and interpretability by clinicians. Further research may be re-
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quired for an ERG controller that provides clinically desired
behaviour in challenging clinical scenarios.

The MPC controller was designed to be similar to the ro-
bust PID controller considered. However, the resulting (uncon-
strained) controller was not the exact same. MPC outperformed
both ERG and SPC in terms of speed of induction of anesthesia
in scenario 1, without increasing the overshoot. In scenario 2,
the MPC controller achieved faster induction of anesthesia than
the PID controller, while the constraint was not reached. De-
signing a precompensating controller that optimizes the perfor-
mance while limiting the number of cases and scenarios where
the constraints are reached may improve overall constrained
system performance. However, constrained controllers are still
required to ensure patients’ safety by preventing constraint vio-
lations.
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