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Abstract 

The present paper presents the first-of-its-kind digital twin for a furnace operating in flameless combus- 
tion conditions. A methodology combining data compression, by means of Proper Orthogonal Decomposi- 
tion (POD), and interpolation, using Kriging, was developed to design physics-based, reduced-order models 
(ROMs) for the prediction of combustion data at unexplored operating conditions. Three-dimensional sim- 
ulations with detailed chemistry were carried out, spanning a wide range of operating conditions in terms of 
fuel composition (methane-hydrogen mixtures from pure methane to pure hydrogen), equivalence ratio (from 

0.7 to 1) and air injector diameter (to adjust the air jet entrainment). Based on the available simulations, a 
ROM was developed, to predict both spatial fields, local and integral values of thermochemical variables at 
working conditions not included in the ROM development. Results showed that the developed ROM could 

reliably predict the temperature and main chemical species distribution in the furnace with an overall error 
below 10%, proving the effectiveness of the approach for the development of digital twins of combustion 

systems. A remarkable accuracy was observed for the prediction of specific quantities, including wall tem- 
peratures, OH decay length, OH peak value and location and exhaust gas composition, including pollutants, 
with prediction errors always below 5%, showing the potential of the approach to develop soft sensors. 
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. Introduction 

Energy supply is one of the greatest societal
hallenges we are facing. The intermittent nature
f renewable sources requires the development of 

ong-term storage solutions as well as the availabil-
ty of high-density energy sources, for transporta-
ion and manufacturing. The storage of renewable
xcess energy in the form of synthetic fuels is a
nique opportunity to integrate renewable sources
nd combustion systems. The future energy mix
ill likely include a variety of fuels from power-

o-fuel technologies, making the role of combus-
ion technologies even more important than it al-
eady is. Novel combustion technologies are in-
eed required to accommodate the fuel flexibility
xpected in the future. In this context, Flameless
xidation (FLOX 

R ©) [1] or Moderate and Intense
ow-oxygen Dilution (MILD) [2] combustion rep-

esents a very attractive solution for its little sensi-
ivity to the charge composition and ability to de-
iver very high combustion efficiency with very low
ollutant emissions. While CFD tools have signifi-
antly progressed in recent years, their use in real
ime is still unrealistic, especially for combustion
egimes such as MILD combustion, whose descrip-
ion requires the use of detailed chemical mech-
nisms and advanced turbulence-chemistry inter-
ctions approaches. In this context, the availabil-
ty of physics-based reduced-order models (ROMs)
ecomes very attractive, to embed the critical as-
ects of a detailed simulations into simplified rela-
ionships between the inputs and outputs that can
e used in real time. The development of virtual
odels, also referred to as digital twins , of indus-

rial systems opens up a number of opportunities,
uch as the use of data to anticipate the response
f a system and brainstorm malfunctioning, and
he use of simulations to develop new technolo-
ies, i.e. virtual prototyping. A definition of digital
wins is “an integrated multi-physics, multi-scale,
robabilistic simulation of an as-built system, en-
bled by digital thread, that uses the best available
odels, sensor information, and input data to mir-

or and predict activities/performance over the life
f its corresponding physical twin” [3] . Combin-

ng CFD simulations with real-time data coming
rom sensors of a real industrial system to foresee
 change in its state is possible only if the predic-
ion of the system’s state based on the operating
onditions reported by these sensors becomes in-
tantaneous [4] . To do so, a set of training simu-
ations must be generated beforehand, for a wide
nough range of possible operating conditions. A
hysics-based ROM can be then developed by us-

ng unsupervised learning to extract the key latent
eatures in the data, for which a response surface is
ubsequently found by a supervised learning tech-
ique. Once the mapping between inputs and out-
uts is embedded in a ROM, the system state can
e predicted for new operating conditions, based on
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
real-time data coming from sensors. In a previous
study [5] , the Authors showed that the combination
of an unsupervised data compression method, i.e.
Proper Orthogonal Decomposition (POD), with
a supervised interpolation technique, i.e. Kriging,
could be effectively used for the reconstruction and
prediction of two-dimensional laminar methane
flames. In the present work, the methodology was
extended and applied to the development of a dig-
ital twin of a combustion furnace equipped with a
FLOX 

R © burner for the prediction of the full state
of the furnace (spatial fields of temperature and
main chemical species mass fractions), as well as
of important scalar quantities at locations of inter-
est (wall temperature, OH peak value and location,
OH decay length, exhaust gas composition includ-
ing pollutants), within a prescribed accuracy. The
design space consisted of a design parameter, the
air injector diameter, and two measured inputs, the
fuel composition (mixture of H 2 /CH 4 in molar ba-
sis) and the equivalence ratio. The paper is orga-
nized as follows: the methods used for the ROM
development are described in Section 2 . The de-
scription of the case study is reported in Section 3 .
The sensitivity to the training data of the data
compression process and of POD+Kriging are re-
ported in Sections 4.1 and 4.2 , respectively. The per-
formances of the developed digital twin are dis-
cussed in Section 5 . Finally, conclusions are drawn
in Section 6 . 

2. Methods 

2.1. Proper orthogonal decomposition 

Consider a snapshot matrix Y of size ( m × n ),
where each row of Y is a vectorized 2D or 3D
spatial field of some variable of interest such as
temperature, or a concatenation of more than one
field, coming from one CFD simulation. Thus,
m is the number of available simulations and n
is the number of grid points × the number of 
considered variables. In combustion-related prob-
lems, n > > m . Proper Orthogonal Decomposition
(POD) seeks Z of size ( m × k ) and A of size ( n × k )
with k < < n (hence the reduction), such that the
functional f (Z , A ) = 

1 
2 || Y − ZA 

T || 2 is minimized,
subject to A 

T A = I , where I is the identity ma-
trix. This problem can be solved by computing
the singular value decomposition (SVD) of the
matrix Y , which corresponds to finding the eigen-
vectors of the matrix C = 

1 
m −1 Y 

T Y . These eigen-
vectors are the columns of A . A low-rank ap-
proximation of Y is found as follows Y ≈ ZA 

T =
YAA 

T , where the columns of A of size ( n × k ) are
the POD modes, also referred to as spatial shapes or
eigenflames [5] , and Z of size ( m × k ) is the matrix
of POD coefficients. Each column of Z are the k co-
efficients for the retained k POD modes so that one
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Table 1 
Validation cases for the CFD model. 

Case Injector [mm] φ [–] H 2 [mole fraction] 

a 16 0.93 0.60 
b 16 0.78 0.30 
c 16 0.83 0.05 
particular simulation, or row of Y , can be expressed
as a weighted sum of different data-driven eigen-
flames: y (x ) = 

∑ k 
i=1 a i z i (x ) . 

2.2. Kriging 

Kriging is an interpolation method in which ev-
ery realization z ( x ) (e.g. the POD coefficients) is ex-
pressed as a combination of a trend function and a
residual [6] : 

z (x ) = μ(x ) + s (x ) . (1)

The trend function μ( x ) is a low-order polyno-
mial regression and provides a global model in the
input space. The residuals s ( x ) are modeled by a
Gaussian process with a kernel or correlation func-
tion that depends on a set of hyper-parameters to
be evaluated by Maximum Likelihood Estimation
(MLE) [7,8] . 

3. Data-set 

The semi-industrial combustion furnace used
for this study has a nominal power of 20 kW. It is
fired by a burner with an integrated metallic finned
heat exchanger to recover heat from the flue gases
and to preheat the combustion air. The fuel is in-
jected via a centrally located nozzle (ID 8 mm) and
surrounded by a coaxial air jet, whose dimensions
can be varied to adjust the air jet entrainment (ID
16-20-25 mm). More details can be found in [9] . To
generate the samples required for development of 
the furnace ROM, CFD simulations were carried
out using the commercial software Ansys Fluent
19.1. A constant input power of 20 kW was fixed,
while the cooling flow rate was set to reach a fur-
nace outlet temperature of T out = 1000 ◦C. Further-
more, the four sides of the furnace were closed with
insulated plates. Therefore, a 45 ◦ degrees angular
sector of the 3D geometry of the furnace was con-
sidered, as a result of the symmetry of the prob-
lem. The computational grid was first created with
tetrahedrons and then converted into polyhedrons.
A grid-independency study based on temperature
profiles along the longitudinal direction was also
performed and more details can be found in [9] . The
selected grid consists of about 216k cells. 

The standard k − ε turbulence model was used
in combination with the PaSR model [9,10] for
turbulence-chemistry interactions. Following [9] , a
C mix of 0.5 was set for the determination of an
appropriate mixing scale in the PaSR approach.
A sensitivity study was carried out to select a ki-
netic scheme, comparing the KEE (17 species and
58 reactions) and GRI-2.11 (31 species and 175
reactions) mechanisms. The detailed comparison
is presented in the Supplementary material. Being
the difference between the two schemes below 3%,
KEE was selected for its lower computational cost.
The discrete ordinate (DO) radiation model was
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
used, in combination with the weighted-sum-of- 
gray-gases (WSGG) model, using the coefficients 
proposed by Smith et al. [11] . The NO modeling 
was handled by the post-processing tool of ANSYS 

Fluent, which assumes that NO species have neg- 
ligible effects on the overall temperature and ma- 
jor species concentration fields. The tool considers 
Thermal, Prompt and N 2 O pathways, but not the 
NNH route proposed by Konnov et al. [12] , which 

was implemented by means of a bespoke User De- 
fined Function (UDF). The latter appears to be 
dominant in presence of hydrogen. 

Three input parameters were considered to gen- 
erate the simulation samples: fuel composition 

(mixture of methane/hydrogen), equivalence ratio 

and air injection geometry. A design of experiments 
(DoE) was established using latin hypercube sam- 
pling, varying the input parameters in the range 0–
100 % (H 2 mole fraction), 0.7–1 (equivalence ratio 

φ) and 16–20–25 mm (air injector size). A total of 
45 simulations were carried out. The variables of 
interest selected for the generation of the furnace 
ROM were the temperature, major species (CH 4 , 
H 2 , O 2 , H 2 O, OH), minor species (CO and OH), 
and pollutants (NO). 

Before generating the digital twin based on the 
CFD simulations, it is key to ensure that the nu- 
merical simulations are a good representation of 
reality. The computational model used in this work 

was already validated for a number of systems, in- 
cluding the Adelaide Jet in Hot Co-flow [13] , fed 

with an equimolar methane-hydrogen mixture, and 

the same furnace investigated here, fed with natu- 
ral gas [9] . Nevertheless, an additional validation 

was carried out, for some of the cases simulated in 

the present study, listed in Table 1 . The comparison 

is presented for Cases a and b in Fig. 1 , in terms 
of measured and computed temperature profiles at 
several axial positions ( z = 100, 200, 300, 400, 500, 
600 mm). The application of a suction pyrometer 
[9] implies an averaging effect, typical of this mea- 
surement technique. For this reason, the CFD re- 
sults were averaged in a volume defined by a sphere 
with a radius of 10 mm (equal to the probe di- 
ameter) to allow a fair comparison. CFD predic- 
tions show excellent agreement with experimental 
data, with an averaged error below 6%. Similar re- 
sults were obtained for case c and they are shown 

in the Supplementary material, underlying the fact 
that the numerical model is flexible enough to han- 
dle a wide range of hydrogen content in the fuel. 
Pollutant emissions (NO) on dry-basis were also 
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Fig. 1. Validation of the CFD model for Cases a and b against measured temperature profiles at several axial positions, (a) 
z = 100 mm, (b) z = 200 mm, (c) z = 300 mm, (d) z = 400 mm, (e) z = 500 mm and (f) z = 600 mm. Averaged experimental 
uncertainty of 10 K. 

Table 2 
Experimental vs CFD NO emissions on dry basis. Exper- 
imental uncertainty of 5 ppm. 

Case Exp [ppm] CFD [ppm] 

a 13 11 
b 2 1 
c 1 0.5 

Fig. 2. Reduced-order model generation: identification 
of invariant and system-dependent information. 
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enchmarked against experimental data and results
re listed in Table 2 . The post-processing approach
ppears a fair compromise between accuracy and
omplexity. 

. Reduced order model development 

The furnace ROM was developed based on
he methodology shown in Fig. 2 . The approach,
ntroduced in [5] , allows to distinguish between
nvariant information, the POD modes, and
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
system-dependent ones, the POD coefficients. The
POD modes are kept constant, as they represent
the intrinsic system physics. The POD coefficients,
on the other hand, are used to represent the system
variability due to changes in the boundary condi-
tions. This relationship is modelled by means of 
non-linear regression approaches, Kriging in the
present case. The accuracy of the reduced-order
model is then dependent on the degree of reduction
imposed during the POD decomposition as well
as on the training data used to identify the POD
modes and coefficients. These aspects are critically
discussed in the next sections for the present study.
The maximum number of POD modes that could
be extracted from the data-set was m − 1 , where m
is the total number of available simulations. In the
present study, the data-set related to one particular
field (e.g. temperature) consisted of a matrix of size
( m × l ), with m = 45 and l = 216 , 360 , thus a total
of 44 POD modes could be identified and used
to encode each simulation (a vector of 216,360
real numbers) into a set of 44 coefficients, for
which a Kriging response surface was found. The
ROM developed in the present work requires the
training of a reduced set of scalars (from 216,360
to 44) from the POD decomposition, for which the
supervised Kriging method is used. Once built, the
evaluation of the ROM is almost instantaneous
and can be used in real time, while each of the 45
numerical simulations required 1440 CPU hours
on 20 cores. 

4.1. Reconstruction of test data 

The set of training data to be used for the gen-
eration of the reduced-order model out of the 45
available CFD simulations was determined using
the sampling strategy described in [5] . This method
allows to associate an importance index to each
available simulation, based on the influence they
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Fig. 3. (a) Leave-one-out reconstruction errors, visualized in the input parameter space. The reported figures are the aver- 
age normalized root mean squared errors (NRMSE) across all variables, for the reconstruction of one particular left-out 
simulation. The sizes of the circles are proportional to the error. Different colours are used for the 3 different values of the 
air injector size. (b) Average NRMSE for the reconstruction of an increasing number of left-out simulations. Vertical bars 
represent the standard deviation of the error associated to different combinations of k left out simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have on the reduced POD basis. To assess the im-
portance of the training data size on the POD basis
and understand if enough data had been collected
for ROM development, a leave- k -out cross valida-
tion analysis was performed, where k was the num-
ber of simulations left out from the overall avail-
able training data set. Each time, k simulations were
left out and the error associated to the reconstruc-
tion of left-out simulations from the POD basis was
evaluated. 

Figure 3 (a) shows the average normalized root
mean squared errors (NRMSE) across all the avail-
able thermo-chemical variables, for the reconstruc-
tion of one particular left-out simulation. This cor-
responds to a leave-one-out (LOO) analysis. In this
case, the total number of possible design of exper-
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
iments (DoE) was equal to the number of avail- 
able simulations, making it possible to visualise the 
NMRSE in the design space. Figure 3 (a) allows to 

identify the design points impacting most the POD 

reconstruction error. It can be observed that very 
few design points had a considerable impact on the 
quality of the POD reconstruction. 

When k > 1, the total number of possible DoE 

is given by: m ! / [(m − k)! k!] , where m is the to- 
tal number of available simulations and k is the 
number of simulations to leave out each time. In 

the present case, m = 45 while k ranges between 1 
and 5, thus leading to a very large number of com- 
binations (exceeding 1 million), for k = 5 . There- 
fore, only a random subset of all the possible 
combinations was considered. For a given value of 
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Fig. 4. (a) Leave-one-out prediction errors, visualized in the input parameter space. The reported figures are the average 
normalized root mean squared errors (NRMSE) across all variables, for the prediction of one particular left-out simulation. 
The sizes of the circles are proportional to the error. Different colours are used for the 3 different values of the air injector 
size. (b) Average NRMSE for the prediction of an increasing number of left-out simulations. Vertical bars represent the 
standard deviation of the error associated to different combinations of k left out simulations. 
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 , the leave- k -out errors were estimated from ran-
om subsets of different sizes. Based on a sensitiv-

ty study, the size of the subset was chosen to be
50, as the leave- k -out errors were converging for
his value. The analysis was carried out for an in-
reasing value of k , as reported in Fig. 3 (b), where
he average NRMSE and its standard deviation for
he reconstruction of the test data are reported.
wo observations can be made. First, the average
econstruction error increases when more simula-
ions are left out of the training data, as expected,
nd converges at a value of roughly 1%, indicat-
ng the ability of the POD basis to reconstruct the
est data. Second, the standard deviation of the
econstruction error decreases when k increased,
ndicating that for high values of k the ROM is

ore sensitive to the size of the training data than
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
to the location of the training simulations in the in-
put parameter space. 

4.2. Prediction of new data 

The leave- k -errors for the reconstruction of 
the left-out data can be used to identify the most
relevant simulations for the definition of a reduced
basis, as shown in the previous section. However,
in the context of predictive ROMs, it is more
robust to base the leave- k -out approach on the
prediction of the left-out data in order to assess
how the developed ROM generalizes to new data
[14] . Thus, this section presents the leave- k -out
errors relative to the prediction of the left-out data
by building a ROM from the included (not left out)
simulations. Figure 4 (a) shows the NRMSE
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Fig. 5. Leave- k -out relative errors for the prediction of scalar quantities such as wall temperature, OH decay length, value 
and location of the Y OH 

peak and NO emissions. Vertical bars represent standard deviations of the error associated to 
different combinations of k left out simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

associated to the prediction of each particular
simulation (spatial fields of temperature and main
chemical species), when that particular simulation
was left out. Although relatively high prediction
errors were observed for simulations that had a low
influence on the POD basis, some of the highest
LOO errors were observed for the prediction of 
the simulations that had the highest influences on
the POD basis as well. Thus, the evaluation of 
these influences can be taken into consideration
as a fast preliminary method to assess the quality
of the training data and detect the regions of the
input space were more observations are needed.
Figure 4 (b) shows the average NRMSE for the
prediction of an increasing number of left-out
simulations, similarly to what was done in Fig. 3 .
As the LOO prediction errors of Fig. 4 (a) indicated
the most influential simulations that should always
be included in the training set, the leave- k -out
errors of Fig. 4 (b) were estimated taking this
into account. Thus, only the simulations whose
influence was < 15% w.r.t. the most important sim-
ulation were taken into consideration as possible
test data. Predictably, the prediction errors were
greater for higher values of left-out simulations, k .
Interestingly, as observed for the reconstruction er-
rors, the standard deviation of the mean prediction
NRMSE decreased when k was increased. In the
context of stationary systems, it is of major interest
to look at quantities that can immediately be com-
pared to sensory data rather than at the full spatial
fields, and to predict quantities such as OH-decay
and outlet composition. Therefore, leave- k -out
errors for the prediction of scalar and integral
quantities such as wall temperature, OH decay
length and exhaust gas composition are reported
in Fig. 5 . The OH decay length was estimated as
the distance from the inlet (on a vertical axis) at
Please cite this article as: G. Aversano, M. Ferrarotti and A. Pa
flameless conditions: Reduced-order model development from C
tute, https://doi.org/10.1016/j.proci.2020.06.045 
which the OH mass fraction decreased to less than 

5% of its maximum value. As such, it can be con- 
sidered representative of the flame length. The wall 
temperature was measured at the following axial 
coordinates z (in mm): 100, 200, 300, 400, 500, 
600. Figure 5 shows that the prediction error for 
the wall temperatures, OH decay length and OH 

peak location slightly increases when increasing 
k from k = 1 to k = 5 . Neverthless, the average 
NRMSE never exceeds 2%, which is remarkable. 
Higher NRMSE were obtained for the prediciton 

of the OH peak value, around 10%, but this can 

be considered acceptable considering the lower 
concentrations and more localised distribution of 
OH compared to other scalars. Similarly to Fig. 4 , 
the standard deviations in Fig. 5 decrease for 
higher values of k . Low standard deviations for the 
prediction errors are a preferable characteristic of 
a ROM, to guarantee a lower upper bound for the 
prediction error. The fact that the developed digital 
twin can provide access to quantities difficult to 

measure with physical sensors is a very interesting 
feature of the approach and opens a number of 
opportunities for the soft-sensing [15] and control 
of combustion technologies using models, in this 
case ROMs. 

5. ROM developed from the training data-set 
determined by leave-k-out analysis 

A ROM was developed based on the simulations 
determined by the leave- k -out analysis of the pre- 
vious Section. The errors of Fig. 5 were consid- 
ered relatively low even for k = 4 , suggesting that 
the use of a training set of size m − 4 , i.e., 41, 
could lead to satisfactory performances as well, es- 
pecially for the prediction of the scalar and integral 
rente, Digital twin of a combustion furnace operating in 
FD simulations, Proceedings of the Combustion Insti- 
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Fig. 6. NRMSE for the prediction of the test data by a 
ROM based on POD and Kriging. 
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Fig. 7. ( left ) True temperature field from CFD simulation 
for air injector length of 16 mm, H 2 ratio of 0.60 and 
equivalence ratio equal to 0.93. ( right ) Predicted temper- 
ature field for the same operating conditions. 

Fig. 8. ( left ) True OH field from CFD simulation for air 
injector length of 25 mm, H 2 ratio of 0.65 and equivalence 
ratio equal to 0.91. ( right ) Predicted OH field for the same 
operating conditions. 

Table 3 
Digital twin’s prediction errors for different scalar quan- 
tities of the furnace such as wall temperature, OH decay 
length, position of the peak of Y OH 

, value of the peak 
of Y OH 

, furnace outlet mass fractions of H 2 O, CO 2 , CO 

and NO. 

(Error on) Sim. 1 Sim. 2 Sim. 3 Sim. 4 

T wall 0% 3% 1% 0% 

OH DECAY LENGTH 9% 0% 1% 0% 

POS. OF Y OH 

PEAK 2% 0% 0% 0% 

VALUE OF Y OH 

PEAK 9% 5% 7% 1% 

Y H 2 O 

OUTLET 1% 3% 4% 1% 

Y CO 2 OUTLET 5% 1% 5% 1% 

Y CO 

OUTLET 3% 0% 0% 1% 

Y NO 

OUTLET 5% 3% 1% 1% 
uantities. Thus, a value of k = 4 was chosen
nd all simulations except the four-dimensional set
haracterised by the minimum leave- k -out error
simulations 1, 22, 28 and 39 shown in the Supple-
entary material) were employed as training data-

et to find both the reduced POD basis, and train
 Kriging model for the prediction of the POD
cores. The left-out simulations were used as test
ata, to assess the ROM’s predictive capabilities. 

Figure 6 reports the overall NRMSE for all the
ariables for the prediction of the test data. The
elds of temperature and the main chemical species
ass fractions and pollutants were predicted with

n error below 10%, whereas higher prediction er-
ors were obtained for CO and OH. This was ex-
ected, considering that CO and OH display a
uch more localised distribution with respect to
ther scalar, thus representing a more challenging
arget for the ROM. 

Figures 7 and 8 compare the true temperature
nd OH field, respectively, to the ROM predictions,
or different unexplored operating conditions. It
an be observed how the ROM is able to accurately
apture their distribution within the furnace, pro-
iding a solution which closely matches the CFD
ne, with no evident difference. Table 3 reports the
rrors for the prediction of different scalar quanti-
ies such as OH decay length, position and value of 
he OH peak and exhaust gas composition, for the
our left-out simulations. Errors on the wall tem-
eratures, OH decay length and OH mass fraction
eak location are remarkably low, below 5% for all
ases, w.r.t. the true values for the left-out simula-
ions. The prediction of the OH mass fraction peak
ocation values shows higher prediction errors; nev-
rtheless the error never exceeds 10%, w.r.t. the true
alues. 
Please cite this article as: G. Aversano, M. Ferrarotti and A. Parente, Digital twin of a combustion furnace operating in 
flameless conditions: Reduced-order model development from CFD simulations, Proceedings of the Combustion Insti- 
tute, https://doi.org/10.1016/j.proci.2020.06.045 
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6. Conclusions 

In the present work, the first-of-its-kind dig-
ital twin for a furnace operating in flameless
conditions was developed and validated. A
reduced-order model (ROM) based on the com-
bination of Proper Orthogonal Decomposition
(POD) and Kriging was developed for the pre-
diction of three-dimensional spatial fields of 
temperature and chemical species (major, minor
and pollutants), as a function of three input
parameters, the fuel composition (a mixture of 
methane and hydrogen from pure methane to pure
hydrogen), the equivalence ratio and the air injector
diameter. Fourty-five three-dimension CFD simu-
lations were carried out to generate samples for the
ROM. Numerical simulations were also validated
against available experimental data on the furnace,
for different fuel mixture compositions. During
the construction of the ROM, POD was used for
data compression, thus to represent the original
data with a reduced number of features, the POD
scores. Kriging was used to find a response surface
for these scores at unexplored operating condi-
tions. The influence of each simulation on the
reduced basis found by POD was estimated, so to
identify the most important simulations to retain
as training data for the ROM. The influence of 
the number of training simulations used for the
development of the ROM was also assessed. A
leave- k -out analysis was carried out to determine
how many and which simulations were needed for
the training of the ROM, and estimate how the
developed ROM would generalize to new data.
Results showed that the developed ROM could pre-
dict the fields of temperature and CO 2 , O 2 , H 2 O,
CH 4 , NO mass fractions, at unexplored operating
conditions, reliably with an overall prediction
error lower than 10%. Higher errors ( < 20%) were
observed for the prediction of minor species, e.g.
CO, and radicals, e.g. OH radicals. In addition,
the prediction of scalar quantities at specific
locations was characterised by even lower recon-
struction errors, below 5%. The latter included
wall temperatures, OH decay length, OH peak
value and location, as well as exhaust gas compo-
sition and temperature, proving the potential of 
the method for soft sensing and real-time predic-
tions of system change when changing operating
conditions. 
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