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Chapter 1

Introduction to hard real-time
systems

1.1 Introduction

This thesis studies software applications running on computing platforms. The combi-
nation of the two forms a system. Among all the different kinds of systems, this thesis
is focused on embedded systems.

Definition 1.1 (Embedded system). An embedded system is a device that integrates
both a computing platformand software but that is not a computer itself. In otherwords,
the prime function of the device is not to be a computer. It may be communication
device, (smart-)glasses, and many others.

Examples include phones, computer system of planes or cars. Most embedded systems
will require their computing platform to perform operations (from the software appli-
cations) linked to their environment. Because of that, the system may need to wait for
the operation results before performing a specific action. If this action is the activation
of the breaking system on a car, it cannot be completed too late.

Definition 1.2 (Real-time applications). A real-time application is an application
which has time-based constraints.

The notion of time-based constraints is central in real-time applications. If an action
is performed according to its time-based constraints, it is on time. It is late otherwise.
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This latenessmay also be referred to as tardiness. An application is a set of tasks defined
in Section 2.2. A platform is a set of hardwares, defined in Section 2.3. Before defining
rigorously what an application and a platform is, we will start by explaining what a
real-time operating system is. Using this overview, we will define thoroughly what an
application and what a platform is. With those two notions defined, we will define
what a scheduler is. All the notations can be found in Table 11.2.

1.2 Real-time operating system

In this section, we will give an overview of what a system is. As said before, a system
is the combination of an application layer and a hardware layer, the latter representing
the platform. TheReal-timeOperating System (denoted asRTOS) is in charge of binding
both layers as shown in Figure 1.1 After explaining the major responsibilities of the
RTOS, we will explain the gain of using one.

An RTOS is an operating system (OS). An OS is responsible for the hardware abstrac-
tion. This hardware abstraction hides the complexity and details to the computer
programmer, together with the compiler and libraries. It makes possible the use of
high-level languages. This makes the development easier, but also portable. As the
produced software is no longer hardware specific, it can be used from one hardware to
another. Of course, this leads to an isolation of the different layers from one to each
other. Isolation provides itself several benefits. Bugs or issues may be found more
easily which eases the development but also the update of both part.

The OS is also a resource manager. It manages the different Input/Output ports in
the system, such as the keyboard, screen or network devices. It also handles the
processor(s). A processor needs to be given specific computation tasks. To do so,
the OS chooses the processor upon which a task will be executed, at a given time.
Choosing the executed task is a role dedicated to the scheduler. Section 2.4 will discuss
this responsibility in details.

Another major responsibility of the OS is to handle the memory. As it will be shown in
Section 2.6, the memory is composed in most modern systems of several components
itself. Each component may have a different access speed and capacity. Generally
speaking, for a similar quality, the biggest capacity a memory has, the slowest it is. We
speak here of memory hierarchy. Each different memory type have different usages. A
system may be pre-loaded with some data to process during its lifespan. It may also
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record some data through the sensors, raw or processed, and store it for later processing
or transmit it through its network communication device. Those first usages are quite
obvious. However, one hidden use of thememory is theworkingmemory. Thismemory
is used by tasks while processing an object such as an image. To be usable in practice,
it must be stored in very fast access memory. The use of the different memories must
be optimised to take advantage of this different specifications of the components.

The specificities of an RTOS compared to other OS is that RTOS should be predictable.
The computation of the tasks must both be valid and on time. To guarantee this, the
scheduler will adopt various strategies that will be discussed in the next chapter.

Application layer

RTOS

Hardware layer

Figure 1.1: Layer hierarchy of an embedded system

1.3 Processing elements

A central element of the hardware layer is the processing elements, often referred to as
processors. Themeaning of the term processor depends on the context. It is used to refer
to a single chip with only one processing element, such as a Central Processing Unit
(CPU). Such a processor can only execute one instruction at a time1. However, the cost-
performance ratio of such processors could not be increased indefinitely. Indeed, one
way to increase the performance of those processors was to increase the clock frequency.
This lead to a higher energy consumption and a lot of heat output. Nowadays, there
may be several processing elements (or cores/CPUs) on a chip, permitting several

1 Here, we omit the use of pipelining and superscalar design. A basic processor handles each
instruction in several steps (or stages): fetching, decoding , executing, writing, etc. A given instruction is
only at one step at a time. With pipelining, available steps are used in parallel for other instructions. This
leads to a quasi parallel execution of instructions. Regarding superscalar processor, they can execute
several identical instructions at a given time, by using several execution units. In addition, a superscalar
processor can use pipelining to execute more instructions in parallel.

7



CHAPTER 1. INTRODUCTION TO HARD REAL-TIME SYSTEMS

Figure 1.2: A dual-core, dual-processor system

instructions to occur at a time on a single processor. Modern architectures may have
several multi-core processors, such as the Intel Core® Duo processor whose architecture
is abstracted in Figure 1.22. The Intel Core® Duo processor embeds two processors,
each one having two CPUs. A system bus is used for the communication between the
processors and the rest of the hardware. L1-caches, L2-caches and System memory
are memory units, and will be presented in Section 2.6.

General purpose processors (GPPs) are single- or multi-core processing units. They
offer a varied instruction set and are thus very flexible. As suggested by their name,
they are not specialised in any specific tasks. Some specific processing unit exists,
such as Graphics processing unit (GPUs). GPUs are specialised in the manipulation of
images and may be used for other tasks, such as matrix computations for 3D imaging
applications. Therefore, they offer a high level of parallelism to operate on larger
memory buffers. Being specialised in those tasks makes GPUs faster and more energy-
efficient than CPUs in those tasks. Application-specific integrated circuits (ASICs) are
other processors that are designed for specific tasks. Unlike GPUs, they are custom-
made which makes them really expensive and offer no flexibility once built. There
exists a trade-off between the low cost but low performances of GPPs and the high
performance but high cost of ASICs: application-specific instruction set processors
(ASIPs). ASIPs are programmable with the use of custom instructions in order to be
very specialised. Thanks to those custom instructions, the same ASIP model may be

2 from https://software.intel.com/content/www/us/en/develop/articles/software-techniques-for-
shared-cache-multi-core-systems.html?wapkw=smart+cache
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used for very different applications such as cryptography, digital signal processing,
mobile communication and many more. This makes ASIPs cheaper than ASICs to
design for specific applications, while offering better performance than GPPs.

1.3.1 Field Programmable Gate Array

Field Programmable Gate Array (FPGA) is a circuit, that can perform operations
alongside a processor. It can been seen as a co-CPU. An FPGA is mainly composed of
Configurable Logic Blocks, which implement logic functions, and of Programmable
Interconnects and Programmable I/O Blocks responsible respectively for internal
communication and external communication.

The Configurable Logic Blocks are what makes FPGAs so useful. Each one can be
configured at design-time and run-time and be used to perform complex tasks in a
very efficient way. Design-time reconfiguration allows easy prototyping. Run-time
reconfiguration permits versatility: the FPGAmay be reconfigured based on the context
of the application. Moreover, the Configurable Logic Blocks may be configured into
one co-processor, as a whole, or into several co-processors. This way, the FPGA can
execute several different tasks in parallel.

FPGAs can be found in new embedded processing platforms. For example, the Xilinx
Zynq UltraScale+™ system on chip [1] is a single die integrating several ARM process-
ing cores from different architectures together with other heterogeneous components
(64 bit quad-core Cortex®A53 cores, dual-core Cortex®R5 real-time cores, a Mali™-400
MP2 GPU and an FPGA programmable logic). This processor’s block diagram is
illustrated by Figure 1.3.

The last generation of FPGA uses Dynamic Partial Reconfiguration (DPR) which
permits to reconfigure only a part of the FPGA while the others are not interrupted.
A new technology is rising: 3D face-to-face die stacking. For example, Foveros 3,
designed by Intel, is built using 3D face-to-face die stacking. With this technology, the
memory containing the possible configurations for the logic blocks are placed above
the logic blocks. This way, the whole platform can be reconfigured simultaneously.
And because the distance between the memory and the logic blocks is very small, the
reconfiguration takes place very quickly.

3 from https://newsroom.intel.com/news/up-close-lakefield-intels-chip-award-winning-foveros-3d-
tech
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Figure 1.3: The Zynq UltraScale+™ EG processor block diagram. EG devices feature a
quad-core ARM® Cortex-A53 platform running up to 1.5GHz, combined with dual-core
Cortex-R5 real-time processors, a Mali-400 MP2 graphics processing unit, and a 16nm
FinFET+ programmable logic [1].

1.4 Hardware considerations

The need for hardware variety comes from several perspectives. First of all, the various
hardwares have different purposes. For example, FPGAs were dedicated for a long
time to prototyping,whereas CPUs were designed as an end-product. The GPUs were
also designed as an end-product, but for other applications as seen above.

Moore’s law is a prediction made in 1965 by Gordon Moore stating that the number of
transistors in integrated circuits would double every two years with no price increase.
This prediction foresees a constant growth in performance of processors. However, in
the past twenty years, the efficiency of single core processor has been limited due to
physical constraints. The clock rate could not increase anymore in a cost-effective way,
as both the power consumption (due to leakage) and heat output increase drastically
with high frequencies. Also, the size of the transistors is a very important limiting factor.
It has reduced through the years until reaching its physical limits at an atomic size, for
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a cost-effective mass production. To overcome those limitations, manufacturers design
multi-core processors since year 2000. With the rise of embedded systems and new
computing paradigms, the market now requires versatile hardware systems. Those
systems are massively multi-core, and permit parallel computing. Yet, the performance
improvement granted by parallel computing is limited as well, according to Amdhal’s
law. Amdhal’s law states that the speed-up factor 4 obtained by parallelisation is limited
by the following formula:

1
1 − 𝑝

where 𝑝 is the proportion of the program that cannot be executed in parallel. For
example, if a 10-hour program have 9 hours that can be ran in parallel, Amdhal’s
law states that the maximal speed-up factor is 1

1−0.9
= 10. Therefore, parallelisation

is not a solution to an infinite performance increase of the systems. Specialisation
and versatility of the systems are thus a way to improve the performance. FPGA
reconfiguration can be used so that the tasks are executed on specialised hardware,
without having a specialised processor per task. With 3D technologies becoming more
and more important in the future, leading to quicker reconfigurations, we believe that
is a suitable options for the future of computing.

4The speedup factor is a number that measures the relative performance of two solutions processing
the exact same problem, here one with parallelisation and one without.
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Chapter 2

Common notions and models

This chapter defines the concepts used through this thesis. All the notations introduced
are referenced in Table 11.2.

2.1 Time model
There are two major time models. Time may be viewed as discrete or continuous. The
difference is explained below.

Definition 2.1 (Discrete time). Assuming discrete timemeans that the time is repre-
sented as a natural number. The smallest atomic time interval is arbitrarily defined.
It may be measured in millisecond or more likely in processor cycles for example. If
this representation of time may seem to be unrealistic from the real-life application,
it actually fits the behaviour of processors. One major component of any computing
machine is its clock which synchronises its components.

Definition 2.2 (Continuous time). Assuming continuous time means that the time
is represented as a real number. This may be seen accurate to the real world time.
However, it is hard to directly use this model in practice as a processor cannot be
interrupted in between cycles. This representation of time fits theoretical results which
may be then adapted to discrete time models.

2.2 Application model
The application is dedicated to fulfil the functionalities of the embedded system. Each
functionality may have different characteristics, which will be explained later in this
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section. In the application model, a functionality may be composed of one or several
task(s). A task contains all the required information on how to execute the portion or
the whole functionality it represents. To do so, it will release jobs at run-time that will
perform the basic operations, and therefore handle the functionalities of the system.
All those tasks form the task set of the application.

After defining the hierarchy of an application, we will define the different characteris-
tics of the tasks and jobs.

Application hierarchy

Definition 2.3 (Job). A system executes jobs on its platform. A job 𝐽𝑖 is defined by
three components: an arrival time 𝑎𝑖, aWCET (Worst-Case Execution Time) 𝑐𝑖 and a
deadline 𝑑𝑖. To complete a job, a set of specific operations must be done. The absolute
deadline 𝑑𝑖 represents the time by which the job should ideally be completed. In this
work, we consider that a job cannot be executed on several processors at once.

Bounding the WCET of a job is not trivial. It requires a complete analysis of both the
hardware and the software. Some existing literature covers this aspect, which is out of
scope of this work. We thus assume the WCET as known in this thesis.

Definition 2.4 (Recurring task). A recurring task is defined by two components (𝐶𝑖, 𝐷𝑖).
Its WCET is represented by 𝐶𝑖. Its relative deadline is 𝐷𝑖. A recurring task 𝜏𝑖 releases
a potential infinite sequence of jobs. When a recurring task releases a job at 𝑎𝑖, its
absolute deadline is 𝑑𝑖 ≐ 𝑎𝑖 + 𝐷𝑖 and its WCET is 𝑐𝑖 ≐ 𝐶𝑖.

In this work, a job always belongs to a task.

Definition 2.5 (Task set). The application will now be referred to as the task set. The
task set Γ ≐ {𝜏1, 𝜏2, … , 𝜏𝑛} is composed of 𝑛 recurring tasks. The task set contains all
the different functionalities of the software, each one being represented as a task with
its own characteristics and constraints.

For example, the software of a plane has at least two functionalities: it must know its
position at any instant and controls the pressure inside the plane. In this example, we
abstract any other functionalities. It may be modelled by two tasks: GPS, denoted as
𝜏𝑔 and pressure control denoted as 𝜏𝑝. The plane software task set is thus Γ = {𝜏𝑔, 𝜏𝑝}.
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Computing the position is very quick so 𝐶𝑔 = 1. It must be done quite fast: 𝐷𝑔 = 5.
Because it is not required to compute the position when the plane is on the ground,
the first job of 𝜏𝑔 is released at 10, 0 being the start of the system, before the take-off of
the plane. The first job arrival time of 𝐽𝑔 is thus 𝑎𝑔 = 10. Therefore, 𝑑𝑔 = 15. Another
job 𝐽𝑔 is released at 20, and its job arrival time is 𝑎𝑔 = 20, and its absolute deadline is
𝑑𝑔 = 25.

Real-time criticality

In the following, the term application refers to task set. A task set may contain different
kind of tasks, regarding the time constraints and the criticality of each task. The
criticality refers to the level of risks encountered by the system in case of a deadline
miss.

Definition 2.6 (Non real-time tasks). A non real-time task is a task that has no deadline.
It may be handled with best effort: when and where possible.

Definition 2.7 (Soft real-time tasks). A soft real-time task is a task that is not critical.
It may miss a deadline without leading to serious issue for the embedded system.
Moreover, the output of the task may stay valid even after deadline misses. In case of a
job deadline miss, the job may be aborted or completed depending on the task of this
job.

Definition 2.8 (Firm real-time tasks). A firm real-time task is a task that is not critical.
It is close to a soft real-time task as few failures would not affect the functionality but
only the quality of the service. The amount of deadline misses for an acceptable quality
of service depends on the application. An acceptable quality of service must here be
guaranteed.

Such tasks can be found in planes, for example the on-board entertaining systems. The
task responsible for video streaming in planes is a firm real-time task. This task is a
real-time task, as it must stream the frame in the correct order, otherwise the displayed
video would be false. If too much frames are switched: the service becomes non-usable.
However, failure of the streaming of all the frames in the right order would not produce
any issue regarding the plane safety.

Definition 2.9 (Hard real-time). A hard real-time task is a critical task. If it misses a
deadline, the security of its embedded system may be compromised. As opposed to

15



CHAPTER 2. COMMON NOTIONS ANDMODELS

soft real-time deadline misses, we never consider hard real-time deadline misses to be
acceptable.

In cars, such a task may be the braking system, which would be probably composed
of more than one task. If the brakes are activated later than expected, it may cause a
serious issue to the car.

Deadline model

The relation between the task and the deadline is used in the task classification. We
denote three kinds of deadlines.

Definition 2.10 (Constrained deadline). A deadline is said to be constrained if and
only if ∀𝑖, 𝐷𝑖 ≤ 𝑇𝑖. Informally, an constrained deadline job must be completed strictly
before the next job arrival of this task.

Definition 2.11 (Implicit deadline). A deadline is said to be implicit if and only if
∀𝑖, 𝑇𝑖 = 𝐷𝑖. Informally, an implicit deadline job must be completed no later than the
next job arrival of this task.

Definition 2.12 (Arbitrary deadline). If there are no relation between 𝑇𝑖 and 𝐷𝑖 for a
given task 𝜏𝑖, a deadline is said to be arbitrary.

Periodicity model

Another taxonomy is the release rate of a task. Based on this criteria, we distinguish
between two kind of tasks. We first introduce the notion of inter-arrival time.

Definition 2.13 (Inter-arrival time). When considering two successive jobs 𝐽𝑖 and 𝐽𝑖′
released by the same recurring task with 𝑎𝑖 < 𝑎𝑖′, the inter-arrival time between them
is the delay between the arrival time of 𝐽𝑖 and the one of 𝐽𝑖′: 𝑎𝑖′ − 𝑎𝑖.

Definition 2.14 (Sporadic task). A sporadic task is a recurring task defined by three
components (𝐶𝑖, 𝐷𝑖, 𝑇𝑖). 𝐶𝑖 and𝐷𝑖 are usedwith respect toDefinition 2.4. The parameter
𝑇𝑖 is the minimum inter-arrival time. Formally, for any two successive jobs 𝐽𝑖 and 𝐽𝑖′
released by 𝜏𝑖, with 𝑎𝑖 < 𝑎𝑖′, the inter-arrival time is equal to or greater than 𝑇𝑖:
𝑎𝑖′ − 𝑎𝑖 ≥ 𝑇𝑖.

Definition 2.15 (Periodic task). A periodic task is a recurring task defined by three
components (𝐶𝑖, 𝐷𝑖, 𝑇𝑖). 𝐶𝑖 and𝐷𝑖 are usedwith respect toDefinition 2.4. The parameter
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𝑇𝑖 is the period. Formally, for any two successive jobs released by 𝜏𝑖, the inter-arrival
time is always equal to𝑇𝑖. Its 𝑘th job 𝐽𝑖will thus be released at time 𝑎𝑖 = 𝑘×𝑇𝑖, assuming
that the first job was released at time 𝑡 = 0.

Run-time property

Aside all those classifications, a job may be active or inactive at run-time.

Definition 2.16 (Active job). Informally, a job is active if it may be executed. Formally,
a job 𝐽𝑖 is active at 𝑡 if both following conditions are met:

1. If 𝑎𝑖 ≤ 𝑡 < 𝑑𝑖;

2. The job is not completed yet.

Definition 2.17 ((In-)Active task). An active task 𝜏𝑖 is a task that may release new job
𝐽𝑖. It is said to be inactive otherwise. By default, all the tasks from a task set are active
at system start. A task may be deactivated and re-activated later.

Definition 2.18 (Rem-job). A rem-job is a job whose task has been deactivated before
completion. It must be completed, as a regular job would.

2.3 Hardware model
The platform is responsible for the execution of the application. It is based on the
hardware layer of the system. In this thesis, we will consider the hardware layer as
being only composed of one or several processors.

After giving a short definition of a processor, we will present different possible forms
of a platform.

2.3.1 Processor model

Definition 2.19 (Processor). A processor 𝜋𝑗 is a unit which may perform operations
to execute jobs, at a given processing rate, depending on its type.

The type of a processor depends on both its instruction set and its clock speed. If a
task may be executed by a given processor, its processing rate is strictly positive and
depends on the speed of the processor. The processing rate is null otherwise.
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2.3.2 Platform model

A platform contains several components such asmemory elements. In this work, we
will abstract most of the times the other platform components to focus only on the
processors. The platform is thus denoted as Π ≐ {𝜋1, 𝜋2, … , 𝜋𝑚}, and is composed of
𝑚 processors. Processor 𝜋𝑗 has a type 𝜋𝑘, with 𝑘 ∈ [1, … , 𝜙], where 𝜙 is the number of
different processor types on Π. This type will define the characteristics of the processor.
The vector Ψ of size 𝑚 contains the type of each processor. The 𝑗th element of Ψ𝑗
corresponds to the type of the processor 𝜋𝑗. For example, if Π ≐ {𝜋1, 𝜋2, 𝜋3}with𝑚 = 3
and Ψ ≐ {𝜋1, 𝜋2, 𝜋1} with 𝜙 = 2: we know that 𝜋1 and 𝜋3 share the same type 𝜋1, as
Ψ1 = Ψ3 = 𝜋1.

Definition 2.20 (Uniprocessor platform). A uniprocessor platform is a platform con-
taining a single processor, network devices and often many others components. Unipro-
cessor platformsmay execute one job at a time. However, there are still a lot of open
problems regarding such platforms.

Uniprocessor platforms are integrated nowadays in very conservative systems but also
in systems that do not require a lot of processing capabilities. More complex platforms
contain more than one processor. Please note that in the abstraction of this model, we
do not take into account processor pipelining nor superscalar processors (as presented
in Section 1.3) in the limitation of one job execution at a time.

Definition 2.21 (Multi-processor platform). Amulti-processor platform is a platform
containing𝑚 processors. As for uniprocessor platforms, such a platform also contains
other components asmemory elements, network devices and many others depending on
the system. In amulti-processor platform, there may be (at most) one job per processor
executed at anytime. In this thesis, a uniprocessor platform is considered as a particular
case of amulti-processor platform, where𝑚 = 1.

In our model, we do not consider parallelisation for tasks: a task may be executed only
on one processor at a time. In other words, we forbid intra-task parallelism. We will
distinguish between four different kinds of multi-processors platforms:

Definition 2.22 (Identical platform). On identical platforms, all the processors are
identical. Hence, processor types are abstracted and all processors execute the tasks at
the same processing rate of 1. To complete a job of task 𝜏𝑖 having WCET of 𝑐𝑖, it takes
𝑐𝑖 units of time on any processor.
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Definition 2.23 (Heterogeneous uniform platform). A heterogeneous uniformplatform
is a multi-processor platform. However, all the processors share the same instruction
set, and thus only the clock speed differs from one processor to another. Therefore,
in such a platform, the processing rate depends only on the processor type. Formally,
the processing rate of 𝜋𝑗 is denoted as 𝑅𝑗. To complete a job of task 𝜏𝑖 with a WCET
of 𝐶𝑖, it takes

𝐶𝑖
𝑅𝑗
units of time on the processor 𝜋𝑗. This processing rate is relative to a

processing rate of a fictional processor.

For example, in an heterogeneous uniform platform, a processor of processing rate of
2 executes any task at twice the rate of a processor of processing rate 1.

Definition 2.24 (Heterogeneous unrelated platform). A heterogeneous unrelated plat-
form is a multi-processor platform. Unlike heterogeneous uniform platform, the
processors may be completely different: having different instruction sets and/or differ-
ent clock speeds. Thus, the processing rate depends on both the executed task 𝜏𝑖 and
the processor 𝜋𝑗. Formally, the processing rate of task 𝜏𝑖 on 𝜋𝑗 is denoted as 𝑅𝑖,𝑗. On
the processor 𝜋𝑗, it takes

𝐶𝑖
𝑅𝑖,𝑗

units of time to complete a job of task 𝜏𝑖 with a WCET of

𝐶𝑖, This processing rate is relative to a processing rate of a fictional processor.

The following formalises the notion of heterogeneous consistent platforms. First to be
consistent the platform must have a relative order on the processors.

Definition 2.25 (Faster processor). A processor 𝜋𝑗 is faster than processor 𝜋ℓ (𝜋𝑗 ≥ 𝜋ℓ)
if

∀1 ≤ 𝑖 ≤ 𝑛, 𝑅𝑖,𝑗 ≥ 𝑅𝑖,ℓ

Now we introduce a tie-breaker to have the notion of the fastest processor:

Definition 2.26 (Fastest processor). 𝜋𝑗 is defined to be the fastest processor if 𝑗 is the
smallest index such that ∀1 ≤ ℓ ≤ 𝑚, 𝜋𝑗 ≥ 𝜋ℓ.

Definition 2.27 (Heterogeneous consistent platform). A heterogeneous consistent plat-
form is a particular case of unrelated platforms where the heterogeneity is consistent.
On an heterogeneous consistent platform, we have a total order on the processors. With-
out loss of generality (by reordering the processors) we can assume that 𝜋1 is the fastest
processor. By repeating the same definition on the remaining processors, we have
𝜋1 > 𝜋2 > ⋯ > 𝜋𝑚.
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Figure 2.1: Visual representation of task utilisation

We now define the notions of idle and processor utilisation.

Definition 2.28 (Idle). If a processor doesn’t perform operations, it is said to be in idle
state or simply idle.

Definition 2.29 (Processor utilisation). The processor utilisation of a task 𝜏𝑖 on a given
processor represents the portion of time it requires to be executed over its deadline to
be completed.

Formally, the utilisation of a task 𝜏𝑖 on a processor 𝜋𝑗 is 𝑈𝑖,𝑗 ≐
𝐶𝑖

𝑇𝑖×𝑅𝑖,𝑗
, where 𝑅𝑖,𝑗 is

the processing rate of 𝜏𝑖 on 𝜋𝑗. In the case of uniprocessor and identical platforms, we
consider 𝑅𝑖,𝑗 = 1, ∀𝑖, 𝑗. In the case of homogeneous platforms, we consider 𝑅𝑖,𝑗 =
𝑅𝑗, ∀𝑖. Thus, it may be simplified for uniprocessor or identical platforms as 𝑈𝑖 =

𝐶𝑖
𝑇𝑖
.

This notion is illustrated in Figure 2.1.
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In the following example, we illustrate the notion of utilisation on an heterogeneous
unrelated platform with 2 processors. The task set specifications are the following:

𝐶𝑖 𝑇𝑖 𝑅𝑖,1 𝑅𝑖,2
𝜏1 6 10 1 3
𝜏2 10 10 1 2

This task set contains two different tasks. The first task has a processing rate of 1
on processor 𝜋1 and of 3 on processor 𝜋2. The second task has a processing rate of 1
on processor 𝜋1 and of 2 on processor 𝜋2. Therefore, 𝑈1,1 =

𝐶1

𝑇1×𝑅1,1
= 6

10
. Similarly,

𝑈1,2 =
2
10
, 𝑈2,1 = 1, 𝑈2,2 =

5
10
. This is represented on Figure 2.1. It can clearly be seen

that processor 𝜋2 could execute up to 5 tasks with similar utilisation to 𝜏1, when 𝜋1
could execute no more than 1 task similar to 𝜏2.

2.3.3 Reconfigurable processors

Beyond heterogeneity, modern platforms include reconfigurable processors, such as
the ones presented in Section 1.3. Such reconfigurable processor of type 𝜋𝑘 is con-
figured at any time in a configuration 𝜃𝑐 ∈ Θ𝑘 from its set of configurations Θ𝑘. The
configuration of a processor defines several parameters like the instruction set of the
processor or its processing rate. The set of sets Θ ≐ {Θ1, Θ2, … , Θ𝜙} contains the set of
allowed configurations for each type. A configuration belongs to at most one set of
configurations: i.e. ∀𝑘, 𝑘′, 𝑘 ≠ 𝑘′ ⟹ Θ𝑘 ∩ Θ𝑘′ = ∅. There are 𝑜 different configura-
tions, with 𝑜 ≐ ∑𝜙

𝑘=1 |Θ𝑘|. Reconfiguring a processor is not instantaneous. It takes
𝛿𝑐 time-units (denoted as the reconfiguration delay) to reconfigure a processor of type
𝜋𝑘 to 𝜃𝑐 if 𝜃𝑐 ∈ Θ𝑘, otherwise it takes +∞. We consider here parallel reconfigurations:
the whole platform may be reconfigured simultaneously.

While our model aims at targeting platforms formed by reconfigurable processors,
those often contain one or several non-reconfigurable processors.

Definition 2.30 ((Non-)Reconfigurable). A processor 𝜋𝑗 of type 𝜋𝑘 may be reconfig-
urable or non-reconfigurable. It is said to be reconfigurable if and only if |Θ𝑘| > 1.

A reconfigurable processor may be turned on and off dynamically. This may be used
to manage power consumption. To handle this aspect, we now define the notion of
active processor.
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Definition 2.31 ((In-)Active reconfigurable processor). A processor 𝜋𝑗 is inactive at
time 𝑡1 if and only if it is configured in an idle-configuration. An idle-configuration is a
configuration in which a processor cannot execute any job, i.e. its processing rate is null
for any job. It is said active otherwise. By definition, a non-reconfigurable processor
has no idle-configuration, as it cannot be turned off. Thus, a non-reconfigurable is
always active.

We refine here the notion of idle processor for reconfigurable processor.

Definition 2.32 (Idle reconfigurable processor). A processor is idle if it is neither
executing tasks nor being reconfigured.

Definition 2.33 (Processing rate on reconfigurable processors). On reconfigurable
processors, the processing rate depends on both the task and the processor. Specifically,
the job processing rate 𝑅𝑖,𝑐 on the processor 𝜋𝑗 depends on both the task 𝜏𝑖 and the
current configuration 𝜃𝑐 of 𝜋𝑗. Formally, a processor executes 𝑡 × 𝑅𝑖,𝑐 computing units
when configured in 𝜃𝑐 and executing a job 𝐽𝑖 for 𝑡 time-units. This amount is null if
the task cannot be executed on this configuration.

2.3.4 Clustered platforms

A platform may be divided into several groups of processors. By default, there is only
one group containing all the processors. If there are more than one group, the platform
is said to be clustered. Inside each group, the processors are referred to as cores. The
groups of cores are then called clusters.

Formally, an unrelated multi-processor platform is modelled by a set of �̇� clusters
Π̇ ≐ {�̇�ℎ ∣ ℎ = 1,… , �̇�}. Each cluster �̇�ℎ is formed by �̇�ℎ cores: �̇�ℎ ≐ {𝜋ℎ1, … , 𝜋ℎ�̇�ℎ

}.

By construction,∑�̇�
ℎ=1 �̇�ℎ = 𝑚. Clusters are formed arbitrary: no constraint holds on

whether a core can or cannot belong to a specific cluster.

Figure 2.2 represents the same platform with two different clustering. For example, 𝜋8
is on a cluster with 𝜋9 in the first platform division (see (a)) but is then alone in the
second platform division (see (b)).

We now introduce the following concepts on clusters.

Definition 2.34 (Idle cluster). A cluster is said to be idle if and only if all its cores are
idle.
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𝜋1 𝜋2 𝜋3 𝜋4

𝜋5 𝜋6 𝜋7

𝜋8 𝜋9 𝜋10 𝜋11

(a) Plausible platform division

𝜋1 𝜋2 𝜋3 𝜋4

𝜋5 𝜋6 𝜋7

𝜋8 𝜋9 𝜋10 𝜋11

(b) Implausible platform division
Figure 2.2: Two possible divisions of the example platform (based on the Zynq Ultra-
Scale+™) into several clusters.
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Definition 2.35 (𝜋𝑘-cluster). A𝜋𝑘-cluster is composed of cores of type𝜋𝑘, configured
identically.

2.4 Scheduler

A system is composed of an application, a hardware and a middleware. Among
other tasks, the middleware handles the communication between the application
and the hardware. In this work, the middleware is the real-time operating system
(RTOS). Towork as expected, the task set representing the applicationmust be executed
on the hardware according to its specifications. One responsibility of the real-time
operating system is to choose a processor to execute a job at a chosen instant. As
every task in the task set has its own requirements, with possibly different affinities
on different processors, making the right choice is not trivial. The part of the RTOS
responsible of that choice is called the scheduler. It may be performed before the
system lifespan and/or during the system lifespan. This section presents the types of
scheduler considered in this thesis, and their characteristics.

Definition2.36 (Offline). Ascheduler is said to be offline if all the scheduling decisions
are made before the start of the system. At run-time, after the start of the system,
the scheduler simply applies the decisions made offline. The most common form of
offline schedule decisions is the production of a pattern that will be repeated over
time online. In the case of a repeated pattern schedule (or pattern scheduling), the
scheduler constructs a pattern offline of a specific size. In Figure 2.3, a pattern of size
1 is displayed. This pattern will be repeated every unit of time: formally, ∀𝑡 ∈ ℕ, at
𝑡 + 0.5, if 𝜏1 has an active job then it will be scheduled on processor 𝜋2 for 0.5 unit of
time.

One of the major advantages of an offline scheduler is its low run-time complexity.
Because it has no or very low computation to perform at run-time, it is very easy
to implement in the system and takes a very low computing capacity. Using a low
computing capacity makes the remaining computing capacity as large as possible for
the actual work: the execution of the application. Of course, its main drawback is that
it lacks of flexibility to any event occurring at run-time. For example, in Figure 2.3,
if only 𝜏1 is active then it is probably possible to schedule 𝜏1 on only one processor
instead of scheduling it on both processors 𝜋1 and 𝜋2.
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0 1

𝜋1 𝜏1

𝜋2 𝜏2 𝜏1

𝜋3 𝜏3

Figure 2.3: Example of a scheduling pattern

Definition 2.37 (Online). A scheduler is said to be online if some scheduling decisions
are made online. Those decisions could be to make up a priority order for the tasks,
jobs or any other decisions. In the first case, the schedule is called fixed task priority
scheduler. Each job is given a priority according to the priority of its tasks, when
released. This results in a priority order. In such a schedule, if both 𝜏1 and 𝜏2 have an
active job at time 𝑡, 𝐽1 is preferred over 𝐽2 at time 𝑡 if and only if 𝜏1 has a higher priority
than 𝜏2. This is denoted as 𝜏1 ≻ 𝜏2.

In a fixed job priority scheduler, the priority is given at job release. Thus, the jobs of
two tasks may not always be ordered in the same way. Formally, if 𝐽𝑖1, 𝐽𝑖′1 are jobs from
𝜏𝑖1 and 𝐽𝑖2, 𝐽𝑖′2 are jobs from 𝜏𝑖2, it is possible that 𝐽𝑖1 ≻ 𝐽𝑖2 when 𝐽𝑖′1 ≺ 𝐽𝑖′2.

With a dynamic scheduler, the priorities may change at any instant. Formally, if there
are two jobs 𝐽𝑖1, 𝐽𝑖2 in the system, and 𝐽𝑖1 ≻ 𝐽𝑖2 at instant 𝑡1, it is possible that 𝐽𝑖1 ≺ 𝐽𝑖2 at
instant 𝑡2, if 𝑡2 ≠ 𝑡1. A dynamic scheduler may thus adjust its behaviour to the state of
the system. However, they have a highest run-time complexity and tend to be more
complex to implement.

An important characteristic of the scheduler is defined next.
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0 1 2 3 4 5

𝜋1 𝐽1 𝐽2 𝐽1 𝐽2 𝐽1

𝜋2 𝐽3 idle time 𝐽3

𝜋3 idle time 𝐽3 idle time

Figure 2.4: Visual representation of job preemptions and migrations

Definition 2.38 (Work-conserving scheduler). A scheduler is work-conserving if and
only if a processor is idle when there are no job waiting to be executed.

Scheduling events

When a job is executed, it becomes completed after a certain amount of time. However,
it is not always mandatory to execute a job from start to finish with no interruption,
and the two following definitions illustrate common events on real-time scheduling.

Definition 2.39 (Job preemption). A job preemption occurs when an executing job is
stopped before completion, in the favour of another job being executed on the same
processor. It may be executed again later, on the same processor or another one. The
previous computation time is taken into account. Formally, if 𝐽𝑖 must be executed for
𝑐𝑖 and is preempted 𝑡1 < 𝑐𝑖 units of time after the start of its execution, it will need to
be executed for 𝑐𝑖 − 𝑡1 units of time to be completed.

As it will be explained in Section 2.6, a job may use local memory during its execution.
In the case of a preemption, a part or all the content of this local memory may be
transferred to another memory to be stored until the resumption of the execution of
the job. This is called a context switch. We observe that a context switch takes a delay
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which lessens the performance of the system.

Preemptions may be prohibited by certain systems or tasks. The latter are then called
non-preemptive tasks. In the theoretical frame of this thesis, we consider that no delay
occurs when performing a preemption.

This concept is depicted in Figure 2.4.

Definition 2.40 (Job migration). A job migration occurs when a job is stopped before
completion and is resumed on another processor.

In the case of a job migration, a part or all the content of this local memory may be
required to be transferred to the new processor, which forms a context switch. This is
why migrations must be avoided when possible. Job migrations are even unauthorised
by certain systems or tasks. In the theoretical frame of this thesis, we consider that no
delay occurs when performing a migration.

This concept is depicted in Figure 2.4.

Definition 2.41 (Task migration). A task migration occurs when two successive jobs
of a given task are not executed on the same processor. They are thus less costly than
job migrations, but may still be forbidden on some systems. In addition, to migrate
a task from a processor to another with a different instruction set, the system must
have different compiled versions (binary codes) of the task. This is costly in terms of
memory usage.

In Figure 2.4, we can observe several job preemptions and job migrations. For example,
𝐽3 migrates from 𝜋2 to 𝜋3 at 2, and then back to 𝜋2 at 3. On 𝜋1, 𝐽1 is preempted several
times by 𝐽2.

Multi-processor scheduling paradigms

Several approaches exist to schedule a task set on multi-processor systems. The follow-
ing definitions describe them: the first and second one are the extreme cases, and the
two others are in between.

Definition 2.42 (Partitioned). In partitioned scheduling, no migrations are allowed.
Each task is assigned offline a processor, and all the jobs will be executed on this very
same processor. Each task subset may then be scheduled by a uniprocessor scheduler.
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𝐶𝑖 𝑇𝑖
𝜏1 8 10
𝜏2 8 10
𝜏3 8 10
𝜏4 8 10
𝜏5 8 10

(a) Task set specifications

0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽1

𝜋2 𝐽2

𝜋3 𝐽3

𝜋4 𝐽4

𝜋5 𝐽5

(b) Example of a partitioned schedule

0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽5 𝐽1

𝜋2 𝐽2 𝐽5 𝐽2

𝜋3 𝐽3 𝐽5 𝐽3

𝜋4 𝐽4 𝐽5

𝜋5

(c) Example of a global schedule
Figure 2.5: Visual representation of partitioned and global schedules
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This paradigm permits to re-use existing work on uniprocessor scheduling. It is a
simple approach to multi-processor system scheduling and avoid any migration cost
by construction. However, it does not benefit from most of the advantages of multi-
processor systems. It is illustrated in Figure 2.5(b).

The limitation of partitioned scheduling may be seen in the following example. Here,
we are considering a 5-tasks task set with periodic and preemptive tasks. 𝐶1 = 𝐶2 =
… = 𝐶5 = 8 and 𝑇1 = 𝑇2 = … = 𝑇5 = 10. In this example, the utilisation of each task
is 0.8. Such a task set cannot be executed on less than 5 identical processors with a
partitioned scheduler as any couple of tasks would have a utilisation greater than 1.
This leads to losing the equivalent of 0.2 × 5 = 1 processor, that is idle.

Definition 2.43 (Global). In global scheduling, there is no restriction regarding migra-
tions. Any job may migrate from any processor to another. This paradigm allows the
use of the whole platform. It is illustrated in Figure 2.5(c).

Let’s re-use our previous example, with a 5-tasks task set with periodic and preemptive
tasks, where: 𝐶1 = 𝐶2 = … = 𝐶5 = 8 and 𝑇1 = 𝑇2 = … = 𝑇5 = 10. A global scheduler
may schedule this task set with only 4 processors, resulting in no idle time at all if
migrations are instantaneous.

Definition 2.44 (Semi-partitioned). In semi-partitioned scheduling, some tasks are
assigned to a processor, when others may migrate. In Figure 2.5(c), most tasks are
partitioned, when 𝜏5 migrates.

Definition 2.45 (Clustered). In clustered scheduling, tasks are allowed to migrate to
certain processors. Formally, the platform is divided into sets of processors. Each set
is called a cluster, as introduced in Section 2.3.4. The task set is also divided in subsets,
and each subset is assigned to a specific cluster. Each task subset may be scheduled
globally on this cluster, but may never migrate to a core of another cluster.

Each cluster may be formed of identical processors to simplify the scheduling problem,
or use heterogeneous clusters for more flexibility. It is illustrated in Figure 2.6(b),
where 𝜋1 and 𝜋2 form the first cluster, and the others the second cluster.
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𝐶𝑖 𝑇𝑖
𝜏1 8 10
𝜏2 8 10
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(a) Task set specifications
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𝜋1 𝐽1

𝜋2 𝐽2

𝜋3 𝐽5 𝐽3

𝜋4 𝐽4

𝜋5 𝐽5

(b) Example of a clustered schedule
Figure 2.6: Visual representation of a clustered schedule

Task set feasibility and schedulability

Two important notions regarding scheduling are the notions of feasible and schedulable
task set.

Definition 2.46 (Feasible task set). Some task sets are impossible to schedule on a
given platform due to their constraints. A task set is said to be feasible on a given
platform if and only if there exists a schedule with no missed deadline. It is said to be
unfeasible otherwise.

For example, it is impossible to schedule a task set composed of two tasks 𝜏1, 𝜏2, where
𝐶1 = 𝐶2 = 1 and 𝑇1 = 𝑇2 = 1 on a uniprocessor platform.
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𝜋1 𝐽1 𝐽4

𝜋2 𝐽2 𝐽5

𝜋3 𝐽3

Idle1 makespan

Figure 2.7: Visual representation of the idle instant and makespan

Definition 2.47 (Schedulable task set). A task set is said to be schedulable on a given
platform by a given scheduler if and only if this scheduler schedules it with no missed
deadline.

Definition 2.48 (Optimal scheduler). A scheduler 𝑆 is said to be optimal if and only
if any feasible task set is schedulable with 𝑆.

In this thesis, a task parameter is its WCET. However, this worst-case is not always
reached.

Definition 2.49 (C-sustainable scheduler (from [2])). A scheduler is C-sustainable if
and only if a system schedulable when tasks are using theirWCET remains schedulable
even if some tasks do not use up to their WCET.

The same notion applies to feasibility and schedulability tests. In this thesis, we
will prove that all schedulers and schedulability tests introduced in this thesis are
C-sustainable.

Definition 2.50 (Idle𝑗 instant (from [3])). Let 𝐽 be any finite set of n jobs. Let �̇�ℎ be
a multi-processor cluster formed by �̇� cores, upon which jobs of 𝐽 are scheduled. If

31



CHAPTER 2. COMMON NOTIONS ANDMODELS

𝑠 denotes that schedule, then the Idle𝑗(𝐽, �̇�) instant (with 𝑗 = 1,… , �̇�) is the earliest
instant in 𝑠 such as at least 𝑗 processors are idle, assuming that no more jobs will be
released. An upper-bound on the Idle𝑗(𝐽, �̇�) instant is denoted as Idle𝑗(𝐽, �̇�). We will
use the shortened notations Idle𝑗 and Idle𝑗 to enhance the readability.

This notion is illustrated in Figure 2.7

Definition 2.51 (Cluster makespan). Let 𝐽 be any finite set of n jobs. Let �̇�ℎ be a
multi-processor cluster formed by �̇� cores, upon which 𝐽 are scheduled. If 𝑠 denotes
that schedule, then the cluster’s makespan is the required time to complete all the jobs
𝐽, assuming that no more job will be released. [4] proposed an upper-bound, on the
worst-case makespan makespan(𝐽, �̇�), based on this assumption. makespan(𝐽, �̇�) will
be denoted as makespan to enhance the readability.

This notion is illustrated in Figure 2.7

2.5 Multi-mode application

In [5], the authors model an application running with a single set of functionalities,
on a uniprocessor platform. Nowadays, some applications are much more complex.
The hardware tends to offer more and more possibilities to increase its efficiency,
and therefore becomes also more complex. Those two combined make the seminal
model from [5] unfit for some applications. For example, a plane operates in different
contexts, and its application is in different states with different functionalities. But
some functionalities are never active at the same time, as shown in Figure 2.8. This
figure shows a plane application in three different states: on the ground, on cruise
mode and on the ground after the landing. If the pressure regulation is performed
through the different states, the others functionalities are used in only one state.

In the seminal model, the application always runs the same set of functionalities,
represented by the task set. It is always in the same state or mode. In the previous
example, as a task (for example: ensuring the correct refuelling after the landing)
will not be active all the time, the use of sporadic tasks will match the reality of the
application. However, because no information about the real state in which the plane
is in, the analysis is not aware that the refuelling may never occur alongside the GPS
task. Therefore, it will be highly pessimistic. To tackle this issue, the differentmodes
of the application can be explicitly modelled. Each mode may execute a different task
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LandingTake off

Ctrl(x) ReadyPressure()

GPS(x)
Pressure()

Refuel()
Pressure()

M1 M3

M2

Figure 2.8: Multi-mode illustration: different functionalities of a plane

Task Utilisation
Pressure regulation 0.2
Various control 0.8
GPS 0.7
Refuel 0.8

Figure 2.9: Multi-mode illustration: processor utilisation of the different functionalities

subset and thus the analysis accuracy is increased.

The functionality utilisations of the example are displayed in Table 2.9. In this example,
if the worst-case analysis supposes that all the tasks may be active at the same time, the
total utilisation is 0.2 + 0.8 + 0.7 + 0.8 = 2.5. This application would require at least 3
processors to be successfully scheduled. However, if the differentmodes are explicitly
defined, the worst-case utilisation will equal tomax{0.2 + 0.8, 0.2 + 0.7, 0.2 + 0.8} = 1.
This new worst-case utilisation is ~60% smaller than the previous one. Because the
maximal utilisation equals 1, the application may be ran with only one processor. This
drops the requirements of the application in term of hardware, directly reducing the
cost, energy consumption, space and weight of the system.
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The system specifications must define for eachmode the task subset out of the task
set. Each mode task subset is independent or partially independent, as tasks may be
present in different task subsets. In the example, the task Pressure regulation is present
in all the differentmodes. More than simply the task subsets, the transition from one
mode to another must be defined. A transition occurs when amode change request
occurs. This request can be based on an event, or occur at a specific time. For example,
mode change requests on a plane are event based: the pilot manually triggers the
landing. However, mode change requests in a thermal sensor may occur at fixed time,
to operate only during working hours. During a transition ormode change phase, the
current mode is deactivated while the new mode is activated. As we deal with hard
real-time applications, the transitions must be done in a given delay. This delay is here
based on the future mode. Of course, not all transitions are allowed. Only a subset of
all the transitions are allowed, which is specified at design time. To handle thosemode
change phase, a protocol is used. It needs to respect the real-time constraints specified.
Section 2.5.1 and Section 2.5.2 define precisely those notions.

2.5.1 Mode model

Formally, a multi-mode application is composed of 𝜇 modes𝑀 ≐ {𝑀1,𝑀2, … ,𝑀𝜇}.
A mode 𝑀𝑞 =< 𝑇𝑞, Δ𝑞 > contains a task subset 𝑇𝑞. For each mode, Δ𝑞 is the real-
time constraint. This real-time constraint ensures that every mode will be enabled on
time. It constraints the maximal duration between the mode change request and the
completion of the mode change phase. It is chosen at design time.

Definition 2.52 (Mode task subset). The mode 𝑀𝑞 contains a task subset 𝑇𝑞. It is
formed by 𝑛𝑞 tasks. It is allowed that two modes share the same task subset.

Definition 2.53 (Mode real-time constraint). Switching from one mode to another is
not instantaneous. Rem-jobs cannot be aborted before completion (see Definition 2.18).
However, this delay must be bounded to take into account the real-time constraints
of the application. Δ𝑞 represents the maximum allowed delay for reconfiguring the
system after a mode change request to𝑀𝑞. The set Δ ≐ {Δ1, Δ2, … , Δ𝜇} contains the
real-time constraint of each mode.

Mode transitions

The application executes at any instant one and only one mode𝑀𝑞. This mode𝑀𝑞 is
the active mode. The active mode may only change during a mode change phase. A
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𝑀2

𝑀1

𝑀3
Figure 2.10: Graph transition example

mode change phase is triggered when the system receives amode change request. When
a mode change requestMCR(𝑀dst) occurs at 𝑡MCR, the current mode is immediately
deactivated , and new mode 𝑀dst must be activated by 𝑡MCR + Δdst. Δdst is a hard
real-time constraint specified at design time for each mode𝑀dst. The mode change
phase ends when the newmode𝑀dst is activated. The protocol is in charge of enabling
and disabling the task subsets. Please note that this constraint depends only on the
destination mode𝑀dst, independently from𝑀src.

Mode change graph

In an application, some transitions will never occur. The allowed transitions are
represented in themode change graph 𝒢 ≐ {V, 𝐸 ⊆ V2}. Themode change graph is a
directed graph, where V contains one and only one node for each mode𝑀𝑞 ∈ 𝑀, and
𝐸 represents all the allowed transitions from one mode to another. A mode change
phase from a mode𝑀src to a mode𝑀dst is allowed if and only if (𝑀src, 𝑀dst) ∈ 𝐸. A
graph example is given in Figure 2.10. In this example, the mode following𝑀1 may
be𝑀2 or𝑀3. However, the mode following𝑀2 must be𝑀3 and may not be𝑀1: the
directed edge from𝑀1 to𝑀2 is unidirectional.
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0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽1 𝐽2 𝐽4 𝐽5 𝐽2 𝐽4 𝐽6

𝜋2 𝐽2 𝐽3 𝐽1 𝐽5 𝐽7

Mode change phase

MCR 𝑀dst

Figure 2.11: Mode transition illustration

More on tasks

Definition 2.54 (Mode-dependent task). A mode-dependent task is a task that is
present in at one and only one mode task subset. Formally, 𝜏𝑖 is mode-dependent if
and only if ∃𝑞, 𝜏𝑖 ∉ 𝑇𝑞. If an application contains only mode-dependent tasks, the
intersection of the task subsets is empty. Formally, ∀𝑞, 𝑞′, 𝑞 ≠ 𝑞′ ⟹ 𝑇𝑞 ∩ 𝑇𝑞′ = ∅.

Definition 2.55 (Mode-independent task). Amode-independent task appears in all
the modes. Formally, if 𝜏𝑖 is mode-independent, then ∀𝑞, 𝑞′, 𝜏𝑖 ∈ 𝑇𝑞 ∩ 𝑇𝑞′. Moreover,
such tasks must not be affected by a mode change phase. It must not be disabled when
a mode change request occurs. It will therefore continue to release new jobs and will
produce no rem-job.

In Figure 2.11, a mode change phase is illustrated. A mode change request occurs at 4.
At this instant, 4 jobs are active: 𝐽1, 𝐽2, 𝐽4, 𝐽5. All tasks are deactivated by the protocol,
and the active jobs are converted to rem-jobs. Once completed at 7, the newmode𝑀dst

may be enabled. Its task set is enabled as well: both tasks 𝜏6 and 𝜏7 are activated and
both release a job.

The following definitions characterise the tasks depending on their presences in both
the old and the new task subset, during a mode transition.

Definition 2.56 (Unchanged task (from [6])). In a given mode transition from𝑀src to
𝑀dst, a task is an unchanged task if it is present in both 𝑇src and 𝑇dst.

36



CHAPTER 2. COMMON NOTIONS ANDMODELS

Definition 2.57 (Wholly new task (from [6])). In a given mode transition from𝑀src

to𝑀dst, a task is a wholly new task if it is not present in 𝑇src but present in 𝑇dst.

2.5.2 Protocol model

A protocol is an algorithm. It must handle themode change phases, during the lifespan
of the multi-mode application. Thus, it must handle the software reconfigurations.
This includes the activation and deactivation of the modes, and the enabling and
disabling of the mode task subsets. The protocol operates above the schedulers. A
scheduler is only responsible for the scheduling of the task subsets.

As we consider real-time multi-mode applications, we care about the respect of the
real-time constraints. A protocol handles successfully an application if no real-time
constraints are violated during its lifespan. To be usable, it needs to have a validity
test associated. This test checks whether a given application will always be handled
successfully by a given protocol, or if a real-time constraint may be violated in one or
several scenarios.

Two definitions regarding protocols follow.

Definition 2.58 (Protocol with periodicity (from [6])). A protocol is with periodicity
if and only if unchanged tasks are executed independently from the mode change in
progress, preserving their activation pace. It is without periodicity otherwise.

Definition 2.59 (Synchronous protocol (from [6])). A protocol is synchronous if and
only if mode-dependent tasks of two different modes can never be active simultane-
ously. It is said to be asynchronous otherwise.

2.6 Memory considerations

In this section, we will not give a detailed model of the memory components. It is out
of the scope of this thesis. We propose here instead a short introduction to the memory
behaviour of a platform.

Each processor has its own memory component, denoted as a local cache or the
L1-memory. It is a very fast read/write memory, however it has a very limited ca-
pacity. As the name suggest, it can be accessed by only one processor. A group of
processors share the L2-memory via their own buses. If required, those processors may
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Proc. 0 Proc. 1 Proc. 2 Proc. 3
L1 L1 L1 L1

L2

Main Memory

Memory bus

Figure 2.12: Example of a memory scheme

access themain memory through thememory bus. As there is only onememory bus for
those processors, the access to themain memory is very limited. Figure 2.12 illustrates
this categorisation.

The handling of both L2-memory and the access to thememory bus is out of scope of
this thesis. Because some data are stored in the local cache, accessible from only one
processor, if those data have to be accessed from another processor, they have to be
transferred to another memory block. This may be the case if a job starts its execution
on a given processor, and continues it on another one. The fact that the state of the job
has to be restored on another processor is called a context switch. It is very costly in
terms of time, and must therefore be limited.
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A job 𝐽𝑖
Job 𝐽𝑖WCET 𝑐𝑖
Job 𝐽𝑖 deadline 𝑑𝑖
Job 𝐽𝑖 arrival time 𝑎𝑖
Task 𝜏𝑖WCET 𝐶𝑖
Task 𝜏𝑖 relative deadline 𝐷𝑖
Minimum inter-arrival time of 𝜏𝑖 𝑇𝑖
The task set Γ
Number of tasks in a task set 𝑛

(a) Task notations

A processor 𝜋𝑗
The platform Π
Number of proc. in Π 𝑚
Type of a proc. 𝜋𝑘
Number of types 𝜙
Set of proc. types Ψ
Rate of proc. 𝜋𝑗 for a task 𝜏𝑖 𝑅𝑖,𝑗
Utilisation of 𝜏𝑖 on 𝜋𝑗 𝑈𝑖,𝑗
Set of configuration sets Θ
A 𝜋𝑘 configuration 𝜃𝑐
Number of configurations 𝑜
Reconfiguration delay of 𝜃𝑐 𝛿𝑐
Progression rate for 𝐽𝑖 on 𝜃𝑐 𝑅𝑖,𝑐

(b) Platform notations

Set of clusters Π̇
A cluster �̇�ℎ
A core of cluster ℎ 𝜋ℎ1
Number of clusters �̇�
Number of cores in cluster ℎ �̇�ℎ

(c) Cluster notations

Set of modes 𝑀
Amode 𝑀𝑞

Number of modes 𝜇
Task set of a mode𝑀𝑞 𝑇𝑞
Number of tasks in 𝑇𝑞 𝑛𝑞
Sets of r.t. constraints Δ
Mode𝑀𝑞’s r.t. constraints Δ𝑞

(d) Multi-mode notations

is equal by definition to ≐
A given instant 𝑡
A scheduler 𝑆

(e) Misc. notations

Figure 2.13: Notation summary
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Chapter 3

Motivation and organisation

3.1 Motivation

Until recently the efficiency of a single core processor had increased in a predictable
way, followingMoore’s law. However, due to physical limits, uniprocessor performance
cannot increase in a cost-effective way. The raise of the multi-processor paradigm
follows. According to Amdhal’s law, this paradigm is limited as well. To make the
most out of their processors, the versatile hardware systems contain different types
of processors, with some of them being reconfigurable — at both design-time and
run-time. In the future, we expect hardware to become more and more reconfigurable,
with the raise of 3D integration. 3D integration could allow implementation of mem-
ory on FPGA for extremely fast system reconfiguration. This new paradigm allows
faster reconfigurations, and with a higher parallelism. Hard real-time scheduling on
those modern architectures raises new challenges. The challenges come from the com-
plexity of the platforms combined with the need for predictability for hard real-time
scheduling.

What are the existing scheduling solutions for heterogeneous architectures? Are those
techniques effective when used with modern and even future architectures? Do they
take advantages of every aspect of them, including the run-time reconfiguration? In
this thesis, we will focus on the scheduling aspects on the processing elements only.
The objective is to find new solutions that can later be derived with new considerations,
such as memory or energy consumption. Those two are thus out of the scope of this
thesis. To reach new solutions, we will divide the whole into two sub-problems. First
of all, we will explore the question of global scheduling on such architecture. We will
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then examine the options to take advantage of the run-time reconfigurations.

3.2 Related work

Research concerning reconfigurable platforms combining CPUs and FPGA elements
used for real-time systems is relatively new, as the platforms themselves are new
to the market [7]. Cornil et al. [8] assess the research challenges to face with this
kind of platforms. Ahmad et al. [9] provide tools to optimise the design of real-time
applications running on reconfigurable devices (with regards to different metrics such
as performance and energy consumption). Pagani et al. [10] propose the integration of
Dynamic Partial Reconfiguration (DPR, a technique to reconfigure an FPGA at run-
time) as part of a provided service of operating systems. Biondi et al. [11, 12] provide
several timing analyses and run-time frameworkworks that make use of DPR, enabling
reconfigurable heterogeneous platforms as target candidates for real-time systems.
They also provide an extensive state of the art as part of their research paper [11]. Their
approach is based on modelling the dependency between heterogeneous components
with self-suspending tasks, waiting for resources to free remote processing units. Later,
Pagani et al. [13] provide an implementation of their DPR framework for the Linux
operating system. Bini [14] presents the Adaptive Fair Scheduler technique, that
considers resource allocation and provides guarantees to the application. His approach
is general enough to be applied to heterogeneous and reconfigurable computing.

Heterogeneous platforms may be used for hard real-time scheduling, with different
paradigms. In operational research, a pioneer work on the scheduling of jobs on
unrelated multiprocessor platforms was proposed in [15]. Partitioned scheduling
on heterogeneous platforms is a NP-hard problem and has been studied in several
works [16, 17, 18]. Global scheduling on heterogeneous platforms, also known as un-
related multi-processor platforms, was initiated by the seminal paper [19]. Since then,
the global scheduling on unrelated platforms has received less attention. This may be
due to the fact that hardware platforms generally do not support inter-cluster migration
of tasks, that may require a full software support. However, global scheduling allows
theoretically a full utilisation of the platform. Moreover, optimal global scheduling
(regarding schedulability) can be solved in polynomial time. In the literature, e.g.
in [19, 20], the global scheduling of unrelated platforms is performed in two phases.
First, a workload assignment matrix is computed. The workload assignment decides
what fraction of processing capacity of a core has to be assigned to each task. Secondly,
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given this workload assignment, a schedule is built. MPSoCs with unrelated clusters
sharing the same ISA, like the ARM big.LITTLE®architecture, have motivated some
work [20] on the optimal global scheduling. Indeed, sharing the same ISA makes the
inter-cluster migrations more realistic. In the latter work, authors adopt a novel strat-
egy, taking into account the hierarchical nature of the set of clusters. They first focus
on the assignment of tasks to clusters, and then on cores, which limits the number of
inter-cluster migrations. Nevertheless, this method, called Hetero-Split, is limited to
a platform with only two types of clusters. These two-types platforms also motivates
clustered approach with intra-migration like in [21]. New platforms, integrating more
than two types of clusters like the Mediatek Helio X20®are developed. This MPSoC
includes three clusters (two fast Cortex-A72®cores, four middle speed Cortex-A53®cores
and four slow Cortex-A53®cores) sharing the same ISA with a hardware support for
inter-cluster migration. More recently, a heuristic to schedule periodic tasks on unre-
lated multiprocessor platforms has been proposed in [22], but it is considering each
job in a hyperperiod (the least common multiple of the task periods), which has in
general an exponential complexity. This revives interest in the global scheduling of
unrelated clusters.

Reconfigurable platforms may also be used for multi-mode applications. Multi-mode
applications have been widely studied in the literature, for uni- and multi-processor
systems. A survey [6] proposes various solutions and (re-)defines the main vocabulary
and concepts for multi-mode applications on uni-processor systems. Concerning
multi-processors, the literature reports several multi-mode protocols which handle
the transition from one mode to another. As for multi-processors scheduling, protocol
may be separated whether the schedule use for each task subset is partitioned, semi-
partitioned, global or clustered. Cluster-based scheduling —where tasks are assigned
to a given set of processors called cluster and cannot migrate to a different one, has
been well-studied for heterogeneous systems. Raravi et al. [23] propose, to the best
of our knowledge, the most efficient approach to this problem. Regarding multi-
mode application with global scheduling, V. Nelis’ works include several protocols
for homogeneous or heterogeneous uniformmulti-processors. This is the case in [3, 4].
Those articles introduce two protocols without periodicity, one being synchronous
and the other one asynchronous. [24] proposes an analysis for mode changes using
Global EDF to schedule a set of mode independent tasks. More recently, Shih et
al. [25] provide a schedulability analysis for global scheduling of mode change for the
imprecise computationmodel upon identicalmulti-processors, a paradigmwhere a task
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is divided into a mandatory subtask and one or several optional subtasks. Concerning
partitioned scheduling a short contribution by Marinho et al. [26] formalises the
scheduling problem and shows two counter-intuitive phenomena. Emberson et al. [27]
propose heuristics to handle the mode change. Lastly, Goossens et al. [28] consider
the partitioned scheduling problem of multi-mode real-time systems upon identical
multi-processors. The authors propose two methods for handling mode changes in
partitioned scheduling.

3.3 Outline of the thesis
In this thesis, we are going to answer the questions raised as follows.

Chapters 4–9 propose solutions to use the whole platform, by using a global scheduling
approach. This approach was already used for heterogeneous unrelated platform, and
we here improve the state of the art. In those chapters, we divide the algorithm into
steps and then improve each one of them. Our improvements are two fold: first of all,
we propose a change of paradigm to produce more realistic schedules. We also correct
some flaws from the literature. Our solutions contain refinement, optimisations, but
also variations that lead to future works.

Chapters 10–14 propose a new paradigm that exploits the reconfigurability of the
modern platforms. This new paradigm combines the hardware reconfiguration with
the multi-mode software literature. This new paradigm lessens the overall hardware
requirements and adjusts it overtime, which directly reduces weight, cost and energy
consumption. We first propose a new model for this new paradigm. We then propose
a first protocol to use that model, and study it thoroughly. The study of the protocol
aim at setting a competitor in terms of performance, pessimism and time-complexity.
We then propose a more advanced protocol, and compare its characteristics to the
competitor. We show that this new protocol outperforms the first one, and we propose
several improvement directions for further research.

Part IV concludes the thesis. It sums up the results presented in this thesis, and presents
the different ways of improvement.
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Chapter 4

Introduction to Global scheduling on
heterogeneous unrelated platform

4.1 Motivation

In the two last decades, the chips market has been very active in developing hetero-
geneous multi-processor system-on-chip platforms (MPSoCs). These heterogeneous
MPSoCs are widely used in everyday embedded systems, from the smartphones to
infotainment processors in the automotive domain.

In this part, we propose new techniques to take advantages of those modern platforms,
with a global scheduling approach. As shown in Section 3.2, the literature offers
very few techniques to tackle those platforms. The existing techniques offer very
few applicability due to heavy online overheads. Moreover, we will show that some
of them are flawed. We will correct those flaws and propose a new paradigm. This
new paradigm aims at reducing the online overheads by capturing more accurately
the nature of the modern architecture. Doing so improves the applicability of the
scheduling techniques.

4.2 Seminal model

This section summarises the basic model used through this part. It is decomposed of
two parts: the Task model and the Platform model. This model is illustrated with a
guideline example that will be also used in the next section as well.
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Task model The workload is modelled by a set of 𝑛 periodic tasks
Γ ≐ {𝜏1, 𝜏2, … , 𝜏𝑛}. Each task is defined by two parameters (𝐶𝑖, 𝑇𝑖) where 𝐶𝑖 is the
worst-case execution time—on the same fictional processor for every task—, and 𝑇𝑖 is
the release period: tasks are said to have implicit deadlines. Formally, ∀𝑖, 𝑇𝑖 = 𝐷𝑖. As
the tasks are periodic, each task releases a job every period 𝑇𝑖. The first job of a task is
released at 𝑡 = 0, the 𝑘th at 𝑘 × 𝑇𝑖 and has to complete at or before (𝑘 + 1) × 𝑇𝑖. A job
may be preempted ormigrated during its lifespan from a processor to another, with no
time penalty.

Guideline example. In this example, we have a task set composed of two tasks 𝜏1
and 𝜏2 with following parameters:

𝜏𝑖 𝐶𝑖 𝑇𝑖 = 𝐷𝑖 𝑈𝑖
𝜏1 4 2 2
𝜏2 3 1 3

Platformmodel In this part, we consider unrelated multi-processor platforms. An
unrelated platform Π ≐ {𝜋1, 𝜋2, … , 𝜋𝑚} consists of 𝑚 processors. In this paradigm, the
processing rate of a task 𝜏𝑖 depends on the processor 𝜋𝑗 where it is being executed and
is denoted as 𝑅𝑖,𝑗. A processor 𝜋𝑗 executing a job of 𝜏𝑖 for 𝑡 time units will process
𝑅𝑖,𝑗 × 𝑡 units of its execution time. If 𝑅𝑖,𝑗 = 0, then 𝜏𝑖 cannot be executed on 𝜋𝑗. This
task/processor couple is said to be incompatible.

Guideline example. We have three processors and define the following rates 𝑅𝑖,𝑗 for
the task set:

𝜏𝑖 𝑅𝑖,1 𝑅𝑖,2 𝑅𝑖,3
𝜏1 1 3 0
𝜏2 0 5 1

We observe that 𝜏1 cannot be executed on 𝜋3 and is executed three times faster on 𝜋2
than on 𝜋1.

4.3 Related works
In this section, we first briefly review the seminal work of Baruah et al. [19, 29] and
its context. While the operation research domain considered firstly unrelated multi-
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processor scheduling problems (see for instance [15]) the work of Baruah is considered
seminal for the scheduling of recurrent real-time tasks. Baruah proposed a two-step
method to build an offline schedule pattern. That pattern, called template schedule,
may be repeated over time to constitute a feasible real-time schedule.

Each step of the algorithm is depicted in Figure 4.1. Starting from the task set specifi-
cation, the first step calledWorkload assignment is performed. It solves (if possible) a
Linear Programming (LP) problem from the input tasks and platform models. Solving
the LP problem computes optimally the processor ratios assigned to tasks in polyno-
mial time, forming an assignment matrix. Note that the success of this step ensures
the system feasibility. The second step, called Matching, is based on the workload
assignment matrix to build a template schedule. The main goal is to avoid intra-task
parallelism. It is calledmatching because it corresponds to iteratively solving matching
problems in a bipartite graph. Finally, this template schedule may be used with usual
deadline partitioning and stretching techniques.

After detailing theWorkload assignment step, we will explain theMatching step. The
model guideline example will be re-used to illustrate both steps.

We now describe the workload assignment technique of [19]. The technique is divided
into several steps. The first step is to split and distribute the execution time of each
task over the processors. In Figure 4.1, this step is referenced byWorkload assignment.
It is made offline. The solution is based upon Linear Programming (LP in short)
technique. The LP LP-Feas is defined which splits the utilisation of each task into one
or several portions and assigns them to the processors, with respect to their capacities.
Working on the utilisations rather than onWCETs abstracts time constraints such as
the deadline of each task.

Formally, the LP LP-Feas(Γ,Π) is the following:

LP 1 (LP-Feas [19]). The workload assignment is solution of the following LP:

𝑚
∑
𝑗=1

𝑥𝑖,𝑗 × 𝑅𝑖,𝑗 = 𝑈𝑖 𝑖 = 1, 2, … , 𝑛 (4.1)

𝑚
∑
𝑗=1

𝑥𝑖,𝑗 ≤ ℓ 𝑖 = 1, 2, … , 𝑛 (4.2)

𝑛
∑
𝑖=1

𝑥𝑖,𝑗 ≤ ℓ 𝑗 = 1, 2, … ,𝑚 (4.3)
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𝜏1

𝜏2

𝜏3

𝜏4

𝜋1 𝜋2 𝜋3
𝜏1 1 0.5 0.2
𝜏2 1 1 0
𝜏3 0.3 1 0.6
𝜏4 0 1 1

Rate matrix

Workload Assignment
(no processor overloaded, no task requires parallelisation)

%

%

𝜋1

%

%

%

𝜋2

%

%

𝜋3
Matching

1 time unit
makespan

𝜋1
𝜋2
𝜋3

Template schedule
(no intra task parallelisation)

Deadline partitioning
and stretching

𝜋1
𝜋2
𝜋3

Figure 4.1: Step by step schedule construction

Minimise makespan objective: Minimise ℓ, the system is feasible if and only if ℓ ≤
1.

LP 1 must ensure that each task is fully executed. The value 𝑥𝑖,𝑗 denotes the ratio of 𝜋𝑗
to be assigned to 𝜏𝑖. In other words, it represents the required amount of execution
time of 𝜏𝑖 on processor 𝜋𝑗. Therefore, the sum of every utilisation portion of a given
task times the speed of the assigned processors must be equal to the task utilisation
(Equation (4.1)). The sum of the 𝑥𝑖,𝑗 represents the total portion of each time unit
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where 𝜏𝑖 will be executed per time unit. ℓ represents the portion of a time unit where
processors are busy and then Equation (4.2) avoids the parallel execution of tasks. It is
trivial that ℓmust be lower or equal to 1 to avoid deadline misses. The last constraint
of Equation (4.3) ensures that processors cannot execute more task workload than
their capacity.

Theorem 1 from [19] introduces a major result on the feasibility of a task set on an
heterogeneous unrelated platform.

Theorem 4.1 ([19]). The unrelated multi-processor platforms Π feasibly schedules
the task system Γ if and only if LP 1 has a solution s.t. ℓ ≤ 1.

The value ℓ is called the makespan and the objective function of LP-Feas aims at
minimising it. All the processors will be idle in [ℓ, 1).

Guideline example. Using our example task set and platform, the following given
assignment respects LP-Feas constraints:

• ℓ = 1;

• 𝑥1,1 = 𝑥1,2 = 0.5, 𝑥1,3 = 0;

• 𝑥2,2 = 𝑥2,3 = 0.5, 𝑥2,1 = 0.

Therefore, the processor 𝜋2 will be equally shared on both tasks. The remaining
workload will be performed by the other processors.

Based on the Workload assignment step, theMatching step may be performed. It is
shown in [19] that a feasible solution of LP-Feas (with ℓ ≤ 1) ensures the possible
construction of a template schedule on one unit of time.

Please note that the template schedule is built iteratively in reverse. In the following,
we use the notion of full processors at time 𝑡 to denote the processors that will be busy
in the interval [0, 𝑡), with 0 ≤ 𝑡 ≤ ℓ. Symmetrically, the urgent tasks at time 𝑡 are the
tasks that must be executed continuously in [0, 𝑡). Formally, a processor 𝜋𝑗 is full at
𝑡 if and only if ∑𝑛

𝑖=1 𝑥𝑖,𝑗 = 𝑡. A task 𝜏𝑖 is urgent at 𝑡 if and only if ∑
𝑚
𝑗=1 𝑥𝑖,𝑗 = 𝑡. It is

important to keep in mind that 𝑡 is the time relative to the template schedule which
starts at 𝑡 = ℓ and ends at 𝑡 = 0. Also, a task (resp. processor) may become urgent
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(resp. full) at a given time. By definition, there is at least one urgent task and/or
one full processor at 𝑡 = ℓ, but there is none for 𝑡 > ℓ. At each iteration made at
time 𝑡, the algorithm assigns a subset of tasks (including all the urgent tasks) to a
subset of processor (including all the full processors) for a duration 𝛿 in the newly
formed interval [𝑡 − 𝛿, 𝑡) in the template schedule. It is important to note that each
task is assigned to at most one processor during each iteration. Consequently no intra-
parallelism can be created. The duration 𝛿 is chosen such that no unassigned task (resp.
unassigned processor) can become urgent (resp. full) within this interval, otherwise
the schedule would not be feasible. The set of assignments is called amatching. The
resulting matching is composed of pairs (𝜏𝑖, 𝜋𝑗), representing the assignment of the
task 𝜏𝑖 on the processor 𝜋𝑗 in the interval [𝑡 − 𝛿, 𝑡). The computation of the matching
proposed in [19, 29] is detailed in Section 6.1. Once the matching is found and 𝛿 is
computed, time 𝑡 is decreased by 𝛿 and the workload assignment matrix is updated: for
every (𝜏𝑖, 𝜋𝑗) in the matching, the corresponding 𝑥𝑖,𝑗 is decreased by 𝛿. Intuitively, 𝛿 is
the largest value that respects the following constraints: a) no task 𝜏𝑖 must be assigned
on 𝜋𝑗 for more than 𝑥𝑖,𝑗; b) no unassigned task becomes urgent in the interval [𝑡 − 𝛿, 𝑡);
c) no unassigned processor becomes full in the interval [𝑡 − 𝛿, 𝑡); d) and obviously, by
construction 𝑡 − 𝛿 ≥ 0.

Iterations are performed starting from 𝑡 = ℓ until 𝑡 = 0, with a new matching and a
new 𝛿 computed at each iteration. By construction, at time 𝑡 = 0, all the tasks have
been fully assigned to processors, with no intra-parallelism.

Guideline example. The following example illustrates the overall template schedule
construction. No detail are given here on the matching algorithm on the big picture.

The initial workload assignment 𝑛 × 𝑚matrix 𝑋, based on the previously computed
𝑥𝑖𝑗 values, is used to start the construction of the template schedule at time 𝑡 = ℓ = 1 :

𝑋𝑡=ℓ=1 = [
0.5 0.5 0
0 0.5 0.5

].

At time 𝑡 = ℓ = 1,∑𝑚
𝑗=1 𝑥1,𝑗 = 0.5 + 0.5 = 1. Therefore, 𝜏1 is urgent. The same applies

to 𝜏2. Also, we can see that 𝜋2 is full. In order to respect the constraints, 𝜏1, 𝜏2 must be
assigned to a processor and 𝜋2 must have a task assigned. The matching algorithm
matches 𝜏1 on 𝜋1 and 𝜏2 on 𝜋2. Once the matching has been computed, we determine
𝛿. Since 𝑥1,1 = 𝑥2,2 = 0.5, it may be at most 0.5. Also, 𝜋3 becomes full at 𝑡 = 0.5. For
those reasons, 𝛿 = 0.5. Knowing 𝛿, we now update the workload assignment matrix by
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subtracting 0.5 from both 𝑥1,1 and 𝑥2,2. The updated matrix is 𝑋𝑡=0.5 = [
0 0.5 0
0 0 0.5

].

At 𝑡 = 0.5, both tasks remain urgent and the processor 𝜋2 is still full. The processor 𝜋3
becomes full. Here, the only possibility is to match 𝜏1 on 𝜋2 and 𝜏2 on 𝜋3, for a duration
𝛿 = 0.5. The updated workload assignment matrix is null, therefore the construction
is finished. The resulting template schedule is given on Figure 4.2.

0 1

𝜋1 𝜏1 idle

𝜋2 𝜏2 𝜏1

𝜋3 idle 𝜏2

Figure 4.2: Resulting template schedule for the guideline example

Chwa et al. [20] propose a global scheduler for a very limited case of 2-type unrelated
platforms, for task sets having periodic tasks with implicit deadlines. Since there are
only two types of processors, tasks are classified into two categories: either with a
better rate on type 1 or type 2. The method exploits this dual property and thus cannot
be extended to more than two types of clusters (at least this is neither straightforward
nor easy). Nevertheless, it allows the use of the McNaughton wrap-around rule [30] to
efficiently create a schedule conforming to the workload assignment. That technique
provides good overall metrics, and we will give more details in Chapter 7. It will be
used as a competitor to our contributions.

4.4 Organisation and contributions
In this part, we tackle the problem of global scheduling for heterogeneous unrelated
platforms. As it has been dealt with in the literature, our scheduler will be composed
of a workload assignment, followed by a matching algorithm to produce a pattern used
at run-time. From the model to the use of the pattern at run-time, we will propose a
contribution to every step.

We first emphasise the issue with the seminal model and its limitation for modelling
modern architecture. We then propose new workload assignment methods with this
newmodel and compare them to the existing one. After that, we work on the matching
algorithm. We show that the seminal matching algorithm is flawed, and propose a cor-
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rection. We then propose alternative methods to the workload assignment, alongside
with several optimisations to the pattern construction. At last, we consider the issue of
the scheduling of sporadic tasks on heterogeneous unrelated platforms. We show that
an existing scheduler, targeting such task sets, is flawed.

This part is organised as follows:

• Chapter 5 proposes solutions optimised for modern platforms:

– Section 5.1 determines a new platform model;

– Section 5.2 shows that this new model is compatible with the workload
assignment methods;

– Section 5.3 presents an adaption of the seminal linear program, compatible
with the new model;

– Section 5.4 presents two new workload assignment methods, compatible
with the new model;

– Section 5.5 presents an optimal workload assignment method, with an
exponential complexity;

– Section 5.6 evaluates and compares the different methods;

• Chapter 6 explores the existing construction step of the algorithm:

– Section 6.1 details the seminal algorithm from [19, 29];

– Section 6.2 shows that this seminal construction algorithm is flawed;

– Section 6.3 proposes a new algorithm, correcting the seminal construction
algorithm;

– Section 6.4 proves the correctness of this new construction algorithm;

• Chapter 7 proposes an alternative construction step and an optimisation:

– Section 7.1 introduces a new construction method;

– Section 7.2 empirically evaluates the new construction method;

– Section 7.3 proposes a post-construction optimisation method,

– Section 7.4 empirically evaluates the efficiency of the optimisation:

• Chapter 8 explores another algorithm, from [29]:

56



CHAPTER 4. INTRODUCTION TO GLOBAL SCHEDULING ON HETEROGENEOUS
UNRELATED PLATFORM

– Section 8.1 presents the seminal scheduler;

– Section 8.2 proposes a counter example for the seminal scheduler.
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Chapter 5

Workload assignment

We propose in this chapter a new platform model which emphases the heterogeneity
of the platforms.

We then formulate the cluster workload assignment as an LP and show that it provides
an exact feasibility test. Using the new model, we propose several LPs to improve the
performance of the scheduler in terms of online overhead. Finally, we present the
experimentation conducted with the different proposed solutions.

5.1 New model

We introduce here a new platform model that takes the hierarchy of the platform into
account. This model is based on the clustered approach introduced in Section 2.3.4.

5.1.1 Motivation

In the literature, a platform is often viewed as “flat”, as represented in Figure 5.1(a).
This lack of hierarchy between cores prevents any modelling of the potential migration
costs. This is an abstraction since most modern platforms are composed of one or
several clusters of cores, as represented in Figure 5.1(b). The cores of a cluster are
identical, but may differ from one cluster to another in the case of unrelated clusters.
In this part, the jobs are executed on a computing platform of unrelated clusters. Each
cluster is characterised by its number of identical cores, and each task has a specific
processing rate on each cluster.
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(a) Flat platform model

(b) Clustered platform model
Figure 5.1: Illustration of flat versus clustered platform model

The scheduler on a multi-processor platform can be global or partitioned. As said
before, in global scheduling, any job may be executed on any core, i.e. migrate without
restriction. By contrast, in partitioned scheduling each task is assigned to a single core
and neither task nor job migration are allowed. The multi-core cluster model allows
for an intermediary category: in clustered scheduling [31] each task is assigned to a
single cluster and jobs can only migrate between cores within the cluster. In this part,
we assume a global scheduling of heterogeneous unrelatedmulti-core platforms. The
migrations between cores of the same cluster are defined as intra-cluster migrations
while inter-cluster migrations correspond to migrations between cores of different
clusters. On most platforms, inter-cluster migrations require software support and a
specific development effort which is very costly. Today, popular scheduler implementa-
tions support symmetrical multiprocessing (SMP) that allows intra-cluster migrations
(e.g. the Completely Fair Scheduler (CFS) of the Linux kernel). They are therefore
transparent to the application developer, and the online overhead generated is smaller
than the inter-cluster migration one.

5.1.2 Empirical measurements

Disclaimer: These experiments have been performed by Roy Jamil, Ph.D. stu-
dent at ENSMA and engineer at Ac6.
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Figure 5.2: Effect of migrations on execution time distribution

In this section, we investigate the costs of inter-cluster migration on a real platform.
In theory, assuming a zero-cost migration is however mandatory to find a polynomial
time feasibility test. Indeed, feasibility is NP-hard in the strong sense for a single-core
processor platform as soon as preemption delay is taken into account [32, 33].

We experimentally measured several program execution times on
a STM32MP157C-DK2® platform. On the dual ARM Cortex-A® 650 MHz core cluster,
we deployed a Linux stm32mp1 4.19.10-rt8 Operating System (OS) with PREEMPT-RT
patch, while the 209 MHz Cortex-M core is used without any OS. We measured fifty
thousands times how long a migration transferring 512 bytes of data took (a) inside
the Cortex-A, (b) from the Cortex-M to a Cortex-A , and (c) from a Cortex-A to the
Cortex-M.

The results are depicted in Figure 5.2. We observe that inter-cluster migration, espe-
cially from the A cluster to the M cluster, takes significantly longer than intra-cluster
migration within the A cluster. This is due to the communication cost between the
clusters. This shows why inter-cluster migrations must be avoided.

Depending on the platforms, they may also be unpredictable and produce a high
latency.
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5.1.3 Model

An unrelated multi-core platform is modelled by a set Π̇ of �̇� clusters Π̇ ≐ {�̇�ℎ ∣ ℎ =
1,… , �̇�}. Each cluster �̇�ℎ contains �̇�ℎ identical cores �̇�ℎ ≐ {𝜋ℎ1, … , 𝜋ℎ�̇�ℎ

}. A job of
𝜏𝑖 that is executed on a core 𝜋ℎ𝑘 for 𝑡 time units will progress by ̇𝑟𝑖,ℎ × 𝑡 units of its
execution time. Within the cluster �̇�ℎ, every core has the same processing rate ̇𝑟𝑖,ℎ
for each task 𝜏𝑖. If ̇𝑟𝑖,ℎ = 0, then 𝜏𝑖 cannot be executed on the cluster �̇�ℎ, this couple
task/cluster is said to be incompatible. A job of 𝜏𝑖 is completed when its progress
reaches its WCET 𝐶𝑖. The jobs are preemptible, i.e. a job being executed may be
interrupted at anytime and resumed later. The tasks are sequential so they cannot be
executed in parallel. A task set is feasible on a given platform if and only if there exists
a schedule where every job of every task can be completed by its deadline.

Please note that the notion of processor has been replaced by the notion of cluster of
cores. In this new model, a processor would correspond to a single core.

5.2 Designing new LPs

In this chapter we revisit the workload assignment phase dedicated to our clustered
platform model. In particular we aim to minimise the inter-cluster migrations. As
far as we know, every optimal scheduling method of the literature [17] for unrelated
multi-processor platforms (from real-time [19] or operation research [15] areas), starts
with a workload assignment phase. From an input made of tasks parameters and
platform rates, this phase decides the fraction of processing capacity of each core
assigned to tasks. The tasks have to be completed within their period thanks to this as-
signment, without overloading the cores. With the exception of [20], introduced briefly
in Section 4.3, most of the existing works have expressed the workload assignment
phase as an LP (which can be solved in polynomial time [34]).

The solution of the LP is a cluster workload assignment matrix 𝑋 = [𝑥𝑖,ℎ]
ℎ=1,…,�̇�
𝑖=1,…,𝑛 where

𝑥𝑖,ℎ is the fraction of a core in the cluster �̇�ℎ used by a task 𝜏𝑖.

It is a well-known fact that inter-cluster migrations are more costly in terms of time
overhead and task programming effort. We quantify the impact of such migrations by
the definition of the presence of a task on a cluster, introduced in [19].

Definition 5.1 (Presence). Formally, a task 𝜏𝑖 has a presence on a cluster �̇�ℎ if and
only if 𝑥𝑖,ℎ > 0. The number of presences Ṗr𝑖 corresponds to the number of different
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clusters on which task 𝜏𝑖 is assigned: Ṗr𝑖 ≐ |{𝑥𝑖,ℎ > 0 ∣ ℎ = 1,… , �̇�}|

A task 𝜏𝑖 will have to migrate between clusters if and only if Ṗr𝑖 > 1. Therefore,
any presence greater than one is a presence in excess that will generate at least one
inter-cluster migration per pattern repetition.

Assigning the workload of tasks on clusters can be expressed using three sets of con-
straints, defined in CS-Cluster:

Constraint Set 1 (CS-Cluster).

�̇�
∑
ℎ=1

𝑥𝑖,ℎ × ̇𝑟𝑖,ℎ = 𝑢𝑖 𝑖 = 1, 2, … , 𝑛 (5.1)

�̇�
∑
ℎ=1

𝑥𝑖,ℎ ≤ 1 𝑖 = 1, 2, … , 𝑛 (5.2)

𝑛
∑
𝑖=1

𝑥𝑖,ℎ ≤ �̇�ℎ ℎ = 1, 2, … , �̇� (5.3)

Equation 5.1 ensures that enough processing capacity is allocated to each task by
reserving a processing capacity fraction on each cluster. Equation 5.2 constrains the
total capacity fraction allocated to a task to be less than one. This ensures that the
task can be scheduled without being executed on two cores at the same time (see
Theorem 5.1). Equation 5.3 states that the used capacity of a cluster �̇�ℎ is less than or
equal to its total capacity, which is the sum of the capacities of its �̇�ℎ cores. Please note
that CS 1 is not an LP, but a set of constraints (we will present an actual LP for our new
model later in this chapter). Also, regarding the constraints themselves there is a slight
difference compared to the seminal LP (LP 1), in particular regarding Equation 4.2
and Equation 5.2. CS 1 guarantees feasibility only while LP 1 guarantees feasibility
and makespan minimisation.

If the CS 1 is feasible then 𝑥𝑖,ℎ represent a feasible cluster workload assignment (or
assignment of tasks on clusters), as stated in Theorem 5.1. To construct a template
schedule, our method requires a core workload assignment. To obtain it, we derive the
cluster workload assignment by applying a First-Fit strategy. The result is a successful
core workload assignment that we will be able to use to construct a template schedule.

Theorem 5.1. The unrelated multi-core platform Π̇ feasibly schedules the task system
Γ if and only if CS 1 has a solution.
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Figure 5.3: Proof sketch for Theorem 5.1

Proof. First we prove that (i) if there is no solution to the CS 1, then the system is
not feasible. This will occur if Equation 5.2 or Equation 5.3 are not satisfied. In the
first case, there would be at least one task 𝜏𝑖 such that∑

�̇�
ℎ=1 𝑥𝑖,ℎ > 1. It means that 𝜏𝑖

must be executed in parallel which is forbidden in our model of sequential tasks. In
the second case, a cluster �̇�ℎ would need a processing capacity higher than its total
capacity �̇�ℎ.

Now we prove that (ii) finding a solution to this CS 1 problem guarantees that the
system is feasible. The proof sketch is depicted in Figure 5.3. The cluster workload
assignment matrix𝑋 is of dimension 𝑛×�̇�. Indeed, by construction of the LP problem,
it has 𝑛 rows with a sum of coefficients less than one, and �̇� columns with a sum of
coefficients less than �̇�ℎ, ℎ = 1,… , �̇�. First, we replace each column ℎ, corresponding
to the task assignment to cluster �̇�ℎ by �̇�ℎ columns, one for each core, such that the sum
of the coefficients on each of the columns is not greater than one. For the sake of the
proof, we simply consider, on each row 𝑖 of the new columns 𝑘 = 1,… , �̇�ℎ, 𝑥′𝑖,ℎ𝑘 ≐

𝑥𝑖,ℎ
�̇�ℎ

,
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such that the total capacity fraction allocated to each task on each cluster is evenly
distributed on each of its cores. In this manner, we obtain a workload assignment
matrix on the cores 𝑋𝑐 of dimension 𝑛 ×𝑀, where𝑀 ≐ ∑�̇�

ℎ=1 �̇�ℎ is the total number
of cores. On each column, 𝑥′𝑖,ℎ𝑘 ≐

𝑥𝑖,ℎ
�̇�ℎ

represents the capacity fraction of core 𝜋ℎ𝑘
allocated to task 𝜏𝑖. By construction, since originally the used capacity of cluster �̇�ℎ to
tasks was∑𝑛

𝑖=1 𝑥𝑖,ℎ ≤ �̇�ℎ, we have on each column for 𝜋𝑗𝑘,∑
𝑛
𝑖=1 𝑥

′
𝑖,ℎ𝑘 ≤ 1. From this

core workload assignment matrix, we can easily create a bistochastic matrix 𝐵 of size
(𝑛+𝑀)×(𝑛+𝑀), as done in [15]. A bistochastic (or doubly stochastic)matrix is a square
matrix of non-negative real numbers, having each of its rows and columns summing to
1. Formally, ∀𝑖 = 1,… , 𝑛+𝑀 ∶ ∑𝑛+𝑀

ℎ=1 𝐵𝑖,ℎ = 1 and ∀ℎ = 1,… , 𝑛+𝑀 ∶ ∑𝑛+𝑀
𝑖=1 𝐵𝑖,ℎ = 1.

B is constructed as follows:

𝑋𝑐 𝐵𝑛

𝐵𝑀 𝑋𝑡
𝑐

( )𝐵 ≐

𝐵𝑛 is a 𝑛×𝑛 diagonal matrix, such that 𝐵𝑛(𝑖, 𝑖) ≐ 1−∑�̇�
ℎ=1∑

�̇�ℎ
𝑘=1 𝑥

′
𝑖,ℎ𝑘 ∀𝑖. The diagonal

coefficients of 𝐵𝑛 correspond to the laxity of the task 𝜏𝑖, i.e. the fraction of time during
which 𝜏𝑖 is left idle. 𝐵𝑀 is a 𝑀 × 𝑀 diagonal matrix, such that 𝐵𝑀(ℎ𝑘, ℎ𝑘) ≐ 1 −
∑𝑛

𝑖=1 𝑥
′
𝑖,ℎ𝑘∀ℎ𝑘. The diagonal coefficients of 𝐵𝑀 correspond to the slack of the core

𝜋ℎ𝑘, i.e. the fraction of time during which 𝜋ℎ𝑘 is left idle. 𝑋
𝑡
𝑐 is the transpose of the

core workload assignment matrix 𝑋𝑐, and has a dimension𝑀 × 𝑛. By construction, we
obtain a square bistochastic matrix 𝐵 of dimension (𝑛 +𝑀) × (𝑛 +𝑀) expressing the
fraction of each core that has to be allocated to each task, as well as the slack of the
cores and the laxity of the tasks. Following the Birkhoff-von Neumann (BvN) theorem,
such a matrix can be decomposed into a convex combination of permutation matrices
𝐴 ≐ 𝛿1𝑃1+𝛿2𝑃2+⋯+𝛿𝑘𝑃𝑘 [15], where 𝛿𝑖 is a real coefficient ∈ (0, 1],∑𝑘

𝑖=1 𝛿𝑖 = 1, and
𝑃𝑖 is a permutation matrix. A permutation matrix is a binary square matrix where there
is exactly one 1 on each row and each column. This can be seen as a matching between
tasks (rows) and cores (columns). Indeed, one and only one coefficient 𝑃𝑖(ℎ, 𝑘) = 1
means that task on column 𝑘 will be assigned to the core of the row ℎ for a duration
𝛿𝑖. The assignment matrix 𝑋𝑐 states that assigning a ratio of 𝑥′𝑖,ℎ𝑘 of core 𝜋ℎ𝑘 to task 𝜏𝑖
during each of its periods ensures that its jobs will be completed. However, we need to
ensure that a job is never executed on two different clusters at the same time.

For each time window [𝑡1, 𝑡𝑘), between two successive releases at times 𝑡1 and 𝑡𝑘 (or
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deadlines since tasks have implicit deadlines), we can use the BvN decomposition to
create such a schedule. We use the matching 𝑃1 on the time window [𝑡1, 𝛿1 × (𝑡𝑘 − 𝑡1)),
by definition of a permutation matrix, this matching ensures that a task is assigned to
at most one core in this time windows. Similarly, we can use the following permutation
matrices obtained in the BvN decomposition, each permutation matrix 𝑃𝑖 covering a
sub-interval of duration 𝛿𝑖 × (𝑡𝑘 − 𝑡1). Since by the BvN theorem,∑𝑘

𝑖=1 𝛿𝑖 = 1, we can
completely schedule every task on the interval [𝑡1, 𝑡𝑘), ensuring that a task is never
executed on more than one core at the same time. This one time unit schedule can
then be stretched to fit into intervals of time delimited by successive task release dates.
This technique is also referred to as deadline partitioning.

Theorem 5.1 shows that CS 1 feasibility is necessary and sufficient to prove the feasibil-
ity of the system. Moreover, the proof of Theorem 5.1 shows that building a schedule
from a workload assignment matrix is exactly equivalent to finding a Birkhoff-von
Neumann (BvN) decomposition of this matrix. This result indicates that linear algebra
results could be used to improve the schedule construction.

One may note that minimising the number of permutation matrices in a BvN decom-
position is similar as minimising the number of scheduling decisions. Indeed, each
different permutation matrix corresponds to a different schedule decision (i.e. which
jobs are executed at a given instant, and on which cores). Taking schedule decisions
leads to preemptions and/or migrations (both inter- or intra-cluster). Therefore, min-
imising the number of scheduling points may be a solution to reduce the number
of preemptions and migrations. This is an example of optimisation of the template
schedule construction [19, 20, 35].

From [36], we know the complexity of such a problem through Theorem 5.2:

Theorem 5.2 (Dufossé 2016 [36]). The problem of deciding whether there is a BvN
decomposition of a given doubly stochastic matrix with 𝑘 permutation matrices is
NP-complete in the strong sense.

Since the decision problem is NP-complete in the strong sense, the optimisation prob-
lem of minimising the number of permutation matrices in a BvN decomposition is
NP-hard in the strong sense. Thus, optimising the number of scheduling decisions
cannot be done efficiently.
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In the remainder, we focus only on modifying the workload assignment to reduce the
number of preemptions and migrations. However, using linear algebra techniques to
sub-optimally reduce the number of scheduling decisions can be explored.

5.3 LP-Feas and LP-CFeas

In [19], the author presents LP-Feas, an LP model for assigning the workload on an
unrelated real-time multi-processor platform. This work was primarily focused on
feasibility, and does not aim at minimising the number of presences. It is very close to
the LP formulation of the makespan minimisation in job shop scheduling on unrelated
single-core processors given in [15]. In that work, the model is using a flat hardware
representation. To fit our model notations, we consider a hierarchical hardware with
one core per cluster, i.e. ∀ℎ, �̇�ℎ = 1.

LP 2 (LP-Feas [19]). The workload assignment is solution of the following LP:

�̇�
∑
ℎ=1

𝑥𝑖,ℎ × ̇𝑟𝑖,ℎ = 𝑢𝑖 𝑖 = 1, 2, … , 𝑛 (5.4)

�̇�
∑
ℎ=1

𝑥𝑖,ℎ ≤ ℓ 𝑖 = 1, 2, … , 𝑛 (5.5)

𝑛
∑
𝑖=1

𝑥𝑖,ℎ ≤ ℓ ℎ = 1, 2, … , �̇� (5.6)

Minimise makespan objective: Minimise ℓ, the system is feasible if and only if ℓ ≤
1.

The immediate extension of LP-Feas to clusters is the following:

LP 3 (LP-CFeas). The workload assignment is solution of the following LP:

�̇�
∑
ℎ=1

𝑥𝑖,ℎ × ̇𝑟𝑖,ℎ = 𝑢𝑖 𝑖 = 1, 2, … , 𝑛 (5.7)

�̇�
∑
ℎ=1

𝑥𝑖,ℎ ≤ ℓ 𝑖 = 1, 2, … , 𝑛 (5.8)

𝑛
∑
𝑖=1

𝑥𝑖,ℎ ≤ �̇�ℎ × ℓ ℎ = 1, 2, … , �̇� (5.9)
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(a) LP-CFeas
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𝜋1 𝜏1 𝜏2
𝜋2 idle

(b) LP-CLoad
Figure 5.4: Rectangle schedule computed from LP-CFeas versus schedule favouring
fast cores utilisation computed from LP-CLoad

Minimise makespan objective: Minimise ℓ, the system is feasible if and only if ℓ ≤
1.

LP-Feas and LP-CFeas differ in Equations 5.6 and 5.9: since on an unrelated multi-core
platform, a cluster �̇�ℎ has �̇�ℎ cores, a total capacity of �̇�ℎ can be allocated to tasks.
It is straightforward that the condition ℓ ≤ 1 constrains solutions of LP-CFeas to be
solutions of CS-Cluster. Therefore by Theorem 5.1, a solution of LP-CFeas with ℓ ≤ 1
can be used to build a feasible schedule.

5.4 LP-Load and LP-CLoad

LP-Feas and LP-CFeas tend to reduce the makespan of the schedule that will be
stretched between successive releases. As an example, consider two tasks scheduled on
two very different cores: one being ten times faster than the other one for all the tasks.
Consider the system of two tasks Γ = {𝜏1, 𝜏2}, with bothWCET given by 𝐶1 = 𝐶2 = 5
and both periods given by 𝑇1 = 𝑇2 = 10. The platform is composed of two clusters of
one core each, withΠ = {�̇�1, �̇�2}, both clusters having only one core �̇�1 = �̇�2 = 1, and
having respective rates ̇𝑟1,1 = ̇𝑟2,1 = 10 for �̇�1, and ̇𝑟1,2 = ̇𝑟2,2 = 1 for �̇�2. The workload
assignment matrix computed by LP-CFeas (or equivalently LP-Feas since clusters have

one core) is given by 𝑋LP-CFeas = [
5/11 5/11
5/11 5/11

] ( 5/11 ≈ 0.4545). This would lead to a

schedule repeated between every successive release (which is every ten time units in
our simple example since both tasks have a period of ten), as shown in Figure 5.4(a).

When considering the number of presences of tasks on clusters, a more interest-
ing workload assignment would favour a high utilisation, or load, on faster cores:

𝑋LP-CLoad = [
1/2 1/2
0 0

]. Such workload assignment could lead to a schedule such as

Figure 5.4(b), which does not produce any inter-cluster migration. LP-CLoad is an LP
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formulation with the same constraints as CS-Cluster, with the objective of minimising
the used capacity of the system. On the unrelated multi-core platforms problem, it is
defined for CS-Cluster as: LP-CLoad: Minimise∑𝑛

𝑖=1∑
�̇�
ℎ=1 𝑥𝑖,ℎ.

LP-CLoad can be used in the context of a flat platform model. To do so, one simply
has to assume that each core is a cluster of size one, i.e. �̇�ℎ = 1 for every cluster
�̇�ℎ. LP-Load is an LP formulation with the same constraints as LP-Feas, with the
same objective as LPCLoad but for processors instead of clusters: LP-Load: Minimise
∑𝑛

𝑖=1∑
𝑚
ℎ=1 𝑥𝑖,ℎ.

5.5 Minimal number of presences: ILP-CMig

Even if non polynomial, an optimal method minimising the number of presences
of tasks on clusters can be useful. Indeed, a system designer may prefer spending
a couple of hours waiting for the assignment to be computed rather than spending
development time and facing the complexity to implement an inter-cluster migration.
Since we are working at the cluster level, the size of the problem, at least in the
number of clusters, can be relatively small in practice. We propose a Mixed Integer
Linear Programming (MILP) formulation called ILP-CMig, based on the CS-Cluster. In
addition, we introduce a boolean variable 𝑏𝑖,ℎ. Variable 𝑏𝑖,ℎ is 1 if task 𝜏𝑖 is present on
cluster �̇�ℎ, and 0 otherwise. The objective is to minimise the total number of presences.

LP 4 (ILP-CMig). The workload assignment is solution of CS-Cluster (Equations 5.1,
5.2, 5.3) with the following additional constraints:

𝑏𝑖,ℎ ∈ {0, 1} 𝑖 = 1, … , 𝑛; ℎ = 1,… , �̇� (5.10)

𝑥𝑖,ℎ ≤ 𝑏𝑖,ℎ 𝑖 = 1, … , 𝑛; ℎ = 1,… , �̇� (5.11)

𝑏𝑖,ℎ < 1 + 𝑥𝑖,ℎ 𝑖 = 1, … , 𝑛; ℎ = 1,… , �̇� (5.12)

Minimise makespan objective: Minimise∑𝑛
𝑖=1∑

�̇�
ℎ=1 𝑏𝑖,ℎ.

The non-clustered version ILP-Mig has the same set of constraints than CS-Cluster
where each cluster is considered as a single core with the computing capacity of 𝑚
cores.
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5.6 Workload assignment evaluation
When neglecting the migration cost, every workload assignment method presented in
this chapter is optimal regarding the feasibility. Since we know that this hypothesis is
unrealistic, we compare the number of presences in excess Ṗr𝑖−1 for the six presented
methods. The number of presences in excess is a lower-bound on the number of inter-
cluster migrations. The LP based methods, as well as Hetero-Split, are polynomial time
methods, while the MILP based method has an exponential time complexity regarding
the number of clusters. In this section, we compare the following methods:

• LP-Feas is themethodminimising themakespan proposed in [19] considering the
“flat” core model, while its clustered version LP-CFeas presented in Section 5.3
considers the hierarchical clustered model;

• LP-Load (see Section 5.4), whose objective is tominimise the total core utilisation,
its clustered version is LP-CLoad;

• Hetero-Split ([20]) a linear algorithm limited to two types of clusters;

• ILP-Mig is the “flat” core-based version of ILP-CMig, a MILP problem minimis-
ing the number of presences on clusters. In practice, ILP-CMig uses significantly
fewer variables than ILP-Mig.

5.6.1 Experimental setup

In our opinion, the notion of consistent clusters fits more precisely to certain realistic
platforms where cores have different micro-architectures but identical ISA, as the
big.LITTLE®or the Helio X20®.

For the number of presences and simulation experiments, we have generated the
systems as follows. The number of types of clusters �̇� is either 2 or 5. The former in
order to compareHetero-Split to the othermethods, and the latter because five different
types of clusters is considered a large size for a heterogeneous MPSoC nowadays. Then,
the number of cores per type of cluster is set in [2, 5]. The number of tasks 𝑛 is
arbitrary bounded as follows: �̇� ≤ 𝑛 ≤ 10 × �̇�. We then generate every task such that
its period 𝑇𝑖 is determined using [37]. The parameter 𝐶𝑖 is based on 𝑇𝑖:

𝑇𝑖
2
≤ 𝐶𝑖 ≤ 𝑇𝑖.

We then generate the rates randomly and adjust them so that the tasks fit the given
utilisation. For experimentation purposes, the clusters (the rates in particular) may be
set to consistent.
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Using this generator, we generate 1 000 systems per total utilisation range 𝑢 ∈ [𝑝 −
0.1, 𝑝), increasing 𝑝 from 0.4 to 1, for both �̇� = 2 and �̇� = 5. The ratio 𝑝 = 1
corresponds to a full utilisation of the platform by the tasks. Here, 𝑝 is equal to the value
of the LP-CFeas objective function result, which is the minimal platform utilisation.
The experimentation compares the different scheduling methods over 28 000 randomly
generated test systems. As ILP-Mig and ILP-CMig have an exponential time complexity,
they are tested using only a subset of the generated systems.

5.6.2 Inter-cluster number of presences in excess

The workload assignment methods are compared in terms of inter-cluster presences
in Figure 5.5. First note that the scale is 10−2, meaning that in average, very few tasks
are assigned to different clusters, for both two and five types of clusters.

On the top graph, with �̇� = 2, we observe that Hetero-Split performs close to LP-CFeas
for low platform utilisation. At higher platform utilisation, Hetero-Split dominates the
other polynomial time assignment methods. We can see that both the Feas-based LP
solutions perform poorly at low platform utilisation compared to the Load-based LP
solutions for both two-types and five-types of cores. This is due to Feas objective that
tends to create “rectangular” (i.e. all processors tend to be idle at the same instant)
schedules by balancing the tasksworkload on different cores or clusters, as illustrated in
Figure 5.4. While the platform utilisation increases, the slack left at the right-hand side
of this rectangle reduces, and the solutions provided by both objective functions tend
to be similar. At high platform utilisation, we thus see that both clustered versions of
the LP outperform both non-clustered versions. When combining the two advantages
—both the clustered version and the Load objective function—, we observe two to
four times fewer inter-cluster migrations compared to the seminal non-clustered Feas
objective function. On bottom graph, we see the proportion of generated systems for
which the assignment produce no presence in excess. This means that the here tasks
are completely clustered for two types of clusters. It is close to 100% for the ILP-CMig,
while the clustered LP-CLoad dominates all the other methods in terms of ratio of
completely clustered workload assignments. When comparing both graphs, we can
observe that LP-CLoad performs better than Hetero-Split regarding tasks clustering
on consistent two-types systems. However, Hetero-split performs better in average on
arbitrary clusters.
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Figure 5.5: Number of presences by workload assignment method for unrelated and
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�̇� = 2 �̇� = 5
LP-Feas 0.013 0.464
LP-Load 0.012 0.562
LP-CFeas 0.002 0.027
LP-CLoad 0.002 0.029
Hetero-Split 0.007 NA
ILP-Mig 0.061 NA
ILP-CMig 0.018 0.068

ILP-Mig, �̇� = 2
𝑛 time (s)
10 0.811
11 1.736
12 3.562
13 8.271
14 16.665
15 28.492
16 69.782
17 130.582

Table 5.1: Average execution time of the workload assignment methods in seconds

5.6.3 Run-time measurement

The performance of the LP/ILP based solution in terms of execution time is depicted in
Table 5.1. The experiment has been conducted on a Intel I7500® multi-core processor.
The left table gives the performance of the LP/ILP based solution with the same test
systems. In this experiment, the system utilisations are uniformly distributed in the
range [0.3, 1.0]. The rest of the system parameters are generated as in Section Sec-
tion 5.6.1. The table on the right gives the average performance with test systems
ordered by number of tasks. Thus, both tables are not comparable because they do not
have the same test systems. The left table gives the average computation time, per LP
or ILP for both �̇� = 2 and �̇� = 5 on unrelated clusters. For example, ILP-Mig took an
average of 0.061 seconds to compute the workload assignment with �̇� = 2. We observe
that the clustered version of a LP or an ILP is always faster than the non-clustered
version, which can be explained by the fact that there are fewer variables. Also, the
execution time from �̇� = 2 to �̇� = 5 increases drastically and this affects less the
clustered versions, since there are fewer additional cluster variables than core variables.
The table on the right gives the performance of ILP-Mig with �̇� = 2 for 𝑛 tasks. It
clearly shows that the execution time grows exponentially with the number of tasks,
making it intractable for large systems.
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Chapter 6

Flaw & correction in the schedule
construction of [19, 29]

In this chapter, we discuss some of the existing work presented in Chapter 4.

The presented algorithm is based on graph theory. It takes place at each iteration
of the template construction, described previously in Section 4.3. The goal is to find
an assignment at a given time between the tasks and processors. By definition, each
full processor must be assigned to a task, and each urgent task must be assigned to a
processor. Also, non-urgent tasks (resp. non-full processors) can be assigned as well,
to full processors (resp. to urgent tasks). To compute this assignment, the problem is
represented as a bipartite graph 𝐺 ≐ (Γ∪Π, 𝐸 ⊆ Γ×Π), where the partition of vertices
Γ (resp. Π) corresponds to the tasks (resp. processors). In our graph representation,
there exists an edge between vertices 𝜏𝑖 and 𝜋𝑗 if and only if 𝜏𝑖 may be assigned to 𝜋𝑗.
Formally, (𝜏𝑖, 𝜋𝑗) ∈ 𝐸 if and only if 𝑥𝑖,𝑗 > 0. Such bipartite graph for guideline example
(introduced in 4.2) at time 𝑡 = 1 is depicted on Figure 6.1. In this figure, edges are
represented by dashed lines, urgent tasks and full processors symbolised by square
nodes and, non-urgent and non-full processors symbolised by circle nodes.

We first present in details the matching algorithm from [19] and [29]. We then show
that it is flawed, and provide a new algorithm correcting it.

75



CHAPTER 6. FLAW& CORRECTION IN THE SCHEDULE CONSTRUCTION OF
[BARUAH2004FEASIBILITY, BARUAH2013MULTIPROCESSOR]

𝜏1

𝜏2

𝜋1

𝜋2

𝜋3
Figure 6.1: Bipartite graph corresponding to the workload assignment matrix at time
𝑡 = 1.

6.1 Seminal algorithm from [19, 29]
In the following, the authors construct an assignment through a matching in the
bipartite graph. In this respect, we first recall usual definitions of graph theory that
will be used in the remainder of this part.

Definition 6.1 (Degree). The degree of a vertex 𝑣 in a graph is the number of edges
that are connected to 𝑣.

Definition 6.2 (Walk). A finite walk is a sequence of edges (𝑒1, 𝑒2, … , 𝑒𝑛−1) which
connects a sequence of vertices (𝑣1, 𝑣2, … , 𝑣𝑛) such that 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) for 𝑖 = 1, 2, … , 𝑛−
1.

Definition 6.3 (Trail). A trail is a walk where no edge is repeated. A path is a trail
without repeated vertices. A graph traversal is the process of visiting each vertex of a
graph. A connected component is a sub-graph in which any two vertices are connected
to each other by paths.

Definition 6.4 (Matching). Amatching in a bipartite graph 𝐺 is a subset of its edges
𝑀 ⊆ 𝐸 without common vertices. A vertex 𝑣 is said to be saturated (or matched) by𝑀
if and only if an edge in𝑀 connects 𝑣.

The technique of [19] states that a matching saturating every urgent task and every
full processor can always be found. We summarised this result in Theorem 6.1.

Theorem 6.1 (Fact 2 combined with Theorem 2 from [19]). Given a bipartite graph
built from a workload assignment matrix such that the makespan is not greater than
one, i) it is always possible to find a matching that saturates all the urgent tasks and ii)
it is always possible to find a matching that saturates all the full processors.

76



CHAPTER 6. FLAW& CORRECTION IN THE SCHEDULE CONSTRUCTION OF
[BARUAH2004FEASIBILITY, BARUAH2013MULTIPROCESSOR]

UsingTheorem 6.1, the idea is to combine bothmatchings in order to obtain amatching
that saturates both the urgent tasks and the full processors. Γᴂ ⊆ Γ denotes the set of
urgent tasks and Π𝑓 ⊆ Π the set of full processors. The whole matching algorithm
is divided in four steps. The first three steps are from [19] and the last step has been
added in [29].

1. Determine a matching𝑀𝜏 from all vertices in Γᴂ to a subset of the vertices in Π
— by Theorem 6.1, this can always be done.

2. Determine a matching𝑀𝜋 from all vertices in Π𝑓 to a subset of the vertices in Γ
— by Theorem 6.1, this can always be done.

3. If an urgent task-vertex (i.e. , one in Γᴂ ) appears in this second matching as well,
then discard the edge that it was matched to in the initial Γᴂ -to-Πmatching.

4. (From [29]) If a full processor remains matched with two tasks with these re-
maining edges, then discard the edge matching it with a non-urgent task, and
retain only the edge that matches it with an urgent task

The authors propose the following claim on that algorithm:

Claim 1 (Fact 3 from [19] corresponding to Fact 2 from [29]). What remains after
application of the algorithm is a matching that satisfies the following properties: each
full processor is matched, and each urgent task is matched. (There may be additional
matched vertices, corresponding to non-full processors and non-urgent tasks, as well.)

6.2 Counter-example of the seminal algorithm

We now show that the algorithm presented in Section 6.1 is flawed.

This matching algorithm is applied on the guideline example at time 𝑡 = 1. Its result is
represented on Figure 6.2. We observe that the first two steps of the algorithm are suc-
cessfully achieved. The matching𝑀𝜏 (edges with circle tips in Figure 6.2(a)) saturates
all the urgent tasks, while the matching𝑀𝜋 (edges with square tips in Figure 6.2(b))
saturates all the full processors. We now apply step (3) of the algorithm because 𝜏1 is an
urgent task appearing both in𝑀𝜏 and𝑀𝜋. Consequently, the edge (𝜏1, 𝜋1) is discarded
from𝑀𝜏 (the edge is stroke out in Figure 6.2(c)). The step (4) proposed in [29] is not
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(b) Matching𝑀𝜋
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(c)𝑀𝜏 ∪𝑀𝜋
Figure 6.2: Illustration of the application of the cleaning algorithm in [19, 29]

applicable since we have a full processor matched with two urgent tasks. As a result,
𝜋2 is both paired with 𝜏1 and 𝜏2, meaning that it is supposed to be allocated both to 𝜏1
and 𝜏2. Consequently, we do not obtain a matching, which contradicts Claim 1.

We have shown that both cleaning phases (steps (3) and (4)) are incomplete and may
lead to unfeasible schedules. Therefore, we propose in the following section a new
algorithm to perform a correct matching.

6.3 Correction of the matching algorithm

To simplify and to make our solution more generic, we rely on the following definition.

Definition 6.5 (Important vertex). An important vertex is either a vertex correspond-
ing to an urgent task or to a full processor.

Thus, the problem can be formulated as:

Givena bipartite graphhaving in each partition a subset of important vertices. Determine
a matching saturating all important vertices. (There may be additional non-important
vertices in the matching, as well.)

As far as we know, this problem is not addressed in the literature of graph theory [38,
39]. The closest problem we found is the assignment problem with seniority and job
priority constraints [40, 41] but these works are not straightforwardly applicable to
the problem raised here. Therefore, we propose in the following a correction of the
procedure introduced in [19].
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(c)𝑀𝜏 ∪𝑀𝜋
Figure 6.3: Illustration of the proposed matching algorithm

In our solution, we keep the two first steps proposed in [19, 29], but add as a third step
a novel and efficient cleaning phase of the graph resulting from the union of the two
matchings. Starting from a graph 𝐺 = (Γ ∪ Π, 𝐸 ⊆ Γ × Π) obtained from the workload
assignment matrix as illustrated in Figure 6.1, we apply the three following steps:

1. Determine a matching𝑀𝜏 saturating the urgent tasks — by Theorem 6.1, this
can always be done.

2. Determine a matching𝑀𝜋 saturating the full processors — by Theorem 6.1, this
can always be done.

3. Let 𝐺′ = (Γ ∪ Π, {𝑀𝜏 ∪𝑀𝜋} ⊆ 𝐸). For each connected component 𝑔 of 𝐺′: let 𝑣1
in 𝑔 be an important 1-degree vertex if it exists or any 2-degree vertex otherwise.
Traverse 𝑔 from 𝑣1 and discard every visited edge 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) having an even
edge index. The first visited edge is 𝑒1 = (𝑣1, 𝑣2), the second one is 𝑒2 = (𝑣2, 𝑣3),
etc.

Steps (1) and (2) are polynomially solvable using a maximum cardinality matching
algorithm, as the one in [42]. It is applied to both sub-graph of 𝐺: 𝐺𝜏 = (Γᴂ ∪Π, 𝐸𝜏 = 𝐸∩
(Γᴂ ×Π)) and𝐺𝜋 = (Γ∪Π𝑓, 𝐸𝜋 = 𝐸∩(Γ×Π𝑓)). 𝐺𝜏 contains only the urgent task vertices
(and all the processors vertices), when 𝐺𝜋 contains only the full processor vertices (and
all the task vertices). The Figure 6.4(a) (resp 6.4(b)) illustrates the matching𝑀𝜏 on 𝐺𝜏
(resp. 𝑀𝜋 on 𝐺𝜋).

Theorem 6.1 ensures that amaximum cardinalitymatching algorithmwill find amatch-
ing saturating every urgent task vertex and every full processor vertex, respectively.
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Step (3) is illustrated in Figure 6.4(c): in the guideline example, the edge (𝜏1, 𝜋2) with
the even label number 2 is discarded, giving a correct matching saturating all the full
processors and all the urgent tasks. This step simply ensures that i) every important
vertex, which was paired in one of the two matchings in step (1) or (2), remains paired,
and ii) the maximum degree of a vertex in 𝐺′ is 1.

6.4 Proof of correctness of the algorithm
For the sake of the proof and without loss of generality, we consider 𝐺′ introduced in
Step (3) as a directed bipartite graph where edges in𝑀𝜏 are oriented from an urgent
task to a paired processor and edges in𝑀𝜋 are oriented from a full processor to a task.
Please note that the directed version of 𝐺′ only differ from 𝐺′ in that the union of 𝑀𝜏

and𝑀𝜋 retains edges with the same vertices in opposite direction. For example, if the
urgent task 𝜏𝑖 was matched to full processor 𝜋𝑗 at Step 1, and that 𝜋𝑗 was matched to 𝜏𝑖,
both edges (𝜏𝑖, 𝜋𝑗) and (𝜋𝑗, 𝜏𝑖) will be in the oriented graph. Only one of them would be
kept in the set of edges of the non-oriented graph, as they would be seen as identical.

Property 6.1. In the directed version of 𝐺′ built from the union of matchings𝑀𝜏∪𝑀𝜋,
every important vertex has exactly one outgoing edge, while every non-important vertex
has no outgoing edge.

Proof. By Definition 6.5, an important vertex corresponds to either an urgent task or a
full processor. By construction of both matching, the outgoing edges are only created
from important vertices. The property follows.

Property 6.2. The maximum degree of the directed version of graph 𝐺′ built from the
union of matchings𝑀𝜏 ∪𝑀𝜋 is 2.

Proof. Since this graph is obtained by the union of two matchings where each vertex
is present once, this graph has vertices with a degree of at most 2.

Those two properties will be used to prove Theorem 6.2 in the following.

Theorem 6.2. Applying the step (3) of our algorithm to 𝐺′ ensures a correct matching
in the resulting graph, i.e. all important vertices have a degree of 1 (therefore every
urgent task or full processor is saturated), and the maximum degree of the resulting
graph is 1.
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Figure 6.4: Illustration of the proposed matching algorithm
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(b) Path
Figure 6.5: Illustration of two possible types of connected components

Proof. Without loss of generality, we consider only one connected component of 𝐺′ in
this proof. Step 3 of the algorithmwill process every connected component individually.
0-degree vertices are not in the matching and therefore not considered.

By property 6.2, 𝐺′ has a maximum degree of 2 and a minimum degree of 1 (as it is a
connected component). As 𝐺′ is connected, there exists a trail connecting all vertices
(namely from 𝑣1 to 𝑣𝑛) in 𝐺′. Property 6.1 ensures that this trail vertices 𝑣1, … , 𝑣𝑛−1
are necessarily important. For the ending vertex 𝑣𝑛, there are only two possibles cases:

Case 1 (cycle) 𝑣𝑛 is important. Thus, it has an outgoing edge and this trail is
necessarily a cycle, i.e. a trail where no other vertices are repeated but the starting
vertex 𝑣1.

Case 2 (path) 𝑣𝑛 is non-important. Thus, it has no outgoing edge and this trail
is a path.

Both cases are illustrated in Figure 6.5 and addressed separately hereafter.
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Case 1 𝑣1 − 𝑣𝑛 cycle It is known that a bipartite graph contains no odd cycles.
Consequently, there is a unique cycle in 𝐺′, (𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3), … , 𝑒𝑛−1 =
(𝑣𝑛−1, 𝑣𝑛), 𝑒𝑛 = (𝑣𝑛, 𝑣1)) containing an even number of 𝑛 edges. It is now clear that
discarding every edge with an even index lets every vertex with a degree of 1. It results
that all vertices are degree 1 vertices, so Case 1 is proved.

Case 2 𝑣1−𝑣𝑛 path Starting from the important 1-degree vertex 𝑣1, we discard every
even indexed edge. The result depends on the path length parity:

• The number of edges is even, with the following sequence:

𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3), … , 𝑒2𝑘−1 = (𝑣2𝑘−1, 𝑣2𝑘), 𝑒2𝑘 = (𝑣2𝑘, 𝑣2𝑘+1)

At the end of Step 3, the last edge is also discarded, then only the last vertex
becomes 0-degree, which does not matter because it is a non-important vertex.
Every other vertex is of degree 1.

• The number of edges is odd, with the following sequence:

(𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3), … , 𝑒2𝑘−2 = (𝑣2𝑘−2, 𝑣2𝑘−1), 𝑒2𝑘−1 = (𝑣2𝑘−1, 𝑣2𝑘))

At the end of Step 3, the last edge of the sequence is preserved and every vertex
is of degree 1.

All important vertices are of degree 1 and the non-important vertex has a maximum
degree of 1, so Case 2 is also proved and Theorem 6.2 is demonstrated.
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Chapter 7

Schedule construction optimisation

In this chapter, we review two intuitive approaches that may be applied to optimise
the template schedule in terms of preemptions and migrations. The first is a pre-
optimisation because it aims at constructing an optimised template schedule from
the workload assignment matrix. Differently, the second operates on a given template
schedule and can thus be considered as a post-optimisation. Interestingly, those
approaches can be used separately or combined.

7.1 Pre-optimisation: minimising the number of
schedule points

In the Chapter 6, we showed how to build a template schedule from the workload
assignment matrix using a BvN decomposition of a bistochastic matrix. One may note
thatminimising the number of permutationmatrices in a BvN decomposition is similar
as minimising the number of scheduling points. Indeed, each different permutation
matrix corresponds to a different schedule decision (i.e. which jobs are executed at a
given instant, and on which cores). Taking schedule decisions leads to preemptions
and/or migrations (both inter- or intra-cluster). Therefore, minimising the number
of scheduling points may be a solution to reduce the number of preemptions and
migrations. The problem of deciding whether there is a BvN decomposition of a given
doubly stochastic matrix with 𝑘 permutation matrices is NP-complete in the strong
sense[36].

Since the decision problem is NP-complete in the strong sense, the optimisation prob-
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lem of minimising the number of permutation matrices in a BvN decomposition is
NP-hard in the strong sense. Thus, in the following, we apply a greedy heuristic [36]
from linear algebra and evaluate its efficiency in reducing the number of preemptions
and migration when applied to a workload assignment matrix. This heuristic aims
at successively maximising the size of the current scheduling window by solving the
bottleneck matching problem at each step.

The bottleneck matching problem is also referred to as the Linear Bottleneck Assign-
ment Problem (LBAP). The LBAP consists in finding in a square matrix of costs a
matching (i.e. , permutation matrix) maximising the minimum value of the costs that
are matched (or reversely minimising the maximum value). Formally, given a ma-
trix 𝐴 of dimension 𝑎 × 𝑎 with coefficients (costs) [𝐴(𝑖, 𝑗)]𝑗=1,…,𝑎𝑖=1,…,𝑎 , find a permutation
matrix 𝑃 of the same dimension, with binary coefficients 𝑃(𝑖, 𝑗) ∈ {0, 1} such that
∀𝑗 = 1,… , 𝑎,∑𝑎

𝑖=1 𝑃(𝑖, 𝑗) = 1 and ∀𝑖 = 1,… , 𝑎,∑𝑎
𝑗=1 𝑃(𝑖, 𝑗) = 1, which is maximising

min
𝑖,𝑗

(𝑃(𝑖, 𝑗)𝐴(𝑖, 𝑗)).

Solving the LBAP problem on the bistochastic matrix 𝐵 will give a matching 𝑃1 which
is maximising the value of 𝛿1, therefore maximising the duration of the first template
schedule interval. Following the greedyheuristic fromDufossé et al. [36], after choosing
𝑃1 and 𝛿1, we apply the assignment, by replacing 𝐵 with 𝐵 − 𝛿1𝑃1. We repeat the same
operation until we replace 𝐵 with a null matrix. Each permutation matrix 𝑃𝑖 gives the
assignment of tasks to cores until the next scheduling point. There are several efficient
polynomial algorithms that we may use to solve the LBAP [43, 44].

7.2 LBAP experiments

We use here the same experiment setup as in Section 5.6.1. We have generated the
systems as follows. The number of types of clusters �̇� is either 2 or 5. The former in
order to compareHetero-Split to the othermethods, and the latter because five different
types of clusters is considered a large size for a heterogeneous MPSoC nowadays. Then,
the number of cores per type of cluster is set in [2, 5]. The number of tasks 𝑛 is
arbitrary bounded as follows: �̇� ≤ 𝑛 ≤ 10 × �̇�. We then generate every task such that
its period 𝑇𝑖 is determined using [37]. The parameter 𝐶𝑖 is based on 𝑇𝑖:

𝑇𝑖
2
≤ 𝐶𝑖 ≤ 𝑇𝑖.

We then generate the rates randomly and adjust them so that the tasks fit the given
utilisation. For experimentation purposes, the clusters (the rates in particular) may be
set to consistent.
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Figure 7.1: Results for LBAP (�̇� = 2, 5)
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0 1

Scheduling window 1 SW 2 SW 3 4 567

Figure 7.2: Example of LBAP pitfall

Using this generator, we generate 1 000 systems per total utilisation range 𝑢 ∈ [𝑝 −
0.1, 𝑝), increasing 𝑝 from 0.4 to 1, for both �̇� = 2 and �̇� = 5. The ratio 𝑝 = 1
corresponds to a full utilisation of the platform by the tasks. Here, 𝑝 is equal to
the value of the LP-CFeas objective function result, which is the minimal platform
utilisation. The experimentation compares the different scheduling optimisations over
28 000 randomly generated test systems.

We can see very clearly in Figure 7.1 that LBAP performs very badly in term of both
preemptions and migrations, when compared to the seminal construction from 4.2.
For both �̇� = 2 and �̇� = 5, the number of preemptions and migrations is higher
when using the LBAP construction instead of the seminal construction. Maximising
the length of the intervals in a greedy way empirically seems to be a very bad way
of minimising the number of scheduling point. Indeed, we observe that the last
scheduling windows are getting smaller and smaller, as shown in Figure 7.2. Thus, the
number of scheduling windows increases and so does the number of preemptions and
migrations.

This schedule construction is not giving the expected results. However, it shows that
the number of scheduling windows can be manipulated. We need to find a better
method to achieve the goal of reducing the number of preemptions and migrations.
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Figure 7.3: Non-optimised template schedule

7.3 Post-optimisation: Reordering the template
schedule

The possibility of reordering a template schedule is mentioned in[29] through the
following example. Given, the workload assignment 𝑥1,2 = 0.7, 𝑥2,1 = 0.6, 𝑥3,2 = 0.2
and 𝑥3,1 = 0.3, a valid template schedule is illustrated in Figure 7.3. We observe that
𝜏3 preempts 𝜏1 on 𝜋2 at 0.4 and that 𝜏3 preempts 𝜏2 on 𝜋1 at 0.6. In the following, the
permutation 𝑃𝑘 = (𝜏𝑖, 𝜏𝑗) corresponds to a scheduling window with 𝜏𝑖 on 𝜋1 and 𝜏𝑗 on
𝜋2. It is clear that a simple reordering, by switching the first (𝜏1, 𝜏2) and second (𝜏3, 𝜏2)
permutations (or windows), as shown in Figure 7.4, saves one preemption. In the
following, we present a method to systematise this intuition. We can model as a graph
the permutations (as vertices) and the possible transition between (as edges), as shown
in Figure 7.5. Edges are weighted by a distance metric evaluating how different two
permutations are, i.e. the cost of the transition from a window to another. A template
schedule corresponds to a path in the graph. With a distance metric based, for example,
on the number of preemptions, the template schedule of Figure 7.3 corresponds to path
(𝑃1, 𝑃2, 𝑃3)with a total weight of 3 with 𝑃1 = (𝜏1, 𝜏2), 𝑃2 = (𝜏3, 𝜏2) and 𝑃3 = (𝜏1, 𝜏3). Also,
the template schedule of Figure 7.4 corresponds to path (𝑃2, 𝑃1, 𝑃3)with a total weight of
2. The latter path is trivially the shortest possible path, i.e. the template schedule with
the least number of preemptions. Finding the shortest path corresponds to theTraveller
Salesman Problem (TSP). In the following, we evaluate this post-optimisation with
two distance metrics in order to reduce the number of preemptions and migrations.
On a given template schedule, the latter scheduling decisions are counted by summing
the number of task preemptions on every processor plus the number of presences
in excess. For example, the template of Figure 7.3 and Figure 7.4 have (1+2)+1 and
(1+1)+1 scheduling decisions, respectively.
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Figure 7.4: Template schedule optimised with TSP
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0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

utilisation

pr
ee
m
pt
io
ns

non-optimized
dist

dist basic

Figure 7.7: TSP (�̇� = 5)
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7.4 TSP experiments
To empirically evaluate this approach, we use here the same experiment setup as in
Section 5.6.1 and Section 7.2. We used two distance functions to evaluate the distance
from one scheduling windows to another. Function dist basic counts every difference
between two scheduling windows (in the same way as a hamming distance) while dist
metric does not take into account passing to or from an idle time. The main limitation
of this techniques is that it can only observe the change from one scheduling window
to another. Therefore, a migration will not be detected if it doesn’t happen in two
subsequent scheduling windows. We cannot detect all the migrations. This is why
we here count the preemptions. We make no difference whether the preemptions are
followed by a migration or not.

The results are depicted in Figure 7.6 and Figure 7.7. We can see that the optimisation
slightly improves the number of preemption. For example, the average number of
preemptions is 2.4 with the function dist for a task set with a utilisation of 0.4. Without
any optimisation, the average number of preemptions is 2.6 with the same task sets.
However, this is a very small improvement. Moreover, we see that for �̇� = 5, there is
no improvement at all, regardless of the task set utilisation. This may be due to the
fact that the more tasks and processors there are, smaller is the average cost difference
between the different scheduling windows.
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Chapter 8

Flaw in the sporadic scheduler of [29]

In this chapter, we review another part from [29]. We prove that it contains another
flaw. In this paper, the authors propose a scheduler for sporadic task sets running on a
specific architecture as explained in Section 8.1.1. In Section 8.1, we quote the relevant
part of the paper. We then show in Section 8.2 that this algorithm is flawed.

8.1 Seminal algorithm

In this section, we describe the seminal model and algorithm from [29].

8.1.1 Seminal model

Unlike the rest of the part, we consider sporadic tasks in this chapter. For such a
task, the parameters 𝑇𝑖 represents the minimum inter-arrival time. As defined in
Definition 2.14, for any two successive jobs 𝐽𝑖 and 𝐽𝑖′ released by 𝜏𝑖, with 𝑎𝑖 < 𝑎𝑖′, the
inter-arrival time is equal to or greater than 𝑇𝑖: 𝑎𝑖′ − 𝑎𝑖 ≥ 𝑇𝑖.

Also, the processing rates are restricted: a processing rate 𝑅𝑖,𝑗 may be equal to 0 or 1
only.

8.1.2 Seminal algorithm offline phase

The offline phase of this algorithm has been described in Section 4.3. It produces a
template schedule as shown in Figure 8.2 on page 93. This template schedule will be
used during the run-time phase, as described in Section 8.1.3.
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8.1.3 Seminal algorithm run-time phase

In this section, we give more details about Section IV.C from [29]. It describes the
proposed run-time scheduler. This run-time scheduler uses the template schedule
computed offline. It will stretch the pattern based on the active jobs and the potential
job arrivals. To start our study, wewill first replicate exactly the content of the procedure
of [29], in the following italic text.

Suppose that a job of task 𝜏𝑖, that executes upon more than one processor in the template
schedule, arrives at some time-instant 𝑡0. This job has a deadline at time-instant 𝑡0 + 𝑇𝑖;
hence,we will need to make reservations over the interval [𝑡0, 𝑡0 + 𝑇𝑖). Let 𝑑1, 𝑑2, ..., 𝑑𝑘
denote the (absolute) deadlines, indexed in increasing order (i.e., 𝑑𝑗 < 𝑑𝑗+1 for all 𝑗) of
jobs that had arrived prior to 𝑡0, are still active at time 𝑡0, and have deadlines within
[𝑡0, 𝑡0 + 𝑇𝑖). Let Δ denote (an upper-bound on) the smallest relative deadline of any job
that may arrive over this interval, and that may “interact” with the scheduling of 𝜏𝑖’s job,
by, e.g., executing upon one of the processors on which 𝜏𝑖 executes. (A safe value for Δ is the
minimum period of any task in the instance, although larger values may be obtained by
more careful analysis — we postpone consideration of an optimal choice for Δ to future
work.) To determine the reservations that must be made, we will

1. First, let 𝑑0 ≐ 𝑡0. For each value of 𝑗, 0 ≤ 𝑗 < 𝑘, scale the template schedule by a
factor of (𝑑𝑗+1 − 𝑑𝑗), and invoke the reservations of this scaled template schedule
over the interval [𝑑𝑗, 𝑑𝑗+1).

2. Next, scale the template schedule by a factor Δ, and invoke the reservations of
this scaled template schedule ⌊(𝑇𝑖 − 𝑑𝑘)/Δ⌋ times contiguously beginning at time-
instant 𝑑𝑘.

3. Finally, scale the template schedule by a factor ((𝑇𝑖 − 𝑑𝑘)modΔ), and invoke the
reservations of this scaled template schedule once, over the interval [𝑡0+𝑇𝑖− ((𝑇𝑖−
𝑑𝑘)modΔ), 𝑡0 + 𝑇𝑖).

8.2 Counter-example

In this section, we present a counter-example to the algorithmpresented in Section 8.1.3.
The counter-example is based on the task set presented in Figure 8.1.
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First of all, we don’t know what should happen if two absolute deadlines 𝑑𝑖 and 𝑑𝑖+1
are equal. We assume that equal absolute deadlines may be treated in any order.

𝐶𝑖 𝐷𝑖 𝑟𝑖,1 𝑟𝑖,2 𝑟𝑖,3 𝑟𝑖,4

𝜏1
20
3

10 1 1 0 0

𝜏2
20
3

10 1 0 0 1

𝜏3
20
3

10 0 1 1 0

𝜏4
20
3

10 0 0 1 1

𝜏5
20
3

10 1 0 1 0

𝜏6
20
3

10 0 1 0 1
Figure 8.1: Counter-example task set

Section 8.2.1 presents the behaviour of the offline phase of the algorithm. Section 8.2.2
simulates the run-time phase in a given scenario. Finally, Section 8.2.2 proves that the
produced schedule is flawed.

8.2.1 Seminal offline phase

As said above, the offline phase is out of the scope of this chapter. In this new algorithm,
we use directly the corrected version of the seminal algorithm from Section 6.3

0 1

𝜋1 𝜏1 𝜏2 𝜏5

𝜋2 𝜏3 𝜏1 𝜏6

𝜋3 𝜏5 𝜏3 𝜏4

𝜋4 𝜏6 𝜏4 𝜏2

Figure 8.2: Counter-example template schedule

8.2.2 Seminal run-time phase

In this section, we detail the run-time phase. The run-time phase algorithm depends
on the job arrivals. In the scenario of this counter-example, we look up two job arrivals:
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one at 0 and one at 1.

At 𝑡 = 0, tasks 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6, all release a job. By following the 3-steps algorithm, we
first have 𝑖 = 6, 𝑡0 = 0, 𝑇𝑖 = 10, 𝑘 = 0, Δ = 10. Then,

1. Let 𝑑0 ≐ 𝑡0 = 0. Because 𝑘 = 0, ∀𝑗, 0 ≤ 𝑗 < 𝑘 = 0, is empty and there is nothing
to do.

2. Next, scale the template schedule by a factor Δ = 10, and invoke the reservations
of this scaled template schedule ⌊(𝑇𝑖 − 𝑑𝑘)/Δ⌋ = ⌊10−0

10
⌋ = 1 times contiguously

beginning at time-instant 𝑑𝑘 = 0.

3. Because ((𝑇𝑖 − 𝑑𝑘)modΔ) = ((10 − 0)mod 10) = 0, there is nothing to do here.
The template scaled by a factor 0 is empty.

This steps give us the required reservations. The reservations made are referenced in
Figure 8.3.

0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝜏2 𝜏5
𝜋2 𝜏3 𝜏6
𝜋3 𝜏5 𝜏3 𝜏4
𝜋4 𝜏6 𝜏4 𝜏2

Figure 8.3: Counter-example: reservation at 𝑡 = 0

Then, task 𝜏1 releases a job at 𝑡 = 1. Following the 3-steps algorithm: we first have
𝑖 = 1, 𝑡0 = 1, 𝑇𝑖 = 10, 𝑘 = 6, 𝑑1 = 10, Δ = 10. Then,

1. First, let 𝑑0 ≐ 𝑡0 = 1. For each value of 𝑗, 0 ≤ 𝑗 < 𝑘 = 6, scale the template
schedule by a factor of (𝑑𝑗+1 − 𝑑𝑗) = (10 − 1) = 9, and invoke the reservations
of this scaled template schedule over the interval [𝑑𝑗, 𝑑𝑗+1) = [1, 10). Because
∀𝑗 < 𝑘, 𝑑𝑗+1 = 10, we do that only once.

2. Next, because ⌊(𝑇𝑖 − 𝑑𝑘)/Δ⌋ = ⌊(10 − 10)/10⌋ = 0, there is nothing to do here.

3. Finally, because ((𝑇𝑖 − 𝑑𝑘)modΔ) = 0, there is nothing to do here.
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Previous reservations are discarded. The new reservations made are referenced in
Figure 8.4. This schedule shows the executed task between 0 and 1 and the reservations
between 1 and 10.

0 1 2 3 4 5 6 7 8 9 10 11

𝜋1 𝜏1 𝜏2 𝜏5
𝜋2 𝜏3 𝜏3 𝜏1 𝜏6
𝜋3 𝜏5 𝜏5 𝜏3 𝜏4
𝜋4 𝜏6 𝜏6 𝜏4 𝜏2

Figure 8.4: Counter-example: reservation at 𝑡 = 1

Schedule incorrectness

According to the schedule presented in Figure 8.4, we have the following facts:

• Tasks 𝜏3, 𝜏5, 𝜏6 will be executed 7 units of time in window [0, 10] (instead of
20
3
≈ 6.66).

• Tasks 𝜏2, 𝜏4 will be executed 6 units of time in window [0, 10] (instead of 20
3
≈

6.66).

We therefore have three tasks that are over-executed, which is incorrect. Worse, we
have two tasks that are not completed before their deadlines in this scenario. This
example is thus a counter-example showing that this algorithm fails to schedule this
task set with those job arrivals.
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Chapter 9

Conclusion

In this part, we have addressed the question of global scheduling for heterogeneous
unrelated platforms. We followed the scheduler scheme commonly used in the lit-
erature for this problem. This scheme decomposes the problem into several steps,
some being offline and some being online. It first assigns the workload among the
different processors, using an LP. It then constructs a template schedule offline by
using a matching algorithm. At last, it stretches the template schedule at run-time.
We reviewed every step, starting from the model, and improved each one of them.
Most improvements were variations or alternative algorithms, and one of them was
a correction of a flawed algorithm. We also proposed post-optimisations to the con-
struction step. By improving every step, this part builds a brand new global optimal
scheduler for heterogeneous unrelated platforms for periodic tasks. We have shown
that our clustered approach was performing better than the non-clustered from [19,
29] by reducing the number of presences and thus the run-time overheads. At last, we
showed that another scheduler present in the literature was flawed. This scheduler
was designed on the same scheme but for sporadic tasks instead of periodic tasks. We
showed that it was flawed by exhibiting a counter example.

Future research could lead to a correction of a second flawed algorithm. However, the
scheduler scheme used through this part is based on fairness. The unpredictability of
sporadic tasks seems to be incompatible with the required fairness of the used scheme.
Also, some of the presented variations and optimisations did not perform as well as
expected. However, we do believe that the approaches taken are promising. Pursuing
the work for those parts may lead to great improvement in terms of migrations.
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Part III

Multi-mode applications
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Chapter 10

Introduction to multi-mode
applications

As presented in Chapter 2, multi-mode applications are used today in order to fit the
software to different internal and/or external contexts. Some modern hardwares offer
run-time reconfiguration, to adapt the hardware to the current system workload. In
this part, we propose a new approach: combining both software changes and hardware
reconfigurations. In this approach, each mode is defined by a set of functionalities
and a specific hardware configuration adapted to those functionalities. The hardware
reconfigurations are handled during the transition from one mode to another. To the
best of our knowledge, combining both multi-mode changes and hardware reconfig-
uration has never been studied before. However, fitting the hardware to the current
functionalities of the application leads to a more efficient execution. Efficiency may be
in terms of computation speeds, energy consumption and/or hardware requirements.
Indeed, an FPGA accelerator is way faster for some tasks than a general purpose pro-
cessor, as shown in the general introduction. It needs to be configured in a specific
configuration for each different software task in order to be efficient. Similarly, some
tasks never run in a given context. In such cases, the energy consumption may be
reduced by reducing the number of active processors and turning some processors off
for a given mode.

In practice, we propose to use the software transition phase to reconfigure the hardware
and change the software. Several challenges rise from this new paradigm. First of all,
a new model is necessary in order to precisely define the problem. Designing a proto-
col requires to specify the required hardware reconfiguration, and to perform those
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reconfigurations alongside with the existing real-time software constraints. At last, a
protocol should provide a validity test in order to be used in practice. Its performance
must be acceptable, in order to be usable in practice.

10.1 Contributions and organisation
In this part, we first provide the first model combining both software changes and
hardware reconfigurations. This model combines a model of the software, a model of
the hardware, and defines also the multi-mode aspect of the application and platform.
We then introduce a first acceptor protocol that handles the mode change phase of
a multi-mode application, where the hardware may be reconfigured and the software
may be changed. This protocol is designed to be used with a FJP work-conserving
scheduler, in a clustered based approach. We first describe precisely the protocol.
We then present a validity test suitable for this protocol, so that it can be used in
practice. We also perform a complete analysis of the protocol, both theoretical and
empirical, tackling time complexity, pessimism and competitivity. This first protocol
sets of a competitor for future protocols. We introduce in the last chapter a second
protocol squarer. Similarly to acceptor, squarer is designed to be used with a
FJP work-conserving scheduler, in a clustered based approach. This second protocol
has a different approach of the mode change phases. After a complete description of
this new protocol, we proposed its validity test. We then evaluate this protocol and
compare it to the previous one. At last, we propose some directions for improvement
in future works.

This part is organised as follows:

• Chapter 11 introduces a new model for multi-mode applications:

– Section 11.1 describes the hardware model used trough this part;

– Section 11.2 describes the software model used trough this part;

– Section 11.3 introduces the first multi-mode model combining both hard-
ware reconfigurations and software changes;

• Chapter 12 proposes the acceptor protocol for multi-mode applications:

– Section 12.1 defines precisely the scheduling problem encountered during
a mode change phase;
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– Section 12.2 proposes an in-depth description of the protocol acceptor;

– Section 12.3 introduces an upper-bound on the duration of a mode change
phase when handled by acceptor;

– Section 12.4 proposes a validity test for acceptor;

– Sections 12.5–12.7 analyse the performance of acceptor, both theoreti-
cally and empirically,

– Section 12.8 discusses the limitation of acceptor;

– Section 12.9 explores a variation of acceptor without changing the ap-
proach used;

• Chapter 13 proposes the alternative protocol squarer:

– Section 13.1 describes the second protocol squarer;

– Section 13.2 introduces a validity test for squarer;

– Sections 13.3–13.4 evaluate empirically squarerand compare it to acceptor.
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Chapter 11

Introducing a new multi-mode
application model

In this chapter, we present the first contribution of this part: a new model to multi-
mode applications. To the best of our knowledge, this model is the first to combine
both the multi-mode application model aspect and the reconfigurable platform model
aspect.

We first present the hardware model, and then the software model. Those models are
heavily based on the ones presented in Chapter 2. We then present the newmulti-mode
and cluster models, which are modified versions, adapted from the ones presented
in Chapter 2. In order to be self-sufficient, this chapter repeats some information. A
table of the notations is at the end of the chapter.

11.1 Hardware model

We consider here an heterogeneous unrelated platform, composed of 𝑚 reconfigurable
processors. It is denoted as Π ≐ {𝜋1, 𝜋2, … , 𝜋𝑚}. Processor 𝜋𝑗 has a type 𝜋𝑘, with
𝑘 ∈ [1, … , 𝜙], where 𝜙 is the number of processor types on Π.

A reconfigurable processor of type 𝜋𝑘 is configured at any time in a configuration
𝜃𝑐 ∈ Θ𝑘 from its set of configurations Θ𝑘. The configuration of a processor defines
several parameters like the instruction set of the processor or its processing rate. The
set of setsΘ ≐ {Θ1, Θ2, … , Θ𝜙} contains the set of allowed configurations for each type.
A configuration belongs to at most one type: i.e. ∀𝑘, 𝑘′, 𝑘 ≠ 𝑘′ ⟹ Θ𝑘 ∩ Θ𝑘′ = ∅.
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There are 𝑜 different configurations, with 𝑜 ≐ ∑𝜙
𝑘=1 |Θ𝑘|. Reconfiguring a processor

is not instantaneous. It takes 𝛿𝑐 time-units (denoted as the reconfiguration delay) to
reconfigure a processor of type 𝜋𝑘 to 𝜃𝑐 if 𝜃𝑐 ∈ Θ𝑘, otherwise it takes+∞. We consider
here parallel reconfigurations: all the platform may be reconfigured simultaneously.

11.1.1 Clustered platforms

The platform will be divided at run-time into �̇� clusters: Π̇ ≐ {�̇�ℎ ∣ ℎ = 1,… , �̇�}. The
processors forming a cluster are referred to as cores. Each cluster �̇�ℎ is formed by �̇�ℎ

cores: �̇�ℎ ≐ {𝜋ℎ1, … , 𝜋ℎ�̇�ℎ
}. By construction,∑�̇�

ℎ=1 �̇�ℎ = 𝑚.

In this first multi-mode model with reconfigurable hardware, clusters are formed with
cores of the same type, configured identically. There may be only one cluster of cores
configured in a given configuration 𝜃𝑐. Because a cluster depends on the configuration
of the cores, if the cores are reconfigured at run-time, the clusters will change. Also,
we consider here only clustered scheduling, with a task subset for each cluster �̇�ℎ. As
a processor always belongs to a cluster, we will now use exclusively the term of core
instead of processor.

The following definition will be used in our protocol.

Definition 11.1 (𝜃𝑐-cluster). The 𝜃𝑐-cluster is the cluster composed of the cores con-
figured in 𝜃𝑐.

11.2 Software model

We consider here sporadic tasks, with implicit deadlines. A task 𝜏𝑖 is defined by two
components (𝐶𝑖, 𝑇𝑖), where 𝐶𝑖 is the WCET and 𝑇𝑖 is the minimal arrival time. A task
𝜏𝑖 releases a potential infinite sequence of jobs. When a task releases a job 𝐽𝑖 at 𝑎𝑖, its
absolute deadline 𝑑𝑖 ≐ 𝑎𝑖 + 𝐷𝑖 and its WCET 𝑐𝑖 ≐ 𝐶𝑖.

The processing rate depends on both the job and the core. Specifically, the job processing
rate 𝑅𝑖,𝑐 on the core �̇�ℎ depends on both the task 𝜏𝑖 and the current configuration 𝜃𝑐
of �̇�ℎ. Formally, a core executes 𝑡 × 𝑅𝑖,𝑐 computing units when configured in 𝜃𝑐 and
executing a job 𝐽𝑖 for 𝑡 time-units. This amount may be null if the task cannot be
executed on this configuration.
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11.3 Multi-mode model

There are two majors changes from the model presented in Section 2.5.1. In this
new model, a mode contains a hardware specification. It represents the required
configurations for the platform, for this mode. The second major difference is that
the platform is clustered, with cluster composed of cores configured identically, and
therefore of the same type. At last, no mode-independent tasks are allowed.

Formally, a multi-mode application is composed of 𝜇 modes𝑀 ≐ {𝑀1,𝑀2, … ,𝑀𝜇}.
A mode𝑀𝑞 = < Θ̃𝑞, 𝑇𝑞, Δ𝑞 > contains a task subset 𝑇𝑞. Θ̃𝑞 represents the required
platform configurations. For each mode, Δ𝑞 is the real-time constraint. It constraints
the maximal duration between the mode change request and the completion of the
mode change phase. This real-time constraint ensures that everymodewill be activated
on time. It is chosen at design time.

Definition 11.2 (Hardware). The platform must be configured in a specific way to
respect the application specifications. This specifications ensure the correct execution
of the task set. The configurations vector Θ̃𝑞 ≐< 𝑚𝑞

1 , 𝑚
𝑞
2 , … ,𝑚

𝑞
𝑜 > contains for a

specific mode 𝑀𝑞 the required number 𝑚𝑞
𝑐 of cores configured in 𝜃𝑐. The required

configurations for all the modes are specified as a vector of configuration vectors:
Θ̃ ≐< Θ̃1, Θ̃2, … , Θ̃𝜇 >.

Definition 11.3 (Mode task subset). The mode𝑀𝑞 contains a specific task subset 𝑇𝑞.
It is formed by 𝑛𝑞 tasks. To partition the task set among several clusters, 𝑇𝑞 itself is
divided into task subsets: one per different configuration present in the mode 𝑀𝑞.
The cores configured in 𝜃𝑐 must run the task subset 𝑇𝑞,𝑐. The tasks are said to be
mode-dependent: each task may appear in at most one mode, i.e. ∀𝑞, 𝑞′, 𝑞 ≠ 𝑞′ ⟹
(⋃𝑐 𝑇

𝑞,𝑐) ∩ (⋃𝑐 𝑇
𝑞′,𝑐) = ∅. This limitation will be discussed in Section 12.8. Task

subset 𝑇𝑞,𝑐 contains 𝑛𝑞,𝑐 tasks.

Definition 11.4 (Mode real-time constraint). Switching from one mode to another
is not instantaneous. Rem-jobs cannot be aborted before completion. However, this
delay must be bounded to take into account the real-time constraints of the application.
Δ𝑞 represents the maximum allowed delay for reconfiguring the system after a mode
change request to𝑀𝑞. The set Δ ≐ {Δ1, Δ2, … , Δ𝜇} contains the real-time constraint of
each mode.
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𝑀2

𝑀1

𝑀3
Figure 11.1: Graph transition example

Mode transitions

The application executes at any instant one and only one mode𝑀𝑞. This mode𝑀𝑞 is
the active mode. The active mode may only change during a mode change phase. A
mode change phase is triggered when the system receives amode change request. When
a mode change requestMCR(𝑀dst) occurs at 𝑡MCR, the current mode is immediately
deactivated (and its task subset is disabled), and new mode 𝑀dst must be activated
(and its task subset enabled) by 𝑡MCR + Δdst. The mode change phase ends when the
new mode𝑀dst is activated. Please note that this constraint depends only from the
destination mode𝑀dst, independently from𝑀src.

Mode change graph

In an application, some transitions will never occur. The allowed transitions are
represented in themode change graph 𝒢 ≐ {V, 𝐸 ⊆ V2}. Themode change graph is a
directed graph, where V contains one and only one node for each mode𝑀𝑞 ∈ 𝑀, and
𝐸 represents all the allowed transitions from one mode to another. A mode change
phase from a mode𝑀src to a mode𝑀dst is allowed if and only if (𝑀src, 𝑀dst) ∈ 𝐸. A
graph example is given in Figure 11.1. In this example, the mode following𝑀1 may
be𝑀2 or𝑀3. However, the mode following𝑀2 must be𝑀3 and may not be𝑀1: the
directed edge from𝑀1 to𝑀2 is unidirectional.
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11.4 Model example

In this section, we provide instances of our model to match existing real-world plat-
forms.

Example 1.

The platform is organised in several unrelated clusters of identical cores. When using
DPR (Dynamic Partial Reconfiguration), the Zynq UltraScale+™may be configured
such that it is composed of the following clusters:

• a four cores identical platform meant to execute general purpose application
software (the 4 Cortex-A53 cores);

• a dual core identical platform that may host highly critical and predictable
software (the dual Cortex-R5 cores);

• a GPU dedicated to display information (the Mali™-400 GPU). We model it as a
cluster with a single core;

• 4 independent hardware accelerators that are each dedicated to one specific
task. These accelerators are hosted in the Programmable Logic (FPGA) which
may arbitrarily be divided in 4 independent slots by the system designer (and
managed by the DPR engine). Each one of these accelerators/slots corresponds
to a single core and the whole Programmable Logic is then modelled as a cluster
with 4 cores. The ability of the others cores to change some features—such as
their voltage/frequency— will be ignored, to keep this example short.

The Zynq UltraScale+™hardware is illustrated in Figure 11.3. In this example, we
assumed that the system designer used Dynamic Partial Reconfiguration (DPR) capa-
bilities offered by the Zynq chip family [45]. Please note that earlier research allow
the use of DPR in real-time systems as described in Section 1.3. We assume that the
designer divided the FPGA into 4 cores that are reconfigurable as defined in Section 2.3

In this example, the platform 𝑃 is composed of the following𝑚 = 11 cores:

• 𝜋1, 𝜋2, 𝜋3, 𝜋4: the application cores, forming the Application Processing Unit
(APU). All these cores have the same architecture (A53) and belong to type 𝜋1:
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Π1 = Π2 = Π3 = Π4 = 𝜋1. As the APU is a static CPU, it has only one configu-
ration, meaning Θ1 = {𝜃1}, where 𝜃1 denotes the only possible configuration of
the APU.

• 𝜋5, 𝜋6: the real-time cores, forming the Real-Time Processing Unit (RPU). These
cores have the same architecture (R5) and then belong to type 𝜋2. Similarly to
the APU, we have Θ2 = {𝜃2}, where 𝜃2 denotes the only possible configuration of
the RPU.

• 𝜋7: it represents theGPU,whichhas its own type𝜋3 and is also a non-reconfigurable
cores: Θ3 = {𝜃3} where 𝜃3 denotes the only possible configuration of the GPU.

• 𝜋8, 𝜋9, 𝜋10, 𝜋11: the different dynamically partially reconfigurable cores of the
chip Programmable Logic (from the FPGA). These 4 cores are independent.
We assume that the cores are specialised for some processing: we have two
types of cores 𝜋4 and 𝜋5. We assume that in this example, 𝜋8 and 𝜋9 are image
processing kernels (allowing to process an input image and apply a filter on it),
and that 𝜋10, 𝜋11 implement cryptographic accelerators in order to implement
several block cipher algorithms. The image processing kernels can be in three
configurations: sepia, sobel and grayscale. The cryptographic accelerators can
be configured either to run AES or 3DES block ciphers. Therefore:

{
Θ4 = {𝜃sepia, 𝜃sobel, 𝜃gray}

Θ5 = {𝜃aes, 𝜃des}

The rates of task 𝜏aes depend on the configuration of its cores. This task can be
performed only on RPU, GPU or a specialised FPGA. Therefore, we could have :
𝑅aes,aes > 𝑅aes,3 > 𝑅aes,2 > 𝑅aes,1 > 𝑅aes,des = 0. Obviously, this task is completed (way)
faster on a specialised FPGA, and cannot be executed on an FPGA wrongly configured
(hence 𝑅aes,des = 0). This platform example is depicted in Figure 2.2(a). The platform
is represented with several divisions into clusters. Typical reconfiguration times of the
Programmable Logic are of the order of a few milliseconds [10]. These timings could
be used to set the values of 𝛿sepia, 𝛿sobel, 𝛿gray, 𝛿aes and 𝛿des.

Example 2. The ARM big.LITTLE architecture is a technique allowing to switch
between high-performance cores and low-power cores. A typical design of this archi-
tecture is composed of 4A57 cores (the high-performance cluster) and 4A53 cores (the
low-power cluster) used alternately. These kind of platforms suits our model as the
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multi-mode reconfiguration is implemented in the hardware. In this case, we model
the platform 𝑃 as a set of 𝑚 = 8 cores:

• 𝜋1, 𝜋2, 𝜋3, 𝜋4: the high-performance cluster. All cores are of type 𝜋1 and Θ1 =
{𝜃𝐴57, 𝜃off 57}, these configurations meaning that the cores are either active or
inactive.

• 𝜋5, 𝜋6, 𝜋7, 𝜋8: the low-power cluster. They are of type 𝜋2 and, similarly to the
other type, we have Θ2 = {𝜃𝐴53, 𝜃off 53}

In some platformdesigns such as SamsungExynos 5Octa, only one kind of core can run
simultaneously— the operating systemmust explicitly switch the whole platform from
one kind of core to the other. This constraint can be enforced by defining the clusters
and modes accordingly and by using the inactive configurations 𝜃off 53 and 𝜃off 57. For
example, if we define twomodes𝑀53 and𝑀57, Θ̃53 =< 𝑚53

𝐴53, 𝑚53
off 53, 𝑚

53
𝐴57, 𝑚53

off 57 >=<
4, 0, 0, 4 > and Θ̃57 =< 𝑚53

𝐴53, 𝑚53
off 53, 𝑚

53
𝐴57, 𝑚53

off 57 >=< 0, 4, 4, 0 >. This means that
during mode𝑀53, only the cores of type 𝜋2 will be active.

These two examples illustrate how generic our model is and how it is able to capture
the essence of real-world platforms.
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A job 𝐽𝑖
Job 𝐽𝑖WCET 𝑐𝑖
Job 𝐽𝑖 deadline 𝑑𝑖
Job 𝐽𝑖 arrival time 𝑎𝑖
Task 𝜏𝑖WCET 𝐶𝑖
Task 𝜏𝑖 relative deadline 𝐷𝑖
Minimum inter-arrival time of 𝜏𝑖 𝑇𝑖
The task set Γ
Number of tasks in a task set 𝑛

(a) Task notations

A processor 𝜋𝑗
The platform Π
Number of proc. in Π 𝑚
Type of a proc. 𝜋𝑘
Number of types 𝜙
Set of proc. types Ψ
Rate of proc. 𝜋𝑗 for a task 𝜏𝑖 𝑅𝑖,𝑗
Utilisation of 𝜏𝑖 on 𝜋𝑗 𝑈𝑖,𝑗
Set of configuration sets Θ
A 𝜋𝑘 configuration 𝜃𝑐
Number of configurations 𝑜
Reconfiguration delay of 𝜃𝑐 𝛿𝑐
Progression rate for 𝐽𝑖 on 𝜃𝑐 𝑅𝑖,𝑐

(b) Platform notations

Set of clusters Π̇
A cluster �̇�ℎ
A core of cluster ℎ 𝜋ℎ1
Number of clusters �̇�
Number of cores in cluster ℎ �̇�ℎ

(c) Cluster notations

Set of modes 𝑀
Amode 𝑀𝑞

Number of modes 𝜇
Task set of a mode𝑀𝑞 𝑇𝑞
Number of tasks in 𝑇𝑞 𝑛𝑞
Sets of r.t. constraints Δ
Mode𝑀𝑞’s r.t. constraints Δ𝑞

(d) Multi-mode notations

is equal by definition to ≐
A given instant 𝑡
A scheduler 𝑆

(e) Misc. notations

Figure 11.2: Notation summary
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Figure 11.3: The Zynq UltraScale+™EG processor block diagram. EG devices feature a
quad-core ARM® Cortex-A53 platform running up to 1.5GHz, combined with dual-core
Cortex-R5 real-time processors, a Mali-400 MP2 graphics processing unit, and a 16nm
FinFET+ programmable logic [1].
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Chapter 12

A first protocol for multi-mode
applications: ACCEPTOR

In this chapter, we introduce the second contribution of this part: the first protocol
that handles software and hardware mode transitions. It is called acceptor, for:
AsynChronousClustEr-based ProTOcol formulti-mode applications onReconfigurable
platforms. It is designed to handle multi-mode applications modelled by the model
presented in Chapter 11. The acceptor protocol conducts the mode change phase: it
schedules the rem-jobs, performs the requested reconfigurations and enables the new
mode tasks. It also respects (if possible) the real-time constraints such as the delay for
new mode’s activation and the rem-jobs hard deadlines.

The chapter is organised as follows. Section 12.1 describes the problem treated by
acceptor. Section 12.2 presents the mode change protocol proposed as a first solu-
tion to handle the transition between the different modes of a multi-mode application.
Section 12.3 proposes an upper-bound of the duration of the transitions, when using
the introduced protocol. Section 12.4 provides a validity test and proves its correctness.
Sections 12.5–12.7 evaluate the protocol through a complete evaluation using simula-
tions for the upper-bound efficiency, and both a complexity and competitive analysis
of the protocol. Section 12.8 discusses some of the limitations of the model. Finally,
Section 12.9 explores an improvement path for this first protocol.
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12.1 Scheduling problem

At a given instant, themode𝑀𝑞 is activated and the platform is composed of �̇� clusters.
Each cluster �̇�ℎ has �̇�ℎ

𝑐 cores, configured in a given configuration 𝜃𝑐. The task set𝑇𝑞,𝑐 is
scheduled upon the �̇�ℎ

𝑐 cores configured in 𝜃𝑐. When amode change request is received,
the application must be changed by the protocol and the hardware reconfigured. The
task sets of the newmode𝑀dstmust be enabled and its clusters must be formed as well,
by reconfiguring some cores if needed. Active jobs must still be completed before their
deadlines. Because core reconfiguration delays depend on the new configurations,
reconfiguration times may differ from one core to another inside a cluster, if the target
configurations differ.

The protocol must schedule the active jobs, find the necessary reconfigurations and
perform it. Because clusters depend on core configuration, a cluster may be split into
two or more clusters when its cores are reconfigured. For example, let us consider �̇�1
composed of two cores configured in 𝜃1, and �̇�2 composed of two cores configured in
𝜃2. During the mode change phase, one core from �̇�1 is reconfigured into 𝜃3 and so is
one core from �̇�2. After the mode change, there will not be two but three clusters: one
composed of one core in 𝜃1, one composed of one core in 𝜃2 and one composed of two
cores in 𝜃3. The cores from both clusters that have been reconfigured in 𝜃3 are now
merged in a single cluster.

Here, we only consider the optimisation of a mode change phase from one mode
to another. The mode are given as an input of the problem. Defining the optimal
hardware requirements for a given task set is out of the scope of this chapter. Also, no
reconfiguration aremade to optimise potential futuremode change. Such optimisations
could be done independently from the presented work. For example, potential future
mode change could be anticipated by reconfiguring unused processors during the
execution of the current mode.

12.2 ACCEPTOR

The acceptor protocol is an aperiodic asynchronous protocol, with respect to Defini-
tion 2.58 and Definition 2.59. It can be used with sporadic task sets, scheduled by a
clustered work-conserving scheduler.

The global approach is the following: after amode change request, it first schedules the
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rem-jobs of all clusters and then reconfigures each core (if necessary) once they become
idle. This protocol is composed of an offline phase and a run-time phase. The offline
phase determines, for each cluster �̇�ℎ, the required reconfigurations for each possible
mode change transition from𝑀src to𝑀dst (see Section 12.2.1). The run-time phase is
dedicated to schedule the rem-jobs and reconfigure the cores (see Section 12.2.2). This
run-time phase considers each cluster �̇�ℎ individually, and is applied independently
on each cluster. Finally, an example of the protocol is given in Section 12.2.4.

12.2.1 Offline phase: computing the required reconfigurations

The offline phase is the first step of the protocol. It is applied independently for each
possible mode change phase from𝑀src to𝑀dst. It simply computes which reconfigura-
tions must be done during aMode Change Phase from𝑀src to𝑀dst. This computation
is performed independently for each different type 𝜋𝑘, independently of their config-
urations in 𝑀src. This is possible because no configuration are shared between the
different types. It uses the following upper-bound on the makespan instant.

Lemma 12.1 (Lemma 5 in [4]). Suppose that 𝐽 is ordered by non-decreasing job
processing times, i.e. , 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛, all starting at 𝑡 = 0. Suppose that no
reconfigurations are performed on none of the 𝑚′ cores. Then, whatever the job
priority assignment made by a FJP work-conserving global scheduler, an upper-bound
makespan on the makespan instant is given by:

makespan ≐

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑐𝑛 if ≤ 𝑚′

∑𝑛−1
𝑖=1 𝑐𝑖
𝑚′

+ 𝑐𝑛 otherwise

(12.1)

To perform this step, the protocol first computes the differences between the required
reconfigurations of both modes. Then, it computes the makespan of each 𝜋𝑘-cluster
of 𝑀src using the bound provided by [4]. It then assigns the longest (resp. short-
est) required reconfigurations to the 𝜋𝑘-clusters having the shortest (resp. longest)
makespans, based on the reconfiguration delays. Inside each cluster, the shortest (resp.
longest) reconfigurations are assigned to the cores being idle the first (resp. last), based
on the idle-instant upper-bound from [3]. The reconfiguration assignment is denoted
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{𝜃𝑐, 𝜃𝑐′} where 𝜃𝑐 is the configuration of a core in𝑀src and 𝜃𝑐′ is the configuration of a
core in𝑀dst. At run-time, all the reconfiguration assignments {𝜃𝑐, 𝜃𝑐′}must be handled,
by reconfiguring a core currently in 𝜃𝑐 to 𝜃𝑐′. Obviously, a core may be reconfigured
only once during aMode Change Phase.

Formally,

• For any 𝜃𝑐-cluster in each mode 𝑀src, compute the makespan upper-bound
makespan for the task subset 𝑇src,𝑐 on �̇�ℎ

𝑐 cores;

Then, ∀(𝑀src,𝑀dst) ∈ 𝒢, 𝑘 ∈ [1, … , 𝜙]:

1. The missing configurations for 𝜋𝑘-clusters are all the configurations 𝜃𝑐 ∈ Θ𝑘

such that �̇�−
𝑐 > 0, where �̇�−

𝑐 ≐ max(0, �̇�dst
𝑐 − �̇�src

𝑐 ). Symmetrically, the excess
configurations are all the 𝜃𝑐 ∈ Θ𝑘 such that �̇�+

𝑐 > 0, where the value �̇�+
𝑐 is

defined by �̇�+
𝑐 ≐ max(0, �̇�src

𝑐 − �̇�dst
𝑐 ).

2. To perform the cluster reconfiguration, we use a vector containingmissing config-
urations. This vector will be used at run-time to track the required configurations.
Store ̃𝜃− ≐< 𝜃𝑐, 𝜃𝑐′, … > a vector of missing configurations. ̃𝜃− contains �̇�−

𝑐

times the configuration 𝜃𝑐. ̃𝜃− is ordered by reconfiguration delay, in decreasing
order.

3. Symmetrically, store ̃𝜃+ ≐< 𝜃𝑐, 𝜃𝑐′, … > a vector of excess configurations. ̃𝜃+

contains �̇�+
𝑐 times the configuration 𝜃𝑐. ̃𝜃+ is ordered by the cluster’s makespan

of the cores configured in 𝜃𝑐 ∈ ̃𝜃+, in increasing order.

4. Bind the 𝑗th longest reconfiguration to the 𝑗th idle core. The 𝑗th longest reconfig-
uration 𝜃𝑐 is determined using its reconfiguration delay 𝛿𝑐. The 𝑗th idle core is
the 𝑗th core to become idle on this cluster during this mode change phase. To
do so, define the assignment {𝜃𝑐, 𝜃𝑐′}, where 𝜃𝑐 is the 𝑗th element of ̃𝜃+ and 𝜃𝑐′ is
the 𝑗th of ̃𝜃−.

5. Store the assignment {𝜃𝑐, 𝜃𝑐′} in the multi-set RTsrc,dst.

The results will be used at run-time. Because a cluster is formed by cores of the same
type and configured identically the required reconfigurations for the 𝜃𝑐-cluster are
contained in the multi-set {𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst.
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12.2.2 Run-time: scheduling and reconfiguring

At run-time, the protocol must ensure for all the clusters the successful execution of
the rem-jobs and core reconfigurations as computed in the offline phase. It must at
last enable the new mode.

To do so, it will first ensure the execution of the rem-jobs using the same scheduler
as before. During the execution of the rem-jobs, when a core becomes idle, it may be
reconfigured. For each 𝜃𝑐-cluster it takes as input the list of remaining rem-jobs 𝐽 and
the required reconfigurations to make {𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst.

Formally,

• Schedule 𝐽 using the same scheduler as before;

• When a core becomes idle, reconfigure it to the longest required reconfiguration
𝜃𝑐′ that hasn’t been performed yet, where {𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst.

Whenever �̇�dst
𝑐′ cores are reconfigured to 𝜃𝑐′, the 𝜃𝑐′-cluster of the new mode𝑀dst is

formed and its task set 𝑇𝑐′,dst is enabled. Several clusters may have cores reconfigured
in 𝜃𝑐′ and merged to form this new 𝜃𝑐′-cluster. ThisMode Change Phase ends once all
the rem-jobs have been completed and the required reconfigured performed. The old
mode𝑀src is then disabled, and the new mode𝑀dst is enabled. A more formal version
is presented in Appendix A.1.

12.2.3 Note on the offline phase

The offline phase could be lighter. Indeed, the matching made in Step 4 is not strictly
necessary and could be easily done at run-time, with very few extra cost. However, it
makes the worst-case of every mode change phase very predictable, and the results will
be used in the computation of the upper-bound on the mode change phase duration,
presented in Section 12.3.

12.2.4 Mode change phase example

Figure 12.1 depicts an example of aMode Change Phase handled by acceptor. The
platform is composed of 4 processors. Cores 𝜋1 and 𝜋2 have the same type 𝜋1 and cores
𝜋3 and 𝜋4 have the same type 𝜋2. Two cores must be configured in 𝜃1 for mode𝑀src
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0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽1 𝐽2 𝐽4 𝐽5 𝐽2 r. 𝐽9

𝜋2 𝐽2 𝐽3 𝐽1 r. 𝐽10

𝜋3 𝐽6 𝐽8 𝐽6 𝐽8 r. 𝐽11

𝜋4 𝐽7 𝐽8 𝐽7 𝐽8 r. 𝐽12 𝐽13

Cluster �̇�1

Cluster �̇�2

MCR 𝑀dst

Cluster �̇�3

Cluster �̇�4

Cluster �̇�5

1,2,3,4,5 1,2

6,7,8 6,7,8

Figure 12.1: acceptor protocol illustration

and two cores must be configured in 𝜃2 for mode𝑀src : Θ̃src =< 2, 2, 0, 0, 0 >. At 𝑡 = 0,
mode𝑀src is active. Thus, there are two clusters: cluster �̇�1 and cluster �̇�2. Cluster �̇�1
has two cores configured in 𝜃1, so �̇�src

1 = 2. Cluster �̇�2 has two cores configured in 𝜃2,
so �̇�src

2 = 2. For mode𝑀dst: Θ̃dst =< 0, 0, 2, 1, 1 >. This means that there will be three
clusters in this mode, because there are three different required configurations. Here
are some of the different reconfigurations delay: 𝛿3 = 2, 𝛿4 = 3, 𝛿5 = 2. The real-time
constraint for mode𝑀dst is Δdst = 10.

The protocol computes the required configuration per core type. For example, for the
𝜋2-cores, ̃𝜃+ =< 𝜃2, 𝜃2 > and ̃𝜃− =< 𝜃5, 𝜃4 >. This means that the protocol needs to
reconfigure the cores configured in 𝜃2, one in 𝜃4 and one in 𝜃5 The similar computation
for 𝜋1-cores indicates that the 𝜋1-cores must be reconfigured into 𝜃3.

Cluster �̇�1 and cluster �̇�2 both have a specific task set, respectively 𝑇src,1 and 𝑇src,2.
𝜏1 ∈ 𝑇src,1 and 𝜏2 ∈ 𝑇src,1 release a job at 𝑡 = 3, which become rem-jobs at 𝑡 = 4 when
the mode change request is received. The same goes for 𝜏6, 𝜏7 and 𝜏8 ∈ 𝑇src,2.

Core 𝜋4 becomes idle at 𝑡 = 5. There are no other rem-job to execute in this cluster,
which leads the protocol to reconfigure it. The cluster �̇�2 has the following recon-
figurations to make: (𝜃2, 𝜃4), (𝜃2, 𝜃5). Because 𝛿5 > 𝛿4, 𝜋4 is reconfigured to 𝜃5. This
reconfiguration ends at 𝑡 = 8. Because �̇�dst

5 = 1, a cluster of the new mode is formed
and its task set 𝑇dst,5 = {𝜏12, 𝜏13} is activated. On the other hand, even if 𝜋2 has been
reconfigured at 𝑡 = 7, because �̇�dst

3 = 2: the cluster is not formed yet. At 𝑡 = 8, all the

122



CHAPTER 12. A FIRST PROTOCOL FORMULTI-MODE APPLICATIONS:
ACCEPTOR

newmode’s clusters have been formed. The mode𝑀dst can then be enabled. The mode
change phase lasts for 8−4 ≤ Δdst units of time, and all the rem-jobs were successfully
scheduled so the mode change phase succeeds.

12.3 The upper-bound reconfigured

To assert the validity of a given system using the acceptor protocol, we now introduce
an upper-bound of the instant in which the rem-jobs of a cluster are completed, and
the required reconfigurations are done. This instant is denoted as reconfigured, and
can be immediately derived to obtain an upper-bound on the duration of any mode
change phase. It will be used to demonstrate the validity of the protocol in Section 12.4.
We first use an existing upper-bound on the Idle𝑗 instant, defined in Definition 2.50.

Lemma 12.2 (Lemma 2.11 in [3]). Suppose that 𝐽 is ordered by non-decreasing job
processing times, i.e. , 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛, all starting at 𝑡 = 0. Suppose that no
reconfigurations are performed on none of the 𝑚′ cores. Then, whatever the job
priority assignment made by a FJP work-conserving global scheduler, an upper-bound
Idle𝑗 on the Idle𝑗 instant, where 1 ≤ 𝑗 ≤ 𝑚′, is given by:

Idle𝑗 ≐

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑐𝑗 if 𝑛 = 𝑚′

∑𝑛
𝑖=1 𝑐𝑖+(𝑗−1)×𝑐𝑛−𝑚′+𝑗

𝑚′
otherwise

(12.2)

The new upper-bound reconfigured is based on Idle𝑗. It is the maximal sum of idle time
plus reconfiguration delay, for any core of the cluster.

Corollary 12.1 (Upper-bound reconfigured). Suppose that 𝐽 is a list of jobs released
by 𝑇src,𝑐, and that 𝐽 is ordered by non-decreasing job processing times, i.e. , 𝑐1 ≤ 𝑐2 ≤
⋯ ≤ 𝑐𝑛, all starting at 𝑡 = 0. Suppose that the required reconfiguration delays are in
the vector 𝛿, ordered by reconfiguration time in decreasing order. Suppose that the
cluster is composed of 𝑚′ cores. Then, whatever the job priority assignment made by
a FJP work-conserving global scheduler, an upper-bound of the instant in which the
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cluster’s rem-jobs are completed, and the required reconfigurations are done is given
by:

reconfigured(𝑇src,𝑐, 𝑚′, 𝛿) ≐
𝑚′

max
𝑗=1

{Idle𝑗 + 𝛿𝑗} (12.3)

Proof. The proof is trivially obtained by construction.

From now on, reconfigured(𝑇src,𝑐, 𝑚′, 𝛿) will be denoted as reconfigured for readability.

12.4 Validity test

A validity test is used to determine whether the mode change phases of an application
will be successfully managed by a multi-mode protocol, on a given platform. To ensure
this, we need to verify that every deadline will be met during the transition phase, and
that the new mode will always be timely enabled.

The notion of C-sustainability from Definition 2.49 will be useful to prove that if a task
set can be correctly scheduled by 𝑆, 𝑆 can also correctly schedule rem-jobs generated
by this task set. Lemma 12.3 (Corollary 8 from [46]) will be used to show that any
scheduler used in the protocol will be C-sustainable, according to the hypotheses.
This lemma applies to any uniform multi-processor platform, and thus to identical
multi-processor platform. Therefore, we consider in the following that the job set J is
composed of one job of each task, as a worst-case.

Lemma 12.3 (Corollary 8 from [46]). Any work-conserving and Fixed Job Priority
(FJP) algorithm is C-sustainable on uniform multi-processor platforms.

The schedulability of the rem-jobs during mode change phase is ensured by the
Lemma 12.4.

Lemma 12.4 (Rem-job’s schedulability). Every rem-job’s deadline of every cluster will
be respected during every possible mode change phase, if and only if (i) the scheduler
is a clustered, FJP, preemptive, work-conserving scheduler and (ii) 𝑇src,𝑐 is schedulable
by the scheduler upon �̇�src

𝑐 cores configured in 𝜃𝑐.
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Proof. Because of (i) and Lemma 12.3, we know that the scheduler is C-sustainable.
Hence, the scheduler is C-sustainable and (ii): the rem-jobs of the task set 𝑇src,𝑐

are schedulable on their cluster. By construction, for any rem-job 𝐽𝑖, its remaining
execution time is lesser than 𝐶𝑖. Thus, the schedulability is ensured.

Lemma 12.5 ensures that the real-time constraint of each mode will be respected
during every possible transition.

Lemma 12.5 (Transition time constraint). The protocol will respect the time con-
straint Δdst if and only if ∀ src, dst, (𝑀src,𝑀dst) ∈ 𝒢, ∀ 𝜃𝑐-cluster, with 𝛿

src,dst
𝑐 being

the required reconfiguration delays ordered in decreasing order:

Δdst ≥ max
𝜃𝑐-cluster

reconfigured

Proof. The right part of the inequation computes themaximal upper-bound reconfigured.
By construction, if the hypothesis is respected, every cluster of each possible transition
will be reconfigured when required.

Theorem 12.2 proves the validity of our protocol, under its hypotheses.

Theorem 12.2 (Validity of acceptor). The acceptor protocol is valid if and only if
(i) the scheduler is a clustered, FJP, preemptive, work-conserving scheduler , (ii)𝑇src,𝑐 is
schedulable by the scheduler upon �̇�src

𝑐 cores configured in 𝜃𝑐 and
(iii) ∀ src, dst, (𝑀src,𝑀dst) ∈ 𝒢, ∀ 𝜃𝑐-cluster, with 𝛿src,dst𝑐 being the required recon-
figuration delays ordered in decreasing order:

Δdst ≥ max
𝜃𝑐-cluster

reconfigured

Proof. To prove the validity of the protocol, wemust prove that every rem-job’s deadline
will be respected during the mode change phase and that the real-time constraint Δdst

will be respected during each possible transition from every mode𝑀src to mode𝑀dst.

• Because of the hypotheses (i–ii), Lemma 12.4 can be applied and thus prove that
every job’s deadline will be respected during the mode change phase.
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• Because of the hypotheses (i–iii), Lemma 12.5 can be applied. Every real-time
constraint will be therefore respected.

Because the job’s deadlines and the real-time constraint will be respected, the protocol
is valid when the hypotheses (i–iii) are respected.

12.5 Evaluation: Time complexity

We start the evaluation of the protocol with a theoretical worst-case time complexity
analysis. We evaluate the theoretical worst-case time complexity of both the offline
and run-time phases of the protocol.

Concerning the offline phase: the computation of Idle𝑗 has aworst-case time complexity
of 𝑂(𝑛), asmakespan. First, the protocol computes𝑚′ makespan upper-bounds, where
𝑚′ ≤ 𝑚 is the number of clusters and 𝑛′ ≤ 𝑛 the largest number of tasks that a cluster
has to schedule, hence a complexity of 𝑂(𝑚′×𝑛′) = 𝑂(𝑚×𝑛). Steps 2 and 3 performed
on clusters contain a sort on at most𝑚 elements, and Step 3 also computes Idle𝑗 for at
most𝑚 cores. Thus, complexity of Step 2 is 𝑂(𝑚 × log(𝑚)) and complexity of Step 3
is 𝑂(𝑚 × log(𝑚) + 𝑚) = 𝑂(𝑚 × log(𝑚)). The total complexity of the offline phase is
thus 𝑂(𝑚 × log(𝑚) + 𝑚 × 𝑛).

Concerning the run-time phase, it has the same complexity as the scheduler. Choosing
the reconfiguration to perform can be made in 𝑂(1) with an efficient choice of data
structure.

The complexity of the upper-bound reconfigured is straightforward. Computing once
the first sum of 𝐶𝑖 has a worst-case time complexity of 𝑂(𝑛). Because it is constant for
any value of 𝑗, with a given task set, it may be computed once. Thus, once computed,
the worst-case complexity of the computation can be obtained in 𝑂(1). reconfigured
computes 𝑚 Idle𝑗, and the total worst-case time complexity is thus 𝑂(𝑚 × 1 + 𝑛) =
𝑂(𝑚 + 𝑛).

Complexities for both offline and run-time phases are very low, and make the protocol
easily scalable.
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Figure 12.2: Pessimism of reconfigured

12.6 Evaluation: empirical pessimism of reconfigured

We continue the evaluation with the use of simulations to evaluate the pessimism of
the bound introduced in Section 12.3.

To the best of our knowledge, the upper-bound Idle𝑗 pessimism has not been evaluated,
neither theoretically nor empirically. We provided here an empirical evaluation of
reconfigured, which is based on Idle𝑗. We measure the pessimism ratio upper-bound

mode change time
,

where themode change time is a measurement of the simulated mode change phase,
and where the upper-bound corresponds to the computation of reconfigured for a given
cluster.

The experiment has been conducted for clusters with𝑚′ = 2, 4, 16 and 64 cores. The
reconfiguration times are uniformly chosen in the range [0, 10], where 0 indicates
that no reconfiguration is required. We generate approximately 1 000 feasible task
sets with utilisations ∈ (𝑝 − 0.1, 𝑝], where we increase 𝑝 from 0.5 to 1.0 in steps of
0.1. The deadlines are uniformly chosen in the range [2, 10]. As a scheduler, we use
Global-RM and remove any non-schedulable task set from our experiments. For those
experiments, time is discrete.

The results are displayed in Figure 12.2 and can be read this way: the average pessimism
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is 14% for a cluster with𝑚′ = 16 and a task set utilisation of 0.7. This means that the
upper-bound is (on average) 14% larger than the actual duration in this configuration.
The maximal observed pessimism is 30% and the minimal is 8%. The pessimism
is correlated to both the utilisation and the number of cores. A higher utilisation
leads to a higher (but bounded) pessimism, and so does a higher number of core in a
platform. Also, the minimal and maximal pessimism tend to be closer and closer to
the average with a higher number of cores. You may note that the number of cores
per cluster is quadrupled between each simulations. However, the pessimism is only
slightly increased every time the number of cores is quadrupled once𝑚′ > 1. In our
experiment, the average pessimism is empirically bounded.

These experimental results show that the upper-bound reconfigured is accurate and
can be used for clusters having a large amount of cores or a high utilisation.

12.7 Evaluation: Competitive analysis of
ACCEPTOR

After the empirical evaluation of the pessimism of the upper-bound reconfigured, we
now evaluate the competitive analysis of the protocol itself.

Definition 12.1 (𝜆-competitive protocol). A protocol is said to be 𝜆-competitive if it
takes at most 𝜆 × 𝑂 time to complete a mode change phase, where 𝑂 is the optimal
mode change phase duration.

To perform the competitive analysis of the protocol, we search for a worst-case scenario,
i.e. a system for which the relative difference between our protocol’s performance and
an optimal one is the highest. We first define what a squeezable system is, and then
prove several properties on those systems, which leads to prove that they correspond
to the worst-case. Once we have this worst-case, we compute the competitiveness of
the protocol. An example of a squeezable system is depicted in Figure 12.3. The top
graph shows a specific mode change phase handled by acceptor, and below is the
same mode change phase handled by an optimal one.

After the introduction of several definitions and notations, we perform the competitive
analysis.
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12.7.1 Preliminary definitions and notations

We now introduce several definitions. The first ones concern different aspect of the idle
time. As defined in Definition 2.50 on page 31, an Idle𝑗 instant is the earliest instant
such that at least 𝑗 cores are idle. A formal definition is given below.

Definition 12.2 (Idle𝑗(𝐽,𝑚′)). Idle𝑗(𝐽,𝑚′) is the earliest instant such as at least 𝑗 cores
may be idle when the job set 𝐽 is scheduled by any work-conserving scheduler upon a
cluster composed of 𝑚′ cores,

Unlike Idle𝑗, this value is the exact instant. We also introduce the following new
notations:

Definition 12.3 (Idlemax(𝑆)). Idlemax(𝑆) is the length of the longest period duringwhich
a core is idle when a mode change phase of a system 𝑆 is handled by acceptor.

We also introduce the notion of excess idle, denoted Idle+.

Definition 12.4 (Idle+). Idle+ is the extra duration where cores are idle during a mode
change with our protocol, in comparison to an optimal protocol.

For example, in Figure 12.3 Idle+ = 2 × 6 = 12.

To increase the readability, we now introduce two notations.

Definition 12.5 (|US(𝑆)|). The required time to handle the mode change phase of
the system 𝑆, in the worst-case were all the jobs are released at 𝑡MCR, when using
acceptor is denoted as |US(𝑆)|.

Definition 12.6 (|OPT(𝑆)|). The required time to handle the mode change phase of
the system 𝑆, in the worst-case were all the jobs are released at 𝑡MCR, when using an
optimal protocol for this given system S is denoted as |OPT(𝑆)|.

Please note that an optimal protocol doesn’t have the same constraints as acceptor.
For example, it doesn’t have to schedule the rem-jobs using a work-conserving sched-
uler.

Finally, we define the notion of squeezable system, in the context of a mode change
transition.

129



CHAPTER 12. A FIRST PROTOCOL FORMULTI-MODE APPLICATIONS:
ACCEPTOR

Definition 12.7 (Squeezable). A system 𝑆 is said to be squeezable if and only if 𝑆 has
only one required reconfiguration 𝜃𝑐 —with a reconfiguration delay of 𝛿𝑐— to perform
during the mode change transition and a set of rem-jobs 𝐽 on a cluster having𝑚′ cores
such that:

i ∑𝐶𝑖 = 𝛿𝑐 × (𝑚′ − 1),

ii Idle1(𝐽,𝑚′) = Idle2(𝐽,𝑚′) = ⋯ = Idle𝑚′(𝐽,𝑚′) = 𝛿𝑐 ×
𝑚′−1
𝑚′

,

iii Idle1(𝐽,𝑚′ − 1) = Idle2(𝐽,𝑚′ − 1) = ⋯ = Idle𝑚′−1(𝐽,𝑚′ − 1) = 𝛿𝑐,

iv ∀𝑖, 𝑑𝑖 ≥ 𝛿𝑐.

This notions will be heavily used in the following lemmas, corollaries and theorems,
see Figure 12.3 for an illustration.

12.7.2 Competitive analysis

Here is an overview of the competitive analysis. Lemma 12.7 and Lemmas 12.8–12.10
introduce several properties that stand for any system. Lemma 12.6, Corollary 12.3 and
Lemma 12.11 use both properties on squeezable systems and the global properties to
prove that squeezable systems are a worst-case in Corollary 12.4. Using the worst-case,
Theorem 12.5 states that acceptor is 2𝑚′−1

𝑚′
-competitive on a cluster composed of 𝑚′

cores. Then, Corollary 12.6 proves that acceptor is 2-competitive.

In the following, we assume that any system 𝑆 has the required reconfigurations Θ̃ to
perform, and a set of rem-jobs 𝐽 to execute on a cluster having 𝑚′ cores during any
mode change. We also need to know the duration of the longest element, whether it
is a job execution or a reconfiguration. Formally, we denote for such a system 𝑆 the
longest atomic duration —either the WCET of a job or a reconfiguration delay— the
value 𝐶 ≐ max{max𝑛𝑖=1{𝐶𝑖},max𝜃𝑐∈Θ̃{𝛿𝑐}}. This value is by definition strictly positive.

Lemma 12.6. Any optimal mode change of any squeezable system 𝑆may be handled
in 𝛿𝑐 time-units. Formally, |OPT(𝑆)| = 𝛿𝑐 = 𝐶.

Proof. The rem-jobs can all be scheduled on 𝑚′ − 1 cores, and one core can be re-
configured at 𝑡 = 0. The rem-jobs will be complete at 𝑡 = Idle𝑚′−1(𝐽,𝑚′ − 1) = 𝛿𝑐
and the reconfiguration will be done at 𝑡 = 𝛿𝑐. Because of iv), the deadlines will be
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𝜋3 𝜏3 𝜏4 𝜏5 reconfiguration, 𝛿 = 6
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𝜋1 reconfiguration, 𝛿 = 6

𝜋2 𝜏1 𝜏2 𝜏3 𝜏4

𝜋3 𝜏2 𝜏3 𝜏4 𝜏5

Figure 12.3: A squeezable system with𝑚′ = 3 and 𝑛 = 5

respected. By construction, 𝛿𝑐 = 𝐶. The lemma follows. This lemma is illustrated in
Figure 12.3.

Lemma 12.7. Any optimal mode change of any system 𝑆 takesmore than𝐶 time-units.
Formally, |OPT(𝑆)| ≥ 𝐶.

Proof. No intra-parallelism is allowed, so the system 𝑆may not last less than the longest
element to schedule, whether it is a job or a reconfiguration.

Corollary 12.3. For any mode change of any system 𝑆, the ratio 𝐶
|OPT(𝑆)|

is maximised
when |OPT(𝑆)| = 𝐶.

Proof. This is a direct implication of Lemma 12.7.

Lemma 12.8. During any mode change handled by acceptor of any system 𝑆, a core
cannot be idle longer than 𝐶 time-units. Formally, Idlemax(𝑆) ≤ 𝐶.

Proof. acceptor uses a work-conserving scheduler. Thus, a core may be idle only if
the number of jobs and reconfigurations waiting to be executed or performed is lower
than the number of cores. It immediately follows that all the reconfigurations and jobs
will be completed at most 𝐶 time-units later. The lemma follows.
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Lemma 12.9. For any mode change of any system 𝑆, |US(𝑆)| = |OPT(𝑆)| + Idle+
𝑚′

.

Proof. We introduce here the notion of Idleopt. The value Idleopt is the amount of idle
time with an optimal protocol. It stands that:

𝑚′ × |OPT(𝑆)| =
𝑛
∑
𝑖=1

𝐶𝑖 + ∑
𝜃𝑐∈Θ̃

𝛿𝑐 + Idleopt

Informally, this equation represents the sum of the work to perform plus the idle time.
Because Idleopt is the amount of idle time with an optimal protocol it is incompressible.
By definition of the excess idle, the following stands as well:

𝑚′ × |US(𝑆)| =
𝑛
∑
𝑖=1

𝐶𝑖 + ∑
𝜃𝑐∈Θ̃

𝛿𝑐 + Idleopt + Idle+

With the two previous equations, we trivially have that:

|US(𝑆)| =
∑𝑛

𝑖=1 𝐶𝑖 +∑𝜃𝑐∈Θ̃
𝛿𝑐 + Idleopt + Idle+
𝑚′ = |OPT(𝑆)| +

Idle+
𝑚′

Lemma 12.10. For any mode change of any system 𝑆 handled by acceptor,

Idle+ ≤ (𝑚′ − 1) × 𝐶

Proof. By definition, the excess idle is smaller than the sum of the length of all the
periods where a core is idle. At most𝑚′ −1 cores will be idle, because at least one core
will never be idle. Therefore:

Idle+ ≤ (𝑚′ − 1) × Idlemax(𝑆)

≤ (𝑚′ − 1) × 𝐶 (Lemma 12.8)

The lemma follows.

Lemma 12.11. For any mode change of any system 𝑆 handled by acceptor, when
𝐶

|OPT(𝑆)|
is maximised, |US(𝑆)|

|OPT(𝑆)|
is maximised as well.
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Proof.

|US(𝑆)| = |OPT(𝑆)| +
Idle+
𝑚′ (Lemma 12.9)

⇒
|US(𝑆)|
|OPT(𝑆)| =

|OPT(𝑆)| + Idle+
𝑚′

|OPT(𝑆)|

⇒
|US(𝑆)|
|OPT(𝑆)| ≤

|OPT(𝑆)| + 𝐶 × 𝑚′−1
𝑚′

|OPT(𝑆)| (Lemma 12.10)

⇒
|US(𝑆)|
|OPT(𝑆)| ≤ 1 + 𝐶

|OPT(𝑆)| ×
𝑚′ − 1
𝑚′

Given a system 𝑆, the only variable here is the ratio 𝐶
|OPT(𝑆)|

. The lemma follows.

Corollary 12.4. When handling any mode change of any squeezable system 𝑆 with
acceptor, the ratio |US(𝑆)|

|OPT(𝑆)|
is maximised. Thus, any squeezable system is a worst-case

of acceptor.

Proof. Lemma 12.6 and Corollary 12.3 states that this corollary’s hypotheses leads to
a maximal ratio 𝐶

|OPT(𝑆)|
and Lemma 12.11 shows that maximising the ratio 𝐶

|OPT(𝑆)|
is

equivalent to maximising the ratio |US(𝑆)|
|OPT(𝑆)|

. Thus, this corollary follows.

Theorem 12.5. For any system composed of 𝑚′ cores, the acceptor protocol is
2𝑚′−1
𝑚′

-competitive.

Proof. To prove that acceptor is 2𝑚′−1
𝑚′

-competitive, we have to prove that for any

system 𝑆, the ratio |US(𝑆)|
|OPT(𝑆)|

≤ 2𝑚′−1
𝑚′

. The Corollary 12.4 states that the maximal ratio
will be obtained on any squeezable system 𝑆. On such a system, we know that:

|US(𝑆)|
|OPT(𝑆)| =

Idle1(𝐽,𝑚′) + 𝛿𝑐
𝛿𝑐

=
𝛿𝑐 ×

𝑚′−1
𝑚′

+ 𝛿𝑐
𝛿𝑐

= 𝑚′ − 1
𝑚′ + 1

= 2𝑚′ − 1
𝑚′

Thus, acceptor takes at most 2𝑚
′−1
𝑚′

of the required time than an optimal protocol.
The theorem follows.
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Figure 12.3 shows an example of such a system with𝑚′ = 3, 𝑛 = 5 and 𝛿𝑐 = 6.

Corollary 12.6. For any system composed of 𝑚′ cores, the acceptor protocol is
2-competitive. This upper-bound is tight.

Proof. Theorem 12.5 states that acceptor is 2𝑚′−1
𝑚′

-competitive. It stands that

∀𝑚′ > 0, 2𝑚
′ − 1
𝑚′ < 2

Thus, acceptor is 2-competitive. This upper-bound is tight, because of the following
limit:

lim
𝑚′→∞

2𝑚′ − 1
𝑚′ = 2

12.8 Handling mode independent tasks

In our model, all tasks are mode dependent. Real-time applications may have mode
independent tasks: e.g. tasks that run during the whole lifespan of the application
such as the OS. Our model ’as is’ does not permit such tasks to run. However, a trivial
extension with no effect on the validity nor the complexity would be to restrain those
tasks to a specific cluster with no reconfiguration allowed. Still, mode dependent
tasks could run on such a cluster and because of Lemma 12.3, their rem-jobs would be
correctly scheduled.

Doing so removes the limitation in a very easy way and makes the model usable for
real-world applications.

12.9 Improving the upper-bound reconfigured

A way to improve this protocol usability is to improve the upper-bound reconfigured.
By reducing the pessimism of this bound, it can improve the acceptance rate of the
protocol. In this section, we will explore one possible approach, and evaluate its
efficiency.
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12.9.1 Changing the idle upper-bound

The upper-bound reconfigured is heavily based on the chosen idle upper-bound. As a
reminder:

reconfigured ≐
𝑚′

max
𝑗=1

{Idle𝑗 + 𝛿𝑗} (12.4)

A way to reduce the upper-bound is to use different and better idle upper-bound. [3]
presents several upper-bounds, and especially this one:

Lemma 12.12 (Lemma 2.15 in [3]). Suppose that 𝐽 is ordered by non-decreasing job
processing times, i.e. , 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛, all starting at 𝑡 = 0. Suppose that no
reconfigurations are performed on none of the 𝑚′ cores. Then, whatever the job
priority assignment made by a FJP work-conserving global scheduler, an upper-bound
Idle′𝑗 on the Idle𝑗 instant, where 1 ≤ 𝑗 ≤ 𝑚′, is given by:

Idle′𝑗 ≐
∑𝑛

𝑖=1 𝑐𝑖 +∑𝑗−1
𝑖=1 idle𝑖

𝑚 (12.5)

where

Idle𝑗 ≐
∑𝑛−𝑚+𝑗

𝑖=1 𝑐𝑖
𝑚 (12.6)

This other upper-bound is theoretically incomparable with the previous one. Therefore,
we decided to try it empirically by using it in the alternative upper-bound reconfigured′:

reconfigured′ ≐
𝑚
max
𝑗=1

{Idle′𝑗 + 𝛿𝑗} (12.7)

12.9.2 Time complexity

The theoretical complexity of this bound is slightly higher. As stated in Section 12.5, the
computation of Idle𝑗 has aworst-case time complexity of 𝑂(𝑛), but it may be reduced for
several computations. This drops the total worst-case time complexity of reconfigured
to 𝑂(𝑚 + 𝑛).

Idle𝑗 has a complexity of 𝑂(𝑛). Idle′𝑗 computes up to𝑚 Idle𝑗, and the sum of 𝐶𝑖 may be

computed once per task set, with a complexity of 𝑂(𝑛). Thus, the complexity of Idle′𝑗
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Figure 12.4: Average ratio reconfigured′

reconfigured

is 𝑂(𝑚 × 𝑛 + 𝑛) = 𝑂(𝑚 × 𝑛). Computing𝑚 times this complexity gives a worst-case
time complexity of 𝑂(𝑚2 × 𝑛) for reconfigured′.

The time worst-case complexity of reconfigured′ is higher than the one
of reconfigured, it remains however low.

12.9.3 Evaluation

As it is theoretically incomparable, we have conducted simulations to observe how
this new bound was performing compared to the previous one, in the same simulation
environment as in Section 12.6.

We use here the same evaluations parameters as in Section 12.6. The experiment has
been conducted for clusters with𝑚′ = 1, 4, 16 and 64 cores. The reconfiguration times
are uniformly chosen in the range [0, 10], where 0 indicates that no reconfiguration
is required. We generate approximately 1 000 feasible task sets with utilisations ∈
(𝑝 − 0.1, 𝑝], where we increase 𝑝 from 0.6 to 1.0 in steps of 0.1. The deadlines are
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uniformly chosen in the range [2, 10]. As a scheduler, we use Global-RM and remove
any non-schedulable task set from our experiments. For those experiments, time is
discrete. We measured the ratio reconfigured′

reconfigured
. The results are displayed in Figure 12.4

and can be read this way: the average ratio reconfigured′

reconfigured
is 1.1 for a cluster with𝑚′ = 4

and a task set utilisation of 0.9. This means that the upper-bound reconfigured′ is (on
average) 10% larger than the upper-bound reconfigured.

For the specific case of clusters with only one processor, we see that both upper-bound
are equivalent. This is because both Idle and Idle′ are exact in this case. For any other
value, the upper-bound reconfigured′ is greater than reconfigured, and thus less precise.
Moreover, this looseness increases the more cores there is in a cluster, and the higher
the utilisation is.

12.9.4 Last words about reconfigured′

This new bound was proved to be less precise than the other one. Therefore, it has
no use in practice. However, it shows the available possibilities to improve the whole
protocol by changing only a part of it. Further researches could be led this way, with a
positive results.
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Chapter 13

SQUARER

In this chapter, we propose another protocol for multi-mode applications, where both
the hardware may be reconfigured and the software may be changed. This protocol is
called squarer, which stands for SQUaring AsynchRonous clustEr-based pRotocol.
squarer aims at reducing the duration of mode change phases and to propose an
upper-bound of the mode change phases smaller than reconfigured in order to be able
to handle more multi-mode applications. The idea is to balance the work done through
the mode change phase, by reducing the delay between the instant where the first core
has no more reconfiguration to do nor job to execute and the last one. Informally, it
squares the shape of the mode change phase. Balancing the work during the mode
change phase leads to a reduced mode change phase duration, and thus potentially
accepting more multi-mode application than acceptor. To do so, squarer may
reconfigure a processor that still has jobs to execute. In the worst-case, squarer will
behave exactly like acceptor. squarer has the same characteristics as acceptor:
an aperiodic asynchronous protocol, designed to handle multi-mode applications
modelled by the model presented in Chapter 11. It may be used with any FJP work-
conserving C-sustainable scheduler.

We first present the protocol, and then its upper-bound. At last, we perform an evalu-
ation in terms of performance and time complexity and compare this new protocol
with acceptor introduced in Chapter 12.
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(a) With acceptor
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(b) Squaremode change phase

Figure 13.1: Same system with two different protocols

13.1 Protocol squarer description

squarer aims at balancing the work done through the mode change phase, by reduc-
ing the delay between the instant where the first core has no more reconfiguration to
do nor job to execute and the last one. The following definition specifies this instant.

Definition 13.1 (Reconfigured). A core that has no reconfiguration to do nor job to
execute is said to be reconfigured. Specifically:

• If a core was reconfigured once during the mode change phase, it is said to be
reconfigured;

• If a core has no reconfiguration to perform, it is said to be reconfigured when it
becomes idle.

reconfigured𝑗 refers to the instant where 𝑗
th cores are reconfigured in the platform.
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Thus, squarer aims at reducing the delay between the reconfigured1
and reconfigured𝑚′, where 𝑚′ is the number of core in the cluster. Reducing this
delay leads to reducing the amount of time where cores are idle, also referred to as
idle time, as shown in Figure 13.1. To do so, squarer may constraint some cores
to be reconfigured, even if they still have some jobs to execute. Indeed, the protocol
places the reconfigurations as soon as possible. Figure 13.1(b) shows a perfect square
mode change phase, with 0 idle time and thus no delay between reconfigured1 and
reconfigured3. Of course, it is not always possible to reach 0 idle time, depending on the
task set and/or the required reconfigurations. However, it is often possible to reduce
the idle time drastically.

To operate, the protocol will use the following lower-bound of the instant in which the
rem-jobs of the cluster are completed, and the required reconfigurations are done.

Corollary 13.1 (Lower-bound reconfigured). Suppose that 𝐽 is a list of jobs released
by 𝑇src,𝑐, and that 𝐽 is ordered by non-decreasing job processing times, i.e. , 𝑐1 ≤ 𝑐2 ≤
⋯ ≤ 𝑐𝑛, all starting at 𝑡 = 0. Suppose that the required reconfiguration delays are in
the vector 𝛿, ordered by reconfiguration time in decreasing order. Suppose that the
cluster is composed of 𝑚′ cores. Then, whatever the job priority assignment made by
any global scheduler, a lower-bound of reconfigured𝑚′ is given by:

reconfigured(𝑇src,𝑐, 𝑚′, 𝛿) ≐
∑𝑛

𝑖=1 𝑐𝑖 +∑𝑚′

𝑥=1 𝛿𝑥
𝑚′ (13.1)

Proof. The first sum∑𝑛
𝑖=1 𝑐𝑖 represents the required computing time while the second

sum∑𝑚′

𝑥=1 𝛿𝑥 represents the time spent by the cores being reconfigured. Obviously, it
is not possible to perform all this work faster than by equally balancing it on all the

cores, if possible. It will thus take at most ∑
𝑛src,𝑐
𝑖=1 𝑐𝑖+∑

𝑚′
𝑥=1 𝛿𝑥

𝑚′
units of time to schedule all

the rem-jobs and have all the cores reconfigured.

In the following, we first present the offline phase in Section 13.1.1, and then the
run-time phase in Section 13.1.2. In the following, reconfigured(𝑇src,𝑐, 𝑚′, 𝛿) will be
denoted as reconfigured for readability concerns.
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13.1.1 Offline phase presentation

The offline phase of this protocol starts with the offline phase of acceptor, defined
in Section 12.2.1. As a reminder: this first offline phase computes for every cluster of
every possible mode change transition the required reconfigurations to perform. It is
followed by a second offline phase, performed independently for every cluster of every
possible mode change transition. This second offline phase computes the required
constraints on the instant of reconfigurations in order to square each mode change
phase, while respecting the real-time constraints. To do so, the second offline phase
computes the maximal reconfiguration instant for the reconfigurations of each core, in
each cluster, for each mode change transitions. The maximal reconfiguration instant
for a given core is the instant at which a given reconfiguration should have started,
according to squarer. This computation is divided in two steps, done independently
for every cluster 𝑀src for every possible mode change transition from 𝑀src to 𝑀dst.
Here is an overview of those steps:

• Once the offline phase from acceptor has been done, determine for every
required reconfiguration the initial instant of reconfigurations, using the lower-
bound reconfigured;

• Check the rem-job deadlines or intra-task parallelism and delay everything
accordingly, potentially several times.

Figure 13.1 shows the same mode change phase performed by two different protocols.
Figure 13.1(a) shows the mode change phase performed by acceptor. The rem-
jobs are completed first and then, when processor 𝜋3 has no more job to execute it is
reconfigured. Because all the processors become idle at the same instant, and that only
one must be reconfigured: it creates a lot of idle time. In Figure 13.1(b), the mode
change phase is performed by squarer. During the second offline phase, the maximal
reconfiguration instant for 𝜋3 has been computed to be 0, to limit the idle time. As
seen in the figure, this leads to a mode change phase with 0 idle time, which is ideal. In
this example, we see that squarer significantly reduces the idle time when compared
to acceptor by constraining the reconfiguration instants.
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Offline phase 1

The first offline phase is exactly the same as the one presented in Section 12.2.1. It
determines for each cluster the required reconfigurations for every cluster𝑀src for every
possible mode change transition from𝑀src to𝑀dst. Once done, the following offline
phase can be performed for every cluster of every possible mode change transition.

Offline phase 2

This phase is divided in two steps. It is applied independently for every cluster of
every possible mode change transition. Without loss of generality, we assume that
all the cores must be reconfigured. If a core must not be reconfigured, we consider
that it performs an instantaneous reconfiguration. This reconfiguration has thus a
reconfiguration delay of 0 units of time.

The first step of this second offline phase is to compute an optimistic instant of re-
configuration for every core of the cluster. To do so, the 𝑗th longest reconfiguration
having a reconfiguration delay of 𝛿𝑗 is assigned on core 𝑗 at 𝑟𝑗 ≐ reconfigured − 𝛿𝑗. This
is very optimistic, as no idle time can occur in order to respect those reconfiguration
instants while successfully scheduling the rem-jobs. It is important to note that by
construction, all the cores would end up reconfigured at the same instant reconfigured
if reconfigured at this instant of reconfiguration.

The second step aims at computing the idle time introduced by the scheduler, in
order to compute an upper-bound. To do so, the rem-job deadlines are checked, and
the reconfiguration instants are shifted if required such that the rem-jobs may be
successfully scheduled. All the reconfigurations instants are shifted alongside, and
so all the cores would still end up reconfigured at the same time. There is no need
for a core to be reconfigured sooner as the real-time constraint considers only the last
processor being reconfigured. This second step may be done several times to have a
successful schedule. The deadline checking technique is explained in Section 13.1.3.
The final instants of reconfiguration are stored, and will be used at run-time.

13.1.2 Run-time phase

At run-time, the protocol is quite similar to acceptor. It will first ensure the correct
execution of the rem-jobs using the same scheduler as before, with a slight variation. We
assume that the reconfiguration instants of core �̇�𝑗 is 𝑟𝑗 ≥ 0, ∀𝑗. During the execution of
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the rem-jobs, when a core becomes idle, it may be reconfigured. The major difference
with acceptor is that core �̇�𝑗 is reconfigured at most at 𝑟𝑗, even if it is not idle yet. For
each 𝜃𝑐-cluster, the protocol takes as input the list of the remaining rem-jobs 𝐽 and the
required reconfigurations to make {𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst.

Formally,

• Schedule 𝐽 using the same scheduler as before, and apply Rule 1 and Rule 2when
possible;

• Rule 1: When a core that hasn’t been reconfigured becomes idle, reconfigure it
to the longest required reconfiguration 𝜃𝑐′ that hasn’t been performed yet, where
{𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst;

• Rule 2: If core �̇�𝑗 is not being reconfigured nor reconfigured at 𝑟𝑗, reconfigure it
to the longest required reconfiguration 𝜃𝑐′ that hasn’t been performed yet, where
{𝜃𝑐, 𝜃𝑐′} ∈ RTsrc,dst.

Whenever �̇�dst
𝑐′ cores are reconfigured to 𝜃𝑐′, the 𝜃𝑐′-cluster of the new mode𝑀dst is

formed and its task set 𝑇𝑐′,dst is enabled. Several clusters may have cores reconfigured
in 𝜃𝑐′ andmerged together to form a new 𝜃𝑐′-cluster. Thismode change phase ends once
all the rem-jobs have been completed and the required reconfigurations performed.
The old mode𝑀src is then disabled, and the new mode𝑀dst is enabled. A more formal
version is presented in Appendix A.2.

13.1.3 Preventing deadline misses

We use simulation to check that no rem-job deadline are missed on a given cluster,
with given reconfiguration instants. The simulation is ran in the worst-case scenario,
with each task releasing one job at the mode change request instant. Without loss of
generality, we assume that the processing rate of every couple task/configuration is 1.
As a job will be executed on one and only one configuration, we may simply see its
WCET as WCET

𝑅𝑖,𝑐
, where 𝑐 is the configuration of the cluster upon which the task 𝜏𝑖 is

partitioned. With the simulation, we compute the maximal deadline miss, denoted as
maxDM. The maximal deadline miss is the maximal difference between theWCET of a
rem-job and the time it has been executed , for any rem-job of the cluster. For example,
if a rem-job 𝐽𝑖 has a WCET 𝑐𝑖 = 3 and was aborted after being executed for only 1 unit

144



CHAPTER 13. SQUARER

0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽1 𝐽2 𝐽3 𝐽4 R

𝜋2 𝐽5 𝐽6 𝐽7 R

𝜋3 𝐽8 𝐽9 𝐽10 R

(a) Seminal schedule, 𝐽11 misses a deadline

0 1 2 3 4 5 6 7 8 9 10

𝜋1 𝐽1 𝐽2 𝐽3 𝐽4 𝐽11 R

𝜋2 𝐽5 𝐽6 𝐽7 𝐽11 R

𝜋3 𝐽8 𝐽9 𝐽10 I R

(b) Shifted schedule, 𝐽11 is successfully scheduled
Figure 13.2: Illustration of non-parallel idle time

of time: its requires 2 more units of execution time. If another aborted rem-job require
1 more unit of execution time, and all the other rem-jobs have been completed, we
havemaxDM = max{1, 2} = 2.

IfmaxDM = 0, the current reconfiguration instants will lead to a successful execution of
the rem-jobs, by construction. If maxDM > 0, it is required to shift the reconfiguration
instants in order to schedule successfully the rem-jobs. To do so, we now introduce
the following lemma.

Lemma 13.1. In a given mode change transition on a given cluster, where 𝑟 is the
vector containing the reconfiguration instants for every core of the cluster. If there are
𝑥 different unique reconfiguration instants, shifting all the reconfiguration instants by
1 would create 𝑥 units of non-parallel execution slots. Therefore, a lower-bound on
the required shifting of the reconfiguration instants is given by:

⎡⎢⎢
maxDM

|{𝑟𝑗|𝑟𝑗 ∈ 𝑟}|
⎤⎥⎥
,
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where the expression |{𝑟𝑗|𝑟𝑗 ∈ 𝑟}| denotes the number of unique different reconfiguration
instants.

Proof. The proof is trivially obtained by construction.

For example in Figure 13.2(a), we see a first schedule with no idle time. However, there
is a deadline miss because 𝐽11 is not executed, where 𝑐11 = 2. In this case,maxDM = 2.
We have three different reconfiguration instants: 3, 3 and 6. This means that there
are two unique different reconfiguration instants: 3 and 6. The required shifting to
schedule 𝑐11 is given by:

⎡⎢⎢
maxDM

|{𝑟𝑗|𝑟𝑗 ∈ 𝑟}|
⎤⎥⎥
= ⌈22⌉ = 1

The result of the shifted schedule is depicted in Figure 13.2(b). It can be seen that
shifting the reconfigurations of one creates two non-parallel execution slots, that gets
occupied by 𝐽11.

Shifting the reconfiguration instants may be done recursively, as several rem-jobs may
be aborted. However, one may note that several aborted rem-jobs does not necessary
require several shifting. In Figure 13.2(b), there is still room for an extra job with a
WCET 𝑐𝑖 = 1, with only one shifting.

13.2 Upper-bound and validity test

Unlikeacceptor,wedonot provide amathematical upper-bound formula for squarer.
To compute an upper-bound on the duration required to schedule all the rem-jobs and
to perform the required cores, it is required to execute the two offline phases. This
upper-bound is denoted as reconfigured", and is given by the following theorem.

Theorem13.2 (reconfigured"). Whenusing squarerprotocol for a givenmode change
transition on a given cluster, where 𝑟 is the vector containing the reconfiguration in-
stants for every core of the cluster. Assuming that 𝛿 is a vector containing the reconfig-
uration delays in decreasing order, and thus that the 𝑗th longest reconfiguration having
a reconfiguration delay of 𝛿𝑗 is assigned on the 𝑗th reconfigured core. The upper-bound
reconfigured" is given by:

reconfigured"(𝑟, 𝛿) ≐ 𝑟0 + 𝛿0

146



CHAPTER 13. SQUARER

Proof. The proof is trivially obtained by construction.

The following property is trivially true:

∀𝑗 s.t. 0 ≤ 𝑗 ≤ 𝑚, 𝑟0 + 𝛿0 = 𝑟𝑗 + 𝛿𝑗.

In otherwords, every corewill be reconfigured at the same time, if a core is reconfigured
at its instant of reconfiguration.

Similarly from acceptor, we can derive the upper-bound reconfigured" to obtain a
validity test. To ensure the validity of the protocol for a given application, we need to
verify that every deadline will be met during the transition phase, and that the new
mode will always be timely enabled.

The schedulability of the rem-jobs during mode change phase is ensured by the
Lemma 13.2.

Lemma 13.2 (Rem-job’s schedulability). Every rem-job’s deadline of every cluster will
be respected during every possible mode change phase, if and only if (i) the scheduler
is C-sustainable and (ii) simulation proved that the rem-jobs generated by 𝑇src,𝑐 were
schedulable with the computed reconfiguration instants 𝑟.

Proof. Because the scheduler is C-sustainable, we know that any sets of rem-jobs
generated by 𝑇src,𝑐 will be schedulable with the given reconfiguration instants 𝑟. Thus,
the schedulability is ensured.

Lemma 13.3 ensures that the real-time constraint of each mode will be respected
during every possible transition.

Lemma 13.3 (Transition time constraint). Assuming that 𝑟𝑐 is the vector containing
the reconfiguration instants for every core of the 𝜃𝑐-cluster. Assuming that 𝛿 is a vector
containing the reconfiguration delays in decreasing order, and thus that the 𝑗th longest
reconfiguration having a reconfiguration delay of 𝛿𝑗 is assigned on the 𝑗th reconfigured
core. The protocol will respect the time constraint Δdst if and only if

Δdst ≥ max
𝜃𝑐-cluster

reconfigured"(𝑟𝑐, 𝛿)
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𝑚′ reconfigured reconfigured"
1 1.4 4.7
4 1.5 5.0
16 7.0 21.0
32 36.7 69.8
64 68,3 112.3

Table 13.1: Execution time comparison (seconds)

Proof. The right part of the inequation computes themaximal upper-bound reconfigured"
for any 𝜃𝑐-cluster. By construction, if the hypothesis is respected, every cluster of each
possible transition will be reconfigured when required according to Δdst.

Theorem 13.3 proves the validity of our protocol, under its hypotheses.

Theorem 13.3 (Validity of squarer). The acceptor protocol is valid if and only if
(i) the scheduler is a clustered, C-sustainable scheduler, (ii) simulation proved that the
rem-jobs generated by 𝑇src,𝑐 were schedulable with the computed reconfiguration in-
stants 𝑟𝑐, (iii) ∀ src, dst, (𝑀src,𝑀dst) ∈ 𝒢, ∀ 𝜃𝑐-cluster where 𝑟𝑐 is the vector containing
the reconfiguration instants for every core of the 𝜃𝑐-cluster:

Δdst ≥ max
𝜃𝑐-cluster

reconfigured"(𝑟𝑐, 𝛿)

Proof. To prove the validity of the protocol, wemust prove that every rem-job’s deadline
will be respected during the mode change phase and that the real-time constraint Δdst

will be respected during each possible transition from every mode𝑀src to mode𝑀dst.

• Because of the hypotheses (i–ii), Lemma 13.2 can be applied and thus prove that
every job’s deadline will be respected during the mode change phase.

• Because of the hypotheses (iii), Lemma 13.3 can be applied. Every real-time
constraint will be therefore respected.

Because the job’s deadlines and the real-time constraint will be respected, the protocol
is valid when the hypotheses (i–iii) are respected.
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13.3 Execution time

The theoretical worst-case time complexity is hard to evaluate, as the protocol includes
simulation. We provide here the average execution time of both the computation
of reconfigured and reconfigured". To compute this average execution time, we have
executed 6000 task sets per value of 𝑚′ with utilisation varying from 0.5 to 1, with
𝑚′ = 1, 4, 16, 32, 64. The experiments have been run on an Intel® I7-7500U. In order
to provide a fair comparison, we have executed the exact same task sets for both
upper-bound. The results are shown in Table 13.1.

We can see that the time taken to compute the upper-bound reconfigured" is 2 to 3 times
larger than the time taken to compute the upper-bound reconfigured. This ratio actually
reduces with a higher number of core per cluster. Being 2 to 3 times longer only makes
the approach comparable in time complexity, as it is a constant factor of the offline
phase duration. Therefore, despite having a non-predictable time complexity due to
the use of simulation, the actual time complexity remains very low and comparable to
the one of reconfigured.

13.4 Empirical performances evaluation of
reconfigured"

By construction, reconfigured" has no pessimism as it uses simulation to place reconfig-
urations, and is thus an exact upper-bound. Of course, this is based on the assumption
that all the tasks would release a job just before the mode change request and take up
to their WCET after the mode change request to be completed. In other scenarii, some
jobs will not be active or not need to be executed up to their WCET to be completed.
Thus, some mode change phase would be faster than reconfigured".

Despite the fact that reconfigured" has no pessimism, we wanted to compare it to the
competitor introduced in the previous chapter: reconfigured. We measured the ratio
1+ reconfigured"−reconfigured

reconfigured
. We used here same experiment parameters as in Section 12.6,

described in the next paragraph.

The experiment has been conducted for clusters with𝑚′ = 1, 4, 16 and 64 cores. The
reconfiguration times are uniformly chosen in the range [0, 10], where 0 indicates
that no reconfiguration is required. We generate approximately 1 000 feasible task
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Figure 13.3: Pessimism comparison between reconfigured and reconfigured"

sets with utilisations ∈ (𝑝 − 0.1, 𝑝], where we increase 𝑝 from 0.5 to 1.0 in steps of
0.1. The deadlines are uniformly chosen in the range [2, 10]. As a scheduler, we use
Global-RM and remove any non-schedulable task set from our experiments. For those
experiments, time is discrete.

The results are displayed in Figure 13.3 and can be read thisway: the average ratio is 0.76
for a cluster with𝑚′ = 64 and a task set utilisation of 0.8. This means that the upper-
bound reconfigured" is (on average) 24% smaller than the upper-bound reconfigured. It
is shown that both upper-bounds are equal (and exact) when 𝑚′ = 1. There seems
to be no correlation here between the utilisation and the ratio neither between the
number of cores and the ratio, for any number strictly above 1. This is probably due to
the fact that the shape of the task set and how squarable they are matters the most.
However, you may note that for any number of core above 1, reconfigured" is at least
shorter than reconfigured by 20%. The minimal and maximal ratio here are irrelevant.
Indeed, as reconfigured is never better than reconfigured", the maximal ratio is 1. The
minimal ratio is close to 0.5 for most cases, as the worst-case of acceptor previously
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Figure 13.4: Total idle comparison between reconfigured and reconfigured"

shown is often met.

Next, we have measured the same ratio with the same experiment parameters, but
with the performances of the protocols acceptor and squarer in Figure 13.4. We
have measured the average total idle time during a mode change phase with both of
the protocols. Of course, as there is a fixed amount of work to perform during a mode
change phase, there is a correlation between the total idle time and the mode change
phase duration. We can see that squarer outperforms acceptor for any value of
𝑚′ > 1. squarer has up to 60% less idle time than acceptor, in the case of 𝑚′ = 4,
with a task set having a utilisation of 0.7.
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Conclusion

In this part, we have addressed the problem of multi-mode applications on reconfig-
urable platforms. We proposed the first model modelling this new paradigm, i.e. where
both the hardware configuration and the software workload are potentially different
before and after the reconfiguration. We then proposed two protocols to handle such
applications. Both acceptor and squarer can be used with multi-mode applica-
tion on reconfigurable platforms, alongside with an FJP work-conserving clustered
scheduler. We proposed a validity test associated with both protocols, so that it can
be used in practice. Through a complete evaluation, we showed that both protocols
were usable in practice and could scale for large systems. Their offline and run-time
complexity are indeed low enough. We can also deduce from the result that squarer
was outperforming acceptor in term of acceptance rates. The trade-off in terms of
time complexity versus performance is in favour of squarer which happens to be
slightly slower than acceptor for a better performance and acceptance rate. Using
both run-time configuration and multi-mode software help the designer to make the
most out of the platform, by adjusting the hardware to the current need of the applica-
tion. We believe that our model captures the reality of those applications, and that our
protocols provide the required performance and complexity to be used by application
designers.

In the future, we would like to propose a closed-form solution for squarer to re-
move the need of simulation for this protocol. We would also like to include mode
independent tasks in the multi-mode application with fewer constraints. Those tasks
are released even during a mode change phase, and thus the schedulability problem
becomes much more complex. Also, we would like to explore the possibility of having
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a custom scheduler designed only for the scheduling of rem-jobs during amode change
phases. Indeed, the scheduler used is designed to handle task periodicity. Thus, a new
scheduler specifically designed for mode change phases could reduce the makespan
and therefore improve the efficiency of the protocol.
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General conclusion and perspectives
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Real-time systems are everywhere, and their importance is growing. They are not just
limited to specific customers but distributed widely to the public, as cars or drones. The
hardware embedded in those systems is getting more and more powerful. As for any
hard real-time systems, the major constraint is the absence of errors that guarantees
the security of the system and their users. To provide more powerful systems running
complex application, the hardware systems need to evolve and remain cost-effective.
It has been long time since following Moore’s law was no longer possible with strictly
uniprocessor platforms. The cost of producing high clock frequency uniprocessor
platform would be very high, as well as the energy consumption and thermal aspects.

Since year 2000, embedded systems are now composed of multi-processor platforms.
Multi-processor platforms lead to the use of the parallel programming paradigm. How-
ever, according to Amdhal’s law, parallelisation cannot lead to infinite speed up. To
pursue the efficiency improvement, a lot of modern platforms are now heterogeneous
to provide versatile and specialised hardware. Some platforms have different proces-
sors, of different types, with some of them being reconfigurable. Therefore, those
new platforms are way more complex than the uniprocessor platforms. Also, others
considerations are taken into account. The energy consumption needs to remain as
low as possible, the hardware weight must be low. Temperature may be constrained as
well.

The shift to parallel computing was already challenging for hard real-time scheduling,
as it brings up scheduling anomalies and because avoiding intra-task parallelism is
not trivial. The new layers of complexity bring even more challenges to hard real-time
scheduling. The literature contains very few usages of such platforms, especially when
it comes to using the whole potential of it.

In this thesis, we have proposed several approaches to tackle those issues. First of
all, we have explored the global scheduling paradigm for heterogeneous unrelated
platforms. The literature proposes very few solutions for such platforms. In fact, only
one algorithm was tackling the complete problem while being optimal. Of course, this
optimality stands only by assuming certain hypothesis. Moreover, the only optimal
solution presented in [19] was flawed, as shown in Chapter 6. One of our contributions
was to exhibit the flaw, to correct it and to prove the correctness of our new solution.
We also have shown that all the existing approaches were neglecting a major cost in
global scheduling: the migrations from one cluster to another.
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To take into account the costs of inter-cluster migrations encountered in practice,
we proposed a new model. This new model captures more accurately the reality of
the platform, which permits to reduce the costs of inter-cluster migrations. We took
advantages of this new model in Chapters 4–9. In those chapters, we decomposed
the existing scheme for global scheduler for heterogeneous unrelated platforms into
different steps. We then improved every step and proposed variations and optimisations
to it. This way, we have built a completely new optimal algorithm and shown that it
was performing better than the existing ones. In particular, we have measured the
migrations from one cluster to another, and showed a significant reduction. This is
a significant contribution to the literature, as it is the second optimal algorithm for
heterogeneous unrelated platform. We also have proved its correctness, in order to
ensure the validity of our work.

The optimisations and variations proposed also offer directions to future research.
We first introduced the use of linear algebra for the template construction. We also
proposed to use optimisation after the template schedule construction, by making use
of the Travel Salesman Problem (TSP). Other similar optimisations could be derived
from those optimisations. These optimisations and variations open a new field of
research for scheduling with original approaches to the problem, and constitute thus a
contribution.

The last contribution from Chapters 4–9 is the proof that the only global optimal
algorithm for heterogeneous unrelated platforms for sporadic tasks presented in [29]
was flawed as well. We do not provide any correction for this algorithm.

In this thesis, we have covered a significant part of the problem of global scheduling
for heterogeneous unrelated platforms, by proposing a new model and a new optimal
algorithm, with better performance compared to the literature. We have also pointed
out two flaws in the literature, and introduced new directions for further research.

This domain of the real-time literature still offers a lot of subjects to work on. Despite
the fact that our solutions improve the state of the art, there are still too much migra-
tions to be used in practice ‘as is’. Further works would focus on reducing this number
of migrations to improve the usability of the schedulers. Also, the new directions
could be explored to optimise the schedule performance as well. At last, the use of
sporadic tasks is worth the investigation. It may be done by trying to correct the flawed
algorithm, or with a brand new algorithm.
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Exploiting every processing capacities available is one important aspect of this thesis.
In order to get the full potential from the capabilities of modern heterogeneous un-
related platforms, we have also explored the use of processor reconfigurations. We
chose to merge processor reconfigurations into the existing multi-mode application
paradigm. It was a natural fit to reconfigure the processors to the new requirements,
while simultaneously changing the software. Multi-mode applications have several
advantages. A lot of applications will execute a workload based on a given context or
internal states. This is the case of a security camera, that will probably not operate
in the same way during day and night, or when there is nothing in its field of vision.
One way to model this is to use sporadic tasks. However, it is pessimistic as some tasks
will never be ran alongside others. Multi-mode applications thus help to analyse the
real hardware needs of an application. It leads to a gain in hardware requirements,
which directly leads to gains in terms of cost, space and energy consumption: three
key factors for embedded systems.

Our first contribution to the use of processor reconfigurations is the creation of the
first model that merges those two aspects. Our model is simple enough to be used in
practice, while having the potential to deliver complex and useful results.

With this new model, we proposed our second contribution: a first protocol to handle
application with hardware reconfigurations and software modes. This protocol is
dedicated to the handling of mode change phases. This first protocol adopts a simple
approach, and we led a full study to demonstrate theoretically and empirically its
performance and limitations. We have shown that it was 2-competitive, and with a
time-complexity that is low enough to be used with large applications.

This protocol is divided into two offline steps and one run-time step. As it is the first
protocol for the new model, it sets of a standard for the following protocols. One or
several of those three steps may be improved to produce better performing protocols.
Our thorough study of this first protocol alsomakes it comparable with future protocols.

The third contribution of this thesis regardingmulti-mode protocols is another protocol.
This new protocol is based on the same first offline step as the first one, but significantly
improves the second and third steps. It proposes a more complex approach. It leads
to better performance for a comparable time-complexity, as shown by the different
comparison ran. However, it proposes no closed-form when it comes to acceptance
of new applications. We believe that it is still a significant improvement compared to
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the first protocol, as its performance is way better, and the empirical acceptance rate is
significantly improved.

By proposing the two first protocols to our new model combining for the first time
hardware reconfiguration and multi-mode applications, we have made in this thesis a
complete set of contributions to the state of the art. We have filled a gap in the literature,
and we believe that this new paradigm will become more and more important in the
future, with the raise of reconfigurable platforms. Some of the very last platforms
offer a 3D architecture with very fast reconfiguration time. Such platforms are very
promising, and our results are ready to be applied to them.

Our work does not directly address energy consumption nor thermal aspects. Although
itmay be derived from our solutions, these aspects are very important for embedded sys-
tems. Also, our solutions do not propose a complete integration of mode-independent
tasks.

Future works could directly target those last points. Mode-independent tasks could
have a better integration through new protocols. As our protocols require the designer
to provide the hardware requirement and the software for each mode, it would be easy
to integrate energy and/or thermal aspects. Indeed, taking into account those aspects
while designing the mode definition would lead to better energy and/or thermal aspect
handling. At last, providing a closed-form for the last protocol would improve its
comparability. It could thus be used as a new competitor for future protocols.

In conclusion, this thesis provides a lot of different contributions, covering different
aspects of hard real-time scheduling for modern heterogeneous unrelated platforms.
We have provided several contributions to the literature of global scheduling for those
platforms, as well as exhibiting flaws and a correction to it. The importance of hard-
ware reconfigurations in the last generation of platforms and even more in the future
generations made us merge two existing paradigms to a new one. We have here set
the ground for future research, and created the very first results. We strongly believe
that this will become more and more important as those hardware reconfigurations
will become more and more powerful. By contributing in those two domains, we have
covered a lot of open questions. The next step would be to improve our results, in order
to enhance the usability of our solutions.
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“Run, rabbit, run
Dig that hole, forget the sun
And when at last the work is done
Don’t sit down, it’s time to dig
another one”

Pink Floyd - Breathe
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Appendix A

Multi-mode protocol algorithms

This chapter proposes formal algorithms for both protocol run-time phases, presented
in Part III.

A.1 ACCEPTOR algorithm
This section proposes the run-time protocol algorithm presented in Section 12.2.2,
in Figure A.1. This algorithm takes as input the current set of rem-jobs, the set of
processors, and the used scheduler. It also takes as input in vector 𝑅 the required
reconfigurations RTsrc,dst, computed offline. Those must be ordered by reconfiguration
time, decreasing.

A.2 SQUARER algorithm
This section proposes the run-time protocol algorithm presented in Section 13.1.2,
in Figure A.2. This algorithm takes as input the current set of rem-jobs, the set of
processors, and the used scheduler. It also takes as input in vector 𝑅 the required
reconfigurations RTsrc,dst and the instant of reconfigurations in vector 𝑇, computed
offline. 𝑅must be ordered by reconfiguration time, decreasing. 𝑇must be sorted in
increasing order.
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Require: 𝐽 rem-job set; 𝑃 processor set; 𝑆 scheduler; 𝑅 required reconfigurations
Ensure: 𝑅 is ordered by reconfiguration time (decreasing)
while |𝐽| > 0 do
try:
schedule(𝑆, 𝐽, 𝑅)

stop if p ∈ P is idle:
reconfigure(p, 𝑅[0])
𝑅 ← 𝑅[1:|R|]
𝑃 ← 𝑃\𝑝

end while
while |𝑅| > 0 do

𝑝 ← 𝑃[0]
reconfigure(p, 𝑅[0])
𝑅 ← 𝑅[1:|R|]
𝑃 ← 𝑃\𝑝

end while
Figure A.1: ACCEPTOR run-time algorithm

Require: 𝐽 rem-job set; 𝑃 processor set; 𝑆 scheduler; 𝑅 required reconfigurations
Require: 𝑇 reconfiguration instant set
Ensure: 𝑅 is ordered by reconfiguration time (decreasing)
Ensure: 𝑇 is sorted in increasing order
while |𝐽| > 0 do
try:
schedule(𝑆, 𝐽, 𝑅, 𝑇)

stop if p ∈ P is idle:
reconfigure(p, 𝑅[0])
𝑅 ← 𝑅[1:|R|]
𝑃 ← 𝑃\𝑝

or stop if 𝑡 = 𝑇[0]:
𝑝 ← 𝑃[0]
reconfigure(p, 𝑅[0])
𝑅 ← 𝑅[1:|R|]
𝑇 ← 𝑇[1:|T|]
𝑃 ← 𝑃\𝑝

end while
while |𝑅| > 0 do

𝑝 ← 𝑃[0]
reconfigure(p, 𝑅[0])
𝑅 ← 𝑅[1:|R|]
𝑃 ← 𝑃\𝑝

end while
Figure A.2: SQUARER run-time algorithm
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Job preemption, 24

LP-CFeas, 65
LP-CLoad, 66
LP-Feas, 65
LP-Load, 66

167



Index

Matching, 49, 52, 74
Matching algorithm, 73
Mode real-time constraint, 32, 105
Mode task subset, 32, 105
Mode-dependent task, 34
Mode-independent task, 34
Multi-processor platform, 16

Non real-time tasks, 13
Non-reconfigurable processor, 19

Offline, 22
Online, 23
Optimal scheduler, 29

Partitioned, 25
Periodic, 14
Periodic task, 14
Presence, 60
Processing rate on reconfigurable pro-

cessors, 20
Processor, 15
Processor utilisation, 18

Real-time applications, 3
Reconfigurable processor, 19
Recurring task, 12
Rem-job, 15

Schedulable task set, 29
Schedule pattern, 49
Semi-partitioned, 27
Soft real-time tasks, 13
Sporadic, 14
Sporadic task, 14
SQUARER, 135
Squeezable, 126

Task migration, 25

Task set, 12
Template schedule, 49
Trail, 74

Unchanged task, 34
Uniprocessor platform, 16
Urgent task, 52

Walk, 74
Wholly new task, 35
Work-conserving scheduler, 24

168



Bibliography

[1] Xilinx. Zynq UltraScale+ MPSoC. 2018. url: https://www.xilinx.com/
products/silicon-devices/soc/zynq-ultrascale-mpsoc.html (visited on
01/28/2018).

[2] Alan Burns and Sanjoy K. Baruah. “Sustainability in Real-time Scheduling”. In:
JCSE 2.1 (2008), pp. 74–97. url: http://jcse.kiise.org/PublishedPaper/
year\_abstract.asp?idx=15.

[3] Vincent Nélis. “Energy-Aware Real-Time Scheduling in Embedded Multiproces-
sor Systems”. PhD thesis. Université libre de Bruxelles, 2010.

[4] Vincent Nélis, Joël Goossens, and Björn Andersson. “Two Protocols for Schedul-
ing Multi-mode Real-Time Systems upon Identical Multiprocessor Platforms”.
In: Euromicro Conference on Real-Time Systems. 2009, pp. 151–160.

[5] C. L. Liu and JamesW. Layland. “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment”. In: J. ACM 20.1 (1973), pp. 46–61. doi: 10.
1145/321738.321743. url: http://doi.acm.org/10.1145/321738.321743.

[6] Jorge Real and Alfons Crespo. “Mode Change Protocols for Real-Time Systems:
A Survey and a New Proposal”. In: Real-Time Systems 26.2 (2004), pp. 161–197.
doi: 10.1023/B:TIME.0000016129.97430.c6. url: https://doi.org/10.
1023/B:TIME.0000016129.97430.c6.

[7] Laura Hopperton. embedded world: Xilinx introduces ’industry’s first’ extensi-
ble processing platform. 2011. url: https : / / goo . gl / EuNhir (visited on
01/31/2018).

169

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://jcse.kiise.org/PublishedPaper/year\_abstract.asp?idx=15
http://jcse.kiise.org/PublishedPaper/year\_abstract.asp?idx=15
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
https://doi.org/10.1023/B:TIME.0000016129.97430.c6
https://doi.org/10.1023/B:TIME.0000016129.97430.c6
https://doi.org/10.1023/B:TIME.0000016129.97430.c6
https://goo.gl/EuNhir


Bibliography

[8] Martin Cornil et al. “Research and implementation challenges of RTOS support
for heterogeneous computing platforms”. In: Heterogeneous Architectures and
Real-Time Systems Seminar, Brussels. 2017.

[9] Ahmad Sadek et al. “Supporting Utilities for Heterogeneous Embedded Image
Processing Platforms (STHEM): An Overview”. In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications. Ed. by Nikolaos Voros et al. Cham:
Springer International Publishing, 2018, pp. 737–749. isbn: 978-3-319-78890-6.

[10] Marco Pagani et al. “Towards real-time operating systems for heterogeneous
reconfigurable platforms”. In: OSPERT 2016 (2016), p. 49.

[11] A. Biondi et al. “A Framework for Supporting Real-Time Applications on Dy-
namic Reconfigurable FPGAs”. In: 2016 IEEE Real-Time Systems Symposium
(RTSS). 2016, pp. 1–12. doi: 10.1109/RTSS.2016.010.

[12] A. Biondi and G. Buttazzo. “Timing-aware FPGA partitioning for real-time appli-
cations under dynamic partial reconfiguration”. In: 2017 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). 2017, pp. 172–179. doi: 10.1109/
AHS.2017.8046375.

[13] M. Pagani et al. “A Linux-based support for developing real-time applications
on heterogeneous platforms with dynamic FPGA reconfiguration”. In: 2017 30th
IEEE International System-on-Chip Conference (SOCC). 2017, pp. 96–101. doi:
10.1109/SOCC.2017.8226015.

[14] Enrico Bini. “Adaptive Fair Scheduler: Fairness in Presence of Disturbances”.
In: Proceedings of the 24th International Conference on Real-Time Networks and
Systems. RTNS ’16. Brest, France: ACM, 2016, pp. 129–138. isbn: 978-1-4503-
4787-7. doi: 10.1145/2997465.2997468. url: http://doi.acm.org/10.
1145/2997465.2997468.

[15] Eugene L Lawler and Jacques Labetoulle. “On preemptive scheduling of unre-
lated parallel processors by linear programming”. In: Journal of the ACM (JACM)
25.4 (1978), pp. 612–619.

[16] Sanjoy K. Baruah. “Partitioning Real-Time Tasks among Heterogeneous Mul-
tiprocessors”. In: 33rd International Conference on Parallel Processing (ICPP).
IEEE, 2004, pp. 467–474.

[17] Jagpreet Singh and Nitin Auluck. “Real time scheduling on heterogeneous
multiprocessor systems—A survey”. In: Fourth International Conference on
Parallel, Distributed and Grid Computing (PDGC). IEEE. 2016, pp. 73–78.

170

https://doi.org/10.1109/RTSS.2016.010
https://doi.org/10.1109/AHS.2017.8046375
https://doi.org/10.1109/AHS.2017.8046375
https://doi.org/10.1109/SOCC.2017.8226015
https://doi.org/10.1145/2997465.2997468
http://doi.acm.org/10.1145/2997465.2997468
http://doi.acm.org/10.1145/2997465.2997468


Bibliography

[18] Sanjoy K. Baruah et al. “ILP models for the allocation of recurrent workloads
upon heterogeneous multiprocessors”. In: J. Scheduling 22.2 (2019), pp. 195–209.

[19] Sanjoy Baruah. “Feasibility analysis of preemptive real-time systems upon het-
erogeneous multiprocessor platforms”. In: Real-Time Systems Symposium. IEEE.
2004, pp. 37–46.

[20] Hoon Sung Chwa et al. “Optimal real-time scheduling on two-type heteroge-
neous multicore platforms”. In: Real-Time Systems Symposium. IEEE. 2015,
pp. 119–129.

[21] Gurulingesh Raravi et al. “Task assignment algorithms for two-type heteroge-
neous multiprocessors”. In: Real-Time Systems 50.1 (2014), pp. 87–141.

[22] SanjayMoulik, RajeshDevaraj, andArnab Sarkar. “Hetero-sched:A low-overhead
heterogeneous multi-core scheduler for real-time periodic tasks”. In: 20th In-
ternational Conference on High Performance Computing and Communications;
IEEE 16th International Conference on Smart City; IEEE 4th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). IEEE. 2018, pp. 659–
666.

[23] Gurulingesh Raravi et al. “Task assignment algorithms for two-type hetero-
geneous multiprocessors”. In: Real-Time Systems 50.1 (2014), pp. 87–141. doi:
10.1007/s11241-013-9191-3. url: https://doi.org/10.1007/s11241-
013-9191-3.

[24] Vincent Nélis et al. “Global-EDF Scheduling of Multimode Real-Time Systems
Considering Mode Independent Tasks”. In: 23rd Euromicro Conference on Real-
Time Systems, ECRTS 2011, Porto, Portugal, 5-8 July, 2011. 2011, pp. 205–214. doi:
10.1109/ECRTS.2011.27. url: https://doi.org/10.1109/ECRTS.2011.27.

[25] Chi-Sheng Shih and Chang-MinYang. “Schedulability Analysis of Mode Change
for Imprecise Computation on Multi-Core Platforms”. In: Proceedings of the
International Conference on Research in Adaptive and Convergent Systems. ACM.
2017, pp. 261–268.

[26] José Marinho et al. “Partitioned Scheduling of Multimode Systems on Multipro-
cessor Platforms: when to do the Mode Transition?” In: RTSOPS (2011).

[27] Paul Emberson and Iain Bate. “Minimising task migration and priority changes
in mode transitions”. In: 13th IEEE Real Time and Embedded Technology and
Applications Symposium. IEEE. 2007, pp. 158–167.

171

https://doi.org/10.1007/s11241-013-9191-3
https://doi.org/10.1007/s11241-013-9191-3
https://doi.org/10.1007/s11241-013-9191-3
https://doi.org/10.1109/ECRTS.2011.27
https://doi.org/10.1109/ECRTS.2011.27


Bibliography

[28] Joël Goossens and Pascal Richard. “Partitioned scheduling of multimode mul-
tiprocessor real-time systems with temporal isolation”. In: Proceedings of the
21st International Conference on Real-Time Networks and Systems. ACM. 2013,
pp. 297–305.

[29] Sanjoy Baruah and Björn Brandenburg. “Multiprocessor feasibility analysis of
recurrent task systems with specified processor affinities”. In: Real-Time Systems
Symposium. IEEE. 2013, pp. 160–169.

[30] Robert McNaughton. “Scheduling with deadlines and loss functions”. In:Man-
agement Science 6.1 (1959), pp. 1–12.

[31] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo.Multiprocessor Schedul-
ing for Real-Time Systems. Springer, 2015.

[32] Guillaume Phavorin, Pascal Richard, and Claire Maiza. “Complexity of schedul-
ing real-time tasks subjected to cache-related preemption delays”. In: 20th Con-
ference on Emerging Technologies & Factory Automation. IEEE, 2015, pp. 1–8.

[33] Guillaume Phavorin et al. “Online and offline scheduling with cache-related
preemption delays”. In: Real-Time Systems 54.3 (2018), pp. 662–699.

[34] Narendra Karmarkar. “A new polynomial-time algorithm for linear program-
ming”. In: Combinatorica 4.4 (1984), pp. 373–396. doi: 10.1007/BF02579150.
url: https://doi.org/10.1007/BF02579150.

[35] Antoine Bertout et al. “Template schedule construction for global real-time
scheduling on unrelated multiprocessor platforms”. In: Design, Automation
and Test in Europe Conference (Grenoble, France, March 2020). To appear. 2020.
Forthcoming for DATE.

[36] Fanny Dufossé and Bora Uçar. “Notes on Birkhoff–vonNeumann decomposition
of doubly stochastic matrices”. In: Linear Algebra and its Applications 497 (2016),
pp. 108–115.

[37] Joël Goossens andChristopheMacq. “Limitation of the hyper-period in real-time
periodic task set generation”. In: In Proceedings of the RTS Embedded System
(RTS’01). 2001, pp. 133–148.

[38] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment Problems:
Revised Reprint. SIAM, 2012.

[39] László Lovász and Michael D Plummer.Matching theory. Vol. 367. American
Mathematical Soc., 2009.

172

https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150


Bibliography

[40] A. Volgenant. “A note on the assignment problem with seniority and job priority
constraints”. In: European journal of operational research 154.1 (2004), pp. 330–
335.

[41] Gaetan Caron, Pierri Hansen, and Brigitte Jaumard. “The assignment problem
with seniority and job priority constraints”. In: Operations Research 47.3 (1999),
pp. 449–453.

[42] John EHopcroft and RichardMKarp. “An n^5/2 algorithm formaximummatch-
ings in bipartite graphs”. In: SIAM Journal on computing 2.4 (1973), pp. 225–
231.

[43] Iain S Duff and Jacko Koster. “On algorithms for permuting large entries to
the diagonal of a sparse matrix”. In: SIAM Journal on Matrix Analysis and
Applications 22.4 (2001), pp. 973–996.

[44] Rainer E Burkard and Eranda Cela. Linear assignment problems and extensions.
Chap. Unknown.

[45] Christian Kohn (Xilinx). Partial Reconfiguration of a Hardware Accelerator on
Zynq-7000 All Programmable SoC Devices (XAPP1159). 2013.

[46] Liliana Cucu-Grosjean and Joël Goossens. “Predictability of Fixed-Job Priority
schedulers on heterogeneous multiprocessor real-time systems”. In: Inf. Process.
Lett. 110.10 (2010), pp. 399–402. doi: 10.1016/j.ipl.2010.03.009. url:
https://doi.org/10.1016/j.ipl.2010.03.009.

173

https://doi.org/10.1016/j.ipl.2010.03.009
https://doi.org/10.1016/j.ipl.2010.03.009

	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction to hard real-time systems
	Introduction
	Real-time operating system
	Processing elements
	Field Programmable Gate Array

	Hardware considerations

	Common notions and models
	Time model
	Application model
	Hardware model
	Processor model
	Platform model
	Reconfigurable processors
	Clustered platforms

	Scheduler
	Multi-mode application
	Mode model
	Protocol model

	Memory considerations

	Motivation and organisation
	Motivation
	Related work
	Outline of the thesis


	Global scheduling
	Introduction to Global scheduling on heterogeneous unrelated platform
	Motivation
	Seminal model
	Related works
	Organisation and contributions

	Workload assignment
	New model
	Motivation
	Empirical measurements
	Model

	Designing new LPs
	LP-Feas and LP-CFeas
	LP-Load and LP-CLoad
	Minimal number of presences: ILP-CMig
	Workload assignment evaluation
	Experimental setup
	Inter-cluster number of presences in excess
	Run-time measurement


	Flaw & correction in the schedule construction of baruah2004feasibility, baruah2013multiprocessor
	Seminal algorithm from baruah2004feasibility, baruah2013multiprocessor
	Counter-example of the seminal algorithm
	Correction of the matching algorithm
	Proof of correctness of the algorithm

	Schedule construction optimisation
	Pre-optimisation: minimising the number of schedule points
	LBAP experiments
	Post-optimisation: Reordering the template schedule
	TSP experiments

	Flaw in the sporadic scheduler of baruah2013multiprocessor
	Seminal algorithm
	Seminal model
	Seminal algorithm offline phase
	Seminal algorithm run-time phase

	Counter-example
	Seminal offline phase
	Seminal run-time phase


	Conclusion

	Multi-mode applications
	Introduction to multi-mode applications
	Contributions and organisation

	Introducing a new multi-mode application model
	Hardware model
	Clustered platforms

	Software model
	Multi-mode model
	Model example

	A first protocol for multi-mode applications: ACCEPTOR
	Scheduling problem
	ACCEPTOR
	Offline phase: computing the required reconfigurations
	Run-time: scheduling and reconfiguring
	Note on the offline phase
	Mode change phase example

	The upper-bound reconfigured
	Validity test
	Evaluation: Time complexity
	Evaluation: empirical pessimism of reconfigured
	Evaluation: Competitive analysis of ACCEPTOR
	Preliminary definitions and notations
	Competitive analysis

	Handling mode independent tasks
	Improving the upper-bound reconfigured 
	Changing the idle upper-bound
	Time complexity
	Evaluation
	Last words about reconfigured'


	SQUARER
	Protocol squarer description
	Offline phase presentation
	Run-time phase
	Preventing deadline misses

	Upper-bound and validity test
	Execution time
	Empirical performances evaluation of reconfigured"

	Conclusion

	General conclusion and perspectives
	Multi-mode protocol algorithms
	ACCEPTOR algorithm
	SQUARER algorithm

	Index
	Bibliography


