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Abstract

The relay protections of the transmission lines play a fundamental role in the electrical
power systems. They permit to ensure the security and the reliability of the electricity
transmission from the generators to the final consumers. The objective of a relay protec-
tion is to provide a corrective action as quickly as possible when an abnormal condition
of the power system is detected. The quickness of the response permits to limit the stress
on the equipments of the power system and the consumers, to ensure the security of the
people, to improve the power quality and to maintain the stability of the power system.

The protective relaying systems have evolved a lot since their first implementation
in the 1900’s. However, the electrical power systems are in constant evolution and the
reliability of the protective relaying systems becomes more and more challenging. The
three main characteristics of the relay protections which are security, dependability and
speed must be continuously improved to achieve these objectives. The major relay pro-
tections implemented nowadays are based on frequency-domain methods. These methods
are intrinsically limited in speed by the phasor estimation of the voltage and current
signals. More recent methods based on incremental quantities permitted to break this
limitation by working directly in time-domain. Despite the speed of these methods, the
dependability is usually limited in order to ensure the security.

In this work, it is proposed to develop a time-domain ultra-fast non-pilot distance
protection based on a Γ model of line to improve the security, the dependability and the
speed, even for long lines and weak power systems. This protection is composed of a loop
selection element, a directional element and a distance element. The target tripping time
is 4 ms or less.
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Chapter 1

Introduction

1.1 Context and motivation

The evolution of the electrical power systems has pushed the transmission lines to operate
close to their operating limits. This evolution was motivated by different factors like the
increase of the global demand [1], the liberalization of the electricity market, the cost
considerations and the environmental impact. One of the main characteristics of Smart
Grids is the high level of penetration of Distributed Energy Resources (DERs) [2]. It
introduces new challenges because the DERs may be of different sizes and types, and may
be connected at all different levels of the electric power system – transmission, distribution
and low voltage. The presence of the DERs may impact the stability of an electrical power
system [3] but also directly the distance protection settings (i.e., it impacts the Source
Impedance Ratio (SIR)1) [4].

These evolutions impact the reliability of the protective relaying systems which be-
comes more and more challenging. The power quality, the power stability, the security
aspects and the stress level on the power equipments may become unsuitable if the pro-
tection of the transmission lines is not adapted to take into account the recent imple-
mentations in the power systems. Indeed, the transmission line is a fundamental part
of the electric power system which must supply the electricity to the consumers with a
high level of reliability. Any perturbation in the electrical power system may have an
important impact on the stability of the network. The protective relay must response to
an abnormal condition on the power system as quickly as possible in order to limit the
stress on the equipments of the power system and the consumers, to ensure the security
of the people and to maintain the stability of the power system.

One of the solutions to decrease the different impacts mentioned above is the reduction
of the Fault Clearing Time (FCT), defined as the time interval between the fault inception

1the SIR of a line is defined as the ratio of the impedance of the source to the impedance of the line.
The impedance of the source is the equivalent impedance of all the elements behind the line (voltage
source, transformers, transmission lines, etc.)

1
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and the fault clearance [5]. A short-circuit current creates thermal and mechanical effects
on the conductors and the equipments of the power system [6]. A FCT reduction would
permit to reduce the stress on the different components and thereby to increase their
lifespan. The power quality and the power stability are two important criteria for an
electrical power system. They impact both the power system itself and the final users.
The power quality includes several aspects like the current, the voltage and the frequency
characteristics against a set of reference technical parameters [7]. As explained in [8]
one of the major problem related to a poor power quality is the voltage sag. During a
short-circuit the voltage decreases and it may impact dramatically some devices. It may
lead to the shut-down of equipments or process that are very sensitive to the voltage
variation. The power quality can be improved by decreasing the FCT. The stability of
a system is its ability to return to its normal or stable condition after being perturbed
[9]. For an electrical power system it is related to its ability to maintain the synchronism
of the generators. The power stability is characterized by a transfer power function as
illustrated by Fig. 1.1 where the maximum transmittable active power in a transmission
line is defined by a maximum power angle δcri beyond which the synchronism may be
lost. The maximum time during which a disturbance can be applied without the system
losing its stability is defined as the Critical Fault Clearing Time (CFCT) [10]. The power
stability may be improved by reducing the power transfer of the system or by constructing
a new transmission line. The first solution will limit the load that can be connected to
the power system while the second will increase the total cost. Alternative solutions to
improve the power stability are the re-dispatching or the reduction of the FCT to ensure
that this last is lower than the CFCT. The FCT is composed essentially by the operating
time of the relay to detect the fault (algorithm time) and the time for the breakers to
interrupt the current. The scope of a line protection relay algorithm is related to the first
part of the FCT.

Figure 1.1: Power system transfer capability [8]
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The reduction of the FCT must be achieved while respecting the reliability of the
process. In the field of relaying the reliability implies dependability and security. The
dependability is the measure of the certainty that the relays will operate correctly for all
the faults for which they are designed to operate and the security is the measure of the
certainty that the relays will not operate incorrectly for any fault [11]. The first protective
relaying systems were developed in the early years of 1900. For more than 100 years this
area has undergone many changes in relays principles as well as in their technologies. The
first relays began as electromechanical devices. The development of semiconductors led to
the solid-state relays2 in the 1940’s [12]. Finally, the recent protections are implemented
on microprocessors since the 1980’s [12]. Fig. 1.2 shows the evolution of the use of the
different generations of relay.

Figure 1.2: The different eras of protective relays [12]

The operating principles of relays have also evolved a lot during the last decades.
The first distance relays appeared in the 1920’s in the form of impedance (R-X diagram)
[12]. The major protective relays principles are based on the fundamental (steady-state)
frequency components evaluation of the voltage and the current. It is a frequency-domain
method involving the estimation of the voltage and current phasors. The major limitation
of the frequency-domain approach is the speed of the phasor estimation algorithms. This
signal-based approach implies theoretically a full-cycle data window. In practice, the
impedance-based protective relays operate in one to one-and-a-half cycles (20 ms to 30
ms for a 50 Hz power system) [13]. Some fast methods of phasors estimation permit to
use only a half-cycle window but they have a lower accuracy and dependability [13]. The
introduction of the concept of incremental quantities3 in the protective relays algorithms
[14] has permitted to implement the so-called ultra-high-speed protections [13], [15]. The

2also called static relays because they did not contain a moving part
3the incremental quantities are the voltage and current signals of an equivalent fault network obtained

by removing the pre-fault conditions (see Chapter 9)
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term of ultra-high-speed is considered to be operation in 4 ms or less [11]. However, these
methods assume that the power system (voltage sources and transmission lines) may be
represented by a simple RL model. This assumption may impact directly the speed, the
dependability and the security of the protective relays as it will be shown in this work.

The performances of the ultra-high-speed distance protection developed by Schweitzer
Engineering Laboratories (SEL) are shown in [13]. This method is based on the incre-
mental quantities mentioned above and assumes the simple RL transmission line model.
Table 1.1 summarized some pertinent results obtained with the ultra-fast distant element
implemented by SEL using real-world power system data. It permits to highlight the
following conclusions:

- the tripping times are very fast for all the tested close-in faults.

- for some fault inception angles, the tripping times may be too high even for a line
of only 56 km faulted at its middle (case 2). It will be shown in Chapter 9 that
the methods based on incremental quantities may be a lot impacted by the fault
inception angle.

- the dependability of this method is limited close to the setting zone (case 5). The
security margins are higher in order to avoid over-reaching but the dependability
decreases.

- this method based on the RL model is efficient only for very strong power systems.
Indeed, all the tests performed in [13] involved very small SIR (lower than 1).

Case Line length SIR Fault position Setting zone Tripping time

(km) (pu) (pu) (ms)

1 56 0.33 0.55 0.86 4

2 56 0.42 0.53 0.86 6.9

3 92 0.64 0.01 0.76 2.6

4 159 0.13 0.18 0.85 2.8

5 159 0.18 0.82 0.85 -

Table 1.1: Performances of the ultra-fast distance element TD21 developed by SEL

In this context of the challenging evolution of the electrical power systems and the
limitations of the existing protective relay methods, this work proposes a new ultra-fast
protection relay algorithm in the time-domain based on a Γ (Gamma) model of line. This
work has been done in a close cooperation with the development department of Siemens.
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1.2 Objectives

The objective of this work is to develop an ultra-high-speed non-pilot4 distance pro-
tection algorithm to protect the transmission lines. The target tripping time is therefore
4 ms or less. The second objective of this work is to improve the dependability of
the ultra-high-speed distance protection while guaranteeing the security. The voltage
level of the majority of the transmission line in Europe is 220 kV and 380-400 kV. Most
of the transmission lines in Europe are shorter than 100 km [16]. In Belgium for example
the longest transmission line has a length of 104.4 km [17]. In this work the target line
length to protect is set at 100 km.

The performances evaluation of the algorithm implemented in this work were done
using test cases obtained by simulation. Another objective was to take into account the
effects and the limitations of an existing hardware developed by Siemens AG. In this
context the complete data acquisition system was simulated. The first constraint coming
from the existing hardware is the sampling rate falgo to use for the algorithms. This last
is set at 8 kHz.

The frequency-domain methods are intrinsically limited in response time by the need
of a filtering process to estimate the voltage and current phasors. The algorithms proposed
in this work are developed in the time-domain. The distance relay is characterized by a
setting zone (or zone of distance) which delimit the maximum distance to fault from the
relay location. In practice a distance protection cannot precisely operate until this setting
zone. An under-reaching5 or an over-reaching6 should be accepted. These two opposed
concepts are respectively related to the dependability and the security of the protection.
The security of the ultra-high-speed algorithm is usually favoured to the detriment of the
dependability. The improvement of the dependability and the security of the protection
may be achieved by implementing an algorithm based on a more accurate model of
transmission line than the simple RL.

A complete distance protection includes 4 different elements: first, the fault detection
element which aims to detect an abnormal situation in the transmission line and to initiate
the rest of the chain. This element must therefore operate as fast as possible; secondly,
the loop selection element must identify the faulted loops among the ten possible types of
fault (phase-to-ground fault, phase-to-phase fault, three-phase fault, etc.). If the distance
to fault is estimated from a healthy loop it may lead to a wrong operation (under-reaching
or over-reaching). The third element is the directional element which detects the fault
direction (before or after the relay location). Only the forward faults should be tripped
by the distance protection. Finally, the distance element identifies the distance to fault

4the tripping decision is based only on the local measurements at the relay location (in contrast with
the pilot relays which require a communication channel)

5it refers to a missed operation of the distance relay for a fault located inside the setting zone
6it refers to an unwanted operation of the distance relay for a fault located after the setting zone
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and gives the tripping signal to the circuit breakers if the fault is seen inside a defined
setting zone. The developments done in this thesis are mainly focused on the distance
element which requires a high level of accuracy. For the directional and the loop selection
elements, a review of the existing ultra-fast methods is done to test their performances, to
highlight the limitations and to propose some improvements. The fault detection element
was not studied in this work because it has been accepted that the existing methods are
sufficient to give a fast and secure fault detection [18].

1.3 Major contributions of this work

In this PhD thesis an ultra-high-speed distance protection algorithm is developed. The
major contributions of this work are related to the distance element algorithm:

- implementation of a Γ model of transmission line for an ultra-high-speed distance
protection in the time-domain thanks to a Linear Recursive Least-Squares Estima-
tion method.

- improvement of the frequency behaviour of the Γ model until the first resonance
frequency of a distributed parameters model of line.

- the use of the integral form of the equation representing the model of a line in order
to limit the impact of a noisy signal.

- inclusion of a simple model of the voltage and the current transformers in the model
of the transmission line.

- the use of a residual analysis to ensure the security of the method and to improve
its dependability.

1.4 Thesis outline

Chapter 2 presents the different models of transmission lines, from the very simple (lumped
parameters RL model) to the most accurate (distributed frequency-dependent parame-
ters). A comparison of their frequency behaviour is made. Chapter 3 represents the
major contribution of this work. The ultra-high-speed distance algorithm based on a Γ
model of line is implemented. The classic Γ model of line is also adapted in order to
improve its frequency behaviour. Chapter 4 shows the mathematical concepts related
to the Least-Squares estimation method to ensure the security of the distance element
algorithm. Moreover, a Recursive Least-Squares method is implemented to improve the
performances of the method in term of computational loads. In Chapters 5 and 6, the
distance algorithm is extended to a three-phase power system with the use of the Clarke
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transform. The different types of fault are treated. In Chapter 7, a complete data acquisi-
tion process based on an existing hardware is simulated. It permits mainly to highlight the
effects, usually neglected, of the voltage and the current transformers on a time-domain
algorithm. Chapter 8 presents the security criteria implemented for the distance element
algorithm. Chapters 9 and 10 present the existing ultra-fast methods for the directional
element and the loop selection element respectively. The performances, the limitations
and some proposals for improvement are provided. Chapter 11 presents the performances
of the complete distance protection. Finally, Chapter 12 presents the main conclusions
and recommendations for future works. Table 1.2 shows the summary of the objectives
and the contributions of the different chapters of the thesis.

Chapter n° Objectives Contributions

2 - Present and compare the
different models of transmission
line

- Frequency behaviour of the
models of transmission line

3 - Develop an ultra-fast
time-domain distance element
algorithm

- Faulted line parameters
identification with a Linear
Least-Squares method
- Linearisation of the Γ model
- Improvement of the Γ model
- Impact of the SIR

4 - Mathematical analysis of the
Linear Least-Squares method
and its assumptions

- Condition number impact
- Development of a Recursive
Linear Least-Squares method
- Residual analysis and
confidence interval

5 - Generalization of the
identification method for a
three-phase transmission line
model

- Decoupled three-phase Γ model
using the Clarke transform

6 - Study the different types of
fault
- Extend the method for parallel
transmission lines

- Calculation of the different
compensation factors for a
phase-to-ground fault with a Γ
model
- Analysis of the transfer
function instabilities of the Γ
model in the case of a
phase-to-ground fault
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7 - Simulate the existing data
acquisition process and study
the impact of the different
components

- Adaptation of the identification
algorithm to take into account
the model of a current and a
voltage transformer
- Presence of a new parameter to
identify linked to the signals of
the primary side of the
transformers

8 - Implementation of blocking
methods to avoid over-reaching
while maximizing the
dependability

- Convergence criteria of the
identified parameters of the line
- Secured distance to fault based
on a residual analysis (confidence
interval and normalized mean
squared error)

9 - Develop an ultra-fast
time-domain directional element
algorithm

- Performances and limitations
of existing methods

10 - Develop an ultra-fast
time-domain loop selection
element algorithm

- Improvement and validation of
the Siemens method based on
incremental quantities

11 - Validation and performances
evaluation of the complete
distance protection

- Big database of tests
(simulations)
- Methods validation for distance
and loop selection element
- Adaptive convergence criteria
to increase the speed of the
distance element algorithm

Table 1.2: Summary of the thesis outline



Chapter 2

Overhead transmission line models

2.1 Introduction

The classical impedance-based distance protections assume an RL transmission line model.
The complex impedance of the line may be found by applying a filtering method to esti-
mate the voltage and the current phasors. This signal-based approach implies a full-cycle
data window. In some particular cases, a half-cycle data window can be used for the
phasors estimation. The phasors estimation methods are therefore limited in response
time.

Recent works performed in the time domain have led to faster distance protections.
These protective relaying’s are based on the incremental quantities [13], [15]. However,
as for the impedance-based methods, the current algorithms represent the transmission
lines by a simple RL model that is only valid for short lines or narrow frequency range
for long lines. It implies the use of a low-pass filter that eliminates the high frequencies.
The specifications of the low-pass filter needed to eliminate the high frequencies may be
such that it could introduce a significant extra-delay in the algorithm response time [19].

One of the solutions proposed in this thesis to improve the performances of the ultra-
fast distance protection is to implement an algorithm based on a more accurate model
of line. In this chapter the different models of overhead transmission lines are presented.
The lumped and the distributed parameters models of line will be presented in Section 2.2
and 2.3 respectively. In Section 2.4 the frequency behaviour of the different models will be
analysed in order to define the frequency range in which both simulated and identification
models fit for different line length. Indeed, a clear distinction must be made between:

- the model used for the simulation. This is the model implemented in the simulation
tool (EMTP). The accuracy of this model will ensure an ideal correlation between
the results obtained by simulation and by a real-world power system network.

- the model used for the distance protection algorithms, which is the physical back-
ground associated to the mathematical methods. The accuracy of this model will

9
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reduce the numerical and mathematical errors of the algorithms.

The lumped and the distributed parameters transmission line models will be studied.
For the sake of clarity all the models described in this chapter refer to a single-phase
transmission line. The generalization to a three-phase model is done in Chapter 5. Fig.
2.1 summarizes all the models studied in this chapter.

Overhead 
transmission line 

model

Lumped parameters Distributed 
parameters

Multi-PIRL PI T Frequency 
dependent 
parameters

Constant 
parameters

Distortionless 
lineLossless line Lossy line Lossy line

Bergeron J. Marti

Figure 2.1: Overhead transmission line models

2.2 Lumped parameters

The lumped parameters models assume that the different parameters along the line can
be replaced by lumped elements which represent the total impedance of the line. These
models are accurate enough only for steady-state studies or short lines. They do not
take into account the electromagnetic propagation phenomena. Moreover, the frequency
dependence1 of the parameters is generally not included in these models. There are some
improvements performed during the last decades to include this frequency dependence in
the lumped parameters models [20], [21]. However these methods based on cascade of
lumped elements are not adapted for a fast algorithm because of their complexity [22].

1the parameters of an actual transmission line like the resistance and the inductance vary with the
frequency due to some phenomena like the skin effect (see Section 2.3.2)
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2.2.1 RL model

The RL model is the simplest model used for the transmission lines. The line is considered
as a resistance, to represent the Joule losses, in series with an inductance (Fig. 2.2). Due to
the simplicity of its implementation, it is the most used in the power system protections
for classical relays [11] and high-speed relays [23]. The currents flowing through the
capacitances of the line can be neglected for the fault conditions because the short-circuit
current magnitudes are high. However, this model is only valid for relatively short lines
or for very low frequencies because it does not permit to represent accurately the high
frequencies as it will be shown in Section 2.4.

R L

Figure 2.2: RL line model

2.2.2 RLC PI model

To study accurately the long lines and/or to increase the frequency range of the algorithm,
it is necessary to take into account the capacitive effects of the transmission line. Two
lumped capacitors may be placed at both ends of the RL model as shown in Fig. 2.3.
This model is more accurate for longer lines than the RL model both for steady-state and
for transient study. An alternative solution is to place a single capacitor at the middle
of the line (RLC T model). However, as it will be shown in Section 3.2.3, the transfer
function of a T model is more complex (there is one more electrical node) while it does
not improve the frequency behaviour compared to the π model of line.

R L

C
2

C
2

Figure 2.3: RLC π line model

2.2.3 Multi-PI model

The actual parameters of a true transmission line are not lumped but are distributed.
When the line parameters cannot be considered as lumped any more because of the
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distributed capacitive effects, it is possible to represent the line by a succession of π
sections in cascade. The more π sections in the model, the closer the behaviour of the
line to an actual line. The multi-π model deals better with non steady-state cases or with
solutions over a wide range of frequencies.

2.3 Distributed parameters

As mentioned before the actual parameters of a true transmission line are distributed.
Moreover, these parameters are not constant but function of the frequency. For a steady-
state analysis the lumped parameters are accurate enough in many applications. However,
for transient analysis the travelling time of the electromagnetic waves has to be taken into
account. Travelling waves solutions are much faster and better suited for computers than
cascaded π-circuit [24, page 57]. Consider a single dimension line segment ∆x represented
by the parameters rl∆x, gl∆x, ll∆x and cl∆x as shown in Fig. 2.4 where rl, ll, gl and cl
are respectively the resistance, the inductance, the conductance and the capacitance per
length of the line.

rl∆x ll∆x

gl∆x cl∆x

∆x

u(x, t) u(x+ ∆x, t)

i(x, t) i(x+ ∆x, t)

Figure 2.4: Segment of a transmission line with distributed parameters

The transmission lines with distributed parameters are using the travelling waves
solution following the telegraph equations. In Laplace domain the equations are given by
(2.1) and (2.2) [25]:

∂2u(x, s)
∂x2 = γ(s)2u(x, s) (2.1)

∂2i(x, s)
∂x2 = γ(s)2i(x, s) (2.2)

where s is the Laplace operator and where the propagation constant γ(s) is given by:

γ(s) =
√
rlgl + (rlcl + glll)s+ llcls2 = 1

v

√
(s+ α)2 − β2 (2.3)
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and
α = 1

2[(rl/ll) + (gl/cl)] is the attenuation constant

β = 1
2[(rl/ll)− (gl/cl)] is the phase constant

ZC =
√
sll + rl
scl + gl

is the characteristic impedance

v =
√

(1/llcl) is the wave velocity

(2.4)

(2.5)

(2.6)

(2.7)

The solutions for the travelling waves can be found analytically but may be very
complex. Some assumptions have to be made to find simpler travelling waves solutions
in the temporal domain. In EMTP software, two resolution methods are implemented:
the Bergeron’s method for constant parameters of line and the J. Marti’s method for
frequency-dependent parameters of line. These methods are widely used in the literature
for overhead transmission lines with distributed parameters.

2.3.1 Bergeron model

The Bergeron model of line is used for constant distributed parameters. This model
permits to find a solution of the problem (2.1) and (2.2) that depends only on the "history
vectors"2 [24]. This makes the Bergeron’s model very easy to implement in a computer
program. However, some assumptions have to be made to obtain this kind of solutions.
A solution can be derived easily for a lossless or a distortion-less3 line.

Lossless line

For a lossless line the assumptions used to solve this problem are:

- no resistance rl and conductance gl.

- the inductance ll and the capacitance cl are distributed along the line.

It leads to the following simplifications:

γ(s) = s/v

ZC = Z0 =
√
ll
cl

(2.8)

(2.9)

Equations (2.1) and (2.2) become in the temporal domain:
2vectors of the current and the voltage composed only by the values from the past (previous samples)
3it is assumed that the Heaviside condition is respected: rl/ll = gl/cl. This model is seldom used in

practice [24, page 69] and will not be studied in this thesis because the actual transmission lines are not
distortion-less
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∂2u(x, t)
∂x2 = 1

v2
∂2u(x, t)
∂t2

(2.10)

and

∂2i(x, t)
∂x2 = 1

v2
∂2i(x, t)
∂t2

(2.11)

for which the general solutions are given by d’Alembert’s formula [26]:

u(x, t) = Z0(f1(x− vt)− f2(x+ vt)) (2.12)

i(x, t) = f1(x− vt) + f2(x+ vt) (2.13)

where f1 and f2 are arbitrary functions. There is a forward and a backward wave for the
voltage and the current. By Multiplying (2.13) by Z0 and adding it to or subtracting it
from (2.12), it gives:

u(x, t) + Z0i(x, t) = 2Z0f1(x− vt) (2.14)

u(x, t)− Z0i(x, t) = −2Z0f1(x+ vt) (2.15)

Note that u(x, t) +Z0i(x, t) is constant when x− vt is constant and u(x, t)−Z0i(x, t)
is constant when x + vt is constant. If the travel time to get from one end S of the line
to the other end R is τ = L/v = L

√
llcl (where L is the line length), then the expression

u(x, t) +Z0i(x, t) is equal at node S and time t− τ and at node R and time t. After some
re-arrangements it finally leads to:

iS,R(t) = uS(t)
Z0

+ iS(t− τ) (2.16)

iR,S(t) = uR(t)
Z0

+ iR(t− τ) (2.17)

where:

iS(t− τ) = − 1
Z0
uR(t− τ)− iR,S(t− τ) (2.18)

and

iR(t− τ) = − 1
Z0
uS(t− τ)− iS,R(t− τ) (2.19)

are the "history vectors" because they are composed only by the values from the past.
iS,R is the current flowing from S to R and iR,S is the current flowing in the opposite
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direction. The complete development of the Bergeron lossless line model can be found in
[27, pages 140-141].

Lossy line

The actual transmission lines are not lossless. If the losses are considered it is impossible
to find a temporal solution directly from the travelling waves equations. However, the
losses can be included by placing lumped resistances in three places as shown in Fig. 2.5.
This simplification is accurate enough if R/4 << Z0 where R is the total line resistance
[24, page 49]. The temporal equations of the lossy Bergeron model of line are available in
[28], [29].

R/4

Z0uS(t)

iS,R(t)

iS(t− τ)

Z0

R/2

Z0 Z0

R/4

uR(t)

iR,S(t)

iR(t− τ)

Figure 2.5: Bergeron model for lossy lines

2.3.2 J. Marti model

The J. Marti model developed by J. R. Marti in [30] is an efficient model that permit-
ted to take into account the frequency dependence of the distributed parameters of the
transmission lines. On actual overhead lines the parameters are not constant but function
of frequency due to the skin effect. The self and the mutual impedances of an overhead
transmission line can be expressed as follows [6]:

Zii =
[
Ri(c) + jωLi(c)

]
+ jωLi(g) +

[
Ri(e) + jωLi(e)

]
Ω/km (2.20)

and
Zij = jωLij(g) +

[
Rij(e) + jωLij(e)

]
Ω/km (2.21)

where subscript c represents the contribution of the conductors to the resistance and the
internal inductance, g represents the contribution of the conductors to the inductance due
to the geometry (external inductance) and e represents correction terms to the resistance
and inductance due to the contribution of the earth return path. Indeed, as the ground is
used as earth return path its effect must be also considered. The skin effect may therefore
impact the contributions on the impedance due to both conductors and earth return path.
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Fig. 2.6 coming from [24] shows the variation of the zero and the positive resistance
and inductance with the frequency. The positive inductance and resistance remain more
or less constant until about 1 kHz. However, the zero components vary very much at low-
frequencies due to the skin effects in the earth return path. The zero sequence parameters
have an impact on parameters identification in the case of a phase-to-ground fault as it
will be shown in Chapter 5. The capacitance is not represented in this figure because it
can be considered as constant until about 100 kHz [24, pages 14-15].

As the line parameters are frequency-dependent, it is not possible to find a solution
directly in the time domain (even for a lossless case). This model approximates the char-
acteristic admittance and the propagation constant by rational functions in the frequency
domain. The temporal domain solution is then given by the use of an inverse Fourier
transform.

Figure 2.6: Frequency-dependent line parameters [24]

Other frequency-dependent transmission line models have been developed in the lit-
erature. For example, the Universal Line Model (ULM) [31] does not assume constant
transformation matrices (which may be source of errors) unlike the J. Marti model. How-
ever, as explained in [32], [33] both models gives comparable results in many cases despite
an additional complexity of the ULM model. Moreover, it will be shown in Section 2.4.2
that the Bergeron model of line would be sufficient. For these reasons, only one frequency-
dependent model (J. Marti) is presented in this thesis.
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2.4 Frequency response comparison of the models

In this section the frequency behaviour of the different models will be compared. The
fast distance element implemented in this project is based on the faulted line parameters
identification. As it will be explained in Chapter 3, the model of line used for the iden-
tification must fit the model of line used for the simulation in a defined frequency range.
The distributed models will be used as reference model because they better represent
the actual parameters of a true transmission line for transient phenomena. The lumped
parameters models will be compared to a Bergeron model in order to define a frequency
range in which both models fit. This analysis will be done by the use of Bode’s curves of
the transfer function of the lines. The transfer function of the faulted line is simply the
ratio between the voltage and the current at the relay location given by (2.22).

H(jω) = VR(jω)
IR(jω) (2.22)

Fig. 2.7 shows the circuit used to obtain the Bode’s curves. The dotted elements
represent the external network that has no impact on the evaluation of the transfer func-
tion of the faulted line. The line parameters corresponding to a typical 220 kV overhead
transmission line extracted from [34] are rl = 0.058 Ω/km, ll = 0.955 mH/km and cl =
0.0124 µF/km.

RS LS IR
rl, ll, cl

VRVS

Figure 2.7: Simulation of a faulted line for Bode’s curves generation

2.4.1 Bode’s curves

A frequency scan is applied on the circuit shown in Fig. 2.7 to obtain the steady-state
voltage and current at the relay location for each frequency. The objective is to check
the frequency range in which the reference model (Bergeron) fits the lumped parameters
models. The Bode’s curves are obtained for a short transmission line in Fig. 2.8 and for
a long transmission lines in Fig. 2.9. As expected the lumped parameters models fit the
Bergeron model in a wider range of frequencies for short lines than for long lines. It also
appears that some resonance frequencies may be present in the transfer function of the
models including the capacitance. The following conclusions can be drawn:
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- the RL model does not include a resonance peak. It must be filtered up to a few
hundreds Hz in order to fit the true behaviour of a line.

- the resonance frequency of the π model differs from the first resonance peak of the
Bergeron model. An adapted π model can be developed to improve its frequency
behaviour until the first resonance peak of the Bergeron model. The adapted π

model does not split equally the capacitance between the two ends of the line. As
shown in Fig. 2.8 and 2.9 the resonance peak is well approximated thanks to this
adapted model. The correction factor used will be explained in Chapter 3.

- a multi-π model of 10 sections approximates well the Bergeron model up to a few
thousands Hz.
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Figure 2.8: Bode’s curves of the transfer function of single-phase models of line of 30 km
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Figure 2.9: Bode’s curves of the transfer function of single-phase models of line of 300 km
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This kind of analysis should be made for all the line lengths in order to set the filtering
frequency. Indeed, a low-pass filter must be used for the ultra-fast distance element
algorithm to keep only the frequency range in which the simulated model of line fits the
identification model implemented in the algorithm. It is also important that this frequency
range is as wide as possible in order to keep the maximum of transient information. It
will be shown in Chapter 3 that the multi-π model has a too complex transfer function to
be used as an identification model. The filtering frequency will be fixed by the frequency
at which the adapted π and the RL models begin to differ too much from the Bergeron
model.

Assuming a threshold of 3 dB of difference between both models. The corresponding
filtering frequency will be the maximum frequency at which the models differs from the
Bergeron model of less than 3 dB. Fig. 2.10 shows the results.

In Fig. 2.10 three different frequencies are represented: 1000 Hz, 500 Hz and 300 Hz.
The hatched regions represent the maximum line length possible to achieve with the three
filtering frequencies for the two models of line and for the defined threshold difference of
3 dB. As expected the adapted π model of line permits to achieve longer line than the
RL model for a given filtering frequency. For a short line both models are valid with a
cut-off frequency of 1 kHz. For a long line the adapted π model is more suitable. Finally,
for a very long line only the adapted π model can be used if the the cut-off frequency is
decreased.
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Figure 2.10: Maximum frequencies at which adapted π and RL models differ from the
Bergeron model for less than 3 dB for different line lengths

Table 2.1 summarizes the filtering frequency that must be used for the distance element
algorithm according to the line length.
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Filtering frequency Max. length RLC Max. length RL

1000 Hz 75 km 45 km

500 Hz 145 km 80 km

300 Hz 240 km 140 km

Table 2.1: Maximum line length for adapted π and RL model for different filtering fre-
quencies

2.4.2 J. Marti model

In the previous section it has been assumed that the reference model of line is represented
by a Bergeron model. This choice has been motivated by the fact that the implementation
of this model in an EMTP software is simpler. Indeed, the construction of the curves
of the different parameters of the line against the frequency requires more information
about the complete line and tower topology than for the Bergeron model. In this section
a comparison between the transfer function of a Bergeron model and a J. Marti model
will be made in order to ensure that both models fit until the first resonance frequency.

For the J. Marti model of line it is more relevant to analyse a three-phase model of line.
A phase-to-phase or a three-phase fault involves only the positive sequence line parameters
while a phase-to-ground fault involves both positive and zero sequence line parameters.
As the frequency dependence is more significant for the zero sequence (see Fig. 2.6), the
phase-to-ground fault should be more impacted. Fig. 2.11 compares the Bode’s curves
of the transfer function of a three-phase Bergeron and J. Marti model of 100 km. The
transfer functions represented in these figures correspond to the line parameters identified
by the RLC identification method as explained in Appendix A. Note that in this thesis
the Clarke transformation is used to study a three-phase system. This transformation
leads to the α, β and 0 sequence components. The following conclusions can be made:

- for the phase-to-phase fault on the top of the figure the two transfer functions are
similar until a few kHz. The use of the Bergeron model as reference is therefore
justified in this case.

- for the phase-to-ground fault on the bottom the two transfer functions are very close
until the first resonance frequency.

- however, for the phase-to-ground fault a distortion appears before the resonance
frequency. This phenomenon is not linked to the model of line used but is due to
the series circuit formed by the α and the 0 sequence network. This phenomenon
will be analysed deeply in Section 6.6.
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- for the higher frequencies the matching is no longer met. It is therefore necessary
to filter the frequencies higher than the first resonance frequency if the Bergeron
model is used as a reference for the simulation.

- finally, there is also a difference for the very low frequencies (below 10 Hz). For
the Bergeron model the positive sequence of the resistive parameter is rl = 0.0588
Ω/km. This parameter is constant for all the frequencies. For the J. Marti model
the positive sequence of the resistive parameter is rl = 0.0581 Ω/km at 50 Hz and
rl = 0.0398 Ω/km at 0.1 Hz. However, the accuracy of the J. Marti model for
the very low frequencies is not totally reliable because this model presents unstable
behaviour for low frequencies [35], [36].
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Figure 2.11: Bode’s curves comparison for a phase-to-phase fault above and a phase-to-
ground fault below between a Bergeron and a J. Marti line of 100 km

2.5 Conclusions

In this chapter the different models of line have been presented and their frequency be-
haviour has been studied. From the very simple RL model to the most accurate J. Marti
model. It appeared that it is necessary to improve the model of line usually implemented
in the existing protection algorithm in order to increase the frequency range in which the
actual transmission line and the model used for the algorithm fit. This improvement would
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permit to protect longer lines without increasing too much the filtering specifications and
therefore the possible extra-delays.

The Bergeron model was chosen as the reference model to represent a real-world
overhead transmission line because this model is easier to implement for a large database
of tests. It was shown that this model is quite similar to the J. Marti model until the first
resonance frequency. The higher frequencies should be removed by a low-pass filter. The
comparison of the performances of both models will be done in Chapter 6.

In the next chapter a distance element algorithm based on a transmission line param-
eters identification will be implemented and validated.



Chapter 3

Line parameters identification
method

3.1 Introduction

The purpose of this chapter is to construct a distance element algorithm for the ultra-fast
distance protection relay. The distance to fault can be deduced from the parameters of the
faulted transmission line as in classical relay. In Section 3.2 the transfer function of the
different transmission line models presented in the previous chapter will be calculated. In
Section 3.3 the adapted π model of line will be developed. It will lead to a correction factor
for the capacitance of the line. The time-domain equations will be deduced from these
transfer functions for the selected model in Section 3.4. The parameters of the faulted
line will be estimated with a linear least-squares method which will be deeply detailed
in Chapter 4. Firstly, in Section 3.5 all the identification methods implemented will
be validated with a perfect simulation model corresponding exactly to the identification
model. In Section 3.6 it will be shown that the SIR has an important impact on the high
frequencies appearing in the voltage and the current signals of the faulted line. This study
will be useful to understand the results obtained for a more complex model of line for
different SIR values. In Section 3.7 the distance element algorithm will be tested with a
more accurate transmission line model corresponding to a distributed parameters model.
Finally, the impact of the fault resistance on the identified distance to fault will be treated
in Section 3.8.

3.2 Transfer function

It is necessary to obtain the transfer function of the different transmission line models
in the frequency domain. The transfer function is defined as the ratio of the voltage to
the current at the relay location. The distributed parameters models of line are solution

23
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of the problem given by (2.1) and (2.2). A distributed model can be represented as an
infinite cascade of π-sections. It is also possible to find the time-domain equations of the
Bergeron model directly from the travelling waves theory as it was done in [29]. However,
this method implies the use of a very high sampling rate (a few MHz). In this project
the sampling rate of the algorithm is fixed to only 8 kHz as explained in Chapter 1.
Other methods in the frequency domain have been developed for a single-ended distance
algorithm based on the Bergeron model [37], [38]. However, as explained in Chapter 2, the
frequency domain approach is limited in response time by the filtering process. It is thus
impossible to construct a simple transfer function for the distributed parameters models
of line adapted to an on-line fast distance protection algorithm. The Bergeron model will
be used as reference to represent the real-world transmission line. The lumped parameters
models will be used for the least-squares identification algorithm. The implementation
of the identification method will be done for a single-phase circuit. The generalization
to the three-phase lines will be treated in Chapter 5. Moreover, the assumption of a
bolted short-circuit (zero fault resistance) will be made to simplify the development of
the method. The impact of the fault resistance will be discussed in Section 3.8.

3.2.1 RL line

The transfer function of an RL circuit is straightforward because there are only series line
impedance. The transfer function is simply the impedance of the line as shown in Fig.
3.1 and is given by (3.1).

HRL(jω) = VR(jω)
IR(jω) = mrl + jωmll (3.1)

wherem is the distance to fault (km). The dotted elements represent the external network
which does not impact the transfer function of the line.

RS LS IR
mrl mll

VRVS

Figure 3.1: RL model of a faulted line

3.2.2 RLC PI line

Fig. 3.2 shows a classical π model of line with a simple model of generator connected at
both ends.
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RSA LSA R L LSB RSB

C
2

C
2VSA VSB

A B

Figure 3.2: π model of line with a voltage source connected at both ends

When a bolted fault appears on the line between the nodes A and B at a distance m
from the beginning, the line can be split in two parts: a faulted part shown in Fig. 3.3
which is the left part of the line; and a right part of the same line which does not have
any impact on the equations as the fault is a bolted short-circuit. Fig. 3.3 represents
the so-called Γ model of line [39]. Note that in the usual form of the Γ model of line all
the capacitance of the line is put at one extremity. In this project the denomination of Γ
model is related to a half branch of the π model.

RS LS IR
mrlI1

mll

0.5mcl
I2

VRVS

Figure 3.3: Γ model of a faulted line

There are 2 closed circuits that give 2 equations regarding the Kirchoff’s Voltage
Laws (KVL) and 1 regarding to the Kirchoff’s Current Laws (KCL). After introducing
c′l = 0.5 · cl, it leads to:

VS −RSIR − jωLSIR −
1

jωmc′l
I2 = 0

1
jωmc′l

I2 −mrlI1 − jωmllI1 = 0

IR = I1 + I2

(3.2)

(3.3)

(3.4)

Using the relation:

VR = VS −RSIR − jωLSIR (3.5)

the transfer function is finally given by:

HRLC PI(jω) = VR(jω)
IR(jω) = jωmll +mrl

(jω)2mc′lmll + jωmc′lmrl + 1 (3.6)

In Section 2.4 it was shown that the π model of line cannot fit a distributed parameters
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model in a wide frequency range for the very long lines. To improve the fitting it is
necessary to use more than one π-section (multi-π model of line). An alternative solution
is to adapt the transfer function of the π model in order to improve the fitting until the
first resonance frequency. Fig. 3.4 shows that this improvement can be achieved by taking
a lower value of the capacitance. An optimal value of c∗l = 0.4 · cl instead of c′l = 0.5 · cl
for the capacitance was found empirically but a theoretical explanation is presented in
Section 3.3. This value is valid for all the line lengths.
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Figure 3.4: Bode’s curves comparison between a π and an adapted π model of line of 300
km

As explained in Appendix B the resonance frequency is given by (3.7). Fig. 3.5
shows the resonance frequencies for different distances to fault. In this example the
parameters of the transmission line are ll = 0.955 mH/km and c∗l = 0.0049 µF/km (typical
values for a 220 kV power system [34]). For close-in faults or short lines the resonance
frequency is very high. The high frequencies may be deleted by the filters of the data
acquisition system. It is important to keep this fact in mind when analysing the RLC
identification method presented in Section 3.5. For a distance to fault of 120 km the
resonance frequency is around 600 Hz and it drops to 250 Hz for a distance to fault of
300 km. This curve will be useful to implement correctly the low-pass filter necessary
to remove the high frequencies above the first resonance frequency of the faulted line
simulated by a distributed parameters model.

fres = 1
2πm

√
c∗l ll

(3.7)
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Figure 3.5: Resonance frequencies versus the distance to fault for an adapted π model of
line

3.2.3 RLC T line

Fig. 3.6 shows the equivalent circuit of the RLC T model of line.

RS LS IR
mrl

2
mll
2

mrl
2I1

mll
2

mcl

I2

VRVS

Figure 3.6: T model of a faulted line

After introducing l′l = 0.5 · ll and r′l = 0.5 · rl, the KVL and KCL give the following
equations:



VS −RSIR − jωLSIR −mr′lIR − jωml′lIR −
1

jωmcl
I2 = 0

1
jωmcl

I2 −mr′lI1 − jωml′lI1 = 0

IR = I1 + I2

(3.8)

(3.9)

(3.10)

Finally, the transfer function is given by:
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HRLC T (jω) = VR(jω)
IR(jω) = (jωml′l +mr′l)((jω)2mclml

′
l + jωmclmr

′
l + 2)

(jω)2mclml′l + jωmclmr′l + 1 (3.11)

Fig. 3.7 shows that the π model and the T model of line have a similar frequency
response until the resonance frequency. After the resonance both models differ from the
Bergeron model of line. The T model does not improve the fitting despite a more complex
transfer function. Note that for the π and T models a correction factor of 0.4 instead of
0.5 and 0.8 instead of 1 is taken respectively for the capacitance of the line in order to
fit better the Bergeron model of line. For the T model the value of 0.8 for the correction
factor was also found empirically.
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Figure 3.7: Bode’s curves comparison between an adapted π and an adapted T model of
line of 300 km

3.2.4 Multi-PI line

The same developments can be made for the multi-π model of line. In Section 2.4 it
was shown that the multi-π model is the most accurate lumped parameters model of
line for the transient analysis. However, even with only two cascaded-π sections, the
transfer function of this model is very complex (3.12). Moreover, as it will be explained
in Section 3.4.2 the use of a linear least-squares method implies that the model is linear
in parameters. The linearisation of the multi-π model of line is not possible.
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H2PI(jω) = (jω)3ml′lmr
′
lmc
′
l+(jω)22ml′lmr

′
lmc
′
l+(jω)((mr′l)

2mc′l+2ml′l)+2mr′l
(jω)40.5(ml′

l
mc′

l
)2+(jω)3ml′

l
mr′

l
(mc′

l
)2+(jω)2(1.5ml′

l
mc′

l
+0.5(mr′

l
mc′

l
)2)+(jω)(1.5mr′

l
mc′

l
+ml′

l)+mr′
l
+1

(3.12)

3.2.5 Models discussion

Some first conclusions can be made according to the previous results:

- the RL model is accurate only for very short lines in transient analysis. However,
thanks to its very simple transfer function this model can be efficient for short
lines and is therefore not rejected. Moreover, one of the objectives of this thesis is
to prove that the use of a model of line more accurate than the RL model would
permit to implement a faster distance element algorithm. The RL model will also
implemented and its performances will be compared with a more complex model of
line.

- the adapted Γ model is accurate enough for long lines in a relatively wide frequency
range. This model will be implemented and deeply analysed. Remember that the
Γ model represents a half branch of the π model in the fault conditions.

- the T model of line has a more complex transfer function than the Γ model while
it has a similar behaviour until the resonance frequency. It is therefore not relevant
to implement the T model.

- as explained before the multi-π model leads to a very complex transfer function
which cannot be linearised in order to use a linear least-squares method. This
model will be rejected too.

3.3 Adapted PI model of line

The transfer function of the adapted π model of line subject to a short-circuit is given by
(3.13):

HRLC = V

I
= jωmll +mrl

(jω)2mc∗lmll + jωmc∗lmrl + 1 (3.13)

By defining:

Z = jωmll +mrl

Y = jωmcl

(3.14)
(3.15)

it leads to:
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HRLC = Z

1 + kcorrZY
(3.16)

The objective is to find a corrective factor kcorr that improves the fitting between the
π model and the distributed parameters model of line until the first resonance frequency.
For a classic π model of line the capacitance is split in two equal parts put at the beginning
and at the end of the line. In this case the corrective factor is kcorr = 0.5. However, it
appeared that the matching between the transfer function of the π model and the Bergeron
model is not achieved until the resonance frequency.

A constant distributed parameters model of line is governed by the steady-state rela-
tions (3.17) and (3.18) as demonstrated in [40, page 115].


V (x) = V2 cosh(γx) + ZCI2 sinh(γx)

I(x) = V2

ZC
sinh(γx) + I2 cosh(γx)

(3.17)

(3.18)

where x is the position on the transmission line taken from the end of the line, V2 and I2

are respectively the voltage and the current at the end of the line. When a bolted short-
circuit appears on the line it is possible to consider only the fraction of the transmission
line between the relay and the fault position. In this case the beginning of the line, and
thus the relay location, is localized at the position x = m and the voltage V2 at the end of
the line, and thus at the fault position, drops to zero. The transfer function of the faulted
line seen at the relay location becomes:

H = V (m)
I(m) = ZC

sinh(γm)
cosh(γm) (3.19)

If the conductance of the line is neglected the following equation results:

H =
√
jωll + rl
jωcl

1
coth(γm) (3.20)

In order to compare the transfer function of the adapted π model and the distributed
model the hyperbolic function is approximated by a Taylor Series Expansions [41].

H =
√
jωll + rl
jωcl

1
1
γm

+ γm
3 + ...

(3.21)

Using (3.14) and (3.15) and the fact that γm =
√
ZY it leads to:

H =

√√√√Z/m

Y/m

1
1√
ZY

+
√
ZY
3

= Z

1 + 1
3ZY

(3.22)

This development shows that in a first approximation the corrective factor to apply to



Line parameters determination 31

the transfer function of the π model of line is:

kcorr = 1
3 = 0.3333... (3.23)

Of course the factor found here is coming from a first order approximation of the
hyperbolic function and is thus not exactly equal to the empirical factor found which is
equal to 0.4. However, it permits to explain that the use of a factor lower than 0.5 may
permit to improve the equivalence between the transfer function of a lumped parameters
and a distributed parameters model of line.

3.4 Line parameters determination

In this section a linear least-squares algorithm for the parameters identification of the
faulted line will be presented. The developments are done for the two selected models of
line: the RL model and the RLC-Γ model. It is possible to derive the temporal relations
between the voltage and the current at the relay location from the transfer functions
found before. When a fault occurs on the line the "fault detection element" of the relay
protection will give a starting time as output. From this starting time several samples of
voltage and current are collected. The number of samples depends on the window length
used for the distance element algorithm and on the sampling rate. The objective is to
construct an overdetermined linear system of equations as follows:

Ax = b (3.24)

where the matrices A and b are function of the voltage and the current at the relay
location. x is the vector of the faulted line parameters (Rl, Ll and Cl) to be identified
by the least-squares method. Theoretically, only 3 samples are needed to solve a system
of 3 unknowns. In practice, the data may be noisy and an error term may be present
for each sample (called residuals). The method of least-squares consists in adjusting
the unknowns of an overdetermined system by minimizing the sum of the squares of the
residuals. Assuming that the linear parameters rl, ll and cl are known, the distance to fault
can be directly deduced from the identified line parameters. It will be shown that first and
second order derivative functions are present in the system (3.24). However, the numerical
approximation for the derivative function may be unstable because the round-off error can
grow while the truncation error is reduced [42, page 182]. Moreover, the derivative terms
are more sensitive to the high frequency noises and harmonic interferences and the noises
may be amplified. For these reasons, the integral form of the models will be implemented.
The numerical approximations used in this thesis are shown in Appendix C.
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3.4.1 RL model identification method

The transfer function given by (3.1) leads to the relation (3.25) in the temporal domain:

V (t) = Ll
dI(t)
dt

+RlI(t) (3.25)

which by using the fact that Ll = mll, Rl = mrl and by integrating both sides leads to:

mll(I(t)− I(t0)) +mrl

∫ t

t0
I(τ)dτ =

∫ t

t0
V (τ)dτ (3.26)

by renaming:

I(I)ti =
∫ ti

t0
I(τ)dτ

I(V )ti =
∫ ti

t0
V (τ)dτ

(3.27)

(3.28)

the matrix form Ax = b gives finally:

A =


It1 − It0 I(I)t1
It2 − It0 I(I)t2

... ...



b =


I(V )t1
I(V )t2

...


x =

mll
mrl



(3.29)

(3.30)

(3.31)

where the ith row corresponds to the ith sample.

3.4.2 RLC model identification method

The idea of using a π model of line for a distance protection algorithm is not new but
has been already investigated a few decades earlier. In [43] written in 1979 a similar
time-domain algorithm based on an RLC model of line was proposed but rapidly the
impedance-based method with an RL model of line established itself in the power system
protection domain. Some other algorithms based on the π model have been developed but
in the frequency domain [44]. Recent works have proposed a time-domain algorithm based
also on a π model of line but they present some limitations. For example the method
proposed in [45] requires the measurement of the voltage and the current signal at both
terminal of the transmission line. In [46] a single-end algorithm was proposed but the
method implies an iterative process which is not suitable for an ultra-fast algorithm as
explained above.
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In this Section a solution breaking the previous limitations is proposed. The method
implemented is a non-iterative time-domain algorithm based on the RLC Γ model of line
and using the measurements of only one terminal of the line. The time-domain relation
can be deduced from the transfer function (3.6) and gives:

ClLl
d2V (t)
dt2

+ ClRl
dV (t)
dt

+ V (t) = Ll
dI(t)
dt

+RlI(t) (3.32)

In this formulation there are 4 parameters to identify Rl, Ll, ClRl and ClLl but only
3 independent line parameters Rl, Ll and Cl. However, the use of a linear least-squares
algorithm implies that the model is linear in parameters [47, page 2]. The linearity means
that all the partial derivatives of the model represented by (3.32) with respect to each of
the parameters Rl, Ll and Cl are independent of the parameters. It is obvious that the
model presented above is not linear in parameters and the use of a linear least-squares
method can lead to wrong results. Unfortunately, the use of a non-linear least-squares
method involves an iteration process. This is not suitable for an ultra-fast algorithm
because it implies that for each new sample an iteration process is necessary to update the
solution. Moreover, the convergence is not always guaranteed for a non-linear least-squares
method [48]. Assuming that there is no fault resistance the following transformations can
be made:

Cl = m · c′l

Ll = m · ll = Cl
c′l
ll

Rl = m · rl = Cl
c′l
rl

(3.33)

(3.34)

(3.35)

The relation (3.32) becomes:

C2
l

c′l

(
ll
d2V (t)
dt2

+ rl
dV (t)
dt

)
+ V (t) = Ll

dI(t)
dt

+RlI(t) (3.36)

which represents now a linear model defined by the three parameters C2
l , Ll and Rl. If the

fault resistance Rf is not equal to zero the relation (3.32) is not exactly correct because
(3.35) becomes:

Rl = m · rl +Rf = Cl
c′l
rl +Rf (3.37)

If the fault resistance is introduced in the model it leads again to a non-linear model.
The presence of a fault resistance may impact the identified parameters Rl and C2

l /c
′
l.

The distance to fault must be deduced from the identified inductance Ll. In Section 3.5
the impact of a fault resistance on the identified parameters will be analysed in order to
ensure that the identified inductance remains accurate enough. The relation (3.36) is the
derivative form of the RLC model. As explained before it is better to limit the use of
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numerical derivatives in the algorithm. As for the RL model, the integral form will be
implemented. However, the relation (3.36) is integrated only once in order to limit the
complexity of the least-squares system. It leads to the following relation:

C2
l

c′l

[
ll

(
dV (t)
dt
− V̇ (t0)

)
+ rl (V (t)− V (t0))

]
+
∫ t

t0
V (τ)dτ

= Ll (I(t)− I(t0)) +Rl

∫ t

t0
I(τ)dτ (3.38)

By renaming:

I(I)ti =
∫ ti

t0
I(τ)dτ

I(V )ti =
∫ ti

t0
V (τ)dτ

(3.39)

(3.40)

it finally leads to the matrix form Ax = b:

A =


ll[V̇t1 − V̇t0 ] + rl[Vt1 − Vt0 ] −It1 + It0 −I(I)t1
ll[V̇t2 − V̇t0 ] + rl[Vt2 − Vt0 ] −It2 + It0 −I(I)t2

... ... ...



b =


−I(V )t1
−I(V )t2

...



x =


m2c′l

mll

mrl



(3.41)

(3.42)

(3.43)

3.5 Validation of the identification methods

First of all the two parameters identification systems ((3.26) and (3.38)) developed before
must be validated with a perfect simulation model of line corresponding exactly to the
identification model of line. For these tests the following settings are used:

- the sampling rate of the algorithm falgo is equal to 8 kHz.

- the window length of the algorithm is equal to 4 ms (32 samples).

- the starting time of the algorithm is taken 0.5 ms after the fault occurrence.

- a transmission line of 300 km is supplied by a strong source (SIR = 0.1). The line
is defined by rl = 0.058 Ω/km, ll = 0.955 mH/km and cl = 0.0124 µF/km (only for
the RLC model).

The relative error given by (3.44) permits to evaluate the accuracy of the identified
distance to fault. For the relay applications another significant indicator is the error given
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by (3.45) of the identified distance to fault compared to the total line length mtotal. This
information is useful to define a secured reaching distance and to avoid the over-reaching
of the distance protection.

erel = mactual −midentified

mactual

· 100 (%) (3.44)

etot = mactual −midentified

mtotal

· 100 (%) (3.45)

3.5.1 RL method validation

Fig. 3.8 shows the electrical circuit simulated to test the RL identification algorithm.
After the closing of the breaker the model seen at the relay location corresponds to a
perfect RL model of line governed by (3.26).

RS LS IR
mrl mll

VRVS

Figure 3.8: Simulation of a simple RL faulted line

Fig. 3.9 shows the voltage and the current signals at the relay location. The voltage
drop and the current increase appear at t = 0 ms. The RL model of line involves only
the fundamental frequency and the transient DC component. In this example a close-in
fault at 30 km is shown in order to have a significant voltage drop.

The RL identification method implies the identification of two parameters of line. The
distance to fault is deduced from (3.31) as follows:

m1 = x1/ll

m2 = x2/rl

(3.46)
(3.47)

Fig. 3.10 shows the relative errors of the identified distance to fault deduced from the
inductance and the resistance of the faulted line with the RL identification model. The
RL transmission line simulated has a length going from 3 km to 285 km. The relative
errors are very small and it can be concluded that both R and L parameters are very well
identified.
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Figure 3.9: Voltage and current signals for an RL faulted line of 30 km
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Figure 3.10: Relative errors of the distance to fault deduced from the identified inductance
and resistance of an RL transmission line

3.5.2 RLC method validation

Bolted fault

Fig. 3.11 shows the electrical circuit simulated to test the RLC Γ identification algorithm.
First of all a bolted fault is tested because this assumption has been made in order to
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construct a linear model in parameters. The impact of a resistive fault will be discussed
in the next section.

RS LS IR
mrl mll

mc′lVRVS

Figure 3.11: Simulation of a simple RLC Γ faulted line

Fig. 3.12 shows the voltage and the current signals at the relay location. There is
a high frequency signal in addition to the fundamental frequency and the transient DC
component. In this example the fault is located at 285 km.
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Figure 3.12: Voltage and current signals for an RLC Γ faulted line of 285 km

The RLC identification method implies the identification of three parameters of line.
The distance to fault is deduced from (3.43) as follows:


m1 =

√
x1/c′l

m2 = x2/ll

m3 = x3/rl

(3.48)
(3.49)
(3.50)

The RLC model of line involves very high frequencies for close-in faults or short lines
as shown in Fig. 3.5. Indeed, the resonance frequency may be higher than 10 kHz. With
a sampling rate of only 8 kHz, an anti-aliasing filter must be used. However, the use of
a low-pass filter may have an impact on the least-square algorithm. For this reason the
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validation of the method is first done with a sampling rate of 1 MHz in order to accurately
simulate the high frequency components and to avoid the use of a filter. As shown in Fig.
3.13 the three parameters R, L and C are well identified. However, at 1 MHz 4000 samples
are used for a window of 4 ms. It is therefore necessary to test the algorithm with a lower
sampling rate of 8 kHz but while keeping in mind the possible effects of the anti-aliasing
filter.
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Figure 3.13: Relative errors of the distance to fault deduced from the identified inductance,
resistance and capacitance of an RLC Γ transmission line with a sampling rate of 1 MHz

According to the Nyquist–Shannon theorem an anti-aliasing filter must be used before
the down-sampling at 8 kHz. A deep analysis to find the best implementation of the
filtering process will be done in Chapter 7. At this step the default low-pass filter given
by the decimation function of Matlab Software is used [49], [50]. It is an Infinite Impulse
Response (IIR) Chebyshev Type 1 low-pass filter. The order of this filter is equal to 6
and the cut-off frequency is set at 3200 Hz. The characteristics of the filter are shown
in Fig. 3.15. In order to take into account the delay added by the filtering process the
starting time is set at 1 ms after the fault occurrence.

The relative errors on the distance to fault deduced from the three identified parame-
ters are shown in Fig. 3.14. The following conclusions can be highlighted:

- the errors on the identified distance to fault are greater than for the RL identification
method. Indeed, for the RLC model an anti-aliasing filter is required before the
down-sampling. As it will be shown next, the IIR filter has an impact on the
transient behaviour of the signals. However, the magnitude of the errors remains
acceptable.



Validation of the identification methods 39

- for close-in faults the identified capacitance is not correct. The high frequencies seen
in the signals are very high and cannot be accurately identified with a sampling rate
of 8 kHz because these high frequencies are removed by the filter. This conclusion is
very important because it implies that the identified capacitance of the line cannot
be used directly to identify the distance to fault in all the cases.

0 50 100 150 200 250 300

Distance to fault (km)

-1

0

1

e
(r

e
l)
 w

it
h

 L
 (

%
)

0 50 100 150 200 250 300

Distance to fault (km)

-2

0

2

e
(r

e
l)
 w

it
h

 R
 (

%
)

0 50 100 150 200 250 300

Distance to fault (km)

-1000

-500

0

e
(r

e
l)
 w

it
h

 C
 (

%
)

260 265 270 275 280 285
-3

-2.8

Figure 3.14: Relative errors of the distance to fault deduced from the identified inductance,
resistance and capacitance of an RLC Γ transmission line with a sampling rate of 8 kHz

Some considerations must be made about the aliasing phenomenon. To avoid totally
the aliasing of the signals one of the two following assumptions must be respected [51]:

- the signal is band-limited in the frequency domain.

- the anti-aliasing filter is an ideal low-pass filter without a transition zone between
the pass-band and the stop-band.

However, none of these two assumptions is true for a real-world system. Indeed,
the first assumption implies that the signals are not time-limited [52] and the second
assumption implies that the order of the filter is infinite.

Fig. 3.15 shows the frequency and the step response of the IIR anti-aliasing filter used
above. The attenuation is around 11 dB close to the Nyquist frequency as shown in the
figure. The transition band is not very narrow because the order of the filter is small.
However, the increase of the order will also increase the phase delay which is around 0.2
ms. The phase delay profile is very flat in the pass-band but it varies close to the cut-
off frequency. The step response of the anti-aliasing filter is oscillating during the first
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samples. These oscillations will perturb the voltage and the current signals during the
first samples used by the least-squares method and will therefore impact the accuracy of
the identified parameters.
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Figure 3.15: Magnitude of the frequency response (top), phase delay of the frequency
response (middle) and step response (bottom) of an IIR Chebyshev Type 1 low-pass
filter. The order is equal to 6 and the cut-off frequency is equal to 3200 Hz

Resistive fault

A bolted fault was assumed in order to construct a linear model of line. However, the
relation (3.36) is not correct when a fault resistance is involved. It is therefore necessary
to verify the impact of a fault resistance on the 3 identified parameters of the faulted line.
A fault resistance of 50 Ω is put at the end of the RLC transmission line tested above.
The value of the fault resistance is removed from the identified resistance in order to
keep only the error due to the identification algorithm. At this step a single-end voltage
source is tested. The possible impact of the fault resistance on the identified parameters
is therefore only due to the linearisation of the model of line and not to the well-known
remote injection impact which will be discussed later.

Fig. 3.16 shows the comparison of the results obtained with a bolted fault and a
resistive fault. The distance to fault identified from the three parameters R, L and C are
presented. The errors are given in percent of the total line length. The additional error
due to the resistive fault is limited for the identified inductance and capacitance of the
line. However, the impact on the identified resistance of the line cannot be neglected.
Even after subtracting the fault resistance the error remains high. It is not an issue for
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the protection relay algorithm because the distance to fault is not deduced directly from
the identified resistance. However, it is important to keep in mind that the accuracy of
the identified resistance is not very good.
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Figure 3.16: Relative errors (in % of the line length) of the distance to fault deduced
from the identified inductance, resistance and capacitance of an RLC Γ transmission line.
Comparison between a bolted fault and a resistive fault of 50 Ω

3.6 Source Impedance Ratio impact

In Section 2.4, it has been shown that an RLC model can fit a Bergeron model of line until
the first resonance frequency. A low-pass filter is used in order to keep only this frequency
band. If all frequency content of the voltage and the current is included in this frequency
band, all line parameters can be accurately identified. However, the high frequencies
excited by the system do not correspond to the resonance frequency but depend on the
complete power system network. Indeed, it will be shown in this section that the SIR has a
big impact on the frequency content of the signals. This phenomenon is also problematic
for the classical impedance-based distance protection algorithms [53]. When the SIR
increases the high frequencies get closer to the fundamental frequency and are therefore
more difficult to filter.

Fig. 3.17 shows the signals of a faulted Γ model of line of 300 km with a fault located
at the middle of the line. The voltage and the current are shown for a strong source (on
the left) and a weak source (on the right). The resonance frequency at 150 km evaluated
thanks to (3.7) is equal to 435.8 Hz.
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Figure 3.17: Voltage and current signals for a Γ model of line of 300 km faulted at the
middle. SIR equals to 0.1 (on the left) and SIR equals to 5 (on the right)

For the strong system the fundamental frequency is dominant for both voltage and
current signals. The high frequency is about 1080 Hz and is therefore very far from the
resonance frequency. For a strong power network the high frequencies will be always
filtered by the low-pass filter. The capacitance of the line cannot be accurately identified
in this case. The RL algorithm can be used if the line is not too long but it may become
unsuitable because the high frequencies are not filtered enough if the line is too long.

For the weak system the steady-state frequency is almost zero for the voltage. The
high frequency is dominant and is about 457 Hz. This frequency is close to the resonance
frequency. The high frequencies will not be filtered by the low-pass filter in this case.
The capacitance of the line can be identified by the RLC algorithm. However, the RL
algorithm is not accurate for this kind of network because it does not include the high
frequency behaviour in its model.

A faulted line signal may be composed by different components: the transient DC
component, the fundamental frequency component and the transient high frequencies
components. As seen before in Fig. 3.17, the frequency content present in the faulted
signals depends on the complete power network. The accuracy of the three identified
parameters may also depend on this frequency content. Fig. 3.18 shows the impact of the
line parameters variation on the transfer function of the Γ model. A reference transfer
function is compared with the transfer function obtained if one of the three parameters
is increased by a factor of 1.5. It appears that a variation of the inductance will impact
the transfer function in a wide area from very low frequencies to the resonance frequency.
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A variation of the resistance will impact mostly low frequencies. Finally, the capacitance
changes the resonance frequency and the behaviour of the higher frequencies. It explains
why the capacitance is not well identified when the high frequencies are filtered.
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Figure 3.18: Impact of the line parameters variation on the transfer function of the Γ
model of line

3.7 Distributed line model

In the previous sections the RL and the RLC identification methods have been validated
for an RL and an RLC model of line respectively. In this section both methods will be
tested for a distributed parameters model of line. Only the Bergeron model is tested in
this section. As explained before the J. Marti model of line will be tested for a three-phase
model of line because the frequency impact on the line parameters is more significant for
the zero components.

Fig. 3.19 shows the voltage signal of a faulted Bergeron model of line of 150 km. On the
top of the figure the signal is simulated with a sampling rate FS of 1 MHz (corresponding
to a simulation step of 1 µs). The fault occurs at 0 ms but the voltage seen at the relay
location drops after about 0.5 ms due to the propagation delay of the electromagnetic
travelling waves. On the bottom of the figure the same signal passes through the IIR
anti-aliasing filter presented before in order to be down-sampled at 8 kHz. Moreover, it
was shown in Section 3.2.2 that a low-pass filter is necessary to remove the frequency
content of the signals after the resonance frequency of the adapted π model of line. The
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filter implemented here is a Finite Impulse Response (FIR) Hamming low-pass filter. The
order of this filter is equal to 17 and the cut-off frequency is set at 600 Hz. The cut-off
frequency depends on the length of the line to protect. The cut-off frequency must be
lower than the resonance frequency of the complete line. The objective is to ensure a
good accuracy of the model of line used for the identification until the end of the line
and therefore to avoid the over-reaching. A complete analysis of the filters implemented
in this thesis will be done in Chapter 7. As the low-pass-filter generates an extra delay
(about 1 ms here), the starting time of the algorithm is taken at 2 ms. This starting time
must take into account the delays due to the anti-aliasing filter, the low-pass filter and
the propagation phenomena of the travelling waves.
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Figure 3.19: Voltage signal for a Bergeron faulted line of 150 km not filtered (above) and
filtered at 600 Hz (below)

Fig. 3.20 show the errors on the identified distance to fault for a line of 100 km for a
strong system (SIR equal to 0.1). Both RL and RLC identification algorithms are tested.
The following conclusions can be highlighted:

- for a strong source the accuracy obtained on the identified inductance and resistance
is quite similar for both RL and RLC identification methods. The errors are less
than 1% of the line with the identified inductance.

- the identified capacitance with the RLC algorithm is not well identified in any tested
distances to fault. For the close-in faults it was already explained that the resonance
frequency was very high. However, for the remote-end faults it is due to the fact
that, for a very strong system network, the high frequencies present in the signals are
much higher than the resonance frequency (see Section 3.6) and are therefore also
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filtered by the low-pass filter. It was shown in Section 3.6 that a good estimation
of the capacitance of the line implies the presence of the high frequencies content.

- it appears that the RLC algorithm does not show any advantage compared to the
RL algorithm in this case. Indeed, for a short line or a long line with a very strong
system network the RL model of line is accurate enough because the high frequencies
are not visible by the relay protection because of the filtering.
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Figure 3.20: Relative errors (in % of the line) of the distance to fault for a Bergeron model
of line of 100 km with the RLC and the RL identification algorithm (SIR = 0.1)

Nevertheless, the RL identification algorithm reaches its limitations if the line length
increases or if the power system is too weak. Indeed, in these cases the high frequencies
content cannot be neglected any more and would even be dominant. To avoid to increase
the filter specifications and therefore the delay it becomes necessary to use a more accurate
model of line that can take into account the high frequencies content.

Fig. 3.21 shows the results obtained with the same network but here the SIR is equal
to 5. In this case it appears clearly that the RLC algorithm remains very accurate for
both inductance and resistance identification. Moreover, the distance to fault identified
from the capacitance of the line becomes very accurate from about 55% of the line length.
In fact, for a weak power system the high frequency present in the signals is close to the
resonance frequency of the Γ model. For the close-in faults, the capacitance cannot be
well identified as explained before. With the RL algorithm, the errors begin to increase
significantly from 65% of the line length. The errors at the end of the line are highlighted
in the figures to facilitate the comparison.
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Finally, Fig. 3.22 shows the results obtained for a long line of 300 km and a strong
network. It appears clearly that the RL identification method is no more sufficient to
identify the very long distances to fault while the RLC identification method still gives
quite good results. For this last test the cut-off frequency must be decreased to 300 Hz.
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Figure 3.21: Relative errors (in % of the line) of the distance to fault for a Bergeron model
of line of 100 km with the RLC and the RL identification algorithm (SIR = 5)
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of line of 300 km with the RLC and the RL identification algorithm (SIR = 0.1)
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3.8 Remote injection impact

For an interconnected grid there is a voltage source at both ends of the transmission line.
In this case the influence of the load-transfer on the line must be considered. The transfer
of the power across the line requires a phase shift between the two voltage sources. If
the transmission distances are not too high this phase shift is relatively small (10° - 15°)
[34]. For a very large distance the transmission angle may reach 60°. The equivalent
circuit of such a system is shown in Fig. 3.23. For more simplicity an RL model of line is
considered.

R1 L1 R2 L2

Rf

VS1∠α1 VS2∠α2

I1 I2

Iload

V1 V2

Figure 3.23: Double in-feeds RL transmission line. Impact of the remote injection

The voltage at the relay location is given by (3.51). If the fault resistance is not equal
to zero, the impedance seen by the relay is therefore not only the impedance of the faulted
line. The inductance seen by the relay may be under or over-estimated. It may lead to
over-reaching or under-reaching depending on the load-transfer direction. The importance
of the impact will depend on the value of the fault resistance Rf and on the current I2.
The current I2 will be imposed by the fault position and the phase shift. The impact of
the remote injection is greater for remote-end faults than for close-in faults because in this
last case the current I1 is more significant than the current I2. It is therefore impossible
to identify the actual faulted line impedance. In both cases the faulted line resistance
seen by the relay is higher than expected. It is possible to avoid over-reaching by using
a maximum resistance threshold. This phenomenon is well known for the classic relays
[54].

V1 = R1I1 + L1
dI1

dt
+Rf (I1 + I2)

= (R1 +Rf )I1 + L1
dI1

dt
+RfI2

(3.51)

3.9 Conclusions

In this chapter a linear least-squares method has been developed to identify the parameters
of the faulted transmission line. Two models were implemented for the identification
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algorithm: the RL and the RLC Γ model. The Γ model was improved in order to fit
better a distributed parameters model of line until the first resonance frequency. An
integral form was implemented for the two models to limit the use of a derivative function
which may amplify the noises present in the signals. The different methods were first
validated with a perfect simulation model corresponding to the identification model. In
a second step the methods were tested with a Bergeron model of line.

The RLC algorithm permitted to accurately identify the inductance of the faulted
line for short and very long lines in all the tested cases (strong and weak power systems,
close-in and remote faults). The maximum error was around 1% of the total line length
for a line of 100 km and around 6% for a line of 300 km. The identified capacitance
was not accurate for a strong power system and for close-in faults because of the filtering
of the high frequencies. For this reason this parameter will not be used to estimate the
distance to fault.

The RL algorithm permitted to accurately identify the inductance of the faulted line
but only for a strong power system (less than 1% error of the total line length). However,
the RL model does not permit to take into account the high frequencies. In the case of
a weak power system the high frequencies are not sufficiently filtered and impact a lot
the identification of the parameters (maximum error around 26% of the total line length).
The same conclusions were made for a long line of 300 km (maximum error around 43% of
the total line length). The RL algorithm would give better results for weak power systems
and very long lines if the filtering of the high frequencies was improved. However, it would
imply a higher filter order and thus an additional extra-delay.

In the next chapter a mathematical analysis of the least-squares method and the
residuals will be performed.



Chapter 4

Least-Squares estimation method

4.1 Introduction

In Chapter 3 the transmission line parameters identification algorithms led to a multiple
linear regression system Ax = b. The mathematical resolution was done using a linear
least-squares estimation method. The linear least-squares method has three important
advantages [47]:

- the method does not need any prior knowledge about the distribution of the depen-
dent variables b (in contrary to the method of maximum likelihood).

- the least-squares estimators of the vector x are the Best Linear Unbiased Estimators
(BLUE)1.

- the linear least-squares method does not involve an iteration process contrary to the
non-linear least-squares method.

In Section 4.2 the mathematical formulation of the Ordinary Least-Squares (OLS)
method will be developed. It will be shown in Section 4.3 that an ill-conditioned model
may lead to numerical instabilities. In Section 4.4 a Recursive Least-Squares (RLS)
method will be implemented in order to improve the efficiency of the solving process.
The different assumptions and a residual analysis will be done in Section 4.5 in order
to define some blocking conditions if the results obtained are not reliable. Finally, the
different elements implemented in this chapter will be tested with a Bergeron model of
line in Section 4.6.

1The Gauss-Markov theorem states that if a linear regression model satisfies some particular assump-
tions (defined in Section 4.5.1), then the ordinary least-squares regression gives unbiased estimators that
have the smallest variance of all possible linear estimators [55]

49



50 Least-Squares estimation method

4.2 Ordinary Least-Squares

The OLS method optimizes the solution of the problem so that the sum of the squares of
the residuals is minimal. If we call ai, bi and xi respectively the ith lines of the A, b and
x matrices, m and n respectively the number of parameters to identify and the number
of samples, the condition is equivalent to finding the vector x such that the function:

f =
n∑
i=1

 m∑
j=1

aijxj − bi

2

(4.1)

is minimal. Equation (4.1) can be written in a matrix form. The goal is therefore to
minimize the objective function S(x):

S(x) = ‖Ax− b‖2
2 (4.2)

The relation (4.2) is equivalent to:

S(x) = (Ax− b)T (Ax− b)
= ATxTAx− ATxT b− bTAx+ bT b

(4.3)

ATxT b and bTAx are scalars and hence equal to their transpose:

S(x) = ATxTAx− 2ATxT b+ bT b (4.4)

Finally, by deriving with respect to x and equalling to 0 it leads to:

2ATAx− 2AT b = 0⇔ x = (ATA)−1AT b (4.5)

The relation (4.5) gives the equation which is being solved when using an OLS method.
If (4.5) is solved with a matrix inversion it may lead to some numerical errors if the ATA
matrix is ill-conditioned as shown in the next section.

4.3 Condition number

The condition number can be seen as "how an error in the entries of A influences the
results of the system AX = B". It can be proved that the condition number κ(A) of a
rectangular matrix A may be expressed as [56]:

κ(A) = ‖A+‖ · ‖A‖ (4.6)

where A+ is the Moore–Penrose inverse matrix defined by (ATA)−1AT . The norm may
be arbitrarily chosen. For a n-vector v the Euclidean p-norm is defined as follows [56]:
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‖v‖p =
(

n∑
i=1

vni

)1/p

(4.7)

The matrix norm corresponding to a given vector norm is defined by:

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p (4.8)

where x is any vector ∈ <n. A too high condition number leads to an ill-conditioned
matrix, which means that the solution is very sensitive to any errors in the entries of the
matrix. A too high condition number can be defined as follows [57]:

log(κ(A)) > C (4.9)

where C is the precision of the matrix entries related to the precision of the measurements.
Fig. 4.1 shows the logarithm of the condition number for different distances to fault. The
least-squares algorithm is tested here with the Bergeron model of line of 100 km studied
in Section 3.7. Both RL and RLC identification methods are tested.
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Figure 4.1: Condition number for different distances to fault of a Bergeron model of 100
km for the RL and RLC identification method

The following observations can be drawn:

- the RLC identification method involves much higher condition numbers. This can be
explained by noting that in (3.36) there is a second derivative term that is involved
in the matrix A. As a consequence, the different columns have different orders of
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magnitude. In (3.25) however, only a first derivative is used, leading to a much
better conditioned matrix.

- the condition numbers of the RL method are less fluctuating. Indeed, (3.29) involves
only terms relative to the current which has a slower dynamic than the voltage. This
may be explained by the high inductance and the low capacitance involved in the
transmission lines.

In conclusion, the matrix A is more ill-conditioned with the RLC identification method
than with RL identification method. As a consequence, the results are more sensitive to
the accuracy of the entries of the matrix. It is also possible to solve the system (4.5)
without the use of a matrix inversion and therefore avoid the problem of ill-conditioning
presented above. It can be achieved by different methods like the Singular Value Decom-
position (SVD) for example [56]. In the next section a more efficient way to solve a linear
least-squares problem will be presented.

4.4 Recursive Least-Squares

4.4.1 Description

One of the main issues of the least-squares method introduced before and described in
(4.5) is the inversion of the matrix ATA. This inversion may lead to numerical errors if
the matrix is ill-conditioned. As mentioned before it is possible to use some factorization
algorithms that permit to avoid this inversion. However, in all the cases when a new
sample is available, it is necessary to go all the way back to the first sample and to solve
the complete least-squares system again. This solution is not suitable for a real-time
application because the computational complexity increases with the number of samples.

The RLS algorithm which is a recursive implementation of the OLS method permits
to find the estimators recursively. It means that each new sample is used to update the
previous solution. It is not necessary to use all the complete set of data to update the
estimation of the unknowns. The number of algebraic operations and required memory
locations is reduced fromO(m3) toO(m2) per cycle (wherem is the number of estimators)
[58]. It was demonstrated in [59] that the RLS method with an exponential forgetting
factor is exponentially convergent. A complete description of the RLS algorithm can be
found in [60] and is also summarized below.

The objective of the RLS algorithm is to estimate the vector x of the system Ax = b,
respecting the least-squares criterion described in Section 4.2, but on-line, which means
that each sample coming in the algorithm should update the value of the estimated
x. Hence, the matrices are split in n vectors corresponding to the n samples: A =
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a(1− 1, ...,m), a(2− 1, ...,m), ..., a(n− 1, ...,m), b = b(1), b(2), ..., b(n). The m final
values of x (where m is the number of parameters) should minimize the squared error:

ε(n) =
n∑
i=1

β(n, i)[e(i)]2 (4.10)

where β(n, i) is a forgetting factor decreasing the influence of old data, usually written:

β(n, i) = λn−i (4.11)

with (0 < λ < 1) and e(i) is the error defined as:

e(i) = b(i)−
m−1∑
k=0

xk(n)a(i− k) (4.12)

i is the index counting the number of samples and k is counting the number of parameters
in x. The criterion can hence be written as:

ε(n) =
n∑
i=1

λn−i
[
b(i)−

m−1∑
k=0

xk(n)a(i− k)
]2

(4.13)

or, if

a
′(i− k) =

√
λn−ia(i− k)

b′(i) =
√
λn−ib(i)

(4.14)
(4.15)

it leads to:

ε(n) =
n∑
i=1

[b′(i)−
m−1∑
k=0

xk(n)a′(i− k)]2 (4.16)

This reformulation reveals the well-known least-squares formulation, in the quantities
a′ik and b′i. The solution, as developed in (4.5), can be written as:

x(n) =
(

n∑
i=1

λn−ia(i)a(i)T
)−1 n∑

i=1
λn−ia(i)b(i)

= [Φ(n)]−1Ψ(n)
(4.17)

The idea is to find a recursive way to compute [Φ(n)]−1Ψ(n). The variables Φ(n) and
Ψ(n) should then be expressed as a function of Φ(n− 1) and Ψ(n− 1).

Φ(n) =
n∑
i=1

λn−ia(i)a(i)T

= λ
n−1∑
i=1

λn−1−ia(i)a(i)T + a(n)a(n)T

= λΦ(n− 1) + a(n)a(n)T

(4.18)
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Ψ(n) =
n∑
i=1

λn−ia(i)b(i)

= λ
n−1∑
i=1

λn−1−ia(i)b(i) + a(n)b(n)

= λΨ(n− 1) + a(n)b(n)

(4.19)

The end of the development, shown in [61], finally gives:

x(n) = x(n− 1) + k(n)α(n) (4.20)

k(n) = λ−1P (n− 1)a(n)
1 + λ−1aT (n)P (n− 1)a(n) (4.21)

α(n) = b(n)− a(n)Tx(n− 1) (4.22)

P (n) = λ−1P (n− 1)− λ−1k(n)aT (n)P (n− 1) (4.23)

The complete RLS algorithm extracted from [61] may be summarized as follows:

Given data a(1), a(2), ..., a(n) and b(1), b(2), ..., b(n)

1. Initialize x(0) = 0, P (0) = δI

2. For each time instant i = 1, ..., n, compute

1. π = aT (i)P (i− 1)

2. γ = λ + πa(i)

3. k(i) = πT

γ

4. α(i) = b(i) - xT (i− 1)a(i)

5. x(i) = x(i− 1) + k(i)α(i)

6. P ′ = k(i)π

7. P (i) = 1
λ
(P (i− 1)− P ′)

4.4.2 Validation

In order to validate the RLS algorithm a comparison between the outputs given by the
OLS and the RLS methods is done in this section. The tests are done again for the
Bergeron model of line of 100 km. The algorithm window length is 4 ms. Both RL and
RLC identification methods are compared. There are two parameters that may impact
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the outputs of the RLS algorithm. The first parameter is the forgetting factor λ between
0 and 1. Generally, the best choice of the forgetting factor is a compromise between the
stability and the tracking ability [62]. In [63] a method based on a variable forgetting
factor is proposed in order to improve the performances of the RLS algorithm. When λ
is small, the contribution of the previous samples decreases. It may be very useful for the
identification of the parameters of a non-stationary model or if the first samples are not
accurate enough. With finite data the forgetting factor should be set close to 1 because
all samples should be taken into account. The case where λ is equal to 1 corresponds
to a growing window algorithm. The second parameter is δ which depends on the initial
knowledge of the covariance matrix of the outputs. Since this knowledge is poor, the
initial value must be high. The recommended value for δ according to [61] is:

δ > 100σ2
a (4.24)

where σ2
a is the variance of the vector a. Some exact initializations of the RLS algorithm

were developed and may be useful when the true parameters to identify are known [64]. In
this thesis the rule (4.24) is used. The RL and the RLC methods were tested for different
values of δ. Both methods lead to a very good convergence between the OLS and the
RLS for a wide range of δ between [102 - 106]. Fig. 4.2 and 4.3 show the identified line
parameters for the RL and the RLC identification methods. The values used for λ and δ
are respectively 1 and 103.
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Figure 4.2: Inductance and resistance identified with the RL algorithm with an OLS and
an RLS method. The RLS parameters are λ = 1 and δ = 103
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Figure 4.3: Inductance, resistance and capacitance identified with the RLC algorithm
with an OLS and an RLS method. The RLS parameters are λ = 1 and δ = 103

4.5 Analysis of Least-Squares Estimations

The distance to fault is identified using the least-squares method presented before. How-
ever, several parameters may impact the results of the algorithms. These parameters may
be internal (model accuracy, SIR, remote injection, ...) or external (noises, hardware pre-
cision, ...). It is necessary to analyse the reliability of the results to improve the security of
the distance protection. Some statistical indicators can be used to evaluate the reliability
of the least-squares method outputs. In this section the Mean Squared Error (MSE) and
the Confidence Interval (CI) will be presented.

4.5.1 OLS assumptions

As the RLS algorithm is a recursive implementation of the OLS method it is necessary
to check the mathematical assumptions related to this last. Indeed, several assumptions
are made when working with a least-squares method. These assumptions ensure that the
solution found is BLUE. Some assumptions are related to the error terms present in the
model. However, this term is never really known and the residuals are used instead. The
major assumptions are according to [47], [65], [66]:

1. the multiple regression model is linear in parameters.

2. the mean of the error term is zero.
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3. the variance of the error term must be constant for each observation and in particular
does not depend on the value of the independent variables (homoscedasticity).

4. the observations of the error term are uncorrelated.

5. all independent variables are uncorrelated with the error term.

6. the dependent variable is a perfect linear function of other independent variables.

7. the error term is normally distributed.

4.5.2 Residual analysis

The least-squares method is used to solve the system:

Ax = b (4.25)

The ith row of the system (corresponding to the ith sample) is:

m∑
j=1

aijxj = bi (4.26)

The ith residual is defined as the difference between the measured output bi and the
predicted output b̂i. This definition gives:

ei = bi − b̂i = bi −
m∑
j=1

aijx̂j (4.27)

where x̂j is the jth identified parameter. Using the Residual Sum of Squares (RSS) defined
as:

RSS =
n∑
i=1

e2
i (4.28)

and if the OLS assumptions are respected the estimate variance is obtained as:

σ2 = 1
n−m

n∑
i=1

bi − m∑
j=1

aijx̂j

2

= 1
n−m

n∑
i=1

e2
i = RSS

n−m
= MSE (4.29)

4.5.3 Standardized residuals

The residuals as defined before depend on the magnitude of the data. In order to easily
compare the residuals from different models or methods, it is important to scale the
residuals. There exists different normalization forms. The simplest normalised residual is
the standardized residual defined as:
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zi = ei√
MSE

(4.30)

A faulted RLC Γ model of line of 300 km is simulated in Fig. 4.4. The figure on
the top shows the evolution of the standardized residuals of the OLS RLC algorithm.
The figure on the bottom is a plot of the ith residual against the (i − 1)th residual. The
following findings regarding the OLS assumptions appear:

- the mean of the residuals must be zero. This condition can be considered as re-
spected because the mean appears to be negligible (equal to 0.0032).

- the variance of the residuals is not constant. This point will be discussed more
deeply in Section 4.5.5.

- the 4th assumption suggests that the residuals are uncorrelated. This assumption
can be achieved when the data are randomly sampled. However, for a time-series
data, this assumption is often violated because the sampling is done successively
with a constant step. In this case the auto-correlation of the residuals may be
observed. Some procedures have been developed to solve these issues but they are
not well adapted to an on-line ultra-fast algorithm [67], [68]. The estimation of the
parameters remains unbiased but the MSE and the CI are not correct [55]. The
figure on the bottom may be useful to check the correlation of the residuals. In this
example a possible correlation between the residuals does not appear clearly.
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The filters used in the algorithm may also impact the behaviour of the residuals.
Indeed, the filtering process implies the previous samples to evaluate the value of the
current sample. This process may perturb the independence of the residuals. Fig. 4.5
shows the two previous graphs but this time with the anti-aliasing filter implemented
in Chapter 3. These figures show clearly that the filtering process has introduced a
correlation in the residuals.
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Figure 4.5: Standardized residuals evolution (above) and (i − 1)th residual versus ith
residual (below). Impact of the anti-aliasing filter

4.5.4 Confidence interval

It is possible to develop a CI around the identified distance to fault thanks to the variance
of the residuals if the OLS assumptions presented in Section 4.5.1 are respected. The MSE
can be rewritten as:

σ2 = 1
n−m

‖Ax̂− b‖2 (4.31)

The estimated variance associated to the jth item of the x vector, is defined as [69]:

var(xj) = τ 2
j σ

2 (4.32)

where τ 2
j is the jth diagonal element of matrix (ATA)−1. The CI is finally given by:

xj ± SFCI
√
var(xj) (4.33)
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where SFCI depends on the confidence level. The CI for the distance to fault is given by:

m ∈
xj ± SFCI

√
var(xj)

ll
(4.34)

where j = 1 for the RL identification and j = 2 for the RLC identification.

4.5.5 Robust variance

The CI described above is constructed under the assumptions presented in Section 4.5.1.
Even if the homoscedasticity is not verified (no constant variance) the OLS method gives
unbiased estimators. However, the identification is not BLUE because the variance of
the residuals is not the smallest [70]. It is possible to construct an Heteroscedasticity-
Consistent (HC) standard error based on the Huber-White’s approach [70], [71]. The
covariance matrix of the regression coefficients is then given by:

cov(X) = (ATA)−1ATΦA(ATA)−1 (4.35)

where Φ is the covariance matrix of the residuals. If the assumption of homoscedasticity
and the assumption of uncorrelated errors are respected, Φ is equal to σ2I which leads to
(4.32). In the case of HC several estimators have been proposed for Φ [72]:

Φ = diag
[
e2
i

]
HC0

Φ = n

n−m
diag

[
e2
i

]
HC1

Φ = diag

[
e2
i

1− hii

]
HC2

Φ = diag

[
e2
i

(1− hii)2

]
HC3

(4.36)

(4.37)

(4.38)

(4.39)

where hii is the leverage value given by:

hii = diag
(
A(ATA)−1AT

)
(4.40)

4.6 Bergeron overhead transmission line

In this last section the residuals analysis is applied on a Bergeron model in order to define
some criteria permitting to test the reliability of the results given by the least-squares
method. Only the RLC identification algorithm is presented here. The same conclusions
can be done for the RL identification algorithm. The anti-aliasing filter and the low-pass
FIR filter are used.
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The classical use of the CI is the calculation of an interval in which the value of the
identified parameters is reliable with a certain level of confidence. However, as mentioned
before, the statistical indicators may be biased for time-series data because the sampling is
not done randomly but successively. The different observations are in this case represented
by the different times of the algorithm window. In this thesis an alternative use of the CI
is proposed.

The objective is to add a security margin on the identified distance to fault in order
to avoid a possible over-reaching. However, instead of adding a constant margin it is
proposed to add a margin which is related to the residuals of the least-squares estimation.
If the residuals are low, which suggests a good identification, the margin must be low too.
If the residuals are high the margin must be high too. The margin added to the identified
parameter xj will be SFCI

√
var(xj) which represents the classical formulation of the CI.

In Fig. 4.6 the security margins (related to the CIs as explained above) evaluated
with different forms of the covariance matrix Φ are compared with the relative errors on
the distance to fault evaluated with the identified inductance of the line. It appears that
they have a similar shape. A difference can be seen only between 80 and 90 km where the
homoscedasticity form is lower than the others. This last form, which is also the simplest,
leads to a better fitting between the security margins and the errors of the identification.
The other forms over-estimate more the errors done on the distances to fault between 80
and 90% of the line. In this thesis the homoscedasticity form will be implemented.
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Figure 4.6: Comparison of the errors on the distance to fault and the different forms of
the security margin (SFCI = 10)
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4.7 Conclusions

In this chapter the mathematical aspects of the OLS method and the related assumptions
have been presented. The optimisation of the computational loads was done by the use
of an RLS algorithm. This algorithm permits also to avoid some numerical problems
linked to the matrix inversion. The RLS algorithm was validated for the RL and the
RLC identification methods by comparing the results given by the OLS and the RLS.
The optimal values for the forgetting factor λ and the initialisation factor δ were defined.

The analysis of the residuals permitted to highlight two important issues. The first
one is the fact that the residuals of a time-series model may be correlated. The second
finding is the non-constant variance of the residuals. These two issues may lead to a
biased MSE and CI evaluation. For these reasons the use of the MSE and the CI cannot
be based directly on statistical tables to define some security margins.



Chapter 5

Generalization to three-phase line

5.1 Introduction

In Chapter 3 a single-phase transmission line was assumed. This was useful to help to
understand the physical phenomena occurring and the methods implemented to solve the
problem. Each phase has a phase resistance Rl and inductance Ll as well as a capacitance
Cl with respect to the ground to take into account the leakage current flowing towards the
ground. All those parameters were already incorporated in the previous models. How-
ever, the single-phase model does not take into account the influence of the other phases
belonging to the same transmission line. Indeed, each phase has also a mutual resistance
Rm

1, inductance Lm and capacitance Cm with respect to the two other phases. Fig. 5.1
summarizes all the components that need to be modelled when studying the behaviour
of a three-phase line. In Section 5.2 the matrices characterising a three-phase electrical
circuit will be established. In Section 5.3 the Fortescue and the Clarke transformations
will be applied in order to decouple the three-phase lines into three standalone lines for a
frequency and a time domain respectively.
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C
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Rl Ll

Rl
Ll
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Figure 5.1: Representation of the π equivalent circuit of a three-phase transmission line

1due to the presence of the earth-return path
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The main issue of the generalization to the three-phase case is that the three phases
are not decoupled any more: each phase needs to take into account the influence of the
two other phases for their respective voltage and current. The goal of this chapter is to
present a method to decouple the phases into an equivalent line model where all the three
phases may be studied as standard standalone line.

5.2 System matrices definition

This section will help defining the RT , LT , CT and ZT matrices which are used to represent
a general three-phase transmission line. The assumptions that may be used to simplify
the problem are [6]:

- the lines are fully transposed2.

- the three phases are supposed equivalent to one another.

- the aerial space and the earth are homogeneous.

- the spacing between conductors is significantly larger that their radius (avoid prox-
imity effects).

As a result, the parameters of the three different phases may be assumed to be the
same. The previous assumptions permit also to assume that the ground wire potential
is continuously zero. It is possible to reduce the resistance, the inductance and the
capacitance matrices [24]. Using the indices u for the ungrounded conductors and g for
the ground wire, it leads to the matrix system (5.1).

−

dVu/dx
dVg/dx

 =
Z ′uu Z ′ug

Z ′gu Z ′gg

Iu
Ig

 (5.1)

where Z ′ represent a per length impedance matrix. Since Vg and dVg/dx are zero the
system (5.1) can be reduced by eliminating Ig. It finality leads to:

−
[
dVu/dx

]
=
[
Z ′reduced

] [
Iu
]

(5.2)

where:

[Z ′reduced] = [Z ′uu]−
[
Z ′ug

] [
Z ′gg

]−1 [
Z ′gu

]
(5.3)

The same reduction is made for the capacitance matrix. All the line parameters matrices
used in this thesis are related to the reduced matrices.

2as the self and the mutual parameters of a three-phase line depend on the configuration of the
three-phase system (distance of the conductors to the ground, distance between the different pairs of
conductors, etc.), the line is never truly balanced. It is therefore necessary to make a cyclic permutation
of the three phases
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5.2.1 Impedance matrix

As the conductances are usually neglected for a transmission line, the RT and LT matrices
are straightforward:

RT =


Rl Rm Rm

Rm Rl Rm

Rm Rm Rl



LT =


Ll Lm Lm

Lm Ll Lm

Lm Lm Ll



(5.4)

(5.5)

It leads to:

VT = (RT + jωLT ) IT = ZT IT (5.6)

5.2.2 Capacitance matrix

The influence of the ground-to-line capacitances complicates the computation of the CT
matrix. Fig. 5.2 is a close-up version of the transmission line presented in Fig. 5.1. The
currents igj, ij and ijk are respectively the ground current of the phase j, the line current
of the phase j and the current flowing from the phase j to the phase k through the mutual
capacitance.
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Figure 5.2: Capacitance coupling for a three-phase π model of line
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The capacitance is defined by the relations (5.7) and (5.8):

ijk = Cm
dVjk
dt

∀j, k = 1, 2, 3, j 6= k

igj = Cl
dVj
dt

∀j = 1, 2, 3

(5.7)

(5.8)

By applying the KCL to the node 1 it leads to:

i1 + ig1 + i12 − i31 = 0 (5.9)

Using (5.7) and (5.8) it leads to:

i1 = −Cl
dV1

dt
+ Cm

d(V2 − V1)
dt

+ Cm
d(V3 − V1)

dt
(5.10)

By applying the same development to the nodes 2 and 3, it finally leads to:

IT = CT
dVT
dt

(5.11)

where:

CT =


−Cl − 2Cm Cm Cm

Cm −Cl − 2Cm Cm

Cm Cm −Cl − 2Cm

 (5.12)

5.3 Symmetrical components

5.3.1 Fortescue transformation

The Fortescue transformation decouples the a, b and c phases into homopolar, direct
and reverse phases. If F is a transformation matrix, then a three-phase system AT =
[Aa Ab Ac] is linked to the three symmetrical components AF = [A0 Ad Ai] by the
following relation:

AT = FAF (5.13)

The Kirchoff’s law extended to the three-phases system gives the matrix equation:

VT = ZT IT (5.14)

By using (5.13) it gives:

FVF = ZTFIF ⇔ VF = (F−1ZTF )IF (5.15)
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where (F−1ZTF ) is the equivalent Fortescue impedance matrix renamed ZF . It finally
leads to:

VF = ZF IF (5.16)

If the transformation matrices are defined as:

F =


1 1 1
1 α2 α

1 α α2



F−1 = 1
3


1 1 1
1 α α2

1 α2 α



(5.17)

(5.18)

where:

α = e
j2π

3 (5.19)

it can be proved that ZF is diagonal if the assumptions presented in Section 5.2 are
respected [6]:

ZF =


Z0 0 0
0 Zd 0
0 0 Zi

 (5.20)

However, the Fortescue transformation involves the use of a complex number matrix
and is therefore more suitable for a phasor domain than for a time domain.

5.3.2 Clarke transformation

The working principle of the Clarke transformation is the same as the Fortescue transfor-
mation: a transformation matrix T is used to transpose the regular a, b and c phases in 3
other phases which may be decoupled in order to solve the problem. However, the matrix
T is real and can be easily applied to the instantaneous values of voltage and current
signals. The transformation matrix is defined as:

T =


1 0 1
−1

2

√
3

2 1
−1

2 −
√

3
2 1



T−1 =


2
3 −

1
3 −1

3

0 1√
3 − 1√

3
1
3

1
3

1
3



(5.21)

(5.22)
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The equivalent Clarke parameters matrices are:

RC = T−1RTT=


Rl −Rm 0 0

0 Rl −Rm 0
0 0 Rl + 2Rm

=


Rα 0 0
0 Rβ 0
0 0 R0



LC = T−1LTT=


Ll − Lm 0 0

0 Ll − Lm 0
0 0 Ll + 2Lm

 =


Lα 0 0
0 Lβ 0
0 0 L0



CC = T−1CTT=


Cl + 3Cm 0 0

0 Cl + 3Cm 0
0 0 Cl

 =


Cα 0 0
0 Cβ 0
0 0 C0



(5.23)

(5.24)

(5.25)

It is possible to prove that the α, β and 0 sequence parameters of the line are equal
to the positive (direct), negative (reverse) and zero (homopolar) sequence parameters
respectively. The three-phase π model of a transmission line is governed by the following
symmetrical components relations:

VC = RCIC + LC
dIC
dt

(5.26)

and
IC = CC

dVC
dt

(5.27)

where VC = [Vα Vβ V0] and IC = [Iα Iβ I0].

5.4 Conclusions

The relations (5.23), (5.24) and (5.25) prove that the Clarke transformation is suited to
decouple the three-phase lines into three standalone lines (see Fig. 5.3) if the assumptions
presented in Section 5.2 are met.
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Figure 5.3: Equivalent three-phase decoupled π transmission line in Clarke components





Chapter 6

Three-phase fault study

6.1 Introduction

In Chapter 3 a parameters identification algorithm was presented for a single-phase model
of line. Chapter 5 permitted to construct a decoupled three-phase system for a π model
thanks to the Clarke transformation. For an actual three-phase transmission line system,
there are several possible fault types (phase-to-ground, phase-to-phase, phase-to-phase-
to-ground, three-phase). As explained in [73], when such a fault occurs in a three-phase
system, the equivalent circuit can be represented by a series or parallel association of the
α, β and 0 sequence circuits. Consider a three-phase Γ faulted line as represented in Fig.
6.1.
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Vα
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IβC
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C ′αf
IαC

Iβf Rβf Lβf

Iαf Rαf Lαf

I0f R0f L0f

V0f

Vβf

Vαf

Figure 6.1: Representation of the Γ equivalent circuit of a three-phase line
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The line is defined in modal domain by (6.1) and (6.2).


Vα

Vβ

V0

 =


Vαf

Vβf

V0f

+


Rαf 0 0

0 Rβf 0
0 0 R0f



Iαf

Iβf

I0f

+


Lαf 0 0
0 Lβf 0
0 0 L0f



dIαf/dt

dIβf/dt

dI0f/dt

 (6.1)


Iα

Iβ

I0

 =


Iαf

Iβf

I0f

+


C ′αf 0 0

0 C ′βf 0
0 0 C ′0f



dVα/dt

dVβ/dt

dV0/dt

 (6.2)

where the links between the phase and the Clarke components are given by (6.3) and
(6.4):


Va = Vα + V0

Vb = −1
2Vα +

√
3

2 Vβ + V0

Vc = −1
2Vα −

√
3

2 Vβ + V0

(6.3)


Ia = Iα + I0

Ib = −1
2Iα +

√
3

2 Iβ + I0

Ic = −1
2Iα −

√
3

2 Iβ + I0

(6.4)

In Section 6.2 and 6.3 the RL and the RLC identification algorithms will be adapted for
a phase-to-phase and a phase-to-ground fault respectively. The results will be summarised
in Sections 6.4. The resulting equations will be tested with a three-phase Bergeron model
of line in Section 6.5 and 6.6. It is also necessary to verify if the algorithms implemented
in this project are accurate also for a frequency-dependent parameters transmission line
model. This test will be done in Section 6.7 for a three-phase J. Marti model of line.
Finally, the case of a double-circuits will be discussed in Section 6.8.

6.2 Phase-to-phase fault

The first fault type studied is the phase-to-phase fault. Consider a phase-to-phase fault
between the phases b and c. At the fault location the following relations are verified:


Vbf = Vcf

Ibf = −Icf
Iaf = 0

(6.5)

It is important to point out that the relations given by (6.5) are only exact if assuming
a bolted fault (avoid the remote-ends injection effects) and if the load flow currents can be
neglected compared to the short-circuit currents. It follows from the previous relations:
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
Vβf = 0
Iαf = 0
I0f = 0

(6.6)

The relations of (6.6) give in the temporal domain (6.7) for an RL model and (6.8)
for an RLC model of line.

Vβ(t) = RβfIβ(t) + Lβf
dIβ(t)
dt

(6.7)

C2
βf

c′β

(
lβ
d2Vβ(t)
dt2

+ rβ
dVβ(t)
dt

)
+ Vβ(t) = RβfIβ(t) + Lβf

dIβ(t)
dt

(6.8)

where Rβf , Lβf and Cβf are the β faulted line resistance, inductance and capacitance
respectively. As the relations (6.3) and (6.4) are true for the voltage and the current
at any point of the line, it leads to Vβ = Vb − Vc and Iβ = Ib − Ic. The β sequence
parameters of the faulted line are therefore given by the difference between the voltage
and the difference between the current involved in the fault. The same conclusions can
be made for the other phase-to-phase faults.

6.3 Phase-to-ground fault

Consider now a phase-to-ground fault between the phase a and the ground. In this case
the faulted voltage at the fault location is equal to zero for a bolted short-circuit. At
the fault location the system (6.3) gives (6.9) which can be represented by the equivalent
circuit shown in Fig. 6.2.

Vαf + V0f = 0 (6.9)

Vα
Vαf

Iα

Rαf , Lαf , Cαf

V0
V0f

I0

R0f , L0f , C0f

Figure 6.2: Equivalent circuit for a phase-to-ground fault
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6.3.1 RL line model

In the case of an RL model of line the relation (6.9) leads to:

Vα(t)−RαfIα(t)− Lαf
dIα(t)
dt

+ V0(t)−R0fI0(t)− L0f
dI0(t)
dt

= 0 (6.10)

By using: {
Vα + V0 = Va

Iα + I0 = Ia

(6.11)
(6.12)

it results to:

Va(t) = RαfIα(t) +R0fI0(t) + Lαf
dIα(t)
dt

+ L0f
dI0(t)
dt

= RαfIa(t) + Lαf
dIa(t)
dt

+ (R0f −Rαf )I0(t) + (L0f − Lαf )
dI0(t)
dt

= Rαf (Ia(t) + kRI0(t)) + Lαf

(
dIa(t)
dt

+ kL
dI0(t)
dt

) (6.13)

where: 
kR = r0 − rα

rα

kL = l0 − lα
lα

(6.14)

(6.15)

are known as the compensation factors already implemented in classical protections. By
renaming:

Ia(t) + kRI0(t) = Ia1(t)
Ia(t) + kLI0(t) = Ia2(t)

(6.16)
(6.17)

it finally leads to:

Va(t) = RαfIa1(t) + Lαf
dIa2(t)
dt

(6.18)

The α sequence parameters of the faulted line are therefore given by the faulted voltage
and the compensated current (depending on the faulted current and the zero sequence
current).

6.3.2 RLC line model

The RLC model of line is governed by the temporal relation (3.36). By applying this
relation to both α and 0 circuit and using (6.9), it results to:

C2
αf

c′α

(
lα
d2Vα(t)
dt2

+ rα
dVα(t)
dt

)
+ Vα(t) +

C2
0f

c′0

(
l0
d2V0(t)
dt2

+ r0
dV0(t)
dt

)
+ V0(t)

= RαfIα(t) + Lαf
dIα(t)
dt

+R0fI0(t) + L0f
dI0(t)
dt

(6.19)
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Using (6.11) and (6.12), it leads to:

C2
αf

c′α

[
lα

(
d2Va(t)
dt2

+ kCL
d2V0(t)
dt2

)
+ rα

(
dVa(t)
dt

+ kCR
dV0(t)
dt

)]
+ Va(t)

= Lαf

[
dIa(t)
dt

+ kL
dI0(t)
dt

]
+Rαf [Ia(t) + kRI0(t)] (6.20)

where: 
kCR = c′0r0 − c′αrα

c′αrα

kCL = c′0l0 − c′αlα
c′αlα

(6.21)

(6.22)

are two new compensation factors. By renaming:

Ia(t) + kRI0(t) = Ia1(t)
Ia(t) + kLI0(t) = Ia2(t)

Va(t) + kCRV0(t) = Va1(t)
Va(t) + kCLV0(t) = Va2(t)

(6.23)
(6.24)
(6.25)
(6.26)

it finally leads to:

C2
αf

c′α

(
lα
d2Va2(t)
dt2

+ rα
dVa1(t)
dt

)
+ Va(t) = RαfIa1(t) + Lαf

dIa2(t)
dt

(6.27)

6.4 Summary for all types of fault

The previous calculations may be applied to all the fault types. Table 6.1 summarizes
the results. This table gives the input voltages and currents. In all the cases the output
parameters identified are the α line parameters.

Fault type Input voltage Input current

phase(j)-
to-ground

RL Vj Ij, I0

RLC Vj, V0 Ij, I0

phase(j)-to-phase(k) Vj - Vk Ij - Ik
phase(j)-to-phase(k)-to-ground Vj - Vk Ij - Ik
three-phase Vj − Vk,∀j 6= k Ij − Ik,∀j 6= k

Table 6.1: Input voltages and currents for the different types of fault
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6.5 Numerical results

In this section the validation of the identification algorithms extended to a three-phase
model of line will be done. To achieve this goal the same base case presented in Section
3.7 will be tested but this time with a three-phase model of line. It is a Bergeron model
of 100 km. The window algorithm is 4 ms and both RL and RLC identification methods
are tested. A strong source impedance with an SIR equal to 0.1 is implemented. The
distances to fault are deduced from the identified α sequence parameters of the line. The
transmission line parameters are: rα = 0.058 Ω/km, r0 = 0.22 Ω/km, lα = 0.955 mH/km,
l0 = 3.151 mH/km, cα = 0.0124 µF/km and c0 = 0.0078 µF/km.

Fig. 6.3 shows the results obtained for a phase-to-phase fault. The range of the errors
is the same than the one obtained for the single-phase line in Fig. 3.20. The three-phase
algorithm is therefore well implemented for a phase-to-phase fault. The phase-to-phase-
to-ground fault and the three-phase fault involve exactly the same equation (see Table 6.1)
and will give the same results. In this example the RL identification method gives better
results than the RLC method as for the single-phase line. However, it is important to
recall that the RL method becomes inaccurate when the SIR or the line length increases.

Fig. 6.4 shows the results obtained for a phase-to-ground fault. The maximum errors
on the identified inductance and resistance remain acceptable. However, the errors of the
RLC method are higher than for the phase-to-phase fault while the RL method leads to
the same accuracy. This phenomenon is studied in the next section.
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Figure 6.3: Relative errors (in % of the line) of the distance to fault for a three-phase
Bergeron model of 100 km with the RLC and the RL algorithm. Phase-to-phase fault
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Figure 6.4: Relative errors (in % of the line) of the distance to fault for a three-phase
Bergeron model of 100 km with the RLC and the RL algorithm. Phase-to-ground fault

6.6 Phase-to-ground fault discussion

In the case of a phase-to-ground fault, the equivalent circuit is composed by two Γ models
of line (the α and the 0 sequence circuit). In Appendix A the transfer function of a phase-
to-ground fault is calculated. It corresponds to the α sequence parameters identified by
the algorithm. It is shown that this equivalent transfer function is a second order function
constructed from a series of two second order transfer functions. This construction seems
to be very sensitive to a parameter variation as shown below.

Fig. 6.5 shows the comparison of the Bode’s curves for a single-phase and a three-phase
Γ model of line in the case of a phase-to-ground fault. It appears that the transfer function
of the three-phase line is very sensitive to a parameter variation. The figure on the top left
shows that there is a perfect fitting of the transfer functions if the parameters of the line
are perfectly known. In the three other figures the line parameters are taken at 90% of the
value used in the simulation. In these cases the error done on the line parameters leads to
a mismatch of the three-phase transfer function around the resonance frequency. There is
always a small variation between a real-world line represented by a distributed model and
a lumped Γ model because this last is an approximative (simplified) representation of the
true model of line. Moreover, the line parameters are never known with a perfect accuracy.
If there is a difference between the parameters of the line used in the algorithm and the
true parameters, the transfer function of the model used for the algorithm and for the
transfer function of the model simulated may differ significantly. If the frequency content
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of the signal includes only frequencies higher than the resonance frequency it will have no
impact thanks to the filter. However, if the frequency content includes lower harmonics
(close to the perturbed zone of the transfer function) the accuracy will decrease.

In the case tested in the previous section, the high frequencies are normally far from
the resonance frequency because a very strong source was used. However, the filtering
process is not perfect and a small amount of the high frequencies still remains in the
signals and will impact the results because of the phenomenon presented here.
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Figure 6.5: Parameters variation impact on Bode’s curves of a single-phase and a three-
phase Γ model of line of 100 km

6.7 J. Marti model of line

The reference model of line chosen to represent a real-world transmission line model
was the Bergeron model. This model is represented by constant distributed parameters.
However, as mentioned in Chapter 2, the J. Marti model is more accurate. Indeed, this
model takes into account the frequency dependence of the distributed parameters. The
objective is to prove that the use of the Bergeron model of line instead of the J. Marti
leads to the same results for a frequency range limited to the first resonance frequency.
Indeed, Fig. 2.11 showed that the transfer functions of the two models are quite similar
until the first resonance frequency. The 0 sequence parameters show strongest frequency
dependence. Therefore, only the phase-to-ground fault is tested here. Fig. 6.6 shows
the results given by both RL and RLC algorithms for a J. Marti line of 100 km for and
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phase-to-ground fault. By comparing with the results obtained for the Bergeron model in
Fig. 6.4 it appears that they are in the same range. As a conclusion, the validation of the
identification method implemented in this thesis can be done with the Bergeron model.
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Figure 6.6: Relative errors (in % of the line) of the distance to fault for a three-phase
Marti model of 100 km with the RLC and the RL algorithm. Phase-to-ground fault

6.8 Parallel lines

When the transmission lines are on the same tower or paralleled along the same right
way, the mutual coupling between the lines may have an impact on the identified distance
to fault. It is necessary to study this impact in order to avoid an unwanted tripping.
Assuming that the lines are equivalent and fully transposed, the α and the β sequence
mutual coupling can usually be neglected [11]. However, the mutual coupling of the zero
sequence must be taken into account. As the zero sequence is involved only for a phase-
to-ground fault, the other types of fault are not impacted by the presence of the parallel
lines. Fig. 6.7 shows the zero sequence circuit of two parallel lines connected to the same
buses S and R. In this example, it is assumed that the fault occurs on the protected line
denoted by the number I. The two lines are split in two according to the fault position.
The complete development will be done for a three-phase RL model of line and then
extended to a three-phase RLC Γ model of line. The impact of the parallel line denoted
by II on the protected line I during a fault depends on the 0 sequence current III0 flowing
through the line II. It is therefore necessary to simulate a closed circuit with a voltage
source at both ends in order to permit this current flow.
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Figure 6.7: Zero sequence mutually coupled line

It was demonstrated that a phase-to-ground fault is governed by (6.9). The α and the
0 sequence voltage at the fault location are given by:


Vαf (t) = Vα(t)−RαfI

I
α(t)− Lαf

dIIα(t)
dt

V0f (t) = V0(t)−R0fI
I
0 (t)− L0f

dII0 (t)
dt

−Rm0fI
II
0 (t)− Lm0f

dIII0 (t)
dt

(6.28)

(6.29)

Using (6.11), (6.12) and the compensation factors, it finally leads to:

Va(t) = Rαf

(
IIa(t) + kRI

I
0 (t) + kRMI

II
0 (t)

)
+ Lαf

(
dIIa(t)
dt

+ kL
dII0 (t)
dt

+ kLM
dIII0 (t)
dt

)
(6.30)

where:


kRM = rm0

rα

kLM = lm0

lα

(6.31)

(6.32)
.

are two new compensation factors that take into account the mutual coupling between
the two parallel lines. It appears that it is necessary to know the zero sequence current
flowing through the second line in order to compensate correctly the mutual coupling
effect. This information is available only if the two lines are connected to the same bus in
the substation. If the parallel lines are not connected to the same bus the compensation
is no more possible and a greater security margin must be used for the setting zone of the
distance element.

The same development is done for the RLC Γ model of line. The demonstration is
based on Fig. 6.8 that shows the zero sequence of two parallel lines represented by a Γ
model. The right part of the line I located after the fault is not represented because it
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can be neglected in the case of a bolted fault. Note that the second line is represented
by a complete π model because it is not faulted. It is assumed that the two lines are
connected to the same buses at both ends.

S

V0

II0
R0fIIL

L0f

C ′0f
IIC

F

V0f

III0
R0IIIL

L0

C ′0
IIIC

C ′0

R

Rm0f , Lm0f

Figure 6.8: Zero sequence mutually coupled line for a Γ model

The 0 sequence voltage at the fault location is given in Laplace domain by:

V0f = V0 − (R0f + sL0f ) · IIL − (Rm0f + sLm0f ) · IIIL (6.33)

Using the following relations: 

II0 = IIL + IIC

III0 = IIIL + IIIC

IIC = sC ′0fV0

IIIC = sC
′

0V0

(6.34)
(6.35)
(6.36)
(6.37)

it leads in the temporal domain to:

V0f (t) = V0(t) + C ′0fL0f
d2V0(t)
dt2

+ C ′0fR0f
dV0(t)
dt

− L0f
dII0 (t)
dt

−R0fI
I
0 (t)

− Lm0f
dIII0 (t)
dt

−Rm0fI
II
0 (t) + Lm0fC

′

0
d2V0(t)
dt2

+Rm0fC
′

0
dV0(t)
dt

(6.38)

The second line II is not faulted, the capacitance C ′0 is therefore proportional to the full
line length LII . As the second line may have a different length than the protected line it
is preferable not to include this parameter in the algorithm. The following approximation
is assumed:

C
′

0 = c′0 · LII ' C
′

0f = c′0 ·m (6.39)
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where m is the distance to fault. This simplification is exact only when the distance to
fault is equal to the total length of the second line. The faulted capacitance is therefore
not well identified. By combining the α and the 0 sequence, it finally leads to the following
result:

C2
αf

c′α

[
lα

(
d2Va(t)
dt2

+ kCLM
d2V0(t)
dt2

)
+ rα

(
dVa(t)
dt

+ kCRM
dV0(t)
dt

)]
+ Va(t)

= Lαf

[
dIIa(t)
dt

+ kL
dII0 (t)
dt

+ kLM
dIII0 (t)
dt

]
+Rαf

[
IIa(t) + kRI

I
0 (t) + kRMI

II
0 (t)

]
(6.40)

where: 
kCLM = c′0l0 − c′αlα + c′0lm0

c′αlα

kCRM = c′0r0 − c′αrα + c′0rm0

c′αrα

(6.41)

(6.42)

This subject is quite broad because a lot of different configurations are possible [74],
[75]. If the two parallel transmission lines are connected to the same bus at the relay
location it is possible to compensate the mutual coupling effects using the relation (6.40).
Moreover, for the truly parallel transmission lines (paralleled along the complete line
length), the approximation (6.39) is not necessary. It the two lines are not parallel along
the complete line length the approximation (6.39) may be used. Finally, if the lines are
not connected to the same bus, the compensation of the mutual coupling effects is not
possible and a higher security margin would be used. In this Chapter, the configuration
shown in Fig. 6.7 is implemented in order to test the algorithm. The results for these
three cases are shown in Fig. 6.9. In this test the zero sequence mutual impedance is
taken at two third of the zero sequence self impedance as suggested in [76]. A power
system with two parallel Bergeron transmission lines of 100 km for a phase-to-ground
fault is implemented. The distance to fault is evaluated thanks the identified inductance
with the RLC algorithm. As expected, the errors are higher if the mutual coupling is
not taken into account by the identification algorithm. However, the results are almost
identical if the approximation (6.39) is used or not. It can be explained by the fact that
this approximation is related to the capacitance of the line which is not used to deduce
the distance to fault. This result is important because it implies that the implemented
method is also accurate if the transmission lines are not truly parallel along the complete
length of the protected line.

6.9 Conclusions

In this chapter the RL and the RLC identification methods have been implemented and
validated for all kind of faults. It has been achieved by assuming a perfect bolted fault. It
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Figure 6.9: Relative errors (in % of the line) of the distance to fault evaluated thanks
to the inductance for a phase-to-ground fault. The system is composed by two Bergeron
parallel lines of 100 km. Comparison between the case of truly parallel lines (without the
approximation (6.39)), the case with the use of the approximation (6.39) and the case
without mutual compensation

is important to keep in mind that the accuracy of the distance to fault identification will
decrease when the fault resistance increases. A blocking condition based on a maximum
resistance threshold will be implemented in order to avoid the over-reaching.

It was shown that the phase-to-ground fault is more sensitive to an approximative
knowledge of the parameters of the transmission line. The transfer function of the Γ model
is less stable around the resonance frequency for this type of fault. The identification of
the distance to fault may be less accurate than for the other types of fault if the frequency
content of the signals is not zero around the resonance frequency.

It was also shown that the use of a constant distributed parameters model of line is
accurate enough to represent a real-world transmission line (represented by a J. Marti
model in this work) if the frequency range is limited to the first resonance frequency of
the line. This frequency range depends on the length of the transmission line. Using Fig.
3.5, it is possible to define the cut-off frequency of the low-pass filter.

Finally, the RL and the RLC algorithm were adapted to take into account the mutual
coupling effects of a parallel transmission line.





Chapter 8

Development of blocking conditions

8.1 Introduction

In the previous chapters an RLS estimation algorithm of the parameters of a faulted
transmission line was implemented. The method was based on both RL and RLC models
of line and was extended to a three-phase model for the different fault types. More-
over, a complete data acquisition system was implemented and tested. Compared to the
impedance-based method, the time-domain algorithm proposed here, involves shorter al-
gorithm windows. The decrease of the algorithm window may lead to a lower accuracy. It
is thus important to develop some blocking criteria in order to avoid over-reaching. These
blocking conditions will increase the security but will also decrease the dependability.
When a fault is missed by the ultra-fast protection algorithm the regular protections can
take over with a higher tripping time for some critical cases.

First, Section 8.2 defines the different test cases. It is important to make sure that the
blocking conditions are efficient in all the cases. Secondly, the different security criteria
will be presented and tested. Four different criteria will be implemented in this chapter:
the convergence of the estimated parameters by the RLS method in Section 8.3; the use
of a CI to add a security margin on the identified distance to fault in Section 8.4; a
resistance threshold is defined to manage the impact of the remote injections in Section
8.5 and finally Section 8.6 shows how the Normalized Mean Squared Error (NMSE) can
be used to avoid the over-reacting in some particular cases.

8.2 Test cases definition

The RLS identification methods based on the RL and the RLC model of line will be tested
in this chapter. The forgetting factor λ and the initialisation factor δ used for the RLS
algorithm are set to 1 and 103 respectively as suggested in Chapter 4. The complete data
acquisition process presented in Chapter 7 will be used. It involves the CT and the VT,
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the analog anti-aliasing filter, the CIC decimation filter and the FIR low-pass filter. The
starting time of the algorithm is set to 2 ms after the true fault inception in order to take
into account the delays of the data acquisition process and the electromagnetic travelling
waves propagation.

The reference case is a three-phase Bergeron model of line of 100 km. The phase-to-
ground fault and the phase-to-phase fault will be tested. The transmission line is fed by
two voltage sources at both ends. The phase shift between the two sources is equal to 10°
to permit an initial power flow in the transmission line. This phase shift is also necessary
to study the remote injection impact when the resistance of the fault is not zero. The
fault inception angle is 90°. Finally, a strong source and a weak source will be tested with
an SIR equal to 0.1 and 5 respectively. The complete power system network is shown in
Fig. 8.1.

RS+,0 LS+,0 RR+,0 LR+,0

RfVS∠αS VR∠αR

r+,0, l+,0, c+,0

m1 m2

S R

Relay

Figure 8.1: Double in-feeds Bergeron transmission line of 100 km

8.3 Convergence criteria

As the RLS algorithm continuously re-computes the evaluated distance to fault the iden-
tification could run on-line and could be stopped when a convergence criterion is met.
Fig. 8.2 shows the evolution of the identified distance to fault based on the inductance
as a function of the window length for the reference case faulted at the end of the line.
The shape of the curve shows a fast convergence of the algorithm. In this section a con-
vergence criterion of the algorithm will be defined. Moreover, the initialisation of the
different parameters of the RLS method will be defined too.

A minimum window length Wmin is imposed to increase the robustness of the algo-
rithm. The convergence criterion implemented is defined as follows: the difference be-
tween two successive identified distances to fault mi+1−mi is evaluated. If NS successive
differences are below a threshold dthres the convergence is assumed (8.1).

|mi+1 −mi| < dthres ∀i ∈ {1, ..., NS} (8.1)
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This criterion is applied only on the inductance in order to avoid to decrease the
performances of the algorithm. The values for the convergence parameters Wmin, NS

and dthres are shown in Table 8.1. These values can be optimized empirically by testing
a large database of tests. The RLS method implies also some initialisation parameters.
The parameters λ and δ have been already discussed in Chapter 4. It is also necessary to
define a first estimation of the parameters to identify. As no a priori information about
these parameters is available, it seems more efficient to initialise them at the middle line
length L/2. The last parameter to identifyK coming from the inclusion of the transformer
model is initialised at 1. The values for the initialisation parameters are also shown in
Table 8.1.
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Figure 8.2: Evolution of the identified distance to fault as a function of the window length.
Phase-to-ground fault at the end of a Bergeron transmission line of 100 km

Initialisation parameters Convergence parameters

λλλ δδδ x1(t0) x2(t0) x3(t0) x4(t0) Wmin NS dthres

1 103 c∗α · (L/2)2 lα · L/2 rα · L/2 1 2 ms 4 1 km

Table 8.1: RLS parameters

8.4 Confidence interval

As explained in Section 4.5.4 it is possible to add a security margin on the identified
parameters based on residuals. This security margin is related to the evaluation of a
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CI. The CI depends only on the matrices involved in the identification algorithm. The
parameter SFCI (depending on the confidence level) is the only external parameter to
fix. Firstly, the discussions will be made for the RLC identification algorithm. The
conclusions for the RL identification algorithm will be presented at the end of the section.
Fig. 8.3 shows that the distance to fault is under-estimated for the reference case (on the
top). This under-estimation will lead to over-reaching. By adding the CI on the identified
distance to fault, it gives a secured distance to fault which is always higher or equal to
the actual distance to fault (on the bottom). In this example the value of SFCI is 15.
Generally, the value of the parameter SFCI is given by a statistical tables. For example
the Student’s t-distribution table gives SFCI = 3.674 for a confidence level of 99.95% and
n−m degrees of freedom [83]. However, as explained in Chapter 4, the CI may be biased
and is used in an alternative way (add a security margin related to residuals and therefore
to the estimation errors). It is therefore necessary to take a greater security margin by
taking a greater value of SFCI . The objective of this section is to define a value of SFCI
by testing the different cases presented before.
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Figure 8.3: Actual distance to fault versus identified distance to fault (above) or secured
distance to fault (below)

Another possibility would be to add a security margin based on the residuals indicator
MSE. However, the MSE depends a lot on the magnitude of the signals. For example
the MSE’s obtained for a fault with an inception angle of 90° and 0° can show a ratio of
several dozens. Define msecured as the secured identified distance to fault thanks to the
CI and msetting as the protected zone by the ultra-fast distance algorithm. Indeed, the
protected zone also called zone 1 for the conventional relays is limited at a fraction of the
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total line length due to some uncertainties. It permits to avoid over-reaching even if some
errors remain possible. A usual value for the zone 1 is 80% of the total line length [84].
Fig. 8.4 shows the results obtained for the three-phase Bergeron model of 100 km with a
phase-to-phase fault. The figure on the left side shows the actual distances to fault versus
the secured identified distances to fault. 4 areas are delimited by msetting:

- the area 1 corresponds to the faults correctly identified as inside the zone 1: mactual ≤
msetting and msecured ≤ msetting.

- the area 2 corresponds to the faults correctly identified as outside the zone 1:
mactual ≥ msetting and msecured ≥ msetting.

- the area 3 corresponds to the faults wrongly identified as outside the zone 1. These
faults are missed: mactual ≤ msetting but msecured ≥ msetting.

- the area 4 corresponds to the faults wrongly identified as inside the zone 1. It
corresponds to an over-reaching (according to msetting): mactual ≥ msetting but
msecured ≤ msetting.

The number of faults present in the area 3 must be minimized. The area 4 must be
absolutely avoided because it would lead to an unwanted tripping. The figure on the right
shows the algorithm times. The performances are very good because almost all the faults
are tripped in 2 ms which corresponds to the minimum window. The maximum algorithm
window was set at 10 ms.
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Figure 8.4: Distances to fault versus secured distances to fault (left) and identification
times (right) for SFCI = 4
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The results for the different tests are presented in Appendix E. The phase-to-phase
and the phase-to-ground faults for a strong and a weak source are tested. Both RL and
RLC identification method are compared. The following findings appear:

- the value for the parameter SFCI is chosen in order to avoid the over-reaching and
to reduce the number of missed faults. For the RLC model SFCI is equal to 6 and
it is equal to 2 for the RL model. It is due to the fact that for the tested cases the
distance to fault is under-estimated in the most of the cases for the RLC method
while it is over-estimated in the most of the cases for the RL method.

- with the RLC method there is no missed faults for the tested cases. However,
there is a small over-reaching for the phase-to-ground faults. Indeed, the faults
until 82% of the line are tripped instead of 80%. The value of SFCI necessary to
avoid these over-reaching is very high and will decrease the time performances of the
algorithm. As the over-reaching is very limited it seems more judicious to maintain
the algorithm performances.

- with the RL method there is no over-reaching for the tested cases. However, there
are some missed faults from 74% of the line length.

- finally, the tripping times of both methods are compared. For a strong network all
the faults are tripped in maximum 3 ms with the RLC method and 4 ms with the
RL method. For a weak network all the fault are tripped in maximum 4 ms with
the RLC method. With the RL method the tripping times become greater than 5
ms from 54% of the line length.

8.5 Resistance threshold

The identified resistance of the faulted line is not used directly to estimate the distance to
fault because the fault itself may have a not negligible resistance. Compared to the phasor-
based methods the accuracy of the identified resistance may be lower for the fast distance
algorithm implemented in this thesis. Firstly, the linearisation of the RLC model of line
was made by assuming a bolted fault. It was shown in Section 3.5.2 that the identified
resistance of the line is less accurate for a resistive fault. Secondly, it was also shown that
a bad knowledge of the time constant of the transformers impacted the accuracy of the
identified resistance of the line. For all these reasons, the distance to fault is deduced
from the identified inductance. However, the remote injection presented in Section 3.8
will impact the value of the inductance of the line in the case of a resistive fault. It may
lead to an under-reaching or an over-reaching depending on the power flow direction. It
is a well known phenomenon and a lot of methods have been proposed and implemented
in order to solve or to limit this impact [85]–[88]. This phenomenon is therefore not
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directly linked to the new distance algorithm implemented in this thesis. A simple rule
is implemented in this thesis in order to limit the possible over-reaching. Of course, this
point could be improved based on all the available literature on this specific subject. The
idea is to define an upper and a lower limit for the identified resistance Rident:

−10% Rline ≤ Rident ≤ Rthres +Rsetting (8.2)

where Rthres is the maximum fault resistance accepted. This value is a setting depending
on several parameters like the line length and the phase shift between the sources at both
ends of the line. In this thesis a maximum fault resistance of 10 Ω and 5 Ω is considered
for a phase-to-ground and a phase-to-phase fault respectively. Rsetting is the resistance of
the transmission line at the end of the protected zone. The upper limit permit to avoid
the over-reaching due to the remote end impact. The lower limit defined here as -10% of
the line resistance is useful for the very small distances to fault. Indeed, when the fault
is located very close to the relay, the line parameters identified could be negative due to
the possible inaccuracies of the algorithm or the metering. A small negative resistance
should be tolerated. The lower limit of the inductance will be discussed later because it
implies the directional element of the protection. The case presented in Fig. 8.4 is now
tested with a fault resistance of 5 Ω between the faulted phases. The results are shown in
Fig. 8.5 where it appears that there are some over-reaching until 89% of the line length
while the secured zone is set at 80%. In this case the resistance limits defined above are
not used. Not that the power flow direction was chosen to lead to over-reaching and not
to under-reaching.
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Figure 8.5: Distances to fault versus secured distances to fault (left) and identification
times (right). Fault resistance of 5 Ω without any resistance threshold
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Fig. 8.6 shows the tripping times obtained with the resistance limits (8.2) for three
different values of Rthres. The choice of this parameter implies a compromise between the
security (over-reaching) and the dependability (under-reaching) of the protection.
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Figure 8.6: Distances to fault versus identification times. Fault resistance of 5 Ω and a
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8.6 Normalized Mean Squared Error

In Section 3.6 it was shown that the SIR had an impact on the high frequencies present in
the signals of the faulted line. For a very strong voltage source the high frequencies were
very far from the resonance frequency and therefore well filtered. It led to a bad capac-
itance identification but the inductance was correctly identified. For a very weak source
the high frequency was close to the resonance and participated to a good identification of
all the parameters of the line.

Fig. 8.7 shows a power transmission network with a transmission line connected before
and after the protected line BC. The lengths of the transmission lines are 100 km, 100 km
and 200 km for AB, BC and CD respectively. The objective of this test is to highlight the
impact of the presence of some unwanted high frequencies remaining in the signals during
the fault. The resonance frequency of a transmission line of 100 km is equal to about 730
Hz. As the cut-off frequency of the FIR low-pass filter is set at 600 Hz it permits to filter
the frequencies higher than the resonance. However, if the fault is located in the next
transmission line CD the relay will see a very long faulted line with a resonance frequency
going from 730 Hz to 243 Hz at the end of the next line. In this case the filtering process
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will not be sufficient if the high frequencies present in the signals are lower than 600 Hz.
For the weak sources the high frequencies tend to be closer to the resonance frequency
and therefore lower than 600 Hz for a long line.

ZS+,0 ZR+,0

VS VR

100 km 100 km 200 km

A B C D

Relay

Figure 8.7: Network power system

Fig. 8.8 shows the distances to fault for a phase-to-phase fault located at different
positions (from the protected line BC to the end of the next line CD). The actual, the
identified and the secured distance to fault are represented for a strong source with an
SIR of 0.1 (above) and a weak source with an SIR of 5 (below).
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Figure 8.8: Actual, identified and secured distance to fault for an SIR equal to 0.1 (above)
and an SIR equal to 5 (below)

For the strong system the identification becomes less accurate at the end of the next
line. The identified distance to fault is 244.1 km instead of 290 km. However, the CI
permits to obtain a secured distance to fault higher than the actual one. For a weak
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system it appears that the distances to fault are under-estimated a lot from 200 km. The
under-estimation is such that the secured distances to fault are lower than the actual
distances. It is possible to imagine that in some configurations the distance to fault
identified is such that it may lead to an over-reaching.

It is necessary to introduce a new criteria to avoid the possible over-reaching for a fault
located very far from the relay. This criteria can be flexible because the possible over-
reaching close to the end of the protected line is already controlled by the use of a secured
distance to fault based on the CI. The solution of increasing the security factor of the CI
is not efficient because it will decrease the dependability. It was mentioned before that
the MSE was not suitable due to the difficulty to define a maximum threshold because it
depended a lot on the signals involved. However, here the objective is to define a simple
criterion that permits to block the algorithm if the identification is supposed unreliable.
The threshold can be therefore more flexible. Nevertheless, a normalized MSE will be
used to limit the dependence to the magnitude of the data involved. The NMSE used is
defined as follows:

NMSE = MSE

bmax − bmin
(8.3)

where b is the vector of measured output of the least-squares system Ax = b. It corre-
sponds to a normalization by the range of the data. In order to define a threshold for the
NMSE the results of four different cases are presented in Fig. 8.9. They correspond to
a phase-to-ground fault for a strong and a weak voltage source. Moreover, two different
fault inception angles are tested. On the top of the figure the NMSE is plotted for the
different distance to faults. On the bottom the identification errors of the distance to
fault are plotted for the different distance to faults. The following findings appear:

- from a global point of view, the NMSE and the errors are increasing with the distance
to fault. It is therefore possible to use the NMSE to limit the maximum error to
acceptable values.

- the NMSE are very low when the errors are not too big and become very large for
the very bad identifications. The maximum NMSE for a fault close to the end of
the protected line (at 102 km) is 0.013 and it is close to 1 for the very distant faults.
This difference of range is useful to define a threshold with a certain flexibility.

- the maximum admissible error on the distance to fault estimation is set to 20% of
the protected line length. It corresponds to 166 km and 210 km for the tests with
a fault inception angle of 90°. It leads to a maximum value for the NMSE of 0.225.
The threshold defined at this step is equal to 0.2. Of course, this value may be
adapted when testing the final algorithm with a complete database of tests.
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8.7 Conclusions

Fig. 8.10 summarizes all the blocking conditions implemented in order to avoid an over-
reaching: the convergence of the identified distance to fault is required; a security margin
based on the CI is added on the distance to fault in order to be more secure close to the
end of the zone 1; a maximum permissible identified resistance is implemented in order
to control the remote injection impact; finally an NMSE threshold is used to block very
bad identifications that may occur for some very distant faults.
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Figure 8.10: Complete blocking conditions process description



Chapter 9

Directional element algorithm

9.1 Introduction

The security is a fundamental aspect of the protection of a power transmission network.
The previous chapters focused on the over-reaching. However, it is also necessary to
avoid an unwanted tripping when the fault is located behind the relay. It is the role of the
directional element. Its objective is to give accurately the direction of the fault (forward
or reverse). In classical relays the fault direction is determined thanks to the phase
shift between a polarizing quantity (usually the faulted phase voltage) and an operate
quantity (usually the faulted phase current). The operating signal can be directly the
angle between the two quantities [11] or the so-called torque signal [89], [90] detailed
later. The direction may be also determined from the sign of the faulted impedance [34].
For the ultra-speed protection these methods cannot be applied directly because they are
based on the phasors. However, the logic behind these methods can be exploited because
it corresponds in time domain to a change of sign in the relation between the voltage
and the current (and therefore to a negative distance to fault identified). For a fault not
too close to the relay location the directional element would not be essential because the
direction can be deduced from the sign of the identified parameters of the faulted line.
However, for a close-in fault the voltage may be so low that a secure decision between
a forward or a reverse fault is not possible. The existing fast directional algorithms are
based on the incremental quantities. These methods will be implemented and tested in
this chapter. The objective is to define the limitations of the existing methods and to
propose some improvements. In Section 9.2 the concept of the incremental quantities
will be first introduced. The main used directional algorithm based on these incremental
quantities will be studied in Section 9.3. This method is based on the sign of a torque
operating signal constructed with the incremental voltage and replica current at the relay
location. Finally, the performances of the different methods proposed will be tested for
different cases in Section 9.4.

109
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9.2 Incremental quantities

The concept of the incremental quantities is based on two well-know principles of electric-
ity: the first one is the Thévenin’s theorem which holds that any linear electrical network
can be reduced to an equivalent single voltage source and an equivalent single impedance.
The second one is the superposition principle which holds that for a linear system the
responses caused by several sources is the sum of the responses caused by each sources
individually. It implies that a faulted network can be considered as the superposition of
a pre-fault network and a pure fault network as shown in Fig. 9.1.

Faulted network

=

Pre-fault network

VT +

Fault network

−VT

Figure 9.1: Illustration of the superposition principle of electrical circuit

The faulted network is the standard network studied in the previous chapters. The
voltage and the current are governed by the voltage source, the loads and the fault. The
pre-fault network is in steady-state and their signals correspond to the load components
of the voltage and the current. The voltage VT corresponds to the voltage at the fault
location before this last. The fault network corresponds to a network governed only by
an equivalent source of voltage −VT at the fault location. The physical voltage sources
appear short-circuited. The fault network has the advantage that it does not depend on
the load but only on the network parameters. The fault network can be therefore obtained
by the difference between the faulted network and the pre-fault network. Their signals
correspond to the so-called incremental quantities. For a voltage and a current signal the
incremental quantities are represented by the following relations:

 ∆V (t) = V (t)− Vp(t)
∆I(t) = I(t)− Ip(t)

(9.1)

where:
 Vp(t) = V (t− T )

Ip(t) = I(t− T )
(9.2)

The parameter T is the fundamental period of the signals. Theoretically, the pre-fault
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conditions may be chosen a few cycles before but it is not recommended because of the
possible frequency deviation.

9.3 Torque signal method

9.3.1 Forward fault

The first method studied was presented in [13], [91]. This method is based on the incre-
mental quantities presented before. It is also assumed that the voltage sources and the
transmission lines can be represented by a simple RL model as shown in Fig. 9.2 for a
faulted network.

RS LS mrL mlL (1−m)rL (1−m)lL RR LR
S R

VS VR

F

I(t)
V (t) VF (t)

Figure 9.2: Double in-feeds RL transmission line faulted at F

Fig. 9.3 shows the corresponding fault network using the delta quantities. The trans-
mission line is split in two parts: before and after the fault location F . The voltage step
at F is the leading source of this network. The relay located at the bus S gives the
incremental quantities ∆V (t) and ∆I(t).

RS

LS

mrL mlL (1−m)rL (1−m)lL

LR

RR

S R
F

∆I(t)
∆V (t) ∆VF (t)

Figure 9.3: Incremental quantities of a faulted transmission line for a forward fault

The incremental voltage and current are linked by the following relation:

∆V (t) = −
(
RS∆I(t) + LS

d

dt
∆I(t)

)
(9.3)

Dividing the right-hand side by the magnitude of the source impedance at the fundamental
frequency, it leads to:
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∆V (t) = − |ZS|
(
RS

|ZS|
∆I(t) + LS

|ZS|
d

dt
∆I(t)

)
(9.4)

At this step the term of incremental replica current is introduced and is defined as
follows:

∆IZ(t) = D0∆I(t) +D1
d

dt
∆I(t) (9.5)

where: 
D0 = RS

|ZS|

D1 = LS
|ZS|

(9.6)

(9.7)

It finally leads to:

∆V (t) = − |ZS|∆IZ(t) (9.8)

Note that an equivalent method was also proposed in [15] but the concept of replica
impedance was used instead of the incremental replica current. The replica impedance
may be defined as follows:

ZZ = −
(
RS + LS

d

dt

)
(9.9)

The relation (9.8) shows that the incremental voltage and replica current are linked
by the opposite of the source impedance. The forward fault is therefore defined by the
elements behind the relay location. The source impedance before and after the protected
line must include the impedance of all the elements before and after this line (previous and
next transmission lines, voltage sources, capacitor banks, transformers, ...). In practice,
the parameter used to represent the source impedance is the SIR. However, the SIR is not
always very well know and moreover this last changes with the topology of the transmission
network. It is suggested in [92] to calculate the SIR under normal conditions and under
N-1 conditions (considering a single outage of any system element like a generator, a
transmission line, a transformer, etc.) to chose the parameters of the protection for the
critical cases. It is possible to determine the resistance RS and the inductance LS of the
equivalent source from the parameters of the protected line and the SIR. The SIR can be
expressed as follows:

SIR = |ZS|
|ZL|

=

√
R2
S + (ωLS)2√

R2
L + (ωLL)2

=

√
R2
S + (ωτSRS)2√

R2
L + (ωτLRL)2

= RS

RL

√
1 + (ωτS)2√
1 + (ωτL)2

(9.10)

where the parameters τS and τL are the time constants of the source and the line respec-
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tively. They are defined by the relations (9.11) and (9.12).

τS = LS/RS

τL = LL/RL

(9.11)
(9.12)

If it is assumed that the time constants of the equivalent source and the line are not
too different, it leads to the following approximations:

{
RS ≈ SIR ·RL

LS ≈ SIR · LL

(9.13)
(9.14)

These results permit to define the parameters D0 and D1 directly from the line pa-
rameters as follows: 

D0 = RS

|ZS|
≈ RL

|ZL|

D1 = LS
|ZS|

≈ LL
|ZL|

(9.15)

(9.16)

9.3.2 Reverse fault

The case of a reverse fault is represented by the equivalent fault network in Fig. 9.4.

RS

LS

RL lL

LR

RR

S R
F

∆I(t)
∆V (t)∆VF (t)

Figure 9.4: Incremental quantities of a faulted transmission line for a reverse fault

The incremental voltage and current are linked by the following relation:

∆V (t) = (RL +RR) ∆I(t) + (LL + LR) d
dt

∆I(t)

= |ZL + ZR|
(
RL +RR

|ZL + ZR|
∆I(t) + LL + LR

|ZL + ZR|
d

dt
∆I(t)

)

= |ZL + ZR|
(
RL(1 + SIR)
|ZL(1 + SIR)|∆I(t) + LL(1 + SIR)

|ZL(1 + SIR)|
d

dt
∆I(t)

)

= |ZL + ZR|
(
D0∆I(t) +D1

d

dt
∆I(t)

)
= |ZL + ZR|∆IZ(t)

(9.17)
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It appears that the reverse fault is defined by the element in front of the relay location
(protected line and remote-end voltage source). The final form of the previous relation is
exact only if τL = τR = τS. This assumption already mentioned before is important for the
implementation of the method. First, it permitted to define the parameters D0 and D1

needed for the replica current directly from the transmission line parameters. Secondly,
it permitted to construct a single replica current without a prior knowledge of the fault
direction. Indeed, without this assumption the replica current for a forward and a reverse
fault depends on the parameters of the equivalent source before and after the protected
line respectively. Fortunately, it has been already proved in [91] that the impact of this
assumption is not critical for the performances of the algorithm.

9.3.3 Torque operating signal

In the previous section the relation between the incremental voltage and the incremental
replica current was shown for a forward and a reverse fault. The directional algorithm
proposed in [13] used a torque operating signal defined by (9.18).

sOP (t) = ∆V (t) ·∆IZ(t) (9.18)

Using the relations (9.8) and (9.17) it is possible to determine the analytical value of
the torque signal for an ideal case (RL model and uniform time constant). It leads to
(9.19) and (9.20) for a forward and a reverse fault respectively.

sOP (t) = − |ZS| · (∆IZ(t))2 forward fault
sOP (t) = |ZL + ZR| · (∆IZ(t))2 reverse fault

(9.19)
(9.20)

This results is very important because it shows that the torque operating signal is
always negative for a forward fault and always positive for a reverse fault. Theoretically,
a simple comparison of the torque signal with zero would permit to determine the fault
direction. However, the security may be improved by comparing the torque operating
signal with two adaptive thresholds sFWD(t) and sREV (t) deduced from (9.19) and (9.20).
The adaptive thresholds are given by (9.21) and (9.22).

sFWD(t) = −ZFWD · (∆IZ(t))2 (9.21)

sREV (t) = ZREV · (∆IZ(t))2 (9.22)

where the relay settings ZFWD and ZREV are set at (9.23) and (9.24) respectively.

ZFWD = 0.3 ·
∣∣∣ZS(MIN)

∣∣∣ (9.23)
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ZREV = 0.3 · |ZL| (9.24)

The value of 0.3 is a dependability factor chosen in [93] to take into account the
non-homogeneity between the line and the source impedances (different time constants).
With these values of ZFWD and ZREV the operating signal sOP will be always higher or
lower than the thresholds for a perfect case. The objective is mainly to take into account
the possible variations or noises in the signal not due to the fault itself. Moreover, the
security may be increased again by averaging the torque signals. sOP , sFWD and sREV

will be integrated first before being compared. A minimum threshold level ∆MIN is finally
used. The complete algorithm is summarized in Fig. 9.5.

sFWD, sOP, sREV



MIN MIN 
+ +- +

IsFWD

IsOP < IsFWD IsOP > IsREV

Forward Reverse

IsREVIsOP

Figure 9.5: Torque operating signal algorithm

The algorithm is first applied on an ideal case in order to highlight the first conclu-
sions. The power system network considered here is composed by only RL models for
the transmission lines and the voltage sources. Fig. 9.6 and 9.7 show the signals for a
line of 300 km faulted at 150 km of the relay location in forward and reverse direction
respectively. The time constant is uniform in the complete network. On the top of the
figures are represented the incremental voltage and replica current. As expected these
two signals have an opposite polarity for a forward fault and the same polarity for a
reverse fault. Moreover, the respect of these polarities may be easily visualised in the
figures on the bottom left representing the torque operating signal sOP (t). Indeed, sOP (t)
is strictly positive or negative at each time for the forward or reverse fault respectively.
As mentioned before the operating signal exceeds directly the adaptive thresholds for an
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ideal case. Finally, the figures at the bottom right shows the integrated torque signals.
The fault detection time is mainly impacted by the value of the threshold ∆MIN .
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Figure 9.6: RL model of line of 300 km faulted at the middle in forward direction. τL =
τS = τR = 16 ms; SIR = 0.1; α = 90°
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Figure 9.7: RL model of line of 300 km faulted at the middle in reverse direction. τL =
τS = τR = 16 ms; SIR = 0.1; α = 90°

In Fig. 9.8 the tripping times of the directional algorithm are shown for forward faults
(above) and reverse faults (below). The objective is to determine the impact of some
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parameters on the performances of this method. The time constant of the transmission line
τL is equal to 16 ms for all the tested cases. The first case may be used as reference because
it corresponds to the most suitable scenario. Indeed, the time constant is homogeneous;
the network is strong leading to a huge torque signal (linked to the short-circuit power)
and the fault inception angle is equal to 90° leading to a maximum incremental voltage
at the start of the fault. The following observations can be made:

- as mentioned before the difference between the time constants of the transmission
line and the impedance of the sources has a limited impact on the speed of the
algorithm. In this example τS is equal to 10 ms (fourth case).

- the SIR has a decreasing impact with the distance to fault. Indeed, for a close-
in fault the short-circuit power is mainly limited by the impedance of the voltage
sources. However, the increase of the tripping times remains still limited (around 1
ms in the worse case).

- for a fault inception angle of 0° the increase of the tripping time may reach 1.75
ms in the worse case. Of course the tripping times may decrease by changing the
value of the constant threshold ∆MIN . However, it would affect the security of the
algorithm. The optimal value of ∆MIN will be defined in Section 9.4 while testing
the algorithm on a complete set of tests.
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9.3.4 Three-phase extension

In this section the directional algorithm will be extended to a three-phase system. The
results obtained in Chapter 6 will be used and combined with the developments done in
this chapter. The first case studied is the forward phase(A)-to-ground fault as represented
in Fig. 9.9 with its equivalent fault network.

LαS

RαS ∆Vα

∆Iα

Rαf , Lαf

L0S

R0S ∆V0

∆I0

R0f , L0f

∆Vf

Figure 9.9: Equivalent circuit for a forward phase-to-ground fault in incremental quantities

The circuit shown above leads to the following relations:


∆Vα(t) = −
(
RαS∆Iα(t) + LαS

d

dt
∆Iα(t)

)

∆V0(t) = −
(
R0S∆I0(t) + L0S

d

dt
∆I0(t)

) (9.25)

(9.26)

The Clarke transform showed that Va(t) = Vα(t) + V0(t). As this relation is valid in a
general way, the same relation is valid for the incremental voltage. It leads to:

∆Va(t) = −
(
RαS∆Iα(t) + LαS

d

dt
∆Iα(t)

)
−
(
R0S∆I0(t) + L0S

d

dt
∆I0(t)

)
(9.27)

Making the current Ia(t) appear and dividing the right-hand side by the positive magni-
tude (equivalent to the α component) of the source impedance it leads to:

∆Va(t) = − |ZαS|
[(

RαS

|ZαS|
∆Ia(t) + LαS

|ZαS|
d

dt
∆Ia(t)

)

−
(
RαS

|ZαS|
∆I0(t) + LαS

|ZαS|
d

dt
∆I0(t)

)

+
(
|Z0S|
|ZαS|

R0S

|Z0S|
∆I0(t) + |Z0S|

|ZαS|
L0S

|Z0S|
d

dt
∆I0(t)

)]
(9.28)
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In order to replace the source parameters by the transmission line parameters the
complete system is assumed to be homogeneous. It means that the following relations are
respected:



ταS = ταR = ταL

τ0S = τ0R = τ0L

|Z0S|
|ZαS|

= |Z0R|
|ZαR|

= |Z0L|
|ZαL|

(9.29)
(9.30)

(9.31)

The impact of this assumption deeply studied in [93] may lead to dependability issues.
The dependability factors of 0.3 used for ZFWD and ZREV in the adaptive thresholds were
chosen to take into account the possible errors when these assumptions are not respected.
The replica currents are finally introduced in (9.28) leading to:

∆Va(t) = − |ZαS| (∆IaZ(t)−∆I0Z(t)) (9.32)

where:


∆IaZ(t) = D0α∆Ia(t) +D1α

d

dt
∆Ia(t)

∆I0Z(t) = D0α∆I0(t) +D1α
d

dt
∆I0(t)− |Z0L|

|ZαL|

(
D00∆I0(t) +D10

d

dt
∆I0(t)

) (9.33)

(9.34)

and



D0α = RαL/ |ZαL|

D1α = LαL/ |ZαL|

D00 = R0L/ |Z0L|

D10 = L0L/ |Z0L|

(9.35)
(9.36)
(9.37)
(9.38)

The same relations can be written for the other phase-to-ground faults. Moreover, for
a reverse fault as for a single-phase system the incremental voltage and replica current
are linked by the impedance seen in front of the relay. It leads to:

∆Va(t) = |ZαL + ZαR| (∆IaZ(t)−∆I0Z(t)) (9.39)

For a phase-to-phase fault the single-phase relations may be used directly if the β
sequence components are used for the voltage and the current. The β sequence compo-
nents correspond to the difference between the phases involved in the fault. Table 9.1
summarizes the input incremental voltages and replica currents needed for the different
types of fault.
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Loop Voltage Current

L(i)-G ∆Vi ∆IiZ −∆I0Z

L(i)-L(j) ∆Vi −∆Vj ∆IiZ −∆IjZ

Table 9.1: Input voltages and currents for the different types of fault

9.4 Performances evaluation

In this section the directional algorithm will be tested with a three-phase Bergeron trans-
mission line model. As shown in Fig. 9.10 the network is composed by a transmission
line of 100 km behind and in front of the relay location in order to test the faults in both
directions. The faults will be mainly very close to the relay location because, as mentioned
before, the distance element algorithm is able to accurately determine the fault direction
itself thanks the sign of the identified inductance. Moreover, a fault directly at the relay
location will be tested in both directions (0+ and 0−).

RS+,0 LS+,0 RR+,0 LR+,0

VS VR

100 km 100 km

S A R

Relay

Figure 9.10: Network power system with a protected line of 100 km and a line behind the
relay location of 100 km

For the first case a perfectly homogeneous system is assumed (see (9.29), (9.30) and
(9.31)). A phase-to-phase fault is tested with an SIR of 1.1 behind the relay (it takes
into account the voltage source impedance and the transmission line of 100 km). First
of all, the distance element algorithm is tested for this configuration in order to highlight
some observations. The results are shown in Fig. 9.11. The focus is made around -5
km and 5 km only. In this figure two graphs are represented. For the first one, only a
strictly positive distance to fault is permitted. For the second, a negative value of -10 km
(-10% of the line length) is tolerated. In this example two different possible issues can be
highlighted:

- as expected, the distance element algorithm may identify a wrong fault direction
for very close-in faults. The faults located at -900 m, -700 m and 0− m have been
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identified as forward faults. The voltage signal is so close to zero that all the possible
sources of error (numerical approximations of derivatives and integrals, filters, ...)
may impact the reliability of the identification. For the faults located further from
the relay, the distance element algorithm was accurate.

- the distance element algorithm may be delayed for close-in faults. Indeed, during the
identification process the parameters may oscillate between negative and positive
values. In this example the tripping times for the faults at 700 m and 900 m are
delayed if only positive values are tolerated. It is therefore possible to improve the
performances of the algorithm by setting a small threshold for negative distance to
fault and to confirm the fault direction with the directional element.
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Figure 9.11: Distance element algorithm times for very close-in faults with strictly positive
distances and negative distances tolerated until -10 km

Fig. 9.12 shows the algorithm times for the forward and the reverse tests. The fault
direction was correctly determined for all the tested fault locations in both directions.
The identification of the direction was very fast (maximum 0.375 ms after the start of the
algorithm). Of course the speed of the algorithm depends on the value of the threshold
∆MIN which was set at 5×105 V 2/Ω. In Fig. 9.13 and 9.14 the different signals used in this
algorithm are shown for a fault located at 500 m and - 500 m from the relay respectively.
The incremental voltage and replica current are shown on the top of the figures. These
signals have an opposite polarity for the forward fault and the same polarity for the reverse
fault. The torque signals and the integrated torque signals are shown on the bottom of
the figures. The high frequencies present in the signals have a very small magnitude
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and do not impair the polarity of the torque signal. It is important to observe that the
actual fault time is set at 0 ms. However, due to the filtering process the incremental
quantities begin to increase after about 1 ms. Moreover, as the exact starting time is not
known because this information must be given by the fault detection element which is
not implemented in this thesis, a constant starting time of 2 ms was chosen as for all the
previous chapters. The torque signals increase only after 2 ms.
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Figure 9.12: Forward and reverse algorithm times for phase-to-phase faults. Homogeneous
system with τ = 16.46 ms; SIR = 1.1
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Figure 9.13: Incremental voltage (top right) and replica current (top left). Torque signals
(bottom left) and integrated torque signals (bottom right). Homogeneous system; SIR =
0.1. ∆MIN = 5× 105. Forward fault at 500 m
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Figure 9.14: Incremental voltage (top right) and replica current (top left). Torque signals
(bottom left) and integrated torque signals (bottom right). Homogeneous system; SIR =
0.1. ∆MIN = 5× 105. Reverse fault at -500 m

In Appendix F the results for all the tested cases are available. Phase-to-phase and
phase-to-ground faults are tested. The transmission lines and the voltage source are
not homogeneous. Strong and weak systems are tested with a fault inception angle of
90° and 0°. For a strong system the performances are very good even if the system is
not homogeneous. The maximum algorithm times were 0.375 ms and 1.625 for a fault
inception angle of 90° and 0° respectively. However, the method is not working well for a
weak system as shown in Fig. 9.15. It appears that the algorithm has given the wrong fault
direction for the faults far from the relay location. Moreover, no direction was identified
for forward close-in faults. Fig. 9.16 and 9.17 show the signals for a fault occurring in
forward direction a 500 m and 50 km respectively. The high frequencies are clearly visible
in the incremental quantities signals. The directional element algorithm implemented in
this chapter is based on a simple RL model of line which does not take into account these
frequencies. It explains why the polarities are not well respected. It would be possible to
improve the method by using an RLC model of line as for the distance element. However,
it would imply a sufficient knowledge of the positive and negative capacitance of the
network behind and in front of the relay. For the close-in fault, it appears that the
integrated torque signal grows in the right direction but it never reaches the threshold.
Unfortunately, the decrease of the threshold seems not to be a secure solution because
as seen for the fault at 50 km it would lead to the wrong direction. Another solution
would consist to decrease the starting time. Indeed, during the first ms the signals have
the right polarity even with the presence of the high frequencies. However, this finding
would depend on the period of the high frequencies involved and it would be not very
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secure. Moreover, it is important that the integration of the torque signals does not begin
before the actual starting time of the fault because it would delay or impair the torque
signals if there are some disturbances in the pre-fault signals. With the actual state of the
directional element algorithm it is not possible to determine accurately the fault direction
for the close-in faults if the power system network is too weak.
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Figure 9.15: Forward and reverse algorithm times for phase-to-phase faults. τ+
L = 16.46

ms; τ 0
L = 14.32 ms; τ+

S = 23.05 ms; τ 0
S = 12.03 ms; SIR+ = 4.47; SIR0 = 2.12; α = 90°
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Figure 9.16: Incremental voltage (top right) and replica current (top left). Torque signals
(bottom left) and integrated torque signals (bottom right). Weak inhomogeneous system.
Forward fault at 500 m
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Figure 9.17: Incremental voltage (top right) and replica current (top left). Torque signals
(bottom left) and integrated torque signals (bottom right). Weak inhomogeneous system.
Forward fault at 50 km

9.5 Conclusions

In this chapter the fast directional element algorithm developed in [13] was presented
and tested. This time-domain method was based on the incremental quantities involved
during a fault. The algorithm consisted of a comparison between a torque signal and two
adaptive thresholds. The first assumption of this method was that the complete power
system network (transmission lines and voltage sources) may be represented by a sim-
ple RL model. For a strong power system the performances of this method were very
satisfying (fast and secure). However, this assumption showed its limitation because the
performances analysis proved that it was not possible to determine accurately the fault
direction if the power system network is too weak. Of course, it should be interesting
to test more cases in order to determine a maximum permissible SIR for different trans-
mission line length. For the faults located further from the relay location the distance
element algorithm permitted to determine accurately the fault direction even for a very
weak system. A possible solution to improve the directional algorithm would be to use a
more accurate model to represent the network. However, it is important to keep in mind
that currently a sufficient knowledge of the capacitance of the complete power system
behind and in front of the relay is seldom available by the protection designers because
these parameters were not necessary for the classical protections.





Chapter 11

Complete distance protection
performances

11.1 Introduction

In this chapter the performances of the complete distance protection algorithm imple-
mented in the previous chapters are analysed. The tests will be performed on a model
which is as close as possible to a real-world power system. The complete data acquisition
process presented in Chapter 7 will be simulated. The transmission line used is a three-
phase Bergeron model of 100 km. The power system is not homogeneous (different SIR for
positive and zero sequence components) and the transmission line is supplied with a 400
kV voltage source at both ends. The different test cases are based on the standard [101].
It implies the testing of four different fault inception angles: 0°, 30°, 60° and 90°. Four
different values of SIR must be also tested. For a long line it corresponds to the values:
0.2, 0.5, 5 and 10. This standard gives also the pre-fault exporting and importing load
which is set at 1200 A. It implies that the phase shifts between the two voltage sources are:
15°, 20°, 30° and 35° for the different SIR respectively. As explained in Section 3.8, the
power flow direction impacts the value of the inductance seen at the relay location in the
case of resistive faults. Both power flow directions are tested in this chapter. Finally, the
different types of fault must be tested (phase-to-ground, phase-to-phase, phase-to-phase-
to-ground and three-phase). The fault resistance is equal to 5 Ω and 10 Ω between two
phases and between a phase and the ground respectively. The complete block schemes of
the distance element, the directional element and the loop selection element are shown in
Fig. 8.10, 9.5 and 10.8 respectively. All the simulations and algorithms parameters are
available in Appendix H.

139
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11.2 Performances analysis

As the directional element implemented in Chapter 9 is not reliable enough for high values
of SIR, the reversal faults are not tested more in this section. The tests for forward faults
are based on the power system shown in Fig. 11.1.

RS+,0 LS+,0 RR+,0 LR+,0

RfVS∠αS VR∠αR

r+,0, l+,0, c+,0

m1 m2

S R

Relay

Figure 11.1: Double in-feeds Bergeron transmission line of 100 km

The first case tested is a phase(A)-to-ground fault without fault resistance (bolted
fault). The results are presented in the SIR diagrams shown in Fig. 11.2 and 11.3. The
SIR diagrams show the tripping times of the distance protection algorithm for different
values of the SIR at different fault locations. The tripping times are defined as the times
from the start of the algorithm (2 ms after the fault inception to take into account the
delays of the filters and the propagation phenomena of the travelling waves) to the trip
output. A maximum tripping time of 10 ms is used even if the target is 4 ms because
the back-up impedance-based relay would not operate before 10 ms. It is therefore more
efficient to try to detect a fault within 10 ms than to stop the ultra-fast algorithm after
4 ms. As different fault inception angles are tested for each fault, the tripping times may
be different for each of them. The maximum tripping times represent the worse scenario
in term of dependability and speed. The minimum tripping times are also important
in order to verify that there is no over-reaching. The complete results are available in
Appendix I. The dependability, the security and the speed are the three criteria used to
analyse the performances of the algorithm. The faults are correctly identified until 79.2%
of the line length for a setting set at 80%. The dependability achieved is very good even
for a very weak power system. The most distant fault identified is located at 81.6% of
the line length. The security can be easily ensured in this case. Finally, the faults are
tripped in 4 ms until 56% and 74.4% of the line length in the worse case and in the best
case respectively.

Fig. 11.4 shows the maximum tripping times if a simple RL model of line is used
for the distance element algorithm. It appears clearly that the performances are less
good. For a weak power system the dependability and the speed of the algorithm are



Performances analysis 141

very limited. This example justifies the use of a more accurate transmission line model
to improve the performances of the ultra-fast distance protection.
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Figure 11.2: SIR diagram for the phase-to-ground fault with no fault resistance (maximum
tripping times with RLC distance algorithm)
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Figure 11.3: SIR diagram for the phase-to-ground fault with no fault resistance (minimum
tripping times with RLC distance algorithm)
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Figure 11.4: SIR diagram for the phase-to-ground fault with no fault resistance (maximum
tripping times). Distance element algorithm based on the RL model of line

Fig. 11.5 shows the maximum tripping times for a phase-to-ground fault with a fault
resistance of 10 Ω in the case of an importing power flow. The fact that the dependability
is limited was expected because a threshold is used to limit the maximum value of the
identified resistance. As explained in Section 8.5, it permits to avoid the over-reaching
due to the remote injection impact. More important is the fact that the tripping times
are quite high for the close-in faults for a weak power system. A deep analysis of the
complete process has highlighted that it is due to the convergence criterion of the identified
inductance. Fig. 11.6 shows the results for the same case if the convergence criterion is
relaxed. In this last test the parameter dthres representing the maximum variation of the
identified distance to fault between two successive samples is set at 5 km instead of 1
km. It appears that the tripping times are improved for the close-in faults. However, this
solution may impact the security of the method. A better implementation suggested is
the use of an adaptive threshold. The convergence may be relaxed when the identified
distance to fault is small in order to increase the speed of the algorithm and is kept at the
normal level for the faults close to the setting. The solution implemented is as follows: if
the identified distance to fault is higher than the half line length the convergence criterion
is not relaxed; else the parameter dthres is increased after each ms until a maximum value
of 5 km.

The results for the phase-to-phase faults are presented in Appendix I. The same con-
clusions can be made for this type of fault. For the bolted faults, they are correctly
identified until the setting (80% of the line length). The most distant fault identified is



Performances analysis 143

located at 80.8% of the line length (very limited over-reaching). Finally, the faults are
tripped in 4 ms until 68% and 77.6% of the line length in the worse case and in the best
case respectively.
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Figure 11.5: SIR diagram for the phase-to-ground fault with a fault resistance and an
importing power flow (maximum tripping times with RLC distance algorithm)
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Figure 11.6: SIR diagram for the phase-to-ground fault with a fault resistance and an
importing power flow (maximum tripping times with RLC distance algorithm). Relaxed
convergence criteria
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The phase-to-phase-to-ground faults are the most difficult to deal with in term of
loop selection. The delta quantities involved are less different and it is therefore more
difficult to define some general criteria to differentiate them from the other types of fault.
Among all the tested cases in this chapter for this type of fault (1920 in total considering
the different fault positions, fault inception angles, SIR, fault resistances and power flow
directions) only 2 led to a wrong loop selection. It is for 2 bolted close-in faults at 4 km
for an SIR of 0.2 and 0.5. as shown in Fig. 11.7. Note that this figure indicates only
which loop is selected during the complete window algorithm of 10 ms but it does not
indicate the fault inception angle involved and the instant of the detection. The analysis
of the process may show that the phase(C)-to-ground fault has been identified at 2 ms
while the correct loop BC-G was not already detected by the loop selection algorithm.
It may lead to a single-phase tripping instead of a three-phase tripping. This scenario
is not acceptable from the security point of view even if the occurrence is quite limited.
A solution suggested in [15] is to include also the voltage incremental quantities in the
loop selection tests. For the selection of a phase-to-ground fault the additional rule is as
follows: the incremental voltage of the faulted loop is much higher than the incremental
phase-to-phase voltage of the healthy loops (e.g. ∆VA > KV ∆VBC for a phase(A)-to-
ground fault). The threshold KV must be selected such that the security is improved
while the speed is not decreased. For the tests performed in this chapter it permitted to
solve this issue.
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Figure 11.7: Loop selection algorithm for the phase-to-phase-to-ground bolted faults

Fig. 11.8 shows the results for the phase-to-phase-to-ground resistive faults in the case
of an importing power flow. It appears that the maximum tripping times are very high
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for the weak systems. This time it is not due to a problem of convergence but to the
loop selection algorithm. Depending on the fault inception angle the criteria based on a
comparison of the rectified values of the incremental quantities may take several ms to be
met. This phenomenon represents a limitation of the performances of a method based on
the incremental quantities.
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Figure 11.8: SIR diagram for the phase-to-phase-to-ground fault with a fault resistance
and an exporting power flow (maximum tripping times with RLC distance algorithm)

Finally, the performances for the three-phase faults are as follows: for the bolted faults,
they are correctly identified until the setting (80% of the line length). The most distant
fault identified is located at 80.8% of the line length (very limited over-reaching). The
faults are tripped in 4 ms until 64% and 68% of the line length in the worse case and in
the best case respectively.

11.3 Conclusions

In this last chapter the complete distance protection proposed in this PhD was tested
(excepted the directional element which is not sufficient for some extreme cases). The ob-
jective was to simulate a database of tests as close as possible to a real-world transmission
power system. It implied the use of an accurate model of line and the simulation of the
complete data acquisition process developed by Siemens AG. The set of tests was quite big
(6400 cases) because the impact of the following parameters were tested: fault position,
type of fault, SIR, fault inception angle, fault resistance and power flow direction.
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First of all, the results permitted to justify the use of a Γ model of line instead of a
simple RL model. The dependability, the security and the speed of the algorithms were
improved by the use of a more accurate model of line.

In a second time, the tests performed in this chapter permitted to highlight some
limitations of the algorithms. The speed of the distance element algorithm was improved
for the close-in faults and weak sources by the use of relaxed criteria of the convergence
of the distance to fault. Moreover, the accuracy of the loop selection element was also
improved by the use of the incremental voltage in the decision process.

Finally, it can be concluded that the methods proposed in this thesis led to very good
results. Indeed, the maximum over-reaching was less than 5% after the setting zone even
for resistive faults. For bolted faults the dependability obtained permitted to trip the
faults until 79.2% of the line length. This is a huge improvement compared to the current
ultra-fast method developed by SEL (see Table 1.1). Moreover, the faults were tripped
in 4 ms until around 60% of the line length. However, it appeared that the loop selection
element, which is based on the incremental quantities, may be sometimes too slow (5 ms
to 6 ms) for resistive faults and very weak power systems with a fault inception angle of
0°.



Chapter 12

Conclusions and future work

12.1 Conclusions

The relay protections of the transmission lines play a fundamental role in the electrical
power systems. They permit to ensure the security and the reliability of the electricity
transmission from the generators to the final consumers. The objective of a relay protec-
tion is to provide a corrective action as quickly as possible when an abnormal condition
of the power system is detected. The quickness of the response would permit to limit the
stress on the equipments of the power systems and the consumers, to ensure the security
of the people, to improve the power quality and to maintain the stability of the power
systems. The protective relaying systems have evolved a lot since their first implemen-
tation in the 1900’s. However, the electrical power systems are in constant evolution
and the reliability of the protective relaying systems becomes more and more challenging.
The three main characteristics of the relay protections which are security, dependability
and speed must be continuously improved to achieve these objectives. The major re-
lay protections implemented nowadays are based on frequency-domain methods. These
methods are intrinsically limited in speed by the phasor estimation of the voltage and
current signals. More recent methods based on incremental quantities permitted to break
this limitation by working directly in time-domain. Despite the speed of these methods,
the dependability is usually limited in order to ensure the security. The main ultra-fast
algorithms implemented are based on a simple RL model of line. This assumption is valid
only for short lines or strong power systems (low SIR).

In this PhD thesis, it was proposed to develop a time-domain ultra-fast non-pilot
distance protection based on a Γ model of line in order to improve the security, the
dependability and the speed for long lines (until 100 km) and weak power system (SIR until
10). This protection included a loop selection element, a directional element and a distance
element. The distance element algorithm developed in this thesis permitted to achieve
the target tripping time of 4 ms until around 60% of the line length in the worse case. The
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dependability of the protection was improved compared to the current ultra-fast distance
protections implemented. The faults were tripped until 79.2% of the line length for a
setting zone of 80%. This improvement was done while respecting the security because
the maximum over-reaching was less than 5% after the setting zone. Another objective
was to take into account the effects and the limitations of an existing hardware developed
by Siemens AG. In this context, the complete data acquisition system was simulated. It
permitted to highlight the important impact of the current and the voltage transformer
on the performances of the distance element algorithm. The directional element algorithm
studied in this work showed very good performances in term of speed but the reliability
was not sufficient in the case of very weak power systems. The loop selection element
algorithm permitted to identify accurately the faulted phases. However, in some extreme
cases (resistive fault and very weak power system), the tripping times were higher than 4
ms even for close-in faults.

Chapter 2 presented different models of transmission lines and their frequency be-
haviour. The reference model chosen in this thesis to represent a real-world transmission
line was the constant distributed parameters Bergeron model because it was accurate
enough until the first resonance frequency (which is the limit frequency range of the Γ
model implemented in this work) even if it did not take into account the frequency de-
pendence of the parameters. The objective was to define the range of frequencies in which
the other models fitted the reference model.

Chapter 3 presented the distance element algorithm developed in this thesis. The
algorithm was based on the identification of the parameters of the faulted line using a
linear Least-Squares estimation method. This method was developed only for the RL
and the RLC Γ model of line because it was not possible to obtain a linear model in
parameters for more complex models. Moreover, the Γ model was also improved in order
to fit better the Bergeron model until the first resonance frequency. The tests performed
on a Bergeron model showed that only the Γ-based algorithm was accurate enough for
very long lines or weak power systems.

Chapter 4 showed the mathematical concepts related to the Least-Squares estimation
method and some issues due to a possible ill-conditioning. A recursive implementation of
the Least-Squares method was proposed to improve the performances of the method in
term of computational loads. This chapter was useful to analyse the accuracy of the results
obtained and to define some security margins based on the MSE and the CI. However, it
appeared that these indicators may be biased for a time-series model and therefore the
statistical tables, used usually for cross-sectional data1, may not be relevant.

Chapters 5 and 6 permitted to extend the distance element algorithms to a three-
phase power system with the use of the Clarke transform. The different types of fault

1cross-sectional data are observations that come from different individuals or groups at a single point
in time
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were treated. It led to the introduction of new compensation factors of the zero sequence
voltage for the Γ model during a phase-to-ground fault. Moreover, a solution was proposed
to deal with the parallel transmission lines.

In Chapter 7, the complete data acquisition process based on the existing hardware
was simulated. It permitted to highlight the impact of the CT and the VT on a time-
domain algorithm. The high-pass behaviour of the transformers led to a wrong distance
to fault evaluation. A solution was proposed to solve this issue by including the CT and
VT model in the equations of the distance element algorithms. It led to the introduction
of a new parameter to identify. This parameter was linked to the value of the voltage and
the current of the first sample at the primary side of the transformers.

Chapter 8 presented the different security criteria implemented for the distance element
algorithms in order to avoid a possible over-reaching. The use of criteria based on the
residuals analysis permitted to improved the security while optimising the dependability
of the methods.

The distance element was completed by a directional element and a loop selection
element. The algorithms proposed for the two elements were both based on existing
methods using the incremental quantities. Chapter 9 showed that the directional element
algorithm proposed had some limitations not yet resolved. Indeed, the directional element
algorithm was based on a simple RL model which was not accurate enough for very weak
power systems. The directional element algorithm must be improved as explained in the
next section. The loop selection element algorithm presented in Chapter 10 gave very
good results except for the specific cases mentioned above.

Finally, Chapter 11 presented the performances of the complete distance protection for
a big database of tests (6400 tested cases). The limitations of the directional element was
already mentioned. For the other elements of the distance protection the performances
obtained were satisfying in term of security, dependability and speed.

The major contributions of this PhD thesis were related to the time-domain distance
element algorithm:

- implementation of a Γ model of transmission line for an ultra-high-speed distance
protection in the time-domain thanks to a Linear Recursive Least-Squares Estima-
tion method.

- improvement of the frequency behaviour of the Γ model of line until the first reso-
nance frequency of a distributed parameters model of line.

- the use of the integral form of the equations representing the model of a line in order
to limit the impact of a noisy signal.

- inclusion of a simple model of the voltage and the current transformers in the trans-
mission line model.
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- the use of a residual analysis to ensure the security of the method and to improve
its dependability.

12.2 Future work

The future work can be splitted in two parts: the first one is related to the possible
improvements of the algorithm developed in this thesis; the second one is related to more
specific cases not tested yet.

In Chapter 2 the transfer functions of a Bergeron and a J. Marti model of line were
compared. It was concluded that both models had a similar frequency behaviour until
the first resonance frequency. However, it would be interesting to evaluate the impact on
the parameters of the line of the type of ground, the earthing method used, the type of
conductors, etc.

In Chapter 4 it was shown that the statistical indicators of a Least-Squares estimation
may be biased for a time-series model. It would be necessary to study this problematic
deeper in order to develop a more suited method to evaluate the accuracy of the results
and therefore to improve the security of the method.

The directional element algorithm based on the incremental quantities with a simple
RL model showed its limitations. The development of a more efficient method is necessary
because it does not permit to protect accurately the very weak power systems, which is
one of the main advantages of the distance element developed in this thesis.

The loop selection algorithm developed in Chapter 10 showed very good performances.
However, in some cases (weak power system and resistive fault) the speed of the method
is not sufficient. This problem occurred for a fault inception angle of 0°. This specific
case could be improved.

The complete distance protection could be tested with data coming from an actual
transmission line in order to be validated. These tests would permit to verify the impact
of some possible noises on the data. If these data are not available it would be necessary to
accurately simulate the different possible sources of noise. However, the possible errors or
noises can be of different forms: limited or bad knowledge of transmission line parameters
or CT and VT time constants; the transmission line may not be totally balanced; a
frequency deviation may be possible on the steady-state signals (used for the calculation
of incremental quantities); an electromagnetic noise of the environment is also possible;
finally the quantification process of the ADC and the calculation limits of the hardware
may affect the accuracy of the algorithms. A pertinent analysis of noisy data would
therefore require a good knowledge of the type and the magnitude of these different
sources of noise and then a statistical evaluation of their impact on the performances of
the protection would be performed.

In this thesis it was considered that the loop involved during a fault was the same
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during the complete algorithm window. However, the case of an evolving fault is also
possible. The short-circuit occurring on a particular phase may be propagated to another
phase. A single-phase fault may turn into a three-phase fault. It would be necessary to
define a logical implementation to treat this type of fault.

It was showed in Chapter 7 that the CT and the VT may have a big impact on
the performances of the distance element algorithm. These elements impacted only the
low frequencies of the transient content. Fortunately, a simple model was possible to be
assumed and it was included in the model of the algorithm. However, the use of a CCVT
may complicate much more the problem. The transient behaviour of a CCVT may also
impact a lot the distance element algorithm. Different implementation of a CCVT model
were proposed in the literature and its impact on a distance protection was deeply studied
[102]–[106]. However, it appeared that the model was, at first sight, too complex to be
include in the distance element algorithm. Moreover, the model depended on several
parameters which may vary a lot depending on the specific CCVT used. A first possible
solution would be to propose a simplified model of CCVT (first order) that is enough to
simulate its behaviour.

Finally, some compensation devices may be present in the transmission line and it
would be necessary to study their impact on the distance protection implemented in
this thesis. These devices may be shunt reactors [107], shunt capacitors [108] or series-
capacitors and series-reactors [109].





Appendix A

Bode’s curves calculation

In this appendix it is explained how the Bode’s curves are constructed for a single-phase
and a three-phase model of line. As the distance element algorithm is based on the
transfer function of a Γ model of line, it will be the reference transfer function for all the
cases. This transfer function represents the parameters identified by the distance element
algorithm. A frequency scan is applied from 1 Hz to 10 kHz and the steady-state voltages
and currents at the relay location are extracted.

A.1 Single-phase model

For a single-phase model of line the transfer function is directly given by the ratio of the
voltage and the current at the relay location:

H(jω) = V (jω)
I(jω) = jωL+R

(jω)2CL+ jωCR + 1 (A.1)

A.2 Three-phase model for a phase-to-phase fault

For a three-phase model of line with a phase-to-phase fault the transfer function is given
by the ratio between the β sequence of the voltage and the current at the relay location.
It represents the β parameters of the line and is given by the following expression:

H(jω) = Vβ(jω)
Iβ(jω) = jωLβ +Rβ

(jω)2CβLβ + jωCβRβ + 1 (A.2)

A.3 Three-phase model for a phase-to-ground fault

The phase-to-ground transfer function is more difficult to define because it involves two
Clarke sequences as seen in the expression given by (6.19). In the frequency domain this
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equation can be written as:

(jω)2CαLαVα(jω) + jωCαRαVα(jω) + Vα(jω)
+ (jω)2C0L0V0(jω) + jωC0R0V0(jω) + V0(jω)

= jωLαIα(jω) +RαIα(jω) + jωL0I0(jω) +R0I0(jω) (A.3)

It can be rewritten as follows:(
(jω)2CαLα + jωCαRα + 1

)
Vα(jω) +

(
(jω)2C0L0 + jωC0R0 + 1

)
V0(jω)

= (jωLα +Rα) Iα(jω) + (jωL0 +R0) I0(jω) (A.4)

By defining:

N0 = jωL0 +R0 (A.5)

D0 = (jω)2C0L0 + jωC0R0 + 1 (A.6)

Dα = (jω)2CαLα + jωCαRα + 1 (A.7)

It finally leads to:

H(jω) = jωLα +Rα

(jω)2CαLα + jωCαRα + 1

= Vα(jω)
Iα(jω) + 1

DαIα(jω) (D0V0(jω)−N0I0(jω)) (A.8)



Appendix B

Resonance frequency

The transfer function of the RLC Γ model of line is given by (B.1).

HRLC(jω) = jωmll +mrl
(jω)2mc∗lmll + jωmc∗lmrl + 1 (B.1)

where c∗l is the adapted capacitance. The resonance frequency corresponds to the mini-
mum module of the denominator of the transfer function. This module is given by:

|D| =
√

(1− ω2mc∗lmll)
2 + (ωmc∗lmrl)

2 (B.2)

|D| is minimum when the derivative of the function f inside the root is equal to zero.

f = 1 + ω4(mc∗lmll)2 − 2ω2mc∗lmll + ω2(mc∗lmrl)2 (B.3)

df

dω
= 4ω3(mc∗lmll)2 − 4ωmc∗lmll + 2ω(mc∗lmrl)2 = 0 (B.4)

This function has three roots:

ω1 = 0 (B.5)

ω2,3 = ±

√√√√ 1
m2c∗l ll

− 1
2

(
rl
ll

)2
(B.6)

The zero and negative roots can be eliminated. Moreover, the term 0.5·(rl/ll)2 is negligible
compared to the term 1/(c∗l ll). Finally, the resonance frequency is given by:

fres = 1
2πm

√
c∗l ll

(B.7)
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Appendix C

Numerical approximation

In this appendix the numerical approximations used for the derivative and the integration
functions are presented.

C.1 Differentiation

For the derivative functions the Three-Point Midpoint formula are used (Fig. C.1). The
first and the second derivative functions are given by (C.1) and (C.2) respectively.

f ′(x0) = 1
2h [f(x0 + h)− f(x0 − h)] (C.1)

f ′′(x0) = 1
h2 [f(x0 − h)− 2f(x0) + f(x0 + h)] (C.2)

It is necessary to reduce the value of the step h in order to reduce the truncation error.
However, this reduction will also increase the round-off error. In this sense the numerical
differentiations are unstable [42].

x0 − h x0 x0 + h x

y

Figure C.1: Three-Point Midpoint derivative approximation
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C.2 Integration

For the integration functions the trapezoidal rule given by (C.3) is used. The numerical
integration method is always stable in the sense discussed above. Fig. C.2 illustrates the
method.

∫ b

a
f(x)dx = b− a

2 [f(x0) + f(x1)] (C.3)

a = x0 b = x1 x

y

Figure C.2: Trapezoidal rule for integration approximation



Appendix D

Distance element algorithm with
voltage and current transformers

D.1 Transformers model

The corrective transfer function applied on both voltage and current signals is given by
(D.1).

HK = sτK
1 + sτK

(D.1)

It implies that in the time-domain the input and the output signals are linked by the
relations (D.2) and (D.3).


dV P (t)
dt

= dV (t)
dt

+ 1
τK
V (t)

dIP (t)
dt

= dI(t)
dt

+ 1
τK
I(t)

(D.2)

(D.3)

where V P and IP are the input voltage and current which are not available by the relay
protection because they are related to the primary side of the transformers. V and I are
the output voltage and current which are measured by the relay protection. The following
relations obtained by integrating both sides will be also useful for the next developments:


V P (t)− V P (t0) = V (t)− V (t0) + 1

τK

∫ t

t0
V (t)dt

IP (t)− IP (t0) = I(t)− I(t0) + 1
τK

∫ t

t0
I(t)dt

(D.4)

(D.5)

D.2 Single-phase model

The line models are valid only for the primary side of the transformer. By applying (D.2),
(D.3), (D.4) and (D.5) to the RL model of line given by (3.25), it leads to:
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V (t)− V (t0) + 1
τK

∫ t

t0
V (t)dt+ V P (t0)

= R
(
I(t)− I(t0) + 1

τK

∫ t

t0
I(t)dt+ IP (t0)

)
+ L

(
dI(t)
dt

+ 1
τK
I(t)

)
(D.6)

Two terms related to the primary sides remains: V P (t0) and IP (t0). These terms are
the primary voltage and current at the starting time of the algorithm. As mentioned
before the primary side signals are not available by the protection. One solution is to
consider that the term V P (t0) − RIP (t0) is a constant unknown to be identified by the
least-squares method. When using the RLS method it is more optimal to begin with an
initial state close to the correct solution. Assuming:

V P (t0)−RIP (t0) ∼ V (t0) ·K (D.7)

where K is the new parameter to identify, it leads for the integral form of the RL model
of line:

∫ t

t0
V (t)dt− V (t0) · (t− t0) + 1

τK

∫∫ t

t0
V (t)dt

= R
(∫ t

t0
I(t)dt− I(t0) · (t− t0) + 1

τK

∫∫ t

t0
I(t)dt

)
+ L

(
I(t)− I(t0) + 1

τK

∫ t

t0
I(t)dt

)
−K (V (t0) · (t− t0)) (D.8)

Similarly the integral form of the RLC model of line gives (D.9) by applying the same
developments to the relation (3.36).

C2

c
′
l

(
ll

[
dV (t)
dt
− V̇ (t0) + 1

τK
(V (t)− V (t0))

]

+rl
[
V (t)− V (t0) + 1

τK

(∫ t

t0
V (t)dt

)])
+
∫ t

t0
V (t)dt− V (t0) · (t− t0) + 1

τK

(∫∫ t

t0
V (t)dt

)
+K (V (t0) · (t− t0))

= R
(∫ t

t0
I(t)dt− I(t0) · (t− t0) + 1

τK

(∫∫ t

t0
I(t)dt

))
+ L

(
I(t)− I(t0) + 1

τK

(∫ t

t0
I(t)dt

))
(D.9)

D.3 Three-phase model

For the phase-to-phase and the three-phase faults the relations (D.8) and (D.9) remain
valid if considering the β sequence voltage, current and line parameters. For the phase-
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to-ground faults the previous relations become (D.10) for the RL model and (D.11) for
the RLC model of line.

∫ t

t0
Va(t)dt− Va(t0) · (t− t0) + 1

τK

∫∫ t

t0
Va(t)dt

= Rαf

(∫ t

t0
Ia1(t)dt− Ia1(t0) · (t− t0) + 1

τK

∫∫ t

t0
Ia1(t)dt

)
+ Lαf

(
Ia2(t)− Ia2(t0) + 1

τK

∫ t

t0
Ia2(t)dt

)
−K (Va(t0) · (t− t0)) (D.10)

C2
αf

c′α

(
lα

[
dVa2(t)
dt

− V̇a2(t0) + 1
τK

(Va2(t)− Va2(t0))
]

+rα
[
Va1(t)− Va1(t0) + 1

τK

(∫ t

t0
Va1(t)dt

)])
+
∫ t

t0
Va(t)dt− Va(t0) · (t− t0) + 1

τK

(∫∫ t

t0
Va(t)dt

)
+K (Va(t0) · (t− t0))

= Rαf

(∫ t

t0
Ia1(t)dt− Ia1(t0) · (t− t0) + 1

τK

(∫∫ t

t0
Ia1(t)dt

))
+ Lαf

(
Ia2(t)− Ia2(t0) + 1

τK

(∫ t

t0
Ia2(t)dt

))
(D.11)

where:



Ia1(t) = Ia(t) + kRI0(t)
Ia2(t) = Ia(t) + kLI0(t)
Va1(t) = Va(t) + kCRV0(t)
Va2(t) = Va(t) + kCLV0(t)

(D.12)
(D.13)
(D.14)
(D.15)





Appendix E

Confidence interval tests

E.1 Phase-to-phase faults

E.1.1 Strong network
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Figure E.1: Distance to fault versus secured distance to fault (left) and identification time
(right). RLC algorithm with SFCI = 6
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Figure E.2: Distance to fault versus secured distance to fault (left) and identification time
(right). RL algorithm with SFCI = 2

E.1.2 Weak network
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Figure E.3: Distance to fault versus secured distance to fault (left) and identification time
(right). RLC algorithm with SFCI = 6
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Figure E.4: Distance to fault versus secured distance to fault (left) and identification time
(right). RL algorithm with SFCI = 2

E.2 Phase-to-ground faults

E.2.1 Strong network
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Figure E.5: Distance to fault versus secured distance to fault (left) and identification time
(right). RLC algorithm with SFCI = 6
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Figure E.6: Distance to fault versus secured distance to fault (left) and identification time
(right). RL algorithm with SFCI = 2

E.2.2 Weak network
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Figure E.7: Distance to fault versus secured distance to fault (left) and identification time
(right). RLC algorithm with SFCI = 6
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Figure E.8: Distance to fault versus secured distance to fault (left) and identification time
(right). RL algorithm with SFCI = 2





Appendix F

Directional element tests

F.1 Phase-to-phase
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Figure F.1: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

24.69 ms; τ 0
S = 12.89 ms; SIR+ = 1.15; SIR0 = 1.09; α = 90°
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Figure F.2: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

24.69 ms; τ 0
S = 12.89 ms; SIR+ = 1.15; SIR0 = 1.09; α = 0°
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Figure F.3: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

23.05 ms; τ 0
S = 12.03 ms; SIR+ = 4.47; SIR0 = 2.12; α = 90°
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Figure F.4: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

23.05 ms; τ 0
S = 12.03 ms; SIR+ = 4.47; SIR0 = 2.12; α = 0°

F.2 Phase-to-ground

-100 -80 -60 -40 -20 0 20 40 60 80 100

Distance to fault (km)

0

2

4

6

8

10

12

T
ri
p
p
in

g
ti
m

e
(m

s
)

Forward

Reverse

Figure F.5: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

24.69 ms; τ 0
S = 12.89 ms; SIR+ = 1.15; SIR0 = 1.09; α = 90°
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Figure F.6: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

24.69 ms; τ 0
S = 12.89 ms; SIR+ = 1.15; SIR0 = 1.09; α = 0°
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Figure F.7: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

23.05 ms; τ 0
S = 12.03 ms; SIR+ = 4.47; SIR0 = 2.12; α = 90°
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Figure F.8: Forward and reverse algorithm time. τ+
L = 16.46 ms; τ 0

L = 14.32 ms; τ+
S =

23.05 ms; τ 0
S = 12.03 ms; SIR+ = 4.47; SIR0 = 2.12; α = 0°





Appendix G

Loop selection tests

G.1 Phase-to-ground
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Figure G.1: Phase(A)-to-ground fault: SIR = 0.1; α = 0°; RF (A-G) = 10 Ω
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Figure G.2: Phase(A)-to-ground fault: SIR = 0.1; α = 90°; RF (A-G) = 10 Ω
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Figure G.3: Phase(A)-to-ground fault: SIR = 5; α = 0°; RF (A-G) = 10 Ω
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Figure G.4: Phase(A)-to-ground fault: SIR = 5; α = 90°; RF (A-G) = 10 Ω
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Figure G.5: Phase(A)-to-phase(B) fault: SIR = 0.1; α = 0°; RF (A-B) = 5 Ω
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Figure G.6: Phase(A)-to-phase(B) fault: SIR = 0.1; α = 90°; RF (A-B) = 5 Ω
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Figure G.7: Phase(A)-to-phase(B) fault: SIR = 5; α = 0°; RF (A-B) = 5 Ω
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Figure G.8: Phase(A)-to-phase(B) fault: SIR = 5; α = 90°; RF (A-B) = 5 Ω

G.3 Phase-to-phase-to-ground
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Figure G.9: Phase(A)-to-phase(B)-to-ground fault: SIR = 0.1; α = 0°; RF (A-G) = 10 Ω;
RF (A-B) = 5 Ω
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Figure G.10: Phase(A)-to-phase(B)-to-ground fault: SIR = 0.1; α = 90°; RF (A-G) = 10
Ω; RF (A-B) = 5 Ω
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Figure G.11: Phase(A)-to-phase(B)-to-ground fault: SIR = 5; α = 0°; RF (A-G) = 10 Ω;
RF (A-B) = 5 Ω
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Figure G.12: Phase(A)-to-phase(B)-to-ground fault: SIR = 5; α = 90°; RF (A-G) = 10
Ω; RF (A-B) = 5 Ω





Appendix I

Complete distance protection
testing: results

I.1 Phase-to-ground faults
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Figure I.1: SIR diagram for the phase-to-ground fault with no fault resistance (maximum
tripping times)
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Figure I.2: SIR diagram for the phase-to-ground fault with no fault resistance (minimum
tripping times)
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Figure I.3: SIR diagram for the phase-to-ground fault with a fault resistance and an
importing power flow (maximum tripping times)
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Figure I.4: SIR diagram for the phase-to-ground fault with a fault resistance and an
importing power flow (minimum tripping times)
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Figure I.5: SIR diagram for the phase-to-ground fault with a fault resistance and an
exporting power flow (maximum tripping times)
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Figure I.6: SIR diagram for the phase-to-ground fault with a fault resistance and an
exporting power flow (minimum tripping times)

I.2 Phase-to-phase faults
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Figure I.7: SIR diagram for the phase-to-phase fault with no fault resistance (maximum
tripping times)
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Figure I.8: SIR diagram for the phase-to-phase fault with no fault resistance (minimum
tripping times)
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Figure I.9: SIR diagram for the phase-to-phase fault with a fault resistance and an im-
porting power flow (maximum tripping times)
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Figure I.10: SIR diagram for the phase-to-phase fault with a fault resistance and an
importing power flow (minimum tripping times)
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Figure I.11: SIR diagram for the phase-to-phase fault with a fault resistance and an
exporting power flow (maximum tripping times)
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Figure I.12: SIR diagram for the phase-to-phase fault with a fault resistance and an
exporting power flow (minimum tripping times)

I.3 Phase-to-phase-to-ground faults
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Figure I.13: SIR diagram for the phase-to-phase-to-ground fault with no fault resistance
(maximum tripping times)
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Figure I.14: SIR diagram for the phase-to-phase-to-ground fault with no fault resistance
(minimum tripping times)
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Figure I.15: SIR diagram for the phase-to-phase-to-ground fault with a fault resistance
and an importing power flow (maximum tripping times)
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Figure I.16: SIR diagram for the phase-to-phase-to-ground fault with a fault resistance
and an importing power flow (minimum tripping times)
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Figure I.17: SIR diagram for the phase-to-phase-to-ground fault with a fault resistance
and an exporting power flow (maximum tripping times)
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Figure I.18: SIR diagram for the phase-to-phase-to-ground fault with a fault resistance
and an exporting power flow (minimum tripping times)

I.4 Three-phase faults
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Figure I.19: SIR diagram for the three-phase fault with no fault resistance (maximum
tripping times)
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Figure I.20: SIR diagram for the three-phase fault with no fault resistance (minimum
tripping times)
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