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A R T I C L E  I N F O   

Keywords: 
Multivariate Environmental Similarity Surface 
(MESS) 
Marine species 
Antarctic 
Modelling relevance 
Conservation issues 

A B S T R A C T   

Species distribution modelling (SDM) has been increasingly applied to Southern Ocean case studies over the past 
decades, to map the distribution of species and highlight environmental settings driving species distribution. 
Predictive models have been commonly used for conservation purposes and supporting the delineation of marine 
protected areas, but model predictions are rarely associated with extrapolation uncertainty maps. 

In this study, we used the Multivariate Environmental Similarity Surface (MESS) index to quantify model 
uncertainty associated to extrapolation. Considering the reference dataset of environmental conditions for which 
species presence-only records are modelled, extrapolation corresponds to the part of the projection area for 
which one environmental value at least falls outside of the reference dataset. 

Six abundant and common sea star species of marine benthic communities of the Southern Ocean were used as 
case studies. Results show that up to 78% of the projection area is extrapolation, i.e. beyond conditions used for 
model calibration. Restricting the projection space by the known species ecological requirements (e.g. maximal 
depth, upper temperature tolerance) and increasing the size of presence datasets were proved efficient to reduce 
the proportion of extrapolation areas. We estimate that multiplying sampling effort by 2 or 3-fold should help 
reduce the proportion of extrapolation areas down to 10% in the six studied species. 

Considering the unexpectedly high levels of extrapolation uncertainty measured in SDM predictions, we 
strongly recommend that studies report information related to the level of extrapolation. Waiting for improved 
datasets, adapting modelling methods and providing such uncertainy information in distribution modelling 
studies are a necessity to accurately interpret model outputs and their reliability.   

1. Introduction 

Among the broad array of analytical tools developed for marine 
ecology studies over the last two decades, Species Distribution Model
ling (SDM) has been increasingly used (Peterson 2001, Elith et al. 2006, 
Austin 2007, Gobeyn et al. 2019) and applied to Southern Ocean pelagic 
(Pinkerton et al. 2010, Freer et al. 2019), benthic organisms (Loots et al. 
2007, Pierrat et al. 2012, Basher and Costello 2016, Xavier et al. 2016, 
Gallego et al. 2017, Guillaumot et al. 2018a, 2018b, Fabri-Ruiz et al. 
2019, Jerosch et al. 2019) and even marine mammals (Nachtsheim et al. 
2017). SDM represents a complementary approach to individual-based 
modelling and eco-physiological experiments, quickly and syntheti
cally identifying environmental correlates of species distribution (Bro
tons et al. 2012, Feng and Papeş 2017, Feng et al. 2020). SDM is also 
used to define species distribution spatial range (Nori et al. 2011, Walsh 

and Hudiburg 2018) and can be used as decision criteria for conserva
tion purposes (Guisan et al. 2013, Marshall et al. 2014). For instance, it 
is currently used in proposals developed by national committees of the 
CCAMLR (Commission for the Conservation of Antarctic Marine Living 
Resources) to support the definition and delineation of marine protected 
areas (Ballard et al. 2012, CCAMLR report WG-FSA-15/64, Arthur et al. 
2018). 

Applying SDM to Southern Ocean case studies is particularly chal
lenging due to major constraints and biases that may reduce modelling 
performance. As for many oceanographic studies, access to environ
mental data with high temporal and spatial resolutions is difficult 
(Davies et al. 2008, Robinson et al. 2011). Antarctic coastal areas, in 
particular, are rarely accessed and documented due to logistical con
straints, access being for example impossible during the austral winter 
due to sea ice cover (De Broyer et al. 2014). The availability of species 
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absence records is also a limiting factor to modelling performances and 
model calibrations (Brotons et al. 2004, Wisz and Guisan 2009). Models 
are usually based on a limited number of presence-only records and 
limited number of sampling sites, which are both spatially aggregated in 
the vicinity of scientific stations, where access is frequent and datasets 
from different seasons, have been compiled over decades and even 
beyond (De Broyer et al. 2014, Guillaumot et al. 2018a, Fabri-Ruiz et al. 
2019, Guillaumot et al. 2019). 

When generating a SDM, the model is fit to data with a given range of 
value for each environmental descriptor (i.e. the calibration range). 
When transferring model predictions, a portion of the environment may 
cover additionnal conditions that are outside this calibration range: 
these are non-analog conditions and the model extrapolates (Randin 
et al. 2006, Williams and Jackson 2007, Williams et al. 2007, Fitzpatrick 
and Hargrove 2009, Owens et al. 2013, Yates et al. 2018). Considering 
the limited number of species presence-only records occupied by each 
marine benthic species, and the poor quality and precision of environ
mental descriptors available for modelling Southern Ocean species dis
tributions (Guillaumot et al. 2018a, Fabri-Ruiz et al. 2019), a large 
proportion of cells might be expected to be extrapolations beyond the 
calibration range of the model. 

The Multivariate Environmental Similarity Surface (MESS) approach 
analyses spatial extrapolation by extracting environmental values 
covered by presence-only records and estimates areas where environ
mental conditions are outside the range of conditions contained in the 
calibration area (Elith et al. 2010). The method considers that extrap
olation occurs when at least one environmental descriptor value is 
outside the range of the environment envelop for model calibration 
(more details given in Appendix 4). 

The MESS approach was initially used to determine the environ
mental barriers to the invasion of the cane toad in Australia, when facing 
new environments and under future conditions (Elith et al. 2010). 
Implemented in MaxEnt (Elith et al. 2011), MESS was subsequently used 
by several authors for defining the climatic limits to the colonisation of 
new environments by non-native species, such as the American bullfrog 
in Argentina (Nori et al. 2011), for studying contrasts between native 
and potential ecological niches like in the study of the spotted knapweed 
(Centaurea stoebe) (Broennimann et al. 2014), or for defining the limits 
to model transferability and predicting the distribution of trees under 
future environmental conditions (Walsh and Hudiburg 2018). 

More recently, the MESS approach was used to define model un
certainties related to extrapolation (Escobar et al. 2015, Li et al. 2015, 
Cardador et al. 2016, Luizza et al. 2016, Iannella et al. 2017, Milanesi 
et al. 2017, Silva et al. 2019) and extrapolation areas where environ
mental conditions are non-analog to conditions of model calibration 
(Fitzpatrick and Hargrove 2009, Anderson 2013). Associating uncer
tainty information to model predictions has been acknowledged as a 
necessity for reliable interpretations of model predictions (Grimm and 
Berger 2016, Yates et al. 2018). It is also a requirement for specifying the 
level of risk associated with predictions and evaluating whether uncer
tainty can be mitigated to improve model outcomes (Guisan et al. 2013). 

This study addresses the importance of extrapolation and associated 
uncertainties in SDMs generated at broad spatial scale for Southern 
Ocean species: an analysis that is seldom performed although important 
to characterise model reliability. Using the case study of six abundant 
and common sea star species in marine benthic communities, objectives 
of this work are to evaluate the importance of extrapolation proportions 
in wide projection areas, and to provide some methodological clues to 
mitigate the effects of extrapolation and improve model accuracy. 

2. Methods 

2.1. Studied species and environmental descriptors 

The distribution of six sea star species (Asteroidea: Echinodermata) 
was studied (Table 1). The six species, Acodontaster hodgsoni (Bell, 
1908), Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 
1876), Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 
1906 and Psilaster charcoti (Koehler, 1906) are abundant and common in 
benthic communities in the Southern Ocean. The biology, ecology and 
distribution of these species have been extensively studied and are 
relatively well documented (McClintock et al. 2008, Mah and Blake 
2012, Lawrence 2013). Presence-only records were compiled from a 
recently updated database, thoroughly scrutinised with the World 
Register of Marine Species (WoRMS Editorial Board 2016), to delete 
potential discrepancies, update taxonomy and correct for georeferenc
ing errors (Moreau et al. 2018). 

Models were generated for the different species using 298–851 
presence-only records, and projected at different depth ranges (Table 1). 
The distributions of these presence-only records are contrasting between 
species (Appendix 1), with A. hodgsoni, B. loripes and G. antarctica having 
an Antarctic and sub-Antarctic distribution, with an important number 
of data available for B. loripes and G. antarctica but less data for 
A. hodgsoni (respectively 591, 851 and 298 presence-only records). 
Labidiaster annulatus has a distribution mainly gathered in the sub- 
Antarctic region with few data available (375 presence-only records). 
Odontaster validus and P. charcoti are mainly present on the coasts of the 
Antarctic shelf. 

Environmental descriptors were selected from the dataset provided 
at https://data.aad.gov.au/metadata/records/environmental_layers. 
These are oceanography raster layers that mostly describe the physical 
and geochemical environment south of 45◦S with a 0.1◦ grid-cell reso
lution (approximately 11 km wide in latitude). Among the 58 environ
mental descriptors provided, only those that fulfilled the analysis 
performed by Guillaumot et al. (2020) were selected: ‘distance’ layers 
and ‘extreme’ layers were not selected because the interpretation of 
their respective contributions to niche models is complex or weak and 
collinear descriptors were also discarded for a Variance Inflation Factor 
(VIF) > 10 (Naimi et al. 2014). A set of 14–16 species-specific layers that 
characterise temperature, salinity, food availability and habitat char
acteristics were therefore used for model calibration (Table S2). 

Table 1 
Sea star species investigated in the present study. The number of presence-only records available was summed up after removal of duplicates from each grid cell pixel. 
Image sources: Brueggeman 1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. Jossart).   

Acodontaster hodgsoni 
(Bell, 1908) 

Bathybiaster loripes 
(Sladen, 1889) 

Glabraster antarctica 
(Smith, 1876) 

Labidiaster annulatus 
Sladen, 1889 

Odontaster validus 
Koehler, 1906 

Psilaster charcoti 
(Koehler, 1906)  

Presence-only records number 298 591 851 375 337 353 
Model maximum depth 1500 m 4000 m 4000 m 1500 m 1500 m 4000 m  
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2.2. Models calibration 

Species Distribution Models (SDMs) were generated using the 
Boosted Regression Trees (BRT), a machine-learning approach that was 
already calibrated for Southern Ocean case studies (Guillaumot et al. 
2018a, 2018b, Guillaumot et al. 2019) and was proved efficient to 
provide accurate models with good transferability performance, that is 
good ability to project model in space and time (Elith et al. 2008, Reiss 
et al. 2011, Heikkinen et al. 2012, Guillaumot et al. 2019). In order to 
minimalize the effect of presence-only records aggregation on model 
predictions, background data were randomly sampled in the environ
ment following the probabilities defined by a Kernel Density Estimation 
(KDE) (see Phillips et al. 2009 for general principles, Guillaumot et al. 
2018a, 2018b;; Fabri-Ruiz et al., 2019 for applications). The number of 
background records was selected equal to the number of presence-only 
records (Barbet-Massin et al. 2012). The KDE was established based 
on the aggregation of benthos sampling effort provided in the Biogeo
graphic Atlas of the Southern Ocean (De Broyer et al. 2014, map 
available in supplementary material of Guillaumot et al. (2019)). One 
hundred SDMs were generated and averaged for each species, with 
background data randomly sampled following the KDE for each 
replicate. 

SDMs were calibrated and reliability tested using a spatial cross- 
validation procedure. For each species, several procedures were 
compared following Guillaumot et al. (2019). The studied area was 
randomly subdivided into 2 to 6 areas of similar surfaces (longitude-split 
spatial folds), with presence and background data selected from one to 
three areas for model training and from the remaining areas for model 
testing. The “6-fold CLOCK” cross-validation approach was selected for 
B. loripes, G. antarctica, L. annulatus and O. validus and the “2-fold 
CLOCK” procedure was selected for A. hodgsoni and P. charcoti, ac
cording to the best percentage of test data correctly classified (Appendix 
3). 

The Maximum sensitivity plus specificity threshold (MaxSSS), 
considered the most appropriate threshold for presence-only SDM (Liu 
et al. 2013) was used to binarize models into suitable (>MaxSSS value) 
and unsuitable areas (<MaxSSS value). This threshold was used to 
measure the proportion of test data correctly classified. Modelling per
formances were also assessed using the three following metrics: Area 
Under the Receiver Operating Curve (AUC, Fielding and Bell 1997), the 
Point Biserial Correlation between predicted and observed values (COR, 
Elith et al. 2006) and the True Skill Statistics (TSS, Allouche et al. 2006). 

Two analyses were performed: in Analysis #0 (‘no-depth limited’), 
SDMs were projected on the entire Southern Ocean surface (south of 
45◦S) and in Analysis #1 (‘depth limited’), SDM projections and back
ground samplings were restricted to areas limited by a maximum depth 
threshold defined for each species based on the available species 
presence-only records (Table 1). 

2.3. MESS calculation 

The MESS was measured using the dismo R package (Hijmans et al. 
2017) and following the guidelines provided in Elith et al. (2010). Pixels 
for which at least one environmental descriptor has a value that is 
outside the range of environmental values defined by presence-only 
records (calibration range) were considered to be extrapolation (i.e 
when MESS gets negative values, Appendix 4). The proportion of 
extrapolation areas (i.e. the proportion of cells defined as extrapolations 
over the total projection area) was calculated and compared between 
species. On SDM projection maps, extrapolated pixels were displayed in 
black. 

Environmental parameters responsible for extrapolation were esti
mated by modifying the code provided in Elith et al. (2010). Detailed R 
scripts are available at https://github.com/charleneguillaum 
ot/THESIS. Methodological details are provided in Appendix 4. 

2.4. Influence of the number and distribution of presence-only records on 
extrapolation 

The proportion of extrapolation areas may vary with presence-only 
sampling effort. In order to study the influence of the number and dis
tribution of these presence-only records on the proportion of extrapo
lation areas, two analyses were performed. First, several SDMs were 
generated with different numbers of presence-only records, following 
the chronological addition of new presence-only records through time, 
from 1980 to 2016. Second, SDMs generated with 10–100% (10% in
crements, so 10 subsets) of the entire presence-only dataset were 
compared. In this analysis, in contrast to the previous one, presence-only 
records are randomly sampled among the datasets available. 

In these two analyses, SDMs were projected on the environmental 
space limited by the maximum depth defined for each species (Table 1), 
100 model replicates were generated and averaged in each case and 
spatial autocorrelation (SAC) was estimated to assess the influence of 
presence-only records aggregation on modelling performances. The 
significance of SAC was tested using the Moran I index computed on 
model residuals (Luoto et al. 2005, Crase et al. 2012). 

The relationship between the number of presence-only records used 
in SDM and the relative proportion of extrapolation areas was charac
terised using linear regressions. This allowed, for each model, estimation 
of the minimum number of presence-only records required to obtain a 
‘reasonable’ proportion of extrapolation area arbitrarily set to a 10% 
threshold. 

3. Results 

3.1. Extrapolation and the extent of projection areas 

All generated SDMs are accurate and performant, with high AUC 
(AUC > 0.91), TSS (TSS > 0.559) and COR (COR > 0.68) values, low 
standard deviations and good percentages of correctly classified 
presence-only test data (77–90%) (Table 2). Descriptors that contribute 
the most to SDMs are depth (22–34%), minimum POC (6–21%), POC 
standard deviation (8–20%), mean ice cover depth (7–17%) and mixed 
layer depth (3–10%). Contrasts between species are in the respective 
percentage of contribution of these descriptors. Descriptors that drive 
the most species distribution are similar between species (Appendix 5). 

Models projected on the entire Southern Ocean (Analysis #0, ‘no- 
depth limited’) extrapolate on an area covering between 15 and 78% of 
the entire projection area, and 19–45% of the area initially predicted as 
suitable to the species distribution (Table 2, Fig. 1). Extrapolation areas 
cover more than 50% of the projection area for A. hodgsoni (78.6%), 
P. charcoti (67.8%), L. annulatus (64.8%) and O. validus (51.9%) and 
more than 30% of suitable areas (Table 2). For these four species, depth 
is responsible for 25 to 68% of extrapolation (Appendix 5). Geo
morphology, mean ice cover and POC standard deviation are layers also 
contributing to 2–7% for extrapolation (Appendix 5). These descriptors 
that highly contribute to MESS also contribute to the model, and there 
are no descriptors for which the contribution to MESS is important 
whereas the contribution to the model is not substantial (Appendix 5). 

In models projected on areas restrained in depth (Analysis #1, ‘depth 
limited’), the percentage of extrapolation area sharply decreases from 
59 to 18% according to the species (Table 2). However, model perfor
mances also decrease, with AUC values going down to 0.885, TSS values 
to 0.419 and COR values to 0.475. The percentage of correctly classified 
test data is much lower and more variable for the shallowest species 
A. hogdsoni (from 90 ± 6.26% to 45.5 ± 8.1%), L. annulatus (77.7 ±
15.2% to 57.98 ± 20%) and O. validus (from 85.4 ± 9.6% to 57.68 ±
21%). For all species, predicted suitable areas increase two-fold. 

Overall, descriptor contributions to the model remain unchanged 
between the two analyses, except for depth contribution that decreases 
to around 10% on average for all the species. In contrast, in Analysis #1, 
depth contribution to the MESS is very low (0.64–5.8%), except for 
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P. charcoti (16.3%). Mean ice cover is the layer that contributes the most 
to extrapolation, extrapolation areas mainly corresponding to Weddell 
and Amundsen seas. 

3.2. Extrapolation and the number of presence-only records 

Model performance and size of extrapolation area were compared 
between models run with different numbers of presence-only records, 
following the chronological addition of new samples (from 1980 to 
2016). From 1980 to 2016, the number of presence-only records 
collected during oceanographic campaigns has increased from 1.9–3.3 
times according to the species (1.9 times for O. validus, 3.3 times for 
A. hodgsoni) (Fig. 2A). Spatial autocorrelation between presence-only 
records varies between species, with the highest Moran’s I scores ob
tained for L. annulatus, O. validus and A. hodgsoni. The highest Moran’s I 
values were mainly calculated for the oldest presence-only subsets 
(1980), strenghtening the fact that the addition of new presence-only 
records with additional campaigns reduces spatial autocorrelation 
(Table S6). 

Model performance increases (higher AUC scores) with the addition 
of new presence-only records, for all species except for models of 
A. hodgsoni and B. loripes for which AUC values are stable (Table S6). 
Similarly, the percentage of correctly classified test data presents 
important standard deviation values and improves with the addition of 
new presence-only records, except for O. validus (10% decrease) (Fig. 2). 

For all species, the addition of new data reduces the percentage of 
extrapolation over the total projection area (-30.7% for A. hodgsoni, 
− 12.7% for B. loripes, − 20.5% for G. antarctica, − 17.6% for L. annulatus, 
− 10.2% for O. validus and − 11% for P. charcoti, i.e. differences between 
the two extrapolation % values) and over the species suitable area as 
well (Fig. 2, Table S6). 

The decrease of extrapolation with the addition of presence-only 
records was tested by running, for each species a series of models with 
different subsets of presence-only records randomly sampled from the 

total dataset. One hundred model replicates were progressively run with 
10–100% of the total dataset and proportions of extrapolation areas 
were computed accordingly (Fig. 3, Table S7). Results confirm that the 
addition of presence-only records strongly reduces proportions of 
extrapolation areas. Proportions of extrapolation areas also vary be
tween species models as a function of depth. Low proportions of 
extrapolation areas are obtained in models run for deep species and 
large datasets (e.g. 8.2% for 591 records in B. loripes and 23.9% for 851 
records in G. antarctica). In contrast, models run for shallower species 
show higher proportions of extrapolation areas (40.6% for 298 records 
in A. hodgsoni, 51.5% for 375 records in L. annulatus and 35.8% for 337 
records in O. validus). For these last species, spatial autocorrelation 
values are also higher compared to other species (Table S7). 

A linear regression model was fit to the relationship between the 
number of presence-only records and proportions of extrapolation areas. 
For all species, regression coefficients are all negative and tested sig
nificant showing that proportions of extrapolation areas decrease with 
the addition of new records (Table 3). The intersection point between 
regression models and the (arbitrary) 10% extrapolation threshold was 
used to provide an estimate of the minimum number of records required 
for each species model to have an “adequate” proportion of extrapola
tion areas of 10%. This minimum number of presence-only records is 
reached for none of the studied species, and according to species, the 
number of presence-only records available should be increased at least 
by 1.6–3.3 times (Table 3). 

4. Discussion 

4.1. Modelling performances and extrapolation 

SDMs were generated for Southern Ocean sea star species, with 
contrasting distributions and different numbers of presence-only records 
available (Table 1, Appendix 1). Overall, species presence-only records 
are spatially concentrated in the most accessible and visited areas of the 

Table 2 
Modelling performances for each species. Average and standard deviation values of the 100 model replicates. Pres. NB: number of presences-only records available for 
modelling (duplicates excluded); AUC: Area Under the Curve; TSS: True Skill Statistics; COR: Biserial Correlation.  

Analysis #0, no-depth limited 

Species Pres. 
NB 

AUC TSS COR Correctly classified 
test data (%) 

Suitable area (% 
total area) 

Extrapolation area (% 
total area) 

Extrapolation area (% 
total area) 

Acodontaster 
hodgsoni 

298 0.925 ±
0.02 

0.579 ±
0.04 

0.735 ±
0.06 

90 ± 6.26  8.86  78.6 35.3 ± 4.1 

Bathybiaster 
loripes 

591 0.910 ±
0.02 

0.559 ±
0.07 

0.68 ±
0.09 

80.6 ± 10.9  8.55  29.1 21.9 ± 4.4 

Glabraster 
antarctica 

851 0.929 ±
0.01 

0.58 ±
0.05 

0.719 ±
0.07 

85.45 ± 6.34  7.95  15.73 19.9 ± 3.9 

Labidiaster 
annulatus 

375 0.95 ±
0.03 

0.598 ±
0.07 

0.730 ±
0.14 

77.7 ± 15.2  3.33  64.83 42.1 ± 10.5 

Odontaster validus 337 0.953 ±
0.01 

0.605 ±
0.05 

0.746 ±
0.09 

85.4 ± 9.6  6.89  51.9 45.2 ± 5.65 

Psilaster charcoti 353 0.911 ±
0.02 

0.58 ±
0.03 

0.723 ±
0.04 

87.7 ± 4.8  8.90  67.9 32.5 ± 4.71  

Analysis #1, depth limited 

Species Pres. 
NB 

AUC TSS COR Correctly classified 
test data (%) 

Suitable area (% 
total area) 

Extrapolation area (% 
total area) 

Extrapolation area (% 
total area) 

Acodontaster 
hodgsoni 

298 0.823 ±
0.05 

0.419 ±
0.1 

0.475 ±
0.14 

45.5 ± 18.1  17.49  40.6 27.5 ± 8.5 

Bathybiaster 
loripes 

591 0.887 ±
0.03 

0.513 ±
0.08 

0.607 ±
0.12 

78.4 ± 11  15.75  18.2 20.8 ± 4.8 

Glabraster 
antarctica 

851 0.915 ±
0.01 

0.537 ±
0.08 

0.654 ±
0.1 

81.8 ± 7.7  14.08  23.9 18.64 ± 3.5 

Labidiaster 
annulatus 

375 0.918 ±
0.03 

0.482 ±
0.16 

0.563 ±
0.25 

57.98 ± 20  8.88  59.5 38.7 ± 14.6 

Odontaster validus 337 0.908 ±
0.03 

0.504 ±
0.13 

0.586 ±
0.17 

57.68 ± 21  11.64  51.5 38.3 ± 6.97 

Psilaster charcoti 353 0.885 ±
0.02 

0.546 ±
0.04 

0.665 ±
0.06 

83 ± 6.6  15.40  35.78 33.2 ± 5.1  
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Southern Ocean. Most of the sea star samples were collected close to the 
coasts of the Western Antarctic Peninsula, the Ross Sea and sub- 
Antarctic Islands such as the Kerguelen Islands. Consequently, high 
spatial autocorrelation values were computed, for L. annulatus and 
O. validus in particular (Table S6). 

Overall, models all show good performances (Table 2), the spatial 
cross-validation procedure ensuring a relevant evaluation of modelling 
performances when using spatially aggregated data (Muscarella et al. 
2014, Dhingra et al. 2016, Guillaumot et al. 2019). However, models 
show high proportions of extrapolation areas, with extrapolation 
covering up to 78% of the projection area in A. hodgsoni model (Table 2). 
This means that even if models are evaluated as accurate, model 
extrapolation area can concern up to three quarters of the projection 
area! Assessing the proportion of the projection area for which models 
extrapolate is therefore necessary as a complementary statistic to adapt 
modelling methods and improve model predictions. Masking projections 
by extrapolation uncertainties is also important to perform accurate 
interpretations. 

Extrapolation uncertainty maps have already been associated to SDM 
projections once in the context of the Southern Ocean, by Torres et al. 
(2015) in their study of the grey petrel Procellaria cinerea, performed at 
the scale of the Southern Ocean. More recently, the MESS approach has 
been introduced in the methodological paper of Guillaumot et al. 
(2019), showing an extrapolation area covering 64% of the projection 

area for the distribution model of the sea star O. validus, the most studied 
benthic invertebrate of the Southern Ocean. However, uncertainties 
associated to extrapolation were not provided in most model projections 
performed for Southern Ocean species studies. For instance, modelled 
distributions performed for the sea urchins Sterechinus neumayeri and 
Sterechinus diadema (Pierrat et al. 2012) were generated using a relative 
low number of presence-only records (241 and 332, respectively). Based 
on results of the present study, extrapolation could be expected to cover 
up to 60% of modelled distribution areas for these last two species. 
Further Southern Ocean species distribution models were generated 
with sometimes less than 100 presence-only records (see Guillaumot 
et al., 2018b; Fabri-Ruiz et al., 2019 for instance), suggesting that 
extrapolation could cover up to 70% of projection areas as visible in 
models of A. hodgsoni and P. charcoti performed in our study with few 
records (Fig. 2, Tables S6, and S7). 

In addition to model uncertainties associated to extrapolation, other 
biases can alter the performance of SDMs generated at broad spatial 
scales including the spatial and temporal aggregation of data (Hortal 
et al. 2008, Tessarolo et al. 2014, 2017), the selection and quality of 
environmental descriptors (Davies et al. 2008, Synes and Osborne 
2011), the choice of modelling algorithms and the definition of model 
settings (Hartley et al. 2006, Marmion et al. 2009). Providing such un
certainty information, highlighted with some model statistics is very 
much encouraged here, as they are essential to model interpretation 

Fig. 1. Maps of extrapolation areas covering SDM predictions, generated with all presence-only records available for the studied species. Left panel: projection area 
not limited in depth (Analysis #0), right panel: projection area limited to − 1500 m and − 4000 m depth (Analysis #1), according to the species (A. hodgsoni, 
L. annulatus, O. validus until 1500 m; B. loripes, G. antarctica, P. charcoti until 4000 m; Table 1). (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster 
antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. Extrapolation areas displayed in black; pixels colored by the yellow–red color palette 
provide SDM distribution probabilities (comprised between 0 and 1); bathymetric chart in shades of blue. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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(Beale and Lennon 2012, Guisan et al. 2013, Yates et al. 2018). 

4.2. How can we reduce model extrapolation? Enriching SDMs with 
knowledge of species ecology 

One objective of this work was to provide some methods to mitigate 
the effect of extrapolation on model uncertainties. Our results show 
clear contrasts between models generated for “deep” and “shallow” 
species, with lower proportions of extrapolation areas computed for 
deep species models (29.1 and 15.73% respectively for B. loripes and 
G. antarctica). The model generated for P. charcoti departs from this 
general scheme, with extrapolation reaching 67.9% of the projection 
area. This is due to the strong spatial aggregation of records and the 
small presence-only record dataset available in deeper habitats. Depth is 
indeed responsible for 58.1% of the extrapolation for P. charcoti (Ap
pendix 5). Indeed, the erroneous characterization of species occupied 
space, due to an incomplete sampling, has been identified as a signifi
cant source of bias in SDM predictions (Hortal et al. 2007, 2008, Roc
chini et al. 2011, Sánchez-Fernández et al. 2011, Titeux et al. 2017, El- 
Gabbas and Dormann 2018). 

Limiting model projection areas to biogeographically, or ecologically 
“realistic” depth ranges can help reduce extrapolation as exemplified in 
the present study, for models of A. hodgsoni and P. charcoti, for which 
extrapolation was reduced from 78.6 to 40.6% and 67.9 to 35.8% 
respectively (Table 2). Restraining model projection areas based on 
species ecological or physiological tolerance thresholds is a common 

approach in ecological modelling using experimental data or field ob
servations (Kearney and Porter 2009, Hare et al. 2012, De Villiers et al. 
2013). Knowledge of species ecology and physiology can also be useful 
to delineate transferability areas (Feng and Papeş 2017) and improve 
distribution models, as recently shown for Southern Ocean species 
(Guillaumot et al. 2018a, Guillaumot et al. 2019). Feng et al. (2020) 
developed a new modelling algorithm, called Plateau, which uses 
experimental data to define upper temperature conditions in distribu
tion models. For temperature and salinity, physiological experiments 
and field observations can be used in models to determine species 
tolerance thresholds. This requires knowledge about the species ecology 
and physiology and the input from specialists, all conditions that remain 
difficult to meet, regarding deep sea species of the Southern Ocean 
(Gage 2004, Gutt et al. 2010, De Broyer and Danis 2011). Moreover, 
several studies suggested that some Southern Ocean species might have 
found refuges in deep-sea habitats in the past, during glacial maxima, 
which makes species depth range difficult to precise when deep and 
shallow populations have not been differentiated into distinct taxo
nomic units yet (Rogers 2007, Arango et al. 2011, Havermans et al. 
2011, Near et al. 2012). 

4.3. How can we reduce extrapolation? Improving sampling effort 

Increased sampling effort over enlarged areas allows the production 
of larger datasets from which many records can be used to generate 
reliable models with reduced extrapolation areas. In this study, 

Fig. 2. Evolution of model performances with the increase of data (chronological addition of presence-only records, by 5-year periods, from 1980 to 2016). (A) 
Number of presence-only records available to generate the model; (B) Mean correctly classified test data (%) (standard deviation values available in Table S6); (C) 
Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal number of presence-only records present in Table 2 may not be reached 
here because some collection dates remain unknown. 
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Fig. 3. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the total projection area) with addition of presence-only records 
used to generate model replicates (in % of data available, see Tables 1 and S7), for: (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) 
Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. For each box, mean values (blue dots) and outliers (black dots) are shown for the 100 model 
replicates. Some boxes are missing for low percentages of presence-only records (10–30%, corresponding to close or less than 100 presence-only records) that do not 
allow models to be generated. 
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proportions of extrapolation areas proportionally decreased when 
increased numbers of presence-only records were used to generate 
models. The occurrence datasets were significantly augmented between 
1980 and 2016, with a number of presence-only records multiplied by 
1.9–3.3 times according to the studied species, which allowed reduction 
of model extrapolation from 10.2 to 30.7% according to the species 
(Fig. 2, Table S6). However, results suggest that about twice the number 
of presence-only records actually available would be necessary to reduce 
extrapolation down to a “satisfactory” threshold of 10% of the projection 
area (Table 3). 

Generating reliable and stable models using a sufficient number of 
presence-only records is essential. In this study, some models could not 
be run when the number of presence-only records was too low 
(approaching 150 presence-only records or less) compared to the broad 
extent of the projection area and the spatial aggregation of these data 
(Table S7). Considering that the spatial cross-validation procedure splits 
the initial dataset into training and test data, and that at each step, 75% 
of these training data are randomly sampled by BRT to iterately create a 
model tree (and generate stochasticity in the procedure), the final 
number of presence-only records available to describe the presence data 
- environment relationship becomes too low (around 37.5% of the initial 
number of presence-only records). 

The lowest number of presence-only records required to build a 
reliable model is species-dependent as not all presence-only records are 
equally informative, due to species-specific relationships between re
cords and the environment. When models are generated using BRT, re
cords that bring no new environmental information to the model are 
dropped because they are not informative enough to improve the con
struction of BRT trees. Pruning non-informative data also reduces the 
total number of presence-only records available to generate a model 
(Elith et al. 2008). This is strongly related to prevalence that is, the ratio 
between the number of presence-only records and the size of the pro
jection area (Jiménez-Valverde et al. 2009, Santika 2011, Barbet-Massin 
et al. 2012). In order to accurately describe a vast projection area and be 
able to create a model, it is necessary to gather a substantial amount of 
information about the geographic environmental conditions and about 
species known distribution. If a limited number of records is available 
and these data are aggregated in space (i.e. weakly informative), the first 
trees produced by BRT will contain most of the model deviance, but as 
no new information is provided, the model will quickly overfit because 
redundant information is provided by close presence-only records. 
Eventually, this will make the model collapse. 

Increasing the number of presence-only records is proved an efficient 
alternative to generate more relevant models (Stockwell and Peterson 
2002, Feeley and Silman 2011, van Proosdij et al. 2016), but the spatial 

distribution of these records is of importance as well (Yates et al. 2018). 
A uniform distribution of records over the entire projection area reduces 
spatial autocorrelation and optimizes the sampling and representative
ness of environmental conditions under which species can thrive. In this 
study, the spatial aggregation of species records was particularly high 
for two species, O. validus and L. annulatus. It was estimated that the 
number of supplementary presence-only records necessary to reach a 
proportion of extrapolation areas of 10% should be twice as high as it is 
for other species (Table 3). Additional data are necessary to improve the 
establishment of the relationship between species distribution and the 
environment because species records are less informative when aggre
gated than when they are evenly distributed. 

The Southern Ocean covers contrasting environmental conditions, 
biogeographic regions and ecoregions (Pierrat 2011, Fabri-Ruiz et al. 
2020). Ideally, both species presence and absence should be recorded in 
each ecoregion for an accurate description of the occupied space (Torres 
et al. 2015). Because such a sampling effort is usually not achievable, 
nor realistic, alternatives would consist of (1) a relevant adjustment of 
projection areas, with for instance the combination of several SDM 
projections using different grid sizes according to what is available. 
Generating SDM projections for large areas and combining results with 
projections zoomed in on areas where more environmental detail is 
available would provide more relevant and realistic modelled species 
distributions (Seo et al. 2009, Anderson and Raza 2010). (2) In order to 
compensate for the lack of presence-record availability, the ‘ensembles 
of small models’ approach is another alternative. This method fits a set 
of bivariate models (i.e. generated with two environmental descriptors 
only), within a hierarchic multi-scale framework (i.e. zooming in and 
out in space from local to regional predictions), and finally averages this 
ensemble of models with a weighted ensemble approach, which subse
quently provides more accurate and robust model predictions (Lomba 
et al. 2010, Breiner et al. 2015, Habibzadeh and Ludwig 2019). 

4.4. Some limitations to the MESS approach 

The MESS approach can reveal parts of projection areas where 
models extrapolate. Extrapolation however can be over-estimated. 
Indeed, extrapolation is considered as soon as the value of a single 
environmental descriptor falls outside the range of the known species 
environmental requirements. But, some extreme values would not limit 
but can promote species presence: this is the case for descriptors relating 
to food resource availability (e.g. chlorophyll a, POC concentrations…), 
for which a high pixel value exceeding the range of values recorded 
based on species presences will be still considered as extrapolation, 
although more food usually means suitable conditions for species 
distribution. 

Some fine-tuning of the MESS approach would imply to identify, for 
each pixel, which descriptor is responsible for extrapolation and filter 
the conditions for which the model should really extrapolate. Such an 
approach was developed by Owens et al. (2013), who used the MOP 
method (Mobility Oriented Parity). Based on multivariate analyses, they 
determined if pixels contain a combination of environmental conditions 
that should induce extrapolation. In contrast to the MESS approach, the 
MOP method can directly differentiate proportions of extrapolation 
areas according to the combination of descriptors responsible for 
extrapolation. Another complex alternative is the ExDet tool, developed 
by Mesgaran et al. (2014), which also accounts for multivariate 
extrapolation possibilities, i.e. extrapolation linked to novel combina
tions between covariates. 

In this study, the MESS approach was favored as a more strict and 
conservative method to highlight the importance of extrapolation, the 
effect of data quantity and quality, and the relevance of the proposed 
corrections. The MESS is also simpler to apply and well suited to 
exploratory studies. 

Table 3 
Equations of simple linear regressions between the number of presence-only 
records X and the average proportion of extrapolation areas Y (Table 2, signif
icance levels: *p < 0.1, **p < 0.05). The estimate of the number of presence-only 
records necessary to have a minimum “adequate” arbitrary proportion of 
extrapolation areas of 10% is given in the last column.  

Species Equation R2 Estimated Pres.NB. (with 
multiplier of actual Pres.NB. 
available) 

Acodontaster 
hodgsoni 

Y = − 0.1358X +
73.616**  

0.60 468 (×1.6) 

Bathybiaster 
loripes 

Y = − 0.0249X +
28.974*  

0.42 762 (×1.3) 

Glabraster 
antarctica 

Y = − 0.0304X +
44.991**  

0.61 1151 (×1.4) 

Labidiaster 
annulatus 

Y = − 0.0913X +
88.078**  

0.85 855 (×2.3) 

Odontaster 
validus 

Y = − 0.0561X +
71.112**  

0.93 1089 (×3.2) 

Psilaster charcoti Y = − 0.0301X +
44.613*  

0.37 1150 (×3.3)  
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5. Conclusions 

This study shows that when modelling species distribution on broad 
scale areas, such as the Southern Ocean, important proportions of pre
dicted distribution probabilities (suitable or not) are model extrapola
tions. This extrapolation uncertainty relies on the completeness of 
species sampling, and the definition of its occupied space to calibrate the 
model. Extrapolation occurs in areas where habitat suitability is un
known as no information on species presence or absence is provided. 

Reducing extrapolation is possible by combining SDM with ecolog
ical and physiological knowledge of species requirements (e.g. depth 
range, temperature tolerance thresholds). Increased sampling effort over 
enlarged areas also allows the production of more reliable models with 
reduced extrapolation areas and our study shows that doubling the 
number of presence-only records available to generate the model would 
help reduce the extrapolation area down to 10% of the projected area. 

While more data samples remain unavailable, some methods are 
increasingly developed to improve model performances, by adjusting 
the extent of the projection area or by generating and aggregating 
several ensembles of small models. 

Finally, present results call for a widespread use of extrapolation 
maps and uncertainties associated to model predictions in model out
puts, along with information about the quantity of presence-only records 
available, the quality and resolution of environmental descriptors and 
the state of our knowledge of species ecology. These are all essential 
information needed to support model interpretations, as also stated in 
recent publications that review best practices in ecological modelling 
(Araújo et al. 2019, Zurell et al. 2020). 
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Pierrat, B., Saucède, T., Laffont, R., De Ridder, C., Festeau, A., David, B., 2012. Large- 
scale distribution analysis of Antarctic echinoids using ecological niche modelling. 
Mar. Ecol. Prog. Ser. 463, 215–230. 

Pinkerton, M.H., Smith, A.N., Raymond, B., Hosie, G.W., Sharp, B., Leathwick, J.R., 
Bradford-Grieve, J.M., 2010. Spatial and seasonal distribution of adult Oithona similis 
in the Southern Ocean: predictions using boosted regression trees. Deep Sea Res. Part 
I 57 (4), 469–485. 

Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M., Guisan, A., 
2006. Are niche-based species distribution models transferable in space? J. Biogeogr. 
33 (10), 1689–1703. 

Reiss, H., Cunze, S., König, K., Neumann, H., Kröncke, I., 2011. Species distribution 
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