
ARTICLE IN PRESS 

JID: PROCI [mNS; August 29, 2020;8:4 ] 

Available online at www.sciencedirect.com 

Proceedings of the Combustion Institute 000 (2020) 1–9 
www.elsevier.com/locate/proci 

Combustion modeling using Principal Component 

Analysis: A posteriori validation on Sandia flames D, E 

and F 

Mohammad Rafi Malik 

a , b , ∗, Pedro Obando Vega 

a , c , Axel Coussement a , 
Alessandro Parente 

a , b , ∗

a Université Libre de Bruxelles, Ecole Polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Bruxelles, Belgium 

b Université Libre de Bruxelles and Vrije Universiteit Brussel, Combustion and Robust Optimization Group (BURN), 
Bruxelles, Belgium 

c Institute of Energy and Power Plant Technology, Technische Universitaet Darmstadt, Darmstadt, Germany 

Received 7 November 2019; accepted 20 July 2020 

Abstract 

The present work shows the first application of the PC-transport approach in the context of Large Eddy 
Simulation (LES) of turbulent combustion. Detailed kinetic mechanisms, together with advanced computa- 
tional tools, are needed to advance our knowledge of turbulent reacting systems. However, the cost related to 

high-fidelity simulations of turbulent reacting flows is still prohibitive for realistic configurations. Therefore, 
there is a need to reduce the complexity of the problem by identifying low-dimensional manifolds. To this 
end, the potential offered by Principal Component Analysis (PCA) in parameterizing the thermo-chemical 
state-space is very appealing. The present paper extends the PC-transport framework to three-dimensional 
Large Eddy Simulation (LES), coupling PCA with Gaussian Process Regression (GPR). To demonstrate the 
potential of the method, LES simulations of Sandia flames D, E and F are shown. Results show the great 
potential of the PC-GPR model, as indicated by the accuracy of the simulation results when compared with 

experimental data, using only 2 principal components. The sensitivity to the kinetic mechanism and subgrid 

closure model is also investigated. 
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. Introduction 

Technological breakthroughs in combustion
echnologies require a deep understanding of the
ifferent phenomena occurring in reacting systems.
his can be achieved through the use of detailed ki-
etic mechanisms and advanced simulation tools.
owever, the simulation of turbulent reacting sys-

ems using detailed mechanisms is still very ex-
ensive. In order to lower the cost, one can pa-
ameterize the thermo-chemical state-space using
 reduced number of optimal scalars using differ-
nt approaches. Among them, Principal Compo-
ent Analysis (PCA) [1] allows to represent a sys-
em using a reduced number of optimal variables
y identifying low-dimensional manifolds. The po-
ential of PCA for combustion has been investi-
ated comprehensively by several groups in the past
ears [2–9] and has led in particular to the de-
elopment of a combustion model based on PCA
3] and enhancements of the latter by combina-
ion of PCA with nonlinear regression techniques
8,9] . 

Starting from a data set containing the thermo-
hemical state-space of a system of interest, PCA
utomatically reduces the size of the data set
y identifying a new set of variables, the princi-
al components (PCs), containing most of the
ariance present in the original data. Project-
ng the state-space on those PCs gives the PC
cores, and transporting only a subset of those
cores in a numerical simulation allows accel-
rating the simulation. Transport equations for
he scores were introduced by Sutherland and
arente [3] (PC-score approach). The method
as enhanced by combining PCA with nonlinear

egression [7,10,11] , to map the thermo-chemical
ource terms onto the new basis identified by the
Cs, and thus maximize the reduction potential of 

he method. Isaac et al. [8] and Echekki and Mir-
olbabaei [6] provided the first a posteriori studies
n the use of the PC-score approach. In particular,
saac et al. [8] demonstrated the potential of the
C-score approach coupled with Gaussian Process
egression (GPR) on an unsteady calculation of a
erfectly stirred reactor (PSR) burning syngas. The
ethod showed remarkable accuracy for the pre-

iction of temperature and species, requiring only
 transported variables instead of 11. Malik et al.
9] extended the study to methane and propane and
howed its ability to produce very accurate repre-
entation of all state space variables using only 2
ransported variables instead of 34 for methane,
nd 2 variables instead of 162 for propane. 

Recently, the PC-score approach was employed
or the simulation of Sandia flame F using one-
imensional turbulence (ODT) [6] , the Direct Nu-
erical Simulation (DNS) of premixed syngas

5] and methane-air combustion [12] , and to de-
elop a framework for closure models based on ex-
erimental data [13,14] . 
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
The aim of the present paper is to investi-
gate the potential of PC-score coupled with non-
linear Gaussian Process Regression (GPR) in the
framework of non-premixed turbulent combustion
in a fully three-dimensional Large Eddy Simula-
tion (LES). The use of GPR allows one to map
the highly nonlinear source terms as well as other
state-space variables (such as temperature, density,
species mass fraction, viscosity) with a very low
number of uncorrelated variables, identified using
PCA. The database for model training is based
on 1D counter diffusion methane flames. The ap-
proach is then validated using the experimental
data available for Sandia flames D, E and F [15] .
To the authors’ knowledge, the current work is the
first attempt to use such an approach. 

2. PCA-based modeling 

The main advantage of PCA in combustion ap-
plications is its ability to identify optimal scalars to
parameterize low-dimensional manifolds. PCA of-
fers the possibility of identifying patterns and cor-
relations between variables in high dimension data
sets. Once these correlations have been identified,
the data set can be compressed by reducing the
number of dimensions without much loss of infor-
mation. 

Following the methodology in [2,3,5,6,8,9,16] ,
the principal component scores, Z ( n × Q ), are ob-
tained by projecting the original data set X on the
eigenvectors matrix A (also called the basis matrix):

Z = XA . (1)

In combustion applications, X =
[ T, p, Y 1 , Y 2 , . . . , Y ns ] is a matrix collecting n
observations of a given thermo-chemical state-
space, where Y i is the mass fraction of species i,
n s the total number of species in the system, T its
temperature and p the pressure. X is of dimension
( n × Q ) with n the number of observations and
Q the number of independent variables. In the
present work, it is assumed that X has been appro-
priately centered and scaled before PCA is carried
out, to account for the different dimensions and
units of the state variables, as discussed thoroughly
in [17] . The reduction in dimensionality is obtained
by truncating A , i.e. by retaining only q PCs (with
q < Q ), noted A q . The original data set X can then
be approximated using: 

X � X q = Z q A 

T 
q 

where X q is the approximation of X based on the
first q eigenvectors of Q , and Z q is the ( n × q )
matrix of the principal component scores. As the
basis matrix contains orthonormal vectors, it can
be noted that A 

−1 = A 

T . In the present work,
only the sample matrix of species mass fractions
is employed to find the principal components
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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( X = [ Y i , ..., Y ns ] ), used in turn to parameterize the
full termo-chemical state. 

2.1. PC-score approach 

Sutherland and Parente proposed a combustion
model based on PCA and derived transport equa-
tions for the principal components [3] . Projecting
the variables of interest, in this case the vector of 
species mass fractions y = [ y 1 , y 2 , . . . , y n s ] , onto the
eigenvector matrix A gives: 

∂ 

∂t 
( ρz ) + ∇ ( ρu z ) = ∇ · J z + S z (2)

where z = Z 

t 
i r epr esents an individual scor e r eal-

ization, ρ the density, u the velocity, J z and S z are
the diffusive flux and chemical source terms of the
principal components, respectively. Using Eq. (1) ,
J z and S z can be linearly related to the diffusive
fluxes and source terms of y , S z = A 

T S y and J z =
A 

T J y , where S y and J y are the species source terms
and diffusive fluxes, respectively. While the source
terms can be directly retrieved from the PCA trans-
formation, it was shown in [4,6,8,9,18] that the non-
linearity of the source terms results in an error
propagation that forces to increase significantly the
number of components to be retained (and hence
reduce the size reduction), thus justifying the use
of non-linear regression approaches, as discussed
in Section 2.2 . As for the diffusive fluxes, express-
ing J y and J z as J y = ρD y ∇y and J z = ρD z ∇z , and
noticing that ∇y = A ∇z , one can express the score
matrix of diffusion coefficients as D z = A 

T 
q D y A q ,

where D y is the diagonal matrix of diffusion co-
efficients for species. The calculation of the score
diffusion matrix D z can be simplified relying on a
unity Lewis number approximation [19] . This as-
sumption was used in the present work, hence the
matrix D z is replaced by α = k / (ρ c p ) , where k is
the thermal conductivity and c p the specific heat
capacity at constant pressure. Without the unity
Lewis approximation, the score diffusion matrix
can be directly related to the species one [5,20] and
must be rotated to obtain a quasi-diagonal matrix
of score diffusion coefficients. The final equation
reads: 

∂ 

∂t 
( ρz ) + ∇ ( ρu z ) = ∇ ·

(
k 

c p 
∇z 

)
+ S z (3)

The number of score transport equations is re-
duced compared to the original set by taking a trun-
cated matrix of eigenvectors A q instead of A . 

2.2. Gaussian process regression 

The state-space variables φ =
(T, ρ, Y 1 , Y 2 , . . . , Y n s ) and the PC source terms
(S z q ) are mapped to the PC basis using nonlinear
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
regression in the form of: 

φ ≈ f φ
(
Z q 

)
with f φ being the nonlinear regression function and 

φ representing the dependent variables (i.e. Y k , T , ρ
and S z q ). The function f φ is obtained using Gaus- 
sian Processes (GPs) [21] . GPs have the advantage 
of not assuming beforehand a specific model for f φ . 
The dependent variables are described by a gaus- 
sian distribution: 

φ ≈ GP (m (x ) , K (x, x 

′ 
) 

where m is a mean function and K is a covariance 
function (or kernel). The mean function is often as- 
sumed to be zero. The covariance function used in 

this work is the Squared Exponential: 

K (x, x 

′ 
) = σ 2 

f exp 

[ 

−(x − x 

′ 
) 2 

2 l 2 

] 

where σ 2 
f is the signal variance and l the characteris- 

tic length scale. σ 2 
f and l (the hyper-parameters) are 

first initialized and then optimized using a Gaus- 
sian likelihood function. 

3. Training data and model generation 

The global approach of the PC-GPR model can 

be summarized as follows: starting with a detailed 

kinetic mechanism and a canonical reactor, the ref- 
erence data set is generated, with the same com- 
position space as the system under study. PCA is 
then performed on the data, and the state-space 
variables are then regressed onto the PC basis. The 
model is then applied in a reactive flow simulation. 

3.1. Experimental configuration 

Flame D, E and F are three piloted methane-air 
diffusion flames with an axi-symmetric geometry. 
The burner consists of three coaxial jets. The main 

jet has a diameter D = 7 . 2 mm and the fuel consists 
of a mixture of CH 4 and air (25%/75% by volume). 
The fuel velocity is 49.6 m/s for flame D ( Re = 

22 , 400 ), 74.4 m/s for flame E ( Re = 33 , 600 ) and 

99.2 m/s for flame F ( Re = 44 , 800 ), respectively. 
The fuel inlet temperature is 294 K. This main jet 
is surrounded by a pilot jet ( ∅ 18 . 2 mm) at 1880 K, 
consisting of burnt gases (C 2 H 2 , H 2 , air, CO 2 and 

N 2 ), and with a bulk velocity of 11.4 m/s (for flame 
D), 17.1 m/s (for flame E) and 22.8 m/s (for flame 
F, respectively). An air coflow with a velocity of 
0.9 m/s and a temperature of 291 K surrounds 
the flame. The amount of local extinction increases 
from Flame D to F, with Flame F representing the 
most challenging test case, being close to global ex- 
tinction. The flames have been experimentally in- 
vestigated [15] through Rayleigh measurements for 
the temperature, and Raman and LIF measure- 
ments for mass fractions of chemical species. The 
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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Fig. 1. Scatter plot; Z 1 is correlated with mixture fraction 
(a) and Z 2 with the progress of reaction (b). 
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vailable data consist of the mean and root mean
quare (rms) of temperature and mass fractions of 
ajor (CH 4 , H 2 , H 2, O, CO 2 , N 2 and O 2 ) and minor

pecies (NO, CO and OH) at several axial locations.
aser Doppler Velocimetry (LDV) measurements
f the velocity field are also available [22] . 

.2. Reference data-set 

High-fidelity data sets are required by PCA-
ased models in order to generate the PC basis and
roperly characterize the thermo-chemical state-
pace. Most of the time, the training data set is
enerated using a canonical configuration of in-
erest for the system under investigation. In this
tudy, an unsteady 1D laminar counter diffusion
ame setup was used. Indeed, the most critical as-
ect when generating a training data-set is to make
ure that the generated state-space includes all the
ossible states accessed during the actual simula-
ion. Thus, a transient solver was preferred over a
tationary one in order to cover all possible states
rom equilibrium to extinction (especially for flame
). The code used is part of the OpenSMOKE++

uite developed in Politecnico di Milano [23,24] .
he GRI 3.0 [25] mechanism, involving 35 species
nd 253 reactions (excluding NO x ), was used. The
nlet conditions, for the fuel on one side and air on
he other, were set as in the experimental setup (see
ection 3.1 ). The counterflow diffusion flames were
ulsated with a sinusoidal profile, therefore allow-

ng multiple simulations by varying the strain rate,
rom equilibrium to complete extinction. The un-
teady solutions were saved on an uniform grid of 
00 points over a 0.15 m domain. All of the un-
teady data from the various simulations was used
ollectively for the PCA analysis. The final data set
onsisted of ∼ 80, 000 observations for each of the
tate-space variables. 

.3. Determination of the PCA basis 

The PCA basis is generated using two ap-
roaches: (i) using the whole set of species (35)
nd (ii) using a subset of species. The latter has
he advantage of removing certain scalars which
ay contribute to highly nonlinear source terms

s shown in previous studies [7,8] . When a sub-
et of species was used, the major species were
dopted, namely CH 4 , O 2 , CO 2 , H 2 O and N 2 for
he present case. The PCA analysis is carried out
sing PARETO scaling, which adopts the square
oot of the standard deviation as scaling factor. It
as shown in [9] that PARETO scaling allows to
btain the greatest reduction for methane mech-
nisms and produces an easily regressible surface.
 comparison of the results obtained with the full

nd reduced PCA basis is shown in Section 4 . 
The basis matrix weights obtained from the

CA analysis on the major species are as follows
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
for the first two PC’s: Z 1 = −0 . 02 · Y H 2 O 

− 0 . 18 ·
 O 2 − 0 . 64 · Y N 2 + 0 . 73 · Y CH 4 − 0 . 02 · Y CO 2 and

Z 2 = 0 . 51 · Y H 2 O 

− 0 . 67 · Y O 2 − 0 . 01 · Y N 2 − 0 . 14 ·
 CH 4 + 0 . 5 · Y CO 2 . It can be seen that Z 1 has a

large positive weight for CH 4 and a large negative
value for the oxidizer (O 2 and N 2 ). This can be
linked to the definition of Bilger’s mixture frac-
tion [26] , f, as shown on Fig. 1 (a). Therefore, in
the numerical simulation, Z 1 is directly replaced
by the mixture fraction, to avoid transporting a
reactive scalar. The weights for Z 2 also show an
interesting pattern: a positive correlation for H 2 O
and CO 2 , and a negative correlation for CH 4 , O 2
and N 2 . This can be linked to a progress variable,
where products have positive stoichiometric coef-
ficients and reactants negative ones, as shown in
Fig. 1 (b). It is interesting to point out how PCA
identifies these controlling variables without any
prior assumptions or knowledge of the system of 
interest. 

The nonlinear state-space variables (tempera-
ture, density, species mass fraction and PCs source
terms) were regressed onto the linear PC basis us-
ing Gaussian Process regression (GPR). All vari-
ables were accurately regressed, with an R 

2 > 98.6%
for all source terms, species mass fraction, temper-
ature and density. Fig. S1a shows source term S Z 2 
as a function of Z 1 and Z 2 , and Fig. S1b shows the
regression of that manifold ( R 

2 = 99 . 28%) . 
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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Fig. 2. Comparison between the PC basis calculated us- 
ing the major species (PC-GPR – major) and the basis ob- 
tained using the full set of species (PC-GPR – all). Results 
show the axial (a) and radial profiles (b, c) for temperature 
( T ) and OH mass fractions. 
4. Numerical setup 

LES simulations were performed in Open-
FOAM using a tabulated chemistry approach, in
which the variables of interest (i.e. the PCs) are
transported and the state-space ( Y k , T , ρ, S z q ) is re-
covered from the nonlinear regression. The low-
Mach Navier–Stokes equations were solved on an
unstructured grid, together with the PCs transport
equation ( Eq. (2) ). The state-space being accurately
regressed using 2 PCs, the simulation was carried
out using Z 1 and Z 2 as transported scalars. As Z 1
is highly correlated with the mixture fraction, the
latter was transported instead. The boundary con-
ditions for the PCs can be obtained using Eq. (1) [5] .
A backward scheme was used for the time deriva-
tive and the Gauss linear scheme, with second order
accuracy, was used for the divergence terms. The
computational grid comprises 4 million hexahedra
elements. The grid is conical, with a width of 7 D at
the inlet and 40 D at the outlet, and a length of 80 D .
The element size within the flame zone is 1 . 9 × 10 −4

m. There is an injection pipe for the main jet, which
extends 13 D upstream the inlet. For the pilot, no
inlet pipe is used. A turbulent inlet generator was
used for both the fuel pipe (i.e. 13 D upstream) and
the pilot jets to provide the necessary turbulent fluc-
tuations in the flow field. The turbulence generation
is based on the digital filter method by Klein [27] .
The grid was generated with an expansion ratio of 
1.001 in the axial direction, and of 1.004 in the ra-
dial direction in order to obtain a fine resolution
near the inlet nozzles. A mesh sensitivity analysis
was carried out and the results proved to be mesh
independent. On the current mesh, the Pope crite-
rion is satisfied in the domain ( > 80% in the flame
region). 

Three-dimensional Favre-averaged equations
were solved for mass and momentum, together with
Favre-averaged transport equations for the scores:

ρ
D ̃

 z 
Dt 

= ∇ ·
[(

μ

Sc 
+ 

μt 

Sc t 

)
∇ ̃

 z 
]

+ S z (4)

where the SGS Reynolds stresses were modelled us-
ing the WALE model [28] and the unity Lewis num-
ber was assumed for the species (thus the scores)
The laminar and turbulent Schmidt number (re-
spectively Sc and Sc t ) were set to 0.7. The lami-
nar viscosity. μ, was tabulated in function of the
PCs, while the turbulent viscosity, μt , was obtained
through the WALE model. S z is the filtered score
source vector. 

5. Results and discussion 

The results of the PC approach on flames D–F
are discussed in the present Section. The influence
of the PC basis is first discussed, then the sensitiv-
ity to the mechanism used to generate the data-set
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
is analyzed. Finally, the influence of a subgrid clo- 
sure model on the thermo-chemical parameteriza- 
tion is assessed. The different simulations were run 

for at least 10 flow through periods, in order to have 
a sufficiently large averaging window. 

5.1. Full set vs reduced set 

A comparison was made between the PCA ba- 
sis containing the full set of species (35) and the 
basis computed on a reduced set of major species 
only (5). It can be observed in Fig. 2 that the PCA- 
GPR model is able to reconstruct all variables with 

great accuracy. Moreover, both PCA bases pro- 
vided comparable results, at all locations. Whether 
looking at the centerline ( Fig. 2 a), close to the 
burner exit ( Fig. 2 b) or further downstream ( Fig. 2 c 
and d), the mean profiles obtained with the two 

bases do not show any significant discrepancy. It 
can be then argued that using only the major species 
in order to build the PC basis results in no major 
loss of information, supporting the findings in [6] . 
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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for flame D (a) and flame F (b). Points were downsampled 
for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) shows that temperature is overpre-
icted on the centerline farther downstream. This
an be due to an underestimation of the diffu-
ion/mixing process at the outlet section. Fig. S2 in
M shows the same plots for mixture fraction and
O 2 . A more significant comparison can be made

ooking at the profiles of temperature conditioned
n mixture fraction at axial locations x/D = 60
nd 75 ( x = 432 and 540 mm) shown on Fig. 3 .
t can be observed that the predicted temperature
ies well inside the single shot experimental data
oints. 

At x/D = 60 , the temperature agrees quite well
ith the experimental data, both on the lean side
nd near stoichiometry. At x/D = 75 , the temper-
ture lies slightly outside the single point data. Fig.
3 in Supplemental material shows the RMS cen-
erline profiles for temperature, mixture fraction
nd species mass fraction. 

Fig. 4 (a) shows the manifold accessed during
he simulation with major species at t = 1 s , plot-
ed against the original manifold obtained from
he training data-set. It can be observed that the
imulation did not leave the training manifold: all
he points accessed are bounded inside the original
raining manifold. It is also apparent that most of 
he data is contained near the equilibrium solution,
howing that for flame D the simulation did not ex-
erience significant extinction and re-ignition. 

.2. Model sensitivity to the chemical mechanism 

nd subgrid closure 

The impact of the kinetic mechanism was also
ssessed. The GRI 3.0 mechanism was compared
o the KEE-58 mechanism [26] . The latter con-
ists of 17 species and 58 reactions (excluding N
ontaining species except N 2 ). The PCA basis was
nce again computed based on the same reduced
et of species (CH 4 , O 2 , CO 2 , H 2 O and N 2 ). A GPR
egression was carried out for the entire thermo-
hemical state-space, and a table was generated us-
ng the same grid spacing. Fig. 5 shows a compar-
son of different axial and radial profiles using the
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
GRI 3.0 mechanism and the KEE-58. It can be ob-
served that overall the GRI performs better than
the KEE, predicting the temperature and species
mass fraction peaks more accurately. This suggests
that the level of accuracy and detail in the kinetic
mechanism is not lost during the construction of 
the PC-GPR model. Thus, a PC model trained on
a more detailed mechanism will result in better a
posteriori predictions. 

The sensitivity to a subgrid closure was also in-
vestigated. A mean value closure for the filtered
PC’s source terms ( S z ) might not be sufficient, and
the influence of small-scale turbulent fluctuations
on the large scales must be assessed. Therefore, a
beta -shaped probability density function ( β-PDF)
was used to represent the necessary scalar fluctua-
tions. A transport equation for the mixture fraction
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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Fig. 5. Comparison between GRI 3.0 and KEE-58 mech- 
anisms on the centerline (left) and at radial location 
x/D = 30 (right) for temperature, CO and CO 2 mass 
fractions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Flame F: temperature and major species profiles 
plotted against the experiments – centerline. 
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Fig. 7. Flame F – conditional averages at different down- 
stream positions plotted against the single shot experi- 
mental data. 
variance was used following the approach in [29] .
Results shown in Supplemental Material (Fig. S4)
indicate no major influence of the subgrid model.
While the filtered equations were resolved, the ef-
fect of the SGS terms appears to be negligible com-
pared to the resolved part of the flow due to the
high resolution. This suggests that z 1 and z 2 are
well resolved by the relatively fine grid used. How-
ever, the effect of subgrid closure should be further
investigated. 

5.3. Flame F: results and discussion 

To demonstrate the potential of the PC-GPR
on more challenging cases, a simulation of San-
dia flame E and F was carried out. The geometry
and numerical setup were identical to the ones of 
flame D. The regression table based on the subset of 
species was used, and only 2 PCs were transported.
The velocity boundary conditions were adapted to
match the experimental setup. The simulation was
run for at least 10 flow through periods. Only the
results associated to flame F are shown in this Sec-
tion, while Fig. S5 in SM shows the temperature
and some species mass fraction profiles on the cen-
terline and radial profiles at different axial locations
for flame E, confirming the ability of the model to
reconstruct all scalar variables with great accuracy.
Fig. 6 shows the comparison between the experi-
mental and numerical profiles of temperature and
selected species mass fraction profiles on the cen-
Please cite this article as: M.R. Malik, P. Obando Vega and A. C
Component Analysis: A posteriori validation on Sandia flame
https://doi.org/10.1016/j.proci.2020.07.014 
terline for flame F. It can be observed that the PC- 
GPR model can accurately predict the peak and 

the decay in temperature and species mass fraction 

profiles. Fig. 7 shows the profiles of temperature 
conditioned on mixture fraction at axial locations 
x/D = 60 and 75 plotted against the single shot 
data. It can be observed that the predicted tempera- 
ture lies well inside the experimental data. The same 
conclusion can also be drawn looking at the profiles 
in Fig. S6 of the SM, showing the profiles of condi- 
tional mean of temperature and species mass frac- 
tion on mixture fraction. Furthermore, as expected 

from the experimental data, it can be observed from 

Fig. 4 (b) that flame F experiences high levels of ex- 
tinction and re-ignition. It is apparent that the re- 
gion of the manifold accessed during the simulation 

is wider compared to the flame D one, and that the 
data is evenly distributed between the equilibrium 

solution and the extinction region of the manifold. 
oussement et al., Combustion modeling using Principal 
s D, E and F, Proceedings of the Combustion Institute, 
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ig. S7 in SM shows radial statistics for flame F
t different axial locations for temperature and sl-
lected species. It can be observed that the PC-GPR
odel accurately predicts the peak and decay in ra-

ial directions as well. 

. Conclusion 

This study presents the first application of the
C-score approach coupled with nonlinear Gaus-
ian Process Regression (GPR) on a 3D LES simu-
ation of the Sandia flames D–F. 

The PC-GPR model showed very good ac-
uracy when compared with experimental data
sing only 2 components, instead of the 35 species
resent in the GRI 3.0 mechanism. The first PC
as found to be highly correlated with mixture

raction, thus allowing to transport directly the
atter, instead of a reacting scalar which would
ave required to model an additional source term.
oreover, results showed that the PCA basis can

e constructed using only a subset of species, con-
aining most of the information of the system. The
Cs remained bounded to the training manifold
uring the simulation, indicating that the choice of 
n unsteady canonical reactor ensures to span all
he potential chemical states accessed during the
imulation. 

The proposed model also showed very good
ccuracy for the prediction of flames E and F,
espite the increasing complexity. The PC-GPR
odel was able to handle the extinction and re-

gnition phenomenon properly, and thus showing
he importance of including unsteady data in the
raining manifold. Indeed, as the counterflow diffu-
ion flames were pulsated with a sinusoidal profile,
he database includes flames that both ignite and
xtinguish. 

The strength of the method resides in the fact
hat PCA does not require any prior selection
f variables. Instead, it automatically extracts the
ost relevant variables to describe the system of in-

erest. From this perspective, the PC-GPR method
an be regarded as a generalization of tabulated
hemistry approaches, particularly for complex sys-
ems requiring the definition of a larger number of 
rogress variables. Future work will focus on this
spect, considering also the inclusion of additional
anonical reactors in the database generation, in-
luding partially stirred reactors and pairwise mix-
ng stirred reactor approaches [14] . 
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