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An integrative approach is crucial in discrimination of species, especially for taxa that are difficult to identify 
based on morphological characters. In this study, we combine genetics and morphology to assess the diversity of 
Pterasteridae, a sea star family diversified in deep-sea and polar environments. Because of their derived anatomy 
and the frequent loss of characters during preservation, Pterasteridae are a suitable case for an integrative study. 
The molecular identification of 191 specimens (mostly from the Southern Ocean) suggests 26–33 species in three 
genera (Diplopteraster, Hymenaster and Pteraster), which match the morphological identification in 54–62% of 
cases. The mismatches are either different molecular units that are morphologically indistinguishable (e.g. Pteraster 
stellifer units 2 and 4) or, conversely, nominal species that are genetically identical (e.g. Hymenaster coccinatus/
densus/praecoquis). Several species are shared between the Northern and Southern Hemispheres (e.g. Pteraster 
jordani/affinis). In conclusion, the taxonomic status of some groups is confirmed, but for others we find the need to 
re-evaluate the taxonomy at both genus and species levels. This work significantly increases the DNA barcode library 
of the Southern Ocean species and merges taxonomic information into an identification key that could become a 
baseline for future studies (pterasteridae-so.identificationkey.org).

ADDITIONAL KEYWORDS:  Antarctica– COI mitochondrial DNA – cryptic species – deep sea – echinoderms – 
identification key – morphological systematics – phylogenetics – taxonomy.

INTRODUCTION

Taxonomy has a pivotal role in biology (Costello et al., 
2013). Inaccurate identifications and naming lead 
to misunderstandings and spurious interpretations 
of biological processes in various domains of the life 
sciences (Dayrat, 2005; Pante et al., 2015). Fifteen 
years ago, integrative taxonomy was introduced as a 
promising approach to complement the traditional, 
morphology-based taxonomy, using new data and 
methods (Dayrat, 2005). Among these, molecular 
markers were highlighted, considering the simultaneous 
leaps achieved by new genetic methodologies, such as 
DNA barcoding (Hebert et al., 2003; Stoeckle, 2003; 

Hebert & Gregory, 2005; Ratnasingham & Hebert, 
2007; Fujita et al., 2012). The number of barcoded 
species is currently still low in comparison to the total 
number of recognized species, with less than a quarter 
of nominal species having been barcoded in most 
phyla (Gong et al., 2018). Nevertheless, a plethora of 
studies have shown the importance of using genetics 
and morphology alongside for discrimination at all 
taxonomic ranks (e.g. Richter et al., 2008; Laakmann 
et al., 2012; Pante et al., 2015; Christiansen et al., 2018; 
Peck et al., 2018; Jossart et al., 2019). Based on the data 
from the World Register of Marine Species (WoRMS), 
Appeltans et al. (2012) showed that molecular methods 
are significantly increasing our knowledge of marine 
biodiversity by helping in the detection of cryptic 
species and the establishment of synonymies. This is 
of particular importance for under-investigated taxa, *Corresponding author. E-mail: qjossart@gmail.com
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such as those including numerous species that remain 
unrevised since their original descriptions.

Asteroidea (i.e. sea stars or starfish) is the second-
most diversified class of echinoderms, with ~1900 
described species assigned to 38 families (Mah & Blake, 
2012; Mah et al., 2015). They show various ecological 
traits and are present in a broad variety of ecosystems 
(Mah & Blake, 2012; Lawrence et al., 2013; Moreau 
et al., 2017). For the last 20 years, considerable efforts 
have been made to re-evaluate the sea star phylogeny 
using molecular data (Knott & Wray, 2000; Janies 
et al., 2011; Mah & Foltz, 2011a, b; Linchangco et al., 
2017; Moreau et al., 2019). However, there is a sharp 
contrast in our knowledge of sea star diversity amongst 
families from different biogeographical regions (Feuda 
& Smith, 2015). This is the case for Pterasteridae 
Perrier, 1875, the most diverse family in the order 
Velatida, which includes ~130 nominal species and 
eight genera: Amembranaster Golotsvan, 1998, 
Benthaster Sladen, 1882, Calyptraster Sladen, 1882, 
Diplopteraster Verrill, 1880, Euretaster Fisher, 1940, 
Hymenaster Wyville Thomson, 1873, Hymenasterides 
Fisher, 1911, and Pteraster Müller & Troschel, 1842 
(Mah, 2020). One unique feature of Pterasteridae is 
the presence of an additional (supra)dorsal membrane 
that produces abundant quantities of mucus (Mah 
& Blake, 2012; Gale, 2018). Between the dorsal and 
the supradorsal membranes lies a nidamental cavity, 
where incubation of juveniles takes place in some 
species (Janies, 1995). The taxonomy of the group is 
complicated for the following three reasons.

1.  Morphologies are highly derived, and only few 
diagnostic characters are recognized. Most 
characters commonly used for species identification 
in other sea stars are not applicable to the family 
(Gale, 2018).

2.  The few available characters are often indiscernible, 
because specimens are particularly fragile and are 
damaged by sampling and preservation protocols 
(Villier et al., 2004).

3.  Several species are known only from their original 
description based on few (poorly preserved) 
specimens (Villier et al., 2004).

Consequently, the Pterasteridae family could benefit 
from an integrative taxonomic approach.

The family mainly occurs in deep cold waters, 
including the Arctic and Southern Oceans (Mah & 
Blake, 2012). Although genetic sequences are available 
for specimens from the Northern Hemisphere, no public 
data have been published for Southern Ocean species 
(source: www.boldsystems.org). International initiatives 
of the Census of Antarctic Marine Life (CAML) and of the 
International Polar Year (IPY) have promoted sampling 
efforts in the Southern Ocean (Schiaparelli et al., 2013), 

and this momentum was at the origin of many biological 
campaigns. This has significantly enhanced the 
taxonomic and spatial coverage of the Southern Ocean 
biodiversity inventory, including the collection of deep-
sea representatives of Pterasteridae. These new and 
well-preserved specimens have offered the opportunity 
to re-investigate the taxonomy of the family.

Based on these new samples, we have combined 
morphological and molecular approaches to verify 
whether their joint use could better assess the 
diversity within Pterasteridae. After an initial 
morphological investigation, we used a mitochondrial 
gene [cytochrome c oxidase subunit I (COI)] to verify 
how it confirms or complements the morphological 
identification. Subsequently, we re-investigated (a 
posteriori) specimens using a morphological approach 
in order to identify new characters that might 
differentiate species. Finally, we synthesized, for the 
first time, the revised taxonomy of the family and have 
made it available to all potential users in an open-
access identification key that includes all Southern 
Ocean species (pterasteridae-so.identificationkey.org).

MATERIAL AND METHODS

Sampling

Specimens were collected during 16 international 
campaigns at sea from 1998 to 2017 (ACE, ANDEEP-3, 
ANDEEP-SYSTCO, ARGOS, CEAMARC 2007–2008, 
JR144, JR179, JR262, JR275, JR15005, MD208, 
MUSORSTOM 10, Poker 2, PS77, PS81 and PS96). The 
available specimens cover a wide distribution within 
the Southern Ocean (Fig. 1), including the Patagonian 
shelf, the South Sandwich Islands, South Georgia, 
South Orkney, the Shag Rocks, Kerguelen, Crozet 
and the Antarctic continental shelf (Adélie Land, 
Amundsen Sea, Antarctic Peninsula and Weddell 
Sea). A total of 171 specimens from these locations 
were included in the analysis. In order to increase 
the taxonomic and geographical scope, in addition 
to the phylogenetic resolution, 20 additional genetic 
sequences (see Genetic Data below) from specimens 
outside the Southern Ocean were added to the dataset 
(i.e. Fiji, South Africa, Pacific and Atlantic coasts 
of North America, Norway and Russia). Metadata 
documenting all the 191 samples can be found in the 
Supporting Information (Supplementary Material 1).

morphological identification

A total of 124 Southern Ocean individuals (preserved 
in ethanol or frozen) were identified morphologically 
by the authors using original descriptions (e.g. Sladen, 
1882; Koehler, 1908), identification books (Clark, 
1962; Clark & Downey, 1992; McKnight, 2006) and 
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contemporary scientific literature (Villier et al., 2004; 
Gale, 2018). Subsequent to genetic analyses (see 
Genetic Data below), an a posteriori morphological 
investigation was carried out to look for new characters 
to differentiate species when new species delineations 
and synonymies were suggested by genetic data. 
Finally, the taxonomy of the family was synthesized 
and made available online, by building an interactive 
identification key through the Xper3 portal (Fig. 2). 
Xper3 is a Web portal with an easy-to-use interface 
that allows multiple access points (the key can be 
started using any character; Vignes-Lebbe et al., 2016). 
Specimens and characters were also illustrated by 
drawings and macro-pictures (photographed using a 
camera with a macro lens, two flashes and accessories 
to diffuse or reflect the light; Figs 2, 3).

genetic data

A fragment of the mitochondrial gene COI was 
sequenced (601 bp) for the 191 individuals. These 
genetic sequences were obtained through laboratory 
work in our institutes (80 individuals; see protocol 
below), through our private Barcode of Life Data 
System project (BOLD; 94 individuals) or mined from 
public BOLD projects (17 individuals).

DNA extractions were performed on one tube foot 
(podium) per sample and were based on the salting-out 

protocol of Sunnucks & Hales (1996). The amplification 
step was performed using the forward primers ‘F-COI-
PTE-28’ (5′-GCTGGAATGATTGGAACTGC-3′) or 
‘LCOech1aF1’ (5′-TTTTTTCTACTAAACACAAG
GATATTGG-3′) and the reverse universal primer 
‘R-HCO2198’ (5′-TAAACTTCAGGGTGACCAAAAAA
TCA-3′; Folmer et al., 1994). Each polymerase chain 
reaction (PCR) mix (25 μL) included 12.5 μL of a 
VWR Mastermix (2.5 units of VWR Taq polymerase, 
0.4 mM of each dNTP and 1.5 mM of MgCl2), 10.5 μL of 
molecular water, 0.5 μL each primer (10 μM) and 1 μL 
of the DNA extract. The PCR conditions consisted of 
35 cycles for each of the three temperature steps [30 s 
at 95 °C (denaturation), 30 s at 48 °C (annealing) and 
30 s at 72 °C (elongation)]. These cycles were preceded 
by 2 min at 95 °C and followed by 10 min at 72 °C. 
EXOSAP purification (incubation at 37 °C for 15 min 
followed by another at 80 °C for 15 min) was done 
before sending the PCR products to the MACROGEN 
sequencing service. Sequence editing and alignment 
were done using the software geneiouS (Kearse et al., 
2012). The absence of a stop codon in the sequence was 
checked in the same software in order to exclude the 
presence of nuclear pseudo-genes.

partitionfinder 2 (Bayesian information criterion; 
Lanfear et al., 2016) was used within the CIPRES portal 
(Miller et al., 2010) to select the most suitable substitution 
models (i.e. TRNEF+I+G for codon position 1, HKY+I+X 

Figure 1. Sampling locations of the Pterasteridae specimens from the Southern Ocean. Abbreviations: ADE, Adelie Land; 
AMU, Amundsen Sea; APEN, Antarctic Peninsula; CRO, Crozet; DSSA, Deep-Sea South Atlantic; KER, Kerguelen; PAT, 
Patagonian shelf; SHAG, Shag Rocks; SG, South Georgia; SORK, South Orkney; SSAND, South Sandwich; WED, Weddell 
Sea.
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for codon position 2 and TRN+I+G+X for codon position 3). 
A Bayesian phylogeny was subsequently produced using 
BEAST v.1.8.4 (Drummond & Rambaut, 2007) within 
the CIPRES portal. Based on a previous phylogeny 
using multiple genes, Remaster gourdoni Koehler, 1912 
was used as the outgroup (Linchangco et al., 2017). 
Parameters of the analysis were as follows: partitioned 
dataset, Yule process tree prior, Markov chain Monte 
Carlo of 100 × 106 generations sampled every 10 000 
trees. tracer v.1.6 was used to ensure an appropriate 
effective sampling size (ESS all > 200). treeannotator 
v.1.8.4 was used to find the most likely tree, which was 
visualized in figtree v.1.4.3 (tree.bio.ed.ac.uk/software/
figtree). Node support was assessed through posterior 
probability (PP), with values < 0.75 not being retained 
and collapsed into polytomies (Huelsenbeck & Rannala, 
2004). Moreover, the software denSitree v.2.2 was used 
to verify the potentiality of competing topologies among 
the set of trees (Bouckaert, 2010).

Three different methods of species delimitation 
were used to propose primary species hypotheses: 
one distance based [automatic barcode gap discovery 
(ABGD); Puillandre et al., 2012] and two tree based 
[Bayesian Poisson tree process (bPTP; Zhang et al., 
2013) and generalized mixed Yule coalescent (GMYC; 
Fujisawa & Barraclough, 2013)]. The ABGD analysis 
(bioinfo.mnhn.fr/abi/public/abgd) was performed with 

a relative gap width of one and Kimura (K80) as the 
genetic distance. The bPTP analysis (species.h-its.org/
ptp) was applied using 500 000 generations of Markov 
chain Monte Carlo, a thinning of 100 and a burn-in 
of 25%. Finally, the GMYC analysis (species.h-its.
org/gmyc) was performed using the single threshold 
method. Haplotype diversity and nucleotide diversity 
were calculated within each species using dnaSp v.6 
(Rozas et al., 2017).

RESULTS

initial morphological identification

Among the 124 morphologically investigated 
individuals, 91 are identified to species level. Thirty-
two individuals are identified to genus level and one 
to family level owing to the small size of specimens 
(juveniles) or poor preservation that does not permit 
observation of diagnostic characters. Thirteen species 
and three genera are identified (Fig. 3). Four species 
of Pteraster are found: Pteraster affinis Smith, 1876, 
Pteraster gibber (Sladen, 1882), Pteraster rugatus 
Sladen, 1882 and Pteraster stellifer Sladen, 1882. 
The numbers and types of marginal oral spines are 
important diagnostic characters to discriminate the 
different Pteraster species, and these characters are 

Figure 2. Interface of the Xper3 identification key (top panel) and two examples of integrated drawings illustrating 
diagnostic characters (bottom left, adambulacral spines; bottom right, oscular spines).
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usually well preserved. Specimens of Diplopteraster 
are identified only up to the genus level owing to 
the absence of observable characters [e.g. between 
Diplopteraster semireticulatus (Sladen, 1882) and 
Diplopteraster verrucosus  (Sladen, 1882); see 
Discussion]. Nine species of Hymenaster are identified: 
Hymenaster campanulatus Koehler, 1907, Hymenaster 
coccinatus Sladen, 1882, Hymenaster densus Koehler, 
1908, Hymenaster edax Koehler, 1907, Hymenaster 

formosus Sladen, 1882, Hymenaster latebrosus 
Sladen, 1882, Hymenaster perspicuus Ludwig, 1903, 
Hymenaster praecoquis Sladen, 1882 and Hymenaster 
sacculatus Sladen, 1882. Some of these Hymenaster 
species are discriminated based on tenuous 
morphological differences, such as H. densus and 
H. praecoquis, which are differentiated based on only 
slight variations in the morphology of the segmental 
papillae and number of marginal spines (Clark, 1962).

Figure 3. Aboral view of Pterasteridae species illustrating their Southern Ocean diversity. A, Diplopteraster sp.; B, Hymenaster 
campanulatus; C, Hymenaster praecoquis; D, Hymenaster edax; E, Hymenaster sacculatus; F, Pteraster gibber; G, Pteraster 
affinis; H, Pteraster koelheri; I, Pteraster stellifer. Scale bars: 1 cm. Photos: P. Pernet, Q. Jossart (Biologie Marine, ULB).
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SpecieS delimitation (COI)

Species delimitation methods applied to molecular 
data give 26 species hypotheses for ABGD and 33 for 
bPTP and GMYC (Fig. 4). For each species hypothesis, 
the relationship between haplotype diversity and 
nucleotide diversity fits the expected variation for 
a single species, except for Pteraster stellifer unit 1 

(Goodall-Copestake et al., 2012). Morphological species 
identification matches molecular species delimitation 
in only 54% of species for ABGD and 62% for GMYC/
bPTP. Within the genus Pteraster, species complexes 
are suggested within the nominal species P. stellifer 
(three to five units) and P. affinis (two units). Within 
the genus Hymenaster, three morphological species 

Figure 4. Bayesian phylogeny based on mitochondrial cytochrome c oxidase subunit I (COI) sequences. Values at each node 
are the posterior probabilities (nodes with support < 0.75 were collapsed into polytomies). The dashed line (associated with 
group B) indicates competing topologies from the software denSitree. Assignments for each species delimitation method 
are reported as black bars [generalized mixed Yule coalescent–Bayesian Poisson tree process (GMYC–bPTP) on the left and 
automatic barcode gap discovery (ABGD) on the right]. Distinct GMYC–bPTP and ABGD assignments are highlighted by 
grey bars for the ABGD assignments.
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appear to be undifferentiated genetically, suggesting 
that the diversity of the genus has been overestimated 
(H. coccinatus, H. densus and H. praecoquis). Moreover, 
four species are present in both the Southern and 
Northern Hemispheres: Pteraster jordani/affinis, 
P. militaris/affinis, Diplopteraster sp. 1 and P. gibber. 
In every case, Northern and Southern Hemisphere 
specimens are closely related within these species 
(proportion of distinct nucleotide sites of 0.3% for 
P. jordani/affinis and P. militaris/affinis, 0.7% for 
Diplopteraster sp. 1 and 1.2% for P. gibber).

COI phylogeny

Three main groups are identified: one Hymenaster 
group (A) and two Diplopteraster/Pteraster groups 
(B and C; Fig. 4). The relationship of group B with 
the two other groups is unclear, as illustrated by 
the low posterior probability and the competing 
topologies from the denSitree output (Fig. 4; 
Supporting Information, Supplementary Material 2). 
Within group A (Hymenaster), H. campanulatus and 
unidentified specimens form the sister group of all 
other Hymenaster (PP = 1). Among these, H. sacculatus 
forms a subclade with H. formosus, H. perspicuus and 
H. pellucidus, and H. coccinatus/densus/praecoquis 
form another subclade with H. edax and H. latebrosus 
(PP = 0.85). Group B (Diplopteraster/Pteraster) includes 
P. rugatus and the Diplopteraster/Pteraster stellifer 
complex (PP = 1). Within group C (Diplopteraster/
Pteraster), P. gibber is close to P. obscurus, P. tesselatus 
units 1 and 2 and Diplopteraster sp. 1 (PP = 1), and the 
other subclade includes the P. affinis and P. militaris 
complexes (PP = 1).

A pOsterIOrI morphological re-inveStigation

After the species delimitation and phylogenetic analysis, 
new morphological investigations were performed 
to clarify the mismatch between morphological and 
molecular data and the status of ambiguous taxa. 
For unrecognized molecular units, new discriminant 
morphological characters were potentially identified. 
First, we find a different number of marginal oral 
spines (five vs. three) in two genetic entities initially 
identified under the name P. affinis (i.e. P. jordani/
affinis and P. militaris/affinis). Second, the presence 
of a large, clavate suboral spine is found in several 
specimens of the Diplopteraster/P. stellifer complex, 
all belonging to P. stellifer unit 1 and P. stellifer unit 5. 
Third, the morphological re-examination of two closely 
related molecular units (P. gibber and Diplopteraster 
sp. 1) shows that a character state is shared by all 
specimens of these units. In fact, these specimens have 
a single web (for two oral plates) among marginal oral 
spines, whereas the other Pteraster/Diplopteraster 

specimens have free marginal oral spines or a separate 
web for each plate.

Xper3 identification key

The Xper3 identification key includes 33 species 
(Figs 2, 3), i.e. all the species currently accepted in the 
Register of Antarctic Marine Species (RAMS; Jossart 
et al., 2015; De Broyer et al., 2020). An asterisk (and 
related comment) is attached to each species name 
for which there was a mismatch between genetic and 
morphological identification (i.e. P. affinis, P. stellifer, 
Diplopteraster clarki Bernasconi, 1937, D. hurleyi, 
D. peregrinator, D. semireticulatus, D. verrucosus, 
H. coccinatus, H. densus and H. praecoquis). Fourteen 
characters are selected, namely the number of arms, 
the type and number of paxillar spines, the type and 
number of adambulacral spines, the number of rows 
of tube feet, the type and number of suboral/marginal 
oral spines, the morphology of the segmental papillae, 
the presence of granular bodies in the supradorsal 
membrane, the opacity of the supradorsal membrane, 
the presence of muscle fibres holding the supradorsal 
membrane and the number of oscular spines. Several 
previously used descriptors are evaluated but not 
retained, because they are not quantifiable accurately 
(e.g. osculum diameter, density of spiraculae) or 
are undistinguishable in most specimens (e.g. body 
convexity). Potential new diagnostic characters that 
could be used in the P. affinis (different number of 
marginal oral spines) and Diplopteraster/Pteraster 
stellifer (clavate suboral spine) complexes are 
mentioned as comments within the key. Particular 
attention is devoted to make this identification key 
as user friendly as possible, as follows: (1) the Xper3 
platform allows the user easily to detect the remaining 
taxa and characters throughout the identification 
process (Vignes-Lebbe et al., 2016); (2) any number of 
characters can be used in any order (multiple accesses 
key); and (3) numerous macro-pictures and drawings 
are available, illustrating whole specimens, characters 
and character states. This identification key is 
accessible at: http://pterasteridae-so.identificationkey.
org/mkey.html

DISCUSSION

Our integrative approach was successful to revise 
species identity and phylogenetic relationships. 
The results call for a revision of the taxonomic 
status of both species and genera within the family 
Pterasteridae. Such a revision would not be possible 
without the joint use of morphological investigations 
and molecular analyses. We identified three of the four 
genera of Pterasteridae documented in the Southern 
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Ocean: Diplopteraster, Hymenaster and Pteraster, with 
Calyptraster the only genus not being encountered 
(Mah, 2020). Thirty-three species were identified by 
the bPTP and GMYC molecular approaches, which 
is concordant with 54–62% of the morphology-based 
identifications. Mismatches between morphological 
and genetic identifications are either attributable to 
different molecular units that are morphologically 
similar or, conversely, to morphological species being 
genetically identical. Several cases of species shared 
between high latitudes of the Northern and Southern 
Hemispheres were found, which could correspond to 
either cosmopolitanism or bipolarity (species with 
disjunct distribution sensu Darling et al., 2000). After 
the molecular analyses, the return to morphological 
samples allowed the identification of potential new 
characters that can be used as diagnostic features 
to define molecular species that were previously 
undifferentiated based on morphology alone. Merging 
the available morphological and molecular results, 
we have synthesized the taxonomy of Pterasteridae 
from the Southern Ocean and built a synthetic, 
polytomous and open-access identification key that is 
intended to serve as a baseline for future taxonomic 
and ecological studies. Finally, this work significantly 
increased the DNA barcode library for the Southern 
Ocean pterasterid species. Before this study, no 
genetic sequence of Southern Ocean Pterasteridae was 
publicly available on the GenBank or BOLD platform. 
Moreover, the addition of 174 sequences extends by 
more than three times the public barcode library of the 
whole family, which also represents a 2.5% extension 
for the Asteroidea class and a 0.6% extension for the 
Echinodermata phylum (source: http://boldsystems.
org).

SpecieS delimitation

The molecular identification confirmed the species 
status of several species previously described on 
a morphological basis only (e.g. H. campanulatus, 
H. sacculatus and P. rugatus). However, discrepancies 
between morphological and genetic delineations were 
observed. These are not surprising and illustrate 
taxonomic uncertainties of the family already discussed 
in other studies (Clark & Downey, 1992; McKnight, 
2006). For example, Clark & Courtman-Stock (1976) 
highlighted the ‘ludicrous’ situation in Hymenaster, to 
which > 50 nominal species have been ascribed over 
the last 100 years. This is well illustrated in our study 
by the two genetic entities gathering distinct nominal 
species: the unit Hymenaster coccinatus/densus/
praecoquis and the unit Diplopteraster peregrinator/
semireticulatus/verrucosus. Such a taxonomic issue 
can be related to the inadequacy of morphological 
characters used to discriminate species, to diagnostic 

characters between species instead corresponding to 
intraspecific variations or to the lack of taxonomic 
investigations of these species since they were 
originally described (Clark, 1962; Clark & Downey, 
1992). At the other extreme, an interesting case study 
is provided by the species P. stellifer, which corresponds 
to a species complex (three to five species). Variations 
within P. stellifer were already noted by Clark (1962), 
who had proposed that two subspecies should be 
distinguished, ‘Pteraster steliffer stellifer Sladen, 1882’ 
and ‘Pteraster stellifer hunteri Koehler, 1920’, distinct 
from each other by their geographical distribution 
and the shape of the paxillar spinelets. Our results 
also suggest that P. affinis should encompass several 
distinct species that, interestingly, are closely related 
to species recorded in the Northern Hemisphere. 
Some species within these complexes correspond to 
unrecognized diversity, because we found (a posteriori) 
potential diagnostic characters (e.g. clavate suboral 
spines in Pteraster stellifer units 1 and 5). Some others 
might represent true cases of cryptic diversity, because 
the morphological re-investigation did not reveal any 
diagnostic character (e.g. among Pteraster stellifer 
units 2 and 4).

phylogenetic relationShipS

As expected for a single gene phylogeny, some 
relationships remain partly unresolved (Gontcharov 
et al., 2004; Sands et al., 2008; Christiansen et al., 
2018), but most of them are supported by high 
posterior probabilities. Considering the uncertainty 
associated with the placement of group B, on the 
one hand, the relationship between the genus 
Hymenaster and the two other genera remains 
unresolved. On the other hand, both Diplopteraster 
and Pteraster are retrieved in groups B and C. This 
was also found in a previous multiple-gene phylogeny 
based on Northern Hemisphere species of these two 
genera (Mah & Foltz, 2011b). This also matches our 
morphological observations that diagnostic characters 
of the genus Diplopteraster are doubtful (Clark & 
Downey, 1992; Villier et al., 2004). First, the presence 
of four rows of tube feet per arm might be incorrect. 
Close examination of all specimens at hand reveals 
that they possess two rows of overlapping tube feet. 
Second, the alternating arrangement of adambulacral 
plates is difficult to observe. Finally, the presence 
of an enlarged central paxillar spinelet cannot be 
observed in most specimens. Therefore, we recommend 
a taxonomic revision of these two genera using both 
genetic and morphological data. Finally, we did not 
find any species belonging to the genus Calyptraster in 
our collection. According to previous studies, it is the 
sister taxon of the genus Hymenaster, but only a small 
number of species, records and diagnostic characters 
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are recognized (Clark & Downey, 1992; Villier et al., 
2004). Moreover, there are no genetic data available 
(regardless of the gene) for a Calyptraster species. 
We thus recommend a thorough re-investigation 
of this genus in order to verify whether it should be 
synonymized with Hymenaster.

The molecular phylogeny confirmed the relationships 
of species already recognized as closely related, 
such as H. sacculatus and H. perspicuus (Clark, 
1962). Moreover, the phylogeny highlighted species 
relationships that were previously unknown, such as 
the close relationships between P. gibber and P. affinis, 
rather than with P. stellifer. Another unprecedented 
result is the affinity of the species P. jordani/affinis, 
P. militaris/affinis, Diplopteraster sp. 1 and P. gibber, 
recorded in both the Northern and Southern 
Hemispheres. Depending on the species, this could 
correspond to either cosmopolitanism or bipolarity. 
This might indicate a recent migration between the 
two hemispheres, which would notably be facilitated 
by deep-sea dispersal routes (Strugnell et al., 2008, 
2011; Laakmann et al., 2012). In fact, the Pterasteridae 
are known to be highly diverse and abundant in the 
deep sea, being one of the most represented sea star 
families in abyssal basins worldwide (Sibuet, 1979; 
Danis et al., 2012).

concluSion

Our work confirms the relevance of using molecular 
tools to complement morphology-based taxonomy. 
This is especially true for taxa that are complex 
to identify on a morphological basis, such as 
Pterasteridae. In every genus investigated, we found 
several species for which the taxonomy should be 
re-evaluated and revised. These taxonomic issues 
either generate unrecognized diversity or, conversely, 
overestimate diversity. Formal taxonomic revision 
of these species and genera would be premature at 
this stage. Further analyses are therefore needed to 
obtain a better picture of the diversity of the family 
and precise phylogenetic relationships. This implies 
an extensive investigation of numerous specimens, 
a thorough taxonomic revision and a morphological 
survey of holotypes. Some characters seem promising 
as new diagnostic features of species (e.g. oral 
spines), whereas other characters currently used 
should be abandoned (e.g. opacity of the supradorsal 
membrane), considering their intraspecific variability 
and their problematic preservation in collected 
specimens. The investigation of arm ossicles through 
X-ray photography and scanning electron microscopy 
also constitutes a promising prospect. Former studies 
of ossicle arrangement and morphology provided 
useful taxonomic information in different asteroid 
groups (Gale, 2018; Fau & Villier, 2020). In the 

case of Pterasteridae, primary radials (supporting 
the osculum) and adambulacrals seem the most 
pertinent ossicles to be investigated (Gale, 2018). 
Besides morphological studies, the use of additional 
nuclear genes would be interesting to turn the 
primary species hypotheses proposed here properly 
into secondary species hypotheses (Sands et al., 2008; 
Abdelkrim et al., 2018). In addition, the use of multiple 
genomic markers would be key to full resolution of 
the phylogenetic relationships within the family and 
to analysis of the phylogeographical patterns within 
species. This is, for example, a necessary condition to 
test different colonization scenarios between the two 
hemispheres for cosmopolitan or bipolar species.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Supplementary Material 1. Metadata documenting the 191 samples (Specimen ID, Expedition, Station, Vial, 
Year, Latitude, Longitude, Initial morphological identification, GMYC-bPTP assignments, ABGD Assignments).
Supplementary Material 2. Output from the denSitree program in order to verify the potentiality of competing 
topologies among the set of trees.
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