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Introduction

Let L/K be a finite Galois extension, i.e. a field extension which is both separable and

normal, and let G = Gal(L/K) be its Galois group. Then the fundamental theorem

of Galois theory says that there is a correspondence between the set of intermediate

fields of L/K and the set of subgroups of G. Explicitly, if G0 is a subgroup of G, we

associate to G0 the set of G0-invariants

LG0 :=
{
x ∈ L |σ(x) = x ∀σ ∈ G0

}
,

which is an intermediate field of L/K. On the other hand, if L0 is an intermediate

field of L/K, then L/L0 is also a Galois extension. We then associate to L0 the group

Gal(L/L0), which is a subgroup of G. We therefore get the correspondence theorem

for finite Galois extensions: the maps{
G0 ⊆ G subgroup

}
//
{
L/L0/K intermediate field

}
:oo

G0
� // LG0

Gal(L/L0) L0
�oo

are bijections, which are inverse to each other and inclusion-reversing. It is natural to

ask whether such a correspondence exists for a larger class of extensions.

For example, the Jacobson-Bourbaki theorem reformulates the correspondence the-

orem from (infinite) Galois theory as a bijection between subfields L0 of finite codi-

mension in a field L on the one hand, and their linear endomorphism rings EndL0(L)

on the other hand, and is also valid for division rings (i.e. “non-commutative fields”)

[Jac85]. Sweedler [Swe75] generalized this theorem further by using the language of
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Introduction

corings (which are coalgebras over a not necessarily commutative base).

In a different direction, Galois theory has been extended to commutative rings that

are not necessarily fields by Auslander and Goldman [AG60] and by Chase, Harrison

and Rosenberg [CHR65], see also [DI71].

Another possibility is to replace the group action by a Hopf algebra (co)action,

leading to Hopf-Galois theory. One can motivate the use of Hopf algebras in Galois

theory by the observation that, in a finite Galois extension L/K, all K-linear en-

domorphisms can be described as L ⊗K K[G]. In fact, finite Galois extensions are

exactly finite separable extensions L/K with G = Aut(L/K) such that the morphism

of K-vector spaces

L⊗K K[G] // EndK(L) : x⊗ σ � //
(
y 7→ xσ(y)

)
is bijective. Here, the finite group of automorphisms G appears in the Hopf algebra

K[G]. Substituting K[G] with another Hopf algebra leads to Definition 1.60 of Hopf-

Galois extensions introduced by Chase and Sweedler [CS69].

The first step towards the generalization of the classical correspondence theorem

is given by Chase and Sweedler.

Proposition 2.2. [CS69, Thm. 7.6] Let L/K be a finite H-Galois extension. For a

Hopf subalgebra H0 ⊆ H we define

Fix(H0) =
{
x ∈ L |h · x = ε(h)x ∀h ∈ H0

}
.

Then the map

Fix :
{
H0 ⊆ H Hopf subalgebra

}
//
{
L/L0/K intermediate field

}
is injective and inclusion-reversing.

This map is not a correspondence in general because not every subfield lies in the

image of Fix. A correspondence theorem, which is fully analogous to the classical one

above, does not seem to be known.

This thesis aims at providing such a correspondence theorem for finite separable

Hopf-Galois extensions. We will also describe a variant of this correspondence which
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will be analogous, in classical Galois theory, to the correspondence between interme-

diate fields L/L0/K that are normal (hence Galois) over K and normal subgroups

G0 ⊆ G. To do this, we will characterize the image of Fix in a natural and intrinsic

way. For that purpose, we introduce the notions of H-subextensions (Definition 2.16)

and H-normal extensions (Definition 2.20), the latter being H-subextensions which

are also H-stable (in the obvious sense H ·L0 ⊆ L0). We will also describe the inverse

of Fix using several maps. First, we define the annihilator of an intermediate field L0

(Definition 2.14) to be

AnnH(L0) =
{
h ∈ H |h · x = 0 ∀x ∈ L0

}
.

One should note that AnnH(L0) is not a Hopf subalgebra of H but it is a left ideal

two-sided coideal of H if L0 is an H-subextension (Proposition 2.23(b)) and it is a

Hopf ideal of H if L0 is H-normal (Proposition 2.23(d)). Secondly, we will be using a

well-known correspondence between Hopf subalgebras of H and left ideals two-sided

coideals of H (Definition 1.56):

1. if I is a left ideal two-sided coideal of H and if π : H // // H/I is the natural

projection, then we define

ϕ(I) =
{
h ∈ H | π(h(1))⊗ h(2) = π(1H)⊗ h

}
,

which is a Hopf subalgebra of H (Theorem 1.57);

2. if A ⊆ H is a Hopf subalgebra, then we define A+ =
{
h ∈ A | ε(h) = 0

}
and

ψ(A) = HA+

which is a left ideal two-sided coideal of H (Theorem 1.57).

In this terminology, the main correspondence theorem for finite separable Hopf-Galois

extensions proved in this thesis is the following.

Theorem 2.31. Let L/K be a finite separable H-Galois extension, then the maps{
H0 ⊆ H Hopf subalgebra

}
ψ

��{
I ⊆ H left ideal two-sided coideal}

ϕ

OO Fix

++ϕ◦AnnH

kk

AnnH
uu

{
L/L0/K H-subextension

}
Fix

55
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are inverse bijections. Moreover, the above correspondence restricts to the following

inverse bijections:{
H0 ⊆ H normal Hopf subalgebra

}
ψ

��{
I ⊆ H Hopf ideal}

ϕ

OO Fix

))ϕ◦AnnH

ii

AnnH
ss

{
L/L0/K H-normal

}
Fix

33

The notions of H-subextensions and H-normal extensions behave exactly in the

same way as in classical Galois theory. Indeed, if L0 is an H-subextension, then L/L0

is L0 ⊗K H0-Galois with H0 =
(
(ϕ ◦ AnnH(L)

)
(L0) (Proposition 2.33(b)). Also, if

L0 is H-normal, then L0/K is H/AnnH(L0)-Galois (Proposition 2.23(d)). Moreover,

intersections and composita behave well (Proposition 2.54).

A key input of this thesis is provided by the work of Greither and Pareigis, to which

also the title of the thesis pays reverence. In [GP87], they associated to a Hopf-Galois

structure on a separable field extension a group, which we call the Greither-Pareigis

group (Theorem 2.6). More precisely, if L/K is a finite separable H-Galois extension

and if we define L̃/K a finite Galois extension containing L, G = Gal(L̃/K), G′ =

Gal(L̃/L) and X = G/G′, then the Greither-Pareigis group N can be seen as a subset

of the permutation group Perm(X). The study of the group N (and more precisely,

the study of the subgroups of N) is a way to better understand the correspondence

theorem. A variant of our main correspondence theorem can be formulated in terms

of the Greither-Pareigis group N ⊆ Perm(X).

Theorem 2.45. Let L/K be a finite separable H-Galois extension and let N ⊆
Perm(X) be its associated Greither-Pareigis group. Then the maps{

N ⊆ N subgroup normalized by λ(G)
} Fix ◦H //

{
L/L0/K H-subextension

}
N

oo

are inverse bijections. Moreover, the above correspondence restricts to the following

inverse bijections:{
N ⊆ N normal subgroup normalized by λ(G)

} Fix ◦H //
{
L/L0/K H-normal

}
N

oo

It is again a remarkably close analog of the classical theorem of Galois theory, now

in the sense that H-subextensions and H-normal extensions correspond respectively

to subgroups and normal subgroups of the Greither-Pareigis group, together with an

4



extra condition of normalization, which is inherent to the Greither-Pareigis group.

As said earlier, all the intermediate fields of a finite H-Galois extension do not

arise as the set of invariants for some Hopf subalgebra. Equivalently, not all inter-

mediate fields are H-subextensions. In [GP87], Greither and Pareigis say that the

correspondence theorem holds in its strong form if the map Fix defined in Proposition

2.2 is surjective (and hence bijective). Obviously, this is the case for classical Galois

extension. They also defined a larger class of extensions, called almost classical Galois

extensions, for which they proved that the correspondence theorem holds in its strong

form for a suitable Hopf-Galois structure. In [CRV16], Crespo, Rio and Vela showed

that the class of Hopf-Galois extensions for which the correspondence is bijective is

larger than the class of almost classically Galois extensions. Another approach for this

problem is given in [KKTU19] where Koch, Kohl, Truman and Underwood translated

the correspondence in Proposition 2.2 into a correspondence between the subgroups

of the Greither-Pareigis group N normalized by λ(G) and the subgroups of the Galois

group G = Gal(L̃/K).

One other interesting feature is that we can replace the Greither-Pareigis group

N of a Hopf-Galois extension by its opposite Nopp, thus obtaining an opposite Hopf-

Galois structure H† on L/K (Lemmas 2.47 and 2.48). A further main result of this

thesis is that H-subextensions and H-stable extensions correspond to each other under

passage to the opposite Hopf-Galois structure. This makes the possibly technically not

so elegant definition of H-subextension (Definition 2.16) appear very natural.

Theorem 2.51. Let L/K be an H-Galois extension and let H† be its opposite Hopf-

Galois structure. Let L0 be an intermediate field, then

(a) L0 is H-stable if and only if L0 is an H†-subextension;

(b) L0 is an H-subextension if and only if L0 is H†-stable.

As pointed out above, H-normal extensions lead to quotient structures. It is thus

possible to consider infinite towers of Hopf-Galois extensions as in classical Galois

theory. As it turns out, the canonical Galois map which is used to define Hopf-

Galois extensions in the finite case, is no longer bijective for infinite (classical) Galois

extensions. Rather it is injective and has a dense image with respect to a suitably

defined topology. Taking this point of view, we make first steps towards infinite Hopf-

Galois extensions in chapter 3, and obtain a first correspondence theorem between

intermediate H-normal subextensions and open Hopf ideals (Theorem 3.14). In the
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final Chapter 4, we give some indications how this theory could be developed further.

We point out that, in the literature, a dual point of view on Hopf-Galois theory

is often used. In this thesis, we were led to strive to obtain correspondence theo-

rems as close as possible to the one of classical Galois theory. In the case of finite

dimensional Hopf algebras (covering the main part of this thesis), both approaches

are however completely equivalent. Moreover, in the literature, several variations of

the correspondence theorem for Hopf-Galois theory have been discussed. Let us men-

tion in particular [OZ94] and [Sch98], where a bijective correspondence is described

between the Hopf subalgebras of H and the intermediate extensions that are stable

under the action of a “transformed Hopf algebra”. This result seems closely related to

our characterization of H-subextensions as H†-stable extensions (see also Chapter 4).

We give a short outline of the thesis. Chapter 1 is a presentation of the background

on Hopf algebras and Hopf-Galois extensions. Chapter 2 is the core of the thesis.

After introducing the work of Greither and Pareigis in section 2.2, we will prove our

correspondence theorem for Hopf-Galois theory in section 2.5 and its variant using the

Greither-Pareigis group in section 2.6. Chapter 3 is devoted to first steps towards an

infinite Hopf-Galois theory and finally in Chapter 4, we discuss some directions for

future investigations.
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1

Hopf algebras

1.1 Basic definitions

In this section, we will review some of the basic concepts and known results about

Hopf algebras. All the proofs can be found in [DNR01] and [BW03].

Throughout this section, R will be a commutative ring with unity. Unadorned

tensors are assumed to be taken over R unless specified otherwise.

1.1.1 Algebras, coalgebras, bialgebras and Hopf algebras

We will first reformulate the classical definition of R-algebras using commutative di-

agrams. Then, we will define R-coalgebras whose structure is the dual of that of

R-algebras.

Definition 1.1. An R-algebra A is an R-module together with

1. a multiplication map µ : A⊗ A // A,

2. a unit map ι : R // A,

such that both µ and ι are R-module morphisms and such that the following diagrams

commute:

A⊗ A⊗ A µ⊗id
//

id⊗µ

��

A⊗ A

µ

��

A⊗ A µ
// A

R⊗ A ι⊗id
//

∼

%%

A⊗ A

µ

��

A⊗Rid⊗ι
oo

∼

yy
A

7



1. Hopf algebras

The left diagram describes the associativity of the multiplication and the right

diagram describes the existence of a unit in A: 1A = ι(1R).

Obviously, this is equivalent to the classical definition of an R-algebra, that is a

ring A together with a ring morphism R // Z(A) where Z(A) is the center of A.

Definition 1.2. An R-algebra A is commutative if for all a, a′ ∈ A we have µ(a⊗a′) =

µ(a′ ⊗ a).

Alternatively, we can define the commutativity of an R-algebra by using the fol-

lowing map.

Definition 1.3. Let M and M ′ be two R-modules, we define the switch map

σ : M ⊗M ′ //M ′ ⊗M : m⊗m′ � //m′ ⊗m.

Therefore, an R-algebra A is commutative if and only if µ = µ ◦ σ.

We will now take the dual of the diagrams of Definition 1.1 to obtain the following

definition.

Definition 1.4. An R-coalgebra C is an R-module together with

1. a comultiplication map ∆ : C // C ⊗ C,

2. a counit map ε : C // R,

such that both ∆ and ε are R-module morphisms and such that the following diagrams

commute:

C
∆ //

∆

��

C ⊗ C

∆⊗id

��

C ⊗ C id⊗∆
// C ⊗ C ⊗ C

R⊗ C ∼ // C

∆

��

C ⊗R∼oo

C ⊗ C

ε⊗id

ee

id⊗ε

99

The left diagram describes the coassociativity of the comultiplication and the right

diagram describes the counital condition.

Let c ∈ C, its image by the comultiplication lies in C ⊗ C. Therefore, ∆(c) must

be of the form
∑n

i=1 ci1 ⊗ ci2. To simplify the writing, we will adopt the Sweedler

notation:

∆(c) = c(1) ⊗ c(2) ∈ C ⊗ C.

8



1.1. Basic definitions

The diagrams of Definition 1.4 can thus be expressed by the equalities

c(1)(1) ⊗ c(1)(2) ⊗ c(2) = c(1) ⊗ c(2)(1) ⊗ c(2)(2) =: c(1) ⊗ c(2) ⊗ c(3)

and

ε
(
c(1)

)
c(2) = c = c(1)ε

(
c(2)

)
.

Definition 1.5. An R-coalgebra C is cocommutative if ∆ = σ◦∆ where σ is the switch

map defined in Definition 1.3. With the Sweedler notation, the cocommutativity of C

can be expressed by the equality

c(1) ⊗ c(2) = c(2) ⊗ c(1).

Example 1.6. Let S be any set and let R[S] be the free R-module generated by S.

Then R[S] is a cocommutative R-coalgebra with comultiplication and counit defined

by

1. ∆ : R[S] // R[S]⊗R[S] : s � // s⊗ s ∀s ∈ S,

2. ε : R[S] // R : s � // 1R ∀s ∈ S.

Definition 1.7. Let C and C ′ be two R-coalgebras and let f : C // C ′ be an R-

module morphism. Then f is a coalgebra morphism if f preserves the comultiplication

and the counit, i.e. if the following diagrams commute:

C
f

//

∆C

��

C ′

∆C′

��

C ⊗ C f⊗f
// C ′ ⊗ C ′

C
f

//

εC

��

C ′

εC′

��

R R

With the Sweedler notation, the diagrams can be expressed by the equalities

f(c(1))⊗ f(c(2)) = f(c)(1) ⊗ f(c)(2) and εC′
(
f(c)

)
= εC(c).

Definition 1.8. Let C be an R-coalgebra and let I ⊆ C be an R-submodule. Then I

is

1. a right (resp. left) coideal of C if ∆(I) ⊆ I ⊗ C (resp. if ∆(I) ⊆ C ⊗ I),

2. a coideal (or a two-sided coideal) of C if ∆(I) ⊆ I ⊗ C + C ⊗ I and if ε(I) = 0.

9



1. Hopf algebras

If I is a right (resp. left) coideal of C, then ∆(I) ⊆ I ⊗ C ⊆ I ⊗ C + C ⊗ I (resp.

∆(I) ⊆ C⊗ I ⊆ I⊗C+C⊗ I). Therefore, any right (resp. left) coideal with ε(I) = 0

is also a coideal. Conversely, a coideal is not necessarily a right or left coideal.

Proposition 1.9. Let C be an R-coalgebra and let I ⊆ C be a coideal. Then there is

a canonical coalgebra structure on C/I such that the natural projection C // // C/I is

a coalgebra morphism.

Definition 1.10. Let C be an R-coalgebra and let C0 ⊆ C be an R-submodule. Then

C0 is a subcoalgebra of C if ∆(C0) ⊆ C0 ⊗ C0.

Proposition 1.11. Suppose C is flat over R. Let C and C ′ be two R-coalgebras and

let f : C // C ′ be a coalgebra morphism. Then Ker f is a coideal of C and Im f is a

subcoalgebra of C ′.

We would like to work with R-modules that have the structures of R-algebra and

R-coalgebra simultaneously. However, if the two structures are not compatible in

some way, we would not be able to say anything more than if we just looked at them

separately. This motivates the following definition.

Definition 1.12. An R-bialgebra B is an R-module which is both an R-algebra and

an R-coalgebra and which satisfy the following compatibility conditions:

1. ∆(bb′) = b(1)b
′
(1) ⊗ b(2)b

′
(2) ∀b, b′ ∈ B (µ and ∆ are compatible),

2. ε(bb′) = ε(b)ε(b′) ∀b, b′ ∈ B (µ and ε are compatible),

3. ∆(1B) = 1B ⊗ 1B (ι and ∆ are compatible),

4. ε(1B) = 1R (ι and ε are compatible).

Remark 1.13. If we endow B ⊗B with a structure of R-algebra given by

µB⊗B
(
(b1 ⊗ b′1)⊗ (b2 ⊗ b′2)

)
= b1b2 ⊗ b′1b′2 and ιB⊗B(1R) = 1B ⊗ 1B

and with a structure of R-coalgebra given by

∆B⊗B(b⊗ b′) = (b(1) ⊗ b′(1))⊗ (b(2) ⊗ b′(2)) and εB⊗B(b⊗ b′) = ε(b)ε(b′),

then the compatibility conditions can be reformulated by either of the following equiv-

alent statements:

1. ∆ and ε are algebra morphisms,

10



1.1. Basic definitions

2. µ and ι are coalgebra morphisms.

Example 1.14. Let S be a monoid (that is, a set with an associative operation and a

unit), then the R-algebra R[S] is also a cocommutative R-bialgebra if we endow R[S]

with the R-coalgebra structure as in Example 1.6.

Definition 1.15. Let B and B′ be two R-bialgebras and let f : B // B′ be an R-

module morphism. Then f is a bialgebra morphism if f is both an algebra morphism

and a coalgebra morphism.

Definition 1.16. Let B be an R-bialgebra and let I ⊆ B be an R-submodule. Then

I is a biideal of B if I is both an ideal and a coideal of B.

Proposition 1.17. Let B be an R-bialgebra and let I ⊆ B be a biideal. Then there is

a canonical bialgebra structure on B/I such that the natural projection B // // B/I is

a bialgebra morphism.

Definition 1.18. Let B be an R-bialgebra and let B0 ⊆ B be an R-submodule. Then

B0 is a subbialgebra of B if B0 is both a subalgebra and a subcoalgebra of B.

Proposition 1.19. Suppose B is flat over R. Let B and B′ be two R-bialgebras and

let f : B // B′ be a bialgebra morphism. Then Ker f is a biideal of B and Im f is a

subbialgebra of B′.

We will now define a special class of R-bialgebras which have an additional map

that will, in a way, play the role of the inversion in a group.

Definition 1.20. An R-Hopf algebra H is an R-bialgebra for which there exists an R-

module morphism S : H // H, called the antipode, such that the following diagram

commutes:

H ⊗H S⊗id
// H ⊗H

µ

##

H

∆

;;

ε //

∆

##

R
ι // H

H ⊗H id⊗S
// H ⊗H

µ

;;

With the Sweedler notation, this diagram can be expressed by the equality

S(h(1))h(2) = ι
(
ε(h)

)
= h(1)S

(
h(2)

)
.

11



1. Hopf algebras

Example 1.21. Let G be a group. By Example 1.14, we already know that the group

algebra R[G] is a cocommutative R-bialgebra. R[G] is also a cocommutative R-Hopf

algebra with antipode S defined by

S : R[G] // R[G] : σ � // σ−1 ∀σ ∈ G.

We will now see that the antipode of an R-Hopf algebra can alternatively be seen

as the inverse of an element in some ring.

Proposition 1.22. Let A be an R-algebra and let C be an R-coalgebra. Then we can

endow HomR(C,A), the set of R-linear maps from C to A, with a ring structure with

multiplication ∗ defined by

(f ∗ g)(x) = f(c(1))g(c(2)) ∀f, g ∈ HomR(C,A), ∀c ∈ C.

The identity of ∗ is given by ι ◦ ε ∈ HomR(C,A).

Definition 1.23. The multiplication ∗ is called the convolution product.

Proposition 1.24. Let H be an R-bialgebra, then H is an R-Hopf algebra with an-

tipode S if and only if S is the inverse of the identity map idH ∈ HomR(H,H) with

respect to the convolution product ∗, i.e. if and only if S ∗ idH = ι ◦ ε = idH ∗ S.

Corollary 1.25. If H is an R-Hopf algebra, then the antipode is unique.

Proposition 1.26. Let H be an R-Hopf algebra, then

(a) S(hh′) = S(h′)S(h) ∀h, h′ ∈ H,

(b) S(1H) = 1H ,

(c) ∆
(
S(h)

)
= S(h(2))⊗ S(h(1)) ∀h ∈ H,

(d) ε
(
S(h)

)
= ε(h) ∀h ∈ H.

Definition 1.27. Let H and H ′ be two R-Hopf algebras and let f : H // H ′ be an

R-module morphism. Then f is a Hopf algebra morphism if f is a bialgebra morphism.

Proposition 1.28. Let H,H ′ and f be defined as in the previous definition. Then

f ◦ SH = SH′ ◦ f .

Definition 1.29. Let H be an R-Hopf algebra and let I ⊆ H be an R-submodule.

Then I is a Hopf ideal of H if I is a biideal and if S(I) ⊆ I.

12



1.1. Basic definitions

Proposition 1.30. Let H be an R-Hopf algebra and let I ⊆ H be a Hopf ideal. Then

there is a canonical Hopf algebra structure on H/I such that the natural projection

H // // H/I is a Hopf algebra morphism.

Definition 1.31. Let H be an R-Hopf algebra and let H0 ⊆ H be an R-submodule.

Then H0 is a Hopf subalgebra of H if H0 is both a subbialgebra of H and if S(H0) ⊆ H0.

We say that H0 is a normal Hopf subalgebra if h(1)h
′S(h(2)) ∈ H0 ∀h ∈ H, ∀h′ ∈ H0.

Proposition 1.32. Suppose H is flat over R. Let H and H ′ be two R-Hopf algebras

and let f : H // H ′ be a Hopf algebra morphism. Then Ker f is a Hopf ideal of H

and Im f is a Hopf subalgebra of H ′.

We end this section with some properties that we will need later.

Definition 1.33. Let C be an R-coalgebra. An element c ∈ C is called grouplike if

∆(c) = c⊗ c and if ε(c) = 1R.

Lemma 1.34. Let K be a field and let C be a K-coalgebra.

(a) The set of grouplike elements of C is K-linearly independent. Moreover, if C = H

is a K-Hopf algebra, then the set of grouplike elements of H forms a group.

(b) If C has a K-basis of grouplike elements, then any subcoalgebra and any quotient

coalgebra of C also has a basis of grouplike elements.

Lemma 1.35. Let K be a field and let H be a K-Hopf algebra. Let I1 and I2 be two

Hopf ideals of H, then I1 + I2 is also a Hopf ideal of H. The same result holds for

(left and/or right) ideals and (left and/or right) coideals.

Lemma 1.36. Let K be a field and let H be a K-Hopf algebra. Let H1 and H2 be two

Hopf subalgebras of H, then H1 ∩H2 is also a Hopf subalgebra of H. The same result

holds for subalgebras, subcoalgebras, subbialgebras and normal Hopf subalgebras.

1.1.2 Action and coaction

In the same spirit as for Definition 1.1, we will reformulate the classical definition of

left (resp. right) modules over an R-algebra using diagrams. We will then define right

(resp. left) comodules over an R-coalgebra whose structure is the dual of that of left

(resp. right) modules.

13
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Definition 1.37. Let A be an R-algebra. A left A-module M is an R-module together

with an action α : A⊗M //M such that α is an R-module morphism and such that

the following diagrams commute:

A⊗ A⊗M µ⊗id
//

id⊗α

��

A⊗M

α

��

A⊗M α //M

A⊗M α //M

R⊗M

ι⊗id

OO

∼

;;

We define a right A-module in a similar way.

If A = H is an R-bialgebra and if the H-module M = S is an R-algebra, we

define a special case of H-modules for which the comultiplication (resp. counit) of H

is compatible with the multiplication (resp. unit) of S.

Definition 1.38. Let S be an R-algebra and let H be an R-bialgebra. Then S is a

left H-module algebra if

1. S is a left H-module (we will denote the action of h ∈ H on s ∈ S by h · s),

2. h · (ss′) = (h(1) · s)(h(2) · s′) ∀h ∈ H, ∀s, s′ ∈ S,

3. h · 1S = ε(h)1S ∀h ∈ H.

We define a right H-module algebra in a similar way.

Example 1.39. Let L/K be a Galois extension with Galois group G = Gal(L/K)

and let H = K[G], then L is a left K[G]-module algebra. Indeed, L is obviously a left

K[G]-module. Moreover,

σ(xy) = σ(x)σ(y) and σ(1) = 1 ∀σ ∈ G, ∀x, y ∈ L.

We will now take the duals of the diagrams of Definition 1.37 and Definition 1.38

to obtain the following definitions.

Definition 1.40. Let C be an R-coalgebra. A right C-comodule M is an R-module

together with a coaction ρ : M //M ⊗ C such that ρ is an R-module morphism and

such that the following diagrams commute:

M
ρ

//

ρ

��

M ⊗ C

ρ⊗id

��

M ⊗ C id⊗∆
//M ⊗ C ⊗ C

M
ρ

//M ⊗ C

id⊗ε

��

M ⊗R

∼

cc

14



1.1. Basic definitions

We define a left C-comodule in a similar way.

Example 1.41. Let C be an R-coalgebra. We can easily see that C is a left and right

C-comodule with coaction given by ∆.

As for the comultiplication, we will use the Sweedler notation for the image of an

element m ∈M by the coaction ρ:

ρ(m) = m[0] ⊗m[1] ∈M ⊗ C for a right C-comodule,

ρ(m) = m[−1] ⊗m[0] ∈ C ⊗M for a left C-comodule.

The diagrams of Definition 1.40 (for a right C-comodule) can thus be expressed by

the equalities

m[0][0] ⊗m[0][1] ⊗m[1] = m[0] ⊗m[1](1) ⊗m[1](2) ∀m ∈M

and

m = m[0]ε(m[1]) ∀m ∈M.

Just like we did with H-modules, if C = H is an R-bialgebra and if the H-comodule

M = S is an R-algebra, we define a special case for which the multiplication (resp.

unit) of H is compatible with the multiplication (resp. unit) of S.

Definition 1.42. Let S be an R-algebra and let H be an R-bialgebra. Then S is a

right H-comodule algebra if

1. S is a right H-comodule,

2. (ss′)[0] ⊗ (ss′)[1] = s[0]s
′
[1] ⊗ s[0]s

′
[1] ∀s, s′ ∈ S,

3. ρ(1S) = 1S ⊗ 1H .

We define a left H-comodule algebra in a similar way.

1.1.3 Duality

Let H be an R-Hopf algebra and let H∗ := HomR(H,R) be its dual. The dual of the

multiplication and the dual of the comultiplication are respectively

µ∗ : H∗ // (H ⊗H)∗ and ∆∗ : (H ⊗H)∗ // H∗.

15
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As we can see, µ∗ and ∆∗ do not give a comultiplication and a multiplication on H∗.

To properly define a structure of Hopf algebra on H∗, we need the R-module morphism

ϕ : M∗ ⊗M∗ // (M ⊗M)∗ : f ⊗ f ′ � //
(
m⊗m′ 7→ f(m)f ′(m′)

)
(1.1)

where M is any R-module. Note that, in general, ϕ is not bijective. However, there are

cases where ϕ is bijective, for example if M is a finitely generated projective R-module.

Also note that we have a natural R-module isomorphism

R
∼= // R∗ : a � //

(
b 7→ ab

)
.

Proposition 1.43. Let C be an R-coalgebra, then its dual C∗ can be endowed with a

structure of R-algebra:

1. the multiplication map is given by ∆∗ ◦ ϕ : C∗ ⊗ C∗ // (C ⊗ C)∗ // C∗ where

ϕ is defined as in (1.1),

2. the unit map is given by ε∗ : R
∼= // R∗ // C∗.

Remark 1.44. The algebra C∗ is commutative if and only if the coalgebra C is

cocommutative.

Let A be an R-algebra. Its dual A∗ is not, in general, an R-coalgebra because the

dual of the multiplication µ∗ : A∗ // (A⊗ A)∗ cannot be made into a comultiplication.

However, if A is finitely generated and projective as an R-module, then the map ϕ is

a bijection. We can thus define a comultiplication on A∗.

Proposition 1.45. Let A be an R-algebra that is finitely generated and projective as

an R-module, then its dual A∗ can be endowed with a structure of R-coalgebra:

1. the comultiplication map is given by ϕ−1 ◦ µ∗ : A∗ // (A⊗ A)∗ // A∗ ⊗ A∗
where ϕ is defined as in (1.1),

2. the counit map is given by ι∗ : A∗ // R∗
∼= // R.

Remark 1.46. If A is an R-algebra that is finitely generated and projective as an

R-module, then its double dual A∗∗ is naturally isomorphic to A. By Remark 1.44,

the coalgebra A∗ is cocommutative if and only if the algebra A is commutative.

Proposition 1.47. Let H be an R-Hopf algebra that is finitely generated and projective

as an R-module., then its dual H∗ is also an R-Hopf algebra that is finitely generated

and projective as an R-module. Moreover, its double dual H∗∗ is naturally isomorphic

to H as R-Hopf algebras.

16
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We will now look at the dual of C-comodules, H-comodule algebras, A-modules

and H-module algebras.

Proposition 1.48. Let C be an R-coalgebra and let M be a right C-comodule with

coaction ρ : M //M ⊗ C. Then M becomes a left C∗-module with action

C∗ ⊗M id⊗ρ
// C∗ ⊗M ⊗ C σ⊗id

//M ⊗ C∗ ⊗ C //M ⊗R
∼= //M :

f ⊗m � //m[0]f(m[1])

where σ is the switch map defined in Definition 1.3. Moreover, if C = H is also an

R-bialgebra and if M = S is also a right H-comodule algebra, then this action endows

S with a structure of left H∗-module algebra.

Proposition 1.49. Let A be an R-algebra that is finitely generated and projective as

an R-module and let M be a left A-module. Then M can be endowed with a structure

of right A∗-comodule. Let
{

(fi, ai)
}n
i=1
⊆ A∗×A be a projective coordinate system, so

that for every a ∈ A we have a =
∑n

i=1 fi(a)ai. Then M becomes a right A∗-comodule

with coaction

ρ : M //M ⊗ A∗ : m � //

n∑
i=1

(ai ·m)⊗ fi. (1.2)

Moreover, if A = H is also an R-bialgebra and if M = S is also a left H-module

algebra, then this coaction endows S with a structure of right H∗-comodule algebra.

We end this subsection with the definition of an alternative dual for an arbitrary

K-algebra when R = K is a field. This definition is due to Sweedler [Swe69].

Definition 1.50. Let A be a K-algebra. We say that an ideal I ⊆ A is cofinite if A/I

is finite dimensional. The Sweedler dual of a K-algebra A is

A◦ =
{
f ∈ A∗ |Ker f contains a cofinite ideal

}
.

Remark 1.51. The inclusion A◦ ⊆ A∗ is an equality if A is finite dimensional.

Lemma 1.52. Let A1 and A2 be two K-algebras, then A◦1⊗A◦2 = (A1⊗A2)◦. Moreover,

if f : A1
// A2 is a morphism of K-algebras, then f ∗(A◦2) ⊆ A◦1.

Proposition 1.53. Let A be a K-algebra, then A◦ can be endowed with a structure of

K-coalgebra:

1. the comultiplication map is given by µ∗|A◦ : A◦ // (A⊗ A)◦ = A◦ ⊗ A◦,
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1. Hopf algebras

2. the counit map is given by ι∗|A◦ : A◦ // K◦ = K∗
∼= // K.

Moreover, if A = H is a K-bialgebra (resp. K-Hopf algebra), then H◦ is also a

K-bialgebra (resp. K-Hopf algebra).

1.1.4 Limits and colimits

Let K be a field. It is well-known that the category AlgK of K-algebras is complete and

cocomplete, meaning that all categorical limits (such as products, equalizers, pullbacks

and inverse (or projective) limits) and all categorical colimits (such as coproducts, co-

equalizers, pushouts and inductive (or direct) limits) exist in AlgK . Since the forgetful

functor AlgK → Set preserves and creates limits, all limits can be computed in set-

theoretical terms, and be endowed with a suitable K-algebra structure. Colimits, on

the other hand, are more complicated to describe (the construction of coproducts, for

example is similar the construction of free products of groups). However, when we

restrict to the category of commutative algebras, then the situation becomes easier.

Indeed, the categorical coproduct of two K-algebras A and B is just the K-tensor

product A⊗B. More generally, the categorical pushout of morphisms of commutative

algebras f : E → A and g : E → B is given by the balanced tensor product A⊗E B.

The situation for coalgebras is maybe less known, although it is -as one could

expect- exactly dual to the situation of algebras. Indeed, any category of coalgebras

CoalgK has all colimits which can be computed in the underlying category of sets.

At least in the case when K is a field (or even more generally, when K is a regular

commutative ring, see e.g. [Por08] and [Ago11]) the category CoalgK also has all limits.

In case we restrict to the cocommutative coalgebras, then the categorical product of

two coalgebras C and D can be computed as the tensor product C⊗D, which becomes

a coalgebra by the following comultiplication

∆ : C ⊗D → C ⊗D ⊗ C ⊗D, ∆(c⊗ d) = c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2)

and counit

ε : C ⊗D → K, ε(c⊗ d) = εC(c)εD(d).

In this case, the natural projections πC : C ⊗D → C and πD : C ⊗D → D are given

by

πC(c⊗ d) = cεD(d) and πD(c⊗ d) = εC(c)d,

for all c ⊗ d ∈ C ⊗D. The pullback of two morphisms of cocommutative coalgebras

p1 : C → E and p2 : D → E, is given by the following subset of the product

C ⊗E D := {c⊗ d ∈ C ⊗D | c(1) ⊗ p1(c(2))⊗ d = c⊗ p2(d(1))⊗ d(2) ∈ C ⊗ E ⊗D}.
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Also the category of Hopf algebras HopfK is complete and cocomplete (see e.g.

[Por11] and [Ago11]). In fact, limits in HopfK can be computed in the same way as

limits in the category of coalgebras; colimits in HopfK can be computed on the un-

derlying algebras. In view of the above however, limits nor colimits of Hopf algebras

can in general be computed on their underlying sets. When we consider commutative

(respectively cocommutative) Hopf algebras, then coproducts and pushouts (respec-

tively, products and pullbacks) have the same simplified description as in the under-

lying category of commutative algebras (respectively cocommutative coalgebras), as

given above.

1.2 Invariants and coinvariants

In this section, we will state an important correspondence between ideals and subal-

gebras of a Hopf algebra.

Throughout this section, K will be a field and H will be a K-Hopf algebra. Un-

adorned tensors are assumed to be taken over K unless specified otherwise.

Definition 1.54. Let L be a left H-module and let F ⊆ H be a subset. We define

the set of left F -invariants of L by

LF =
{
x ∈ L |h · x = ε(h)x ∀h ∈ F

}
.

If L is a right H-module, we define the set of right F -invariants in a similar way.

Definition 1.55. Let L be a right H-comodule, let V be a K-vector space and

let f : H // V be a morphism of K-vector spaces. We define the set of right V -

coinvariants of L by

LcoV =
{
x ∈ L |x[0] ⊗ f(x[1]) = x⊗ f(1H)

}
.

If L is a left H-module, we define the set of left V -coinvariants in a similar way but it

will be noted coVL.

Definition 1.56. Let H be a K-Hopf algebra. We define the pair of maps{
I ⊆ H left ideal two-sided coideal

} ϕ
//
{
A ⊆ H right coideal subalgebra

}
ψ

oo

in the following way:
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1. let I ⊆ H be a left ideal two-sided coideal and let π : H // // H/I be the natural

projection, then ϕ(I) is the set of left H/I-coinvariants of H:

ϕ(I) = coH/IH :=
{
h ∈ H |π(h(1))⊗ h(2) = π(1H)⊗ h

}
;

2. let A ⊆ H be a right coideal subalgebra, then ψ(A) is the left H-module gener-

ated by A+ :=
{
a ∈ A | ε(a) = 0

}
:

ψ(A) = HA+.

In general, the maps ϕ and ψ are not inverse bijections but they satisfy the following

property:

A ⊆ ϕ(I) ⇐⇒ I ⊆ ψ(A).

In some particular cases, ϕ and ψ are known to be inverse bijections.

Theorem 1.57. ([New75], [Sch90, Thm. 4.15]) Let H be a cocommutative K-Hopf

algebra, then the pair of maps{
I ⊆ H left ideal two-sided coideal

} ϕ
//
{
A ⊆ H Hopf subalgebra

}
,

ψ
oo

where ϕ and ψ are defined as in Definition 1.56, are inverse bijections.

Theorem 1.58. ([Mon93, Thm. 3.4.6]) The bijective correspondence from Theorem

1.57 can be restricted to a bijective correspondence between the Hopf ideals and the

normal Hopf subalgebras of a cocommutative K-Hopf algebra H:{
I ⊆ H Hopf ideal

} ϕ
//
{
A ⊆ H normal Hopf subalgebra

}
.

ψ
oo

1.3 Hopf-Galois extensions

Let L/K be a finite separable field extension and let G = Aut(L/K). From the linear

independence of characters, the morphism of K-vector spaces defined by

can : L[G] // EndK(L) : xσ � //
(
y 7→ xσ(y)

)
(1.3)

from the group algebra K[G] to the ring of K-linear endomorphisms EndK(L) is

injective. Furthermore, can is bijective if and only if L[G] and EndK(L) have the

same dimension as L-vector spaces, i.e. if and only if #G = [L : K]. We thus have

the following result.
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Proposition 1.59. Let L/K be a finite separable field extension and let can be the

map defined in (1.3). Then can is bijective if and only if L/K is Galois.

We can thereby substitute the normality of the finite separable field extension L/K

in Galois theory by the bijectivity of can. Chase and Sweedler [CS69] used this result

to extend Galois theory to commutative rings with action given by a Hopf algebra.

Definition 1.60. Let R be a commutative ring with unity, let S be a commutative

R-algebra that is finitely generated and projective as an R-module and let H be an

R-Hopf algebra. Then S/R is a Hopf-Galois extension with Hopf algebra H, or simply

H-Galois, if S is a left H-module algebra and if the map

can : S ⊗H // EndR(S) : s⊗ h � //
(
t 7→ s(h · t)

)
(1.4)

is an isomorphism of R-modules.

Remark 1.61. Let L/K be a finite Galois extension with Galois groupG = Gal(L/K).

Taking R = K, S = L and H = K[G] in the previous definition recovers Proposition

1.59. Therefore, every finite Galois extension of fields L/K is K[G]-Galois.

In [GP87], Greither and Pareigis showed an example of a finite non-Galois extension

that is Hopf-Galois.

Example 1.62. Let K = Q, ω = 3
√

2 and L = Q(ω). Let us define the following

linear maps c, s : L→ L by

c(1) = 1, c(ω) = −1
2
ω, c(ω2) = −1

2
ω2,

s(1) = 0, s(ω) = 1
2
ω, s(ω2) = −1

2
ω2.

Straightforward calculations show that, for all x, y ∈ Q(ω), we have

c(xy) = c(x)c(y)− 3s(x)s(y) and s(xy) = c(x)s(y) + s(x)c(y).

Let H = Q[c, s]/
(
3s2 + c2 − 1, (2c + 1)s, (2c + 1)(c − 1)

)
, ∆(c) = c ⊗ c − 3s ⊗ s,

∆(s) = c⊗ s+ s⊗ c, ε(c) = 1 and ε(s) = 0, then L/K is a finite H-Galois extension.

It is possible to make the isomorphism of R-modules can into an isomorphism of

R-algebras if we define a suitable multiplication on S ⊗H.

Definition 1.63. Let S be a left H-module algebra. We define the smash product

S#H to be the R-algebra which as R-module is S⊗H (we will write s#h ∈ S#H for

the element corresponding to s⊗ h ∈ S ⊗H) and with multiplication defined by

(s#h)(s′#h′) = s(h(1) · s′)#h(2)h
′ ∀s, s′ ∈ S, ∀h, h′ ∈ H

and with unit 1S#1H .
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Corollary 1.64. Let S/R be an H-Galois extension, then can : S#H // EndR(S) is

an isomorphism of R-algebras.

Proof. Let s, s′, t ∈ S and h, h′ ∈ H, then

can
(
(s#h)(s′#h′)

)
(t) = can

(
s(h(1) · s′)#h(2)h

′)(t) = s(h(1) · s′)(h(2)h
′ · t)

= s
(
h ·
(
s′(h′ · t)

))
= can(s#h)can(s′#h′)(t)

and

can(1S#1H)(t) = 1S(1H · t) = t.

We end this section with some useful results on H-Galois extensions.

Proposition 1.65. Let S/R be an H-Galois extension, then SH = R.

Proof. For all h ∈ H and for all s ∈ R, we have h · s = ε(h)s. Thus, R ⊆ SH .

Conversely, let s ∈ SH , then for all t ∈ S and for all h ∈ H we have

(t#h)(s#1H) =
(
t(h(1) · s)

)
#h(2) =

(
tε(h(1))s

)
#h(2) = st#h = (s#1H)(t#h).

Therefore, can(s#1H) commutes with can(t#h) for all t ∈ S and for all h ∈ H. By

the bijectivity of can, we can conclude that can(s#1H) is in the center of EndR(S),

which is R. So, s ∈ R.

Proposition 1.66. [Chi89, Prop. 2.9] Let K be a field and let H be a K-bialgebra.

Suppose that L/K is a finite field extension such that L is a left H-module algebra and

define can : L⊗H // EndK(L) as in (1.4). Let ρ : L // L⊗H∗ : x � // x[0] ⊗ x[1] be

the right coaction as defined in (1.2) and define

j : L⊗ L // L⊗H∗ : x⊗ y � // xy[0] ⊗ y[1].

Then can is bijective if and only if j is bijective.

Proposition 1.67. [Sch97] Let L/K be a finite field extension and let H be a K-

bialgebra. Suppose L is a left H-module algebra such that can : L⊗H // EndK(L),

as defined in (1.4), is bijective. Then H is a K-Hopf algebra.

Proposition 1.68. Let H be a K-Hopf algebra and let L/K be a finite field extension

that is H-Galois. Then H is cocommutative.
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Proof. Using the fact that L/K is H-Galois in the first and third isomorphism, the

fact that L/K is finite in the second isomorphism and the Hom-tensor relations in the

last isomorphism, we obtain a natural isomorphism

L⊗H ⊗H ∼= HomK(L,L)⊗H ∼= HomK(L,L⊗H)

∼= HomK

(
L,HomK(L,L)

) ∼= HomK(L⊗ L,L).

The composed isomorphism α : L⊗H ⊗H // HomK(L⊗ L,L) is given explicitly by

α(x⊗ h⊗ h′)(y ⊗ z) = x(h · y)(h′ · z).

By the commutativity of L, it is clear that for all x, y, z ∈ L and for all h ∈ H,

x(h(1) · y)((h(2) · z) = xh · (yz) = xh · (zy)

= x(h(1) · z)((h(2) · y) = x(h(2) · y)((h(1) · z).

This means that α(x⊗ h(1) ⊗ h(2)) = α(x⊗ h(2) ⊗ h(1)) and since α is an isomorphism

we also have that x ⊗ h(1) ⊗ h(2) = x ⊗ h(2) ⊗ h(1). Since K is a field, it follows that

h(1) ⊗ h(2) = h(2) ⊗ h(1), hence H is cocommutative.

1.4 Hopf-Galois descent

Let L/K be a field extension, we can consider the extension-of-scalars functor

L⊗− : VectK // VectL : V � // L⊗ V

from the category of K-vector spaces to the category of L-vector spaces. The action

of L on L⊗ V is given by

x(y ⊗ v) = xy ⊗ v ∀x, y ∈ L, ∀v ∈ V.

Let H be a K-Hopf algebra and suppose that L is a left H-module algebra. Con-

sider the K-algebra L#H. Then a left L#H-module M is an L-vector space which is

also a left H-module and such that the actions of L and H on M satisfy the following

compatibility condition:

h · (xm) = (h(1) · x)(h(2) ·m) ∀h ∈ H, ∀x ∈ L, ∀m ∈M. (1.5)

Lemma 1.69. Let L/K be a field extension, let V be a K-vector space and let H be

a K-Hopf algebra. Suppose that L is a left H-module algebra. Define the action of H

on L⊗ V by

h · (y ⊗ v) = (h · y)⊗ v ∀h ∈ H, ∀y ∈ L, ∀v ∈ V.

Then L⊗ V is a left L#H-module.
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Proof. Let h ∈ H, x, y ∈ L and v ∈ V , then

h ·
(
x(y ⊗ v)

)
= h · (xy ⊗ v) = (h · xy)⊗ v = (h(1) · x)(h(2) · y)⊗ v
= (h(1) · x)

(
(h(2) · y)⊗ v

)
= (h(1) · x)

(
h(2) · (y ⊗ v)

)
.

Hence (1.5) is satisfied.

Therefore, the extension-of-scalars functor can be written as

L⊗− : VectK //
L#HMod : V � // L⊗ V

from the category of K-vector spaces to the category of left L#H-modules.

Suppose now that M is a left L#H-module, is it possible to find a K-vector space

V such that L ⊗ V ∼= M as L#H-modules? The following proposition answers this

question in the case where L/K is a finite dimensional H-Galois extension.

Proposition 1.70. [CS69, Thm. 9.6] Let L/K be a field extension and let H be a

finite dimensional K-Hopf algebra. Suppose that L is a left H-module algebra. Then

L/K is an H-Galois extension if and only if the pair of functors

L⊗− : VectK
//
L#HMod : (−)Hoo

defines an equivalence of categories.

In fact, the above equivalence of categories has a richer structure. The category

L#HMod is monoidal by means of the tensor product over L. Indeed, let M and N

be two left L#H-modules, then we can define the following action of H on the tensor

product M ⊗L N :

h · (m⊗ n) = (h(1) ·m)⊗ (h(2) · n) ∀h ∈ H, ∀m ∈M, ∀n ∈ N.

This action is well-defined because for any x ∈ L we have

h · (xm⊗ n) =
(
h(1) · (xm)

)
⊗ (h(2) · n) = (h(1) · x)(h(2) ·m)⊗ (h(3) · n)

= (h(2) ·m)⊗ (h(1) · x)(h(3) · n) = (h(1) ·m)⊗ (h(2) · x)(h(3) · n)

= (h(1) ·m)⊗ (h(2) · xn) = h · (m⊗ xn)

where we used the cocommutativity of H (Proposition 1.68) in the 4th equality. A

similar computation shows that the actions of L and H on M⊗LN satisfy the compat-

ibility condition (1.5). With this monoidal structure, the extension-of-scalars functor
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L⊗− : VectK //
L#HMod is a strict monoidal functor (with the usual tensor product

in VectK). Indeed, let V and W be two K-vector spaces, then there is an isomorphism

of L-vector spaces

α : L⊗ (V ⊗W )
∼= // (L⊗ V )⊗L (L⊗W ) : x⊗ (v ⊗ w) � // (x⊗ v)⊗ (1⊗ w).

It is an isomorphism of H-modules because

α
(
h ·
(
x⊗ (v ⊗ w)

))
= α

(
(h · x)⊗ (v ⊗ w)

)
=
(
(h · x)⊗ v

)
⊗ (1⊗ w)

and

h · α
(
x⊗ (v ⊗ w)

)
= h ·

(
(x⊗ v)⊗ (1⊗ w)

)
=
(
h(1) · (x⊗ v)

)
⊗
(
h(2) · (1⊗ w)

)
=
(
(h(1) · x)⊗ v

)
⊗
(
(h(2) · 1)⊗ w

)
=
(
(h(1) · x)⊗ v

)
⊗
(
ε(h(2))1⊗ w

)
=
(
ε(h(2))(h(1) · x)⊗ v

)
⊗ (1⊗ w) =

(
(h · x)⊗ v

)
⊗ (1⊗ w).

We can therefore conclude the following proposition.

Proposition 1.71. Let L/K be a finite dimensional H-Galois extension, then the

equivalence of categories given in Proposition 1.70 is a monoidal equivalence.

Let L/K be a finite Galois extension with Galois group G = Gal(L/K) and let M

be a left L#K[G]-module. Then the set of left K[G]-invariants of M is

MK[G] :=
{
m ∈M |h ·m = ε(h)m ∀h ∈ K[G]

}
=

{
m ∈M |σ(m) = m ∀σ ∈ G

}
.

We can thus reformulate the equivalence of monoidal categories in the following way.

Definition 1.72. Let G be a group and let M be a left G-module. We define the set

of left G-invariants of M by

MG =
{
m ∈M |σ(m) = m ∀σ ∈ G

}
.

Corollary 1.73. Let L/K be a finite Galois extension with Galois group G = Gal(L/K),

then the pair of functors

L⊗− : VectK
//
L#K[G]Mod : (−)Goo

defines an equivalence of monoidal categories.
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2

Finite Hopf-Galois theory for separable field
extensions

2.1 Introduction

Let L/K be a finite field extension. We start by recalling the Fundamental Theorem

of Galois Theory.

Theorem 2.1. (Fundamental Theorem of Galois Theory) Let L/K be a finite Galois

extension with Galois group Gal(L/K) = G, then the maps{
G0 ⊆ G subgroup

} fix
//
{
L/L0/K intermediate field

}
ann
oo

defined by

fix(G0) =
{
x ∈ L |σ(x) = x ∀σ ∈ G0

}
=: LG0

and

ann(L0) =
{
σ ∈ G |σ(x) = x ∀x ∈ L0

}
= Gal(L/L0)

are inverse bijections and inclusion reversing. Moreover, L0/K is Galois if and only

if Gal(L/L0) is a normal subgroup of G.

It is natural to ask whether it is possible to generalize Theorem 2.1 to Hopf-Galois

extensions. The following proposition, due to Chase and Sweedler [CS69], gives a

beginning of an answer.

Proposition 2.2. Let L/K be a finite H-Galois extension. For a Hopf subalgebra

H0 ⊆ H we define

Fix(H0) =
{
x ∈ L |h · x = ε(h)x ∀h ∈ H0

}
=: LH0 .
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Then the map{
H0 ⊆ H Hopf subalgebra

}
//
{
L/L0/K intermediate field

}
is injective and inclusion-reversing.

If L/K is a finite Galois extension with Galois group Gal(L/K) = G, then it is also

H-Galois with H = K[G]. Recall that, in this case, every Hopf subalgebra H0 ⊆ H is

of the form K[G0] for some subgroup G0 ⊆ G (see Lemma 1.34). Conversely, K[G0] is

a Hopf subalgebra for every subgroup G0 ⊆ G. In this context, the maps fix defined in

Theorem 2.1 and Fix defined in Proposition 2.2 coincide: for every subgroup G0 ⊆ G

we have

Fix
(
K[G0]

)
=

{
x ∈ L |h · x = ε(h)x ∀h ∈ K[G0]

}
=

{
x ∈ L |σ · x = ε(σ)x ∀σ ∈ G0

}
=

{
x ∈ L |σ(x) = x ∀σ ∈ G0

}
= fix(G0).

The map Fix is therefore bijective.

A major difference between Galois theory and Hopf-Galois theory is that Fix may

not be bijective.

In this chapter, we will give a characterization of the intermediate fields of the

form Fix(H0) for some Hopf subalgebra H0 ⊆ H. We will also characterize the inter-

mediate fields of the form Fix(I) for some Hopf ideal I ⊆ H. We will then state and

prove the Fundamental Theorem of Hopf-Galois Theory (Theorem 2.31) which is the

generalization of Theorem 2.1 for Hopf-Galois extensions.

Throughout this chapter, L/K will be a finite separable H-Galois extension. Un-

adorned tensors are assumed to be taken over K unless specified otherwise.

2.2 The Greither-Pareigis group

In this section, we introduce an important group associated to a finite separable H-

Galois extension L/K. This group, due to Greither and Pareigis [GP87], will allow us

to work with Hopf-Galois extensions using classical Galois theory.

Throughout this section, we will adopt the following notations:
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1. L/K is a finite separable H-Galois extension;

2. L̃/K is a finite Galois extension containing L/K;

3. G = Gal(L̃/K), G′ = Gal(L̃/L);

4. X = G/G′ is the set of G′-cosets of G (elements of X are of the form σG′ with

σ ∈ G).

The field extensions and Galois groups are summarized in the following diagram:

L̃

G′

G L

K

Definition 2.3. We define the left translation map by the action of G on X:

λ : G // Perm(X) : σ � //
(
τG′ 7→ στG′

)
where Perm(X) is the group of permutations of X.

Definition 2.4. Let A be a set. A subgroup N ⊆ Perm(A) is called regular if, for

every a, b ∈ A, there exists a unique ν ∈ N such that ν(a) = b.

Remark 2.5. If A is a finite set, then N ⊆ Perm(A) is regular if and only if N is

transitive and #N = #A.

Theorem 2.6. [GP87, Thm. 2.1] Let L/K be a finite separable field extension. Then

there is a correspondence between the Hopf-Galois structures on L/K and the subgroups

N ⊆ Perm(X) that are regular and normalized by λ(G).

To better understand this theorem, we need the following results. Complete proofs

of these results can be found in [Chi89].

Let XL̃ = Map(X, L̃) be the set of maps from X to L̃. For every σG′ ∈ X, we

define the map

uσG′ : X // L̃ : τG′ � //

{
1 if σG′ = τG′,

0 if σG′ 6= τG′.
(2.1)
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Then, XL̃ is generated as an L̃-vector space by the set
{
uσG′ |σG′ ∈ X

}
. Moreover,

XL̃ is an L̃-algebra whose multiplication is

XL̃⊗XL̃ // XL̃ : uσG′ ⊗ uτG′ � //

{
uσG′ if σG′ = τG′,

0 if σG′ 6= τG′,

and whose unit element is

1XL̃ =
∑
σG′∈X

uσG′ .

If we define an action of G on XL̃ by

σ(x.uτG′) = σ(x).uστG′ ∀σ ∈ G,∀x ∈ L̃,∀τG′ ∈ X, (2.2)

then XL̃ becomes a G-module.

The following lemma shows how, from an H-Galois extension L/K, we obtain a

subgroup N ⊆ Perm(X).

Lemma 2.7. (a) The map

βL : L̃⊗ L
∼= // XL̃ : x⊗ y � //

∑
σG′∈X

xσ(y).uσG′ (2.3)

is an isomorphism of L̃-algebras and G-modules where G acts on L̃ ⊗ L via the

left factor.

(b) There is an isomorphism of L̃-Hopf algebras

βH : L̃⊗H
∼= // L̃[N ] (2.4)

where N is a group of order [L : K].

(c) Define the action α̃ : L̃[N ]⊗
L̃

XL̃→ XL̃ by the diagram

L̃[N ]⊗
L̃

XL̃
α̃ // XL̃

(L̃⊗H)⊗
L̃

(L̃⊗ L)

βH⊗
L̃

βL ∼=

OO

∼= // L̃⊗ (H ⊗ L)
id⊗α

// L̃⊗ L

βL ∼=

OO

Then, the extension XL̃/L̃ is L̃[N ]-Galois and the action α̃ identifies N as a

subgroup of Perm(X) which is regular and normalized by λ(G).
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Proof. See [GP87] Lemma 1.2, Proposition 1.3 and Theorem 3.1.

Remark 2.8. If N ⊆ Perm(X) is normalized by λ(G), then L̃[N ] becomes a G-module

with action given by

G× L̃[N ] // L̃[N ] : (σ, x.ν) � // σ(x.ν) = σ(x).
(
λ(σ)νλ(σ−1)

)
(2.5)

for all σ ∈ G, x ∈ L̃ and ν ∈ N . With this action, βH becomes a morphism of

G-modules.

Conversely, let N be any subgroup of Perm(X). We define the action

α̂ : L̃[N ]⊗
L̃

XL̃ // XL̃ : (x.ν)⊗ (y.uσG′)
� // (xy).uν(σG′). (2.6)

Lemma 2.9. (a) The action α̂ endows XL̃ with a structure of left L̃[N ]-module alge-

bra.

(b) If N ⊆ Perm(X) is regular, then XL̃/L̃ is an L̃[N ]-Galois extension.

(c) Additionally, if N is normalized by λ(G), then L̃[N ] is a G-module with action

given by (2.5). Recall that XL̃ is also a G-module with action defined by (2.2).

Restricting α̂ to the set of G-invariants gives the action

α̂G :
(
L̃[N ]

)G ⊗ (XL̃)G // (XL̃)G

making (XL̃)G/K into an
(
L̃[N ]

)G
-Galois extension. Moreover, H =

(
L̃[N ]

)G
is a K-Hopf algebra and the restriction of βL on 1L̃ ⊗ L gives the isomorphism

L ∼= (XL̃)G.

Proof. See [GP87] Theorem 3.1.

Example 2.10. Let L/K be a finite Galois extension with Galois groupG = Gal(L/K).

Let L̃ = L, then G = Gal(L̃/K) and G′ = Gal(L̃/L) = {id}, so X = G/G′ = G.

(1) Define Nρ = ρ(G) ⊆ Perm(G) where

ρ : G // Perm(G) : σ � //
(
τ 7→ τσ−1

)
is the right translation map. Obviously, Nρ ⊆ Perm(G) is regular and normalized

by λ(G) (it is even centralized by λ(G)). Its associated Hopf algebraH =
(
L[Nρ]

)G
is the set of

∑
σ∈G xσ.σ ∈ L[Nρ] such that for every τ ∈ G:

τ
(∑
σ∈G

xσ.σ
)

=
∑
σ∈G

τ(xσ).σ =
∑
σ∈G

xσ.σ ⇐⇒ τ(xσ) = xσ ∀σ ∈ G.

31



2. Finite Hopf-Galois theory for separable field extensions

Thus, H = K[G]. By (2.3) and (2.6), the action of τ ∈ G on x ∈ L is given by

τ
(∑
σ∈G

σ(x).uσ

)
︸ ︷︷ ︸

=βL(1
L̃
⊗x)

=
∑
σ∈G

σ(x).uστ−1 =
∑
σ∈G

στ(x).uσ.︸ ︷︷ ︸
=βL(1

L̃
⊗τ(x))

Therefore, the action of K[G] on L is just given by the action of G on L.

(2) Define Nλ = λ(G) ⊆ Perm(G). Obviously, Nλ ⊆ Perm(G) is regular and normal-

ized by λ(G). Its associated Hopf algebra is H =
(
L[Nλ]

)G
. If G is an abelian

group, then H =
(
L[Nλ]

)G
=
(
L[Nρ]

)G
= K[G]. Otherwise, this is another

Hopf-Galois structure on L/K.

Definition 2.11. The Hopf-Galois structure on L/K given by Nρ is called the canon-

ical classical Hopf-Galois structure and the one given by Nλ is called the canonical

nonclassical Hopf-Galois structure. These two structures coincide if and only if L/K

is an abelian extension.

We will study in more detail the canonical classical and nonclassical Hopf-Galois

structures in section §2.9.

We continue this section with a result that will be important later. Consider the

diagram

N //

f

))
Perm(X)

φ 7→φ(1GG
′)
// // X // HomK(L, L̃)

V

OO

G

λ

ff

pr

OOOO

// EndK(L̃)

OOOO

Then, any subgroup V of N can be seen as a subset of HomK(L, L̃). The next lemma

shows that there exists a subgroup of G whose image in HomK(L, L̃) is the same as

the image of V in HomK(L, L̃).

Lemma 2.12. Let V ⊆ N ⊆ Perm(X) be a subgroup which is normalized by λ(G).

Define

S = pr−1
(
f(V )

)
=
{
σ ∈ G | ∃v ∈ V : v(1GG

′) = σG′
}
.

Then S is a subgroup of G containing G′ and #S = #G′.#V . Moreover, the images

of V and S in HomK(L, L̃) coincide.
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Proof. As 1N ∈ V , it follows that G′ ⊆ S.

1. Let σ ∈ S and take v ∈ V such that v(1GG
′) = σG′. Since V is normalized by

λ(G), we know that λ(σ−1)v−1λ(σ) ∈ V . Applying it to G′, we get(
λ(σ−1)v−1λ(σ)

)
(1GG

′) =
(
λ(σ−1)v−1

)
(σG′) = λ(σ−1)(1GG

′) = σ−1G′.

So, σ−1 ∈ S.

2. Let σ1, σ2 ∈ S and take v1, v2 ∈ V such that v1(1GG
′) = σ1G

′, v2(1GG
′) = σ2G

′.

We have λ(σ1)v2λ(σ−1
1 )v1 ∈ V . So,(

λ(σ1)v2λ(σ−1
1 )v1

)
(1GG

′) =
(
λ(σ1)v2λ(σ−1

1 )
)
(σ1G

′)

=
(
λ(σ1)v2

)
(1GG

′) = λ(σ1)(σ2G
′) = σ1σ2G

′.

This shows that σ1σ2 ∈ S.

To prove that #S = #G′.#V , just remark that the map f |V : V → X is injective and

that the kernel of pr : G� X is G′. Finally, f(V ) = pr(S) so V and S must have the

same image in HomK(L, L̃).

The problem of determining all the possible Hopf-Galois structures on a finite sep-

arable extension L/K using Theorem 2.6 is a difficult one since the number of regular

subgroups of Perm(X) grows quickly as the dimension [L : K] increases. In [Byo96],

Byott translated the search of subgroups N ⊆ Perm(X) regular and normalized by

λ(G) into a search of embeddings G→ NoAut(N) satisfying some stability condition.

An application of this result is given by Byott’s Uniqueness Theorem.

Theorem 2.13 ([Byo96]). A finite Galois field extension L/K with Galois group G

has unique Hopf-Galois structure (the one given by K[G]) if and only if #G is a

Burnside number.

2.3 H -subextensions and H -stable extensions

Throughout this section, let L/K be a finite H-Galois extension where H is a K-Hopf

algebra and let L0 be an intermediate field of L/K. We will introduce the notion of

H-subextension (Definition 2.16) and H-stable intermediate field (Definition 2.20).

Definition 2.14. The annihilator of L0 is the K-vector space defined by

AnnH(L0) =
{
h ∈ H |h · x = 0 ∀x ∈ L0

}
.
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We can see AnnH(L0) as the kernel of the morphism of K-vector space

α0 : H // HomK(L0, L) : h � //
(
x 7→ h · x

)
. (2.7)

If we denote by h the image of h ∈ H by the natural projection H � H/AnnH(L0),

then the morphism of K-vector spaces

α′0 : H/AnnH(L0) // HomK(L0, L) : h � //
(
x 7→ h · x

)
(2.8)

is injective.

Lemma 2.15. The morphism of L-vector spaces

can0 : L⊗H/AnnH(L0) // HomK(L0, L) : x⊗ h � //
(
y 7→ x(h · y)

)
(2.9)

is surjective.

Proof. This follows from the commutative diagram

L⊗H can

∼
//

����

EndK(L)

����

L⊗H/AnnH(L0)
can0 // HomK(L0, L)

where the vertical maps are the obvious surjection.

Definition 2.16. We say that L0 is an H-subextension if the following property holds:

if F ⊆ H is a subset whose image under α0 (as defined in (2.7)) is K-linearly inde-

pendent, then α0(F ) is also L-linearly independent.

Example 2.17. Let L/K be a finite Galois extension with Galois groupG = Gal(L/K)

and letH = K[G], then it is clear that any intermediate extension is anH-subextension.

Lemma 2.18. The following statements are equivalent:

(a) L0 is an H-subextension;

(b) there is a subset F ⊆ H whose image under α0 (as defined in (2.7)) is L-linearly

independent and generates α0(H) as a K-vector space;

(c) the map can0 (as defined in (2.9)) is injective (and hence bijective by Lemma 2.15).
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Proof. (a) ⇒ (b): Let B be a K-basis of H, then there exists a subset B0 ⊆ B such

that α0(B0) is a K-basis of α0(H). Since L0 is an H-subextension, α0(B0) is also

L-linearly independent in HomK(L0, L).

(b) ⇒ (c): Let F be the image of F under the natural projection H � H/AnnH(L0).

Then any element u in L⊗H/AnnH(L0) can be written in the form u =
∑

h∈F xh⊗ h
for some xh ∈ L. Since the set α0(F ) is L-linearly independent, if can0(u) = 0, then

all xh = 0 and therefore u = 0. Hence can0 is injective.

(c) ⇒ (a): Let F ⊆ H be a subset whose image under α0 is K-linearly independent.

The injectivity of the map can0 implies that any K-linearly independent subset of

α′0
(
H/AnnH(L0)

)
is L-linearly independent. Since α0(F ) lies in α′0

(
H/AnnH(L0)

)
,

this proves that α0(F ) is L-linearly independent.

Remark 2.19. By Lemma 2.15, for any intermediate field L0 of L/K we always have

dimK

(
L⊗H/AnnH(L0)

)
≥ dimK

(
HomK(L0, L)

)
or equivalently dimK

(
AnnH(L0)

)
≤

[L : K] − [L0 : K], and by Lemma 2.18, the equality holds if and only if L0 is

an H-subextension. Thus the H-subextensions are the intermediate fields L0 whose

annihilator AnnH(L0) is “big enough”.

Definition 2.20. We say that L0 is H-stable if H ·L0 ⊆ L0. If, furthermore, L0 is an

H-subextension, we say that L0 is H-normal.

Example 2.21. Let L/K be a finite Galois extension with Galois groupG = Gal(L/K)

and let H = K[G], then an intermediate field L0 is H-stable if and only if L0/K is

Galois. By Example 2.17, L0 is H-normal if and only if L0/K is Galois. Hence, L0 is

H-normal if and only if it is normal in the classical sense.

Lemma 2.22. If L0 is H-stable, then the map can0 (as defined in (2.9)) induces a

well-defined morphism of K-vector spaces

can′0 : L0 ⊗H/AnnH(L0) // EndK(L0) : x⊗ h � //
(
y 7→ (x(h · y))

)
(2.10)

which is surjective. If, furthermore, L0 is an H-subextension, then can′0 is a bijection.

Proof. By the definition of H-stable, the map L0⊗H/AnnH(L0)→ EndK(L0) is well-

defined. To see that it is surjective, recall can0 from Lemma 2.15 and consider the

following surjective morphism of L-vector spaces:

L ⊗
L0

(
L0 ⊗H/AnnH(L0)

) ∼= L⊗H/AnnH(L0)
can0 // // HomK(L0, L) ∼= L ⊗

L0

EndK(L0) :

x ⊗
L0

u � // x ⊗
L0

can′0(u).
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2. Finite Hopf-Galois theory for separable field extensions

As L0 → L is faithfully flat, the surjectivity of can′0 follows. If, furthermore, L0 is

also an H-subextension, then the above map is a bijection by Lemma 2.18. Therefore,

can′0 is also a bijection.

The next proposition is the first key result of the correspondence theorem for finite

separable Hopf-Galois extensions 2.31.

Proposition 2.23. (a) If L0 is any intermediate field, then AnnH(L0) is a left ideal

in H such that ε
(
AnnH(L0)

)
= 0.

(b) If L0 is an H-subextension, then AnnH(L0) is a left ideal two-sided coideal in H.

(c) If L0 is H-stable, then AnnH(L0) is a (two-sided) ideal in H.

(d) If L0 is H-normal, then L0/K is H/AnnH(L0)-Galois and AnnH(L0) is a Hopf

ideal in H.

Proof. (a) For any h ∈ H, h′ ∈ AnnH(L0) and x ∈ L0 we have

(hh′) · x = h · (h′ · x) = h · 0 = 0.

Therefore, hh′ ∈ AnnH(L0). Moreover, since 1 ∈ L0,

0 = h′ · 1 = ε(h′)1.

So, ε(h′) = 0.

(b) We need to prove that ∆
(
AnnH(L0)

)
⊆ H⊗AnnH(L0)+AnnH(L0)⊗H. We note

π : H // // H/AnnH(L0) : h � // h

the natural projection. Let h ∈ AnnH(L0) and let {h1, ..., hm} be any K-basis

of H/AnnH(L0). Then there exist elements h
′
1, ..., h

′
m ∈ H/AnnH(L0) such that

(π ⊗ π)∆(h) = h(1) ⊗ h(2) =
∑m

i=1 h
′
i ⊗ hi. For any x, y ∈ L0, we find

can0

( m∑
i=1

(h
′
i · x)⊗ hi

)
(y) =

m∑
i=1

(h
′
i · x)(hi · y) = h · (xy) = 0.

Since can0 is injective by Lemma 2.18, we obtain that
∑m

i=1(h
′
i · x) ⊗ hi = 0.

Because the elements hi form a K-basis of H/AnnH(L0), it follows that h
′
i · x = 0

∀x ∈ L0, hence (since α′0 from (2.8) is injective) h
′
i = 0 for all indices i. We can

thus conclude that (π ⊗ π)∆(h) = 0 and therefore

∆(h) ∈ Ker(π ⊗ π) = H ⊗ AnnH(L0) + AnnH(L0)⊗H.

36



2.4. The space of invariants of a Hopf-Galois extension

(c) We already know by (a) that AnnH(L0) is a left ideal. For any h ∈ H, h′ ∈
AnnH(L0) and x ∈ L0 we have

h · x ∈ L0 =⇒ (h′h) · x = h′ · (h · x) = 0.

Therefore, h′h ∈ AnnH(L0).

(d) We already know that AnnH(L0) is a biideal, so H/AnnH(L0) is a bialgebra. By

Lemma 2.22, the map can′0 is bijective and hence L0/K is H/AnnH(L0)-Galois.

By Proposition 1.67, the bialgebra H/AnnH(L0) is Hopf algebra. Therefore,

AnnH(L0) is a Hopf ideal.

2.4 The space of invariants of a Hopf-Galois

extension

In this section, we study the space of invariants of the finite separable H-Galois ex-

tension L/K.

Lemma 2.24. Let I ⊆ H and let LI be the space of I-invariants as defined in Defi-

nition 1.54.

(a) If I is a left ideal two-sided coideal of H, then LI is an intermediate field of L/K.

(b) If I is a right ideal of H and if ε(I) = 0, then LI is H-stable.

Proof. (a) Let h′ ∈ I and x ∈ K, then, by Definition 1.38.2., h′ · x = ε(h′)x = 0.

Thus, LI contains K. For any y, z ∈ LI , we have h′ · (y + z) = 0 and, since

∆(h′) ∈ H ⊗ I + I ⊗H, h′ · (xy) = (h′(1) · y)(h′(2) · z) = 0 by Definition 1.38.3. So,

LI is a ring containing K and it is a field because L/K is an algebraic extension.

(b) Let h ∈ H, h′ ∈ I and x ∈ LI , then

h′h ∈ I =⇒ h′ · (h · x) = (h′h) · x = ε(h′h)x = 0.

So, h · x ∈ LI .

We will now state the second key proposition of the correspondence theorem for

separable Hopf-Galois extensions 2.31.
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2. Finite Hopf-Galois theory for separable field extensions

Proposition 2.25. Let I ⊆ H be a left ideal two-sided coideal, then LI is an H-

subextension and AnnH(LI) = I.

We will postpone the proof of this proposition to later in this section.

Let L̃/K be a finite Galois extension containing L and let I ⊆ H be a left ideal

two-sided coideal. Then the natural projection

p̃ : L̃⊗H // // L̃⊗H/I (2.11)

is a morphism of left L̃ ⊗H-modules and L̃-coalgebras. Combining it with the mor-

phism βH : L̃⊗H ∼= L̃[N ] defined in (2.4), we get

π̃ : L̃[N ] // // L̃⊗H/I (2.12)

which is a surjective morphism of left L̃[N ]-modules and L̃-coalgebras.

Let

HKer(π̃) = co L̃⊗H/I(L̃[N ]
)

:=
{
l ∈ L̃[N ] | π̃(l(1))⊗ l(2) = π̃(1L̃[N ])⊗ l

}
(2.13)

be the set of left L̃⊗H/I-coinvariants. By Theorem 1.57, HKer(π̃) is a Hopf subalgebra

of L̃[N ] so, by Lemma 1.34, HKer(π̃) must be of the form L̃[V ] for some subgroup

V ⊆ N . As V = HKer ∩ N and because N is the set of grouplike elements of L̃[N ],

we obtain the following explicit description:

V =
{
n ∈ N | π̃(n)⊗ n = π̃(1N)⊗ n

}
(2.14)

=
{
n ∈ N | π̃(n) = π̃(1N)

}
. (2.15)

Lemma 2.26. Let n,m ∈ N , we have the equivalence π̃(n) = π̃(m)⇔ nV = mV and

the isomorphism of L̃-coalgebras L̃⊗H/I ∼= L̃[N/V ].

Proof. Let n,m ∈ N such that nV = mV . Then m = nv for some v ∈ V . Because π̃

is a morphism of left L̃[N ]-modules, we have π̃(ll′) = l.π̃(l′) for every l, l′ ∈ L̃[N ]. In

particular,

π̃(m) = π̃(nv) = n.π̃(v) = n.π̃(idN) = π̃(n).

The map π̃ can thus be defined on N/V and induces a surjective map L̃[N/V ] �
L̃⊗H/I.

This last map is also injective: let n,m ∈ N such that π̃(n) = π̃(m), then

π̃(m−1n) = m−1.π̃(n) = m−1.π̃(m) = π̃(m−1m) = π̃(idN),

so m−1n ∈ V and mV = nV .
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2.4. The space of invariants of a Hopf-Galois extension

Remark 2.27. The subgroup V ⊆ N is not normal in general. More precisely, V is

normal if and only if the coalgebra L̃[N/V ] is a Hopf algebra, i.e. if and only if I is a

Hopf ideal of H.

Let us consider the morphism of L̃-coalgebras π̃ : L̃[N ]→ L̃⊗H/I ∼= L̃[N/V ]. An

element
∑

n∈N xnn ∈ L̃[N ] is in the kernel of π̃ if and only if for each coset mV ∈ N/V
we have ∑

n∈mV

xn = 0.

Therefore, the kernel of π̃ is generated as an L̃-vector space by the elements n − m
with n,m ∈ N such that nV = mV . This leads to the equality:

LKer(π̃) =
{
x ∈ L | l.x = 0 ∀l ∈ Ker(π̃)

}
=

{
x ∈ L |n.x = m.x ∀n,m ∈ N such that nV = mV

}
=

{
x ∈ L | v.x = x ∀v ∈ V

}
= LV .

Let βH : L̃ ⊗ H ∼= L̃[N ] be the map defined in (2.4). Then βH is a morphism of

G-modules with actions defined by

σ(x⊗ h) = σ(x)⊗ h ∀σ ∈ G, x ∈ L̃, h ∈ H

and

σ(x.ν) = σ(x).
(
λ(σ)νλ(σ−1)

)
∀σ ∈ G, x ∈ L̃, ν ∈ N.

Since G acts on L̃⊗H only via the left factor L̃, the map π̃ : L̃[N ] ∼= L̃⊗H � L̃⊗H/I
is also a morphism of G-modules.

Lemma 2.28. The subgroup V ⊆ N ⊆ Perm(X) is normalized by λ(G).

Proof. For σ ∈ G and ν ∈ N , we will write σ.ν for λ(σ)νλ(σ−1). Because π̃ : L̃[N ] �
L̃⊗H/I is a morphism of G-modules, we have for every σ ∈ G and v ∈ V :

π̃(σ.v) = σ.π̃(v) = σ.π̃(1N) = π̃(σ.1N) = π̃(1N).

So, σ.v ∈ V , i.e. V is normalized by λ(G).

Proof of Proposition 2.25. Let S = pr−1
(
f(V )

)
be the subgroup of G associated to V

as defined in Lemma 2.12. Since the images of S and V in HomK(L, L̃) coincide, we

obtain LV = LS. Furthermore, as G′ is contained in S, we also have LS = L̃S. Now

we can apply classical Galois theory to compute dimensions:

[LKer(π̃) : K] = [L̃S : K] =
[L̃ : K]

#S
=

[L : K]

#V
=

#N

#V
= dimK H/I.
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We thus obtain

[LI : K] ≥ [LKer(π̃) : K] = dimK H/I ≥ dimK H/AnnH(LI)

where the first inequality comes from I ⊆ Ker(π̃) and the last one from I ⊆ AnnH(LI).

Combining this with the surjective morphism L⊗H/AnnH(LI) � HomK(LI , L) from

Lemma 2.15, we can deduce that this morphism is an isomorphism. By Lemma 2.18,

this proves that LI is an H-subextension. We can also deduce from the isomorphism

that

[LI : K] = [LKer(π̃) : K] = dimK H/I = dimK H/AnnH(LI).

So, AnnH(LI) = I.

We end this subsection by showing that the space of invariants with respect to a

left ideal two-sided coideal coincides with the space of invariants with respect to the

associated Hopf ideal.

Lemma 2.29. Let L/K be a finite H-Galois extension and let I ⊆ H be a left ideal

two-sided coideal. Consider the Hopf subalgebra H0 = ϕ(I) ⊆ H as defined in Defini-

tion 1.56. By dualizing, we find that (H/I)∗ is a right coideal subalgebra of H∗ and

π : H∗ � H∗0 is a Hopf algebra morphism. Then the following subsets of L coincide:

LI = ρ−1
(
L⊗ (H/I)∗

)
= LcoH∗0 = LH0

where ρ : L→ L⊗H∗ is the coaction as defined in (1.2).

Proof. LI ⊆ ρ−1(L⊗ (H/I)∗). Take any x ∈ LI and take a finite dual base {(ei, fi)}
of H, whose first m elements are in I and the next n−m elements generate a linear

complement of I in H. Then fm+1, . . . , fn provide exactly a base of (H/I)∗ and we

find

ρ(x) =
n∑
i=1

(ei · x)⊗ fi =
n∑

i=m+1

(ei · x)⊗ fi ∈ L⊗ (H/I)∗.

ρ−1(L⊗ (H/I)∗) ⊆ LcoH∗0 . Recall from Definition 1.56 and Theorem 1.57 that I =

HH+
0 . Since for any x ∈ H0, we have that x − ε(x)1H ∈ H+

0 ⊆ I, we find that the

composition H0 ⊆ H � H/I is given by the map x 7→ ε(x)1. Dualizing this gives

(H/I)∗ ⊆ H∗ � H∗0 , we thus find that π(a) = εH∗(a)1H∗0 for any a ∈ (H/I)∗ where

εH∗ and 1H∗0 are the dual of the multiplication and the dual of the counit respectively

(see Propositions 1.45 and 1.43). Now let x ∈ L such that ρ(x) ∈ L ⊗ (H/I)∗, then

x[0] ⊗ π(x[1]) = x[0] ⊗ ε(x[1])1H∗0 = x⊗ 1H∗0 .

LcoH∗0 ⊆ LH0 . Let x ∈ LcoH∗0 , then x[0] ⊗ π(x[1]) = x ⊗ 1H∗0 . So ∀b ∈ H0, bx =
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x
〈
1H∗0 , b

〉
= ε(b)x and therefore x ∈ LH0 .

LH0 ⊆ LI . it is easy to see that LH0 ⊆ LH
+
0 = LHH

+
0 . To finish the proof, just recall

by Definition 1.56 and Theorem 1.57 that HH+
0 = I.

Let us end this section by the observation that the notion invariants is stable under

base change. Recall that if L is an H-module algebra, and L ⊆ L̃ is any field extension,

then L̃⊗ L is a L̃⊗H-module algebra.

Lemma 2.30. Let L be an H-module K-algebra and F ⊆ H a K-linear subspace.

Then for any base extension L̃/L, we have that

(L̃⊗ L)L̃⊗F = L̃⊗ LF .

Proof. This follows from the fact that the space of invariants is a limit in VectK and

the extension-of-scalars functor preserves limits. An explicit argument is as follows.

Take x̃⊗ x ∈ L̃⊗ LF . Then for any ỹ ⊗ h ∈ L̃⊗ F , we find that

(ỹ ⊗ h) · (x̃⊗ x) = ỹx̃⊗ h · x = ỹx̃⊗ ε(h)x = ε(ỹ ⊗ h)x̃⊗ x.

So L̃⊗LF ⊆ (L̃⊗L)L̃⊗F . On the other hand, take any
∑

i x̃i⊗xi ∈ (L̃⊗L)L̃⊗F , where

we suppose without loss of generality that the elements x̃i are linearly independent.

Then for any h ∈ F , we find using the definition of the action under extension of

scalars that

(1⊗ h) · (
∑
i

x̃i ⊗ xi) =
∑
i

x̃i ⊗ h · xi

and on the other hand, since
∑

i x̃i ⊗ xi is L̃⊗ F -invariant, we find

(1⊗ h) · (
∑
i

x̃i ⊗ xi) =
∑
i

x̃i ⊗ ε(h)xi

Since the elements x̃i are linearly independent we can conclude that xi ∈ LF for all

indices i, and hence
∑

i x̃i ⊗ h · xi ∈ L̃⊗ LF .

2.5 Correspondence theorem for Hopf-Galois

extensions

Theorem 2.31. Let L/K be a finite separable H-Galois extension. Let Fix, AnnH
and ϕ be defined as in Proposition 2.2, Definition 2.14 and Definition 1.56 respectively.
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Then the maps{
H0 ⊆ H Hopf subalgebra

}
ψ

��{
I ⊆ H left ideal two-sided coideal}

ϕ

OO Fix

++ϕ◦AnnH

kk

AnnH
uu

{
L/L0/K H-subextension

}
Fix

55

are inverse bijections. Moreover, the above correspondence restricts to the following

inverse bijections:{
H0 ⊆ H normal Hopf subalgebra

}
ψ

��{
I ⊆ H Hopf ideal}

ϕ

OO Fix

))ϕ◦AnnH

ii

AnnH
ss

{
L/L0/K H-normal

}
Fix

33

Proof. The vertical arrows come from Theorem 1.58. We know that all the maps Fix

and AnnH are well-defined. By Lemma 2.29, we also know that Fix(H0) = Fix
(
ψ(H0)

)
and Fix(I) = Fix

(
ϕ(I)

)
for any Hopf subalgebra H0 ⊆ H and any left ideal two-sided

coideal I ⊆ H. Furthermore, Proposition 2.25 tells that AnnH(LI) = I, which provides

half of the correspondence.

For the other half, let L0 be an H-subextension. We clearly have the inclusion L0 ⊆
LAnnH(L0). Again by Proposition 2.25, we have [LAnnH(L0) : K] = dimK H/AnnH(L0).

Moreover, by Lemma 2.18, the map can0 : L ⊗ H/AnnH(L0) → HomK(L0, L) is an

isomorphism, proving that [L0 : K] = dimK H/AnnH(L0). Therefore, [LAnnH(L0) :

K] = [L0 : K] and the inclusion L0 ⊆ LAnnH(L0) is an equality.

If L0 is H-normal, we already know by Proposition 2.23 that L0/K is H/AnnH(L0)-

Galois. The next proposition shows that even if L0 is only an H-subextension, L/L0

is also Hopf-Galois.

Lemma 2.32. Suppose L0 is an H-subextension. Define the left ideal two-sided coideal

I = AnnH(L0) and the Hopf subalgebra H0 = coH/IH of H. Let h ∈ H0 and x ∈ L0,

then h · x = ε(h)x.

Proof. By definition of AnnH(L0), the map H ⊗ L0
// L : h⊗ x � // h · x factors

through H/AnnH(L0)⊗ L0:

H ⊗ L0
//

((

L0

H/AnnH(L0)⊗ L0

77
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Let H � H/AnnH(L0) : h 7→ h be the natural projection, h ∈ H0 and x ∈ L0. As

H0 = coH/IH, we can use that h(1) ⊗ h(2) = 1H ⊗ h to get

h · x = h · (x1) = (h(1) · x)(h(2) · 1) = (h(1) · x)(h(2) · 1)

= (1H · x)(h · 1) = xε(h).

Proposition 2.33. Let L/K be a finite H-Galois extension and let L0 be an in-

termediate field. Suppose L0 is an H-subextension. Consider the Hopf subalgebra

H0 = (ϕ ◦AnnH)(L0) as constructed in Theorem 2.31. Then the following statements

hold.

(a) L⊗H0 = {
∑

i xi ⊗ hi ∈ L⊗H | can(
∑

i xi ⊗ hi) ∈ EndL0(L)}.

(b) L/L0 is L0 ⊗H0-Galois, i.e. the map canL/L0
: L⊗H0 → EndL0(L) is bijective.

Proof. (a). If x⊗ h ∈ L⊗H0, then for all y ∈ L0 and for all z ∈ L we have

can(x⊗ h)(yz) = x(h(1) · y)(h(2) · z) = xε(h(1))y(h(2) · z) = xy(h · z) = y can(x⊗ h)(z).

Therefore, can(x ⊗ h) ∈ EndL0(L). Conversely, take
∑

i xi ⊗ hi ∈ L ⊗K H such that

the elements xi are linearly independent over K and can(
∑

i xi ⊗ hi) is left L0-linear.

This means that for all x0 ∈ L0 and all x ∈ L, the following equality holds∑
i

xix0(hi · x) =
∑
i

xihi · (x0x) =
∑
i

xi(hi(1) · x0)(hi(2) · x)

Using the bijectivity of can : L⊗H → EndK(L), this equality can be translated into∑
i

xix0 ⊗ hi =
∑
i

xi(hi(1) · x0)⊗ hi(2)

which holds for all x0 ∈ L0. Since L0 is an H-subextension, we have that can0 : L ⊗
H/AnnH(L0)→ HomK(L0, L) is injective. Hence the previous equality is furthermore

equivalent to∑
i

xi ⊗ π(1)⊗ hi =
∑
i

xi ⊗ π(hi(1))⊗ hi(2) ∈ L⊗H/AnnH(L0)⊗H

where we denote π : H → H/AnnH(L0) for the canonical surjection. Since we assumed

that the elements xi are linearly independent, we find that π(1)⊗ hi = π(hi(1))⊗ hi(2)

for all i. Hence hi belongs in the set of left H/AnnH(L0)-coinvariants and thus, by
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Theorem 1.57, hi ∈ H0.

(b). Consider the following commutative diagram

L⊗H can

∼
// EndK(L)

L⊗H0

?�

OO

∼= // L⊗L0 (L0 ⊗H0)
canL/L0// EndL0(L)

?�

OO

Since can is bijective, canL/L0
is also injective. It is surjective by part (a). Hence L/L0

is L0 ⊗H0-Galois.

We finish this section with a converse result on H-subextensions and H-normal

extensions.

Corollary 2.34. Let L/K be a finite separable H-Galois extension and let L0 be an

intermediate field.

(a) Let H0 be a Hopf subalgebra of H and suppose that L/L0 is L0 ⊗H0-Galois, then

L0 is an H-subextension.

(b) Suppose L0 is H-stable. Let I be a Hopf ideal of H such that the action of H on

L0 factors through H/I:

H ⊗ L0
//

&&

L0

H/I ⊗ L0

::

If L0/K is H/I-Galois, then L0 is H-normal.

Proof. (a) Using Proposition 1.65, we get that L0 = LL0⊗H0 = LH0 . By Theorem

2.31, this proves that L0 is an H-subextension.

(b) We already know by Theorem 2.31 that LI is H-normal and by Proposition 2.23(d)

that LI/K is H/I-Galois. For all h ∈ I and x ∈ L0, we have h ·x = 0, so L0 ⊆ LI .

Moreover, since both L0/K and LI/K are H/I-Galois, then [L0 : K] = [LI : K].

Therefore, L0 = LI .
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2.6 Relation with the Greither-Pareigis group

In this section, we will look at the properties of the Greither-Pareigis group N ⊆
Perm(X) to determine whether an intermediate field L0 is H-stable (Lemma 2.38) or

is an H-subextension (Lemma 2.43). We will also translate Theorem 2.31 in terms of

groups (Theorem 2.45).

Throughout this section, we will use the following notations (see also §2.2):

1. L/K is a finite separable Hopf-Galois extension with Hopf algebra H;

2. L̃/K is a finite Galois extension containing L;

3. G = Gal(L̃/K), G′ = Gal(L̃/L) and X = G/G′;

4. N ⊆ Perm(X) is the Greither-Pareigis group associated with the H-Galois ex-

tension L/K (Theorem 2.6);

5. L0 is an intermediate field of L/K;

6. L̃0/K is a finite Galois extension containing L0 and contained in L̃;

7. G0 = Gal(L̃0/K), G′0 = Gal(L̃0/L0) and X0 = G0/G
′
0;

8. G• = Gal(L̃/L0) and G̃• = Gal(L̃/L̃0).

These notations are summarized in the diagram

L̃

G

G̃•

G•

L̃0

G0

L

G′

L0

G′0

K
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2. Finite Hopf-Galois theory for separable field extensions

Note that G̃• is a normal subgroup of both G and G•, we thus have the morphisms of

groups

G // // G/G̃• ∼= G0 and G• // // G•/G̃• ∼= G′0. (2.16)

We will refer to these maps by σ 7→ σ. Also note that G′ ⊆ G• ⊆ G, we can then

define the natural projection

π : X = G/G′ // // G/G• : σG′ � // σG• (2.17)

from the set of G′-cosets to the set of G•-cosets. Note that π is a morphism of left G-

modules. Together with the isomorphism of G-modules G/G• ∼= (G/G̃•)/(G•/G̃•) ∼=
G0/G

′
0 = X0, we can define the morphism of left G-modules p : X � X0 by the

commutative diagram

X
p

// //

π

����

X0 σG′ � //
_

��

σG′0

:

G/G•
∼= // (G/G̃•)/(G•/G̃•)

∼=

OO

σG•
� // σG•

_

OO
(2.18)

Suppose that L0 is H-normal. By Proposition 2.23(d), L0/K is H/AnnH(L0)-

normal, so this extension has an associated Greither-Pareigis group N0 ⊆ Perm(X0).

Using Lemma 2.7 for the H-Galois extension L/K and the H/AnnH(L0) extension

L0/K, we get the morphisms of Hopf algebras

βL : L̃⊗H
∼= // L̃[N ] and βL0 : L̃0 ⊗H/AnnH(L0)

∼= // L̃0[N0] .

Together with the natural projection H � H/AnnH(L0), we obtain the morphisms of

Hopf algebras

L̃[N ] ∼= L̃⊗H � L̃⊗H/AnnH(L0) ∼= L̃[N0],

which restricts to a morphism of groups N � N0. As N ⊆ Perm(X) and N0 ⊆
Perm(X0), we would hope this map to be the restriction on N of a map from Perm(X)

to Perm(X0). The next example shows that, in general, there is no canonical map from

Perm(X) to Perm(X0).

Example 2.35. Let S3 =
〈
σ, τ |σ3 = τ 2 = (στ)2 = id

〉
. Let G = G0 = S3, G′ =

{
id
}

,

G′0 = 〈τ〉, X = S3 and X0 = S3/〈τ〉. Let

ρ : G // Perm(X) : g � //
(
g′ 7→ g′g−1

)
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be the right translation map and consider the permutation ρ(σ) ∈ Perm(X), then

ρ(σ)(id) = σ−1 ∈ σ−1G′0 and ρ(σ)(τ) = τσ−1 ∈ σG′0. Therefore ρ(σ) does not map to

an element of Perm(X0).

To overcome this problem, we will define the subset of elements of Perm(X) that

are well-defined in Perm(X0).

Definition 2.36. Let π : X � G/G• be the map defined in (2.17). We define the

subset of π-compatible permutations

Permπ(X) =
{
f ∈ Perm(X) |π(σG′) = π(τG′) =⇒ (π ◦ f)(σG′) = (π ◦ f)(τG′)

}
.

Lemma 2.37. The subset Permπ(X) is a subgroup of Perm(X).

Proof. Let f, g ∈ Permπ(X) and let σG′, τG′ ∈ X such that π(σG′) = π(τG′). Then

π(σG′) = π(τG′)⇒ π
(
g(σG′)

)
= π

(
g(τG′)

)
⇒ π

(
fg(σG′)

)
= π

(
fg(τG′)

)
.

So, fg ∈ Permπ(X).

The subgroup Permπ(X) can alternatively be understood as the set of f ∈ Perm(X)

for which there exists fπ ∈ Perm(G/G•) making the diagram

X

π

����

f
// X

π

����

G/G•
fπ

// G/G•

commmute. Therefore, Permπ(X) is the largest subgroup of Perm(X) for which the

G•-cosets are blocks. This allows us to define the surjective morphism of groups

Permπ(X) // // Perm(G/G•) : f � //
(
σG• 7→ (π ◦ f)(σG′)

)
where σG′ ∈ X is any G′-coset such that π(σG′) = σG•.

The following proposition shows the link between the subgroup Permπ(X) and the

notion of H-stable fields.

Proposition 2.38. With the notation above, the intermediate field L0 is H-stable if

and only if N ⊆ Permπ(X).
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2. Finite Hopf-Galois theory for separable field extensions

Proof. Recall from Lemma 2.7 that the action α : H ⊗ L → L extends to the action

α̃ : L̃[N ] ⊗
L̃

XL̃ → XL̃. If L0 is H-stable, then we can define similarly the action

α̃0 : L̃[N ]⊗
L̃

(G/G•)L̃→ (G/G•)L̃ by the diagram

L̃[N ]⊗
L̃

(G/G•)L̃
α̃0 // (G/G•)L̃

(L̃⊗H)⊗
L̃

(L̃⊗ L0)

βH⊗
L̃

βL0 ∼=

OO

∼= // L̃⊗ (H ⊗ L0)
id⊗α

// L̃⊗ L0

βL0
∼=

OO

where (G/G•)L̃ denotes the set of maps from the set of G•-cosets G/G• to the field

L̃. The natural projection π : X � G/G• induces the injective map

i : (G/G•)L̃
� � // XL̃ : f � // f ◦ π. (2.19)

Putting α̃, α̃0 and i together, we obtain the commutative diagram

L̃[N ]⊗
L̃

(G/G•)L̃
α̃0 //

� _

id⊗i

��

(G/G•)L̃� _

i

��

L̃[N ]⊗
L̃

XL̃
α̃ // XL̃

(2.20)

For every σG′ ∈ X, let uσG′ ∈ XL̃ be the map as defined in (2.1) and, for σG• ∈ G/G•,
define uσG• ∈ (G/G•)L̃ in a similar way. Then the map i can be written

i(uσG•) =
∑

τG′∈π−1(σG•)

uτG′ .

Let n ∈ N and let σG• ∈ G/G•, then the action of n on uσG• viewed as an element of

XL̃ is

n
(
i(uσG•)

)
= n

( ∑
τG′∈π−1(σG•)

uτG′
)

=
∑

τG′∈π−1(σG•)

un(τG′) =
∑

τG′∈n
(
π−1(σG•)

)uτG′ .
By (2.20), we also know that n

(
i(uσG•)

)
is equal to some element in the image of

i : (G/G•)L̃→ XL̃:∑
τG′∈n

(
π−1(σG•)

)uτG′ = i
( ∑
τG•∈G/G•

xτG•uτG•
)

=
∑

τG•∈G/G•

xτG•
∑

µG′∈π−1(τG•)

uµG′ with xτG• ∈ L̃.
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Therefore, one coefficient xτG• must be 1 and the others must be 0. We thus have

n
(
π−1(σG•)

)
= π−1(τG•) =⇒ (π ◦ n)

(
π−1(σG•)

)
= τG• for some τG• ∈ G/G•.

Let σ1G
′, σ2G

′ ∈ X such that π(σ1G
′) = σG• = π(σ2G

′), then σ1G
′, σ2G

′ ∈ π−1(σG•)

and hence (π ◦ n)(σ1G
′) = τG• = (π ◦ n)(σ2G

′). This proves that n ∈ Permπ(X).

Conversely, if L0 is not H-stable, then α̃0 does not map into (G/G•)L̃. Therefore, there

exists n ∈ N and σG• ∈ G/G• such that n
(
π−1(σG•)

)
is not of the form π−1(τG•) for

any τG• ∈ G/G•, i.e. n /∈ Permπ(X).

Next, we will characterizeH-subextensions with a property on the Greither-Pareigis

group N ⊆ Perm(X).

Definition 2.39. We define the subset

N (L0) =
{
n ∈ N |n(G•/G

′) ⊆ G•/G
′}

where G•/G
′ is the set of G′-cosets σG′ with σ ∈ G•. For ease of notation, we will

write N if there is no ambiguity. Because N ⊆ Perm(X), we can easily see that, for

every n ∈ N , we have the equality n(G•/G
′) = G•/G

′. We can thus see N as a subset

of Perm(G•/G
′).

Lemma 2.40. The subset N is a subgroup of N .

Proof. Let n1, n2 ∈ N , then

n1

(
n2(G•/G

′)
)

= n1(G•/G
′) = G•/G

′.

So, n1n2 ∈ N . If n ∈ N , we also have

n−1(G•/G
′) = n−1

(
n(G•/G

′)
)

= G•/G
′.

So, n−1 ∈ N .

Remark 2.41. As N ⊆ Perm(X) is regular, we have #N ≤ #(G•/G
′) = [L : L0]

with equality if and only if N ⊆ Perm(G•/G
′) is regular.

Lemma 2.42. If N ⊆ Permπ(X), then N ⊆ Perm(G•/G
′) is regular.

Proof. Let n ∈ N be such that n(1GG
′) ∈ G•/G′ and let σG′ ∈ G•/G′. Then π(σG′) =

π(1GG
′) and, becauseN ⊆ Permπ(X), (π◦n)(σG′) = (π◦n)(1GG

′) = 1GG•. Therefore,

n(σG′) ∈ G•/G′. We thus have

N =
{
n ∈ N |n(1GG

′) ∈ G•/G′
}
.

Because N ⊆ Perm(X) is regular, we can conclude that #N = #(G•/G
′) = [L : L0].

By Remark 2.41, N ⊆ Perm(G•/G
′) is regular.
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The following proposition shows the link between the subgroup N ⊆ Perm(G•/G
′)

and the notion of H-subextensions.

Proposition 2.43. The intermediate field L0 is an H-subextension if and only if

N ⊆ Perm(G•/G
′) is regular and normalized by λ(G).

To prove this proposition, we will need the following lemma.

Lemma 2.44. Suppose L0 is an H-subextension. Define the left ideal two-sided coideal

I = AnnH(L0) and the Hopf subalgebra H0 = coH/IH of H.

(a) Let V ⊆ N be the subgroup defined in (2.14). For every f ∈ V and for every

σG′ ∈ X, π(σG′) = (π ◦ f)(σG′).

(b) N = V .

Proof. (a) By Lemma 2.32, H0 acts on L0. The action H0 ⊗ L0 → L0 becomes, after

base change,

(L̃⊗H0)⊗
L̃

(L̃⊗ L0) // L̃⊗ L0. (2.21)

Using the isomorphisms L̃ ⊗ H0 = L̃ ⊗ coH/IH = co L̃⊗H/I(L̃ ⊗ H) ∼= L̃[V ] and

L̃⊗ L0
∼= (G/G•)L̃, (2.21) becomes

L̃[V ]⊗
L̃

(G/G•)L̃ // (G/G•)L̃ : f ⊗ uσG•
� // uf(σG•) ∀f ∈ V, ∀σG• ∈ G/G•.

By Lemma 2.32, the action of H0 on L0 factors through the counit ε : H0 → K.

Therefore, the action of L̃[V ] on (G/G•)L̃ also factors through the counit. In

particular, for every f ∈ V and σG• ∈ G/G•, since ε(f) = 1 (because V ⊆ N and

N is the group of grouplike element of L̃[N ]), we get f(uσG•) = uσG• . Using the

inclusion i : (G/G•)L̃ ⊆ XL̃ defined in (2.19), we obtain∑
τG′∈π−1(σG•)

uf(τG′) =
∑

τG′∈π−1(σG•)

uτG′ .

Therefore, π
(
f(τG′)

)
= π(τG′) for every τG′ ∈ G/G′.

(b) By (a), we know that f(G•/G
′) = G•/G

′ for all f ∈ V . So V ⊆ N . We also know

by Remark 2.41 that #N ≤ [L : L0]. Using the isomorphism L̃⊗H/I ∼= L̃[N/V ]

from Lemma 2.26, we get that dimK H/I = #(N/V ). Combining it with the

equality dimK I = [L : K]− [L0 : K] from Remark 2.19, we finally get #V = [L :

L0]. Therefore V = N .
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Proof of Proposition 2.43. Suppose L0 is an H-subextension. We know by Lemma

2.44 that N = V . Therefore, by Lemma 2.28, N is normalized by λ(G).

Conversely, suppose N ⊆ Perm(G•/G
′) is regular and normalized by λ(G). Then both

L̃[N ] and L̃[N ] are L̃#K[G]-modules with G-action as in (2.5). By Corollary 1.73, we

have the isomorphisms of L̃-vector spaces

L̃[N ] ∼= L̃⊗ L̃[N ]G and L̃[N ] ∼= L̃⊗ L̃[N ]G. (2.22)

Moreover, the inclusion N ⊆ N implies that L̃[N ]G ⊆ L̃[N ]G ∼= H. We can therefore

see L̃[N ]G as a Hopf subalgebra of H: L̃[N ]G ∼= H0 ⊆ H. As G• ⊆ G, the regular

subgroup N ⊆ Perm(G•/G
′) is also normalized by λ(G•). Theorem 2.6 thus implies

that L/L0 is Hopf-Galois with L0-Hopf algebra L̃[N ]G• (the base field is L0 because

Gal(L̃/L0) = G•). By taking the G•-invariants in the second isomorphism of (2.22),

we obtain

L̃[N ]G• ∼= (L̃⊗H0)G• = L̃G• ⊗H0 = L0 ⊗H0.

Thus, the extension L/L0 is L0 ⊗ H0-Galois. By Corollary 2.34(a), L0 is an H-

subextension.

We will now prove that, from a subgroup M ⊆ N normalized by λ(G), we can

construct an H-subextension. Recall that the action of G on L̃[N ] is given by

G× L̃[N ] // L̃[N ] : (σ, x.ν) � // σ(x.ν) = σ(x).
(
λ(σ)νλ(σ−1)

)
.

Since G acts on N via conjugation by λ(G) and since M is also normalized by λ(G),

G also acts on L̃[M ]. As L̃[N ] is an L̃#K[G]-module, the inclusion of L̃-Hopf algebras

L̃[M ] ⊆ L̃[N ] is also an injective morphism of L̃#K[G]-modules. Therefore, we can use

Corollary 1.73 to restrict it to an inclusion of K-Hopf algebras
(
L̃[M ]

)G ⊆ (L̃[N ]
)G ∼=

H. We can thus define the map

H :
{
M ⊆ N subgroup normalized by λ(G)

}
//
{
H0 ⊆ H Hopf subalgebra

}
:

M � // β−1
H

((
L̃[M ]

)G)
where βH : L̃⊗H

∼= // L̃[N ] is the isomorphism from (2.4).

We can now formulate the following correspondence theorem, which is the trans-

lation of the Hopf-Galois correspondence (Theorem 2.31) to the language of Greither-

Pareigis groups.
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Theorem 2.45. Let L/K be a finite separable H-Galois extension. Then the maps{
N ⊆ N subgroup normalized by λ(G)

} Fix ◦H //
{
L/L0/K H-subextension

}
N

oo

are inverse bijections. Moreover, the above correspondence restricts to the following

inverse bijections:{
N ⊆ N normal subgroup normalized by λ(G)

} Fix ◦H //
{
L/L0/K H-normal

}
N

oo

Proof. We already know that these maps are well-defined. Let M ⊆ N be a sub-

group normalized by λ(G), then the set of G-invariants
(
L̃[M ]

)G
is a Hopf subal-

gebra of
(
L̃[N ]

)G
. Let H0 = β−1

H

((
L̃[M ]

)G)
be the associated Hopf subalgebra of

H = β−1
H

((
L̃[N ]

)G)
. Let I = ψ(H0) be its associated left ideal two-sided coideal of H

as in Definition 1.56. We know by Proposition 2.25 that L0 = LI is an H-subextension.

Define V as in (2.14), then

L̃[V ] = co L̃⊗H/I(L̃[N ]) = βH
(

co L̃⊗H/I(L̃⊗H)
)

= βH
(
L̃⊗ coH/IH

)
= βH

(
L̃⊗H0

)
.

Using that H0 = β−1
H

((
L̃[M ]

)G)
we get

βH
(
L̃⊗H0

)
= L̃[M ].

Therefore, V = M . To prove the other half, suppose L0 is an H-subextension. Let

I = AnnH(L0) be the associated left ideal two-sided coideal of H and let V be defined

as in (2.14). Consider the Hopf subalgebra
(
L̃[V ]

)G
of H, we want to prove that

L(L̃[V ])G = L0. Computing HKer
(
π̃ : L̃[N ] � L̃⊗H/I

)
as in (2.13), we obtain

L̃[V ] = HKer(π̃) = co L̃⊗H/IL̃[N ] ∼= co L̃⊗H/I(L̃⊗H) = L̃⊗ coH/IH,

which is an isomorphism of L̃-algebra and G-modules. Taking the G-invariants yields(
L̃[V ]

)G ∼= L̃G ⊗ coH/IH = coH/IH.

So, L(L̃[V ])G = L
coH/IH = L0.

By Remark 2.27, L0 is H-normal if and only if V = M is a normal subgroup of N .

2.7 Opposite Hopf-Galois structures

The main result of this section is to show that for every finite separable H-Galois

extension L/K, there exists a Hopf algebra H† such that
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1. L/K is H†-Galois;

2. L0 is H-stable if and only if L0 is an H†-subextension;

3. L0 is an H-subextension if and only if L0 is H†-stable;

4. H†† ∼= H and the actions of H and H†† on L coincide.

Definition 2.46. Let G be any group. We define the centralizer of a subset N ⊆ G

as

CentG(N) =
{
g ∈ G | gν = νg ∀ν ∈ N

}
.

It is easy to check that CentG(N) is a subgroup of G. If the inclusion N ⊆ G is clear,

we will simply write Cent(N).

Let N ⊆ Perm(X) be the Greither-Pareigis group associated with the H-Galois

extension L/K (as in Theorem 2.6). The following lemmas, due to Greither and

Pareigis [GP87], show that Cent(N) ⊆ Perm(X) is regular and normalized by λ(G).

This subgroup thus defines another Hopf-Galois structure on L/K.

Let n ∈ N0, Sn be the permutation group of {1, 2, ..., n} and N ⊆ Sn be a regular

subgroup. Note that the regularity of N means that for every i ∈ {1, ..., n}, there is

a unique permutation νi ∈ N such that νi(1) = i. We can thus write N =
{
νi | i ∈

{1, ..., n}
}

. Also note that, since N is a subgroup, it contains the identity map id

which maps 1 to 1. Therefore, ν1 = id.

Lemma 2.47. [GP87, Lem. 2.4.2] With the above notation, for every f ∈ Sn we

define the map

ϕf : {1, ..., n} // {1, ..., n} : i � // νi
(
f(1)

)
.

Then ϕf ∈ Sn and Cent(N) =
{
ϕν | ν ∈ N

}
. Moreover, Cent(N) ⊆ Sn is a regular

subgroup and Cent(N) ∼= Nopp (where Nopp is the opposite group whose underlying set

is N and with new operation ∗ defined by ν ∗ ν ′ = ν ′ν).

Proof. Let f ∈ Sn, we will first prove that ϕf ∈ Sn. Suppose ϕf (i) = ϕf (j) for

i, j ∈ {1, ..., n}, then νi
(
f(1)

)
= νj

(
f(1)

)
so νi and νj send f(1) to the same element.

Because N ⊆ Sn is regular, we must have νi = νj and thus i = j. This proves that ϕf
is a permutation of {1, ..., n}: ϕf ∈ Sn.

Let ϕ ∈ Cent(N). For every i ∈ {1, ..., n} we have

ϕ(i) = ϕνi(1) = νiϕ(1) = νiνϕ(1)(1) = ϕνϕ(1)(i).
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So, ϕ = ϕνϕ(1) and Cent(N) ⊆
{
ϕν | ν ∈ N

}
.

Conversely, let ν ∈ N and ϕν ∈ Sn, we will prove that νiϕν = ϕννi for every νi ∈ N .

By definition of νi, we have νiνj(1) = ννi(j)(1) for every j ∈ {1, ..., n}, and since N is

regular, we find that νiνj = ννi(j). We thus get

νiϕν(j) = νiνjν(1) = ννi(j)ν(1) = ϕννi(j).

As this equality holds for every j ∈ {1, ..., n}, we obtain νiϕν = ϕννi. We thus have{
ϕν | ν ∈ N} ⊆ Cent(N).

To prove that Cent(N) ⊆ Sn is a regular subgroup, we will first prove that the subgroup

is transitive. Indeed, if i, j ∈ {1, ..., n} then define k = ν−1
i (j). We thus have ϕνk(i) =

νiνk(1) = νi(k) = j. We also have #Cent(N) ≤ #N = n, so Cent(N) ⊆ Sn is regular.

Finally, let νi, νj ∈ N , we will prove that ϕνiϕνj = ϕνjνi . Because ν1 = id, ϕf (1) =

ν1f(1) = f(1). We thus obtain

ϕνiϕνj(1) = ϕνiνj(1) = ϕνi(j) = νjνi(1) = ϕνjνi(1).

As both ϕνiϕνj and ϕνjνi belong to the regular subgroup N ⊆ Sn, we have ϕνiϕνj =

ϕνjνi .

Lemma 2.48. [GP87, Thm. 2.5(b)] Let N ⊆ Sn be a regular subgroup and let G ⊆ Sn
be a subgroup such that N is normalized by G. Then Cent(N) is also normalized by

G.

Proof. Let ϕν ∈ Cent(N) and let g ∈ G. As Cent(N) is regular, we can define ϕ

to be the unique element in Cent(N) such that gϕ(1) = 1. We claim that ϕgνg−1 =

gϕϕνϕ
−1g−1. We thus obtain g−1ϕgνg−1g = ϕϕνϕ

−1 ∈ Cent(N). Because N is normal-

ized by G, gνg−1 ∈ N . Moreover, if we fix g ∈ G and if we let ν run through all ele-

ments of N , then gνg−1 runs through all elements of N . Therefore, g−1ϕνg ∈ Cent(N)

for every g ∈ G and every ν ∈ N .

To prove the claim, let i ∈
{

1, ..., n
}

, then we get

gϕϕνϕ
−1g−1(i) = gϕνϕ−1g−1(i)ν(1)

and

ϕgνg−1(i) = νigνg
−1(1) = νigϕνϕ

−1g−1(1) = νigϕν(1)

where the second equality comes from ν = ϕνϕ−1 (because ϕ ∈ Cent(N) commutes

with ν ∈ N) and the third equality comes from gϕ(1) = 1 = ϕ−1g−1(1). We will now

show that gϕνϕ−1g−1(i) = νigϕ, which is equivalent to νϕ−1g−1(i) = ϕ−1g−1νigϕ. Both
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terms belong to N (for the right one, g−1νig ∈ N because N is normalized by G and

ϕ−1g−1νigϕ ∈ N because ϕ ∈ Cent(N) centralizes N), so it is enough to prove that

they coincide at 1:

ϕ−1g−1νigϕ(1) = ϕ−1g−1νi(1) = ϕ−1g−1(i) = νϕ−1g−1(i)(1).

This finishes the proof

Definition 2.49. Let L/K be a finite separable H-Galois extension with Greither-

Pareigis group N ⊆ Perm(X). Then Cent(N) ⊆ Perm(X) is regular by Lemma 2.47

and normalized by λ(G) by Lemma 2.48. By Theorem 2.6, we can construct a Hopf

algebra such that L/K is Hopf-Galois with Greither-Pareigis group Cent(N). We call

this the opposite Hopf-Galois structure and we will denote its associated Hopf algebra

H† :=
(
L̃[Cent(N)]

)G
(see Lemma 2.9(c)).

Corollary 2.50. Let L/K be a finite separable H-Galois extension, then (H†)† ∼= H

and the action of H and H†† on L coincide.

Proof. We will prove that Cent(Cent(N)) = N . By definition, we have the in-

clusion N ⊆ Cent(Cent(N)). Furthermore, this inclusion is an equality because

#Cent(Cent(N)) = #Cent(N) = #N .

We will now prove the main result of this section.

Theorem 2.51. Let L/K be a finite separable H-Galois extension and let H† be

the Hopf algebra associated with the opposite Hopf-Galois structure. Let L0 be an

intermediate field, then

(a) L0 is H-stable if and only if L0 is an H†-subextension;

(b) L0 is an H-subextension if and only if L0 is H†-stable.

Proof. Similarly to what has been done in Lemmas 2.47 and 2.48, for σG′ ∈ X we

define νσG′ ∈ N to be the unique element in N such that νσG′(1GG
′) = σG′ and for

f ∈ Perm(X) we define ϕf ∈ Perm(X) by ϕf (σG
′) = νσG′f(1GG

′) for all σG′ ∈ X.

We have N =
{
νσG′ |σG′ ∈ X

}
and ν1GG′ = id. Recall from Proposition 2.38 that L0

is H-stable if and only if

N ⊆ Permπ(X) =
{
f ∈ Perm(X) | π(σG′) = π(τG′)⇒ (π ◦ f)(σG′) = (π ◦ f)(τG′)

}
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where π : X // G/G• : σG′ � // σG• is the natural projection. Also recall from Propo-

sition 2.43 that L0 is an H-subextension if and only if the subgroup

N =
{
ν ∈ N | ν(G•/G

′) ⊆ G•/G
′} ⊆ Perm(G•/G

′)

is regular and normalized by λ(G).

We will first suppose that L0 is H-stable and prove that L0 is an H†-subextension.

We want to prove that the subgroup

Cent(N)0 =
{
ϕν ∈ Cent(N) |ϕν(G•/G′) ⊆ G•/G

′} ⊆ Perm(G•/G
′)

is regular and normalized by λ(G). We will first prove the following statement:

∀σG′ ∈ G•/G′, ∀τG′ ∈ X : τG′ ∈ G•/G′ ⇐⇒ νσG′(τG
′) ∈ G•/G′. (2.23)

If σG′, τG′ ∈ G•/G
′, then π(τG′) = 1GG• = π(1GG

′). Because N ⊆ Permπ(X)

we get π
(
ν(τG′)

)
= π

(
ν(1GG

′)
)

for all ν ∈ N . In particular, for ν = νσG′ we ob-

tain π
(
νσG′(τG

′)
)

= π(σG′) = 1GG• and therefore νσG′(τG
′) ∈ G•/G

′. Conversely,

if σG′, νσG′(τG
′) ∈ G•/G

′, then π
(
νσG′(τG

′)
)

= 1GG• = π(σG′) = π
(
νσG′(1GG

′)
)
.

Again, because N ⊆ Permπ(X), we get π
(
ννσG′(τG

′)
)

= π
(
ννσG′(1GG

′)
)

for all

ν ∈ N . In particular, for ν = ν−1
σG′ we obtain π(τG′) = π(1GG

′) = 1GG• and therefore

τG′ ∈ G•/G′. This proves (2.23).

Next, we will prove that

Cent(N)0 =
{
ϕν ∈ Cent(N) | ν ∈ N

}
⊆ Perm(G•/G

′). (2.24)

Let ν ∈ N and suppose that ϕν(G•/G
′) ⊆ G•/G

′. Then for all σG′ ∈ G•/G
′ we

have ϕν(σG
′) = νσG′ν(1GG

′) ∈ G•/G
′. By (2.23) we have ν(1GG

′) ∈ G•/G
′. As

ν ∈ N ⊆ Permπ(X) and π(σG′) = 1GG• = π(1GG
′), we obtain that π

(
ν(σG′)

)
=

π
(
ν(1GG

′)
)

= 1GG•. Thus, ν(σG′) ∈ G•/G
′ for all σG′ ∈ G•/G

′, i.e. ν(G•/G
′) ⊆

G•/G
′, so ν ∈ N . Conversely, let ν ∈ N and suppose that ν(G•/G

′) ⊆ G•/G
′.

Then for all σG′ ∈ G•/G
′ we have ν(σG′) ⊆ G•/G

′. As ν ∈ N ⊆ Permπ(X) and

π(σG′) = 1GG• = π(1GG
′), we obtain that 1GG• = π

(
ν(σG′)

)
= π

(
ν(1GG

′)
)
. Thus,

ν(1GG
′) ∈ G•/G

′ and by (2.23) we have ϕν(σG
′) = νσG′ν(1GG

′) ∈ G•/G
′ for all

σG′ ∈ G•/G′, i.e. ϕν(G•/G
′) ⊆ G•/G

′. This proves (2.24).

We thus have #Cent(N)0 = #N = [L : L0] (the second equality comes from Lemma

2.42 and Remark 2.41) and therefore, by Remark 2.41 again, Cent(N)0 ⊆ Perm(G•/G
′)

is regular.

To prove that Cent(N)0 is normalized by λ(G), we must show that λ(g−1)ϕνλ(g) ∈
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Cent(N)0 for all g ∈ G, ν ∈ N . By Lemma 2.48, we already know that Cent(N) is

normalized by λ(G). As Cent(N)0 ⊆ Perm(G•/G
′) is regular, it is enough to show

that λ(g−1)ϕνλ(g)(1GG
′) ∈ G•/G′. Consider the subset

π−1(gG•) =
{
gσG′ ∈ X |σ ∈ G•

}
(2.25)

whose elements are the G′-cosets which are sent to the G•-coset gG•. We can easily

see that π−1(1GG•) = G•/G
′ and more generally that π−1(gG•) = λ(g)

(
π−1(1GG•)

)
.

Let ν ∈ N , g ∈ G and σ ∈ G•. As νgσG ∈ N ⊆ Permπ(X) and π
(
ν(1GG

′)
)

= 1GG• =

π(1GG
′), we obtain π

(
νgσG′ν(1GG

′)
)

= π
(
νgσG′(1GG

′)
)

= π(gσG′) = gG•. Taking π−1

yields ϕν(gσG
′) = νgσG′ν(1GG

′) ∈ π−1(gG•) for all ν ∈ N , g ∈ G, σ ∈ G•, which can

be written

ϕν
(
π−1(gG•)

)
⊆ π−1(gG•) ∀ν ∈ N , g ∈ G.

Putting everything together, we get

λ(g−1)ϕνλ(g)(1GG
′) = λ(g−1)ϕν(gG

′)

∈ λ(g−1)ϕν
(
π−1(gG•)

)
⊆ λ(g−1)π−1(gG•)

= λ(g−1)λ(g)
(
π−1(1GG•)

)
= π−1(1GG•) = G•/G

′.

We have proved that, if L0 is H-stable, then the subgroup Cent(N)0 ⊆ Perm(G•/G
′)

is regular and normalized by λ(G). This means that, for the opposite Hopf-Galois

structure H†, L0 is an H†-subextension.

We now suppose that L0 is an H-subextension and prove that L0 is H†-stable. We

want to prove that Cent(N) ⊆ Permπ(X), i.e. for all σG′, τG′ ∈ X :

π(σG′) = π(τG′) =⇒ (π ◦ ϕν)(σG′) = (π ◦ ϕν)(τG′) ∀ν ∈ N.

The subgroup N ⊆ Perm(X) is normalized by λ(G), we have λ(g−1)νλ(g) ∈ N for all

g ∈ G, ν ∈ N . Therefore

λ(g−1)νλ(g)(G•/G
′) ⊆ G•/G

′ ⇐⇒ νλ(g)(G•/G
′) ⊆ λ(g)(G•/G

′).

Using (2.25), we can write

ν(gG′) ∈ ν
(
π−1(gG•)

)
⊆ π−1(gG•) (2.26)
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=⇒ π
(
ν(gG′)

)
∈ ππ−1(gG•). (2.27)

Note that ππ−1(gG•) is a singleton whose unique element is gG• = π(gG′), we therefore

obtain

π
(
ν(gG′)

)
= π(gG′) ∀ν ∈ N , ∀g ∈ G. (2.28)

The subgroup N ⊆ Perm(G•/G
′) is also regular, so #N = #(G•/G

′) = #
(
π−1(gG•)

)
for any g ∈ G. Together with (2.26), this means that for every hG′ ∈ π−1(gG•), there

is a unique ν ∈ N such that ν(gG′) = hG′. We can slightly change the formulation to

obtain the following result:

∀σG′, τG′ ∈ X : π(σG′) = π(τG′) =⇒ ∃!ν ∈ N : ν(σG′) = τG′. (2.29)

We are now ready to show that Cent(N) ⊆ Permπ(X). Let σG′, τG′ ∈ X such that

π(σG′) = π(τG′). By (2.29), there is a unique ν ∈ N such that ν(σG′) = τG′. We also

have that ννσG′(1GG
′) = ντG′(1GG

′). As both ννσG′ and ντG′ belong to N ⊆ Perm(X),

which is regular, we obtain the equality

ννσG′ = ντG′ . (2.30)

We can now conclude: for all µ ∈ N we get

π
(
ϕµ(σG′)

)
= π

(
νσG′µ(1GG

′)
)

= π
(
ννσG′µ(1GG

′)
)

by (2.28)

= π
(
ντG′µ(1GG

′)
)

by (2.30)

= π
(
ϕµ(τG′)

)
.

This proves that Cent(N) ⊆ Permπ(X). So, for the opposite structure H†, L0 is H†-

stable.

To finish the proof, just recall Corollary 2.50: H and H†† defines the same Hopf-

Galois structure. Therefore, if L0 is an H†-subextension, then L0 is H††-stable, hence

H-stable; if L0 is H†-stable, then L0 is an H††-subextension, hence an H-subextension.

We can now reformulate the correspondence theorem 2.31 in terms of the Hopf-

Galois structure given by the Greither-Pareigis group Cent(N).
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Corollary 2.52. Let L/K be a finite separable H-Galois extension with Greither-

Pareigis group N ⊆ Perm(G/G′) and let H† =
(
L̃[Nopp]

)G
be the Hopf algebra associ-

ated with the group Cent(N). Then the maps{
H0 ⊆ H Hopf subalgebra

}
ψ

��{
I ⊆ H left ideal two-sided coideal}

ϕ

OO Fix

++ϕ◦AnnH

kk

AnnH
uu

{
L/L0/K H†-stable

}
Fix
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are inverse bijections. Moreover, the above correspondence restricts to the following

inverse bijections:{
H0 ⊆ H normal Hopf subalgebra

}
ψ

��{
I ⊆ H Hopf ideal}

ϕ

OO Fix

))ϕ◦AnnH

ii

AnnH
ss

{
L/L0/K H-stable and H†-stable

}
Fix

33

2.8 Intersection, compositum and compatible

Hopf-Galois extensions

In this section, we study the intersection and the compositum of H-subextensions and

of H-stable extensions. We also introduce the notion of compatibility between two

Hopf-Galois extensions.

Lemma 2.53. Let L/K be a finite field extension and let L1 and L2 be two interme-

diate fields.

(a) EndL1L2(L) = EndL1(L) ∩ EndL2(L).

(b) If EndL1(L) = EndL2(L), then L1 = L2.

Proof. (a) Let f ∈ EndK(L), then f is L1L2-linear if and only if f is both L1-linear

and L2-linear.

(b) Using (a), we get that EndL1L2(L) = EndL1(L) = EndL2(L). Furthermore, for any

intermediate field E of L/K we have dimK

(
EndE(L)

)
= [L : K][L : E]. It thus

follows that [L1L2 : K] = [L1 : K] = [L2 : K]. Since L1 ⊆ L1L2 ⊇ L2, it follows

that L1 = L1L2 = L2.
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Let L/K be a finite separable H-Galois extension. We can associate with each

H-subextension a left ideal two-sided coideal (Definition 2.14) and a Hopf subalgebra

(Definition 1.56). Recall from Lemma 1.35 that the sum of left ideals two-sided coideals

of H is again a left ideal two-sided coideal of H and from Lemma 1.36 that the

intersection of Hopf subalgebras of H is again a Hopf subalgebra of H. By the previous

results, both the sum of left ideals two-sided coideals of H and the intersections of

Hopf subalgebras of H are associated with H-subextensions.

Proposition 2.54. Let L/K be a finite separable H-Galois extension. Let L1 = LI1 =

LH1 and L2 = LI1 = LH2 be H-subextensions corresponding to left ideals two-sided

coideals I1, I2 and Hopf subalgebras H1, H2 respectively.

(a) The compositum L1L2 is an H-subextension and L1L2 = LH1∩H2. If L1 and L2

are H-normal, then so is L1L2.

(b) The intersection L1 ∩ L2 is an H-subextension and L1 ∩ L2 = LI1+I2. If L1 and

L2 are H-normal, then so is L1 ∩ L2.

Proof. (a) By Proposition 2.33, we have the isomorphisms

canL/Li : L⊗Hi
// EndLi(L) for i = 1, 2.

Taking intersections on both sides and using Lemma 2.53(a) we obtain a canonical

isomorphism

L⊗ (H1 ∩H2) // EndL1(L) ∩ EndL2(L) = EndL1L2(L).

As H1 ∩ H2 is a Hopf subalgebra (Lemma 1.36), it corresponds to a unique H-

subextension L3 = LH1∩H2 with canonical isomorphism L⊗(H1∩H2) ∼= EndL3(L).

By Lemma 2.53(b), L3 = L1L2.

Suppose L1 and L2 are H-normal. Then H1 and H2 are normal Hopf subalgebra.

By Lemma 1.36, H1 ∩H2 is also a normal Hopf algebra. Therefore, L3 = LH1∩H2

is H-normal.

(b) By Lemma 1.35, I1 + I2 is a left ideal two-sided coideal (resp. Hopf ideal) if so

are I1 and I2. Moreover, it is easy to see that LI1+I2 = LI1 ∩ LI2 = L1 ∩ L2. If L1

and L2 are H-subextensions (resp. H-normal), the intermediate field L1 ∩ L2 is

therefore an H-subextension (resp. H-normal) with associated left ideal two-sided

coideal (resp. Hopf ideal) I1 + I2.
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We now introduce the notion of weakly compatible Hopf-Galois extensions which,

roughly speaking, are Hopf-Galois extensions with the same action on their intersec-

tion.

Definition 2.55. Let L1/K be a finite separable H1-Galois extension and L2/K be a

finite separable H2-Galois extension. Let E = L1∩L2 and let πi : Hi
// // Hi/AnnHi(E)

be the natural projection for i ∈ {1, 2}. Then we say that these two Hopf-Galois

extensions are weakly compatible (with respect to the structures given by H1 and H2)

if the following two statements hold:

1. E is both H1-normal and H2-normal,

2. there exists an isomorphism of Hopf algebras ψ : H1/AnnH1(E)
∼= // H2/AnnH2(E)

such that for all h1 ∈ H1, h2 ∈ H2 and x ∈ E:

h1 · x = ψ
(
π1(h1)

)
· x and h2 · x = ψ−1

(
π2(h2)

)
· x.

Proposition 2.56. Let L1/K be a finite separable H1-Galois extension and L2/K

be a finite separable H2-Galois extension. Suppose they are weakly compatible. Let

E = L1 ∩L2, then there exists a Hopf algebra H such that (L1⊗E L2)/K is H-Galois.

Proof. Let L = L1 ⊗E L2. Consider the pullback in the category of K-Hopf algebras

of the diagram

H1

π1

$$ $$

H2

π2

zzzz

H1/AnnH1(E) ∼= H2/AnnH2(E)

We will write H1/AnnH1(E) ∼= H ∼= H2/AnnH2(E) and consider

pi : Hi
// // Hi/AnnHi(Li)

∼= // // H.

Since the Hopf algebras are cocommutative, the pullback has the following explicit

description:

H =
{
h1 ⊗ h2 ∈ H1 ⊗H2 |h1

(1) ⊗ p1(h1
(2))⊗ h2 = h1 ⊗ p2(h2

(1))⊗ h2
(2) ∈ H1 ⊗H ⊗H2

}
.

Note that it is also the pullback in the category of K-coalgebras. There is also a

natural action of H on L given by

(h1 ⊗ h2) · (x⊗ y) = (h1 · x)⊗ (h2 · y) ∀h1 ⊗ h2 ∈ H, ∀x ∈ L1, ∀y ∈ L2
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and natural projections

H // // H1 : h1 ⊗ h2 � // h1ε2(h2) and H // // H2 : h1 ⊗ h2 � // ε1(h1)h2.

The pushout in the category of rings of the diagram

L1 L2

E
0 P

``

. �

>>

is given by the tensor product L1 ⊗E L2 = L. Using the contravariant functor

HomK(−, L), we obtain a pullback in the category of K-coalgebras. Since L1 ⊗H1
∼=

EndK(L1), L2 ⊗H2
∼= EndK(L2) and E ⊗H ∼= EndK(E) we get after an extension of

scalars to L :

L⊗H

xxxx

can

��

&& &&

EndK(L)

xxxx && &&

L⊗H1

can1

∼
//

&& &&

HomK(L1, L)

&& &&

HomK(L2, L)

xxxx

L⊗H2

can2

∼
oo

xx

HomK(E,L)

L⊗H

can1,2∼

OO

Since both inner and outer are pullback diagrams in the category of coalgebras, L⊗H
and EndK(L) are isomorphic via the canonical map.

It is a problem that L1 ⊗L1∩L2 L2 is not the compositum L1L2 in general. The

following example shows that it is not always possible to endow L1L2 with a H-Galois

structure such that L1 and L2 are H-normal.

Example 2.57. Let L = Q( 3
√

2, ω) where ω 6= 1 is a cubic root of 1. Consider the

Galois group G = G′ = Gal(L/Q) = 〈σ, τ |σ3 = τ 2 = (στ)2 = id〉 where σ and τ are

defined by {
σ( 3
√

2) = 3
√

2ω

σ(ω) = ω
and

{
τ( 3
√

2) = 3
√

2

τ(ω) = ω2
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Let L1 = Q( 3
√

2) and Gal(L/L1) = 〈τ〉. Suppose that L1/Q is Hopf-Galois with

Hopf algebra H1 given by the Greither-Pareigis group N1 = λ
(
〈σ〉
)
⊆ Perm(G/〈τ〉).

Let L2 = Q( 3
√

2ω) and Gal(L/L2) = 〈σ2τ〉. Suppose L2/Q is Hopf-Galois with Hopf

algebra H2 given by the Greither-Pareigis group N2 = λ
(
〈σ〉
)
⊆ Perm(G/〈σ2τ〉).

Suppose that L/Q is H-Galois and that L1 is H-normal (with induced structure

H/AnnH(L1) ∼= H1). Let N ⊆ Perm(G) be its Greither-Pareigis group. By Propo-

sition 2.38, N ⊆ Permπ(G) where π : G → G/〈τ〉. We also have that the image of

N under the projection Permπ(G) � Perm(G/〈τ〉) is N1. Note that #N = 6 and

#N1 = 3, so we can write Ker(N � N1) = {id, f}. Because N ⊆ Perm(G) is regular,

f has no fixed element. Moreover, if we write G/〈τ〉 =
{

1G〈τ〉, σ〈τ〉, σ2〈τ〉
}

the 〈τ〉-
cosets of G, then f(1G〈τ〉) = 1G〈τ〉, f(σ〈τ〉) = σ〈τ〉 and f(σ2〈τ〉) = σ2〈τ〉. We can

conclude that

f(1G) = τ, f(τ) = 1G, f(σ) = στ, f(στ) = σ, f(σ2) = σ2τ and f(σ2τ) = σ2.

If we define the right translation map ρ : G → Perm(G) : g 7→ (g′ 7→ g′g−1), then we

obtain f = ρ(τ).

Let G/〈σ2τ〉 =
{

1G〈σ2τ〉, σ〈σ2τ〉, σ2〈σ2τ〉
}

be the set of cosets associated with L2.

Applying f on the coset 1G〈σ2τ〉 yields

f(1G) = τ ∈ σ〈σ2τ〉 and f(σ2τ) = σ2 ∈ σ2〈σ2τ〉.

Therefore, N * Perm〈σ2τ〉
(
〈σ, τ〉

)
. We can conclude by Proposition 2.38 that L2 is

not H-stable and hence not H-normal. However, Q( 3
√

2) ∩Q( 3
√

2ω) = Q and H1 and

H2 acts on Q via their counit map. Thus, L1/Q and L2/Q are weakly compatible but

there is no Hopf-Galois structure on their compositum Q( 3
√

2, ω) that induces both H1

and H2 at the same time.

Definition 2.58. Let L1/K be a finite separable H1-Galois extension and L2/K be

a finite separable H2-Galois extension. We say that these two Hopf-Galois extensions

are compatible if

1. there exists a Hopf algebra H such that L1L2/K is H-Galois,

2. L1 and L2 are H-normal subextensions of L/K,

3. for i ∈ {1, 2}, there exists an isomorphism of Hopf algebras ϕi : H/AnnH(Li) ∼=
Hi such that

h · x = ϕi
(
πi(h)

)
· x ∀h ∈ H, ∀x ∈ Li

where πi : H // // H/AnnH(Li) is the natural projection.
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Corollary 2.59. Let L1/K be a finite separable H1-Galois extension and L2/K be

a finite separable H2-Galois extension. If L1/K and L2/K are compatible, then they

are weakly compatible. Moreover, if L1/K and L2/K are weakly compatible (with

E = L1 ∩ L2) and if the morphism of rings L1 ⊗E L2
// // L1L2 is an isomorphism,

then L1/K and L2/K are compatible.

Proof. The first part follows from Proposition 2.54(b) and the second part from Propo-

sition 2.56, from the isomorphism L1 ⊗E L2
∼= L1L2 and from Corollary 2.34(b).

2.9 Examples

2.9.1 Canonical Galois extensions

Let L/K be a finite Galois extension with Galois group G. Recall from Example

2.10 that there are two Hopf-Galois structures on L/K: the canonical classical Hopf-

Galois structure coming from the Greither-Pareigis group Nρ = ρ(G) ⊆ Perm(G) and

the canonical nonclassical Hopf-Galois structure coming from the Greither-Pareigis

group Nλ = λ(G) ⊆ Perm(G). If ρ(σ) ∈ Nρ and λ(τ) ∈ Nλ for σ, τ ∈ G, then we

obviously have that ρ(σ)λ(τ) = λ(τ)ρ(σ). We thus find that Cent(Nρ) ⊆ Nλ and

Cent(Nλ) ⊆ Nρ. By Lemma 2.47, all these groups have the same cardinality. We can

thus conclude that Cent(Nρ) = Nλ and Cent(Nλ) = Nρ. The canonical classical Hopf-

Galois structure and the canonical nonclassical Hopf-Galois structure are therefore

opposite.

Consider the canonical classical Hopf-Galois structure: L/K is Hρ-Galois with

Hρ = K[G]. By classical Galois theory, every intermediate field L0 is anHρ-subextension.

Moreover, L0 is Hρ-stable if and only if L0/K is normal, hence Galois.

For the canonical nonclassical Hopf-Galois structure: L/K is Hλ-Galois with Hλ =

L[λ(G)]G. Because Hρ
∼= H†λ (and their action on L/K coincide via this isomorphism),

we can conclude by Theorem 2.51 that every intermediate field L0 is Hλ-stable and

that L0 is an Hλ-subextension if and only if L0/K is Galois.

2.9.2 Almost classical Galois extensions

We will now study a class of Hopf-Galois extensions for which the map Fix defined in

Proposition 2.2 is a bijection. This was introduced by [GP87]. Let L̃/K be a finite
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Galois extension with Galois group G = M o G′ and let L = L̃G
′
, then we have the

following diagram:

L̃
M G′

GL̃M

G′

L̃G
′
= L

K

Let H be the Hopf algebra associated with the Greither-Pareigis group N = λ(M) ⊆
Perm(X) with X = G/G′.

Let L0 be any intermediate extension of L/K, G• = Gal(L̃/L0) and π : X // // G/G• .

If m ∈M and τ1G
′, τ2G

′ ∈ X such that π(τ1G
′) = τ1G• = τ2G• = π(τ2G

′), then

π
(
λ(m)(τ1G

′)
)

= π(mτ1G
′) = mτ1G• = mτ2G• = π(mτ2G

′) = π
(
λ(m)(τ2G

′)
)
.

By Definition 2.36, λ(M) ⊆ Permπ(X) so, by Proposition 2.38, every intermediate

extension L0 is H-stable.

We will now characterize H-subextensions of L/K. If L0 is any intermediate field

of L/K, then G• = Gal(L̃/L0) is a subgroup of G containing G′. We thus have

G• = M ′ oG′ for some subgroup M ′ ⊆M . Define N as in Definition 2.39:

N =
{
λ(m) ∈ λ(M) |λ(m)(G•/G

′) ⊆ G•/G
′}.

For m ∈M , it is obvious that m ∈M ′ if and only if λ(m)(M ′oG′)/G′ ⊆ (M ′oG′)/G′.
So N = λ(M ′). As #N = #M ′ = #

(
(M ′ o G′)/G′

)
= #(G•/G

′), by Remark 2.41

N ⊆ Perm(G•/G
′) is regular. Moreover, λ(M ′) is normalized by λ(G) if and only if

M ′ is a normal subgroup of G. In this case, we have L0 = L̃M
′oG′ = L̃M

′ ∩ L̃G′ where

L̃M
′
/K is Galois and contains L̃M . By Proposition 2.43, we can conclude that L0 is an

H-subextension if and only if L0 = L∩E where E/K is a Galois extension containing

L̃M/K (and contained in L̃).

For the opposite Hopf-Galois structure H† given by Cent
(
λ(M)

)
, any intermediate

extension is an H†-subextension (because any intermediate extension if H-stable).

This means that the map Fix defined in Proposition 2.2 is bijective. This Hopf-Galois

structure is called almost classical Galois.
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Infinite Hopf-Galois theory

3.1 Finite topologies

Let K be a field. Let (I,≤) be a directed poset and let (Xi, ξij : Xj → Xi) be an

inverse system of finite dimensional vector spaces over K. This means that the Xi is

a finite dimensional vector space for each i ∈ I and ξij is a surjective linear map for

each couple i, j ∈ I such that i ≤ j, such that ξii = idXi and for all i ≤ j ≤ k in I we

have that ξik = ξij ◦ ξjk.
A cone on (Xi, ξij : Xj → Xi) is a (possibly infinite) vector space X, together

with linear maps ξi : X → Xi for all i ∈ I, such that xi = ξij ◦ ξj for all i ≤ j.

Given such a cone, one can endow X with the coarsest topology such that all maps ξi
are continuous, where the finite dimensional vector spaces Xi are considered with the

discrete topology. This topology is then generated by the following neighbourhoods of

open sets around each element x ∈ X:

Ox,i = {y ∈ X | ξi(y) = ξi(x)},

i.e. the inverse images of singletons under the maps ξi. We call this topology the finite

topology on the cone X.

Among all cones, there exists a (up to isomorphism unique) cone (X, ξi) satisfying

the universal property that for any other cone (X ′, ξ′i), there exists a unique map

u : X ′ → X such that ξ′i = ξi ◦ u. This universal cone is exactly the inverse limit of

the inverse system:

X = lim
←−
i∈I

Xi

Remark that since we supposed that the maps ξij are surjective, the maps ξi are

surjective as well. It is clear that the unique map u : X ′ → X is continuous with
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3. Infinite Hopf-Galois theory

respect to the finite topologies. In fact, if X ′ is any topological vector space and

f : X ′ → X is any continuous map, then it is clear that (X ′, ξi ◦ f) is a cone and f is

exactly the unique map induced from the universal property applied to this cone. As a

consequence of this observation, one can interpret the inverse limit as a “completion”.

More precisely, we have the following result.

Lemma 3.1. Consider an inverse system (Xi, ξij : Xj → Xi) of finite dimensional

vector spaces and let X = lim
←−
i∈I

Xi be the inverse limit. Then the image of a morphism

f : X ′ → X of vector spaces is dense with respect to the finite topology on X if and

only if the maps ξi ◦ f : X ′ → Xi are surjective for all i ∈ I.

Proof. Take any element xi = ξi(x) ∈ Xi for some i ∈ I and x ∈ X. Then we know

that the image of f has a non-empty intersection with the open set Ox,i. Consequently,

there exists an element f(x′) ∈ Imf such that ξi ◦ f(x′) = ξi(x) = xi. Hence ξi ◦ f is

surjective for all i ∈ I. The converse is proven in the same way.

3.2 Definition of infinite Hopf-Galois extensions

Let L/K be an infinite algebraic field extension which is Galois in the classical sense.

If L0/K is a finite Galois subextension, then the canonical map

L⊗K[Gal(L0/K)] // HomK(L0, L) : x⊗ σ0
� //

(
y 7→ xσ0(y)

)
(3.1)

is bijective. Let L be the set of all finite Galois subextensions L0/K of L/K. Since

any element x ∈ L is contained in a finite Galois subextension, L is exactly the union

of all elements in L. More precisely, L can be reconstructed from L as the direct limit

L = lim
−→
L0∈L

L0,

in the category of K-vector spaces. Applying the contravariant functor HomK(−, L) :

VectK → VectK , we obtain henceforth an isomorphism

EndK(L) ∼= lim
←−
L0∈L

HomK(L0, L).

Consequently, taking an inverse limit of the isomorphisms (3.1), we obtain a canonical

isomorphism

lim
←−
L0∈L

(L⊗K[Gal(L0/K)]) −→ EndK(L). (3.2)
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On the other hand, let us consider the infinite Galois group Gal(L/K), which is known

to be an inverse limit itself:

Gal(L/K) ∼= lim
←−
L0∈L

Gal(L0/K)

We can consider the associated group algebra H = K[Gal(L/K)], which is of course a

Hopf algebra, and L becomes naturally an H-module algebra by means of the action

of the Galois group. Hence, we can consider the canonical map

can : L⊗K[Gal(L/K)] // EndK(L), (3.3)

which is injective but not surjective.

In order to understand the connection between the two canonical maps (3.2)

and (3.3), let us endow for each L0 ∈ L, the vector spaces L ⊗ K[Gal(L0/K)] and

HomK(L0, L) with the discrete topology. Then the inverse limits lim
←−
L0∈L

K[Gal(L0/K)]

and EndK(L) are naturally endowed with the finite topology, as explained in the pre-

vious section.

With this topology, the canonical map (3.3) is continuous and the subset

L⊗K[Gal(L/K)] ⊆ lim
←−
L0∈L

L⊗K[Gal(L0/K)]

is dense because for every L0 ∈ L the map

L⊗K[Gal(L/K)] // L⊗K[Gal(L0/K)]

is surjective (see Lemma 3.1). So the image of the canonical map (3.3) is also dense,

and the domain of (3.2) could be interpreted as the completion of the domain of (3.3).

This motivates us to introduce the following definition.

Definition 3.2. Let L/K be a (possibly) infinite separable field extension and H a

K-Hopf algebra such that L is a left H-module algebra, then L/K is H-Galois if the

canonical map

can : L⊗H // EndK(L) , can(x⊗ h)(y) = x(h · y)

is injective with dense image (where the topology on EndK(L) is the finite topology,

induced by considering the discrete topology on each restriction EndK(L0, L) for all

finite dimensional intermediate fields L0 of L/K).
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Example 3.3. Let L/K be an infinite field extension and A a K-Hopf algebra which

is residually finite dimensional, which means that the Sweedler dual A◦ is dense in the

linear dual A∗, with respect to the finite topology. Let L be an A-comodule algebra

and such that the (dual) canonical map

L⊗ L ∼ // L⊗ A , x⊗ y 7→ xy[0] ⊗ y[1]

is bijective (this means that L is A-Galois in the sense of [DT89]). Then taking L-linear

duals, we find a bijection

HomK(A,L) ' HomL(L⊗ A,L) ∼ // HomL(L⊗ L,L) ' EndK(L) .

Furthermore, we have that the subsets

L⊗ A◦ ⊆ L⊗ A∗ ⊆ HomK(A,L),

are obviously dense with respect to the finite topology on HomK(A,L). Therefore,

L/K is an A◦-Galois extension in the sense of Definition 3.2.

In the same way as for finite H-Galois extensions, we will define H-normal subex-

tensions of an infinite H-Galois extension L/K. These subextensions will allow us to

establish a first correspondence theorem for infinite H-Galois extensions.

Definition 3.4. Let L/K be an infinite H-Galois extension and let L0/K be a subex-

tension of L/K. We say that L0 is H-normal if L0 is H-stable and if

L⊗H/AnnH(L0) // HomK(L0, L) , x⊗ h 7→ (y 7→ x(h · y))

is injective, where AnnH(L0) =
{
h ∈ H |h(x) = 0 ∀x ∈ L0

}
and h ∈ H/AnnH(L0)

denotes the element represented by h ∈ H.

Proposition 3.5. Let L0 be a finite H-normal subextension, then AnnH(L0) is a

cofinite Hopf ideal and L0/K is H/AnnH(L0)-Galois.

Proof. Following the proof of Proposition 2.23, we can conclude that AnnH(L0) is a

biideal.

We will now prove that the canonical map

L0 ⊗H/AnnH(L0) // EndK(L0), x⊗ h 7→ (y 7→ x(h · y)) (3.4)

is bijective. Tensoring this map with the identity morphism, we obtain a map

L⊗H/AnnH(L0) ∼= L ⊗
L0

(
L0 ⊗H/AnnH(L0))

)
// L ⊗

L0

EndK(L0)
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which is exactly the canonical map from Definition 3.4, and therefore injective. Since

field extensions are faithfully flat, the map (3.4) is injective as well.

Moreover, by definition of an infinite H-Galois extension, the canonical map

can : L⊗H // EndK(L)

has dense image. Thus by Lemma 3.1 and the definition of the finite topology on

EndK(L), the induced map

L⊗H // HomK(L0, L)

is surjective and hence also the canonical map

L0 ⊗H/AnnH(L0) // EndK(L0) .

is surjective, showing that L0/K is H/AnnH(L0)-Galois.

Unlike the finite case, not all cofinite Hopf ideals are obtained in this way. To

overcome this problem, we will need to introduce a topology on the Hopf algebra

H itself. But before that, we will first need to prove some properties on the finite

H-normal extensions.

3.3 Properties of finite H-normal extensions

Proposition 3.6. (Transitivity of compatibility) Let L0 be a finite H-normal subex-

tension of L/K and let E be an H/AnnH(L0)-normal subextension of L0/K, then E

is also a finite H-normal subextension of L/K.

Proof. Let AnnH(E) =
{
h ∈ H |hx = 0 ∀x ∈ E

}
, then we obviously have AnnH(L0) ⊆

AnnH(E). The isomorphism

L0 ⊗
(
H/AnnH(L0)

)
/
(
AnnH(E)/AnnH(L0)

)
) ∼ // HomK(E,L0)

lifts, by base change to L and with the isomorphism(
H/AnnH(L0)

)
/
(
(AnnH(E)/AnnH(L0)

)
' H/AnnH(E),

to the isomorphism

L⊗H/AnnH(E) ∼ // HomK(E,L) .
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Before we prove a result on the compositum of H-normal subextensions, we make

some general observations.

Lemma 3.7. Let H be a cocommutative Hopf algebra, and J1, J2 two Hopf ideals.

Then

J1 ∧ J2 := {h ∈ H | ∆(h) ∈ J1 ⊗H +H ⊗ J2}

is a Hopf ideal of H, and ∆ induces an injective morphism of Hopf algebras

H/(J1 ∧ J2)→ H/J1 ⊗H/J2.

Proof. Consider the surjective Hopf algebra morphisms

p1 : H → H/J1 and p2 : H → H/J2,

q1 : H/J1 → H/(J1 + J2) and q2 : H/J2 → H/(J1 + J2).

From Section 1.1.4, we know that the pullback of q1 and q2 is given by the Hopf algebra

P =
{∑

h1 ⊗ h2 ∈ H/J1 ⊗H/J2 | h1
(1) ⊗ q1(h1

(2))⊗ h2 = h1 ⊗ q2(h2
(1))⊗ h2

(2)

}
.

Since obviously, q1 ◦p1 = q2 ◦p2, the universal property of the pullback induces a Hopf

algebra map u : H → P which is given by u(h) = p1(h(1))⊗ p2(h(2)). Then the kernel

of u is given exactly by J1 ∧ J2 (to see this, one can apply [DNR01, Lemma 1.4.8]).

Hence J1 ∧ J2 is indeed a Hopf ideal, and Hopf algebra morphism from the statement

of the theorem is exactly the canonical inclusion Im(u) ⊆ P ⊆ H/J1 ⊗H/J2.

Remark 3.8. Note that H/(J1∧J2) is not the pullback of q1 and q2 in the full category

of cocommutative Hopf algebras but it is in the category of “objects under H”, that is

the lattice of quotient Hopf algebras of H. Translating this in the language of normal

Hopf subalgebras of H via the map ϕ (see Definition 1.56), we see that the normal

Hopf subalgebra of H associated to H/(J1 ∧ J2) is exactly the biggest normal Hopf

subalgebra of H that is both contained in H1 := ϕ(H/J1) and H2 := ϕ(H/J2). In

other words, ϕ
(
H/(J1 ∧ J2)

)
= H1 ∩H2.

Proposition 3.9. (Compositum) Let L/K be an infinite H-Galois extension and let

L1 and L2 be H-normal subextensions. Then L1L2 is an H-normal subextension as

well and AnnH(L1L2) = AnnH(L1) ∧AnnH(L2). If L1 and L2 are finite, then L1L2 is

finite as well.

Proof. We first prove that AnnH(L1L2) = AnnH(L1) ∧ AnnH(L2). Take any h ∈
AnnH(L1) ∧ AnnH(L2), then for any x ∈ L1 and y ∈ L2 we find that

h · (xy) = (h(1) · x)(h(2) · y).
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Since h(1)⊗h(2) ∈ AnnH(L1)⊗H+H⊗AnnH(L2), every term in the above expression

is 0, so h ∈ AnnH(L1L2). Conversely, suppose that h ∈ AnnH(L1L2), then we know

that for any x ∈ L1 and y ∈ L2,

h · (xy) = (h(1) · x)(h(2) · y) = 0

Since L2 is H-normal, we know that the canonical map L1L2 ⊗ H/AnnH(L2) →
HomK(L2, L1L2) is injective, and hence we find that

h(1) · x⊗ p2(h(2)) = 0

for all x ∈ L1, where we denote p2 : H → H/Ann(L2) the canonical surjection. Since

L1 is also H-normal, we know that the canonical map L1⊗H/AnnH(L1)→ EndK(L1)

is also injective. Moreover, since K is a field, tensoring this injective map with the

identity map on H/AnnH(L2) still yields an injective map. Therefore we obtain that

p1(h(1))⊗ p2(h(2)) = 0,

where p1 : H → H/Ann(L1) is again the canonical surjection. Therefore, ∆(h) =

h(1)⊗h(2) ∈ AnnH(L1)⊗H+H⊗AnnH(L2), which means exactly that h ∈ AnnH(L1)∧
AnnH(L2).

Let us now prove that L1L2 is H-normal. Clearly, L1L2 is H-stable, since both L1

and L2 are H-stable. Hence, and by the first part of the proof, we only have to show

that the canonical map

L⊗H/
(
AnnH(L1) ∧ AnnH(L2)

)
→ HomK(L1L2, L)

is injective. So take any
∑

i z
i⊗hi ∈ L⊗H/(AnnH(L1)∧AnnH(L2)) whose image under

the above canonical map is 0, where h
i

are elements in H/
(
AnnH(L1) ∧ AnnH(L2)

)
represented by hi ∈ H. This means that for any x ∈ L1 and y ∈ L2 we have that∑

i

zi(hi · (xy)) =
∑
i

zi(hi(1) · x)(hi(2) · y) = 0

Using again successively the H-normality of L1 and L2, we find that this means that∑
i

zi ⊗ p1(hi(1))⊗ p2(hi(2)) = 0

as an element in L⊗H/Ann(L1)⊗H/Ann(L2). Then applying the injectivity of the

morphism H/
(
AnnH(L1)∧AnnH(L2)

)
→ H/Ann(L1)⊗H/Ann(L2) induced by ∆ (see

Lemma 3.7), we conclude that ∑
i

zi ⊗ hi = 0

in L⊗H/
(
AnnH(L1) ∧ AnnH(L2)

)
, and hence L1L2 is H-normal.
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Proposition 3.10. (Intersection) Let L/K be an infinite H-Galois extension and let

L1 and L2 be two finite H-normal subextensions. Then L1∩L2 is H/AnnH(L1)-normal

and H/AnnH(L2)-normal.

Proof. By Proposition 3.9, we know that L1L2 is a finite H-normal subextension.

Hence, L1L2 is a finiteH/AnnH(L1L2)-Galois extension by Proposition 3.5, and L1 and

L2 are H/AnnH(L1L2)-normal subextensions. Hence, by the intersection theorem for

finite dimensional Hopf-Galois extensions (Proposition 2.54 (b)), we know that L1∩L2

is an H/AnnH(L1L2)-normal subextension of L1L2/K as well, and by Proposition 3.6

L1 ∩ L2 is also a finite H-normal subextension of L/K

3.4 Topology on H

Let L/K be an (infinite) H-Galois extension. Let L be the set of all finite H-normal

subextensions of L/K. Then for each Li ∈ L, we have a finite dimensional Hopf algebra

H/AnnH(Li), and for any other Lj ∈ L such that Li ⊆ Lj, we have a surjective Hopf

algebra morphism pij : H/AnnH(Lj) → H/AnnH(Li). Hence we obtain an inverse

system (Li, pij). Using the canonical projections pi : H → H/AnnH(Li), we find that

H is a cone on this inverse system, and hence can be induced with the associated finite

topology. Let us describe a base of open sets for this topology.

Lemma 3.11. Consider the set

B =
{
h+ AnnH(L0)

}
h∈H,L0∈L

.

Then B is a base for a topology on H, i.e. there is a topology on H whose open subsets

are exactly the unions of subsets of B.

Proof. First, we need to prove that B covers H. This is obvious because L is non-

empty (as it contains at least the finite H-normal extension K/K). Next, we need to

prove that for each h1 + AnnH(L1) and h2 + AnnH(L2) ∈ B and for each h in their

intersection, there exists h3 + AnnH(L3) ∈ B such that

h ∈ h3 + AnnH(L3) ⊆
(
h1 + AnnH(L1)

)
∩
(
h2 + AnnH(L2)

)
.

Because the intersection contains an element h, we can assume that h = h1 = h2 = h3

so we just need to prove that there exists L3 ∈ L such that

AnnH(L3) ⊆ AnnH(L1) ∩ AnnH(L2).
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intermediate extensions

Now just take the compositum L3 = L1L2, then by Proposition 3.9:

AnnH(L3) = AnnH(L1) ∧ AnnH(L2) ⊆ AnnH(L1) ∩ AnnH(L2).

This completes the proof.

Next, we will prove that the open Hopf ideals of H with respect to the topology

given by Lemma 3.11 are exactly the sets AnnH(L0) for L0 ∈ L.

Proposition 3.12. Let U ⊆ H be an open subset. If U is a Hopf ideal of H, then

U = AnnH(LU) for some LU ∈ L.

Proof. Let U ⊆ H be open, then U can be written as a union of subsets in B. If U is

also a Hopf ideal, then one of these subsets must be of the form AnnH(L0):

AnnH(L0) ⊆ U for L0 ∈ L =⇒ H/AnnH(L0) � H/U.

Let I ⊆ H/AnnH(L0) be the kernel of the surjective morphism of (finite dimen-

sional) Hopf algebras H/AnnH(L0) � H/U and consider the intermediate field of I-

invariants LI0. By Theorem 2.31, LI0 is an H/AnnH(L0)-normal subextension of L0/K

and AnnH/AnnH(L0)(L
I
0) = I. Let p : H � H/AnnH(L0) be the natural projection,

then

AnnH(LI0) = p−1
(
AnnH/AnnH(L0)(L

I
0)
)

= p−1(I)

= Ker
(
H � H/AnnH(L0) � H/U

)
= U.

Thus, we have that U = AnnH(LI0) with LI0 ∈ L (Proposition 3.6).

3.5 Correspondence theorem between open Hopf

ideals and finite H-normal intermediate

extensions

Proposition 3.13. Let I ⊆ H be an open Hopf ideal of H, then LI is H-normal and

LI/K is H/I-Galois and AnnH(LI) = I.

Proof. Let I ⊆ H be an open Hopf ideal of H, then by Proposition 3.12, I = AnnH(L0)

for some L0 ∈ L so LI ⊇ L0. We will now prove that AnnH(LI) = I.

We obviously have I ⊆ AnnH(LI). For the other inclusion, let h ∈ AnnH(LI) then
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∀x ∈ L0 ⊆ LI , we have that h · x = 0. Hence h ∈ I.

So, the canonical isomorphism L⊗H/I ∼= HomK(L0, L) factors through HomK(LI , L):

L⊗H/I // // HomK(LI , L) // // HomK(L0, L).

Since this composition of surjective maps is an isomorphism, it is a composition of

isomorphisms and therefore we obtain that L0 = LI .

We can now immediately derive our correspondence theorem for infinite Hopf-

Galois extensions.

Theorem 3.14. Let L/K be an infinite H-Galois extension. The maps{
L/L0/K |L0 is finite H-normal

}
//
{
I ⊆ H | I is an open Hopf ideal

}
oo

L0
� // J(L0) =

{
h ∈ H |hx = 0 ∀x ∈ L0

}
LI :=

{
x ∈ L |hx = 0 ∀h ∈ I

}
I�oo

are mutually inverse bijections.

Proof. This follows immediately from Proposition 3.13 with Proposition 3.5.

3.6 Example

Let p, q1, q2, ... ∈ N be pairwise distinct prime numbers. We define L = Q(
√
p,
√
q1,
√
q2, ...),

L0 = Q(
√
q1,
√
q2, ...) and

G =
{
σ ∈ Gal

(
L0/Q

)
|σ(
√
qi) = −√qi for finitely many i ∈ N0

}
.

Note that L0/Q is an infinite Q[G]-Galois extension in the sense of Definition 3.2

even though G is not the Galois group of L0/Q. This can be explained by the fact

that, for every finite Galois intermediate extension E/Q of L0/Q, the group morphism

G→ Gal(E/Q) is surjective.

For each σ ∈ G, we define qσ =
∏

i∈N0 |σ(
√
qi)=−

√
qi

qi. Then L/Q can be endowed with an

infinite Hopf-Galois structure. The Q-linear action of G on L0 is extended to L in the

following way:

σ
(√

p
√
qa1 ...qan

)
= 0
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where σ ∈ G and qa1 , ..., qan ∈
{
q1, q2, ...

}
are pairwise distinct. For each σ ∈ G, we

also define the Q-linear map σ0 : L→ L by

σ0

(√
qa1 ...qan

)
= 0 and σ0

(√
p
√
qa1 ...qan

)
=
√
p
√
qσσ
(√

qa1 ...qan
)
.

Let H be the Q-vector space generated by all the σ and σ0. We define on H the

following maps:

• unit map: ι(1) = id + id0 where id ∈ G is the identity map from L0 to itself;

• multiplication map: for all σ, τ ∈ G we define

σ.τ = στ, σ.τ0 = σ0.τ = 0, σ0.τ0 =
gcd(qσ, qτ )

(µ ◦ gcd)(qσ, qτ )
(στ)0

where gcd(qσ, qτ ) is the greatest common divisor of qσ and qτ and where µ : N0 →
{−1, 0, 1} is the Möbius function;

• counit map: ε(σ) = 1 and ε(σ0) = 0;

• comultiplication map: ∆(σ) = σ ⊗ σ +
σ0 ⊗ σ0

qσ
and ∆(σ0) = σ ⊗ σ0 + σ0 ⊗ σ;

• antipode: S(σ) = σ and S(σ0) = µ(qσ)σ0.

With these maps, H is a Hopf algebra and L/Q is an infinite H-Galois extension.

We can see that for any
√
p
√
qa1 ...qan with pairwise distinct qa1 , ..., qan ∈

{
q1, q2, ...

}
,

there exists a σ ∈ G such that

σ0(
√
p) =

√
p
√
qa1 ...qan .

Therefore,
√
p does not belong to a finite H-stable intermediate field of L/Q (the

same result goes for any
√
p
√
qa1 ...qan). However, by definition of the action of σ and

σ0 on L, every finite subfield contained in L0 is H-stable. Moreover, the annihilator

AnnH(L0) is generated by all the σ0 and, therefore, the quotient H/AnnH(L0) is

naturally isomorphic to Q[G]. We can thus conclude that the morphism

L⊗H/AnnH(L0) // HomK(L0, L)

is injective, i.e. L0 is an infinite H-subextension and hence an infinite H-normal

subextension of L/Q. As pointed earlier, the set L of all finite H-normal subextensions

of L/Q coincide with the set of all finite H-normal subextensions of L0/Q. Since G

is abelian, L is simply the set of all finite subextensions of L0/Q. If E is such an
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3. Infinite Hopf-Galois theory

extension, then the Hopf-Galois structure on E/Q is the classical Galois one.

This example shows that, unlike in the classical Galois case, the finite H-normal

subextensions are not enough to understand an infinite Hopf-Galois extension. Indeed,

for L/Q,
⋃
E∈LE = L0 ( L. For L0/Q it is even worse: L0 is the union of its finite

Q[G]-normal subextensions and all these subextensions inherit the classical Galois

structure but G is not the Galois group of L0/Q.

In view of this, we can conclude that Definition 3.2 permits all kind of strange

behaviour. In order to have a situation as close as possible to the classical Galois case,

we need to make the definition more restrictive. One way of doing this would be to

ask that H is an inverse limit of finite dimensional Hopf algebras.
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Research perspectives

The results obtained in this thesis will be published in the forthcoming [BVW]. Apart

from the main results presented above, we aim for some further results to be included in

this paper, which we briefly discuss in this chapter, but which are still to be completed.

4.1 The Van Oystaeyen-Zhang transform

Let us consider a finite dimensional cocommutative Hopf K-algebra H (where K is

a field) and L/K be an H-Galois extension (in the sense of Definition 1.60). It was

shown in [OZ94], that one can associate to such an extension a second Hopf algebra

T , such that L/K is again a T -Galois extension. This construction was generalized in

[Sch98], relaxing the cocommutativity condition on H, and leading to Hopf-bi-Galois

extensions.

We will review this construction here, adopting the setting from [OZ94] (who

worked in the dual setting of comodule algebras) to ours.

Consider the K-algebra L⊗ L. Then H acts on L⊗ L via the diagonal action:

h · (x⊗ y) = h(1) · x⊗ h(2) · y

and in this way L⊗ L is an H-module algebra. Hence we can consider the associated

space of invariants

T = (L⊗ L)H = {x⊗ y | h · (x⊗ y) = ε(h)x⊗ y,∀h ∈ H}

Following [Gre96], we will call T the Van Oystaeyen-Zhang transform, or OZ-transform

for short. By the faithfully flat descent (see Proposition 1.70), we find moreover that

there is a canonical isomorphism

β : L⊗ T
∼=−→ L⊗ L
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With this notation, the following theorem collects some results from [OZ94], trans-

lated to the language used in this work.

Theorem 4.1. Let H be a cocommutative Hopf algebra and L/K an H-Galois exten-

sion. Then: the following statements hold:

1. the OZ-transfrom T is a finite dimensional commutative Hopf algebra, hence T ∗

is a cocommutative Hopf algebra;

2. L is a T ∗-module algebra and T ∗-Galois;

3. the H-subextensions of L/K are in bijective correspondance with the subfields of

L that are T ∗-stable.

4. if H is moreover commutative then T ∗ ∼= H.

As one can observe, the OZ-transform (or its dual) satisfies similar properties as

the “opposite Hopf-Galois structure” we have studied in Section 2.7. We aim to clear

out whether both constructions are truly the same or whether they differ.

4.2 Infinite Hopf-Galois extensions and profinite

Hopf algebras

Now that we have established a correspondence theorem between finite H-normal

extensions and open Hopf ideals (see Theorem 3.14), it is natural to study the inverse

limit of the quotient Hopf algebras H/AnnH(L0) for L0 ∈ L.

Let (I,≤) be a directed poset and (Hi)i∈I be a family of discrete finite dimen-

sional K-Hopf algebras with homomorphisms fij : Hj → Hi for all i ≤ j such that(
(Hi)i∈I , (fij)i≤j

)
is an inverse system. Dually,

(
(H∗i )i∈I , (f

∗
ij)i≤j

)
is a direct system of

K-Hopf algebras.

Let lim
−→HopfH

∗
i (resp. lim

−→VectH
∗
i ) be the direct limit of

(
(H∗i )i∈I , (f

∗
ij)i≤j

)
taken in

the category of K-Hopf algebras (resp. K-vector spaces). Then these two direct limits

coincide (see e.g. [Por11] and [Ago11]) and will refer to them simply with lim
−→

H∗i .

Now, let lim
←−HopfHi (resp. lim

←−VectHi) be the inverse limit of
(
(Hi)i∈I , (fij)i≤j

)
taken

in the category of K-Hopf algebras (resp. K-vector spaces). With this notation, we

have the following result.

Proposition 4.2.
(
lim
−→

H∗i
)◦ ∼= lim

←−Hopf Hi and
(
lim
−→

H∗i
)∗ ∼= lim

←−Vect Hi.
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Proof. Consider the adjoint functors

Vect
F=(−)∗

// Vectop

G=(−)∗
oo

where F is the left adjoint functor and G is the right adjoint functor. Since left adjoint

functors preserve colimits, we get(
lim
−→

(Hi)
∗)∗ ∼= lim

←−VectH
∗∗
i
∼= lim
←−VectHi.

Similarly, if we consider the adjoint functors

Hopf
F=(−)◦

// Hopfop

G=(−)◦
oo

where F is the left adjoint functor and G is the right adjoint functor, then we get(
lim
−→

(Hi)
∗)◦ ∼= lim

←−HopfH
∗◦
i
∼= lim
←−HopfHi.

As one can see from the above result, when taking the inverse limit of a family of

finite dimensional Hopf algebras, depending whether the limit is taken in the category

of vector spaces or in the category of Hopf algebras, we obtain different objects. In fact,

we already encountered this phenomenon in section 3.2, where we observed that for a

classical infinite Galois extension, we can consider the Hopf algebra K[Gal(L/K)], but

the associated canonical map is no longer surjective. If we should instead consider the

bigger object lim
←−
L0∈L

K[Gal(L0/K)] (which is called the completed group ring) and use a

completed tensor product, then the associated canonical map is indeed surjective (and

even bijective).

In view of this,we believe it could be useful to develop, in similarity to classical infi-

nite Galois theory, a framework for infinite Hopf-Galois extensions over profinite Hopf

algebras, of which lim
←−
L0∈L

K[Gal(L0/K)] (or more generally lim
←−VectHi, as in Proposition

4.2) should be the leading example.
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