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Introduction

Let L/K be a finite Galois extension, i.e. a field extension which is both separable and
normal, and let G = Gal(L/K) be its Galois group. Then the fundamental theorem
of Galois theory says that there is a correspondence between the set of intermediate
fields of L/K and the set of subgroups of G. Explicitly, if Gg is a subgroup of G, we
associate to G the set of Gy-invariants

L% :={zeL|o(x)=a Vo€ G},

which is an intermediate field of L/K. On the other hand, if L, is an intermediate
field of L/ K, then L/Ly is also a Galois extension. We then associate to Ly the group
Gal(L/Ly), which is a subgroup of G. We therefore get the correspondence theorem
for finite Galois extensions: the maps

{Gy C G subgroup} == {L/Ly/K intermediate field} :

GO f LGO
Gal(L/Lo) i LO

are bijections, which are inverse to each other and inclusion-reversing. It is natural to
ask whether such a correspondence exists for a larger class of extensions.

For example, the Jacobson-Bourbaki theorem reformulates the correspondence the-
orem from (infinite) Galois theory as a bijection between subfields Lg of finite codi-
mension in a field L on the one hand, and their linear endomorphism rings Endy, (L)
on the other hand, and is also valid for division rings (i.e. “non-commutative fields”)
[Jac85]. Sweedler [Swe7h| generalized this theorem further by using the language of
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INTRODUCTION

corings (which are coalgebras over a not necessarily commutative base).

In a different direction, Galois theory has been extended to commutative rings that
are not necessarily fields by Auslander and Goldman [AG60] and by Chase, Harrison
and Rosenberg [CHRG5], see also [DI71].

Another possibility is to replace the group action by a Hopf algebra (co)action,
leading to Hopf-Galois theory. One can motivate the use of Hopf algebras in Galois
theory by the observation that, in a finite Galois extension L/K, all K-linear en-
domorphisms can be described as L ®x K[G]. In fact, finite Galois extensions are
exactly finite separable extensions L/K with G = Aut(L/K) such that the morphism
of K-vector spaces

L®k K[G] —— Endg(L) : 2 © 0 —— (y — za(y))

is bijective. Here, the finite group of automorphisms G appears in the Hopf algebra
K|[G]. Substituting K[G] with another Hopf algebra leads to Definition of Hopf-
Galois extensions introduced by Chase and Sweedler [CS69).

The first step towards the generalization of the classical correspondence theorem
is given by Chase and Sweedler.

Proposition 2.2. [CS69, Thm. 7.6] Let L/K be a finite H-Galois extension. For a
Hopf subalgebra Hy C H we define

Fig(Hy) = {x € L|h-z =¢(h)x Vh € Hy}.
Then the map
Fiz: {Hy C H Hopf subalgebra} — {L/Lo/K intermediate field}
15 injective and inclusion-reversing.

This map is not a correspondence in general because not every subfield lies in the
image of Fix. A correspondence theorem, which is fully analogous to the classical one
above, does not seem to be known.

This thesis aims at providing such a correspondence theorem for finite separable
Hopf-Galois extensions. We will also describe a variant of this correspondence which
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will be analogous, in classical Galois theory, to the correspondence between interme-
diate fields L/Ly/K that are normal (hence Galois) over K and normal subgroups
Gy C G. To do this, we will characterize the image of Fix in a natural and intrinsic
way. For that purpose, we introduce the notions of H-subextensions (Definition [2.16))
and H-normal extensions (Definition [2.20), the latter being H-subextensions which
are also H-stable (in the obvious sense H - Ly C Lg). We will also describe the inverse
of Fix using several maps. First, we define the annihilator of an intermediate field Lg

(Definition [2.14)) to be
Amny(Lo) ={h € H|h-2=0 Vz€ Lo}.

One should note that Anng (L) is not a Hopf subalgebra of H but it is a left ideal
two-sided coideal of H if L is an H-subextension (Proposition [2.23(b)) and it is a
Hopf ideal of H if Ly is H-normal (Proposition [2.23|(d)). Secondly, we will be using a
well-known correspondence between Hopf subalgebras of H and left ideals two-sided
coideals of H (Definition [L.56)):

1. if T is a left ideal two-sided coideal of H and if w: H—» H/I is the natural
projection, then we define

p(I) ={h € H|r(hw) @ hp =7(lu) @ h},
which is a Hopf subalgebra of H (Theorem ;
2. if AC H is a Hopf subalgebra, then we define AT = {h € A|e(h) =0} and
V(A) = HA*"
which is a left ideal two-sided coideal of H (Theorem [1.57).

In this terminology, the main correspondence theorem for finite separable Hopf-Galois
extensions proved in this thesis is the following.

Theorem 2.31. Let L/K be a finite separable H-Galois extension, then the maps

{HO C H Hopf Subalgebm} Fia
M X
w”w {L/Ly/K H-subextension}
Fiz
{I C H left ideal two-sided coideal} %



INTRODUCTION

are inverse bijections. Moreover, the above correspondence restricts to the following
wverse bijections:

{HO C H normal Hopf subalgebm}
m
{I C H Hopf ideal} %

The notions of H-subextensions and H-normal extensions behave exactly in the

{L/Ly/K H-normal}

same way as in classical Galois theory. Indeed, if Ly is an H-subextension, then L/L,
is Ly @k Hy-Galois with Hy = (((p o AnnH(L))(LO) (Proposition [2.33(b)). Also, if
Lo is H-normal, then Ly/K is H/Annp(Lo)-Galois (Proposition [2.23|(d)). Moreover,
intersections and composita behave well (Proposition .

A key input of this thesis is provided by the work of Greither and Pareigis, to which
also the title of the thesis pays reverence. In [GP8T], they associated to a Hopf-Galois
structure on a separable field extension a group, which we call the Greither-Pareigis
group (Theorem [2.6} . More precisely, if L/K is a finite separable H-Galois extensmn
and if we define L/K a finite Galois extension containing L, G = Gal(L/K), G
Gal(L /L) and X = G/G’, then the Greither-Pareigis group N can be seen as a subset
of the permutation group Perm(X). The study of the group N (and more precisely,
the study of the subgroups of N) is a way to better understand the correspondence
theorem. A variant of our main correspondence theorem can be formulated in terms
of the Greither-Pareigis group N C Perm(X).

Theorem 2.45. Let L/K be a finite separable H-Galois extension and let N C
Perm(X) be its associated Greither-Pareigis group. Then the maps

} szo’H

{N C N subgroup normalized by \(G {L/Loy/K H-subextension}

are inverse bijections. Moreover, the above correspondence restricts to the following
wverse bijections:

{N C N normal subgroup normalized by \(G }# {L/LO/K H- normal}

It is again a remarkably close analog of the classical theorem of Galois theory, now
in the sense that H-subextensions and H-normal extensions correspond respectively
to subgroups and normal subgroups of the Greither-Pareigis group, together with an
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extra condition of normalization, which is inherent to the Greither-Pareigis group.

As said earlier, all the intermediate fields of a finite H-Galois extension do not
arise as the set of invariants for some Hopf subalgebra. Equivalently, not all inter-
mediate fields are H-subextensions. In [GP87|, Greither and Pareigis say that the
correspondence theorem holds in its strong form if the map Fix defined in Proposition
is surjective (and hence bijective). Obviously, this is the case for classical Galois
extension. They also defined a larger class of extensions, called almost classical Galois
extensions, for which they proved that the correspondence theorem holds in its strong
form for a suitable Hopf-Galois structure. In [CRV16], Crespo, Rio and Vela showed
that the class of Hopf-Galois extensions for which the correspondence is bijective is
larger than the class of almost classically Galois extensions. Another approach for this
problem is given in [KKTU19] where Koch, Kohl, Truman and Underwood translated
the correspondence in Proposition into a correspondence between the subgroups
of the Greither-Pareigis group N normalized by A(G) and the subgroups of the Galois
group G = Gal(L/K).

One other interesting feature is that we can replace the Greither-Pareigis group
N of a Hopf-Galois extension by its opposite N°PP. thus obtaining an opposite Hopf-
Galois structure H' on L/K (Lemmas and . A further main result of this
thesis is that H-subextensions and H-stable extensions correspond to each other under
passage to the opposite Hopf-Galois structure. This makes the possibly technically not
so elegant definition of H-subextension (Definition appear very natural.

Theorem 2.51. Let L/K be an H-Galois extension and let H be its opposite Hopf-
Galois structure. Let Ly be an intermediate field, then

(a) Ly is H-stable if and only if Lo is an H'-subextension;
(b) Ly is an H-subestension if and only if Ly is H'-stable.

As pointed out above, H-normal extensions lead to quotient structures. It is thus
possible to consider infinite towers of Hopf-Galois extensions as in classical Galois
theory. As it turns out, the canonical Galois map which is used to define Hopf-
Galois extensions in the finite case, is no longer bijective for infinite (classical) Galois
extensions. Rather it is injective and has a dense image with respect to a suitably
defined topology. Taking this point of view, we make first steps towards infinite Hopf-
Galois extensions in chapter [3, and obtain a first correspondence theorem between
intermediate H-normal subextensions and open Hopf ideals (Theorem . In the
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final Chapter [ we give some indications how this theory could be developed further.

We point out that, in the literature, a dual point of view on Hopf-Galois theory
is often used. In this thesis, we were led to strive to obtain correspondence theo-
rems as close as possible to the one of classical Galois theory. In the case of finite
dimensional Hopf algebras (covering the main part of this thesis), both approaches
are however completely equivalent. Moreover, in the literature, several variations of
the correspondence theorem for Hopf-Galois theory have been discussed. Let us men-
tion in particular [OZ94] and [Sch9§|, where a bijective correspondence is described
between the Hopf subalgebras of H and the intermediate extensions that are stable
under the action of a “transformed Hopf algebra”. This result seems closely related to
our characterization of H-subextensions as H-stable extensions (see also Chapter ).

We give a short outline of the thesis. Chapter|[l]is a presentation of the background
on Hopf algebras and Hopf-Galois extensions. Chapter [2| is the core of the thesis.
After introducing the work of Greither and Pareigis in section [2.2, we will prove our
correspondence theorem for Hopf-Galois theory in section 2.5 and its variant using the
Greither-Pareigis group in section 2.6 Chapter [3|is devoted to first steps towards an
infinite Hopf-Galois theory and finally in Chapter [4 we discuss some directions for
future investigations.



Hopf algebras

1.1 Basic definitions

In this section, we will review some of the basic concepts and known results about
Hopf algebras. All the proofs can be found in [DNROI] and [BW03].

Throughout this section, R will be a commutative ring with unity. Unadorned
tensors are assumed to be taken over R unless specified otherwise.

1.1.1 Algebras, coalgebras, bialgebras and Hopf algebras

We will first reformulate the classical definition of R-algebras using commutative di-
agrams. Then, we will define R-coalgebras whose structure is the dual of that of
R-algebras.

Definition 1.1. An R-algebra A is an R-module together with
1. a multiplication map pu: A® A— A,
2. aunit map t: R— A,

such that both p and ¢ are R-module morphisms and such that the following diagrams

commute:
A A A—Y 404 RRA— L A@A«—"" A@R
idop I ~ 4 ~
A A - A A



1. HOPF ALGEBRAS

The left diagram describes the associativity of the multiplication and the right
diagram describes the existence of a unit in A: 14 = ¢(1g).

Obviously, this is equivalent to the classical definition of an R-algebra, that is a
ring A together with a ring morphism R — Z(A) where Z(A) is the center of A.

Definition 1.2. An R-algebra A is commutative if for all a,a’ € A we have p(a®ad’) =
plad @ a).

Alternatively, we can define the commutativity of an R-algebra by using the fol-
lowing map.

Definition 1.3. Let M and M’ be two R-modules, we define the switch map
oMM — M QM:mem'+——m'®m.

Therefore, an R-algebra A is commutative if and only if 4 = poo.

We will now take the dual of the diagrams of Definition to obtain the following
definition.
Definition 1.4. An R-coalgebra C' is an R-module together with

1. a comultiplication map A : C — C ® C,

2. a counit map €: C'— R,

such that both A and € are R-module morphisms and such that the following diagrams

commute:
C A C®C R C ~ C ~ C®R
A Agid e®id A id®e
CoC—% o9 ceC C®C

The left diagram describes the coassociativity of the comultiplication and the right
diagram describes the counital condition.

Let ¢ € C, its image by the comultiplication lies in C'® C. Therefore, A(c) must
be of the form > " ¢ ® ¢p. To simplify the writing, we will adopt the Sweedler
notation:

Ale) =c@y®cp e Col



1.1. Basic definitions

The diagrams of Definition [1.4] can thus be expressed by the equalities
c(1) ® Cu)@) @ C2) = 1) O C)1) @ CR)2) = C) B C2) D Cp)

and
e(cay)ee == cuye(c).

Definition 1.5. An R-coalgebra C'is cocommutative if A = oo A where o is the switch
map defined in Definition [I.3] With the Sweedler notation, the cocommutativity of C
can be expressed by the equality

(1) ® C2) = C2) @ Cy.

Example 1.6. Let S be any set and let R[S] be the free R-module generated by S.
Then R[S] is a cocommutative R-coalgebra with comultiplication and counit defined
by

1. A:R[S]— R[S]® R[S] : s+—s®s VseS,
2. €:R[S]—R:s+—1p VseS.

Definition 1.7. Let C' and C’ be two R-coalgebras and let f:C —C" be an R-
module morphism. Then f is a coalgebra morphism if f preserves the comultiplication
and the counit, i.e. if the following diagrams commute:

C ! C c—L Lo
AC Ac/ €C ‘60’
fef / /
CR(C———=0'xC R=——=R

With the Sweedler notation, the diagrams can be expressed by the equalities

fleay) @ flee) = f(e)ay @ f(¢)@) and e (f(c)) = ec(c).

Definition 1.8. Let C be an R-coalgebra and let I C C' be an R-submodule. Then [
18

1. a right (resp. left) coideal of C if A(I) C I ® C (resp. if A(I) CC®I),

2. a coideal (or a two-sided coideal) of C'ift A(I) CTIRC+C® I and if ¢(I) = 0.

9



1. HOPF ALGEBRAS

If I is a right (resp. left) coideal of C, then A(J) CI®C CI®C+C® I (resp.
A(l)CC®ICI®C+C®I). Therefore, any right (resp. left) coideal with e(/) =0
is also a coideal. Conversely, a coideal is not necessarily a right or left coideal.

Proposition 1.9. Let C be an R-coalgebra and let I C C' be a coideal. Then there is
a canonical coalgebra structure on C'/I such that the natural projection C —» C/I is
a coalgebra morphism.

Definition 1.10. Let C' be an R-coalgebra and let Cy C C' be an R-submodule. Then
Cy is a subcoalgebra of C' if A(Cy) C Cy & Cp.

Proposition 1.11. Suppose C' is flat over R. Let C' and C" be two R-coalgebras and
let f:C —C" be a coalgebra morphism. Then Ker f is a coideal of C' and Im [ is a
subcoalgebra of C".

We would like to work with R-modules that have the structures of R-algebra and
R-coalgebra simultaneously. However, if the two structures are not compatible in
some way, we would not be able to say anything more than if we just looked at them
separately. This motivates the following definition.

Definition 1.12. An R-bialgebra B is an R-module which is both an R-algebra and
an R-coalgebra and which satisfy the following compatibility conditions:

L A(bY) = bayb(y) @ bayblyy Vb,V € B (1 and A are compatible),

2. €(bb') = €(b)e(b)) Vb, € B (p and € are compatible),

3. A(lp) =15 ®1p (v and A are compatible),

4. ¢(1g) = 1 (¢ and € are compatible).
Remark 1.13. If we endow B ® B with a structure of R-algebra given by

ppop((h @) © (b @ by)) = biby @ byt and tpep(lr) = 1 ® 1p
and with a structure of R-coalgebra given by
Apep(b@ V) = (ba) @ b)) @ (ba) ® bg)) and epgp(b @ V') = e(b)e(V),

then the compatibility conditions can be reformulated by either of the following equiv-
alent statements:

1. A and € are algebra morphisms,

10



1.1. Basic definitions

2. p and ¢ are coalgebra morphisms.

Example 1.14. Let S be a monoid (that is, a set with an associative operation and a
unit), then the R-algebra R[S] is also a cocommutative R-bialgebra if we endow R[S]
with the R-coalgebra structure as in Example [1.6]

Definition 1.15. Let B and B’ be two R-bialgebras and let f: B— B’ be an R-
module morphism. Then f is a bialgebra morphism if f is both an algebra morphism
and a coalgebra morphism.

Definition 1.16. Let B be an R-bialgebra and let I C B be an R-submodule. Then
I is a biideal of B if I is both an ideal and a coideal of B.

Proposition 1.17. Let B be an R-bialgebra and let I C B be a biideal. Then there is
a canonical bialgebra structure on B/I such that the natural projection B —» B/ is
a bialgebra morphism.

Definition 1.18. Let B be an R-bialgebra and let By C B be an R-submodule. Then
By is a subbialgebra of B if By is both a subalgebra and a subcoalgebra of B.

Proposition 1.19. Suppose B is flat over R. Let B and B’ be two R-bialgebras and
let f: B— B’ be a bialgebra morphism. Then Ker f is a biideal of B and Im f is a
subbialgebra of B'.

We will now define a special class of R-bialgebras which have an additional map
that will, in a way, play the role of the inversion in a group.

Definition 1.20. An R-Hopf algebra H is an R-bialgebra for which there exists an R-
module morphism S : H — H, called the antipode, such that the following diagram

commutes:
He H S®id He H
A Iz
H < R L H
A 7
H®H 45 H®H

With the Sweedler notation, this diagram can be expressed by the equality
S(hw)h = t(e(h)) = hayS (he).

11



1. HOPF ALGEBRAS

Example 1.21. Let G be a group. By Example[1.14] we already know that the group
algebra R[G] is a cocommutative R-bialgebra. R[G] is also a cocommutative R-Hopf
algebra with antipode S defined by

S:R[G)—— R[G]:0——0"! Vo ed.

We will now see that the antipode of an R-Hopf algebra can alternatively be seen
as the inverse of an element in some ring.

Proposition 1.22. Let A be an R-algebra and let C' be an R-coalgebra. Then we can
endow Hompg(C, A), the set of R-linear maps from C to A, with a ring structure with
multiplication = defined by

(f *g)(@) = fleq)gle@) Vf.g € Homg(C, A), Ve e C.
The identity of % is given by 1o e € Homg(C, A).
Definition 1.23. The multiplication * is called the convolution product.

Proposition 1.24. Let H be an R-bialgebra, then H is an R-Hopf algebra with an-
tipode S if and only if S is the inverse of the identity map idy € Homg(H, H) with
respect to the convolution product , i.e. if and only if S * idy = 10€ = idg * S.

Corollary 1.25. If H is an R-Hopf algebra, then the antipode is unique.
Proposition 1.26. Let H be an R-Hopf algebra, then

(a) S(hh') = S(W)S(h) Vh,h € H,

(b) S(1g) = 1y,

(¢c) A(S(h)) = S(he)® S(hqy) VheH,

(d) e(S(h)) =e(h) VheH.

Definition 1.27. Let H and H' be two R-Hopf algebras and let f: H — H' be an
R-module morphism. Then f is a Hopf algebra morphism if f is a bialgebra morphism.

Proposition 1.28. Let H, H' and [ be defined as in the previous definition. Then
f o SH = SH/ O f

Definition 1.29. Let H be an R-Hopf algebra and let I C H be an R-submodule.
Then I is a Hopf ideal of H if I is a biideal and if S(I) C I.

12



1.1. Basic definitions

Proposition 1.30. Let H be an R-Hopf algebra and let I C H be a Hopf ideal. Then
there is a canonical Hopf algebra structure on H/I such that the natural projection
H —» H/I is a Hopf algebra morphism.

Definition 1.31. Let H be an R-Hopf algebra and let Hy C H be an R-submodule.
Then Hy is a Hopf subalgebra of H if Hy is both a subbialgebra of H and if S(Hy) C H,.
We say that Hy is a normal Hopf subalgebra if hqyh'S(h«)) € Hy Yh € H, Vh' € H,.

Proposition 1.32. Suppose H is flat over R. Let H and H' be two R-Hopf algebras
and let f: H— H' be a Hopf algebra morphism. Then Ker [ is a Hopf ideal of H
and Im f is a Hopf subalgebra of H'.

We end this section with some properties that we will need later.

Definition 1.33. Let C be an R-coalgebra. An element ¢ € C' is called grouplike if
A(c) =c®cand if €(c) = 1g.

Lemma 1.34. Let K be a field and let C be a K -coalgebra.

(a) The set of grouplike elements of C' is K-linearly independent. Moreover, if C' = H
is a K-Hopf algebra, then the set of grouplike elements of H forms a group.

(b) If C has a K-basis of grouplike elements, then any subcoalgebra and any quotient
coalgebra of C' also has a basis of grouplike elements.

Lemma 1.35. Let K be a field and let H be a K-Hopf algebra. Let I, and I be two
Hopf ideals of H, then I + Iy is also a Hopf ideal of H. The same result holds for
(left and/or right) ideals and (left and/or right) coideals.

Lemma 1.36. Let K be a field and let H be a K-Hopf algebra. Let Hy and Hs be two
Hopf subalgebras of H, then Hy N Hy is also a Hopf subalgebra of H. The same result
holds for subalgebras, subcoalgebras, subbialgebras and normal Hopf subalgebras.

1.1.2 Action and coaction

In the same spirit as for Definition [I.1, we will reformulate the classical definition of
left (resp. right) modules over an R-algebra using diagrams. We will then define right
(resp. left) comodules over an R-coalgebra whose structure is the dual of that of left
(resp. right) modules.

13



1. HOPF ALGEBRAS

Definition 1.37. Let A be an R-algebra. A left A-module M is an R-module together
with an action o : A ® M — M such that « is an R-module morphism and such that
the following diagrams commute:

p®id

ARAR M A M A M —— M
id®a a 1®id -
A M = M R® M

We define a right A-module in a similar way.

If A = H is an R-bialgebra and if the H-module M = S is an R-algebra, we
define a special case of H-modules for which the comultiplication (resp. counit) of H
is compatible with the multiplication (resp. unit) of S.

Definition 1.38. Let S be an R-algebra and let H be an R-bialgebra. Then S is a
left H-module algebra if

1. Sis a left H-module (we will denote the action of h € H on s € S by h - s),
2. h-(ss') = (hay-s)(ho -s') YheH Vs s €S,
3. h-1s=¢(h)ls Vhe H.

We define a right H-module algebra in a similar way.

Example 1.39. Let L/K be a Galois extension with Galois group G = Gal(L/K)
and let H = K[G], then L is a left K[G]-module algebra. Indeed, L is obviously a left
K[G]-module. Moreover,

o(xy) =o(x)o(y) and (1) =1 Vo € G, Vz,y € L.

We will now take the duals of the diagrams of Definition and Definition [1.38
to obtain the following definitions.

Definition 1.40. Let C' be an R-coalgebra. A right C'-comodule M is an R-module
together with a coaction p: M — M ® C such that p is an R-module morphism and
such that the following diagrams commute:

M P MeC M—" MeC
p p®id & id®e
MeC—9 veCeC M R

14



1.1. Basic definitions

We define a left C'-comodule in a similar way.

Example 1.41. Let C' be an R-coalgebra. We can easily see that C' is a left and right
C-comodule with coaction given by A.

As for the comultiplication, we will use the Sweedler notation for the image of an
element m € M by the coaction p:

p(m) = mp ®mp € M ®C for a right C-comodule,
p(m) = mi_ ®@my € C®M for a left C-comodule.

The diagrams of Definition m (for a right C-comodule) can thus be expressed by
the equalities

miojjo] @ Migj1] ® M) = M) @ Mpjay @ mpye) vm e M

and

m = m[g]e(m[l}) VYm € M.

Just like we did with H-modules, if C' = H is an R-bialgebra and if the H-comodule
M = S is an R-algebra, we define a special case for which the multiplication (resp.
unit) of H is compatible with the multiplication (resp. unit) of S.

Definition 1.42. Let S be an R-algebra and let H be an R-bialgebra. Then S is a
right H-comodule algebra if

1. S'is a right H-comodule,
2. (SS/)[O] X (88/)[1} = 8[0}8/[1] X 3[0]3/[1] Vs, s’ € S,

We define a left H-comodule algebra in a similar way.

1.1.3 Duality

Let H be an R-Hopf algebra and let H* := Hompg(H, R) be its dual. The dual of the
multiplication and the dual of the comultiplication are respectively

p*rH*— (H® H)* and A*:(H® H)* — H*.

15



1. HOPF ALGEBRAS

As we can see, p* and A* do not give a comultiplication and a multiplication on H*.
To properly define a structure of Hopf algebra on H*, we need the R-module morphism

o M QM —— (M@M)*: f& [ —— (mem — f(m)f(m)) (1.1)

where M is any R-module. Note that, in general, ¢ is not bijective. However, there are
cases where ¢ is bijective, for example if M is a finitely generated projective R-module.
Also note that we have a natural R-module isomorphism

R—5R:a— (bH ab).

Proposition 1.43. Let C' be an R-coalgebra, then its dual C* can be endowed with a
structure of R-algebra:

1. the multiplication map is given by A* o : C* @ C* — (C' @ C)* — C* where

@ 1s defined as in ,

2. the unit map is given by € : R—=5 R*— C*.

Remark 1.44. The algebra C* is commutative if and only if the coalgebra C' is
cocommutative.

Let A be an R-algebra. Its dual A* is not, in general, an R-coalgebra because the
dual of the multiplication p* : A* — (A ® A)* cannot be made into a comultiplication.
However, if A is finitely generated and projective as an R-module, then the map ¢ is
a bijection. We can thus define a comultiplication on A*.

Proposition 1.45. Let A be an R-algebra that is finitely generated and projective as
an R-module, then its dual A* can be endowed with a structure of R-coalgebra:

1. the comultiplication map is given by o topu* : A*— (AR A)* — A* @ A*
where @ is defined as in ,

2. the counit map is given by 1* : A* — R* =R,

Remark 1.46. If A is an R-algebra that is finitely generated and projective as an
R-module, then its double dual A** is naturally isomorphic to A. By Remark [1.44]
the coalgebra A* is cocommutative if and only if the algebra A is commutative.

Proposition 1.47. Let H be an R-Hopf algebra that is finitely generated and projective
as an R-module., then its dual H* is also an R-Hopf algebra that is finitely generated
and projective as an R-module. Moreover, its double dual H** is naturally isomorphic
to H as R-Hopf algebras.

16



1.1. Basic definitions

We will now look at the dual of C-comodules, H-comodule algebras, A-modules
and H-module algebras.

Proposition 1.48. Let C' be an R-coalgebra and let M be a right C-comodule with
coaction p: M — M @ C. Then M becomes a left C*-module with action

oM oMo 2 Mo 9 C—MQR—= s M :

f®@m: myof (my))

where o is the switch map defined in Definition [1.3. Moreover, if C = H is also an
R-bialgebra and of M = S is also a right H-comodule algebra, then this action endows
S with a structure of left H*-module algebra.

Proposition 1.49. Let A be an R-algebra that is finitely generated and projective as
an R-module and let M be a left A-module. Then M can be endowed with a structure
of right A*-comodule. Let {(fi, ai)}?zl C A* x A be a projective coordinate system, so
that for every a € A we have a =Y ., fi(a)a;. Then M becomes a right A*-comodule
with coaction

p:M—>M®A*:m|—>zn:(ai-m)®fi. (1.2)

i=1
Moreover, if A = H 1is also an R-bialgebra and if M = S is also a left H-module
algebra, then this coaction endows S with a structure of right H*-comodule algebra.

We end this subsection with the definition of an alternative dual for an arbitrary
K-algebra when R = K is a field. This definition is due to Sweedler [Swe69].

Definition 1.50. Let A be a K-algebra. We say that an ideal I C A is cofinite if A/
is finite dimensional. The Sweedler dual of a K-algebra A is

A° = { f € A" |Ker f contains a cofinite ideal}.

Remark 1.51. The inclusion A° C A* is an equality if A is finite dimensional.

Lemma 1.52. Let Ay and Ay be two K -algebras, then AS®@AS = (A1®As)°. Moreover,
if f: A1 — As is a morphism of K -algebras, then f*(A3) C AS.

Proposition 1.53. Let A be a K-algebra, then A° can be endowed with a structure of
K -coalgebra:

1. the comultiplication map is given by p*|s0 : A°— (A® A)° = A° ® A°,

17



1. HOPF ALGEBRAS

o

go i A°—— K° = K*— K.

2. the counit map is given by *

Moreover, if A = H is a K-bialgebra (resp. K-Hopf algebra), then H® is also a
K -bialgebra (resp. K-Hopf algebra).

1.1.4 Limits and colimits

Let K be a field. It is well-known that the category Alg, of K-algebras is complete and
cocomplete, meaning that all categorical limits (such as products, equalizers, pullbacks
and inverse (or projective) limits) and all categorical colimits (such as coproducts, co-
equalizers, pushouts and inductive (or direct) limits) exist in Alg. Since the forgetful
functor Alg, — Set preserves and creates limits, all limits can be computed in set-
theoretical terms, and be endowed with a suitable K-algebra structure. Colimits, on
the other hand, are more complicated to describe (the construction of coproducts, for
example is similar the construction of free products of groups). However, when we
restrict to the category of commutative algebras, then the situation becomes easier.
Indeed, the categorical coproduct of two K-algebras A and B is just the K-tensor
product A® B. More generally, the categorical pushout of morphisms of commutative
algebras f : E — A and g : E — B is given by the balanced tensor product A ®p B.

The situation for coalgebras is maybe less known, although it is -as one could
expect- exactly dual to the situation of algebras. Indeed, any category of coalgebras
Coalg) has all colimits which can be computed in the underlying category of sets.
At least in the case when K is a field (or even more generally, when K is a regular
commutative ring, see e.g. [Por08] and [Agol1]) the category Coalgy also has all limits.
In case we restrict to the cocommutative coalgebras, then the categorical product of
two coalgebras C' and D can be computed as the tensor product C'® D, which becomes
a coalgebra by the following comultiplication

A:CRD—-CRDRC®D, A(C@d):C(1)®d(1)®6(2)®d(2)

and counit

e:C®D— K, e(c®d) = ec(c)ep(d).

In this case, the natural projections 7o : C ® D — C' and 7p : C ® D — D are given
by
To(c®d) = cep(d) and 7p(c® d) = ec(c)d,

for all c® d € C' ® D. The pullback of two morphisms of cocommutative coalgebras
p1:C — E and py : D — E, is given by the following subset of the product

C@ED = {c®d€ C@D ’ C(l) ®p1(c(2)) ®d: C®p2(d(1))®d(2) - C@E@D}

18
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Also the category of Hopf algebras Hopf, is complete and cocomplete (see e.g.
[Porll] and [Agoll]). In fact, limits in Hopfj can be computed in the same way as
limits in the category of coalgebras; colimits in Hopf, can be computed on the un-
derlying algebras. In view of the above however, limits nor colimits of Hopf algebras
can in general be computed on their underlying sets. When we consider commutative
(respectively cocommutative) Hopf algebras, then coproducts and pushouts (respec-
tively, products and pullbacks) have the same simplified description as in the under-
lying category of commutative algebras (respectively cocommutative coalgebras), as
given above.

1.2 Invariants and coinvariants

In this section, we will state an important correspondence between ideals and subal-
gebras of a Hopf algebra.

Throughout this section, K will be a field and H will be a K-Hopf algebra. Un-
adorned tensors are assumed to be taken over K unless specified otherwise.

Definition 1.54. Let L be a left H-module and let F C H be a subset. We define
the set of left F-invariants of L by

L"={zeL|h-z=eh)x VheF}.
If L is a right H-module, we define the set of right F-invariants in a similar way.

Definition 1.55. Let L be a right H-comodule, let V' be a K-vector space and
let f: H—V be a morphism of K-vector spaces. We define the set of right V-
coinvariants of L by

LoV = {33 € L’x[o] & f(x[l]) =r® f(lH)}

If L is a left H-module, we define the set of left V -coinvariants in a similar way but it
will be noted VL.

Definition 1.56. Let H be a K-Hopf algebra. We define the pair of maps

{I C H left ideal two-sided Coideal} # {A C H right coideal subalgebra}

in the following way:
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1. let I C H be a left ideal two-sided coideal and let = : H —» H/I be the natural
projection, then o(I) is the set of left H/I-coinvariants of H:

gp([) = COH/IH = {h c H | W(h(l)) X h(g) = 7T(1H) & h};

2. let A C H be a right coideal subalgebra, then 1(A) is the left H-module gener-
ated by AT := {a € A|e(a) =0}:
V(A) = HA*.

In general, the maps ¢ and 1 are not inverse bijections but they satisfy the following

property:
ACo(l) <= I CyY(A).

In some particular cases, ¢ and v are known to be inverse bijections.

Theorem 1.57. ([New75, [Sch90, Thm. 4.15]) Let H be a cocommutative K-Hopf
algebra, then the pair of maps

{I C H left ideal two-sided coideal} # {A C H Hopf subalgebm},

where @ and Y are defined as in Definition [1.56|, are inverse bijections.

Theorem 1.58. ([Mon95, Thm. 3.4.6]) The bijective correspondence from Theorem
can be restricted to a bijective correspondence between the Hopf ideals and the
normal Hopf subalgebras of a cocommutative K-Hopf algebra H :

{] C H Hopf z'deal} # {A C H normal Hopf subalgebm}.

1.3 Hopf-Galois extensions

Let L/ K be a finite separable field extension and let G = Aut(L/K). From the linear
independence of characters, the morphism of K-vector spaces defined by

can : L[G] —— Endg (L) : zo —— (y = z0(y)) (1.3)

from the group algebra K[G] to the ring of K-linear endomorphisms Endg (L) is
injective. Furthermore, can is bijective if and only if L|G]| and Endg (L) have the
same dimension as L-vector spaces, i.e. if and only if #G = [L : K|. We thus have
the following result.
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Proposition 1.59. Let L/K be a finite separable field extension and let can be the
map defined in . Then can is bijective if and only if L/K is Galois.

We can thereby substitute the normality of the finite separable field extension L/K
in Galois theory by the bijectivity of can. Chase and Sweedler [CS69] used this result
to extend Galois theory to commutative rings with action given by a Hopf algebra.

Definition 1.60. Let R be a commutative ring with unity, let S be a commutative
R-algebra that is finitely generated and projective as an R-module and let H be an
R-Hopf algebra. Then S/R is a Hopf-Galois extension with Hopf algebra H, or simply
H-Galois, if S is a left H-module algebra and if the map

can: S ® H——Endg(S) : s @ h—— (t = s(h - 1)) (1.4)
is an isomorphism of R-modules.

Remark 1.61. Let L/ K be a finite Galois extension with Galois group G = Gal(L/K).
Taking R = K, S = L and H = K[G] in the previous definition recovers Proposition
1.59. Therefore, every finite Galois extension of fields L/K is K[G]-Galois.

In [GP87|, Greither and Pareigis showed an example of a finite non-Galois extension
that is Hopf-Galois.

Example 1.62. Let K = Q, w = v/2 and L = Q(w). Let us define the following
linear maps ¢, s : L — L by

() =1, cw)=7Fw w’)=75"
s(1) =0, s(w)=iw, sw?)=7w
Straightforward calculations show that, for all z,y € Q(w), we have

c(zy) = c(z)c(y) — 3s(x)s(y) and s(zy) = c(z)s(y) + s(z)c(y).
Let H = Qle,s]/(3s* + ¢ — 1,(2c + 1)s, (2c + 1)(c — 1)), A(c) = c® c — 35 ® s,
A(s)=c®s+s®c, e(c) =1 and €(s) = 0, then L/K is a finite H-Galois extension.

It is possible to make the isomorphism of R-modules can into an isomorphism of
R-algebras if we define a suitable multiplication on S ® H.

Definition 1.63. Let S be a left H-module algebra. We define the smash product
S#H to be the R-algebra which as R-module is S® H (we will write s#h € S#H for
the element corresponding to s ® h € S ® H) and with multiplication defined by

(s#h)(s'#N') = s(hqy - s")#h@h' Vs,s' € S,Vh, ' € H
and with unit 1g#1p.
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Corollary 1.64. Let S/R be an H-Galois extension, then can: S#H — Endg(S) is
an isomorphism of R-algebras.

Proof. Let s,s',t € S and h,h' € H, then

can((s#h)(s#1))(t) = can(s(hq) ) (1) -8 (hyh' - t)
_ s(h.(s/(h’.t))) _n(s#h)can( TR (t)

and

We end this section with some useful results on H-Galois extensions.
Proposition 1.65. Let S/R be an H-Galois extension, then S? = R.

Proof. For all h € H and for all s € R, we have h - s = ¢(h)s. Thus, R C S,
Conversely, let s € SH, then for all t € S and for all h € H we have

(t#0) (s#1u) = (t(hq) - 5)) #h) = (te(h))s) #h) = st#h = (s#1m)(t#h).

Therefore, can(s#1y) commutes with can(t#h) for all ¢ € S and for all h € H. By
the bijectivity of can, we can conclude that can(s#1y) is in the center of Endg(S),
which is R. So, s € R. U

Proposition 1.66. [Chi89, Prop. 2.9] Let K be a field and let H be a K-bialgebra.
Suppose that L/ K is a finite field extension such that L is a left H-module algebra and
define can : L @ H— Endg (L) as in . Letp: L— L®H*:x—xp @ xp be
the right coaction as defined in and define

JiLOL——LQ®H":2Qy+—— Y0 @ Y-

Then can is bijective if and only if j is bijective.

Proposition 1.67. [Sch97] Let L/K be a finite field extension and let H be a K-
bialgebra. Suppose L is a left H-module algebra such that can: L @ H — Endg (L),
as defined in , is bijective. Then H is a K-Hopf algebra.

Proposition 1.68. Let H be a K-Hopf algebra and let L/ K be a finite field extension
that is H-Galois. Then H is cocommutative.
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Proof. Using the fact that L/K is H-Galois in the first and third isomorphism, the
fact that L/K is finite in the second isomorphism and the Hom-tensor relations in the
last isomorphism, we obtain a natural isomorphism

LeH®H = Homg(L,L)® H = Homg(L,L® H)
Homy (L, Homg (L, L)) = Homg (L ® L, L).

I

The composed isomorphism a : L ® H ® H — Homg (L ® L, L) is given explicitly by
a(r@h@h)(y®z)=z(h-y)(h-2).
By the commutativity of L, it is clear that for all z,y, 2 € L and for all h € H,
z(hay - y)((he) - 2) = zh-(yz) = zh- (2y)
= x(hq)y - 2)((he) - y) = z(he) - y)((ha) - 2).
This means that a(x ® hy ® b)) = a(x ® hig) ® h(1)) and since a is an isomorphism

we also have that * @ h(1) ® hi) =  ® h) ® h(). Since K is a field, it follows that
hay ® hy = he) ® hqay, hence H is cocommutative. O

1.4 Hopf-Galois descent

Let L/K be a field extension, we can consider the extension-of-scalars functor
L®—:Vecty ——Vect; : Vi——LQV

from the category of K-vector spaces to the category of L-vector spaces. The action
of L on L ®V is given by

r(y@v)=zy®uv Vz,y€ L, YveV.

Let H be a K-Hopf algebra and suppose that L is a left H-module algebra. Con-
sider the K-algebra L#H. Then a left L#H-module M is an L-vector space which is
also a left H-module and such that the actions of L and H on M satisfy the following
compatibility condition:

h-(xm) = (hqy-x)(he -m) VYhe H Vre L, Yme M. (1.5)
Lemma 1.69. Let L/K be a field extension, let V be a K-vector space and let H be
a K-Hopf algebra. Suppose that L is a left H-module algebra. Define the action of H

on L&V by
h-(y@v)=(h-y)®v Vhe H VYye L, YveV.

Then L ®V is a left L#H-module.
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Proof. Let he H, x,y € L and v € V, then
he-(z(lyev)) = h-(zy@v) = (h-2y) @v = (ha)-2)(he y) v
= (h - 2)((he - y) ®0) = (hay - 2) (b - (y @ v))-
Hence is satisfied. O
Therefore, the extension-of-scalars functor can be written as
L ® —:Vectx —— rggMod : Vi— L@ V

from the category of K-vector spaces to the category of left L# H-modules.

Suppose now that M is a left L# H-module, is it possible to find a K-vector space
V such that L ® V' = M as L#H-modules? The following proposition answers this
question in the case where L/K is a finite dimensional H-Galois extension.

Proposition 1.70. [CS569, Thm. 9.6] Let L/K be a field extension and let H be a
finite dimensional K-Hopf algebra. Suppose that L is a left H-module algebra. Then
L/K is an H-Galois extension if and only if the pair of functors

L ® —: VectK :)L#HMOd . (—)H
defines an equivalence of categories.

In fact, the above equivalence of categories has a richer structure. The category
r#rMod is monoidal by means of the tensor product over L. Indeed, let M and N
be two left L# H-modules, then we can define the following action of H on the tensor
product M ® N:

h-(m®n)=(hay-m)® (hg-n) YheH Vme M, VneN.
This action is well-defined because for any € L we have

he-(zm®n) = (ha) - (zm)) @ (he) -n) = (hq - )(h(Q) -m) @ (hs) - n)
(hez) - m) @ (hq)y - ©)(h@) - n) = (hay - m) @ (he) - ©)(he) - n)
= (h(l) ) (h(g) [En) =h- (m & xn)

where we used the cocommutativity of H (Proposition [1.68)) in the 4" equality. A
similar computation shows that the actions of L and H on M ® N satisfy the compat-
ibility condition ([1.5). With this monoidal structure, the extension-of-scalars functor
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L ® — : Vectgy — g Mod is a strict monoidal functor (with the usual tensor product
in Vecty ). Indeed, let V and W be two K-vector spaces, then there is an isomorphism
of L-vector spaces

a:LQVOW)—— (LeV)@L(LeW): 20 (v@w)— (z@v)® (10 w).
It is an isomorphism of H-modules because
&(h-(x@(v@w))) =a((h-2)@veow) = ((h-2)2v) @ (1®w)
and

h-a(z® v®w):h-((x®v)®(1® )) (hay - (2 ®@0)) @ (he) - (1@ w))
(P )®(<h(> Dw) = ((h) - 7) @) @ (e(hx)1 @ w)
= (e(he) )®v)®(1®w) ((h- ) v) ® (1®w).

We can therefore conclude the following proposition.

Proposition 1.71. Let L/K be a finite dimensional H-Galois extension, then the
equivalence of categories given in Proposition 15 a monoidal equivalence.

Let L/K be a finite Galois extension with Galois group G = Gal(L/K) and let M
be a left L# K|[G]-module. Then the set of left K[G]-invariants of M is

MR = {me M|h-m=eh)m Vhe K[G]}
= {meMl|o(m)=m VoeG}.

We can thus reformulate the equivalence of monoidal categories in the following way.

Definition 1.72. Let G be a group and let M be a left G-module. We define the set
of left G-invariants of M by

“={meM|o(m)=m VoeG}.

Corollary 1.73. Let L/ K be a finite Galois extension with Galois group G = Gal(L/K),
then the pair of functors

L ® — : Vecty = 1 uk(cMod : (=)<

defines an equivalence of monoidal categories.
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Finite Hopf-Galois theory for separable field
extensions

2.1 Introduction

Let L/K be a finite field extension. We start by recalling the Fundamental Theorem
of Galois Theory.

Theorem 2.1. (Fundamental Theorem of Galois Theory) Let L/ K be a finite Galois
extension with Galois group Gal(L/K) = G, then the maps

fix
{Gg cG subgroup} = {L/LO/K intermediate ﬁeld}
defined by
fir(Go) ={z € Llo(x) =2 Vo€ Gy} = LG

and
ann(Lo) = {0 € G|o(z) =x V& € Lo} = Gal(L/Lo)

are inverse bijections and inclusion reversing. Moreover, Lo/ K is Galois if and only
if Gal(L/Ly) is a normal subgroup of G.

It is natural to ask whether it is possible to generalize Theorem [2.1] to Hopf-Galois
extensions. The following proposition, due to Chase and Sweedler [CS69|, gives a
beginning of an answer.

Proposition 2.2. Let L/K be a finite H-Galois extension. For a Hopf subalgebra
Hy C H we define

Fiz(Hy) = {z € L|h-x =e(h)x Vh € Hy} =: L',
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Then the map
{Hy C H Hopf subalgebra} —— {L/Lo/K intermediate field}

18 1njective and inclusion-reversing.

If L/K is a finite Galois extension with Galois group Gal(L/K) = G, then it is also
H-Galois with H = K[G]. Recall that, in this case, every Hopf subalgebra Hy C H is
of the form K[Gy)] for some subgroup Gy C G (see Lemmall.34)). Conversely, K[Go| is
a Hopf subalgebra for every subgroup Gy C G. In this context, the maps fix defined in
Theorem and Fix defined in Proposition coincide: for every subgroup Gy C G
we have

Fix(K[Go]) = {z€L|h-z=¢€h)z Vhe K[Go}

{zeLl|o-z=¢loc)x VoeGo}
= {z€Llo(z)=1 Vo Gy} =fix(Gy).

The map Fix is therefore bijective.

A major difference between Galois theory and Hopf-Galois theory is that Fix may
not be bijective.

In this chapter, we will give a characterization of the intermediate fields of the
form Fix(Hy) for some Hopf subalgebra Hy C H. We will also characterize the inter-
mediate fields of the form Fix(/) for some Hopf ideal I C H. We will then state and
prove the Fundamental Theorem of Hopf-Galois Theory (Theorem which is the
generalization of Theorem for Hopf-Galois extensions.

Throughout this chapter, L/K will be a finite separable H-Galois extension. Un-
adorned tensors are assumed to be taken over K unless specified otherwise.
2.2 The Greither-Pareigis group

In this section, we introduce an important group associated to a finite separable H-
Galois extension L/K. This group, due to Greither and Pareigis [GP87], will allow us
to work with Hopf-Galois extensions using classical Galois theory.

Throughout this section, we will adopt the following notations:
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1. L/K is a finite separable H-Galois extension;
2. L/K is a finite Galois extension containing L/K;
3. G =Gal(L/K), G' = Gal(L/L);

4. X = G/G'" is the set of G'-cosets of G (elements of X are of the form ¢G’ with
oe@).

The field extensions and Galois groups are summarized in the following diagram:
L
G/

G| L

K

Definition 2.3. We define the left translation map by the action of G on X:
A:G——Pem(X):0— (7G' = o7G")

where Perm(X) is the group of permutations of X.

Definition 2.4. Let A be a set. A subgroup N C Perm(A) is called regular if, for
every a,b € A, there exists a unique v € N such that v(a) = b.

Remark 2.5. If A is a finite set, then N C Perm(A) is regular if and only if N is
transitive and #N = #A.

Theorem 2.6. |[GP87, Thm. 2.1] Let L/ K be a finite separable field extension. Then
there is a correspondence between the Hopf-Galois structures on L/ K and the subgroups
N C Perm(X) that are regular and normalized by A\(G).

To better understand this theorem, we need the following results. Complete proofs
of these results can be found in [Chi89].

Let XL = Map(X, Z) be the set of maps from X to L. For every oG’ € X, we
define the map

1 if oG' =71,

0 if oG # 7G". (21)

ugG,:X—>Z:TG’|—>{
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Then, X L is generated as an L-vector space by the set {uUG/ |loG' € X } Moreover,
XL is an L-algebra whose multiplication is

~ ~ ~ Ui/ if oG' = TG,,
XL® XL XL : uge G ]

© 7 uG®uG'—>{ 0 ifoG'#7G,

and whose unit element is
1XZ = Z Usq! -
cG'eX

If we define an action of G on XL by

o(xt,cr) = 0(2).Ugrer Vo € G Vz € LVIG € X, (2.2)

then XL becomes a G-module.

The following lemma shows how, from an H-Galois extension L/K, we obtain a
subgroup N C Perm(X).

Lemma 2.7. (a) The map

B LQL—5XL:2®y—> Z zo(Y). User (2.3)
oG'eX

is an isomorphism of Z—algebms and G-modules where G acts on L @ L via the
left factor.

(b) There is an isomorphism of Z-Hopf algebras
By :L®H—L[N] (2.4)
where N is a group of order [L : K].

(¢) Define the action & : L[N] ® XL — XL by the diagram

L
LIN|® XL a XL
L
ﬂH@,BL ~ Br | =
L

Then, the extension XL/L is L[N]-Galois and the action & identifies N as a
subgroup of Perm(X) which is reqular and normalized by A\(G).
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Proof. See [GP87] Lemma 1.2, Proposition 1.3 and Theorem 3.1. O

Remark 2.8. If N C Perm(X) is normalized by A(G), then L[ N] becomes a G-module
with action given by

G x LIN|]—— L[N] : (0,2.0) — o(z.v) = o(z).(A(o)vA(c™)) (2.5)
for all o € G, = € L and v € N. With this action, Sy becomes a morphism of
G-modules.

Conversely, let N be any subgroup of Perm(X). We define the action

& : L[N] ® XL——XL: (2.0) @ (ytoer) — (zy) .Uy (ocr). (2.6)
I

Lemma 2.9. (a) The action & endows X L with a structure of left LIN]-module alge-
bra.

(b) If N C Perm(X) is reqular, then XL/L is an L[N]-Galois extension.

c itionally, 1 18 normalized by , then L 158 a G-module with action
Add lly, if N l~db AG), then L|N G-modul h
given by . Recall that X L 1s also a G-module with action defined by .

Restricting & to the set of G-invariants gives the action
a¢: (LIN)® ® (XL)¥ — (X L)@

making (XL)¢/K into an (Z[N])anlois extension. Moreover, H = (Z[N])G
is a K-Hopf algebra and the restriction of Br on 13 ® L giwes the isomorphism
L= (XL)%.

Proof. See [GP87] Theorem 3.1. O

Example 2.10. Let L/ K be a finite Galois extension with Galois group G = Gal(L/K).
Let L = L, then G = Gal(L/K) and G’ = Gal(L/L) = {id}, so X = G/G' = G.

(1) Define N, = p(G) C Perm(G) where
p:G——Perm(G): 0 —— (1 — 707"

is the right translation map. Obviously, N, C Perm(G) is regular and normalized

by A(G) (it is even centralized by A(G)). Its associated Hopf algebra H = (L[Np])G
is the set of ) __. x,.0 € L[N,] such that for every 7 € G-

7—<Zxa,a> = ZT(ZL‘J).O' = ng.a = 7(7,) =2, YoeGq.

oelG oeG oeG
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Thus, H = K[G]. By (2.3) and (2.6]), the action of 7 € G on x € L is given by

P (Sowrus) = Yot s = Y ore)a.

oceG oeG ceG
—_——
=B (1 ®z) =L (1;®7(z))

Therefore, the action of K[G] on L is just given by the action of G on L.

(2) Define Ny = A(G) C Perm(G). Obviously, Ny C Perm(G) is regular and normal-
ized by A(G). Its associated Hopf algebra is H = (L[N,\])G. If G is an abelian
group, then H = (L[N,\])G = (L[Np])G = K|[G]. Otherwise, this is another
Hopf-Galois structure on L/K.

Definition 2.11. The Hopf-Galois structure on L/K given by N, is called the canon-
ical classical Hopf-Galois structure and the one given by N, is called the canonical
nonclassical Hopf-Galois structure. These two structures coincide if and only if L/K

is an abelian extension.

We will study in more detail the canonical classical and nonclassical Hopf-Galois
structures in section §2.9

We continue this section with a result that will be important later. Consider the
diagram

f

N 1@@;}()\ X Homp (L, L)

P—¢(1cG")
pr

1% G——— Endg(l)

Then, any subgroup V' of N can be seen as a subset of Homy (L, E) The next lemma
shows that there exists a subgroup of G whose image in Homg (L, L) is the same as
the image of V' in Homg (L, L).

Lemma 2.12. Let V. C N C Perm(X) be a subgroup which is normalized by \(G).
Define
S=prt(f(V)) ={c€G|FeV :v(leG) =G}

Then S is a subgroup of G containing G' and #S = #G'.#V . Moreover, the images
of V-and S in Homg (L, L) coincide.
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Proof. As 15 € V, it follows that G’ C S.

1. Let 0 € S and take v € V such that v(15G’) = oG’. Since V is normalized by
AMG), we know that A(c7!)v™!A\(0) € V. Applying it to G’, we get

(AN (0))(16G) = (Mo Ho ) (0G) = Ao ") (1cG) = 07 'G.
So, ot e S.

2. Let 01,09 € S and take vy, vy € V such that v1(16G") = 061G, v2(16G") = 032G’
We have A(o1)vaX(o7 vy € V. So,

(Ao vaA(o7 o) (16G") = (Mo (o7)) (01 GY)
= (Mon)w2) (16G") = AMo1)(02G") = 0102G.

This shows that o090 € S.

To prove that #S = #G'.#V, just remark that the map f|y : V' — X is injective and
that the kernel of pr: G — X is G'. Finally, f(V) = pr(S) so V and S must have the

same image in Homy (L, ). O

The problem of determining all the possible Hopf-Galois structures on a finite sep-
arable extension L/K using Theorem is a difficult one since the number of regular
subgroups of Perm(X) grows quickly as the dimension [L : K| increases. In [Byo96],
Byott translated the search of subgroups N C Perm(X) regular and normalized by
A(G) into a search of embeddings G — N x Aut(N) satisfying some stability condition.
An application of this result is given by Byott’s Uniqueness Theorem.

Theorem 2.13 (|[Byo96]). A finite Galois field extension L/K with Galois group G
has unique Hopf-Galois structure (the one given by K[G]) if and only if #G is a
Burnside number.

2.3 H-subextensions and H-stable extensions

Throughout this section, let L/K be a finite H-Galois extension where H is a K-Hopf
algebra and let Ly be an intermediate field of L/K. We will introduce the notion of
H-subextension (Definition [2.16)) and H-stable intermediate field (Definition [2.20)).

Definition 2.14. The annihilator of Ly is the K-vector space defined by
Amny(Lg) ={h € H|h-2=0 Vz € Lo}.
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We can see Anng(Lg) as the kernel of the morphism of K-vector space
oy : H——Homg (Lo, L) : h—— (x> h- ). (2.7)

If we denote by h the image of h € H by the natural projection H — H/Anng (L),
then the morphism of K-vector spaces

of + H/Anny(Lo) — Homy (Lo, L) : h—— (z + h - ) (2.8)
is injective.
Lemma 2.15. The morphism of L-vector spaces
cany : L ® H/Anng(Lo) — Homy (Lo, L) : @ h—— (y — z(h - y)) (2.9)
18 surjective.

Proof. This follows from the commutative diagram

can

L®H = Endg (L)

| |

cang,

1;(§§.£{/1§11DJ{(1;0) —_— }{CH11}(<1;07 1;)
where the vertical maps are the obvious surjection. O]

Definition 2.16. We say that Lg is an H -subextension if the following property holds:
if ' C H is a subset whose image under «q (as defined in (2.7))) is K-linearly inde-
pendent, then ay(F') is also L-linearly independent.

Example 2.17. Let L/ K be a finite Galois extension with Galois group G = Gal(L/K)
and let H = K|[G], then it is clear that any intermediate extension is an H-subextension.

Lemma 2.18. The following statements are equivalent:
(a) Lo is an H-subextension;

(b) there is a subset F C H whose image under oy (as defined in (2.7)) is L-linearly
independent and generates ag(H) as a K-vector space;

(¢) the map cany (as defined in (2.9)) is injective (and hence bijective by Lemmal[2.15).
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Proof. (a) = (b): Let B be a K-basis of H, then there exists a subset By C B such
that ao(By) is a K-basis of ag(H). Since Ly is an H-subextension, ag(Byp) is also
L-linearly independent in Homg (Lo, L).

(b) = (c): Let F be the image of F' under the natural projection H — H/Anng(Lg).
Then any element v in L ® H/Anny(Lg) can be written in the form u = > 7 23 @ h
for some x;; € L. Since the set ao(F) is L-linearly independent, if cany(u) = 0, then
all x7; = 0 and therefore u = 0. Hence can, is injective.

(c) = (a): Let FF C H be a subset whose image under « is K-linearly independent.
The injectivity of the map can, implies that any K-linearly independent subset of
oy (H/Anny(Lg)) is L-linearly independent. Since ag(F) lies in af(H/Anngy(Lo)),
this proves that ag(F') is L-linearly independent. O

Remark 2.19. By Lemma , for any intermediate field Ly of L/K we always have
dimg (L ® H/AnnH(LO)) > dimg (HomK(LO, L)) or equivalently dimg (AnnH(LO)) <
[L : K| —[Ly : K], and by Lemma , the equality holds if and only if Ly is
an H-subextension. Thus the H-subextensions are the intermediate fields Ly whose
annihilator Anng(Lg) is “big enough”.

Definition 2.20. We say that Ly is H-stable it H - Ly C Lgy. If, furthermore, Lg is an
H-subextension, we say that Lg is H-normal.

Example 2.21. Let L/ K be a finite Galois extension with Galois group G = Gal(L/K)
and let H = K[G], then an intermediate field Ly is H-stable if and only if Ly/K is
Galois. By Example , Ly is H-normal if and only if Ly/K is Galois. Hence, Ly is
H-normal if and only if it is normal in the classical sense.

Lemma 2.22. If Ly is H-stable, then the map cany (as defined in (2.9)) induces a
well-defined morphism of K-vector spaces

can : Ly ® H/Anng(Lg) — Endy(Lo) : # @ h—— (y — (z(h - y))) (2.10)

which is surjective. If, furthermore, Ly is an H-subextension, then cany, is a bijection.

Proof. By the definition of H-stable, the map Lo® H/Anng(Ly) — Endg(Lo) is well-
defined. To see that it is surjective, recall can, from Lemma m and consider the
following surjective morphism of L-vector spaces:

L& (Ly® H/Anng(Lo)) = L ® H/Anng(Ly) —2 Homg (L, L) = L © Endg (L) :
Lo Lo

TR ul x ® canf(u).
Lo Lo
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As Ly — L is faithfully flat, the surjectivity of cany follows. If, furthermore, Lg is
also an H-subextension, then the above map is a bijection by Lemma[2.18] Therefore,
cany is also a bijection. O

The next proposition is the first key result of the correspondence theorem for finite
separable Hopf-Galois extensions [2.31

Proposition 2.23. (a) If Ly is any intermediate field, then Anng(Lo) is a left ideal
in H such that e(Anng(Lg)) = 0.

(b) If Lo is an H-subextension, then Anngy (L) is a left ideal two-sided coideal in H.
(¢) If Lo is H-stable, then Anng(Lo) is a (two-sided) ideal in H.

(d) If Ly is H-normal, then Lo/K is H/Anng(Lg)-Galois and Anng(Lo) is a Hopf
ideal in H.

Proof. (a) For any h € H, i € Anng(Ly) and x € Ly we have
(ht)y-x=h-(W-2)=h-0=0.
Therefore, hh' € Anng(Lg). Moreover, since 1 € Ly,
0="0"-1=¢(R)1.
So, €(h') = 0.
(b) We need to prove that A(Anngy(Lo)) € H® Anng(Lg) +Anny(Lo) ® H. We note
7 H— H/Anng(Ly) : h——h

the natural projection. Let h € Anng(Lg) and let {hy, ..., h,} be any K-basis
of H/Anny(Lo). Then there exist elements %y, ..., h,, € H/Anny(Ly) such that
(m@m)A(R) = ha)y @ h@) =Y, E; ® h;. For any x,y € Ly, we find

can (Y- ) @ T ) (9) = (B - ) (- y) = - () = 0.

Since can, is injective by Lemma m, we obtain that Z?il(ﬁ; 7)) ® h; = 0.
Because the elements h; form a K-basis of H/Anng (L), it follows that E; cx =10
Vx € Ly, hence (since o, from 1) is injective) E; = 0 for all indices 7. We can
thus conclude that (7 ® m)A(h) = 0 and therefore

A(h) € Ker(m®@m) = H® Anng(Lg) + Anng (L) ® H.
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(c) We already know by (a) that Anng(Lg) is a left ideal. For any h € H, b/ €
Anng(Lg) and = € Ly we have

h-x €Ly = (Wh)-z=h"-(h-x)=0.
Therefore, h'h € Anngy(Ly).

(d) We already know that Anng(Lg) is a biideal, so H/Anng(Lg) is a bialgebra. By

Lemma [2.22] the map cany is bijective and hence Ly/K is H/Anngy(Lg)-Galois.

By Proposition [1.67 the bialgebra H/Anny(Ly) is Hopf algebra. Therefore,
Anng (L) is a Hopf ideal.

[

2.4 The space of invariants of a Hopf-Galois

extension

In this section, we study the space of invariants of the finite separable H-Galois ex-
tension L/K.

Lemma 2.24. Let I C H and let L' be the space of I-invariants as defined in Defi-
nition [1.54).

(a) If I is a left ideal two-sided coideal of H, then L' is an intermediate field of L/ K.
(b) If I is a right ideal of H and if e(I) =0, then L' is H-stable.

Proof. (a) Let b’ € I and x € K, then, by Definition [1.38/2., b’ - = = ¢(h/)z = 0.
Thus, L! contains K. For any y,z € L!, we have h' - (y + 2) = 0 and, since
A(W)e H®I+I1®@H, h'- (zy) = (hjy, - y)(hiy - 2) = 0 by Definition 3. So,
L' is a ring containing K and it is a field because L/K is an algebraic extension.

(b) Let h € H, b/ € I and x € L!, then
Whel = N -(h-z)=(Nh) -z=¢elh)xz=0.

So, h-x € L.
O

We will now state the second key proposition of the correspondence theorem for
separable Hopf-Galois extensions [2.31]
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Proposition 2.25. Let I C H be a left ideal two-sided coideal, then L' is an H-
subextension and Annyg (L) = 1.

We will postpone the proof of this proposition to later in this section.

Let E/ K be a finite Galois extension containing L and let I C H be a left ideal
two-sided coideal. Then the natural projection

p:LeH—»LQH/I (2.11)

is a morphism of left L ® H-modules and z—coalgebras. Combining it with the mor-
phism By : L ® H = L[N] defined in (2.4), we get

7:LIN|l—» Lo H/I (2.12)

which is a surjective morphism of left E[N ]-modules and z—coalgebras.
Let

HKer(7) = @FHA(LINY) o= {1 € LIN] |7 (l0) @ o) = 7(1zp) © 1} (2.13)

be the set of left L& H /I-coinvariants. By Theorem , HKer(7) is a Hopf subalgebra

of L[N] so, by Lemma m, HKer(7) must be of the form L[V] for some subgroup
V C N. AsV = HKer N N and because N is the set of grouplike elements of L[N],
we obtain the following explicit description:

V. = {neN|T(n)@n=7(ly)@n} (2.14)

= {neN|7(n)=71n)}. (2.15)
Lemma 2.26. Let n,m € N, we have the equivalence w(n) = w(m) < nV =mV and
the isomorphism of L-coalgebras L ® H/I = L[N/V].
Proof. Let n,m € N such that nV = mV. Then m = nv for some v € V. Because 7
is a morphism of left L[/N]-modules, we have 7(ll") = [.7(I") for every [,I' € L|N]. In
particular,
w(m) =m(nv) = n.7(v) = n.a(idy) = 7(n).

The map 7 can thus be defined on N/V and induces a surjective map L[N/V] —»
L®H/I

This last map is also injective: let n,m € N such that m(n) = 7(m), then
7(m™n) =m 7 (n) = m L7(m) = T(mtm) = 7(idy),

som™n eV and mV =nV. O
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Remark 2.27. The subgroup V' C N is not normal in general. More precisely, V' is
normal if and only if the coalgebra L[N/V] is a Hopf algebra, i.e. if and only if I is a
Hopf ideal of H.

Let us consider the morphism of L-coalgebras 7 : L[N] — L® H/I = LIN/V]. An
element ) _\ x,n € L[N]is in the kernel of 7 if and only if for each coset mV € N/V
we have

Therefore, the kernel of 7 is generated as an L-vector space by the elements n —m
with n,m € N such that nV = mV. This leads to the equality:

[X® = {reL|la=0 VieKe(7)}
= {z€L|nz=mazx Vn,méE N such that nV =mV}
= {zeljva=z YWweV}=L"

Let By : L ® H = E[N] be the map defined in 1) Then Sy is a morphism of
G-modules with actions defined by

olz®@h)=0c(zx)®h YoeGueLheH
and
o(z.v) =o(z).(Ao)vA(c™")) VoeG,z€L,veN.
Since G acts on L® H only via the left factor L, the map 7 : L[N]| 2 L& H — L H/I
is also a morphism of G-modules.

Lemma 2.28. The subgroup V. C N C Perm(X) is normalized by \(G).

Proof. For o € G and v € N, we will write o.v for A(6)vA(c™1). Because 7 : L[N] —
L ® H/I is a morphism of G-modules, we have for every ¢ € G and v € V:

(ow) =0m(v) =07(ly) =7(0.1n) =7T(1y).
So, o.v € V, i.e. V is normalized by A\(G). O

Proof of Proposition[2.25. Let S = pr—! (f(V)) be the subgroup of GG associated to V'
as defined in Lemma Since the images of S and V' in Homg (L, L) coincide, we
obtain LY = L°. Furthermore, as G’ is contained in S, we also have L® = L°. Now
we can apply classical Galois theory to compute dimensions:

L:K|] [L:K|] #N

Ker(7) . _ 175 . _ _ — i
(LR 2 K] = [° 2 K] = e = e = T = dim /T
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We thus obtain
(L' K] > [LR® . K] = dimg H/I > dimg H/Anng (L)

where the first inequality comes from I C Ker(7) and the last one from I C Anng(L').
Combining this with the surjective morphism L ® H/Anng(L') - Homg(L!, L) from
Lemma [2.15] we can deduce that this morphism is an isomorphism. By Lemma [2.18|
this proves that L is an H-subextension. We can also deduce from the isomorphism
that

(L' K] = [LX® . K] = dimg H/I = dimg H/Anng(L").

So, Anng(L') = 1. O

We end this subsection by showing that the space of invariants with respect to a
left ideal two-sided coideal coincides with the space of invariants with respect to the
associated Hopf ideal.

Lemma 2.29. Let L/K be a finite H-Galois extension and let I C H be a left ideal
two-sided coideal. Consider the Hopf subalgebra Hy = p(I) C H as defined in Defini-
tion . By dualizing, we find that (H/I)* is a right coideal subalgebra of H* and
m: H* — Hj is a Hopf algebra morphism. Then the following subsets of L coincide:

L'=p (Lo (H/I)*) = L*" = L™
where p: L — L ® H* is the coaction as defined in .

Proof. L' C p~Y(L ® (H/I)*). Take any x € L! and take a finite dual base {(e;, f;)}
of H, whose first m elements are in I and the next n — m elements generate a linear

complement of I in H. Then f,,.1,..., f, provide exactly a base of (H/I)* and we
find

o) = (0@ fi= 3 (e a)@ fi€ Le (H/I)

p H(L® (H/I)*) C L. Recall from Definition and Theorem that I =
HH{ . Since for any x € Hy, we have that z — e(x)ly € HS C I, we find that the
composition Hy C H — H/I is given by the map = — ¢(x)1. Dualizing this gives
(H/I)* € H* — Hg, we thus find that 7(a) = eg-(a)ly; for any a € (H/I)* where
€g+ and 1ps are the dual of the multiplication and the dual of the counit respectively
(see Propositions and [1.43). Now let € L such that p(z) € L ® (H/I)*, then
) @ m(zpy) = @) @ e(@p)lug = @ Luy.

Lo € LHo. Let ¢ € LM, then zq) ® m(zp) = 2 ® 1g;. So Vb € Hy, b =
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z(1yz,b) = €(b)x and therefore z € L.
Lo C L1 it is easy to see that Lo C LHS = LHHS  To finish the proof, just recall
by Definition and Theorem that HH = 1. O

Let us end this section by the observation that the notion invariants is stable under
base change. Recall that if L is an H-module algebra, and L C L is any field extension,
then L ® L is a L ® H-module algebra.

Lemma 2.30. Let L be an H-module K-algebra and F C H a K-linear subspace.
Then for any base extension L/L, we have that

(Lo L)®F =L LF,

Proof. This follows from the fact that the space of invariants is a limit in Vectyx and
the extension-of-scalars functor preserves limits. An explicit argument is as follows.
Take T ®x € L ® L. Then for any § ® h € L ® F, we find that

(JRh)- (TRz)=92@h- =0T R€c(h)r =€y ®h)T ® .

So L& L¥ C (L®L)L®F. On the other hand, take any 3., #;®@z; € (L® L)E®F where
we suppose without loss of generality that the elements Z; are linearly independent.
Then for any h € F, we find using the definition of the action under extension of
scalars that

L@h) - O #i®w)=Y #H®h x
and on the other hand, since ) . 7; ® z; is L®F -invariant, we find

(Loh) - (Y F@w) =D @ ®e(h)r,

Since the elements ; are linearly independent we can conclude that x; € L for all
indices i, and hence >, %, ® h-x; € L ® L. O

2.5 Correspondence theorem for Hopf-Galois

extensions

Theorem 2.31. Let L/K be a finite separable H-Galois extension. Let Fix, Anng
and ¢ be defined as in Proposition|[2.3, Definition and Definition respectively.
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Then the maps
{HO C H Hopf subalgebm}

Fix

Fix

oAnn
go“¢ v " {L/LO/K H-subeztension}

{I C H left ideal two-sided coideal} Anni

are inverse bijections. Moreover, the above correspondence restricts to the following
1mverse bijections:

{HO C H normal Hopf subalgebm} \
oAnn
“ /{L/LO/K H-normal}
{I C H Hopf ideal} %

Proof. The vertical arrows come from Theorem [1.58] We know that all the maps Fix
and Anny are well-defined. By Lemma , we also know that Fix(Ho) = Fix(v(Hy))
and Fix(I) = Fix((I)) for any Hopf subalgebra Hy C H and any left ideal two-sided
coideal I C H. Furthermore, Propositiontells that Anng(L') = I, which provides
half of the correspondence.

For the other half, let Ly be an H-subextension. We clearly have the inclusion Ly C
LAmu(Lo) - Again by Proposition , we have [LAM#(Eo) ¢ K] = dimy H/Anng(L).
Moreover, by Lemma [2.18, the map can, : L ® H/Anny(Lo) — Hompg (Lo, L) is an
isomorphism, proving that [Ly : K] = dimg H/Anng(Lg). Therefore, [LA™#(Eo) .
K] = [Lo : K] and the inclusion Ly C LA™#(F0) i an equality. H

If Ly is H-normal, we already know by Proposition that Lo/ K is H/Anng(Lg)-
Galois. The next proposition shows that even if Ly is only an H-subextension, L/Lg
is also Hopf-Galois.

Lemma 2.32. Suppose Lg is an H-subextension. Define the left ideal two-sided coideal
I = Anng(Ly) and the Hopf subalgebra Hy = "/ H of H. Let h € Hy and x € Ly,
then h -z = e(h)x.

Proof. By definition of Anng(Lg), the map H® Ly— L:h® x+—h-x factors
through H/Anng (L) ® Ly:

H® Ly Ly

\/

}{/AHHH(Lo)@)LO
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2.5. Correspondence theorem for Hopf-Galois extensions

Let H — H/Anng(Lo) : h — h be the natural projection, h € Hy and = € Ly. As
Hy = “H/TH we can use that h) ® h) = 1g ® h to get

h-x = h'_(xl)=(hu)'x)(h(m'1)=(h(1>'56)(h(2>'1)

]

Proposition 2.33. Let L/K be a finite H-Galois extension and let Ly be an in-
termediate field. Suppose Lo is an H-subextension. Consider the Hopf subalgebra
Hy = (o Anng)(Lo) as constructed in Theorem [2.31 Then the following statements
hold.

(a) Lo Hy={>,z;@h; € L& H | can(d_, z; ® h;) € Endr,(L)}.

(b) L/Lg is Lo @ Ho-Galois, i.e. the map cany,,;, : L ® Ho — Endr,(L) is bijective.
Proof. (a). If x ® h € L ® Hy, then for all y € Ly and for all z € L we have

can(z @ h)(yz) = x(hqy - y)(he) - 2) = ve(ha))y(he) - 2) = zy(h- 2) = y can(z ® h)(z).

Therefore, can(r ® h) € Endy,(L). Conversely, take Y . x; ® h; € L ®x H such that
the elements z; are linearly independent over K and can() ", x; ® h;) is left Lo-linear.
This means that for all xy € Ly and all x € L, the following equality holds

> wiag(hi - x) Z ih; - (zo) Z i (hy( (hi2) - )
Using the bijectivity of can : L ® H — Endg(L), this equality can be translated into

Z Tiwo ® hy = Z zi(hiq) - o) @ higa)

which holds for all zy € Ly. Since Ly is an H-subextension, we have that can, : L ®
H/Anng(Lo) — Homg (Lo, L) is injective. Hence the previous equality is furthermore
equivalent to

Zm@w ® h; —Z@@ﬂ 1)) @ hi2) € L® H/Anng(Ly) ® H

where we denote m : H — H/Anng(Lg) for the canonical surjection. Since we assumed
that the elements x; are linearly independent, we find that 7(1) ® h; = W(hi(l)) ® hie)
for all i. Hence h; belongs in the set of left H/Anng(Lg)-coinvariants and thus, by
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Theorem [1.57] h; € Ho.
(b). Consider the following commutative diagram

can

= EndK(L)

L H

CanL/LO

L® Hy—— L®p, (Ly® Hy) —="Endz, (L)

Since can is bijective, can; ,; is also injective. It is surjective by part (a). Hence L/Lqg
is Lo ® Hy-Galois. O

We finish this section with a converse result on H-subextensions and H-normal
extensions.

Corollary 2.34. Let L/K be a finite separable H-Galois extension and let Ly be an
intermediate field.

(a) Let Hy be a Hopf subalgebra of H and suppose that L/Lqy is Ly ® Ho-Galois, then
Lo is an H-subextension.

(b) Suppose Ly is H-stable. Let I be a Hopf ideal of H such that the action of H on
Ly factors through H/I:

H®LO LO

>~

H/I® Ly
If Ly/K is H/I-Galois, then Lg is H-normal.

Proof. (a) Using Proposition [1.65, we get that Ly = Lio®Ho = [Ho By Theorem
2.31}, this proves that Ly is an H-subextension.

(b) We already know by Theoremthat L' is H-normal and by Proposition M(d)
that L! /K is H/I-Galois. For all h € I and x € Ly, we have h-z = 0, so Ly C L.
Moreover, since both Ly/K and L'/K are H/I-Galois, then [Ly : K| = [L! : K].
Therefore, Ly = L'.

O
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2.6 Relation with the Greither-Pareigis group

In this section, we will look at the properties of the Greither-Pareigis group N C
Perm(X) to determine whether an intermediate field Lg is H-stable (Lemma or
is an H-subextension (Lemma [2.43)). We will also translate Theorem in terms of
groups (Theorem [2.45)).

Throughout this section, we will use the following notations (see also §2.2)):

1.

L/K is a finite separable Hopf-Galois extension with Hopf algebra H;

L /K is a finite Galois extension containing L;

. G =Cal(L/K), G’ = Gal(L/L) and X = G/,

N C Perm(X) is the Greither-Pareigis group associated with the H-Galois ex-
tension L/K (Theorem [2.6));

Ly is an intermediate field of L/K;

ZO /K is a finite Galois extension containing Ly and contained in E;

. Gy = Gal(Ly/K), Gy = Gal(Lo/Lo) and X, = Go/Gl;

G. = Gal(L/Ly) and G, = Gal(L/Ly).

These notations are summarized in the diagram

L
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Note that G, is a normal subgroup of both G and G,, we thus have the morphisms of
groups
G—G/Gy = Gy and G, —» G, /Gy = G, (2.16)

We will refer to these maps by o — @. Also note that G’ C G, C G, we can then
define the natural projection

7T: X =G/G—G/Gs: 0G'—— oG, (2.17)

from the set of G'-cosets to the set of G,-cosets. Note that 7 is a morphism of left G-
modules. Together with the isomorphism of G-modules G/G, = (G/G.)/(Ga/G4) =
Go/Gy = Xo, we can define the morphism of left G-modules p : X — X by the
commutative diagram

X L X, e — e (2.18)
G/Ge———— (G/G.)/(G.)G.) 0Gor— G

Suppose that Ly is H-normal. By Proposition [2.23|(d), Lo/K is H/Anng(Ly)-
normal, so this extension has an associated Greither-Pareigis group Ny C Perm(X)).
Using Lemma for the H-Galois extension L/K and the H/Anng(Ly) extension
Ly/K, we get the morphisms of Hopf algebras

BL . E@HiZ[N] and /6L0 : ZO & H/ADHH(Lo)i}E()[No] .

Together with the natural projection H — H/Anng(Lg), we obtain the morphisms of
Hopf algebras

LIN|¥L®H — L ® H/Anng(Lo) = L[Ny],

which restricts to a morphism of groups N — Ny;. As N C Perm(X) and Ny C
Perm(Xj), we would hope this map to be the restriction on N of a map from Perm(X)
to Perm(Xj). The next example shows that, in general, there is no canonical map from
Perm(X) to Perm(Xj).

Example 2.35. Let S3 = (0,7 |0 = 72 = (07)? =id). Let G = Go = S3, G’ = {id},
Gy = (1), X =53 and X, = S3/(7). Let

P G—>Perm(X) g (g' = g/g_l)
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be the right translation map and consider the permutation p(c) € Perm(X), then
p(o)(id) = o7t € 071Gy and p(o)(7) = To~! € 0G}. Therefore p(o) does not map to
an element of Perm(Xj).

To overcome this problem, we will define the subset of elements of Perm(X) that
are well-defined in Perm(Xj).

Definition 2.36. Let 7 : X — G/G, be the map defined in (2.17). We define the
subset of m-compatible permutations

Perm,(X) = {f € Perm(X) | 7(0G") = 7(7G") = (w0 f)(0G") = (70 f)(7G")}.
Lemma 2.37. The subset Perm,(X) is a subgroup of Perm(X).
Proof. Let f,g € Perm,(X) and let 0G',7G’ € X such that 7(cG’) = 7(rG’). Then
7(0G') = 7(rG) = 7(g(0G)) = 7(9(rG) = 7(F9(0G) = 7(f9(rC")).
So, fg € Perm,(X). 0

The subgroup Perm, (X') can alternatively be understood as the set of f € Perm(X)
for which there exists f, € Perm(G/G,) making the diagram

x—71 .x

G/G. /G,

commmute. Therefore, Perm,(X) is the largest subgroup of Perm(X) for which the
G.-cosets are blocks. This allows us to define the surjective morphism of groups

Perm, (X ) — Perm(G/G.,) : f—— (0Ge — (70 [)(cG))

where 0G" € X is any G’-coset such that 7(cG’) = 0G,.
The following proposition shows the link between the subgroup Perm,(X) and the
notion of H-stable fields.

Proposition 2.38. With the notation above, the intermediate field Lo is H-stable if
and only if N C Perm,(X).
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Proof. Recall from Lemma [2 2.7 that the action o : H ® L — L extends to the action

a: LIN]® XL — XL. If Ly is H-stable, then we can define similarly the action

L
o : LIN] @ (G/G.)L — (G/G.)L by the diagram
L
LIN| @ (G/G.)L il (G/GJ)L
L
Ba®BLy | ~|Br,
L
LoH)®(L®L)—— L ®(H® L) —2* L ® L

where (G/G.)L denotes the set of maps from the set of Go-cosets G/G, to the field
L. The natural projection 7 : X — G /G, induces the injective map
i:(G)G)L——XL: f— for. (2.19)

Putting a, ap and 7 together, we obtain the commutative diagram

IV

L

id®i[

[ (G/GOL —2— (G/GJ)L (2.20)
LINJ®@ XL —2%—— XL

For every oG’ € X, let u,or € XL be the map as defined in |} and, for oG, € G/G,,
define u,¢q, € (G/G4)L in a similar way. Then the map i can be written

UJG. E Urqr.

TG en—1(0G,)
Let n € N and let 0G4 € G/G,, then the action of n on u,q, viewed as an element of
XL is
( uU'G- - n( Z u‘rG’) = Z Un(rG')y = Z Urcy -
e oGy | rGer 06 ey (o)

By (2.20), we also know that n(i(u,q,)) is equal to some element in the image of
i:(G/GJ)L — XL:

Z Urer =i Z TrG lrG,) = Z Tra, Z uue with z.g, € L.

TG’en(wfl(UG.)) TGeEG/Ge TGe€G/Ge uG'en—1(7Go)
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Therefore, one coefficient z,, must be 1 and the others must be 0. We thus have
n(r ' (0G.)) =7 (rG.) = (mon)(r'(6G.)) =7G,  for some 7G, € G/G,.

Let 01G', 065G’ € X such that m(01G’) = 0Ge = 7(02G"), then 0,G’, 0,G" € 771 (0G.)
and hence (7 on)(01G") = 7Ge = (7 0o n)(02G’). This proves that n € Perm,(X).

Conversely, if Ly is not H-stable, then & does not map into (G/G,)L. Therefore, there
exists n € N and oG, € G/G, such that n(7~(¢G,)) is not of the form 7~ (7G,) for
any 7Ge € G/G,, i.e. n ¢ Perm (X). O

Next, we will characterize H-subextensions with a property on the Greither-Pareigis
group N C Perm(X).

Definition 2.39. We define the subset
N(Ly) = {n € N\n(G./G') C G./G/}

where G,/G’ is the set of G’-cosets oG’ with o € G,. For ease of notation, we will
write N if there is no ambiguity. Because N' C Perm(X), we can easily see that, for
every n € N, we have the equality n(G./G’) = G,/G’'. We can thus see N as a subset
of Perm(G,./G").

Lemma 2.40. The subset N is a subgroup of N.
Proof. Let ny,ny € N, then
n1(n2(Ge/G')) = ni(G./G') = G /G
So, ning € N. If n € N, we also have
n ! G./G") =n" (n(G./G)) = G./G.
So,n"t eN. O

Remark 2.41. As N C Perm(X) is regular, we have #N < #(G./G’) = [L : L)
with equality if and only if N' C Perm(G,/G’) is regular.

Lemma 2.42. If N C Perm,(X), then N C Perm(G./G’) is regular.

Proof. Let n € N be such that n(1¢G") € Go/G" and let G’ € G,/G’. Then w(0G') =
m(1gG") and, because N C Perm,(X), (ron)(cG") = (won)(1¢G’) = 16G.. Therefore,
n(cG') € Go/G’. We thus have

N ={neN|n(lcG) € G./JG'}.
Because N C Perm(X) is regular, we can conclude that #N = #(G./G’) = [L : Lo).
By Remark 2.41] N C Perm(G,/G’) is regular. O
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The following proposition shows the link between the subgroup N' C Perm(G,/G")
and the notion of H-subextensions.

Proposition 2.43. The intermediate field Lo is an H-subextension if and only if
N C Perm(G,./G') is reqular and normalized by A(G).

To prove this proposition, we will need the following lemma.

Lemma 2.44. Suppose Lg is an H-subextension. Define the left ideal two-sided coideal
I = Anny(Lo) and the Hopf subalgebra Hy = “H/TH of H.

(a) Let V. C N be the subgroup defined in . For every f € V and for every
oG € X, n(cG") = (mo f)(cG).

() N =V.

Proof. (a) By Lemma [2.32) Hy acts on Lg. The action Hy ® Ly — Lo becomes, after
base change,
L
Using the isomorphisms L @ Hy = L ® ©H/TH = COZ@H/I(Z ® H) =~ L[V] and
L® Ly = (G/G.)L, (2.21)) becomes

LV] @ (G/G)L—— (G/GIL : f @ upa, —— usoa, Yf €V, VoG, € G/G..
I

By Lemma [2.32] the action of Hy on Ly factors through the counit € : Hy — K.

Therefore, the action of L[V] on (G/G,)L also factors through the counit. In

particular, for every f € V and 0G, € G/G,, since €(f) =1 (because V' C N and

N is the group of grouplike element of L[N]), we get f(usg,) = Uoc,. Using the

inclusion i : (G/G4)L C XL defined in , we obtain

Z Uf(rar)y = Z Urgr-

TG'en—1(0G,) TG en—1(0G,)
Therefore, 7(f(7G")) = n(7G') for every 7G' € G/G'.

(b) By (a), we know that f(G./G") = G4/G' for all f € V. So V C N. We also know
by Remark [2.41] that #A < [L : Lo]. Using the isomorphism L ® H/I = L[N/V]
from Lemma [2.26] we get that dimy H/I = #(N/V). Combining it with the
equality dimg I = [L : K] — [Lg : K] from Remark we finally get #V = [L:
Ly]. Therefore V = N.

[l
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Proof of Proposition [2.43. Suppose Lg is an H-subextension. We know by Lemma
that V' = V. Therefore, by Lemma [2.28 N is normalized by A(G).

Conversely, suppose N' C Perm(G,/G’) is regular and normalized by A(G). Then both
L[N] and LIN] are L#K[G]-modules with G-action as in . By Corollary [1.73] we

have the isomorphisms of L-vector spaces
LIN] = L ® LIN] and LIN] = L ® LIN]C. (2.22)

Moreover, the inclusion A" C N implies that LIN]¢ € LIN]% = H. We can therefore
see L[N as a Hopf subalgebra of H: LIN]Y = Hy C H. As Gy C G, the regular
subgroup N C Perm(G,/G") is also normalized by A(G,). Theorem thus implies
that L/Lg is Hopf-Galois with Lo-Hopf algebra LA]% (the base field is Ly because
Gal(L/Ly) = G,). By taking the G,-invariants in the second isomorphism of ,
we obtain

E[N]G. = (Z ® Ho)G. - EG' ® HO - LO ® H(].

Thus, the extension L/Lg is Ly ® Hy-Galois. By Corollary 2.34(a), Lo is an H-
subextension. O

We will now prove that, from a subgroup M C N normalized by \(G), we can
construct an H-subextension. Recall that the action of G on L[N] is given by

G x LIN|]—— LIN] : (0, 2.0) — o(z.v) = o(z).(Mo)rA(e™h)).

Since G acts on N via conjugation by A(G) and since M is also normalized by \(G),
G also acts on L[M]. As L[N] is an L# K|G]-module, the inclusion of L-Hopf algebras

E[M | € LIN]is also an injective morphism of L# K [G]|-modules. Therefore, we can use

Corollary |1.73| to restrict it to an inclusion of K-Hopf algebras (E[M])G - (E[N])G =

H. We can thus define the map

H : {M C N subgroup normalized by \(G)} — {Ho, C H Hopf subalgebra} :

M B (L[M))

where [y : Lo H— Z[N] is the isomorphism from ([2.4)).

We can now formulate the following correspondence theorem, which is the trans-
lation of the Hopf-Galois correspondence (Theorem [2.31)) to the language of Greither-
Pareigis groups.
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Theorem 2.45. Let L/K be a finite separable H-Galois extension. Then the maps

{N C N subgroup normalized by \(G)} (sz_%) {L/Loy/K H-subextension}

are inverse bijections. Moreover, the above correspondence restricts to the following
wverse bijections:

{N C N normal subgroup normalized by )\(G)} <FM—TOH> {L/LO/K H—normal}

Proof. We already know that these maps are well-defined. Let M C N be a sub-
group normalized by A(G), then the set of G-invariants (E[M ])G is a Hopf subal-
gebra of (Z[N])G Let Hy = 5;1((Z[M])G) be the associated Hopf subalgebra of
H = BEI((E[N ])G) Let I =1 (Hy) be its associated left ideal two-sided coideal of H
as in Definition[1.56, We know by Proposition[2.25that Ly = L' is an H-subextension.
Define V' as in , then

E[V) = @TeHI(E(N]) = By (TH1(E 5 H)) = g (L@ B ) = B (E © Hy).

Using that Hy = Bgl((Z[M])G) we get

BH(Z ® Hy) = L[M].
Therefore, V= M. To prove the other half, suppose Ly is an H-subextension. Let
I = Anng (L) be the associated left ideal two-sided coideal of H and let V' be defined
as in ([2.14). Consider the Hopf subalgebra (L[V])G of H, we want to prove that
LEVDY = L. Computing HKer (7 : LIN] » L® H/I) as in (2.13), we obtain

Z[V] = HKer(7) = coZ®H/Iz[N] ~ coZ@H/I(Z ® H) = IL® co H/I f
which is an isomorphism of z—algebra and G-modules. Taking the G-invariants yields
(Z[V])G ~ G & oH/Tpr — coH/I
So, LEVDY = = —
By Remark 2.27, Ly is H-normal if and only if V' = M is a normal subgroup of N. [
2.7 Opposite Hopf-Galois structures

The main result of this section is to show that for every finite separable H-Galois
extension L/K, there exists a Hopf algebra H' such that
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1. L/K is H'-Galois;

2. Ly is H-stable if and only if Ly is an H'-subextension;
3. Lo is an H-subextension if and only if Ly is H-stable;
4. H'" = H and the actions of H and H'" on L coincide.

Definition 2.46. Let G be any group. We define the centralizer of a subset N C G
as
Centg(N)={geGlgv=vg VYveN}.

It is easy to check that Centg (V) is a subgroup of G. If the inclusion N C G is clear,
we will simply write Cent(N).

Let N C Perm(X) be the Greither-Pareigis group associated with the H-Galois
extension L/K (as in Theorem [2.6). The following lemmas, due to Greither and
Pareigis |[GP8T], show that Cent(N) C Perm(X) is regular and normalized by A(G).
This subgroup thus defines another Hopf-Galois structure on L/K.

Let n € Ny, S,, be the permutation group of {1,2,...,n} and N C S,, be a regular
subgroup. Note that the regularity of N means that for every i € {1,...,n}, there is
a unique permutation v; € N such that v;(1) = i. We can thus write N = {v;|i €
{1, ,n}} Also note that, since N is a subgroup, it contains the identity map id
which maps 1 to 1. Therefore, 14 = id.

Lemma 2.47. [GP87, Lem. 2.4.2] With the above notation, for every f € S, we
define the map

or {1, ..,n} ——A{1,...,n} i—— v (f(1)).

Then 5 € S, and Cent(N) = {¢,|v € N}. Moreover, Cent(N) C S, is a regular
subgroup and Cent(N) = N°PP (where N°PP is the opposite group whose underlying set
is N and with new operation * defined by v v = 1V'v).

Proof. Let f € S,, we will first prove that ¢y € S,. Suppose ¢(i) = @¢(j) for
i,j € {1,...,n}, then v;(f(1)) = v;(f(1)) so v; and v; send f(1) to the same element.
Because N C S, is regular, we must have v; = v; and thus ¢ = j. This proves that ¢y
is a permutation of {1,....,n}: ¢; € S,,.

Let ¢ € Cent(N). For every ¢ € {1,...,n} we have

p(i) = pri(1) = vip(l) = ViV@(1)(1) = Pu,m (4).
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So, ¢ = ¢y, and Cent(N) C {o v e N}

Conversely, let v € N and ¢, € S, we will prove that v;, = ¢, v; for every v; € N.
By definition of v;, we have v;1;(1) = v,,(;)(1) for every j € {1,...,n}, and since N is
regular, we find that v;v; = v,,(;). We thus get

Vz'%(j) = ViVjV(1> = Vui(j)V(l) = %Vz'(j)'

As this equality holds for every j € {1,...,n}, we obtain v;¢, = ¢,v;. We thus have
{ov|v € N} C Cent(N).

To prove that Cent(N) C S, is a regular subgroup, we will first prove that the subgroup
is transitive. Indeed, if 7,5 € {1,...,n} then define k = v; *(j). We thus have ¢,, (i) =
vivk(1) = v;(k) = j. We also have #Cent(N) < #N = n, so Cent(N) C S, is regular.
Finally, let v;,v; € N, we will prove that ¢,,0,, = ©,,,. Because vy = id, @y(1) =
v f(1) = f(1). We thus obtain

90111'901/](1) = Qouiyj(l) = Soui(j) = VjVi(D = ‘Plfjw(l)‘

As both Pu; P and Pu,v; belong to the regular subgroup N C S,,, we have v Py, =
Pujv;-

O

Lemma 2.48. [GP87, Thm. 2.5(b)] Let N C S,, be a regular subgroup and let G C S,
be a subgroup such that N is normalized by G. Then Cent(N) is also normalized by
G.

Proof. Let ¢, € Cent(N) and let g € G. As Cent(N) is regular, we can define ¢
to be the unique element in Cent(/N) such that gp(1) = 1. We claim that ¢,,,-1 =
g~ gt We thus obtain g~ '¢,,,-19 = w0 " € Cent(N). Because N is normal-
ized by G, gvg~' € N. Moreover, if we fix ¢ € G and if we let v run through all ele-
ments of N, then gvg~! runs through all elements of N. Therefore, g~ '¢,g € Cent(N)
for every g € G and every v € N.

To prove the claim, let ¢ € {1, ...,n}, then we get

gpeup g7 (1) = gpv-1g-1r (L)
and
Pavg—1 (1) = vigrg (1) = vigere~ g~ (1) = vigev(1)

where the second equality comes from v = @rp~! (because p € Cent(N) commutes
with v € N) and the third equality comes from go(1) =1 = ¢ tg71(1). We will now
show that gov,-14-14) = v;9¢, which is equivalent to vy,-1-15 = ¢~ 'g ';g¢. Both
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v, € N because N is normalized by G and

terms belong to N (for the right one, g~
0 tg ;g0 € N because ¢ € Cent(N) centralizes N), so it is enough to prove that
they coincide at 1:

1

e g vige(1) = ¢ g (1) = o g (i) = vpmrg-rp (1),

This finishes the proof O]

Definition 2.49. Let L/K be a finite separable H-Galois extension with Greither-

Pareigis group N C Perm(X). Then Cent(N) C Perm(X) is regular by Lemma m

and normalized by A(G) by Lemma [2.48, By Theorem [2.6] we can construct a Hopf

algebra such that L/K is Hopf-Galois with Greither-Pareigis group Cent(N). We call

this the opposite Hopf-Galois structure and we will denote its associated Hopf algebra
~ €

HT := (L[Cent(N)])” (see Lemma (c))

Corollary 2.50. Let L/K be a finite separable H-Galois extension, then (H')' = H
and the action of H and H'M on L coincide.

Proof. We will prove that Cent(Cent(/N)) = N. By definition, we have the in-
clusion N C Cent(Cent(/N)). Furthermore, this inclusion is an equality because
#Cent(Cent(N)) = #Cent(N) = #N. O

We will now prove the main result of this section.

Theorem 2.51. Let L/K be a finite separable H-Galois extension and let HT be
the Hopf algebra associated with the opposite Hopf-Galois structure. Let Ly be an
intermediate field, then

(a) Ly is H-stable if and only if Lo is an H'-subextension;
(b) Ly is an H-subestension if and only if Ly is HT-stable.

Proof. Similarly to what has been done in Lemmas [2.47] and 2.48] for cG' € X we
define v, € N to be the unique element in N such that v,¢(16G’") = ¢G’" and for
f € Perm(X) we define ¢y € Perm(X) by ¢s(0G’) = voe f(1gG') for all 0G' € X.
We have N = {Vagl |oG' € X } and v;,¢ = id. Recall from Proposition that L
is H-stable if and only if

N C Perm.(X) = {f € Perm(X) |n(cG") = 7(7G") = (m o [)(cG') = (70 f)(7C")}
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where 7 : X — G /G, : 0G'— oG, is the natural projection. Also recall from Propo-
sition that Lo is an H-subextension if and only if the subgroup

N ={veN|v(G./G')CG./G} C Perm(G./G")

is regular and normalized by \(G).

We will first suppose that L is H-stable and prove that L is an H'-subextension.
We want to prove that the subgroup

Cent(N)o = {¢, € Cent(N) |0, (Gs/G') € Go/G'} C Perm(G,/G')
is regular and normalized by A(G). We will first prove the following statement:
VoG € G,/G' VTG' e X : 7G' € G,/G" <= v, (7G") € G,/G". (2.23)

If oG',7G" € G,/G', then 7(7G") = 16G. = 7(1cG’). Because N C Perm,(X)
we get m(v(7G')) = 7(v(1G")) for all v € N. In particular, for v = v, we ob-
tain 7 (v, (7G")) = 7(0G') = 16G. and therefore v,c(7G') € Go/G'. Conversely,
if 0G' Ve (TG') € Go/G, then 7(voe(TG')) = 16Ge = 7(0G') = (Vo (16G)).
Again, because N C Perm,(X), we get W(VVUG/(TG/)) = W(Vyggl(lgG,>) for all
v € N. In particular, for v = v/}, we obtain 7(7G’) = m(1¢G") = 1¢G. and therefore
TG’ € G,/G'. This proves (2.23).

Next, we will prove that
Cent(N)o = {¢, € Cent(N) |v € N'} C Perm(G./G"). (2.24)

Let v € N and suppose that ¢,(G./G") € G./G'. Then for all oG’ € G,/G’ we
have ¢,(0G") = v,av(16G") € G./G'. By we have v(1gG') € Go/G'. As
v € N C Perm,(X) and 7(0G’) = 16¢G. = 7(16G"), we obtain that 7(v(cG’)) =
m(v(16G)) = 16G.. Thus, v(cG') € G./G for all oG’ € G./G, ie. v(G./G') C
G./G', so v € N. Conversely, let v € N and suppose that v(G,/G") C G,/G".
Then for all cG’ € G,/G’ we have v(cG') C G,/G'. As v € N C Perm,(X) and
T(0G') = 16Gs = 7(16G"), we obtain that 16G, = 7(v(0G')) = 7 (v(1¢G")). Thus,
v(1¢G') € G./G' and by we have ¢, (0G") = v,av(1gG") € G,/G' for all
oG € G./G', ie. ¢,(G./G') C G./G'. This proves (2.24).

We thus have #Cent(N)q = #N = [L : L] (the second equality comes from Lemma
2.42]and Remark2.41]) and therefore, by Remark[2.41]again, Cent(N)y C Perm(G,/G’)
is regular.

To prove that Cent(N)g is normalized by A(G), we must show that A(g™")¢,A(g) €
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Cent(N)g for all ¢ € G, v € N. By Lemma [2.48] we already know that Cent(XN) is
normalized by A(G). As Cent(N)y C Perm(G,/G’) is regular, it is enough to show
that A(g7")p,A(9)(1¢G") € G./G'. Consider the subset

7 (gG.) = {g0G € X |0 € G.} (2.25)

whose elements are the G'-cosets which are sent to the Go-coset gG,. We can easily
see that 77! (1¢G,.) = G./G’ and more generally that 77! (gG.) = A(g) (77 (1cG.)).
Let ve N, g€ Gand 0 € G,. As Vo € N C Perm,(X) and W(V(lgG,)) =1cGe =
m(1¢G"), we obtain 7 (Ve v(16G")) = (Vg (16G')) = 7(90G’) = gG,. Taking 7
vields ¢, (g0G') = vyoav(16G') € 771 (gG,) for all v € N, g € G,0 € G,, which can
be written

e, (771 (gG.)) C 71 (9G.) Y eN, geG.

Putting everything together, we get

|
>

Mg e A(g)(16G)

1IN m
> >

= T (1@G.

We have proved that, if Ly is H-stable, then the subgroup Cent(N)y C Perm(G,/G’)
is regular and normalized by A(G). This means that, for the opposite Hopf-Galois
structure HT, Ly is an H-subextension.

We now suppose that Ly is an H-subextension and prove that L is H -stable. We
want to prove that Cent(N) C Perm,(X), i.e. for all cG',7G" € X :

(0G") =7m(1G") = (ro,)(cG) = (rop,)(TG") Vv € N.

The subgroup N C Perm(X) is normalized by A(G), we have A(g~')vA(g) € NV for all
g € G, v e N. Therefore

Mg~ A 9)(Ge/G") € Gu /G = vA(9)(G./G) € Mg)(G./G).
Using , we can write
v(gG') € v(r~(9G.)) € 7' (9G.) (2.26)
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= 7(v(gG")) € " (9G.). (2.27)

Note that 77~ !(gG,) is a singleton whose unique element is gG, = 7(gG"), we therefore
obtain

m(v(9G")) =w(9G") Vv eN, Vg€ G. (2.28)

The subgroup N C Perm (G, /G’) is also regular, so #N = #(G./G") = # (77 (9G.))
for any g € G. Together with , this means that for every hG’' € 7=1(gG,), there
is a unique v € N such that v(gG") = hG'. We can slightly change the formulation to
obtain the following result:

Vo@G' . 7G' € X : m(0G') = n(rG') = v e N : v(oG") = 7G". (2.29)

We are now ready to show that Cent(N) C Perm,(X). Let 0G’,7G’" € X such that

7(cG") = w(7G"). By (2.29), there is a unique v € N such that v(cG’) = 7G’. We also

have that vv,¢ (16G") = vr¢/(1¢G"). As both v, and v, belong to N C Perm(X),
which is regular, we obtain the equality

Vet = Vs - (230)

We can now conclude: for all p € N we get

T (‘PM(UG,))

W(VUG/ 10G/)

W(VVUG/ 1gG) by-
H(rran(lel)) by €30
(

= m(p, TG')

This proves that Cent(N) C Perm,(X). So, for the opposite structure H', Lg is H'-
stable.

To finish the proof, just recall Corollary H and H'T defines the same Hopf-
Galois structure. Therefore, if L is an H'-subextension, then L is H'T-stable, hence
H-stable; if Ly is H-stable, then L is an H'T-subextension, hence an H-subextension.

O

We can now reformulate the correspondence theorem [2.31| in terms of the Hopf-
Galois structure given by the Greither-Pareigis group Cent (V).
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Corollary 2.52. Let L/K be a finite separable H-Galois extension with Greither-
Pareigis group N C Perm(G/G’) and let H' = (L[NOT”’])G be the Hopf algebra associ-
ated with the group Cent(N). Then the maps

{HO C H Hopf subalgebm}
H m
©

{I C H left ideal two-sided coideal} Anna

{L/Ly/K H'-stable}

are inverse bijections. Moreover, the above correspondence restricts to the following
wnverse bijections:

{HO C H normal Hopf subalgebm
{1 C H Hopf ideal) %

2.8 Intersection, compositum and compatible

{L/Ly/K H-stable and H'-stable}

Hopf-Galois extensions

In this section, we study the intersection and the compositum of H-subextensions and
of H-stable extensions. We also introduce the notion of compatibility between two
Hopf-Galois extensions.

Lemma 2.53. Let L/K be a finite field extension and let Ly and Lo be two interme-
diate fields.

(a) EndL1L2 (L) = EndLl (L) N EndLZ(L)
(b) ]f EndLl (L) = EndL2 (L), then L1 = LQ.

Proof. (a) Let f € Endg(L), then f is L;Lo-linear if and only if f is both L;-linear
and Le-linear.

(b) Using (a), we get that Endy,1,(L) = Endy, (L) = Endg,(L). Furthermore, for any
intermediate field E of L/K we have dimg (Endg(L)) = [L : K][L : E]. Tt thus
follows that [L1Ly : K| = [Ly : K] = [Lg : K|. Since Ly C LyLy O Ly, it follows
that Ly = L1Ly = Ls.

[
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Let L/K be a finite separable H-Galois extension. We can associate with each
H-subextension a left ideal two-sided coideal (Definition and a Hopf subalgebra
(Definition[1.56)). Recall from Lemma/|L.35|that the sum of left ideals two-sided coideals
of H is again a left ideal two-sided coideal of H and from Lemma that the
intersection of Hopf subalgebras of H is again a Hopf subalgebra of H. By the previous
results, both the sum of left ideals two-sided coideals of H and the intersections of
Hopf subalgebras of H are associated with H-subextensions.

Proposition 2.54. Let L/ K be a finite separable H-Galois extension. Let Ly = LTt =
L™ and Ly = L™ = L2 be H-subextensions corresponding to left ideals two-sided
coideals Iy, Iy and Hopf subalgebras Hy, Hy respectively.

(a) The compositum LiLy is an H-subextension and LyLy, = L™ [f [ and L,
are H-normal, then so is LiLs.

(b) The intersection Ly N Ly is an H-subextension and Ly N Ly = LAz [f L1 and
Lo are H-normal, then so is L1 N Lo.

Proof. (a) By Proposition [2.33] we have the isomorphisms
cany .+ L® H;——Endy, (L) fori=1,2.

Taking intersections on both sides and using Lemma [2.53(a) we obtain a canonical
isomorphism

L & (Hl N Hz) —>EHdL1 (L) N EndLQ(L) = EHdLlLQ(L).

As Hy N Hy is a Hopf subalgebra (Lemma , it corresponds to a unique H-
subextension Lz = LT1"H2 with canonical isomorphism L® (H;NH,) = Endy,(L).
By Lemma [2.53|(b), L3 = L1 L.

Suppose L; and Ly are H-normal. Then H; and H, are normal Hopf subalgebra.
By Lemma [1.36, H, N H, is also a normal Hopf algebra. Therefore, Ly = LMz
is H-normal.

(b) By Lemma [1.35] I; + I, is a left ideal two-sided coideal (resp. Hopf ideal) if so
are I; and I,. Moreover, it is easy to see that L2 = LN L2 = [, N Ly. If L,
and Lo are H-subextensions (resp. H-normal), the intermediate field L; N Ly is
therefore an H-subextension (resp. H-normal) with associated left ideal two-sided
coideal (resp. Hopf ideal) I; + I5.

O
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We now introduce the notion of weakly compatible Hopf-Galois extensions which,
roughly speaking, are Hopf-Galois extensions with the same action on their intersec-
tion.

Definition 2.55. Let L;/K be a finite separable H;-Galois extension and Ly /K be a
finite separable Ho-Galois extension. Let F = LiNLy and let 7; : H; —» H;/Anng, (E)
be the natural projection for i € {1,2}. Then we say that these two Hopf-Galois
extensions are weakly compatible (with respect to the structures given by H; and H,)
if the following two statements hold:

1. E is both Hi-normal and Hj-normal,

ot

2. there exists an isomorphism of Hopf algebras ¢ : Hy/Anny, (F) — Hs/Anny, (F)
such that for all hy € Hy, hy € Hy and x € E:

hi-x=(m(h)) -2 and hy -z =" (ma(ha)) - 2.

Proposition 2.56. Let Li/K be a finite separable Hi-Galois extension and Lo/ K
be a finite separable Hy-Galois extension. Suppose they are weakly compatible. Let
E = Ly N Ly, then there exists a Hopf algebra H such that (L1 ®p Ls)/ K is H-Galois.

Proof. Let L = Ly ®g Lo. Consider the pullback in the category of K-Hopf algebras
of the diagram

Hy H,
N /
H,/Anng, (E) = Hy/Anng, (F)
We will write Hy/Anny, (E) = H = Hy/Anny,(E) and consider
pi: Hi— H;/Anny (L;) — H.

Since the Hopf algebras are cocommutative, the pullback has the following explicit
description:

H={h'®h* € Hy ® Hy | h{y) @ pi(h{y) @ h> = h' @ pa(hiy)) @ hip) € H1 @ H® Hy}.

Note that it is also the pullback in the category of K-coalgebras. There is also a
natural action of H on L given by

(M'@h?) (rey)=((h"z2)2(h* y) VR'®h*€ H Vo € L, Vy € L,
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and natural projections
H—»H; : h' @ h*—— hley(h?) and H —» Hy : h' @ h? —— ¢, (h')h2.

The pushout in the category of rings of the diagram

AN

is given by the tensor product L; ®p L, = L. Using the contravariant functor
Hompg(—, L), we obtain a pullback in the category of K-coalgebras. Since L1 @ H; =
Endg (L), Ly ® Hy = Endg(Ls) and E ® H = Endg (E) we get after an extension of
scalars to L :

L®H
lwn
/ ndx(L)
/ \
L ® H —Homy (L1, L) Homy (Lo, L) ¢— L ® H,
\ /
\HOmK(E, L)
L®H

Since both inner and outer are pullback diagrams in the category of coalgebras, L ® H
and Endg (L) are isomorphic via the canonical map. O

It is a problem that Ly ®p,nr, Lo is not the compositum L;Ly in general. The
following example shows that it is not always possible to endow L; Ly with a H-Galois
structure such that L; and Ly, are H-normal.

Example 2.57. Let L = Q(v/2,w) where w # 1 is a cubic root of 1. Consider the
Galois group G = G’ = Gal(L/Q) = (0,7 |0 = 72 = (07)? = id) where ¢ and T are

defined by
{ o(V2)=Vw { T(V2) = V2

o(w) =w 7(w) = w?
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Let L1 = Q(3/2) and Gal(L/L,) = (7). Suppose that L;/Q is Hopf-Galois with
Hopf algebra H; given by the Greither-Pareigis group Ny = A({0)) C Perm(G/(7)).
Let Ly = Q(v/2w) and Gal(L/Ly) = (0*7). Suppose Ly/Q is Hopf-Galois with Hopf
algebra H, given by the Greither-Pareigis group No = A({0)) C Perm(G/(o?7)).
Suppose that L/Q is H-Galois and that L; is H-normal (with induced structure
H/Anng(Ly) = Hy). Let N C Perm(G) be its Greither-Pareigis group. By Propo-
sition [2.38), N C Perm,(G) where 7 : G — G/(r). We also have that the image of
N under the projection Perm,(G) — Perm(G/(7)) is N;. Note that #N = 6 and
#N; = 3, so we can write Ker(N — N;) = {id, f}. Because N C Perm(G) is regular,
f has no fixed element. Moreover, if we write G/(7) = {1a(7),0(r),0%(r)} the (1)-
cosets of G, then f(1g(7)) = 1g(7), f(o(7)) = o(7) and f(c*(r)) = o*(r). We can
conclude that

fe) =1, f(1) = 1a, f(0) = o7, f(o7) = 0, f(0?) = 0T and f(o”T) = ™.
If we define the right translation map p : G — Perm(G) : g — (¢’ = ¢'g™!), then we
obtain f = p(7).

Let G/{o?) = {1g(o?7),0(c?T),0%*(0?T)} be the set of cosets associated with Lo.
Applying f on the coset 15{o?7) yields

f(lg) =7 € 0(o?7) and f(0?7) = 0° € o*{0*7).

Therefore, N ¢ Perm<027>(<a, 7'>) We can conclude by Proposition that Lo is
not H-stable and hence not H-normal. However, Q(v/2) N Q(v2w) = Q and H; and
H, acts on Q via their counit map. Thus, L;/Q and Ls/Q are weakly compatible but
there is no Hopf-Galois structure on their compositum Q({i/ﬁ, w) that induces both H;
and H, at the same time.

Definition 2.58. Let L;/K be a finite separable H;-Galois extension and L,/K be
a finite separable Hy-Galois extension. We say that these two Hopf-Galois extensions
are compatible if

1. there exists a Hopf algebra H such that Ly L,/ K is H-Galois,

2. L; and Ly are H-normal subextensions of L/K,

~

3. for i € {1,2}, there exists an isomorphism of Hopf algebras ¢; : H/Anng(L;)
H; such that
h-z= goi(m(h)) -x VYhe H Vre L

where m; : H—» H/Anng(L;) is the natural projection.
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Corollary 2.59. Let L1/K be a finite separable H,-Galois extension and Lo/ K be
a finite separable Ho-Galois extension. If L1/K and Lo/ K are compatible, then they
are weakly compatible. Moreover, if Li/K and Ly/K are weakly compatible (with
E = L1 N Ly) and if the morphism of rings Ly ®p Ly — L1Ly is an isomorphism,
then L1/K and Lo/ K are compatible.

Proof. The first part follows from Proposition [2.54(b) and the second part from Propo-
sition [2.56] from the isomorphism L; ® Ly & Ly Ly and from Corollary 2.34(b). O

2.9 Examples

2.9.1 Canonical Galois extensions

Let L/K be a finite Galois extension with Galois group G. Recall from Example
that there are two Hopf-Galois structures on L/K: the canonical classical Hopf-
Galois structure coming from the Greither-Pareigis group N, = p(G) C Perm(G) and
the canonical nonclassical Hopf-Galois structure coming from the Greither-Pareigis
group Ny = AN(G) C Perm(G). If p(o0) € N, and A\(1) € N, for 0,7 € G, then we
obviously have that p(c)A(7) = A(7)p(0). We thus find that Cent(NN,) C N, and
Cent(N,) € N,. By Lemma , all these groups have the same cardinality. We can
thus conclude that Cent(N,) = N, and Cent(NN)) = N,. The canonical classical Hopf-
Galois structure and the canonical nonclassical Hopf-Galois structure are therefore
opposite.

Consider the canonical classical Hopf-Galois structure: L/K is H,-Galois with
H, = K|[G]. By classical Galois theory, every intermediate field L is an H ,~subextension.
Moreover, Ly is H,-stable if and only if Ly/K is normal, hence Galois.

For the canonical nonclassical Hopf-Galois structure: L/K is H)-Galois with H) =
LING)]C. Because H, = H! (and their action on L/K coincide via this isomorphism),
we can conclude by Theorem that every intermediate field Lq is H)-stable and
that Lg is an Hy-subextension if and only if Lo/ K is Galois.

2.9.2 Almost classical Galois extensions

We will now study a class of Hopf-Galois extensions for which the map Fix defined in
Proposition is a bijection. This was introduced by |[GP87]. Let L/K be a finite
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Galois extension with Galois group G = M x G’ and let L = ZG/, then we have the
following diagram:

Let H be the Hopf algebra associated with the Greither-Pareigis group N = A(M) C
Perm(X) with X = G/G".

Let Ly be any intermediate extension of L/ K, Gy = Gal(L/Lo) and 7 : X —» G/G,.
If me M and 1G', oG’ € X such that 7(11G’) = mGe = oG = T(12G’), then

T(A(m)(nG)) = 7(mnG') = mnGe = mrGe = 1(M1G') = 7(A(m)(1G")).

By Definition [2.36] A(M) C Perm,(X) so, by Proposition every intermediate

extension Lq is H-stable.

We will now characterize H-subextensions of L/K. If Ly is any intermediate field
of L/K, then G, = Gal(L/Ly) is a subgroup of G containing G’. We thus have
Ge = M’ x G for some subgroup M’ C M. Define A as in Definition 2.39

N = {A(m) € \(M) | \(m)(G./G") C G./G'}.

For m € M, it is obvious that m € M’ if and only if A(m)(M'xG")/G' C (M'xG")/G".
So N = MM'). As #N = #M' = #((M' x G")/G") = #(G./G"), by Remark
N C Perm(G,/G") is regular. Moreover, A\(M’') is normalized by A(G) if and only if
M’ is a normal subgroup of GG. In this case, we have Lo = LM™*G = TM' A [¢ where
LM /K is Galois and contains L. By Proposition we can conclude that Ly is an
H-subextension if and only if Ly = LN E where E/K is a Galois extension containing
LM /K (and contained in L).

For the opposite Hopf-Galois structure HT given by Cent ()\(M )), any intermediate
extension is an Hf-subextension (because any intermediate extension if H-stable).
This means that the map Fix defined in Proposition is bijective. This Hopf-Galois

structure is called almost classical Galois.
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Infinite Hopf-Galois theory

3.1 Finite topologies

Let K be a field. Let (I, <) be a directed poset and let (X;,&; : X; — X;) be an
inverse system of finite dimensional vector spaces over K. This means that the X is
a finite dimensional vector space for each ¢ € I and §;; is a surjective linear map for
each couple 7, j € I such that ¢ < j, such that &; = idx, and for all i < j <k in I we
have that &, = &;; 0 .

A cone on (X;,&; + X; — X;) is a (possibly infinite) vector space X, together
with linear maps & : X — X, for all i € I, such that x; = §; 0§, for all @ < j.
Given such a cone, one can endow X with the coarsest topology such that all maps &;
are continuous, where the finite dimensional vector spaces X; are considered with the
discrete topology. This topology is then generated by the following neighbourhoods of
open sets around each element z € X:

O.i={y € X | &(y) = &)},

i.e. the inverse images of singletons under the maps &;. We call this topology the finite
topology on the cone X.

Among all cones, there exists a (up to isomorphism unique) cone (X, &;) satisfying
the universal property that for any other cone (X', ¢!), there exists a unique map
u: X" — X such that & = & ou. This universal cone is exactly the inverse limit of
the inverse system:

X =limX;
—
iel
Remark that since we supposed that the maps §;; are surjective, the maps §; are
surjective as well. It is clear that the unique map v : X’ — X is continuous with
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3. INFINITE HOPF-GALOIS THEORY

respect to the finite topologies. In fact, if X’ is any topological vector space and
f: X’ — X is any continuous map, then it is clear that (X', & o f) is a cone and f is
exactly the unique map induced from the universal property applied to this cone. As a
consequence of this observation, one can interpret the inverse limit as a “completion”.
More precisely, we have the following result.

Lemma 3.1. Consider an inverse system (X;,&; : X; — X;) of finite dimensional
vector spaces and let X = lim X; be the inverse limit. Then the image of a morphism
%
iel
f X' — X of vector spaces is dense with respect to the finite topology on X if and
only if the maps & o f : X' — X, are surjective for all i € I.

Proof. Take any element x; = &(z) € X; for some i € I and x € X. Then we know
that the image of f has a non-empty intersection with the open set O, ;. Consequently,
there exists an element f(2') € Imf such that & o f(2') = &(z) = x;. Hence § o f is
surjective for all ¢ € I. The converse is proven in the same way. O]

3.2 Definition of infinite Hopf-(Galois extensions

Let L/K be an infinite algebraic field extension which is Galois in the classical sense.
If Ly/K is a finite Galois subextension, then the canonical map

L ® K[Gal(Ly/K)] — Homg (Lo, L) : © @ 09— (y — x0o0(y)) (3.1)

is bijective. Let £ be the set of all finite Galois subextensions Ly/K of L/K. Since
any element x € L is contained in a finite Galois subextension, L is exactly the union
of all elements in £. More precisely, L can be reconstructed from £ as the direct limit

L = lim L,
H
Loel
in the category of K-vector spaces. Applying the contravariant functor Homg(—, L) :
Vecty — Vecty, we obtain henceforth an isomorphism
Endg (L) = lim Homg (L, L).
—
Loel

Consequently, taking an inverse limit of the isomorphisms ([3.1), we obtain a canonical
isomorphism
lim (L ® K[Gal(Lo/K)]) — Endg(L). (3.2)
<;

Loel
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3.2. Definition of infinite Hopf-Galois extensions

On the other hand, let us consider the infinite Galois group Gal(L/K), which is known
to be an inverse limit itself:

Gal(L/K) 2 lim Gal(Lo/K)

Loel

We can consider the associated group algebra H = K[Gal(L/K)], which is of course a
Hopf algebra, and L becomes naturally an H-module algebra by means of the action
of the Galois group. Hence, we can consider the canonical map

can: L ® K[Gal(L/K)] — Endg(L), (3.3)

which is injective but not surjective.

In order to understand the connection between the two canonical maps
and (3.3)), let us endow for each Ly € L, the vector spaces L ® K[Gal(Ly/K)] and
Homy (Lg, L) with the discrete topology. Then the inverse limits l{igl K[Gal(Ly/K)]

Loel
and Endg (L) are naturally endowed with the finite topology, as explained in the pre-

vious section.
With this topology, the canonical map (3.3)) is continuous and the subset

L& K[Gal(L/K)] C lim L ® K[Gal(Lo/K)]

is dense because for every Ly € £ the map
L® K[Gal(L/K)]| — L ® K[Gal(Ly/K)]

is surjective (see Lemma, . So the image of the canonical map (3.3) is also dense,
and the domain of (3.2]) could be interpreted as the completion of the domain of ({3.3]).
This motivates us to introduce the following definition.

Definition 3.2. Let L/K be a (possibly) infinite separable field extension and H a
K-Hopf algebra such that L is a left H-module algebra, then L/K is H-Galois if the
canonical map

can: L ® H——Endg (L), can(z ® h)(y) = z(h - y)

is injective with dense image (where the topology on Endg (L) is the finite topology,
induced by considering the discrete topology on each restriction Endg (Lo, L) for all
finite dimensional intermediate fields Ly of L/K).
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3. INFINITE HOPF-GALOIS THEORY

Example 3.3. Let L/K be an infinite field extension and A a K-Hopf algebra which
is residually finite dimensional, which means that the Sweedler dual A° is dense in the
linear dual A*, with respect to the finite topology. Let L be an A-comodule algebra
and such that the (dual) canonical map

LRL—L®A, 1Qy— zyq @ ypn)

is bijective (this means that L is A-Galois in the sense of [DT89]). Then taking L-linear
duals, we find a bijection

Hompg (A, L) ~ Homy(L ® A, L) —— Hom(L ® L, L) ~ Endg (L) .
Furthermore, we have that the subsets
L®A° CL®A" CHomg(A, L),

are obviously dense with respect to the finite topology on Homg (A, L). Therefore,
L/K is an A°-Galois extension in the sense of Definition [3.2]

In the same way as for finite H-Galois extensions, we will define H-normal subex-
tensions of an infinite H-Galois extension L/K. These subextensions will allow us to
establish a first correspondence theorem for infinite H-Galois extensions.

Definition 3.4. Let L/K be an infinite H-Galois extension and let Ly/K be a subex-
tension of L/K. We say that Lg is H-normal if Ly is H-stable and if

L ® H/Anng(Ly) —— Hompg (Lo, L), 2@ h+ (y + 2(h - y))

is injective, where Anny(Log) = {h € H|h(z) =0 Vz € Lo} and h € H/Anny(L)
denotes the element represented by h € H.

Proposition 3.5. Let Ly be a finite H-normal subextension, then Anng(Lg) is a
cofinite Hopf ideal and Lo/ K is H/Anng(Lg)-Galois.

Proof. Following the proof of Proposition [2.23] we can conclude that Anng(Lg) is a
biideal.

We will now prove that the canonical map
Lo ® H/Anny(Lg) — Endg (Lo),r ® b+ (y = 2(h - y)) (3.4)
is bijective. Tensoring this map with the identity morphism, we obtain a map

L® H/Anng(Ly) = L ® (Lo ® H/Anng(Lg))) — L ® Endg (L)
0 0
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which is exactly the canonical map from Definition [3.4] and therefore injective. Since
field extensions are faithfully flat, the map (3.4)) is injective as well.
Moreover, by definition of an infinite H-Galois extension, the canonical map

can: L ® H—— Endg (L)

has dense image. Thus by Lemma and the definition of the finite topology on
Endg (L), the induced map

L X H —_— HOIHK(L(), L)
is surjective and hence also the canonical map
Lo ® H/Anng(Lo) —— Endg (L) .

is surjective, showing that Lo/ K is H/Anng(Lg)-Galois. O

Unlike the finite case, not all cofinite Hopf ideals are obtained in this way. To
overcome this problem, we will need to introduce a topology on the Hopf algebra
H itself. But before that, we will first need to prove some properties on the finite
H-normal extensions.

3.3 Properties of finite H-normal extensions

Proposition 3.6. (Transitivity of compatibility) Let Lo be a finite H-normal subex-
tension of L/K and let E be an H/Anng(Lg)-normal subextension of Ly/K, then E
is also a finite H-normal subextension of L/K.

Proof. Let Anny (E) = {h € H|hz =0 Yz € E}, then we obviously have Anny (Lo) C
Anng(E). The isomorphism

Lo® (H/Anny(Lo))/(Anng (E)/Anng(Lg))) —— Homg (E, L)
lifts, by base change to L and with the isomorphism
(H/Anng(Lo))/((Anng(E)/Anng (L)) ~ H/Anng(E),

to the isomorphism
L® H/Anng(F) —— Homg(E, L) .
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3. INFINITE HOPF-GALOIS THEORY

Before we prove a result on the compositum of H-normal subextensions, we make
some general observations.

Lemma 3.7. Let H be a cocommutative Hopf algebra, and Jy,Jy two Hopf ideals.
Then
J1 N Jy Z:{hGH | A(h) EJ1®H—|—H®J2}

1s a Hopf ideal of H, and A induces an injective morphism of Hopf algebras
Proof. Consider the surjective Hopf algebra morphisms

p:H—H/J, and py: H — H/Js,
qu/Jl—)H/(Jl—f-JQ) and qQH/JQ_)H/(J1+J2)

From Section|[1.1.4] we know that the pullback of ¢; and ¢, is given by the Hopf algebra
P={> n'@h*cH/L&H/L|hl)®aqhy) ®h* =h"® qhly) @ hly}.

Since obviously, g; o p1 = g9 0 ps, the universal property of the pullback induces a Hopf
algebra map u : H — P which is given by u(h) = pi(ha)) ® p2(h(2)). Then the kernel
of u is given exactly by J; A Jy (to see this, one can apply [DNROI, Lemma 1.4.8]).
Hence J; A J5 is indeed a Hopf ideal, and Hopf algebra morphism from the statement
of the theorem is exactly the canonical inclusion Im(u) C P C H/J, ® H/ Js. O

Remark 3.8. Note that H/(J; AJz) is not the pullback of ¢; and ¢ in the full category
of cocommutative Hopf algebras but it is in the category of “objects under H”, that is
the lattice of quotient Hopf algebras of H. Translating this in the language of normal
Hopf subalgebras of H via the map ¢ (see Definition , we see that the normal
Hopf subalgebra of H associated to H/(Jy A J5) is exactly the biggest normal Hopf
subalgebra of H that is both contained in Hy := ¢(H/J;) and Hy := @(H/J3). In
other words, gp(H/(Jl A J2)) = H, N Hs.

Proposition 3.9. (Compositum) Let L/ K be an infinite H-Galois extension and let
Ly and Loy be H-normal subextensions. Then LiLo is an H-normal subextension as
well and Anng(L1Ls) = Anng(L1) A Anng(Ls). If Ly and Ly are finite, then LiLy is

finite as well.

Proof. We first prove that Anng(LiLy) = Anng(Ly) A Anng(Ly). Take any h €
Anng(Ly) A Anng(Ly), then for any x € Ly and y € Ly we find that

h(zy) = (hay - 2)(he) - y)-
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Since h1y® hz) € Anng (L) ® H+H ® Anng(Ls), every term in the above expression
is 0, so h € Anng(L1Ls). Conversely, suppose that h € Anng(L;Ls), then we know
that for any x € L; and y € Lo,

h-(zy) = (hay-2)(he - y) =0

Since Lo is H-normal, we know that the canonical map LiLs ® H/Anny(Ls) —
Homy (Lo, L1 Ls) is injective, and hence we find that

hay -z ® pa(h) =0

for all z € Ly, where we denote py : H — H/Ann(Lsy) the canonical surjection. Since
L is also H-normal, we know that the canonical map L1 ® H/Anny(L;) — Endg (L)
is also injective. Moreover, since K is a field, tensoring this injective map with the
identity map on H/Anng(Ls) still yields an injective map. Therefore we obtain that

p1(hy) @ pa(h@) =0,

where p; : H — H/Ann(L,) is again the canonical surjection. Therefore, A(h) =
hy®h) € Anng (L)@ H+H®Anng (L), which means exactly that h € Anng(Lq)A
Anng(Ly).

Let us now prove that L;Ls is H-normal. Clearly, L, Ly is H-stable, since both L,
and Ly are H-stable. Hence, and by the first part of the proof, we only have to show
that the canonical map

L ® H/(Anng(Li) A Anng(Ls)) — Homy(LiLo, L)

is injective. So take any ) . FQh € L@ H/(Anng (L) AAnng(Ls)) whose image under
the above canonical map is 0, where i are elements in H/ (Anng(Li) A Anng(Ly))
represented by h* € H. This means that for any x € L; and y € L, we have that

D A (xy) =) # (B - @) (hiyy - y) = 0
Using again successively the H-normality of L; and Lo, we find that this means that

Z Z' ®p1(h%1)) ®p2(h22)) =0

as an element in L ® H/Ann(L,) ® H/Ann(Ly). Then applying the injectivity of the
morphism H/(Anng (L) AAnng(Ly)) — H/Ann(L,)® H/Ann(L,) induced by A (see

Lemma , we conclude that .
Z Z@h =0

1

in L® H/ (AnnH(Ll) A AnnH(Lg)), and hence L;L, is H-normal. O
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3. INFINITE HOPF-GALOIS THEORY

Proposition 3.10. (Intersection) Let L/ K be an infinite H-Galois extension and let
Ly and Ly be two finite H-normal subextensions. Then LyN Ly is H/Anng(Ly)-normal
and H/Anng(Ls)-normal.

Proof. By Proposition [3.9] we know that L;L, is a finite H-normal subextension.
Hence, L1 Lo is a finite H/Anng (L, Ly)-Galois extension by Proposition , and L; and
Ly are H/Anny (L Ls)-normal subextensions. Hence, by the intersection theorem for
finite dimensional Hopf-Galois extensions (Proposition [2.54] (b)), we know that Ly N L,
is an H/Anng (L Ls)-normal subextension of LiLy/K as well, and by Proposition
L1 N Ly is also a finite H-normal subextension of L/K O

3.4 Topology on H

Let L/K be an (infinite) H-Galois extension. Let £ be the set of all finite H-normal
subextensions of L/ K. Then for each L; € £, we have a finite dimensional Hopf algebra
H/Anng(L;), and for any other L; € £ such that L, C L;, we have a surjective Hopf
algebra morphism p;; : H/Anny(L;) — H/Anng(L;). Hence we obtain an inverse
system (L;, p;;). Using the canonical projections p; : H — H/Anng(L;), we find that
H is a cone on this inverse system, and hence can be induced with the associated finite
topology. Let us describe a base of open sets for this topology.

Lemma 3.11. Consider the set

B= {h + AnnH(LO)}

heH,Loel

Then B is a base for a topology on H, i.e. there is a topology on H whose open subsets
are exactly the unions of subsets of B.

Proof. First, we need to prove that B covers H. This is obvious because £ is non-
empty (as it contains at least the finite H-normal extension K/K). Next, we need to
prove that for each hy + Anng(L;) and he + Anng(Ls) € B and for each h in their
intersection, there exists hy + Anny(L3) € B such that

h € hs + Anngy(L3) C (h1 + AnnH(Ll)) N (h2 + AnnH(LQ)).

Because the intersection contains an element h, we can assume that h = h; = hy = h3
so we just need to prove that there exists L3 € £ such that

AI]I]H<L3) g AHHH(Ll) N AHI’IH(LQ).
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intermediate extensions

Now just take the compositum Ls = Ly Lo, then by Proposition [3.9
Anng(Ls) = Anng(Ly) A Anng(Le) € Anng(Ly) N Anng(Lg).
This completes the proof. n

Next, we will prove that the open Hopf ideals of H with respect to the topology
given by Lemma are exactly the sets Anngy(Lg) for Ly € L.

Proposition 3.12. Let U C H be an open subset. If U is a Hopf ideal of H, then
U = Anng(Ly) for some Ly € L.

Proof. Let U C H be open, then U can be written as a union of subsets in B. If U is
also a Hopf ideal, then one of these subsets must be of the form Anng(Ly):

Anng(Lo) C U for Ly € L = H/Anng(Ly) - H/U.

Let I C H/Anng(Lg) be the kernel of the surjective morphism of (finite dimen-
sional) Hopf algebras H/Anng(Ly) — H/U and consider the intermediate field of I-
invariants L{. By Theorem L{ is an H/Anny(Lg)-normal subextension of Lo/ K
and Anng ann, (o) (Ly) = I. Let p : H — H/Anng(Lo) be the natural projection,
then

Anng (L) = p~ ' (Anngyamng o (L) = p~ ()
= Ker(H — H/Auny(Ly) » H/U) = U.

Thus, we have that U = Anng(L}) with LY € £ (Proposition [3.6)). O

3.5 Correspondence theorem between open Hopf
ideals and finite H-normal intermediate

extensions

Proposition 3.13. Let I C H be an open Hopf ideal of H, then L' is H-normal and
L'/K is H/I-Galois and Anng(L') = 1.

Proof. Let I C H be an open Hopf ideal of H, then by Proposition[3.12] I = Anng(Lo)
for some Ly € £ so L' D Ly. We will now prove that Anng (L) = I.
We obviously have I C Anng(L?). For the other inclusion, let h € Anny(L’) then
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Vo € Ly C L', we have that h -2 = 0. Hence h € I.
So, the canonical isomorphism L® H/I = Homg(Ly, L) factors through Homg (L, L):

L ® H/I — Homg (L', L) —» Hompg (Lo, L).

Since this composition of surjective maps is an isomorphism, it is a composition of
isomorphisms and therefore we obtain that Ly = L'. O

We can now immediately derive our correspondence theorem for infinite Hopf-
Galois extensions.

Theorem 3.14. Let L/K be an infinite H-Galois extension. The maps
{L/LO/K | Lo is finite H-normal} P — {I C H|I is an open Hopf édeal}

Lgt J(LO):{h€H|h$:0 VIL'EL()}
L''={zeL|lhe=0 VYhel} 1

are mutually inverse bijections.

Proof. This follows immediately from Proposition [3.13] with Proposition [3.5] O

3.6 Example

Let p, q1, ¢z, ... € N be pairwise distinct prime numbers. We define L = Q(\/p, /@1, /@ ---),
LO = Q(\/av \/q_27 ) and

G = {U € Gal(Lo/Q) | o(v/@:) = —+/q: for finitely many i € NO}.

Note that Ly/Q is an infinite Q[G]-Galois extension in the sense of Definition
even though G is not the Galois group of Ly/Q. This can be explained by the fact

that, for every finite Galois intermediate extension E/Q of Ly/Q, the group morphism
G — Gal(E/Q) is surjective.

For each o € G, we define ¢, = H ¢i- Then L/Q can be endowed with an

i€No | o (\/@:))=—/@
infinite Hopf-Galois structure. The Q-linear action of G on Lg is extended to L in the

following way:

o (VP dar) = 0
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where 0 € G and qq,, ..., qa, € {ql,q2, } are pairwise distinct. For each o € G, we
also define the Q-linear map oy : L — L by

00 (/o —Ga) = 0 and 00 (VDv/Gar —da) = VPV@0 (Vo)

Let H be the QQ-vector space generated by all the o and 0,. We define on H the
following maps:

e unit map: (1) = id + idy where id € G is the identity map from Ly to itself;

e multiplication map: for all 0,7 € G we define

9cd(qo, qr) (07)o

o.T =0T, 0.7 = 09.T =0, 00.79 = (10 9cd) (G0, 0.)

where ged(q,, ) is the greatest common divisor of ¢, and ¢, and where u : Ny —
{=1,0, 1} is the Mébius function;

e counit map: €(o) =1 and €(og) = 0;

09 & 09

e comultiplication map: A(c) =0 ® o + and A(og) =0 ® 0p + 0¢ ® 0;

4o

e antipode: S(0) = o and S(o9) = (g, )00-

With these maps, H is a Hopf algebra and L/Q is an infinite H-Galois extension.

We can see that for any \/p\/Ga;---Ga, With pairwise distinct q,,, ..., ¢a, € {ql, q2, },
there exists a o € G such that

0(+\/P) = \/P\V/4a:---Gan-

Therefore, /p does not belong to a finite H-stable intermediate field of L/Q (the
same result goes for any /p\/qa,---qa, ). However, by definition of the action of o and
0o on L, every finite subfield contained in L, is H-stable. Moreover, the annihilator
Anng(Lg) is generated by all the oy and, therefore, the quotient H/Anng (L) is
naturally isomorphic to Q[G]. We can thus conclude that the morphism

L ® H/Anng(Lg) — Homg (L, L)

is injective, i.e. Lg is an infinite H-subextension and hence an infinite H-normal
subextension of L/Q. As pointed earlier, the set £ of all finite H-normal subextensions
of L/Q coincide with the set of all finite H-normal subextensions of Ly/Q. Since G
is abelian, £ is simply the set of all finite subextensions of Ly/Q. If E is such an
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extension, then the Hopf-Galois structure on £/Q is the classical Galois one.

This example shows that, unlike in the classical Galois case, the finite H-normal
subextensions are not enough to understand an infinite Hopf-Galois extension. Indeed,
for L/Q, Uger E = Lo © L. For Ly/Q it is even worse: L is the union of its finite
Q[G]-normal subextensions and all these subextensions inherit the classical Galois
structure but G is not the Galois group of Ly/Q.

In view of this, we can conclude that Definition permits all kind of strange
behaviour. In order to have a situation as close as possible to the classical Galois case,
we need to make the definition more restrictive. One way of doing this would be to
ask that H is an inverse limit of finite dimensional Hopf algebras.
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Research perspectives

The results obtained in this thesis will be published in the forthcoming [BVW]. Apart
from the main results presented above, we aim for some further results to be included in
this paper, which we briefly discuss in this chapter, but which are still to be completed.

4.1 The Van Oystaeyen-Zhang transform

Let us consider a finite dimensional cocommutative Hopf K-algebra H (where K is
a field) and L/K be an H-Galois extension (in the sense of Definition [I.60)). It was
shown in [OZ94], that one can associate to such an extension a second Hopf algebra
T, such that L/K is again a T-Galois extension. This construction was generalized in
[Sch98], relaxing the cocommutativity condition on H, and leading to Hopf-bi-Galois
extensions.

We will review this construction here, adopting the setting from [0Z94] (who
worked in the dual setting of comodule algebras) to ours.

Consider the K-algebra L ® L. Then H acts on L ® L via the diagonal action:

h-(x@y):h(1)~x®h(2)'y

and in this way L ® L is an H-module algebra. Hence we can consider the associated
space of invariants

T=LoL"={rxy|h (z@y)=ch)r®y,Vhc H}

Following [Gre96], we will call T' the Van Oystaeyen-Zhang transform, or OZ-transform
for short. By the faithfully flat descent (see Proposition |1.70)), we find moreover that
there is a canonical isomorphism

B:L®T —>L®L
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With this notation, the following theorem collects some results from [OZ94], trans-
lated to the language used in this work.

Theorem 4.1. Let H be a cocommutative Hopf algebra and L/K an H-Galois exten-
sion. Then: the following statements hold:

1. the OZ-transfrom T s a finite dimensional commutative Hopf algebra, hence T™*
18 a cocommutative Hopf algebra;

2. L is a T*-module algebra and T*-Galois,

3. the H-subextensions of L/ K are in bijective correspondance with the subfields of
L that are T*-stable.

4. if H is moreover commutative then T* = H.

As one can observe, the OZ-transform (or its dual) satisfies similar properties as
the “opposite Hopf-Galois structure” we have studied in Section [2.7 We aim to clear
out whether both constructions are truly the same or whether they differ.

4.2 Infinite Hopf-Galois extensions and profinite
Hopf algebras

Now that we have established a correspondence theorem between finite H-normal
extensions and open Hopf ideals (see Theorem , it is natural to study the inverse
limit of the quotient Hopf algebras H/Anng (L) for Ly € L.

Let (I,<) be a directed poset and (H;);e; be a family of discrete finite dimen-
sional K-Hopf algebras with homomorphisms f;; : H; — H; for all ¢« < j such that
((Hi)ier, (fij)i<j) is an inverse system. Dually, ((H;)icr, (f};)i<;) is a direct system of
K-Hopf algebras.

Let limpopeH; (resp. limyec H;) be the direct limit of ((Hi*)iel, ( f;’;)lg) taken in

— —

the category of K-Hopf algebras (resp. K-vector spaces). Then these two direct limits
coincide (see e.g. [Porll] and [Agoll]) and will refer to them simply with lim H}.
_>

Now, let limpopeH; (resp. limvyeet H;) be the inverse limit of ((HZ-)Z-GI, (fij)i<j) taken
— — -
in the category of K-Hopf algebras (resp. K-vector spaces). With this notation, we
have the following result.

Proposition 4.2. (lim H})" 2 limpy,, H; and (im H})" 2 lim e H;.
— — — —
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4.2. Infinite Hopf-Galois extensions and profinite Hopf algebras

Proof. Consider the adjoint functors

*

F=(-)
Vect <G:> Vect®?
where F' is the left adjoint functor and G is the right adjoint functor. Since left adjoint
functors preserve colimits, we get

(Hm (H;)*)" 2 limvee H;* 2 limyee H;.
— — —

Similarly, if we consider the adjoint functors

o

P=(-)
Hopf ? Hopf°?

where F'is the left adjoint functor and G is the right adjoint functor, then we get
(hm (HZ)*)O = limHopri*o = limHopri.
— — —
O

As one can see from the above result, when taking the inverse limit of a family of
finite dimensional Hopf algebras, depending whether the limit is taken in the category
of vector spaces or in the category of Hopf algebras, we obtain different objects. In fact,
we already encountered this phenomenon in section 3.2, where we observed that for a
classical infinite Galois extension, we can consider the Hopf algebra K[Gal(L/K)], but
the associated canonical map is no longer surjective. If we should instead consider the
bigger object lién K[Gal(Ly/K)] (which is called the completed group ring) and use a

Loel
completed tensor product, then the associated canonical map is indeed surjective (and

even bijective).

In view of this,we believe it could be useful to develop, in similarity to classical infi-
nite Galois theory, a framework for infinite Hopf-Galois extensions over profinite Hopf
algebras, of which li£1 K[Gal(Ly/K)] (or more generally lién\/ect H;, as in Proposition

Lol

should be the leading example.
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