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Invitation to Wine
Li Bai

Do you not see the Yellow River come from the sky,
Rushing into the sea and ne’er come back?

Do you not see the mirrors bright in chambers high
Grieve o’er your snow-white hair though once it was silk-black?

When hopes are won, Oh! Drink your fill in high delight,
And never leave your wine-cup empty in moonlight!
Heaven has made us talents, we’re not made in vain.

A thousand gold coins spent, more will turn up again.
Kill a cow, cook a sheep and let us merry be,

And drink three hundred cupfuls of wine in high glee!
Dear friends of mine,
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Abstract

In this thesis, we study the transport of charged particles in mesoscopic systems where the long-
range electrostatic interaction plays a key role. In particular, we focus on the statistical properties
of currents which satisfy the relation known as fluctuation theorem. A stochastic approach is
presented in consistency with the laws of electricity, thermodynamics, and microreversibility. In
this approach, densities of charged particles are ruled by stochastic partial differential equations
and the electric field generated by the charges is determined with the Poisson equation.

We start by proposing a coarse-grained model to describe the long-time behavior of particle
transport in nonequilibrium systems in contact with several reservoirs. In this model, the particle
exchanges between the reservoirs can be determined after a long enough time by the first and
second cumulants of the probability distribution of particle transfers, thus enabling the numerical
evaluation of the driving forces. It is proved that, close to equilibrium, the coarse-grained model
is applicable to any system in nonequilibrium steady state. Moreover, the studies with specific
examples show that the range of application of the coarse-grained model can be extended to the
regime arbitrarily far from equilibrium if the detailed transition rates have linear dependence on
the local particle concentration. In addition, the finite-time fluctuation theorem is established for
systems with linear rates.

Then, we use our stochastic approach to study charge transport in diodes and transistors. The
counting statistics of the carrier current and the measured total current including the contribution
of the displacement current are performed. The fluctuation theorem is shown to hold for both
currents. The convergence of the finite-time affinities towards their asymptotic values over long-
time scales is tested using our proposed coarse-grained model. Accurate agreement between the
numerical affinities and the theoretical predictions is found when affinities take moderate values.
This brings further numerical support to the fluctuation theorem for the currents in these nonlinear
electronic devices. For diodes, the current-voltage characteristics is obtained, which can be well
fit by Shockley curve under the extreme condition where the concentration of majority charge
carriers is overwhelmingly larger than that of minority charge carriers. For transistors, the signal
amplifying effect is realized under their working conditions. Moreover, the Onsager reciprocal
relations and their generalizations to nonlinear transport properties deduced from the fluctuation
theorem are numerically shown to be satisfied.

Finally, we proceed to investigate the charge transport in a system of three tunneling junctions
coupled together through a conductive island or quantum dot. The cumulant generating function is
obtained by numerically solving the eigenvalue problem regarding the modified evolution operator
including the counting parameters. The symmetry relation implied by the fluctuation theorem is
verified, and the Onsager reciprocal relations together with their generalizations are again shown
to be satisfied. Furthermore, under certain conditions, the current-voltage characteristics shows
the staircase pattern due to the Coulomb blockade effect.
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Chapter 1

Introduction

Nature has a hierarchical structure of spatial scales, ranging from the subatomic to the supergalactic
scale. Accordingly, the physical theories are tailored for the system of interest at different levels
of description. However, as is often the case, the resulting phenomenological descriptions may
have apparent inconsistencies. The most prominent is the puzzling aspect of natural phenomena
manifested as the dichotomy between reversibility and irreversibility. Going from the microscopic to
macroscopic scale, the description of the evolution of systems should proceed from the Schrödinger
equation to hydrodynamical ones, e.g., the diffusion equation. It became one of the central issues
in physics during the past two centuries to reconcile the latter with the former. Since the 1970s,
great advances have been achieved in the understanding of this fundamental question by the advent
of a collection of relations called fluctuation theorem, from which irreversibility is interpreted as
an emerging property from the statistical description. Thus, the opposites that are reversibility
and irreversibility can be unified in statistical physics which is arguably the most unique universal
theory [1].

1.1 Historical Developments
The birth of thermodynamics dates back to the period of Industrial Revolution when there was
actual needs to improve the efficiency of thermal machines transforming heat to work [2]. In
various attempts, scientists and engineers gradually found the equivalence between heat and work,
which are unified in the concept of energy. This directly led to the establishment of the first law
of thermodynamics stating that the total energy of an isolated system is conserved. Besides, it
was further realized that heat cannot be completely transformed into work without any external
effect, thus ruling out the possible existence of the perpetuum mobile of the second kind. Based on
this observation, Carnot obtained a universal bound for the efficiency of heat-to-work conversion
of thermal machines, ηmax = 1 − Tc/Th, where Tc and Th are the respective temperatures of the
cold and hot thermal reservoirs between which thermal machines operate. This so-called Carnot
efficiency implies no prescription on how the conversion is achieved. Inspired by Carnot’s work,
Clausius soon identified a new state function, the entropy S, and in 1851 declared an inequality
for thermodynamic processes of a system from state A to B,∫ B

A

dQ
T
≤ ∆S, (1.1)

which bears his name nowadays. This directly implies the property that the entropy of an iso-
lated system can never decrease over time, which is called the second law of thermodynamics. It
predicts that an isolated system will eventually evolve into an equilibrium state where the en-
tropy reaches its maximum value. There are now many applications of this celebrated second
law of thermodynamics, e.g., osmotic pressure, or chemical equilibrium. A macroscopic system is
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thermodynamically characterized by the way the entropy depends on its state through the funda-
mental relation S = S(E, V,N, · · · ). The thermodynamic temperature can thus be well defined
as T ≡ ∂E/∂S. According to this thermodynamic definition of temperature and the second law
of thermodynamics, the so-called zeroth law is postulated, which states that objects in thermal
contact eventually get the same temperature.

At the same time, statistics and fluctuations were brought into thermodynamics to account for
the discrete nature of constituent particles of a gas. By assuming that the motions of gas molecules
follow Hamiltonian dynamics, and that the gas contains many molecules, Maxwell derived the
distribution of velocities for the particles of a gas in equilibrium [3]. In 1872, Boltzmann established
his equation to describe the evolution the probability function f(r,v, t) for finding a particle
of a gas in the neighborhood of (r,v), and he also introduced a quantity, H ≡

∫
f ln fdrdv,

to quantify the state of a gas. In this way, he derived his famous H-theorem stating that a
gas inevitably evolves in time until the Maxwell distribution is reached, with the H function
decreasing to the minimal value. The Maxwell distribution describes a macrostate corresponding
to the largest number of microstates. This gave Boltzmann an insight to link the entropy and the
number of possible microstates by a novel expression, S = kB ln Ω, where kB is called Boltzmann’s
constant, Ω the number of possible microstates for a macrostate. However, Boltzmann’s equation
was based on the molecular chaos hypothesis assuming that the velocities of colliding particles
are uncorrelated, and independent of position. This drew objection from Loschmidt claiming that
it should not be possible to deduce an irreversible process from the underlying time-symmetric
dynamics (Loschmidt’s paradox [4]). Later, Gibbs took the system of interest as a whole, and
developed the ensemble theory [5]. In this theory, a configuration of the system is considered as
a point in phase space, the ensemble of possible configurations is described by the probability
distribution ρ. Gibbs also gave several ensemble distribution functions, of which the most useful
may be the canonical ensemble, ρi = e−βEi/Z, with partition function defined as Z ≡

∑
i e−βEi ,

and β ≡ 1/(kBT ) the inverse temperature. This canonical ensemble describes such a situation
where a particle system is imposed with fixed number of constituent particles N , fixed volume V ,
and fixed temperature T by thermal contact with a heat bath. The free energy is related to the
partition function by F = −kBT lnZ. The entropy formula proposed by Boltzmann is generalized
to S = −kB

∑
i ρi ln ρi. The expression for the canonical ensemble distribution is the summit of

equilibrium statistical mechanics [6]. The small fluctuations of any extensive quantity δX around
its equilibrium value are described by the following formula,

P(δX) ∼ exp
(
δ2S

2kB

)
, (1.2)

where δ2S/2 is the second-order excess entropy evaluated around the equilibrium state and corre-
sponds to the change δX. However, Gibbs’ ensemble theory only applies in the equilibrium regime.
The searching for a satisfactory theory out of equilibrium was still going on.

In 1905, Einstein’s seminal work on Brownian motion opened a new chapter in the development
of nonequilibrium statistical mechanics [7, 8]. He explained the motion of Brownian particles as
the result of the incessant random collisions by the much smaller solvent molecules, and expressed
the mean-square of its one-dimensional displacement in terms of the diffusion constant: λ =√

2Dt. Furthermore, Sutherland, Einstein, and Smoluchowski independently derived a relation,
D = µkBT , linking the diffusion constant with the mobility defined as the linear response of a
Brownian particle to applied force: ⟨v⟩ = µF [9, 7, 10]. Later, the theory of Brownian motion
was further investigated by Ornstein, Uhlenbeck, and Wang [11, 12]. Around 1928, Johnson and
Nyquist discovered a similar relation between the resistance of a circuit and the spontaneous
voltage fluctuations [13, 14, 15]. These relations are the results of the fluctuation-dissipation
theorem which quantifies the relation between the equilibrium fluctuations in the system that
obeys detailed balance and the response of the system to the applied perturbations. Using the
fluctuation-dissipation theorem as the basic formula, Onsager derived the reciprocal relations for
the linear response coefficients in 1931 [16, 17], and this result was further treated by Casimir
in 1945 [18]. In 1951, Callen and Welton developed the fluctuation-dissipation theorem within
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a general quantum mechanics setting. They studied the time evolution of quantum-mechanical
system following Hamiltonian dynamics. The system is initially in thermal equilibrium, with the
state described by density matrix of canonical form. This approach was subsequently further
systematized by Green [19, 20], and in particular by Kubo [21, 22, 23].

The fluctuation-dissipation theorem is only valid for systems near equilibrium. Scientists were
still searching for a general statement regarding the dynamics of systems far from equilibrium. In
this regard, a breakthrough appeared in 1993 when Evans and his coworkers found the relation,

lim
t→∞

1
t

ln P(Σ̄t = A)
P(Σ̄t = −A)

= A, (1.3)

in computer simulations of thermostatted shear-driven fluids in contact with a heat bath [24],
where P(Σ̄t) denotes the probability distribution of the finite-time entropy production Σ̄t =
(1/t)

∫ t

0 Σ(s)ds defined in terms of total irreversible entropy production Σ(t) =
∫

V
dV σ(r, t)/kB.

This relation places a constraint on the fluctuations of entropy production, and is thus called
steady-state fluctuation theorem considering that it is valid in long-time limit. It implies that it is
exponentially more likely to observe a positive entropy production rather than a negative one. This
theorem was later mathematically proven for a large class of systems using concepts from chaotic
dynamics by Gallavotti and Cohen in 1995 [25, 26], for driven Langevin dynamics by Kurchan
in 1998 [27], for Markovian stochastic dynamics by Lebowitz and Spohn in 1999 [28], and it was
extended to several coupled currents by Gaspard, Andrieux, and coworkers [29, 30, 31, 32]. The
experimental verification of steady-state fluctuation theorem was first performed by Wang and
coworkers in 2002 with the motion of a colloidal particle in water [33], and subsequently by many
others with different experimental setups [34, 35, 36, 37, 38, 39].

In 1997, Jarzynski proved a remarkable relation,〈
e−βW

〉
= e−β∆F , (1.4)

where W is the work done on a system that is initially in thermal equilibrium and driven out of
equilibrium by an external force evolving under a protocol which is parameterized by λ from the
value A to B. ∆F = FB − FA denotes the free energy difference between the final equilibrium
ensemble and the initial equilibrium ensemble, and ⟨·⟩ stands for the average over the repetition
of driving [40, 41, 42, 43, 44, 45]. In his proof, Jarzynski used the property that the volume of
phase space is conserved by the Liouville theorem, as well as the time-reversal symmetry of the
Hamiltonian dynamics [46]. This relation was later called Jarzynski equality, allowing to express the
free energy difference between two equilibrium states by a nonlinear average over the required work
to drive the system in a nonequilibrium process from one state to the other. From the Jarzynski
equality, the Clausius inequality can be immediately obtained as a corollary, ⟨W ⟩ ≥ ∆F , thus in
accord with the second law of thermodynamics. In 1999, Crooks obtained his fluctuation relation,

PF(W )
PR(−W )

= eβ(W −∆F ), (1.5)

in the same scenario, where PF(W ) and PR(W ) denote the probability distributions of work done
in a forward driving protocol and in its time-reversal, respectively [47]. Crooks fluctuation relation
is the constraint on the fluctuations of work, and the Jarzynski equality can be immediately derived
from

∫
PR(−W )dW = 1. Since these relations hold for driving processes in finite time intervals,

they are thus called transient fluctuation theorem. These results are closely related to an earlier
work by Bochkov and Kuzovlev around 1980 [48, 49, 50, 51]. The experimental verification of
these relations were carried out with single-molecule manipulation experiments [52, 53, 54]. The
Jarzynski equality has many applications, including (i) the development of numerical methods for
estimating free energy differences in computational chemistry and physics [55], (ii) the analysis of
single-molecule experiments [52, 53]. Detailed accounts of fluctuation theorems are presented in
the reviews by Evans and others [56, 57, 58, 59].
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The fluctuation theorems have similar structure, concerning relations between the probabilities
of forward and time-reversed trajectories [60]. They are as a consequence of microreversibility, a
fundamental symmetry of Nature. They can be considered as a generalization of the second law
of thermodynamics. Close to equilibrium, the fluctuation theorems reduce to the well-known
fluctuation-dissipation relations such as the Green-Kubo relation for the transport coefficient.
Moreover, they also implies the Onsager reciprocal relations as well as the generalized nonlinear
ones up to arbitrary order [29, 61].

1.2 Outline
The purpose of the present thesis is to study the charge transport in mesoscopic systems with
three aims: (i) investigating the current fluctuations and their implications; (ii) elucidating the
influence of long-range electrostatic interaction between charged particles on the transport behav-
ior; (iii) with the settings of semiconductor devices, exploring their practical functionalities. The
fluctuation theorem can be derived from two fundamental ingredients: the time-reversal symmetry
of microscopic dynamics and the fact that thermal equilibrium is described by the Gibbs canonical
ensemble. The electrostatic interaction between charged particles is evidently beyond these two
fundamental ingredients, so it is reasonably hoped that new constraints on the fluctuation theorem
can be found. In particular, we are also interested in the extreme case where the electrostatic
interaction between charged particles can be safely neglected. Besides, the functionalities of the
semiconductor devices not only depend on the charge transport obeying fluctuation theorem, but
also on the detailed space- and charge-configurations. Therefore, the possible achievements with
respect to the second and third aims constitute the main highlights of this thesis.

The thesis is organized as follows. In Chapter 2, the general preparatory knowledge for the
remainder of the thesis is presented. Chapter 3 deals with the coarse graining of systems in
nonequilibrium steady state. This endeavor is similar in spirit to the characterization of systems
in equilibrium with a few parameters, such as energy, volume, temperature and the like. In this
chapter, a system in contact with several particle reservoirs is coarse grained such that two constant
transition rates are introduced to describe the long-time behavior of particle exchanges between
any pair of reservoirs. Based on this coarse-grained model, the counting statistics is performed to
establish the fluctuation theorem. Moreover, a somewhat more detailed stochastic model having
a single random state variable is used to test the validity of the coarse-grained model. In this
model, the transition rates have linear dependence on the state variable. In Chapter 4, we study
the transport of charged particles in conductive channels with a twofold purpose. One is to present
a stochastic approach for the charge transport at the mesoscopic level. This approach was first
introduced in Ref. [62], and serves in this thesis as a paradigmatic example for developing more
sophisticated approaches in subsequent chapters. Another is to further test the validity of the
coarse-grained model in this system where the transition rates are nonlinear due to the electrostatic
interaction between charged particles. Like the situation of a dilute gas, the electrostatic interaction
is found to diminish as the charge density becomes lower, and in the low-density limit the linear
transition rates are recovered. Chapters 5 and 6 are respectively devoted to the studies of charge
transport in the p-n junction diodes and bipolar n-p-n junction transistors. In these two chapters,
the preceding stochastic approach are extended to account for both the transport of electrons and
holes, as well as the generation-recombination process between them. Apart from the fluctuation
relation for currents and its implications, we particularly focus on the realization of the practical
functionalities of these two semiconductor devices in the framework of the extended stochastic
approach. Chapter 7 treats the charge transport in a system of three mesoscopic tunnel junctions
coupled with a quantum dot or conductive island. This system has one random state variable and
the transition rates are nonlinear. Thus, it allows the study of fluctuation theorem by numerically
obtaining the cumulant generating function for charge transport as the leading eigenvalue of the
modified evolution operator including the counting parameters. Moreover, the Coulomb blockade
effect on the transport properties under certain conditions is also investigated. Concluding remarks
are given in Chapter 8.



Chapter 2

Generalities

In this chapter, generalities are presented. They include the fluctuation theorem and its impli-
cations, the central limit theorem, the techniques that are essential for analyzing and simulating
master equation systems, as well as one example of stochastic processes.

2.1 Fluctuation Theorem
Let’s consider a system S in contact with n particle reservoirs Ri (i = 0, · · · , n − 1), as shown in
Figure 2.1. When driven out of equilibrium, the numbers of particles flowing across the system
are stochastic variables. After the system has relaxed to a nonequilibrium steady state, the joint
probability distribution of particle transfers Zi (i = 1, · · · , n−1) flowing respectively from reservoir
Ri (i = 1, · · · , n−1) to system during the time interval [0, t] (taking R0 as the reference reservoir)
obeys the multivariate fluctuation relation [61], reading

PA(Z, t)
PA(−Z, t) ≃t→∞ exp (A · Z) , (2.1)

where we have used the vectorial notation

Z =

 Z1
...

Zn−1

 , A =

 A1
...

An−1

 . (2.2)

Here, {Ai} are called affinities, which are the thermodynamic forces driving the particle exchanges
from the reservoirs {Ri} to the reference reservoir R0 [63]. If the whole system is isothermal at
the temperature T , the affinities are given by

Ai ≡ β (µi − µ0) , (2.3)

where µi is the chemical potential of ith reservoir, β ≡ (kBT )−1 the inverse temperature, and
kB the Boltzmann’s constant. When A = 0, the system is in equilibrium where we recover the
principle of detailed balance, according to which opposite fluctuations are equiprobable. We can
define the generating function of statistical cumulants in terms of counting parameters λ according
to

Q(λ; A) ≡ lim
t→∞

−1
t

ln
∑

Z
PA(Z, t) e−λ·Z. (2.4)

As a consequence of the multivariate fluctuation relation (2.1), we have the following symmetry
relation,

Q(λ; A) = Q(A− λ; A). (2.5)
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Figure 2.1: Schematic representation of a system S in contact with n particle reservoirs
R0, R1, R2, · · · , Rn−1.

Such a relation can be established using the time-evolution operator that is modified to include
the parameters λ counting particle transport [30, 31, 28, 64]. For nonequilibrium systems modeled
by master equation, the affinities are determined by the transition rates through Schnakenberg’s
graph analysis (see Section 2.5).

The mean currents and their diffusivities can be obtained by taking the successive derivatives
of the cumulant generating function (2.4) with respect to the counting parameters:

Ji(A) ≡ lim
t→∞

1
t
⟨Zi(t)⟩A = ∂Q(λ; A)

∂λi

∣∣∣∣
λ=0

, (2.6)

Dij(A) ≡ lim
t→∞

1
2t
⟨[Zi(t)− Jit] [Zj(t)− Jjt]⟩A = −1

2
∂2Q(λ; A)
∂λi∂λj

∣∣∣∣
λ=0

, (2.7)

where the notation ⟨·⟩ stands for the sample average over the data from the counting statistics.
By definition, the diffusivities satisfy the symmetry relation Dij(A) = Dji(A).

2.2 Thermodynamic Entropy Production
For nonequilibrium thermodynamics at the macroscale, the entropy production [65, 66, 67] is iden-
tified as the sum of affinities multiplied by the corresponding mean currents in units of Boltzmann’s
constant. In nonequilibrium steady states, the mean currents can be evaluated in the following
way,

J(A) = lim
t→∞

1
t

∑
Z
PA(Z, t)Z = lim

t→∞

Z(t)
t

, (2.8)

where the ergodicity with respect to the probability distribution PA(Z, t) is assumed in the last
equality. According to the multivariate fluctuation relation (2.1), the entropy production rate is
given by

1
kB

diS

dt
= A · J(A) = lim

t→∞

1
t

∑
Z
PA(Z, t) ln PA(Z, t)

PA(−Z, t) (2.9)

in terms of the Kullback-Leibler divergence between the distributions PA(Z, t) and PA(−Z, t).
Equation (2.9) is always non-negative, which is in accord with the second law of thermodynamics.
In this respect, the entropy production implied by the fluctuation relation can serve as a measure
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of the breaking of the time-reversal symmetry of nonequilibrium probability distribution PA(Z, t).
In equilibrium where A = 0, detailed balance is recovered since P0(Z, t) ≃ P0(−Z, t) by the
fluctuation relation (2.1), and the entropy production rate (2.9) is vanishing together with the
affinities (2.3) and the mean currents (2.8).

2.3 Symmetry Relations for the Response Properties
The fluctuation theorem provides a unified framework for deducing the Onsager reciprocal relations
and their generalizations to the nonlinear transport properties [68, 29, 69, 70, 71]. For this purpose,
we expand the mean currents in power series of affinities as

Ji =
∑

j

Li,jAj + 1
2
∑
j,k

Mi,jkAjAk + · · · (2.10)

in terms of the response coefficients defined by

Li,j ≡
∂Ji

∂Aj

∣∣∣∣
A=0

= ∂2Q(λ; A)
∂λi∂Aj

∣∣∣∣
λ=A=0

, (2.11)

Mi,jk ≡
∂2Ji

∂Aj∂Ak

∣∣∣∣
A=0

= ∂3Q(λ; A)
∂λi∂Aj∂Ak

∣∣∣∣
λ=A=0

, (2.12)

where we have made use of Eq. (2.6). {Li,j} are the so-called Onsager linear response coefficients,
which characterize the linear transport properties and {Mi,jk} are the nonlinear response coef-
ficients of second order in the affinities. We note that Mi,jk = Mi,kj by the definition of these
coefficients. The response coefficients of higher order can also be introduced in a similar way.

If we take the derivatives of the symmetry relation (2.5) of the fluctuation theorem with respect
to λi and Aj , we find that

∂2Q

∂λi∂Aj
(λ; A) = − ∂2Q

∂λi∂λj
(A− λ; A)− ∂2Q

∂λi∂Aj
(A− λ; A), (2.13)

which can be further reduced to

2 ∂2Q

∂λi∂Aj
(0; 0) = − ∂2Q

∂λi∂λj
(0; 0) (2.14)

by setting λ = A = 0. So, we obtain

Li,j = −1
2

∂2Q

∂λi∂λj
(0; 0). (2.15)

Because of Eq. (2.7), we can get the fluctuation-dissipation relations

Li,j = Dij(0), (2.16)

and thus the Onsager reciprocal relations [16, 17, 18]

Li,j = Lj,i. (2.17)

If we take a further derivative of the identity (2.13) with respect to Ak before setting λ = A = 0,
we find

Mi,jk = Rij,k +Rik,j (2.18)

in terms of the linear response coefficients of the diffusivities around equilibrium defined by

Rij,k ≡
∂Dij

∂Ak

∣∣∣∣
A=0

= −1
2

∂3Q

∂λi∂λj∂Ak
(0,0). (2.19)
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The Onsager reciprocal relations (2.17) as well as the relation (2.18) find their origin in the mi-
croreversibility underlying the fluctuation theorem for currents [68, 32, 57, 58, 59, 61]. The gener-
alization of these relations to higher cumulants and higher nonlinear response coefficients can be
deduced.

2.4 Central Limit Theorem
According to the central limit theorem [72], the probability distribution PA(Z, t) is expected to be
well approximated after a long enough time by the following Gaussian distribution,

P(Z, t) = 1√
(4πt)n−1det D

exp
[
− 1

4t
(Z− Jt) ·D−1 · (Z− Jt)

]
, (2.20)

where

J =


J1
J2
...

Jn−1

 , D =


D1,1 D1,2 · · · D1,n−1
D2,1 D2,2 · · · D2,n−1

...
...

. . .
...

Dn−1,1 Dn−1,2 · · · Dn−1,n−1

 , (2.21)

are the mean currents and their diffusivities, with the elements given by Eqs. (2.6)-(2.7). Substi-
tuting P(Z, t) for PA(Z, t) into the multivariate fluctuation relation (2.1), we obtain that

Z ·A = ln P(Z, t)
P(−Z, t) = Z ·D−1 · J, (2.22)

in which case the affinities are given by

A = D−1 · J. (2.23)

This evaluation of the affinities by means of the Gaussian approximation is only applicable when
systems are near equilibrium where the probability distribution PA(Z, t) and its symmetric version
PA(−Z, t) still share a large overlapping region in the space spanned by {Z} for large time t.
Actually, Eq. (2.23) can also be derived for systems near equilibrium from Eq. (2.10) by discarding
the terms of nonlinear responses and then substituting the fluctuation-dissipation relations (2.16)
into it, that is

Ji ≈
∑

j

Dij(0)Aj , (2.24)

which directly leads to Eq. (2.23). The reason why Eq. (2.23) is only valid in the linear regime close
to equilibrium lies in the fact that the central limit theorem only captures the top of the probability
distribution PA(Z, t) with its first and second cumulants (2.6) and (2.7), although the multivariate
fluctuation relation (2.1) is a large-deviation property fully characterizing the distribution with all
its cumulants. In particular, the cumulants higher than the first and second ones are essential to
determine the tails of the distributions and thus the affinities. In this regard, a fundamental issue
is to understand the stochastic process beyond the central limit theorem. Addressing this issue
constitutes one of the themes of the thesis.

2.5 Schnakenberg’s Network Theory
Inspired by Kirchhoff’s method for linear electric circuits, scientists began to use network theory
to analyze the behavior of master equation systems in nonequilibrium steady states [73, 74, 75,
76, 77, 78, 79]. In particular, Schnakenberg developed the network theory in order to determine
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the properties of the steady state solution [78]. In his network theory of Markov jump processes,
a graph G can be associated with the master equation in such a way that each state of the
system corresponds to a vertex and the different allowed transitions ω ⇌ ω′ between the states
are represented by edges. In the so-constructed graph, cyclic paths are sequences of edges joining
a finite set of vertices and coming back to the starting vertex. Denoting by ω the vertices and e
the edges of the graph, the affinity of the cyclic path C is defined as

A(C) ≡ ln
∏
e∈C

W (ω e→ ω′)
W (ω e← ω′)

(2.25)

in terms of the ratio of transition rates along the path divided by the transition rates along the
reversed path. This affinity characterizes the nonequilibrium constraints imposed by the boundaries
on the cyclic path. Although the transition rates in Eq. (2.25) normally depend on the mesoscopic
states, the so-obtained affinity only depends on the macroscopic thermodynamic force which is of
physical importance. Schnakenberg’s network theory has shown that many of the fundamental
properties of a system in nonequilibrium steady state can be investigated and understood in terms
of the graph analysis associated with the master equation. Moreover, the implication of affinities
identified from the cycles of the graph leads to the establishment of the fluctuation theorem in its
early form [79].

2.6 Gillespie’s Algorithm
Gillespie’s algorithm is an exact method for generating random trajectories in Markov stochastic
processes [80]. Let’s consider a master equation system whose transition rates are grouped in
the set {kν}M

ν=1. These rates are calculated according to the underlying physics. The probability
density for µth transition to occur at time τ can be easily obtained and given by

P(τ, µ) = kµ exp

(
−

M∑
ν=1

kντ

)
. (2.26)

The whole procedure can be eventually divided into the following steps:

• Set the time variable t = 0 and calculate the transition rates according to the initial state.
Specify the "stopping time" tstop.

• By employing a suitable Monte-Carlo method, generate the random pair (τ, µ) according to
the probability density function P(τ, µ)1.

• Use the obtained pair (τ, µ) to advance t by τ and change the system state according to the
µth transition. Recalculate the transition rates according to the new state.

• If t > tstop, terminate the whole procedure; otherwise, go back to the second step for looping.

We now introduce the application of the Monte-Carlo method in generating a number µ whose
probability is determined by the weight of the transition rate kµ in the set {kν}M

v=1. Define the
cumulative distribution function

K(µ) ≡
µ∑

ν=1
kν . (2.27)

1The library GSL provides the function gsl_ran_exponential for returning a random time step τ according to
exponential probability law e−t/k, with k as one of the arguments.

https://www.gnu.org/software/gsl/
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K(µ) is a monotonically increasing function with K(0) = 0 and K(M) =
∑M

ν=1 kν . Let X be a
random variable whose value can be assigned by a random number generator rand()2, which is
tailored to produce random numbers that are uniformly distributed from 0 to

∑M
ν=1 kν . In one

assignment, the random variable gets a value x, then the desired random number µ is determined
according to the condition that

K(µ− 1) < x < K(µ). (2.28)

2.7 A Simple Stochastic Process
Let’s consider a simple Markov stochastic process that serves as an illuminating and illustrative
example. In this process, there are two constant rates W+ and W−, corresponding to particle
transitions from the left to the right reservoir, and the reverse transition, respectively. The signed
cumulated particle transfers Z from the left to the right reservoir during the time interval [0, t] is
therefore the difference of two random numbers whose probability distributions are Poissonian with
parameters λ+ = W+t and λ− = W−t. The probability distribution Z during the time interval
[0, t] obeys the master equation

d
dt
P(Z, t) = L̂P(Z, t) =

[(
e−∂Z − 1

)
W+ +

(
e+∂Z − 1

)
W−

]
P(Z, t), (2.29)

expressed in terms of the raising and lowering operators such that e±∂ZP(Z) = P(Z ± 1). The
evolution operator L̂ is thus expressed as L̂ =

(
e−∂Z − 1

)
W+ +

(
e+∂Z − 1

)
W−, with its adjoint

operator given by L̂† =
(
e+∂Z − 1

)
W+ +

(
e−∂Z − 1

)
W−. We can define the modified operator of

L̂ to let it depend on the counting parameter λ, reading L̂λ = e−λZL̂e+λZ . So we have

L̂λF (Z) = e−λZ
[
W+e−∂Z eλZF (Z) +W−e+∂Z eλZF (Z)

]
− (W+ +W−)F (Z)

= e−λZ
[
W+eλ(Z−1)F (Z − 1) +W−eλ(Z+1)F (Z + 1)

]
− (W+ +W−)F (Z)

=
[
W+e−λF (Z − 1) +W−e+λF (Z + 1)

]
− (W+ +W−)F (Z)

=
[(

e−λe−∂Z − 1
)
W+ +

(
e+λe+∂Z − 1

)
W−

]
F (Z), (2.30)

from which we obtain the modified operator and its adjoint in the explicit forms:

L̂λ =
(
e−λe−∂Z − 1

)
W+ +

(
e+λe+∂Z − 1

)
W−, (2.31)

L̂†
λ =

(
e−λe+∂Z − 1

)
W+ +

(
e+λe−∂Z − 1

)
W−. (2.32)

According to Schnakenberg’s graph analysis, the affinity for this Markov jump process is given by
A = ln (W+/W−). Thus, we find that there exists the symmetry relation

L̂†
A−λ = L̂λ, (2.33)

from which we can establish the fluctuation theorem for this Markov jump process. If W+ = W−
that gives A = 0, the process is in equilibrium and detailed balance is recovered.

We now define the moment generating function of signed cumulated flux,

G(s, t) ≡
+∞∑

Z=−∞
sZP(Z, t), (2.34)

2Pseudo-random numbers are actually used in computers. Readers are referred to Ref. [81] about seminumerical
algorithms for more detailed account. In the standard C/C++ library, the function rand returns independent
identically distributed random integers from 0 to RAND_MAX, a constant integer. This latter may take different values
on different platforms, but normally it should not be smaller than 32767. The library GSL also provides various
functions for generating random numbers.

https://www.gnu.org/software/gsl/
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whose time derivative is as follows,

∂tG(s, t) = W+

+∞∑
Z=−∞

sZP(Z − 1, t) +W−

+∞∑
Z=−∞

sZP(Z + 1, t)− (W+ +W−)
+∞∑

Z=−∞
sZP(Z, t)

=
(
W+s+ W−

s
−W+ −W−

)
G(s, t). (2.35)

For convenience, the initial probability distribution is taken to be P(Z, 0) = δZ,0, so

G(s, 0) =
∞∑

Z=−∞
sZδZ,0 = 1, (2.36)

and

G(s, t) = exp
[(
W+s+ W−

s
−W+ −W−

)
t

]
. (2.37)

Using the generating series of modified Bessel functions [82]

exp
[
u

2

(
θ + 1

θ

)]
=

+∞∑
Z=−∞

θZIZ(u) (2.38)

with

u = 2t
√
W+W−, (2.39)

θ = s

√
W+

W−
, (2.40)

we finally obtain the solution

P(Z, t) = e−(W++W−)t

(
W+

W−

)Z
2

IZ

(
2t
√
W+W−

)
, (2.41)

where the modified Bessel function IZ(u) is defined as3

IZ(u) = I−Z(u) ≡
(u

2

)Z ∞∑
k=0

(u2/4)k

k!(k + Z)!
. (2.42)

The fluctuation relation is thus derived,

P(Z, t)
P(−Z, t)

= eAZ , (2.43)

holding at every time. We now define cumulant generating function,

Q(λ) ≡ lim
t→∞

−1
t

lnG
(
e−λ, t

)
= W+

(
1− e−λ

)
+W−

(
1− e+λ

)
. (2.44)

It can be easily check that Q(λ) = Q(A− λ) which is implied by the symmetry relation (2.33).
The mean particle current and its diffusivity are calculated as follows,

J = ∂Q

∂λ

∣∣∣∣
λ=0

= W+ −W−, (2.45)

D = −1
2
∂2Q

∂λ2

∣∣∣∣
λ=0

= W+ +W−

2
. (2.46)

3The Python package Scipy provides the function special.iv for modified Bessel function of the first kind of
real order.

https://www.scipy.org/


12 Chapter 2. Generalities

-100 -75 -50 -25 0 25 50 75 100
Z

-100

-80

-60

-40

-20

0

20

ln
(P
ro
b)

ln[(Z, t=5.0)]
ln[�(Z, t=5.0)]

Figure 2.2: Comparison in logarithm scale between the probability distribution P(Z, t) and P(Z, t)
whose explicit form are given by Eq. (2.41) and Eq. (2.47), respectively. For Eq. (2.41), the
parameters take the value W+ = 2.0, W− = 1.0. Correspondingly, J = W+ −W− = 1.0, D =
(W+ +W−)/2 = 1.5 are the parameter values for Eq. (2.47).

The Gaussian approximation of the probability distribution (2.41) is

P(Z, t) = 1√
4πDt

exp

[
− (Z − Jt)2

4Dt

]
, (2.47)

with the J and D given by Eqs. (2.45)-(2.46). Figure 2.2 shows the comparison between the distri-
bution (2.41) and its Gaussian approximation (2.47) in logarithm scale. In this figure, the deviation
between the two distributions is very clear in the tails. This has been explained in Section 2.4
when saying that in the Gaussian approximation (2.47) there is an absence of cumulants higher
than second order, which are essential to characterize the tails of probability distribution (2.41).
Fortunately, according to Eqs. (2.45)-(2.46), the values of the two constant transition rates W+ and
W− can be fully determined by the mean current J and its diffusivity D which can be numerically
evaluated in counting statistics through their definitions (2.6)-(2.7). Therefore, the affinity can be
calculated by

A = ln W+

W−
= ln

D + J
2

D − J
2

= J

D
+ 1

12

(
J

D

)3

+ · · · . (2.48)

If the process is near equilibrium, J/D is very small and thus the affinity can be estimated from
Eq. (2.48) by discarding the nonlinear terms due to their negligible contributions, that is

A ≈ J

D
, (2.49)

which can be directly obtained by comparing the probabilities of opposite fluctuations from the
Gaussian (2.47) according to the definition of the fluctuation relation (2.1).

It is here pointed out that, in order to increase the speed of numerical simulations, in following
chapters, the Markov stochastic process for the time evolution of the considered system is trans-
formed into the corresponding Langevin stochastic process (see Appendix B). In this way, only
Gaussian distributions can be obtained from counting statistics in simulation, supposing that infi-
nite number of data is available. So, one should be cautious in testing the fluctuation theorem from
the data-constructed distributions according to its definition. This can be easily seen if the Markov
stochastic process (2.29) is reduced to Langevin stochastic process for numerical simulation.

Further investigations about the determination of affinities from the first and second cumulants
of the probability distribution is presented in the next chapter.



Chapter 3

Two Stochastic Models

We have seen in Section 2.7 that for two-reservoir systems where the process of particle exchanges
is characterized by two constant transition rates, the mean particle current together with its
diffusivity can be used to recover the two rates and therefore the affinity. The superiority of this
method over the Gaussian approximation of the probability distribution has also been demonstrated
in this case. This motivates the need to develop a generalized method for systems in contact with
arbitrarily many reservoirs.

In this chapter, we study and compare two different Markov stochastic models in order to
understand whether the multivariate fluctuation relations are satisfied at finite times or asymptot-
ically at long enough times, and what are the implications of such relations. The first stochastic
model is a natural extension of the process discussed in Section 2.7. In this model, the stochastic
particle exchanges between reservoirs involve no internal variable and are characterized by con-
stant transition rates. The required conditions about these transition rates are obtained in order to
satisfy the multivariate fluctuation relation. Moreover, these conditions are used in evaluating the
affinities from the mean currents and their diffusivities. In the second stochastic model, there are
three reservoirs and a single internal random variable. The transition rates are linearly dependent
on fixed particle concentrations at reservoirs or on the internal random number of particles. By
comparison, we find that the long-time behavior of particle exchanges between the reservoirs can
be described by the first stochastic model in a coarse-grained way. In addition, the finite-time
fluctuation relation for the second stochastic model is established.

3.1 Model With Constant Rates
For a general nonequilibrium steady-state system in contact with n reservoirs (see Figure 2.1),
a model at the highest non-trivial level of coarse graining can be used to approximate the full
description of particle transitions through the system. In such a coarse-grained model, two equiva-
lent transition rates are hypothesized to exist between any two different reservoirs in the long-time
limit, that is

Ri

Wij

GGGGGGGBFGGGGGGG

Wji

Rj i, j = 0, · · · , n− 1; i ̸= j. (3.1)

3.1.1 Counting Statistics

The counting statistics is performed for particle transfers between the n−1 reservoirs (i = 1, · · · , n−
1) and the reference reservoir (i = 0) during some time interval [0, t], and the numbers of particle
transfers are denoted in vectorial notation by Z = (Z1, · · · , Zn−1). The time evolution of the
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probability distribution P(Z, t) is ruled by the master equation

d
dt
P(Z, t) =

{ n−1∑
i=1

[
Wi0

(
e−∂Zi − 1

)
+W0i

(
e+∂Zi − 1

)]
+

n−1∑
i=1

n−1∑
j=i+1

[
Wij

(
e−∂Zi e+∂Zj − 1

)
+Wji

(
e−∂Zj e+∂Zi − 1

)]}
P(Z, t). (3.2)

The moment generating function of the signed cumulated fluxes is defined as [83]

G(s1, · · · , sn−1, t) ≡
+∞∑

Z1,··· ,Zn−1=−∞
sZ1

1 · · · s
Zn−1
n−1 P(Z1, · · · , Zn−1, t), (3.3)

whose evolution equation can be deduced from Eq. (3.2), reading

∂tG(s1, · · · , sn−1, t) =

[
n−1∑
i=1

(
Wi0si + W0i

si
−Wi0 −W0i

)

+
n−1∑
i=1

n−1∑
j=i+1

(
Wij

si

sj
+Wji

sj

si
−Wij −Wji

)]
G(s1, · · · , sn−1, t). (3.4)

With the initial condition

P(Z1, · · · , Zn−1, t = 0) = δZ1,0 · · · δZn−1,0 and thus G(s1, · · · , sn−1, t = 0) = 1, (3.5)

the solution is easily to be found, i.e.,

G(s1, · · · , sn−1, t) = exp

{[
n−1∑
i=1

(
Wi0si + W0i

si
−Wi0 −W0i

)

+
n−1∑
i=1

n−1∑
j=i+1

(
Wij

si

sj
+Wji

sj

si
−Wij −Wji

)]
t

}
. (3.6)

Subsequently, we can obtain the cumulant generating function

Q(λ1, · · · , λn−1) ≡ lim
t→∞

−1
t

lnG
(
e−λ1 , · · · , e−λn−1 , t

)
=

n−1∑
i=1

[
Wi0

(
1− e−λi

)
+W0i

(
1− eλi

)]
+

n−1∑
i=1

n−1∑
j=i+1

[
Wij

(
1− e−λi+λj

)
+Wji

(
1− eλi−λj

)]
, (3.7)

which, under the condition of our hypothesis, can be regarded as a general form of cumulant
generating function for any specific system in the sense that every possible transitions are allowed
between the reservoirs. From the general cumulant generating function (3.7), we have the symmetry
relation

Q(λ1, · · · , λn−1) = Q(A1 − λ1, · · · , An−1 − λn−1), (3.8)

with the definition

Ai ≡ ln Wi0

W0i
(3.9)
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if the following conditions are satisfied,

Ai −Aj = ln Wij

Wji
. (3.10)

The symmetry relation (3.8) is now seen as a result of multivariate fluctuation relation, and thus
Ai is identified as the affinity between the reservoirs Ri and R0 (this latter considered as the
reference reservoir), which automatically leads to the required conditions (3.10). As such, the
affinity between the reservoirs Ri and Rj can therefore be given by

Aij = ln Wij

Wji
. (3.11)

So, in order to obtain the affinities between any two reservoirs, we must first determine the value
of the transition rates {Wij}. There is a total of

S = n2 − n (3.12)

such transition rates. Our task is to find S conditions from which the values of {Wij} can be
determined. As shown above, the required conditions (3.10) gives the affinity relations

Aij +Ajk = Aik, (3.13)

which correspondingly lead to

WijWjkWki −WjiWkjWik = 0. (3.14)

For a n-reservoir system, we can write down

S1 = 1
2
(
n2 − 3n+ 2

)
(3.15)

independent affinity relations such as (3.13). Additionally, from the consequences of the central
limit theorem, we can establish

S2 = 1
2
(
n2 + n− 2

)
(3.16)

conditions for the rates {Wij}. Surprisingly, it can be easily verified that

S1 + S2 = S. (3.17)

So all the necessary independent conditions are found. Detailed accounts about these S conditions
are given in following two subsections. Generally, these conditions constitute a set of nonlinear
equations which can be numerically solved with the Newton-Raphson method (see Appendix E).
After obtaining the numerical value of all transition rates {Wij} as roots, the affinities between
any two reservoirs can be evaluated by Eq. (3.11).

When evaluating the affinities, we now compare the computational/experimental expenses be-
tween this indirect method and the direct method which is based on the fluctuation theorem,
supposing that both methods are operationally feasible. Clearly, the indirect method developed
here above is much cheaper since it is using a finite number of quantities, although the direct
method is instead using a whole probability distribution.

3.1.2 Affinity Relations
We now introduce a convenient procedure to find all the independent affinity relations (3.13).
For a n-reservoir system, we can have a polygon with n vertices by analogy, with each vertex
corresponding to a reservoir. Each affinity relation (3.13) is represented by three vectors ~ij, ~jk,
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Figure 3.1: Polygon representation of a n-reservoir system which facilitates the process of finding
all the independent affinity relations (3.13). Here, a pentagon (n = 5) is shown as an illustrative
example.

and ~ik, forming a triangle ∆(ijk). Thus, the question has now been transformed into the problem
of finding all the independent triangles within the associated polygon. Here, by "independent"
we mean that any triangle can not be represented by other triangles through vector analysis. A
pentagon corresponding to 5-reservoir system is taken as an illustrative example (see Figure 3.1).
We describe the procedure in the following steps:

• Starting from vertex (0), sequentially draw vectors to vertices (2), (3), to the left-hand side
of which we can find the triangles ∆(021) and ∆(032);

• Starting from vertex (1), sequentially draw vectors to vertices (3), (4), to the left-hand side
of which we can find the triangles ∆(132) and ∆(143);

• Starting from vertex (2), there only exists one vector to vertex (4) to the left-side of which
we can find the triangle ∆(243);

• Combining the triangles found above and the pentagon itself, we can still find an extra
independent triangle ∆(034).

So, there exists 6 independent triangles which is equal to the number of vectors inside the pentagon
plus one. The reason for the extra one is evident when the polygon itself is a triangle. Generalizing
to the polygon with n vertices, there is a total of

S1 = 1
2
(
n2 − 3n+ 2

)
(3.18)

independent triangles, from which we can write down all independent affinity relations.

3.1.3 Consequences of the Central Limit Theorem
The Markov jump process can be approximated by a Langevin stochastic process in the limit of
large cumulated fluxes (|Zi| ≫ 1 for all indices i). In this approximation, we expand the raising
and lowering operators in the master equation (3.2) up to the second order. Therefore, the Fokker-
Planck equation

∂tP =
n−1∑
i=1

[
−

n−1∑
j=0

(Wij −Wji)

]
∂Zi

P +
n−1∑
i=1

[
1
2

n−1∑
j=0,j ̸=i

(Wij +Wji)

]
∂2

Zi
P

+
n−1∑
i=1

n−1∑
j=1,j ̸=i

[
− 1

2
(Wij +Wji)

]
∂Zi

∂Zj
P (3.19)
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is derived for the time evolution of the probability density P(Z, t). The solution of this Fokker-
Planck equation (3.19) is nothing but the Gaussian distribution (2.20) whose governing equation
can be explicitly expressed as

∂tP = −∇ · (JP) + ∇ · (D ·∇P) , (3.20)

where ∇ is the gradient operator defined as
(
∂Z1 , · · · , ∂Zn−1

)
. Comparing Eq. (3.19) and Eq. (3.20),

we get

Ji =
n−1∑

j=0,j ̸=i

(Wij −Wji) i = 1, · · · , n− 1, (3.21)

Dii = 1
2

n−1∑
j=0,j ̸=i

(Wij +Wji) i = 1, · · · , n− 1, (3.22)

Dij = −1
2

(Wij +Wji) i, j = 1, · · · , n− 1; i ̸= j, (3.23)

with the values of the mean currents {Ji} and their diffusivities {Dij} being numerically evaluated
in counting statistics by Eqs. (2.6)-(2.7). These relations constitute

S2 = 1
2
(
n2 + n− 2

)
(3.24)

independent conditions. Using Eqs. (2.6)-(2.7), the relations (3.21)-(3.23) can also be directly
deduced from the cumulant generating function (3.7) without invoking the central limit theorem.

3.1.4 Fluctuation Relation
If we denote by Xij the particle numbers transferred during the time interval [0, t] from the
reservoir Ri and Rj , the number of signed cumulated particle transfers from the reservoir Ri to
the remaining part of the system can be expressed as

Zi(X) =
n−1∑

j=0,j ̸=i

(Xij −Xji) i = 1, · · · , n− 1, (3.25)

where X = {Xij}. The mean value of the number Xij is given by ⟨Xij⟩t = Wijt in terms of the
corresponding rate Wij . These numbers Xij can be supposed to have Poisson distributions

P(Xij , t) = e−⟨Xij⟩t
⟨Xij⟩

Xij

t

Xij !
. (3.26)

Now, the probability distribution ruled by the master equation (3.2) can be written as

P(Z1, · · · , Zn−1, t) =
∑
X

∏
i

δZi,Zi(X)
∏
i ̸=j

P(Xij , t). (3.27)

In this case, the moment generating function (3.3) is indeed given by the solution (3.6) of Eq. (3.4),
as can be verified by direct calculation. Therefore, the stochastic process is here a superposition
of several Poisson processes.

The fluctuation theorem can be directly proved starting from the expression (3.27) and using the
change of summation variable Xij = X ′

ji. As a consequence, we have that Eq. (3.25) is equivalent
to Zi = −Zi(X′) =

∑
j(̸=i)

(
X ′

ji −X ′
ij

)
. Therefore, using Eq. (3.26) and (3.10), Eq. (3.27) becomes

P(Z, t) =
∑
X′

∏
i

δ−Zi,Zi(X′)e
−
∑

i̸=j
Wijt

∏
i ̸=j

(Wjit)X′
ji

X ′
ji!

e
∑

i̸=j
(Ai−Aj)X′

ji . (3.28)
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Now, we have that∑
i≠j

(Ai −Aj)X ′
ji =

∑
i

Ai

∑
j(̸=i)

(
X ′

ji −X ′
ij

)
=
∑

i

AiZi = A · Z, (3.29)

hence the fluctuation relation
P(Z, t)
P(−Z, t) = eA·Z (3.30)

which holds exactly at every time. However, the coarse-grained model with constant rates is
meant to describe the behavior of particle exchanges through the system in the long-time limit,
the asymptotic form of multivariate fluctuation relation (2.1) for the probability distribution of
currents flowing across the system can be naturally established from Eq. (3.30).

3.1.5 Proof of Consistency for Systems Near Equilibrium
We now prove that the method developed with the above coarse-grained model (3.1) is exactly
valid for any system near equilibrium in terms of evaluating affinities. Let’s consider a system
which is in equilibrium, then the affinities between any two reservoirs are equal to zero, and the
currents vanish. We now apply a small perturbation to this system through minor changes in the
values of the affinities, then the currents can be expressed as linear responses of affinities, i.e.,

δJi =
n−1∑
j=1

Li,jδA
(t)
j . (3.31)

where {Li,j} are the Onsager linear response coefficients and {A(t)
j } denotes the theoretical affinities

that are actual ones. Here, we have reasonably omitted the nonlinear terms due to their very
insignificant contribution. Considering the fluctuation-dissipation relations (2.16), we can further
write Eq. (3.31) as

δJi =
n−1∑
j=1

DijδA
(t)
j , (3.32)

where {Dij} are the diffusivities of currents for the system in equilibrium. Let’s now turn to the
coarse-grained formalism (3.1). The equilibrium condition implies that

Dii =
n−1∑

j=0,j ̸=i

Wij , Dij = −Wij = −Wji. (3.33)

so the variation of the numerical affinities A(n)
ij ≡ ln(Wij/Wji) around equilibrium is as follows,

δA
(n)
ij = δ

(
ln Wij

Wji

)
= δWij

Wij
− δWji

Wji
= 1
Wij

(δWij − δWji) . (3.34)

With Eqs. (3.33)-(3.34), δJi can also be expressed as

δJi =
n−1∑

j=0,j ̸=i

(δWij − δWji) =
n−1∑

j=0,j ̸=i

Wij
(δWij − δWji)

Wij
=

n−1∑
j=0,j ̸=i

WijδA
(n)
ij . (3.35)

Because of δA(n)
ij = δA

(n)
i − δA(n)

j , δJi can be further expressed as

δJi =
n−1∑

j=0,j ̸=i

Wij

(
δA

(n)
i − δA(n)

j

)
=

n−1∑
j=0,j ̸=i

WijδA
(n)
i −

n−1∑
j=0,j ̸=i

WijδA
(n)
j . (3.36)
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Due to Eq. (3.33), we reach the final desired form of δJi, i.e.,

δJi = DiiδA
(n)
i +

n−1∑
j=1,j ̸=i

DijδA
(n)
j =

n−1∑
j=1

DijδA
(n)
j . (3.37)

Comparing Eq. (3.37) with Eq. (3.32), we immediately conclude that

δA
(n)
i = δA

(t)
i , (3.38)

which means that the numerical affinities A(n)
i evaluated as ln(Wi0/W0i) can be identified as the

actual ones for systems near equilibrium.

3.1.6 Response Properties
The time-reversal symmetry relations in Section 2.3 can be obtained for the linear and nonlinear
response coefficients of the stochastic model with constant rates. The mean currents (3.21) can be
expressed in terms of the affinities given by Eqs. (3.9) and (3.10) according to

Ji = W0i

(
eAi − 1

)
+
∑
k>i

Wki

(
eAi−Ak − 1

)
−
∑
k<i

Wik

(
eAk−Ai − 1

)
. (3.39)

The diffusivities (3.22) and (3.23) are similarly given by

Dii = 1
2
W0i

(
eAi + 1

)
+ 1

2
∑
k>i

Wki

(
eAi−Ak + 1

)
+ 1

2
∑
k<i

Wik

(
eAk−Ai + 1

)
, (3.40)

Dij = −1
2
Wji

(
eAi−Aj + 1

)
for i < j. (3.41)

The linear response coefficients (2.11) are thus taking the following values,

Li,i = W0i +
∑
k>i

Wki +
∑
k<i

Wik, (3.42)

Li,j = Lj,i = −Wji for i < j, (3.43)

so that the fluctuation-dissipation relations (2.16) and Onsager reciprocal relations (2.17) are
satisfied in the linear regime close to equilibrium. Beyond, the nonlinear response coefficients (2.12)
have the following expressions,

Mi,ii = W0i +
∑
k>i

Wki −
∑
k<i

Wik, (3.44)

Mi,ij = Mj,ii = −Mi,jj = −Mj,ji = −Wji for i < j, (3.45)
Mi,jk = 0 for i ̸= j ̸= k , (3.46)

while the first responses (2.19) of the diffusivities are here given by

Rii,i = 1
2
W0i + 1

2
∑
k>i

Wki −
1
2
∑
k<i

Wik, (3.47)

Rii,j = Rij,i = −Rij,j = −Rjj,i = −1
2
Wji for i < j, (3.48)

Rij,k = 0 for i ̸= j ̸= k, (3.49)

so that the symmetry relations (2.18) are also satisfied, since Mi,ii = 2Rii,i for i = j = k,
Mi,jj = 2Rij,j for j = k, Mi,ij = Rii,j + Rij,i for k = i, and 0 = 0 for i ̸= j ̸= k. These results
confirm for the model with constant rates that the nonlinear response coefficients of the mean
currents can be expressed in terms of the first responses of the diffusivities, as a consequence of
the multivariate fluctuation relation (2.1). These results will be used in the next section devoted
to a more complicated model.
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3.2 Model With Linear Rates
In this section, we consider a Markov stochastic model where the transition rates depend linearly
on an internal random variable N , representing the occupancy of the system by particles. This
model is used as an example to show how we evaluate affinities. The system is in contact with
three particle reservoirs R0, R1 and R2, which are here seen as spatial regions with fixed volume
and particle density. Correspondingly, the particle numbers inside the reservoirs are constant in
time, and denoted by the same notations R0, R1 and R2 for convenience.

3.2.1 Master Equation
The process of particle transitions in the whole system is schematically depicted by the kinetic
network

R1
k+1

GGGGGGGBFGGGGGGG

k−1

N
k−0

GGGGGGGBFGGGGGGG

k+0

R0

k+2 ↿⇂ k−2

R2

(3.50)

with the transition rates given by

W
(+)
0 (N) = k+0R0, W

(−)
0 (N) = k−0N , (3.51)

W
(+)
1 (N) = k+1R1, W

(−)
1 (N) = k−1N , (3.52)

W
(+)
2 (N) = k+2R2, W

(−)
2 (N) = k−2N . (3.53)

The injecting rates {W (+)
i } are independent of the internal state N of the system because they

are all determined by the particle concentration of the corresponding reservoir. In contrast, the
releasing rates {W (−)

i } do depend linearly on the system state N . The probability distribution of
the internal state N of the system is ruled by the master equation

d
dt
P(N, t) =

2∑
i=0

[(
e−∂N − 1

)
W

(+)
i (N) +

(
e+∂N − 1

)
W

(−)
i (N)

]
P(N, t). (3.54)

The evolution equation for the mean value ⟨N⟩ can be deduced from the master equation (3.54),
reading

d
dt
⟨N⟩ = (k+0R0 + k+1R1 + k+2R2)− (k−0 + k−1 + k−2) ⟨N⟩. (3.55)

Consequently, the mean value in the steady state is given by

⟨N⟩st = k+0R0 + k+1R1 + k+2R2

k−0 + k−1 + k−2
. (3.56)

Since the rates {W (−)
i } are linear functions of the system state variable N , the kinetic equa-

tion (3.55) is linear. The stationary solution of the master equation (3.54) is thus given by the
following Poisson distribution,

Pst(N) = e−⟨N⟩st
⟨N⟩Nst
N !

. (3.57)

3.2.2 Graph Analysis and Affinities
The graph associated with the kinetic network (3.50) is depicted in Figure 3.2. Taking the event
of a particle transfer from the reservoir R1 to the reservoir R0 as an example, the cyclic path and



Chapter 3. Two Stochastic Models 21

Figure 3.2: Graph associated with the kinetic network (3.50).

its reversed path are

C : (N)
W

(+)
1−−−→ (N + 1)

W
(−)
0−−−→ (N), (3.58)

Cr : (N)
W

(+)
0−−−→ (N + 1)

W
(−)
1−−−→ (N). (3.59)

Then, according to Schnakenberg’s graph analysis, the affinity between the reservoirs R1 and R0
is given by

A1 ≡ A10 = ln W
(+)
1 (N)W (−)

0 (N + 1)
W

(+)
0 (N)W (−)

1 (N + 1)
= ln k+1R1k−0

k+0R0k−1
. (3.60)

Similarly, we have

A2 ≡ A20 = ln k+2R2k−0

k+0R0k−2
, (3.61)

which is the affinity between the reservoirs R2 and R0.

3.2.3 Counting Statistics
For the Markov stochastic process (3.50), let us introduce the probability distribution P(N,Z1, Z2, t)
to have N particles at time t and signed cumulated fluxes Z1 and Z2, respectively from reservoirs
R1 and R2 towards the system. This probability distribution evolves in time according to the
following extended master equation,

d
dt
P(N,Z1, Z2, t) =

[ (
e−∂N − 1

)
k+0R0 +

(
e+∂N − 1

)
k−0N

+
(
e−∂N e−∂Z1 − 1

)
k+1R1 +

(
e+∂N e+∂Z1 − 1

)
k−1N

+
(
e−∂N e−∂Z2 − 1

)
k+2R2 +

(
e+∂N e+∂Z2 − 1

)
k−2N

]
P(N,Z1, Z2, t). (3.62)

Let us define the moment generating function of the signed cumulated fluxes [83], reading

G(s, s1, s2, t) ≡
∞∑

N=0

+∞∑
Z1,Z2=−∞

sNsZ1
1 sZ2

2 P(N,Z1, Z2, t), (3.63)

and set the initial condition according to the steady state distribution, i.e.,

P(N,Z1, Z2, t = 0) = e−⟨N⟩st
⟨N⟩Nst
N !

δZ1,0 δZ2,0, (3.64)

so that

G(s, s1, s2, t = 0) = e⟨N⟩st(s−1). (3.65)
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Then, from the master equation (3.62), we get the evolution equation for the moment generating
function

∂tG(s, s1, s2, t) = [k+0R0(s− 1) + k+1R1(ss1 − 1) + k+2R2(ss2 − 1)]G(s, s1, s2, t)

+
[
k−0(1− s) + k−1

(
1
s1
− s
)

+ k−2

(
1
s2
− s
)]

∂sG(s, s1, s2, t), (3.66)

which can be written in the following form,

∂tG = (As−B)G+ (C −Ds)∂sG (3.67)

with

A = k+0R0 + k+1R1s1 + k+2R2s2, (3.68)
B = k+0R0 + k+1R1 + k+2R2, (3.69)

C = k−0 + k−1

s1
+ k−2

s2
, (3.70)

D = k−0 + k−1 + k−2. (3.71)

Obviously, we note that B = A(s1 = s2 = 1) and D = C(s1 = s2 = 1). This first-order partial
differential equation with given initial condition can be solved using the method of characteristics
[83]. Accordingly, Eq. (3.67) is reduced to two ordinary differential equations:

dG
dt

= (As−B)G, (3.72)

ds
dt

= −C +Ds, (3.73)

from the initial condition G0 and s0 that are coupled together by Eq. (3.65), which reads G0 =
exp [⟨N⟩st(s0 − 1)] with ⟨N⟩st = B/D. Integrating these ordinary differential equations and elim-
inating G0 and s0, we obtain the solution

G(s, s1, s2, t) = exp
[
t
AC −BD

D
− B

D
− (A−B)C

D2

(
1− e−Dt

)]
× exp

{[
B

D
e−Dt + A

D

(
1− e−Dt

)]
s

}
. (3.74)

The cumulant generating function

Q(λ1, λ2) = lim
t→∞

−1
t

lnG
(
1, e−λ1 , e−λ2 , t

)
= BD −AC

D
(3.75)

is therefore obtained with

A = k+0R0 + k+1R1e−λ1 + k+2R2e−λ2 , (3.76)
B = k+0R0 + k+1R1 + k+2R2, (3.77)
C = k−0 + k−1eλ1 + k−2eλ2 , (3.78)
D = k−0 + k−1 + k−2. (3.79)

In Eq. (3.75), we have put s = 1 and this, according to the definition (3.63), amounts to summing
over the probability distribution of N . If we make the following identification

W10 ≡
k+1R1k−0

k−0 + k−1 + k−2
, W01 ≡

k+0R0k−1

k−0 + k−1 + k−2
, (3.80)

W20 ≡
k+2R2k−0

k−0 + k−1 + k−2
, W02 ≡

k+0R0k−2

k−0 + k−1 + k−2
, (3.81)

W12 ≡
k+1R1k−2

k−0 + k−1 + k−2
, W21 ≡

k+2R2k−1

k−0 + k−1 + k−2
, (3.82)
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then the cumulant generating function (3.75) becomes

Q(λ1, λ2) =W10
(
1− e−λ1

)
+W20

(
1− e−λ2

)
+W12

(
1− e−λ1+λ2

)
+W01

(
1− e+λ1

)
+W02

(
1− e+λ2

)
+W21

(
1− e+λ1−λ2

)
, (3.83)

which has the same form as Eq. (3.7) with n = 3. So, the quantities given by Eqs. (3.80)-(3.82) are
the corresponding global transition rates between different reservoirs. Consequently, a symmetry
relation such as (3.8) is here also satisfied, reading

Q(λ1, λ2) = Q(A1 − λ1, A2 − λ2), (3.84)

with the affinities

A1 ≡ A10 = ln W10

W01
= ln k+1R1k−0

k+0R0k−1
, (3.85)

A2 ≡ A20 = ln W20

W02
= ln k+2R2k−0

k+0R0k−2
, (3.86)

which are equivalent with those of Eqs. (3.60)-(3.61) given by Schnakenberg’s graph analysis. This,
to some extent, supports the hypothesis made at the beginning of Section 3.1.

3.2.4 Finite-Time Fluctuation Relation
We observe that the moment generating function (3.74) with s = 1 has the same structure as the
function (3.6). This observation suggests that the stochastic process is here also a superposition
of Poisson processes of type (3.26). Indeed, since Z1 = X10 −X01 + X12 −X21 and Z2 = X20 −
X02 +X21 −X12, we may write

G(s = 1, s1, s2, t) =
∑

{Xij}

sX10−X01+X12−X21
1 sX20−X02+X21−X12

2

∏
i ̸=j

e−νij
ν

Xij

ij

Xij !
(3.87)

to obtain

G(s = 1, s1, s2, t) = exp

[
ν10 (s1 − 1) + ν01

(
1
s1
− 1
)

+ ν20 (s2 − 1)

+ ν02

(
1
s2
− 1
)

+ ν12

(
s1

s2
− 1
)

+ ν21

(
s2

s1
− 1
)]

. (3.88)

Comparing to expression (3.74) with s = 1 and the coefficients (3.68)-(3.71), we can identify the
parameters {νij} of the Poisson distributions as

ν10 ≡ ⟨X10⟩t = W10t+ (W11 +W12) f(t)
D

, (3.89)

ν01 ≡ ⟨X01⟩t = W01t+ (W11 +W21) f(t)
D

, (3.90)

ν20 ≡ ⟨X20⟩t = W20t+ (W22 +W21) f(t)
D

, (3.91)

ν02 ≡ ⟨X02⟩t = W02t+ (W22 +W12) f(t)
D

, (3.92)

ν12 ≡ ⟨X12⟩t = W12

[
t− f(t)

D

]
, (3.93)

ν21 ≡ ⟨X21⟩t = W21

[
t− f(t)

D

]
, (3.94)
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in terms of the rates (3.80)-(3.82), the further quantities

Wii ≡
k+iRik−i

k−0 + k−1 + k−2
for i = 1, 2, (3.95)

and the function

f(t) = 1− exp (−Dt) . (3.96)

We note that the relation

ν01(t)ν12(t)ν20(t) = ν02(t)ν21(t)ν10(t) (3.97)

is implied by the time-dependent parameters (3.89)-(3.94) of the Poisson distributions. If we
introduce the time-dependent affinities as

Ã10(t) ≡ ln ν10(t)
ν01(t)

, (3.98)

Ã20(t) ≡ ln ν20(t)
ν02(t)

, (3.99)

Ã12(t) ≡ ln ν12(t)
ν21(t)

, (3.100)

in terms of the parameters (3.89)-(3.94), we thus have the property that

∆Ã(t) ≡ Ã12(t)− Ã10(t) + Ã20(t) = 0. (3.101)

The signed cumulated particle transfers between the three reservoirs are defined as

∆X10 ≡ X10 −X01, (3.102)
∆X20 ≡ X20 −X02, (3.103)
∆X12 ≡ X12 −X21, (3.104)

whose joint probability distribution is given by

P(∆X10,∆X20,∆X12, t) =
∑

{Xij}

δ∆X10,X10−X01δ∆X20,X20−X02δ∆X12,X12−X21

∏
i ̸=j

e−νij
ν

Xij

ij

Xij !
.

(3.105)

Comparing with the probability distribution for the opposite fluctuations of the signed cumulated
particle transfers, we deduce the following finite-time trivariate symmetry relation,

P(∆X10,∆X20,∆X12, t)
P(−∆X10,−∆X20,−∆X12, t)

= exp
[
Ã10(t)∆X10 + Ã20(t)∆X20 + Ã12(t)∆X12

]
, (3.106)

which holds at every time in terms of the time-dependent affinities (3.98)-(3.100). Since the
numbers of particle transfers from the reservoirs i = 1, 2 to the remaining part of the system
are given by Z1 = ∆X10 + ∆X12 and Z2 = ∆X20 − ∆X12, the finite-time trivariate fluctuation
relation (3.106) can be written equivalently in the following form,

P(Z1, Z2,∆X12, t)
P(−Z1,−Z2,−∆X12, t)

= exp
[
Ã10(t)Z1 + Ã20(t)Z2 + ∆Ã(t)∆X12

]
, (3.107)

in terms of the quantity (3.101) that vanishes. Consequently, the right-hand side of Eq. (3.107)
no longer depends on ∆X12. Therefore, multiplying Eq. (3.107) by P(−Z1,−Z2,∆X12, t) and
summing over ∆X12 to form the marginal probability distribution

P(Z1, Z2, t) ≡
+∞∑

∆X12=−∞

P(Z1, Z2,∆X12, t), (3.108)
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we obtain the bivariate fluctuation relation

P(Z1, Z2, t)
P(−Z1,−Z2, t)

= exp
[
Ã10(t)Z1 + Ã20(t)Z2

]
, (3.109)

here also holding at every time with the finite-time affinities defined by Eqs. (3.98)-(3.99). In the
long-time limit, these affinities behave as Ãi0 = Ai +O

[
(Dt)−1], where Ai are the affinities (3.60)-

(3.61) (for i = 1, 2). Therefore, the asymptotic fluctuation theorem

P(Z1, Z2, t)
P(−Z1,−Z2, t)

≃t→∞ exp (A10Z1 +A20Z2) (3.110)

is recovered in the long-time limit, which is consistent with the validity of the symmetry rela-
tion (3.84) satisfied by the cumulant generating function. The analysis shows that the asymptotic
symmetry (3.110) is slowly approached in time with correction going as t−1, and becoming negli-
gible over time scales t≫ D−1 = (k−0 + k−1 + k−2)−1.

The fact that the affinities can be expressed in terms of the rates defined by Eqs. (3.80)-(3.82)
as for the coarse-grained model with constant rates suggests that the affinities can be determined
from the knowledge of the mean currents and their diffusivities. We now numerically test this
using the present stochastic model with linear rates.

The Markov stochastic process described by Eq. (3.54) can be exactly simulated using the
Gillespie’s algorithm presented in Section 2.6. However, it is computationally expensive since the
particles transit one by one in the corresponding simulation. To increase the simulation speed,
the master equation (3.54) is approximated by corresponding Fokker-Planck equation under the
condition that the particle number N is very large. In this way, the stochastic process of Langevin
type can be invoked and easily implemented with standard routines. The details of this procedure
are presented in Appendix B.

In the simulation, we perform the counting statistics of signed cumulated particle transfers
Z1 and Z2 respectively from the reservoirs R1 and R2 to the system during a large time interval
[0, t]. The joint probability distribution of Z1 and Z2 is well approximated by the Gaussian
distribution (2.20), from which we obtain the numerical values of J1, J2, D11, D22, and D12
according to Eqs. (2.6)-(2.7). Gathering all the independent conditions, we have the nonlinear
equations:

W10 −W01 +W12 −W21 = J1, (3.111)
W20 −W02 +W21 −W12 = J2, (3.112)
W10 +W01 +W12 +W21 = 2D11, (3.113)
W20 +W02 +W21 +W12 = 2D22, (3.114)
W12 +W21 = −2D12, (3.115)
W01W12W20 = W02W21W10, (3.116)

which can be numerically solved using the Newton-Raphson method (see Appendix E). Here,
Eq. (3.116) can also be naturally recovered from the long-time limit of the time-dependent re-
lation (3.97). After finding roots of these nonlinear equations, we can readily obtain numerical
affinities through

A1 ≡ A10 = ln W10

W01
, (3.117)

A2 ≡ A20 = ln W20

W02
. (3.118)

In Table 3.1, we present the comparison for several pairs of numerical affinities (3.117)-(3.118) and
theoretical affinities (3.60)-(3.61). The agreement of each pair of affinities confirms the control of
the counting statistics by the first and second cumulants for the stochastic model with linear rates.
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Table 3.1: Model (3.50) with linear rates: Comparison between numerical affinities A(n)
1 , A(n)

2 given
by Eqs. (3.117)-(3.118) and their theoretical predictions A(t)

1 , A(t)
2 given by Eqs. (3.60)-(3.61). We

set k±0 = k±1 = k±2 = 1 in the transition rates (3.51)-(3.53) for numerical simulation. The
numerical affinities are computed from the statistics carried out over time interval [0, t = 100] with
2× 105 data. Here, the parameter values satisfy t ≫ (k−0 + k−1 + k−2)−1, so that the computed
affinities are well representing their asymptotic values. The numerical method for estimating the
error can be found in Appendix E.

Case R0 R1 R2 A
(t)
1 A

(t)
2 A

(n)
1 A

(n)
2

(1) 1000 3000 2000 1.0986 0.6931 1.0890± 0.0076 0.6841± 0.0072
(2) 3000 1000 2000 −1.0986 −0.4054 −1.0957± 0.0049 −0.4033± 0.0029
(3) 2000 10000 1000 1.6094 −0.6931 1.5949± 0.0118 −0.7063± 0.0106
(4) 1000 10000 1000 2.3025 0.0000 2.2698± 0.0234 −0.0294± 0.0202
(5) 10000 2000 1000 −1.6094 −2.3025 −1.6076± 0.0089 −2.3036± 0.0137
(6) 15000 2000 1000 −2.0149 −2.7080 −2.0150± 0.0126 −2.7126± 0.0193
(7) 3000 20000 1000 1.8971 −1.0986 1.8758± 0.0169 −1.1195± 0.0184
(8) 1000 1000 15000 0.0000 2.7080 −0.0406± 0.0306 2.6512± 0.0349
(9) 10000 1000 20000 −2.3025 0.6931 −2.3007± 0.0237 0.6891± 0.0053

3.2.5 Response Properties
As shown in Section 2.3, the symmetry relation (3.84) implies the fluctuation-dissipation rela-
tions (2.16) and the Onsager reciprocal relations (2.17) in the linear regime close to equilibrium,
as well as their generalizations such as Eq. (2.18) in the nonlinear regimes farther away from
equilibrium.

Since the cumulant generating function (3.83) is here precisely of the same form as Eq. (3.7)
with n = 3 for the model with constant rates, the response coefficients of the present stochastic
model have the same expressions as those obtained in Subsection 3.1.6 for the previous stochastic
model. We thus have that the linear response coefficients and the diffusivities satisfy Eqs. (2.16)
and (2.17) because

L1,1 = W01 +W21 = D11(0, 0), (3.119)
L1,2 = L2,1 = −W21 = D12(0, 0) = D21(0, 0), (3.120)
L2,2 = W02 +W21 = D22(0, 0). (3.121)

Moreover, the nonlinear response coefficients (2.12) are indeed related to the first responses (2.19)
of the diffusivities since

M1,11 = W01 +W21 = 2R11,1, M2,11 = −W21 = 2R21,1, (3.122)
M1,12 = −W21 = R11,2 +R12,1, M2,12 = W21 = R21,2 +R22,1, (3.123)
M1,21 = −W21 = R12,1 +R11,2, M2,21 = W21 = R22,1 +R21,2, (3.124)
M1,22 = W21 = 2R12,2, M2,22 = W02 −W21 = 2R22,2, (3.125)

as predicted by Eq. (2.18).



Chapter 4

Charge Transport in Conductive
Channels

The general coarse-grained model for nonequilibrium systems describing the long-time behavior
of the particle exchanges between reservoirs has been given in Section 3.1. The validity of this
coarse-grained model is justified if the particle transition rates for the system of interest are linearly
dependent on local particle concentrations. Moreover, it has been proved in Subsection 3.1.5 that
this coarse-grained model is exactly valid for any system near equilibrium in terms of evaluating
affinities. It leaves open whether this coarse-grained model still works when it comes to the far-
from-equilibrium system with nonlinear transition rates.

In this chapter, we study transport of charged particles in conductive channels at the meso-
scopic level. The relevant stochastic approach has already been developed in Ref. [62], and is
presented here again for the purpose of inspiring the studies in subsequent two chapters for charge
transport in semiconductor devices. In this approach, the electric field is not only generated by
external means, but also self-consistently incorporates the contributions of the local deviations
from electroneutrality. In addition, the approach also assumes that the electric field propagates
instantaneously, the quasi-static limit of the Maxwell’s equations, which greatly simplifies the cal-
culation of the fluctuating electric field from the charge distribution that is constantly changing.
The channel is spatially discretized into cells, so that a master equation can be introduced to de-
scribe the Markov jump process of charged particles. In the master equation, the transition rates
are chosen such that the laws of thermodynamics and microreversibility are guaranteed. In the
case of equilibrium, the detailed balance is recovered.

Due to the long-range electrostatic interaction, the transition rates in the master equation are
typically nonlinear. Numerical evidences show that the numerically obtained affinity based on
the coarse-grained model is generally larger than expected, especially when the system is far from
equilibrium. This seems to give an interesting inequality between affinity, mean current, and its
diffusivity. However, we find that when the charge density is very low the fluctuating electric field
can be approximated as a static background field. In the limiting case, the transition rates become
linear and thus the coarse-grained model is proved to be applicable in the regime arbitrarily far
from equilibrium. Furthermore, the finite-time fluctuation theorem is established in this case of
low-density limit.

4.1 Conductive Channels
The conductive channel we consider here is modeled as a three-dimensional rod of length l with
its coordinate x extending from −l/2 to l/2 and of section area Σ in the transverse y- and z-
directions. The position is denoted by r = (x, y, z). Two kinds of charged particles are supposed to
be distributed in this channel: mobile positive-charged particles with density n(r), and anchored
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negative-charged ions with uniform density n−(r) = n−. The charge density is given by

ρ(r) = e [n(r)− n−] (4.1)

in terms of the elementary electric charge e = |e|, and the densities of two kinds of charged particles.
The charge density determines the electric potential Φ(r) by Gauss’s law and Poisson equation [84,
85]. In equilibrium, the density of mobile charged particles would be, moreover, related to the
electric potential by

neq(r) ∼ e−βeΦ(r). (4.2)

Both ends of the conductive channel are in contact with reservoirs with fixed potentials and den-
sities for positive-charged mobile particles:

Φ(x = −l/2) = ΦL, Φ(x = l/2) = ΦR, (4.3)
n(x = −l/2) = nL, n(x = l/2) = nR. (4.4)

If the conductive channel is in equilibrium, then Eq. (4.2) holds and the potential difference is
related to the densities at the reservoirs according to the Nernst potential

(ΦL − ΦR)eq = 1
βe

ln nR

nL
. (4.5)

If the conductive channel is out of equilibrium, the applied voltage with respect to Nernst potential
can be defined as

V = ΦL − ΦR + 1
βe

ln nL

nR
, (4.6)

which induces current flowing in the conductive channel. The equilibrium state is recovered if the
applied voltage is vanishing, V = 0.

4.1.1 Stochastic Diffusion Equations
Because of thermal fluctuations, the mobile charged particles inside the conductive channel undergo
ceaseless erratic movements. Their mobility µ is related to their diffusion coefficient D according
to Einstein’s relation µ = βD. It should be noted that the diffusion coefficient here needs to be
distinguished from the diffusivity appearing elsewhere. Since particle transport is fluctuating, the
density obeys a stochastic partial differential equation. Due to the conservation of the number of
mobile charged particles, the continuity equation for their density is satisfied, reading

∂tn+ ∇ · j = 0, (4.7)

with the current density

j = µneE −D∇n+ δj. (4.8)

Therein, the electric field is expressed as

E = −∇Φ (4.9)

in terms of the electric potential satisfying the Poisson equation

∇2Φ = −ρ
ε

, (4.10)

where ε is the permittivity and the electric charge density is given by Eq. (4.1).
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The contribution of the fluctuations, δj, to the current density (4.8) is given by Gaussian white
noise fields characterized by

⟨δj(r, t)⟩ = 0, (4.11)
⟨δj(r, t)⊗ δj(r′, t′)⟩ = Γ(r, t)δ3(r− r′)δ(t− t′)I, (4.12)

where I is the 3× 3 identity matrix and

Γ(r, t) ≡ 2Dn(r, t) (4.13)

is the spectral density of the noise associated with diffusion. We note that the current density can
be equivalently written as

j = −De−βeΦ∇
(
eβeΦn

)
+ δj. (4.14)

4.1.2 Mean-Field Equations Under Stationary Conditions
By averaging the continuity equation (4.7) and the expression (4.8) over the noise using Eq. (4.11),
we can obtain the mean-field equations for the stationary mean profiles of density and the current
density of charged particles in the x direction. Together with Gauss’s law and the Poisson equation
for the electric field and potential, these mean-field equations are given by the following coupled
ordinary differential equations (ODEs):

dn(x)
dx

= −j(x)
D

+ βen(x)E(x), (4.15)

dj(x)
dx

= 0, (4.16)

dE(x)
dx

= e

ε
[n(x)− n−] , (4.17)

dΦ(x)
dx

= −E(x), (4.18)

with the boundary conditions given by Eqs. (4.3)-(4.4). The above ODE system constitutes a typ-
ical two-point boundary value problem that is not analytically solvable because of its nonlinearity,
but it can be solved numerically1.

4.2 Numerical Simulation Method
At the mesoscopic level, the evolution of distributions of mobile charged particles in the conductive
channel can be described as a Markov jump process, which is formulated in terms of a master
equation. The fluctuations down to the mesoscopic scale can be fully characterized by such a
process. For this purpose, the conductive channel is spatially discretized into cells, each containing
some numbers of mobile charge carriers. These numbers are supposed to change in time because
of random transitions. The stochastic approach introduced here incorporates the self-consistent
electric field which is generated by the fluctuating distribution of charged particles.

4.2.1 Discretizing the Conductive Channel in Space
The channel is discretized into cells, each with the same volume Ω and same length ∆x. Thus,
the cross section is given by Σ = Ω/∆x, and there is total of L = l/∆x cells indexed from 1 to L.
The number of negative-charged ions in each cell is N−i = n−Ω. Similarly, there are Ni = n(xi)Ω
positive-charged particles in the ith cell, with xi = (i−0.5)∆x−l/2 (i = 1, 2, · · · , L). The reservoirs

1The Python package Scipy provides the function integrate.solve_bvp for solving a first-order system of ODEs
subject to two-point boundary conditions.

https://www.scipy.org/
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are modeled as cells respectively indexed as 0 for the left reservoir and L+1 for the right reservoir.
The numbers of mobile particles in both reservoirs are maintained constant in time, and given by
N0 ≡ N̄L = nLΩ and NL+1 ≡ N̄R = nRΩ. The particle numbers in the cells change every time a
particle jumps between two neighboring cells, or between a reservoir and the neighboring cell. The
discretized version of Poisson equation is given by

Φi+1 − 2Φi + Φi−1

∆x2 = − e

εΩ
(Ni −N−) (4.19)

with the boundary conditions Φ0 = ΦL and ΦL+1 = ΦR. This linear system should be solved each
time a particle transition occurs.

4.2.2 Master Equation
The system state is specified by the numbers N = {Ni}L

i=1 of charge carriers in the cells and they
evolve in time according to the network

N̄L
W

(+)
0

GGGGGGGGBFGGGGGGGG

W
(−)
0

N1
W

(+)
1

GGGGGGGGBFGGGGGGGG

W
(−)
1

N2
W

(+)
2

GGGGGGGGBFGGGGGGGG

W
(−)
2

· · ·
W

(+)
L−2

GGGGGGGGGBFGGGGGGGGG

W
(−)
L−2

NL−1

W
(+)
L−1

GGGGGGGGGBFGGGGGGGGG

W
(−)
L−1

NL

W
(+)
L

GGGGGGGGBFGGGGGGGG

W
(−)
L

N̄R.

The probability P(N, t) that the cells contain the particle numbers N for time t obeys the master
equation

dP
dt

=
L∑

i=0

[(
e+∂Ni e−∂Ni+1 − 1

)
W

(+)
i +

(
e−∂Ni e+∂Ni+1 − 1

)
W

(−)
i

]
P, (4.20)

with the transition rates2

W
(+)
i = D

∆x2ψ(∆Ui,i+1)Ni, (4.21)

W
(−)
i = D

∆x2ψ(∆Ui+1,i)Ni+1. (4.22)

∆Ui,i+1 is the intrinsic energy change in the whole conductive channel associated with the one
particle jump from the ith to (i+ 1)th cell, and is given by

∆Ui,i+1 = e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
. (4.23)

For details about U and ∆U , see the Appendix A. The function ψ(∆U) is defined as

ψ(∆U) = β∆U
exp(β∆U)− 1

, (4.24)

which guarantees the detailed balance condition in equilibrium,

ψ(∆U) = ψ(−∆U) exp(−β∆U). (4.25)

At the ends of the chain, we have that exp(±∂X) = 1 for X = N0 and NL+1 in the master
equation (4.20). Indeed, the quantities N0 = N̄L and NL+1 = N̄R are associated with the reservoirs

2In the expression for the local transition rates (4.21)-(4.22), D/∆x2 is due to the pure diffusion, and ψ(∆U) is
the contribution of drift driven by external electric force. In the case of pure diffusion, the mean current is expressed
as

J = −k(Ni+1 −Ni) = −kΩ∆x
∂n

∂x
= jΣ = −D

Ω
∆x

∂n

∂x
,

from which k = D/∆x2 is obtained.
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and they thus take constant values. The boundary conditions are imposed at the left and right
reservoirs by setting N0 = N̄L, Φ0 = ΦL, NL+1 = N̄R, and ΦL+1 = ΦR in the transition rates.

For the numerical simulation of transport of charge carriers in the conductive channel, the
Markov stochastic process ruled by Eq. (4.20) is transformed into the corresponding Langevin
stochastic process (see Appendix B for the detailed procedure).

In equilibrium or nonequilibrium stationary states, the statistical average numbers of charge
carriers in the cells can be evaluated in numerical simulations by the time average,

⟨Ni⟩ = lim
T →∞

1
T

∫ T

0
Ni(t)dt, (4.26)

which is equivalent by ergodicity to the ensemble average ⟨Ni⟩ =
∑

N NiPst(N) over the sta-
tionary probability distribution Pst. In the continuum limit, the volume of the cells is supposed
to vanish together with the particle numbers, so that the densities obeying Eqs. (4.7)-(4.13) are
recovered through n(xi, t) = Ni(t)/Ω. We can also recover the stochastic partial differential equa-
tion (4.7) with the current densities (4.8) from the Langevin stochastic equations (B.7)-(B.8) (see
Appendix C). This method is similar to the one used in Refs. [62, 86].

4.3 Graph Analysis and Affinity
The affinity for this transport system can be identified from Schnakenberg’s graph analysis [78].
For example, we take a cyclic path such that a particle is transferred from the left to the right
reservoir:

C : N
W

(+)
0−−−→ N + n1

W
(+)
1−−−→ N + n2 −−→ · · · −−→ N + nL−1

W
(+)
L−1−−−−→ N + nL

W
(+)
L−−−→ N, (4.27)

written in terms of the system state N and the notation (ni)j = +δi,j . The corresponding nonequi-
librium constraint is determined by the applied voltage that we should recover by calculating the
affinity. Indeed, the transition rates W (+)

i defined by Eq. (4.21) involve the energy differences

∆Ui,i+1 = U(N + ni+1)− U(N + ni) = e(Φi+1 − Φi) + e2(L− 2i)∆x2

2(L+ 1)εΩ
= −∆Ui+1,i (4.28)

for i = 0, · · · , L with Φ0 = ΦL and ΦL+1 = ΦR. It should be noted that the discretized distri-
bution of electric potential {Φi} here corresponds to the system state N. Equation (4.28) can be
obtained from calculations similar as those in Appendix A. Substituting Eqs. (4.21) and (4.22) in
the definition (2.25) and using the detailed balance relation (4.25), we find that

A(C) = ln
[
nL

nR
eβe(ΦL−ΦR)

]
= βeV (4.29)

according to Eq. (4.6), which shows the consistency of the scheme for this cyclic path. Similar
results can be obtained for other cyclic paths.

4.4 The Current and Counting Statistics
Here, we consider the fluctuating electric current flowing across the middle of the conductive
channel at the location x = 0. The instantaneous electric current can be written as

I(t) =
+∞∑

n=−∞
qnδ(t− tn) (4.30)
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with qn = ±e depending on whether the charged particle moves towards x > 0 or x < 0. The
corresponding random number of signed cumulated particle transfers over the time interval [0, t]
is defined as

Z(t) = 1
e

∫ t

0
I(t′)dt′. (4.31)

Through numerous repeated measurements in simulation, we get the counting statistics of Z(t),
and thus P(Z, t) can be numerically constructed. Moreover, according to Eqs. (2.6)-(2.7), the
mean current J and its diffusivity D can be evaluated.

4.5 Fluctuation Theorem for the Current
In order to evaluate the affinity from counting statistics, we can use the coarse-grained model

Left Reservoir
W+

GGGGGGGBFGGGGGGG

W−

Right Reservoir (4.32)

to describe the long-time behavior of transport in terms of two transition rates W+ and W−
characterizing the stochastic exchange of particles between the two reservoirs. We have seen in
Section 2.7 that the stochastic process described by this model can be analytically solved, with the
affinity be given by

A = ln W+

W−
= ln 2D + J

2D − J
, (4.33)

which serves here as the numerical estimate of the value of the affinity (4.29).
We now simulate the process of particle transport according to the method in Section 4.2. In

simulation, the counting statistics is performed and the values of mean current J and its diffusivity
D are thus obtained. The numerical results from simulation are presented in Figure 4.1, where the
of mean currents J as a function of affinity A is shown in panel (a), and comparison between the
numerically obtained affinity (4.33) according to the coarse-grained model (4.32) and the theoretical
affinities (4.29) obtained from graph analysis is drawn in panel (b). In both panels of Figure 4.1,
the results for different densities are presented also for comparison. From observation, we have
several findings which are summarized as follows:

• The mean current J is a linear function of the theoretical affinity (4.29) with the slope being
proportional to the particle density.

• The numerical affinity (4.33) is indeed a good approximation of the theoretical affinity (4.29)
for this transport system close to equilibrium.

• The numerical affinity (4.33) is generally larger than the theoretical affinity (4.29), especially
when this transport system is far from equilibrium.

• The lower the densities inside the conductive channel, the wider the range of numerical
affinity (4.33) being able to approximate the theoretical affinity (4.29).

In the following, we try explain what we observe in Figure 4.1. The transport system behaves
like a resistor where Ohm’s law can be established, and it is very natural that the current J
is proportional to the particle density under the same affinity (4.29). We consider that it is
nonlinearity of the transition rates (4.21)-(4.22) arising from long-range electrostatic interaction
between the charged particles that make the coarse-grained model limited in application. The
repulsive force between the electric charges induce correlations in motion between them which
directly leads to a smaller diffusivity D than expected. So, the numerical affinity (4.33) is larger
than the theoretical affinity (4.29), especially when the transport system is far from equilibrium. In
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the low-density limit where the cell volume Ω can be seen as very large, Eq. (4.23) is approximated
as

∆Ui,i+1 ≈ e(Φi+1 − Φi). (4.34)

Besides, Eq. (4.23) can also be expressed as

∆Ui,i+1 = e

2
(
Φi+1 − Φi + Φ′

i+1 − Φ′
i

)
, (4.35)

in terms of the electric potential difference across the ith and (i + 1)th cells before and after a
transition event. So, we find that in the low-density limit we have

Φi+1 − Φi ≈ Φ′
i+1 − Φ′

i, (4.36)

which means that the electric field tends to form a static background. The electric field in such
case can be approximated by the mean electric field determined by the two potentials of particle
reservoirs from the Poisson equation with no charge source. The electrostatic interaction between
the charges are thus diluted by the large volume, and the transition rates (4.21)-(4.22) tend to
have linear dependence on the local particle concentration.

According to the findings from Figure 4.1, it seems that an interesting inequality

D ≤ J
(

1
eA − 1

+ 1
2

)
(4.37)

can be established between the (theoretical/exact) affinity, the mean current, and its diffusivity.
This inequality gives the upper bound for the diffusivity when the values of the mean current
and affinity are known. This inequality may be supposed to hold in general. The equality sign
holds if and only if there is no interaction between the constituent particles of the system under
consideration, or asymptotically holds when the system tends to equilibrium.

From the observation of Figure 4.1, we can write down the following relations for the low-density
limit,

J = W+ −W− = κA, (4.38)

ln W+

W−
= A, (4.39)

where κ is a constant. From the above relations, we get the rate function

W (A) = κA

1− e−A
, (4.40)

with W+ associated with the rate W for positive A, and W− the rate W for negative A. In
Figure 4.2, we plot the rates determined as a function of the affinity A for the low-density case
in Figure 4.1, and fit them with Eq. (4.40) to get the value of constant κ. According to J =
W+ − W− = D(0)A, κ is physically interpreted as the diffusivity of particle current when the
transport system is in equilibrium.

4.6 Finite-Time Fluctuation Relation in the Low-Density
Limit

In the low-density limit, the fluctuating electric field is approximated as a static background field.
In this case, the energy difference associated with particle transitions between discretized cells are
given by

∆Ui,i+1 = e(Φi+1 − Φi) = −e(ΦL − ΦR)
L+ 1

, (4.41)

∆Ui+1,i = e(Φi − Φi+1) = +e(ΦL − ΦR)
L+ 1

, (4.42)
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Figure 4.1: Panel (a): The behaviors of mean current versus the theoretical affinity. Panel (b):
The comparison between numerical affinities (4.33) and theoretical affinities (4.29). It is set that
N̄L = N̄R = N−, and takes different values N in three cases, as shown in legends. The asterisks are
numerical points with dashed lines joining them. The dot dash line indicates the equality between
both kinds of affinities. The parameter values used in simulation are β = e = 1.0, D = ε = 0.01,
Ω = 10000, ∆x = 0.1, L = 10. The affinities are computed over time interval [0, 5000] with 20000
data.
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Figure 4.2: The transition rate W computed as a function of affinity A. The asterisks are numerical
points that are fit with the dashed line. The analytic expression and corresponding constant are
shown in the legend. The parameter values used in simulation are β = e = 1.0, D = ε = 0.01,
Ω = 10000, ∆x = 0.1, L = 10, N̄L = N̄R = N− = 100, which are the same as the case of lowest
density in Figure 4.1. The affinities are computed over time interval [0, 5000] with 20000 data.
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which can be uniformly expressed as

∆U (±) = ∓e(ΦL − ΦR)
L+ 1

. (4.43)

Correspondingly, ψ(∆U) is denoted as

ψ(±) = ψ(∆U (±)) = β∆U (±)

exp
(
β∆U (±)

)
− 1

. (4.44)

The transition rates are thus expressed as

W
(+)
i = D

∆x2ψ
(+)Ni = k+Ni, (4.45)

W
(−)
i = D

∆x2ψ
(−)Ni+1 = k−Ni+1, (4.46)

with the rate constants k+ and k− defined as obvious. The rates corresponding to the transitions
from the reservoirs to the system are

W
(+)
0 = k+N̄L, W

(−)
L = k−N̄R. (4.47)

Clearly, all these transition rates are determined locally, and as such the transport system in the
low-density limit is linear.

We consider the time evolution of the probability

P(Z,N1, · · · , NL, t) (4.48)

that the cells contain given particle numbers and that the signed cumulated number Z of particles
is transferred from the Ith to the (I + 1)th cells during time interval [0, t]. This probability is
ruled by the following master equation,

dP
dt

=k+N̄L
(
e−∂N1 − 1

)
P + k−

(
e+∂N1 − 1

)
N1P + k+

(
e+∂N1 e−∂N2 − 1

)
N1P

+
I−1∑
i=2

[
k−

(
e+∂Ni e−∂Ni−1 − 1

)
NiP + k+

(
e+∂Ni e−∂Ni+1 − 1

)
NiP

]
+ k−

(
e+∂NI e−∂NI−1 − 1

)
NIP + k+

(
e+∂NI e−∂NI+1 e−∂Z − 1

)
NIP

+ k−

(
e+∂NI+1 e−∂NI e+∂Z − 1

)
NI+1P + k+

(
e+∂NI+1 e−∂NI+2 − 1

)
NI+1P

+
L−1∑

i=I+2

[
k−

(
e+∂Ni e−∂Ni−1 − 1

)
NiP + k+

(
e+∂Ni e−∂Ni+1 − 1

)
NiP

]
+ k−N̄R

(
e−∂NL − 1

)
P + k−

(
e+∂NL e−∂NL−1 − 1

)
NLP + k+

(
e+∂NL − 1

)
NLP. (4.49)

Using the method of Ref. [87], this master equation is solved by introducing the moment generating
function

G(η, s1, · · · , sL, t) =
∑

Z,N1,··· ,NL

ηZ
∏

i

sNi
i P(Z,N1, · · · , NL, t). (4.50)

where

η = e−λ, (4.51)
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and λ is the counting parameter for the particle transfers Z. This moment generating function is
ruled by the following first-order partial differential equation,

∂tG+ [k−(s1 − 1) + k+(s1 − s2)] ∂s1G

+
I−1∑
i=2

[k−(si − si−1) + k+(si − si+1)] ∂siG

+ [k−(sI − sI−1) + k+(sI − ηsI+1)] ∂sI
G

+
[
k−(sI+1 − η−1sI) + k+(sI+1 − sI+2)

]
∂sI+1G

+
L−1∑

i=I+1
[k−(si − si−1) + k+(si − si+1)] ∂si

G

+ [k−(sL − sL−1) + k+(sL − 1)] ∂sL
G

=
[
k+N̄L(s1 − 1) + k−N̄R(sL − 1)

]
G, (4.52)

which, in vectoral notations, can be written in the following form,

∂tG+ (L · s + f) · ∂sG = (g · s + h)G (4.53)

where

L ≡



k− + k+ −k+
−k− k− + k+ −k+

. . . . . . . . .
−k− k− + k+ −ηk+

−η−1k− k− + k+ −k+
. . . . . . . . .

−k− k− + k+ −k+
−k− k− + k+


, (4.54)

s ≡


s1
s2
...

sL−1
sL

 , f ≡ −


k−
0
...
0
k+

 , g ≡


k+N̄L

0
...
0

k−N̄R

 , (4.55)

and

h ≡ −k+N̄L − k−N̄R. (4.56)

The parameter η in matrix L appears in the Ith and the (I + 1)th rows. From the matrix L, we
can define L0 by setting η = 1 and thus λ = 0. So, we have the relations

f = −L0 · 1, (4.57)
h = −g · 1, (4.58)

where 1 denotes the vector with all entries equal to one. Besides, the stationary values of particle
numbers are given by

Γ0 = L−1T
0 · g. (4.59)
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The first-order partial differential equation (4.53) can be solved by the method of characteristics.
The equations for the characteristics are given by

ds
dt

= L · s + f , (4.60)

dG
dt

= (g · s + h)G. (4.61)

The solution of Eq. (4.60) gives the characteristics

s = eLt ·
[
s0 + L−1 ·

(
I− e−Lt

)
· f
]

. (4.62)

Replacing in Eq. (4.61), we obtain after integration that

G = G0 exp
[
g · L−1 ·

(
I− e−Lt

)
·
(
s + L−1 · f

)
+
(
h− g · L−1 · f

)
t
]

, (4.63)

where I denotes the identity matrix. The initial condition being the Poisson distribution describing
the steady state and the counter reset to zero Z = 0, we have that

G0(η, s0) = eΓ0·(s0−1), (4.64)

which can be directly written down by generalizing Eq. (3.65). The solution of Eq. (4.53) is thus
given by

G(η, s, t) = exp
[
g · L−1 ·

(
I− e−Lt

)
·
(
s + L−1 · f

)
+
(
h− g · L−1 · f

)
t
]

× exp
{

Γ0 ·
[
e−Lt · s− L−1 ·

(
I− e−Lt

)
· f − 1

] }
. (4.65)

The finite-time cumulant generating function of the signed cumulated transfers of particles from
the Ith to the (I + 1)th cell is defined as

Q(λ, t) ≡ −1
t

ln
[
G(η = e−λ,1, t)

]
, (4.66)

so that we derive

Q(λ, t) = Q(λ,∞)− 1
t
Ξ(λ, t), (4.67)

where

Q(λ,∞) = g ·
(
1 + L−1 · f

)
(4.68)

and

Ξ(λ, t) = g ·
(
L−1 − L−1

0
)
·
(
I− e−Lt

)
·
(
1 + L−1 · f

)
. (4.69)

We observe that

L = M · L0 ·M−1, (4.70)

where

M = ηPL + PR (4.71)

with the projection matrices

PL =



1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


and PR =



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1


. (4.72)
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The identity matrix in PL is of dimension I×I, while the identity matrix in PR is (L−I)×(L−I).
Since the projection matrices satisfy the condition PL + PR = I, we thus have

M = I + (η − 1)PL, (4.73)
M−1 = I + (η−1 − 1)PL. (4.74)

From the above related expressions, the finite-time cumulant generating function (4.68) can be
written in the following form,

Q(λ, t) = g ·
[
I−M · L−1

0 ·M−1 · L0

− 1
t

(
M · L−1

0 − L−1
0 ·M

)
·
(
I− e−L0t

)
·
(
M−1 − L−1

0 ·M−1 · L0
) ]
· 1. (4.75)

Because of Eqs. (4.73)-(4.74), we find that

Q(λ, t) = g ·
[
(1− η)PL + (1− η−1)L−1

0 ·PL · L0 − (2− η − η−1)PL · L−1
0 ·PL · L0

+ 1
t

(
2− η − η−1) (L−1

0 ·PL −PL · L−1
0
)
·
(
I− e−L0t

)
·
(
PL − L−1

0 ·PL · L0
) ]
· 1.

(4.76)

Using Eq. (4.59) and PR = I−PL, the finite-time cumulant generating function becomes

Q(λ, t) = W̃+(t)
(
1− e−λ

)
+ W̃−(t)

(
1− e+λ

)
, (4.77)

with the time-dependent transition rates given by

W̃+(t) = Γ0 · L0 ·PL · L−1
0 ·PR · L0 · 1 + 1

t
Ψ(t), (4.78)

W̃−(t) = Γ0 · L0 ·PR · L−1
0 ·PL · L0 · 1 + 1

t
Ψ(t), (4.79)

with

Ψ(t) ≡ Γ0 ·
(
PL − L0 ·PL · L−1

0
)
·
(
I− e−L0t

)
·
(
PL − L−1

0 ·PL · L0
)
· 1. (4.80)

Invoking Eq. (4.66), we obtain the finite-time moment generating function as

G (η,1, t) =
+∞∑

Z=−∞
ηZP(Z, t) = exp

[
t(η − 1)W̃+(t) + t(η−1 − 1)W̃−(t)

]
, (4.81)

with the probability distribution

P(Z, t) ≡
∑

N1,··· ,NL

P(Z,N1, · · · , NL, t). (4.82)

Using Eqs. (2.38)-(2.40), we get

P(Z, t) = e−[W̃+(t)+W̃−(t)]t
[
W̃+(t)
W̃−(t)

]Z
2

IZ

(
2t
√
W̃+(t)W̃−(t)

)
, (4.83)

where IZ(u) is the modified Bessel function defined by Eq. (2.42). Since IZ(u) = I−Z(u), the
probability distribution (4.83) obeys the finite-time fluctuation relation

P(Z, t)
P(−Z, t)

= eÃ(t)Z , (4.84)
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Figure 4.3: Time-dependent transition rates W̃+(t), W̃−(t) and Ã(t) ≡ ln
[
W̃+(t)/W̃−(t)

]
versus

time t. The blue and green dashed lines are for the two time-dependent transition rates according
to Eqs. (4.78)-(4.79), while the red dashed one is for the corresponding time-dependent affinity. The
asterisks are obtained from simulation according to W̃+(t) = D̃(t) + J/2 and W̃−(t) = D̃(t)− J/2,
where D̃(t) is the time-dependent diffusivity. The parameter values used in simulation are β = e =
1.0, D = ε = 0.01, Ω = 10000, ∆x = 0.1, L = 10, N̄L = N̄R = N− = 100 and V = ΦL − ΦR = 1.0.
The time-dependent rates and affinity from simulation are computed with 20000 data. The counting
statistics is performed in the middle of the transport channel.

which holds at every time. Ã(t) is the finite-time affinity defined as

Ã(t) ≡ ln W̃+(t)
W̃−(t)

. (4.85)

Figure 4.3 shows how the time-dependent transition rates (4.78)-(4.79) and the corresponding
time-dependent affinity (4.85) change in time and converge to their asymptotic values. In this
figure, the results from numerical simulation are shown in comparison with the calculation from
Eqs. (4.78)-(4.79) and (4.85) in which the matrix exponential can be computed using Padé approx-
imation (see Appendix E)3, and we see striking quantitative agreement between them. In simula-
tion, the time-dependent transition rates are given by W̃+(t) = D̃(t)+J/2 and W̃−(t) = D̃(t)−J/2,
where D̃(t) is the diffusivity of current calculated from the statistics carried out over the finite-time
interval [0, t]. In the long-time limit, P(Z, t) goes to Eq. (2.41), which is the solution corresponding
to the coarse-grained model (4.32), and, considering the positivity of L0,

W+ = lim
t→∞

W̃+(t) = Γ0 · L0 ·PL · L−1
0 ·PR · L0 · 1, (4.86)

W− = lim
t→∞

W̃−(t) = Γ0 · L0 ·PR · L−1
0 ·PL · L0 · 1, (4.87)

are interpreted as the global transition rates between the two particle reservoirs. The asymptotic
fluctuation relation

P(Z, t)
P(−Z, t)

≃t→∞ exp (AZ) (4.88)

is recovered in the long-time limit, with the affinity given by

A = lim
t→∞

Ã(t) = ln W+

W−
. (4.89)

According to Eqs. (4.78)-(4.80), the asymptotic fluctuation relation (4.88) is slowly approached in
time with corrections going as t−1. The above analysis shows that the coarse-grained model with
constant rates (3.1) is exactly valid in describing the long-time behavior of the transport in the
low-density limit. The global transition rates (4.86)-(4.87) can be developed as

W+ = k2
+N̄L

(
L−1

0
)

1L
and W− = k2

−N̄R
(
L−1

0
)

L1 . (4.90)
3The Python package Scipy provides the function linalg.inv for computing the inverse of a matrix.

https://www.scipy.org/
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Figure 4.4: The time-dependent components O1(t) and O2(t) given by Eqs. (4.95)-(4.96) versus
time t. We set N̄L = N̄R = N− = 100, and k± are calculated with the parameter values β = e = 1.0,
D = ε = 0.01, ∆x = 0.1, V = ΦL − ΦR = 1.0. Red lines are for the case of short channel with
L = 10 cells, while the blue ones are for the case of long channel with L = 30 cells. The counting
is performed in the middle of the transport channel.
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Figure 4.5: The quantity χ given in Eq. (4.105) as a function of affinity A = βe(ΦL − ΦR).

Inverting the matrix L0, we get

(
L−1

0
)

ij
=


kj−i

+ (ki
+−ki

−)(kL+1−j
+ −kL+1−j

− )
(k+−k−)(kL+1

+ −kL+1
− ) if i ≤ j,

ki−j
− (kj

+−kj
−)(kL+1−i

+ −kL+1−i
− )

(k+−k−)(kL+1
+ −kL+1

− ) if i > j.
(4.91)

So, the two global transition rates are calculated as

W+ = N̄L
kL+1

+ (k+ − k−)
kL+1

+ − kL+1
−

= DN̄L

∆x2(L+ 1)
βe(ΦL − ΦR)

1− exp [−βe(ΦL − ΦR)]
, (4.92)

W− = N̄R
kL+1

− (k+ − k−)
kL+1

+ − kL+1
−

= DN̄R

∆x2(L+ 1)
βe(ΦR − ΦL)

1− exp [−βe(ΦR − ΦL)]
, (4.93)

which are in accord with the rate function (4.40) when N̄L = N̄R, and thus the constant κ in
Eq. (4.40) has the expression

κ = DN̄L

∆x2(L+ 1)
= DN̄R

∆x2(L+ 1)
. (4.94)

With the parameter values used in Figure 4.2, a simple calculation gives κ ≈ 9.091, roughly equal
to that obtained through fitting the data from simulation.

We now turn to study the convergence rate of time-dependent transition rates. For this pur-
pose, we split the time-dependent part Ψ(t)/t of the transition rates (4.78) and (4.79) into two
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components

O1(t) = 1
t

[
Γ0 ·

(
PL − L0 ·PL · L−1

0
)
·
(
PL − L−1

0 ·PL · L0
)
· 1
]
, (4.95)

O2(t) = −1
t

[
Γ0 ·

(
PL − L0 ·PL · L−1

0
)
· e−L0t ·

(
PL − L−1

0 ·PL · L0
)
· 1
]
. (4.96)

Because O2(t) is damped by the additional exponential factor, it is quite reasonable to expect
that O1(t) is the dominant one in Ψ(t)/t. In Figure 4.4, we show O1(t) and O2(t) from numerical
calculation, and find that O2(t) indeed decays faster. We also show the situations with different
lengths of transport channel in Figure 4.4. The comparison clearly tells us that the longer the
channel is, the slower the convergence of the time-dependent rates, as expected. We now write
O1(t) with four explicit terms,

O1(t) = 1
t

[
Γ0 ·PL · 1− Γ0 ·PL · L−1

0 ·PL · L0 · 1

− Γ0 · L0 ·PL · L−1
0 ·PL · 1 + Γ0 · L0 ·PL · L−1

0 · L
−1
0 ·PL · L0 · 1

]
. (4.97)

In order to simplify the calculation, we take the projection matrix PL as

PL =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , (4.98)

with I = 1, which indicates that we perform counting statistics in between the first and second
cells of discretized channel. So, O1(t) is developed as

O1(t) = N̄

t

{
1− (k− + k+)

(
L−1

0
)

11 + k−k+
(
L−1

0 · L
−1
0
)

11

}

= N̄

t

{
1−

(k+ + k−)(kL
+ − kL

−)
kL+1

+ − kL+1
−

+ k−k+(
kL+1

+ − kL+1
−

)2

L∑
i=1

[
ki−1

+ ki−1
−
(
kL+1−i

+ − kL+1−i
−

)2
]}

.

(4.99)

Setting

x = k+

k−
, (4.100)

we have

O1(t) = N̄

t

{
1− (x+ 1)(xL − 1)

xL+1 − 1
+ 1

(xL+1 − 1)2

[
−2LxL+1 + x2L+2

L∑
i=1

x−i +
L∑

i=1
xi

]}

= n−Σl
Lt

{
1− (x+ 1)(xL − 1)

xL+1 − 1
+ 1

(xL+1 − 1)2

[
−2LxL+1 + (xL+2 + x)(xL − 1)

x− 1

]}
,

(4.101)

where we have made use of

N̄ = n−Σ∆x = n−Σl
L

. (4.102)
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The variable x defined by Eq. (4.100) is explicitly calculated as

x = exp
[
βe (ΦL − ΦR)

L+ 1

]
. (4.103)

In the continuum limit where L→∞ with the total length of l fixed, we have

O1(t) = n−Σl
t

χ(A), (4.104)

where χ(A) is a function of affinity A = βe (ΦL − ΦR), and given by

χ(A) = eA + 1
A (eA − 1)

− 2eA

(eA − 1)2 . (4.105)

It is noted that χ(A) has the symmetry property,

χ(A) = χ(−A), (4.106)

with the limit towards the origin given by

lim
A→0

χ(A) = 1
3

. (4.107)

The symmetry of Eq. (4.104) with respect to A is expected from the homogeneous configuration of
the transport channel in space. Figure 4.5 plots the χ as a function of A, and the symmetry (4.106)
is clearly seen. In addition, Eq. (4.104) gives time scales, ts ≡ n−Σl, for the asymptotic symme-
try (4.88) to be approached in time with the correction going as t−1. It indicates that the smaller
the transport channel is, the faster the asymptotic symmetry (4.88) is reached.

The analysis in this section fully demonstrated that a Markov jump process with linear rates
can be invoked to describe the transport of charged particles driven by external field in the low-
density limit. Moreover, the finite-time fluctuation theorem can be established in this case with
the defined time-dependent affinities converging in time to their asymptotic values with corrections
going as 1/t.



Chapter 5

Charge Transport in p-n Junction Diodes

Diodes are the basic semiconductor devices consisting of a single p-n junction1. In modern elec-
tronic applications, p-n junctions play a fundamental role and, therefore, receive considerable
attention. As shown by Shockley, the electric potential barrier generated at the junction induces
the highly nonlinear and asymmetric current-voltage characteristics that are used in rectifiers and
switching circuits2[88, 89, 90, 91, 92, 93, 94, 95, 96].

In electric systems, fluctuation theorems for nonequilibrium work and heat have been theoret-
ically and experimentally investigated in linear RC circuits [97, 98, 99], leaving open the study
of current fluctuations in nonlinear electronic devices. This is motivating the need to develop a
stochastic approach and to establish the fluctuation theorem for charge transport in diodes, con-
sistently with the laws of electricity, thermodynamics, and microreversibility. Stochastic models
have already been proposed for the random number of charges crossing a diode [100, 101].

In this chapter, a spatially extended stochastic description of the p-n junction diode is devel-
oped. Since there exists two mobile charge carriers inside diodes: negative-charged electrons and
positive-charged holes, while electron-hole pairs are randomly generated and recombined, this ap-
proach is an extension of the stochastic approach presented in Chapter 4 to additionally account for
two species and the reaction between them. As such, this approach is based on diffusion-reaction
stochastic partial differential equations for electrons and holes, including their Coulomb interac-
tion described by the Poisson equation. In this framework, the fluctuation theorem is numerically
shown to hold for both the charge carrier current and the measured total current including the
contribution of the displacement current [102, 62]. Moreover, the functionality of diodes under
ideal conditions is numerically realized.

5.1 p-n Junction Diodes
A p-n junction is formed when a p-type semiconductor and an n-type semiconductor are in contact,
as shown in Figure 5.1. Inside p-type semiconductors, the doped impurities accept electrons, leaving
the so-called negative-charged acceptors, and as such the majority charge carriers are holes and
the minority charge carriers are electrons. Inside n-type semiconductors, the doped impurities are
called donors which are positive-charged due to their donation of electrons, and therefore there are
more electrons than holes. We can consider the p-n junction as a three-dimensional rod of length l
with its coordinate x extending from −l/2 to +l/2, and of section area Σ in the transverse y- and
z-directions. The position is denoted by r = (x, y, z). For simplicity, the acceptor density a(r) and
the donor density d(r) are taken to be uniform respectively in the p- and n-sides and there is an
abrupt change at the junction. They can thus be expressed as

a(r) = a θ(−x), d(r) = d θ(x), (5.1)
1If the p- and n-type regions are made out of the same semiconductor material, the junction is a homojunction.
2Some diodes can emit light (light-emitting diodes), and others can emit laser light (laser diodes).



44 Chapter 5. Charge Transport in p-n Junction Diodes

(a)

Figure 5.1: Schematic representation of diode (left) and p-n junction (right). In the p-n junction,
the black dots represent electrons and the white ones represent holes.

where θ(x) is Heaviside’s step function, which is defined such that θ(x) = 0 if x < 0 and θ(x) = 1
if x > 0. For simplicity, we set a = d. The charge density is given by

ρ(r) = e [p(r)− n(r) + d(r)− a(r)] (5.2)

in terms of the elementary electric charge e = |e|, the hole density p(r), the electron density n(r),
the donor density d(r), and the acceptor density a(r). Here, we have assumed that every donor
gives one electron and every acceptor one hole. The charge density determines the electric po-
tential Φ by Gauss’s law and the Poisson equation [85, 84]. According to electroneutrality, the
inhomogeneity (5.1) of the acceptor and donor densities is thus responsible for the global asymmet-
ric distribution of mobile electrons and holes across the junction, leading to current rectification
by the diode. In p-n junctions, electrons and holes undergo the diffusion process due to the their
inhomogeneous distribution and drift process under the electric field. Moreover, electrons and
holes are generated and recombined by the reaction

∅
k+

GGGGGGBFGGGGGG

k−

e− + h−, (5.3)

where k+ and k− are respectively the electron-hole pair generation and recombination rate con-
stants.

If the semiconductor is in equilibrium, then the electron and hole densities obey the condition

neqpeq = ν2, where ν =

√
k+

k−
(5.4)

is the intrinsic carrier density. In equilibrium, the electron and hole densities are, moreover, related
to the electric potential by

neq(r) ∼ e+βeΦeq(r) and peq(r) ∼ e−βeΦeq(r). (5.5)

The diode is in contact on its left- and right-hand sides with reservoirs at different potentials and
densities for electrons and holes:

Φ(x = −l/2) = ΦL, n(x = −l/2) = nL, p(x = −l/2) = pL, (5.6)
Φ(x = +l/2) = ΦR, n(x = +l/2) = nR, p(x = +l/2) = pR. (5.7)

For simplicity, we set nL = pR and pL = nR. Furthermore, we consider the boundary conditions

pL = nL + a, nR = pR + d, (5.8)

so that the whole p-n junction is symmetric under inversion and permutation between electrons
and holes, as depicted in Figure 5.1(b). The p-n junction diode is thus characterized by the ratio
of majority to minority carrier concentrations,

cmajor

cminor
≡ pL

nL
= nR

pR
. (5.9)
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Figure 5.2: Energy-band diagram of p-n junction that is forward biased. Between pp′ and nn′

is the space charge region that is also referred to as the depletion region. The electric field is
concentrated in this region in which all electrons and holes are swept out. Ec, Ev are the edges of
conduction band and valence band, respectively. EFn, EFp are the quasi-Fermi levels for elections
respectively in the two regions. If we assume that no voltage is applied across the p-n junction,
then the junction is in equilibrium, and the Fermi energy level is constant throughout the entire
system, EFp = EFn = EF.

If the diode is in equilibrium, Eq. (5.5) holds and the potential difference is related to the densities
at the reservoirs according to the Nernst potential

(ΦL − ΦR)eq = 1
βe

ln nL

nR
= 1
βe

ln pR

pL
. (5.10)

The diode is driven out of equilibrium if the applied voltage with respect to the Nernst potential,

V = ΦL − ΦR −
1
βe

ln nL

nR
= ΦL − ΦR + 1

βe
ln pL

pR
, (5.11)

is non vanishing. As a consequence, there is an electric current flowing in the diode. The equilib-
rium state is recovered if the applied voltage is zero, V = 0. In this case, the diffusion force and
electric force exactly balance each other. If V > 0 the junction is said to be forward biased, and
if V < 0 it is reverse biased. Figure 5.2 shows the energy-band diagram of the forward biased p-n
junction. According to energy band theory, the applied voltage makes the Fermi level of electrons
unbalanced across the p-n junction, and as a consequence the current is induced.

5.1.1 Stochastic Diffusion-Reaction Equations
The thermal agitation inside the p-n junction generates incessant erratic movements for electrons
and holes, in turn causing local fluctuations in the currents and reaction rates. These fluctuations
can be described within the stochastic approach by introducing Gaussian white noise fields in the
diffusion-reaction equations for the electron and hole densities. The advantage of this approach is
that the usual phenomenological parameters suffice for the stochastic description. The mobilities
of electrons and holes are related to their diffusion coefficients through Einstein’s relations:

µn = βDn and µp = βDp. (5.12)

In general, the parameters Dn, Dp, and k± are spatially dependent in an inhomogeneous medium.
However, for simplicity, we assume that they are uniform across the whole p-n junction.
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The balance equations for electrons and holes of respective densities n and p can be expressed
as

∂tn+ ∇ · jn = σn, (5.13)
∂tp+ ∇ · jp = σp, (5.14)

with the current densities

jn = −µnneE −Dn∇n+ δjn, (5.15)
jp = +µppeE −Dp∇p+ δjp, (5.16)

and equal reaction rate densities

σn = σp = k+ − k−np+ δσ (5.17)

since the same reactive events determine both of them. The electric field is expressed as

E = −∇Φ (5.18)

in terms of the electric potential satisfying the Poisson equation

∇2Φ = −ρ
ε

, (5.19)

where ε is the permittivity and the electric charge density is given by Eq. (5.2).
The Gaussian white noises δjn, δjp, and δσ are characterized by

⟨δjn(r, t)⟩ = ⟨δjp(r, t)⟩ = 0, (5.20)
⟨δjn(r, t)⊗ δjn(r′, t′)⟩ = Γnn(r, t)δ3(r− r′)δ(t− t′)I, (5.21)
⟨δjp(r, t)⊗ δjp(r′, t′)⟩ = Γpp(r, t)δ3(r− r′)δ(t− t′)I, (5.22)
⟨δjn(r, t)⊗ δjp(r′, t′)⟩ = 0, (5.23)
⟨δσ(r, t)⟩ = 0, (5.24)
⟨δσ(r, t) δσ(r′, t′)⟩ = Γσσ(r, t)δ3(r− r′)δ(t− t′), (5.25)
⟨δσ(r, t)δjn(r′, t′)⟩ = ⟨δσ(r, t)δjp(r′, t′)⟩ = 0, (5.26)

where I is the 3× 3 identity matrix and

Γnn(r, t) ≡ 2Dnn(r, t), (5.27)
Γpp(r, t) ≡ 2Dpp(r, t), (5.28)
Γσσ(r, t) ≡ k+ + k−n(r, t)p(r, t), (5.29)

are the spectral densities of the noises respectively associated with the electron diffusion, hole
diffusion, and reaction.

We notice that the current densities can be equivalently written as

jn = −DneβeΦ∇
(
e−βeΦn

)
+ δjn, (5.30)

jp = −Dpe−βeΦ∇
(
eβeΦp

)
+ δjp. (5.31)

5.1.2 Mean-Field Equations Under Stationary Conditions
By averaging the balance equations (5.13)-(5.14) and the expressions (5.15)-(5.16) over the noises
using Eqs. (5.20) and (5.24), we can obtain mean-field equations for the stationary mean profiles of
the densities and current densities in the x-direction. Together with Gauss’s law and the Poisson



Chapter 5. Charge Transport in p-n Junction Diodes 47

equation for the electric field and potential, these mean-field equations are given by the following
coupled ordinary differential equations (ODEs):

dn(x)
dx

= −jn(x)
Dn

− βen(x)E(x), (5.32)

dp(x)
dx

= −jp(x)
Dp

+ βep(x)E(x), (5.33)

djn(x)
dx

= k+ − k−n(x)p(x), (5.34)

djp(x)
dx

= k+ − k−n(x)p(x), (5.35)

dE(x)
dx

= e

ε
[p(x)− n(x) + d(x)− a(x)] , (5.36)

dΦ(x)
dx

= −E(x), (5.37)

with the aforementioned boundary conditions (5.6)-(5.7). The discontinuity of a(x) and d(x) at the
junction makes it hard for numerical integration, so we use the following continuous alternatives
as approximations,

a(x) = a

1 + exp(x/δ)
, d(x) = d

1 + exp(−x/δ)
, (5.38)

with the width δ being sufficiently small, say, δ = 0.01 that is actually adopted. The electric field
remains uniform in contact with the reservoirs according to Eq. (5.36) with the conditions (5.8). In
addition, the current densities also remain uniform at the reservoirs by Eqs. (5.34)-(5.35). So, only
the potential difference between the ends of the diode is responsible for inducing particle currents.
We notice that the first four ODEs are nonlinear. In this set of ODEs, the net current density

j = jp(x)− jn(x) (5.39)

is a constant of integration, as a consequence of electric charge conservation. Moreover, the electric
potential does not appear before the last equation, which is thus decoupled from the other ones.
Accordingly, the set can be reduced to four ODEs for n(x), p(x), jn(x), and E(x).

5.2 Numerical Simulation Method
For the numerical simulation of the p-n junction diode, the system is spatially discretized into cells,
each containing some numbers of electrons and holes, respectively, and a Markov jump process in a
accord with the stochastic partial differential equations (5.13)-(5.19) is associated to fully describe
the stochastic evolution of electron and hole distributions.

5.2.1 Discretizing the p-n Junction Diode in Space
The p-n junction is spatially discretized into L cells of length ∆x = l/L, section area Σ, and
volume Ω = Σ∆x. These cells are labelled with index i = 1, 2, · · · , L. The indices i = 0 and
i = L + 1 are respectively used to refer to the left and right reservoirs, which impose certain
boundary conditions on the p-n junction. The numbers of electrons and holes in each cell are
respectively given by Ni = n(xi)Ω, Pi = p(xi)Ω, with xi = (i − 0.5)∆x − l/2 (i = 1, 2, · · · , L).
The numbers of electrons and holes in the reservoirs are maintained constant in time, and given
by N0 ≡ N̄L = nLΩ, NL+1 ≡ N̄R = nRΩ, P0 ≡ P̄L = pLΩ, and PL+1 ≡ P̄R = pRΩ. According to
the boundary conditions (5.8), the number of acceptors in each cell of the p-type semiconductor
is given by A = aΩ = P̄L − N̄L, and the number of donors in each cell of n-type semiconductor
by D = dΩ = N̄R − P̄R. The electron and hole numbers in the cells change every time a particle
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Table 5.1: The values of quantities for the physics of semiconductors.

permittivity ε = 0.01
inverse temperature β = 1.0
elementary charge e = |e| = 1.0

diffusion coefficient for electrons Dn = 0.01
diffusion coefficient for holes Dp = 0.01

electron-hole pairs generation rate constant k+ = 0.01
electron-hole pairs recombination rate constant k− = 0.01

Table 5.2: The values of parameters for specifying the discretized p-n junction diode.

Meaning Set I Set II
number of cells in left region 20 20

number of cells in right region 20 20
width of each cell ∆x 0.1 0.1
volume of each cell Ω 800 8× 105

section area Σ = Ω/∆x 8000 8× 106

number of electrons in left-reservoir cell 400 400
number of holes in left-reservoir cell 1600 1.6× 109

number of electrons in right-reservoir cell 1600 1.6× 109

number of holes in right-reservoir cell 400 400

jumps between two neighboring cells, between a reservoir and the neighboring cell, or if a reactive
event occurs generating or recombining an electron-hole pair. The Poisson equation is replaced by
its discretized version

Φi+1 − 2Φi + Φi−1

∆x2 = − e

εΩ
(Pi −Ni +Di −Ai) (5.40)

with the boundary conditions Φ0 = ΦL and ΦL+1 = ΦR. This linear system should be solved
every time a particle transition occurs. Table 5.1 lists the values of physical quantities adopted in
numerical simulation. In Table 5.2, two sets of parameter values for specifying the discretized p-n
junction diode are listed for different purposes discussed here below. These parameter variables
can be rescaled into dimensionless ones with the procedure presented in Appendix D.

5.2.2 Master Equation
The system state is specified by the electron numbers N = {Ni}L

i=1 and the hole numbers P =
{Pi}L

i=1 in the cells and they evolve in time according to the network
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The probability P(N,P, t) that the cells contain the particle numbers N = {Ni}L
i=1 and P =

{Pi}L
i=1 for time t is ruled by the master equation

dP
dt

=
L∑

i=0

[(
e+∂Ni e−∂Ni+1 − 1

)
W

(+N)
i P +

(
e−∂Ni e+∂Ni+1 − 1

)
W

(−N)
i P

+
(

e+∂Pi e−∂Pi+1 − 1
)
W

(+P )
i P +

(
e−∂Pi e+∂Pi+1 − 1

)
W

(−P )
i P

]

+
L∑

i=1

[(
e−∂Ni e−∂Pi − 1

)
W

(+)
i P +

(
e+∂Ni e+∂Pi − 1

)
W

(−)
i P

]
. (5.41)

with the transition rates

W
(+N)
i = Dn

∆x2ψ(∆U (N)
i,i+1)Ni, (5.42)

W
(−N)
i = Dn

∆x2ψ(∆U (N)
i+1,i)Ni+1, (5.43)

W
(+P )
i = Dp

∆x2ψ(∆U (P )
i,i+1)Pi, (5.44)

W
(−P )
i = Dp

∆x2ψ(∆U (P )
i+1,i)Pi+1, (5.45)

W
(+)
i = Ωk+, (5.46)

W
(−)
i = Ωk−

Ni

Ω
Pi

Ω
, (5.47)

where ∆Ui,i+1 is the intrinsic energy change in the whole p-n junction diode associated with the
transition of one particle from the ith to (i+1)th cell. According to the calculation in Appendix A,
we find that

∆U (N)
i,i+1 = −e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
, (5.48)

∆U (P )
i,i+1 = +e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
. (5.49)

We notice that, for transitions at the boundaries, these expressions hold by taking the values of
the potentials in the reservoirs, Φ0 = ΦL and ΦL+1 = ΦR. The function ψ(∆U) is defined by
Eq. (4.24). At the ends of the chain, we have that exp(±∂X) = 1 for X = N0, P0, NL+1, and PL+1
in the master equation (5.41).

For numerical purpose, the Markovian stochastic process ruled by Eq. (5.41) is approximated
by its corresponding Langevin stochastic process (see Appendix B for the detailed procedure).
After the system has relaxed to its stationary state in simulation, every mean quantity in some
cell can be estimated by the time average

⟨X⟩ = lim
T →∞

1
T

∫ T

0
X(t)dt, (5.50)

with X = Ni, Pi, Φi, or the fluxes F (P )
i , F (N)

i . By ergodicity, this is equivalent to the ensemble
average ⟨X⟩ =

∑
N,P X(t)Pst(N,P) over the stationary probability distribution Pst. Due to the

electron-hole pair generation and recombination, the mean fluxes ⟨F (P )
i ⟩ and ⟨F (N)

i ⟩ vary with the
position xi. However, by charge conservation, their difference ⟨F (P )

i ⟩ − ⟨F (N)
i ⟩ is independent of

the position in the junction, which defines the mean net current in the diode. In the continuum
limit where ∆x→ 0 and ∆t→ 0, the densities of electrons and holes obeying Eqs. (5.13)-(5.29) are
recovered through n(xi, t) = Ni(t)/Ω and p(xi, t) = Pi(t)/Ω. We can also recover the stochastic
partial differential equations (5.13)-(5.14) with the current and rate densities (5.15)-(5.17) from
the Langevin stochastic equations (B.12)-(B.16) (see Appendix C).



50 Chapter 5. Charge Transport in p-n Junction Diodes

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5
de

ns
ity

V= −1

(a)

n
p

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

-2.6
-2.2
-1.8
-1.4
-1.0
-0.6
-0.2
0.2
0.6

Φ

V= −1

(b)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

de
ns

ity

V=0

(c)

n
p

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

-2.6
-2.2
-1.8
-1.4
-1.0
-0.6
-0.2
0.2
0.6

Φ

V=0

(d)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

de
ns

ity

V=1

(e)

n
p

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
x

-2.6
-2.2
-1.8
-1.4
-1.0
-0.6
-0.2
0.2
0.6

Φ

V=1

(f)

Figure 5.3: The junction for different values of the applied voltage V . Top panels (a), (c), (e):
the profiles of the electron density n (blue dashed lines) and hole density p (green dashed lines).
Bottom panels (b), (d), (f): the corresponding profiles of the mean electric potential. The lines
depict the profiles obtained by solving the ODEs and the asterisks by simulating the stochastic
process. The values of physical quantities and parameters listed in Table 5.1 and the Set I in
Table 5.2 are used. The statistics in simulation is carried out over 4× 105 iterates.

5.3 Density Profiles of Charge Carriers and Potential
Here, we study the effect of the different boundary conditions on the densities and electric potential
across the p-n junction, in order to explore the properties of the junction. In the following, the
results of the numerical simulations are compared with the solutions of the ODEs (5.32)-(5.37)
giving the mean fields.

Figure 5.3 shows the profiles for different values of the applied voltage V . Now, the profiles
are deformed by the nonequilibrium constraint of the applied voltage V . The slope of the electric
potential gives the electric field by Eq. (5.37), which is nonvanishing under the nonequilibrium
voltages V = ±1. In the panels (a) and (e) of Figure 5.3, the density profiles are also deformed
in their approach towards uniform profiles away from the junction. As expected [90, 91], there is
an excess of holes on the p-type side of the junction under a positive voltage with respect to the
situation in equilibrium. Again, there is a good agreement between the results of the simulation
and the mean-field profiles, which brings a strong support to the validity of the stochastic approach.

5.4 The Current and Counting Statistics
Here, we consider the fluctuations of the electric current in the middle of the junction at the
location x = 0. This current is composed of electrons and holes moving in either directions and
crossing the section area Σ at x = 0 for random times tn. Accordingly, this instantaneous current
can be defined as

I(t) =
+∞∑

n=−∞
qnδ(t− tn) (5.51)

with qn = ±e depending on whether the carrier is positive- or negative-charged and moves towards
x > 0 or x < 0. We also define the instantaneous total electric current including the contribution
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of displacement current as

I ′(t) = I(t)− ε∂t∂xΦΣ, (5.52)

which are the experimentally measured electric currents [62, 102, 103, 104].
In the framework of the Langevin stochastic process (see Appendix B), the net charge current

at the location x = 0 is approximately given by

I(t) = e

∫
dΣ · (jp − jn) ≈ e

(
F

(P )
L/2 − F

(N)
L/2

)
, (5.53)

in terms of the fluxes (B.14)-(B.15). The current that is experimentally measured is the total
current, which includes the contribution from the displacement current. After spatial discretization
and surface integration over the section area Σ = Ω/∆x, this contribution becomes

Σε∂tEx,i ≈ −
eεΣ
∆x

L∑
j=0

[(
C−1)

i+1,j+1 −
(
C−1)

i+1,j
−
(
C−1)

i,j+1 +
(
C−1)

i,j

] (
F

(P )
j − F (N)

j

)
,

(5.54)

where the matrix C is related to the discretized Poisson equation (5.40) with the explicit form
given by Eq. (A.2), and(

C−1)
i+1,j+1 −

(
C−1)

i+1,j
−
(
C−1)

i,j+1 +
(
C−1)

i,j
= L∆x2

(L+ 1)εΩ
δij −

∆x2

(L+ 1)εΩ
(1− δij). (5.55)

Therefore, the discretized form of the total charge current is given by

I ′(t) =
∫

dΣ · [e (jp − jn) + ε∂tE] ≈ e

L+ 1

L∑
j=0

(
F

(P )
j − F (N)

j

)
, (5.56)

which is independent of the location.
The corresponding random numbers of charges accumulated over the time interval [0, t] are

defined as

Z(t) = 1
e

∫ t

0
I(t′)dt′, (5.57)

Z ′(t) = 1
e

∫ t

0
I ′(t′)dt′. (5.58)

Through numerous repeated measurements in simulation, we get the counting statistics of Z(t),
and thus P(Z, t) can be numerically constructed. Similarly, P(Z ′, t) can be numerically constructed
from the counting statistics of Z ′(t). The mean charge current J is given by

J ≡ lim
t→∞

1
t
⟨Z(t)⟩ = lim

t→∞

1
t
⟨Z ′(t)⟩, (5.59)

and the corresponding mean electric current by I = |e|J . The equality between the mean values
without and with the displacement current comes from the fact that the displacement current are
given by a time derivative. The time-dependent diffusivities are given as

D̃(t) ≡ 1
2t
⟨[Z(t)− Jt] [Z(t)− Jt]⟩, (5.60)

D̃′(t) ≡ 1
2t
⟨[Z ′(t)− Jt] [Z ′(t)− Jt]⟩. (5.61)

In the long-time limit, we obtain the asymptotic diffusivity,

D = lim
t→∞

D̃(t) = lim
t→∞

D̃′(t), (5.62)

which also take the same value whether the displacement current is included or not.



52 Chapter 5. Charge Transport in p-n Junction Diodes

-120 -80 -40 0 40 80 120
Z

0

0.2

0.4

0.6

0.8

1.0

1.2


(a) (Z)
(−Z)

-40 -20 0 20 40
Z

-6

-4

-2

0

2

4

6

ln
[
(Z
)/

(−
Z)
]

(b)
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Figure 5.4: Full-counting statistics of the carrier electric current through the section area at the
middle of the junction: (a) The probability distributions P(±Z) for time t = 0.5 versus the charge
number Z with peak value normalized to one. The statistics is carried out over 106 random
trajectories. (b) ln[P(Z)/P(−Z)] versus Z showing the linearity with the slope Ã(t = 0.5) ≈ 0.08
for time t = 0.5. (c)-(d)-(e) Histograms P(Z) of the carrier charge distributions for relatively long
time t = 100 and different values of the applied voltage (c) V = −1, (d) V = 0, and (e) V = 1.
The histograms are obtained with 5×104 data and they are fitted to Gaussian distributions (2.47).
(f) The affinities computed with these fitted Gaussian distributions according to Eq. (5.67) versus
the applied voltage V , checking the linear dependence A ≃ V with a unit slope up to numerical
accuracy (dashed line) for relatively long time t = 100. The values of physical quantities and
parameters listed in Table 5.1 and the Set I in Table 5.2 are used.

5.5 Fluctuation Theorem for the Current
By extending the method of Section 2.7, the current of such a Markov jump process obey a
fluctuation theorem. For the current (5.51), the fluctuation theorem can be expressed as

P(Z, t)
P(−Z, t)

≃t→∞ exp(AZ), (5.63)

in terms of the probability P(Z, t) that the number (5.57) of charges crossing the section area Σ
during the time interval [0, t]. With the same analysis as in Section 4.3, the macroscopic affinity
is given by

A = ln
[
pL

pR
eβe(ΦL−ΦR)

]
= βeV (5.64)

in terms of the applied voltage, as expected. In equilibrium, A = 0, we recover the detailed balance
condition, according to which the probabilities of opposite fluctuations are equal. If the logarithm
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Figure 5.5: Full-counting statistics of the total electric current including the contribution of the
displacement current: (a) The probability distributions P(±Z ′) for time t = 0.05 versus the
charge number Z ′ with peak value normalized to one. The statistics is carried out over 106

random trajectories. (b) ln[P(Z ′)/P(−Z ′)] versus Z ′ showing the linearity with the slope Ã′(t =
0.05) ≈ 0.83. (c)-(d)-(e) Histograms P(Z ′) of the total charge distributions for relatively long time
t = 0.1 and different values of the applied voltage (c) V = −1, (d) V = 0, and (e) V = 1. The
histograms are obtained with 5 × 104 data and they are fitted to Gaussian distributions (2.47).
(f) The affinities computed with these fitted Gaussian distributions according to Eq. (5.67) versus
the applied voltage V , checking the linear dependence A′ ≃ V with a unit slope up to numerical
accuracy (dashed line) for relatively long time t = 0.1. The values of physical quantities and
parameters listed in Table 5.1 and the Set I in Table 5.2 are used.

of the ratio of the probabilities P(±Z, t) is linear in the random variable Z, we may consider the
time-dependent affinity

Ã(t) ≡ 1
Z

ln P(Z, t)
P(−Z, t)

(5.65)

for the given time t. The prediction of the fluctuation theorem is that its asymptotic value should
be equal to the macroscopic affinity given by the applied voltage,

lim
t→∞

Ã(t) = A = βeV . (5.66)

In order to test numerically the prediction of the fluctuation theorem, we consider the full
counting statistics of the random variable (5.57) as simulated by the Langevin stochastic differential
equations (B.12)-(B.19). These quantities are shown in Figure 5.4(a)(b) for the short time t = 0.5.
In this case, the probability distributions P(±Z, t) have a strong overlap so that the time-dependent
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affinity (5.65) can be directly evaluated to be Ã(t = 0.5) ≈ 0.08, which is much smaller than the
asymptotic value giving the macroscopic affinity A = Ã(∞) = βeV = 1.

In order to reach the macroscopic affinity, the time interval is increased. However, the overlap
between the probability distributions P(±Z, t) soon becomes very narrow as time increases if
V ̸= 0. Indeed, P(±Z, t) are distributed around their mean value ±⟨Z⟩, which increases linearly
with time at a rate equal to the mean current. As seen in Figure 5.4(c) for time t = 100 and
voltage V = −1, the distribution P(Z, t = 100) is centered around ⟨Z⟩ ≈ −4017 so that its overlap
is tiny with the opposite distribution P(−Z, t = 100), which is centered around ⟨Z⟩ ≈ +4017. A
similar feature holds for the distribution of Figure 5.4(e) at time t = 100 and voltage V = 1, which
has the mean value ⟨Z⟩ ≈ +4366. Therefore, the method based on coarse-grained model is used
here to evaluate the affinity in such circumstances. In the same way as in Section 4.5, the global
transition rate W+ is introduced for charge transfers from the left reservoir to the right reservoir in
the long-time limit, and W− for the reverse process. On the other hand, in Figure 5.4(c)(d)(e), we
observe that the histograms P(Z, t = 100) for three different values of the applied voltage are very
close to Gaussian distributions, from which we get the mean charge current J and the asymptotic
diffusivity D according to Eqs (5.59) and (5.62). In Figure 5.4, the histograms P(Z, t = 100) are
fitted to Gaussian distributions (2.47). The relations between the mean current J , diffusivity D,
transition rates W+ and W− are given by using Eqs. (2.45)-(2.46) and the affinity is thus evaluated
with

A = ln W+

W−
= ln 2D + J

2D − J
, (5.67)

for relatively long time t = 100 and different values of the applied voltage. The values of the
numerically calculated affinity are plotted in Figure 5.4(f) as a function of the applied voltage V ,
showing agreement with the prediction (5.64) of the fluctuation theorem (β = e = 1 in the figure,
see Table 5.1). Therefore, the time-dependent affinity converges to the macroscopic value (5.66),
as predicted by the fluctuation theorem (5.63) for the carrier electric current.

The fluctuation theorem with the macroscopic affinity (5.64) also applies to the fluctuations of
the random variable (5.58),

P(Z ′, t)
P(−Z ′, t)

≃t→∞ exp(AZ ′), (5.68)

by extension of the previously considered theorem [62, 31]. Figure 5.5(a)(b) shows the probability
distributions P(±Z ′, t) for time t = 0.05, as well as the associated time-dependent affinity Ã′(t)
given in a similar way as Eq. (5.65). Remarkably, for this short time, this affinity is already close to
the asymptotic value given by the macroscopic value (5.64). In Figure 5.5(c)(d)(e), the histograms
are fitted to Gaussian distribution to compute the time-dependent affinity A′ for relatively long
time t = 0.1 and different values of the applied voltage. In Figure 5.5(f), the affinity is plotted
versus the applied voltage, showing that they are equal up to numerical accuracy. Therefore, the
fluctuation theorem (5.68) is confirmed by these results. Furthermore, the convergence to the
macroscopic affinity is observed to be much faster for the measured total current fluctuations than
for the carrier current fluctuations.

An implication of the fluctuation theorem is that the thermodynamic entropy production is
always non-negative. Indeed, the entropy production rate can be expressed as [61]

1
kB

diS

dt
= lim

t→∞

1
2t

∫
dZ ′ [P(Z ′, t)− P(−Z ′, t)] ln P(Z ′, t)

P(−Z ′, t)
≥ 0 (5.69)

in terms of the probability density P(Z ′, t) and this expression is always non-negative because
(p−q) ln(p/q) ≥ 0 for any non-vanishing real numbers p and q. Using the fluctuation theorem (5.68),
the expression (5.69) gives the dissipated power divided by the thermal energy,

1
kB

diS

dt
= lim

t→∞

1
t
A⟨Z ′(t)⟩ = V I(V )

kBT
≥ 0, (5.70)
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as expected. Hence, the entropy production is non-negative in accord with the second law of
thermodynamics.

Here, it is necessary to mention that the coarse-grained model would fail to evaluate the asymp-
totic affinity if the p-n junction diode is farther from equilibrium. That is, the fitted dashed lines
in Figure 5.4(f) and Figure 5.5(f) would severely deviate from being with the expected slope if the
the applied voltages V are too large. As we have already discussed in Chapter 4, the reason lies
in the nonlinearity of the local transition rates (5.42)-(5.47) as well as those at the boundaries. In
contrast with the situation for the conductive channels, the nonlinearity here not only arises from
the long-range electrostatic interaction, but also from the stochastic process of electron-hole pair
generation and recombination.

5.6 Current-Voltage Characteristics
In this section, we study the nonlinear response of the electric current to the applied voltage with
the stochastic approach. The heterogeneous distributions of charge carriers induce the effect of
current rectification in diodes. This rectifying effect is characterized by the nonlinear dependence
of the mean electric current on the voltage. The basic theory of current-voltage characteristics of
p-n junctions was established by Shockley [88, 89]. Based on the following four assumptions:

• The built-in potential and applied voltage are completely loaded in the small depletion layer3,
and outside this region the semiconductor is assumed to be neutral.

• The densities of charge carriers are scaled by Boltzmann factor4.

• The injected minority carrier densities are small compared with the majority carrier densities.

• No generation-recombination current exists inside the depletion layer, and the electron and
hole currents are constant throughout the depletion layer.

the ideal current-voltage characteristics can be described by so-called Shockley equation

I(V ) = Is

[
exp

(
eV

kBT

)
− 1
]

. (5.71)

Here, the reverse-bias current Is is called the saturation current, which is independent of the applied
voltage. It is, however, quite dependent on temperature. The second assumption has already been
assumed by Eq. (5.5).

We see in Figure 5.6(a) the current-voltage characteristics of the junction under the same condi-
tions as in Figure 5.3. Under this condition, the ratio of majority to minority carrier concentration
is cmajor:cminor = 4. As expected, the mean electric current increases more rapidly for a positive
than a negative voltage. However, the rectification effect is moderate and the I-V curve differs
from the Shockley equation (5.71) because the barrier of the electric potential at the junction is not
sharp enough with respect to the voltage drop across the diode, as seen in the inset of Figure 5.6(a).
If the current-voltage characteristics (5.71) was realized, the rectification ratio R = |I(V )/I(−V )|
would be equal to RS = exp(V ). However, this ratio takes the value R ≈ 1.5 at V = 4, much
lower than the expected value RS = 54.6, which confirms that the Shockley model does not apply
in the conditions of Figure 5.6(a).

In order to reach the Shockley regime, the concentration ratio of majority to minority carriers
is increased up to the very large value cmajor:cminor = 4 × 106, so that the potential step takes

3It is a small region around the junction, where there is a abrupt potential change and the mobile charge carriers
are swept out in equilibrium. See Figure 5.2 for the region between pp′ and nn′.

4The Fermi-Dirac distribution is approximated as an exponential function, that is

f(E) =
1

1 + exp [β (E − EF)]
≈ exp [β (EF − E)]

when E is larger than EF by several orders of magnitude with respect to 1/β ≡ kBT .
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Figure 5.6: The current-voltage characteristic curves of the p-n junction. I denotes the mean
electric current and V the applied voltage. The inset in each panel shows the electric potential
profiles under several values of the applied voltage. The asterisks show the results of the stochastic
simulation. In panel (a), the line is joining the data points. In panel (b), the line is the Shockley
curve fitted to simulation data. The values of physical quantities listed in Table 5.1 are used for
both panels. The two sets of parameter values listed in Table 5.2 are also used, with Set I for (a)
and Set II for (b). The statistics is carried out over 4× 105 iterates.

the value (∆Φ)eq = ln(4× 106) ≈ 15.2 in equilibrium. The low-injection assumption is reasonably
satisfied under this condition. Figure 5.6(b) shows that the I-V curve indeed follows the Shockley
equation (5.71) in this case with the relatively small value Is ≈ 0.063 (×105) of the saturation
current at negative voltage. The step-like shape of potential profile along the p-n junction con-
firms the first assumption. The generation-recombination currents can be safely neglected in the
depletion region with such a small width, as we see from the potential profile in Figure 5.6(b). The
last assumption is thus also valid. The small number of charge carriers across the depletion region
undergoes pure diffusion and recombine with the majority charge carriers.

The stochastic process of charge transfers between the two sides of the junction can be approx-
imately described by the coarse-grained model, in which there are two associated global transition
rates W+ and W−. In general, both of these rates have a complicated dependence on the applied
voltage V . In the case there is a sharp potential barrier at the junction, and if the transition rate
W− to descend the barrier becomes independent of the voltage while the transition rate to climb
the barrier can be expressed as W+ = W− exp(βeV ) in terms of the Boltzmann factor exp(βeV ),
then the mean electric current is given by

I = e (W+ −W−) = eW− [exp(βeV )− 1] , (5.72)

which is exactly the Shockley equation (5.71). Considering that the limitation of the coarse-grained
model far from equilibrium has already been discussed, it seems that these two rates can not be
understood in a stochastic way. However, the staircase potential profile in Figure 5.6(b) indicates
that the p-n junction in the Shockley regime can be seen as two regions respectively in equilibrium.
The coarse-grained model is supposed to work very well in this Shockley regime. However, the issue
remains open whether W+ and W− behave as stated above under ideal p-n junction conditions.
Actually it is difficult to extract the accurate values of these two rates from the counting statistics
in numerical simulations, since the W− is relatively too small compared with W+. Nevertheless, the
agreement between simulations and the predictions of the Shockley equation supports the validity
of these assumptions if the concentration ratio of majority to minority carriers is large enough.



Chapter 6

Charge Transport in Bipolar n-p-n
Junction Transistors

The proper combination of two p-n junctions produces a bipolar transistor, the main compounds of
electronic devices1. Therefore, bipolar transistors have an unprecedented impact on the electronic
industry in general and on solid-state research in particular. Inside a bipolar transistor, there are
three types of semiconductors separated by two junctions. The middle semiconductor is doped
with charged impurities different from those in the two other semiconductors. Unlike diodes, there
are three terminals in a bipolar transistor and electric currents flow between pairs of them. The
resistance between two terminals can thus be controlled by the third. This enables transistors to
amplify electric signals [105, 106, 90, 107, 94, 93, 92, 95, 96].

The fundamental issue is that the coupling between the electric currents is ruled by microre-
versibility, as in any type of device or process. In linear regimes close to thermodynamic equilib-
rium, microreversibility implies the Onsager reciprocal relations. However, bipolar transistors are
functioning in highly nonlinear regimes beyond the domain of application of the Onsager reciprocal
relations. Remarkably, the generalizations of these relations beyond the linear regime are known
(see Section 2.3). Moreover, the novel aspect is that two coupled currents are flowing in bipolar
transistors, instead of only one in diodes that are studied in Chapter 5. This motivates us to
numerically test all these relations with the electric currents in bipolar transistors.

In this chapter, the stochastic approach developed in Chapter 5 for the diodes is extended
to the studies of charge transport in bipolar transistors. In this way, the fluctuation theorem is
numerically shown to hold for the joint probability distribution of two electric currents. Similar
results are obtained including the displacement currents. The Onsager reciprocal relations as well
as their generalizations to nonlinear transport properties are numerically shown to be satisfied.
In addition, signal-amplifying capability is numerically demonstrated for bipolar transistors under
their working conditions.

6.1 Bipolar n-p-n Junction Transistors
Depending on the configuration, there are two types of bipolar junction transistors (BJT): the n-p-
n transistors, in which a p-type semiconductor is sandwiched between two n-type semiconductors,
and the p-n-p transistors, where an n-type semiconductor is confined between two p-type semicon-
ductors. They are complementary devices. In the following, we only consider the case of bipolar
n-p-n junction transistors that are widely used devices (see Figure 6.1). The electrons e− and
holes h+ are the two mobile charge carriers across the bipolar n-p-n junction, with electrons being

1The first bipolar transistor was invented in 1947 by Brattain, Bardeen and Shockley at Bell Laboratories. The
three of them received the Nobel prize in 1956 for their invention. Apart from bipolar transistors, there also exists
two other basic types, namely, the metal-oxide-semiconductor field-effect transistors (MOSFET), and the junction
field-effect transistors (JFET).
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(a)

p-type

(b)

n-typen-type

−l/2 +l/20

x
+lp/2−lp/2

lB

Figure 6.1: Schematic representation of (a) the transistor and (b) the bipolar n-p-n junction. In
panel (b), the black (respectively, white) dots represent electrons (respectively, holes). The three
reservoirs, called Collector, Base, and Emitter, fix the values of the electron density, the hole
density, and the electric potentials at their contact with the transistor.

the majority ones in n-type semiconductor, and holes the majority ones in p-type semiconductor.
The positive-charged donors and negative-charged acceptors are the impurities respectively doped
in n-type and p-type semiconductors. Each doped region has a terminal and the three terminals
are in contact with some charge carrier reservoir. They are respectively called Collector, Base,
and Emitter (see Figure 6.1). To model the transistor, a Cartesian coordinate system is associated
with the system. As shown in Figure 6.1(b), the semiconducting material extends from x = −l/2
to x = +l/2 and is divided in three parts. The part from x = −l/2 to x = −lp/2 is of n-type, the
one from x = −lp/2 to x = +lp/2 of p-type, and the one from x = +lp/2 to x = +l/2 of n-type.
The three parts are respectively of lengths ln = (l − lp)/2, lp, and ln = (l − lp)/2. The Collector
is in contact at x = −l/2, the Emitter at x = +l/2, and the Base along a length lB symmetrically
located around the origin x = 0. The length of the contact with the Base is smaller than the one
of the p-type part: lB < lp. The geometry is chosen to be symmetric with respect to x = 0 for
simplicity. In addition, the bipolar n-p-n junction has the section area Σx in the transverse y- and
z-directions. The section areas of the contacts with the Collector and Emitter are assumed to be
equal, ΣC = ΣE = Σx. Accordingly, the semiconducting material extends over a domain of volume
V = lΣx. Moreover, we denote by ΣB = Σy the section area of the contact with the Base. The
donor density d(r) and acceptor density a(r) are supposed to be uniform in the different types of
semiconductor. Therefore, they can be expressed as

d(r) = d θ (−x− lp/2) + d θ (x− lp/2) , (6.1)
a(r) = a θ (x+ lp/2) θ (−x+ lp/2) , (6.2)

in terms of two constant values a and d, combined with Heaviside’s step function θ(x) defined
such that θ(x) = 1 if x > 0 and θ(x) = 0 otherwise. The charge density ρ(r) is thus expressed
as Eq. (5.2). Because of the electrostatic interaction between the charges, these densities are
coupled to the electric potential Φ(r). Electrons and holes are generated and recombined by the
reaction (5.3) with the electron-hole pair generation and recombination rate constants k+ and k−.

The electron and hole densities as well as the electric potential have fixed boundary values at
the contacts with the three reservoirs. They are respectively given by nC , pC , ΦC at the Collector ;
nB , pB , ΦB at the Base; and nE , pE , ΦE at the Emitter. The three parts of the transistor are
supposed to be doped from a semiconducting material of uniform intrinsic density ν, so that the
boundary values of the electron and hole densities should satisfy the conditions

nCpC = nBpB = nEpE = ν2. (6.3)

For simplicity, we set nC = nE and pC = pE to have a system that is symmetric with respect to



Chapter 6. Charge Transport in Bipolar n-p-n Junction Transistors 59

x = 0, as depicted in Figure 6.1(b). Furthermore, we consider the boundary conditions

nC = pC + d, pB = nB + a, nE = pE + d. (6.4)

If the transistor is in equilibrium without flow of charge carriers, detailed balance between the
generation and recombination of electron-hole pairs requires that neqpeq = ν2, where ν =

√
k+/k−

is the so-called the intrinsic carrier density. Moreover, the Eq. (5.5) holds for the electron and hole
densities in equilibrium. Thus, if the BJT is in equilibrium, the inhomogeneous distributions of
the charge carriers produce the Nernst potentials

(ΦC − ΦE)eq = 1
βe

ln nC

nE
= 1
βe

ln pE

pC
(6.5)

and

(ΦB − ΦE)eq = 1
βe

ln nB

nE
= 1
βe

ln pE

pB
. (6.6)

The transistor is driven out of equilibrium by applying voltages with respect to the Nernst poten-
tials

VC = ΦC − ΦE −
1
βe

ln nC

nE
, (6.7)

VB = ΦB − ΦE −
1
βe

ln nB

nE
, (6.8)

which induce currents across the BJT. When VB > 0, the Emitter-Base junction is said to be
forward biased, and when VB < 0 it is reverse biased. Similarly, the Collector-Base junction is
forward biased when VC − VB < 0, and reverse biased when VC − VB > 0. If no bias is applied to
the terminals, i.e., VC = VB = 0, both junctions are in equilibrium and there is no electric current
flow. A BJT with a forward biased Emitter-Base junction and a reverse biased Collector-Base
junction is said to operate in the forward active mode2.

Considering the electrostatic interaction, the diffusion, and the generation-recombination re-
action, we have the following stochastic partial differential equations obeyed by carrier densities,
current densities, and electric potential:

jn = −µnenE −Dn∇n+ δjn, (6.9)
jp = +µpepE −Dp∇p+ δjp, (6.10)
∂tn+ ∇ · jn = k+ − k−np+ δσ, (6.11)
∂tp+ ∇ · jp = k+ − k−np+ δσ, (6.12)

∇ · E = ρ

ε
, (6.13)

E = −∇Φ, (6.14)

where the mobilities µn and µp are related to the diffusion coefficients through Einstein’s rela-
tions (5.12), while δjn, δjp, and δσ are the Gaussian white noises characterized by Eqs. (5.20)-
(5.29).

6.2 Numerical Simulation Method
For the numerical simulation of the BJT, the system is spatially discretized into cells, each contain-
ing some numbers of electrons and holes, respectively, and a Markov jump process in a accord with
the stochastic partial differential equations (6.9)-(6.14) is associated to fully describe the stochastic
evolution of electron and hole distributions.

2Several combinations of forward- and reverse-biased junctions are possible, leading to different operating modes.
The transistors are therefore referred to as active devices whereas the diodes are passive.
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Table 6.1: The values of parameters for specifying the discretized BJT.

Meaning Set I Set II
number of cells in each side region 10 10
number of cells in middle region 3 3

width of each cell ∆x 0.1 0.1
height of each cell ∆y 0.2 0.2
volume of each cell Ω 1000 109

section area Σx = Ω/∆x 10000 1010

section area Σy = Ω/∆y 5000 5× 109

number of electrons in Collector cell 10000 1013

number of holes in Collector cell 100 105

number of electrons in Base cell 100 108

number of holes in Base cell 10000 1010

number of electrons in Emitter cell 10000 1013

number of holes in Emitter cell 100 105

6.2.1 Discretizing the Bipolar n-p-n Junction Transistor in Space
The BJT is spatially discretized into L cells of length ∆x = l/L, section area Σx, and volume
Ω = Σx∆x, located at the coordinates xi = (i− 0.5)∆x− l/2 (i = 1, 2, · · · , L). The indices i = 0
and i = L+ 1 are respectively used to refer to the Collector and Emitter cells. Consistently with
Figure 6.1(b), there are Ln = ln/∆x cells in both parts of n-type, Lp = lp/∆x cells for the part
of p-type, and LB = lB/∆x cells in contact with the Base. The numbers of electrons and holes in
each cell of the BJT are related to the corresponding densities respectively by Ni = n(xi)Ω and
Pi = p(xi)Ω. At the contacts with the three reservoirs, the boundary conditions on the charge
carrier densities determine the boundary values for the corresponding particle numbers:

N̄C = nCΩ, P̄C = pCΩ, (6.15)
N̄B = nBΩ, P̄B = pBΩ, (6.16)
N̄E = nEΩ, P̄E = pEΩ. (6.17)

According to boundary conditions (6.4), the number of donors in each cell of the p-type semicon-
ductor is given by D = dΩ = N̄C − P̄C = N̄E − P̄E , and the number of acceptors in each cell of
n-type semiconductor by A = aΩ = P̄B − N̄B . The electron and hole numbers in the cells change
every time a particle jumps between two neighboring cells, between a reservoir and the neighbor-
ing cell, or if a reactive event occurs generating or recombining an electron-hole pair. Moreover,
the Poisson equation is also discretized along the chain of L cells forming the system, taking into
account the electric potentials of the Collector, the Base, and the Emitter. The discretized Poisson
equation reads

Φi+1 − 2Φi + Φi−1

∆x2 + ΦB − 2Φi + ΦB

∆y2 χiB = − e

εΩ
(Pi −Ni +Di −Ai) (6.18)

with the boundary conditions Φ0 = ΦC and ΦL+1 = ΦE at the two ends of BJT, and the symbol
χiB = 1 if the ith cell is in contact with the Base and χiB = 0 otherwise. This linear system
should be solved after every electron or hole transition between cells. We suppose that the electric
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potential ΦB of the Base is set on both sides of the chain in the transverse y-direction, in order
to get a symmetric geometry. In numerical simulations, same values of physical quantities as for
p-n junction diodes in Chapter 5 are adopted here, and listed in Table 5.1. Two sets of parameter
values for specifying the discretized BJT are listed in Table 6.1 for different purposes explained
here below. Additionally, for convenience, we set the middle cell with index m to be the only one
in contact with the Base, in which case the sum

∑
iB in the subsequent master equation (6.19)

has the sole term i = m. These parameter variables can be rescaled into dimensionless ones with
the procedure presented in Appendix D.

6.2.2 Master Equation
The state of the discretized BJT is fully characterized by the electron numbers N = {Ni}L

i=1 and
the hole numbers P = {Pi}L

i=1 in the cells and they evolve in time according to the network
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The probability P(N,P, t) to find the system in a certain state for the time t is governed by the
master equation

dP
dt

=
L∑

i=0

[(
e+∂Ni e−∂Ni+1 − 1

)
W

(+N)
i P +

(
e−∂Ni e+∂Ni+1 − 1

)
W

(−N)
i P

+
(

e+∂Pi e−∂Pi+1 − 1
)
W
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i P +
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i P

]

+
∑
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iB P +

(
e+∂Ni − 1

)
W
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iB P

+
(
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(
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[(
e−∂Ni e−∂Pi − 1

)
W
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i P +

(
e+∂Ni e+∂Pi − 1

)
W

(−)
i P

]
(6.19)

with the transition rates given by

W
(+N)
i = Dn

∆x2ψ(∆U (N)
i,i+1)Ni, (6.20)

W
(−N)
i = Dn

∆x2ψ(∆U (N)
i+1,i)Ni+1, (6.21)

W
(+P )
i = Dp

∆x2ψ(∆U (P )
i,i+1)Pi, (6.22)

W
(−P )
i = Dp

∆x2ψ(∆U (P )
i+1,i)Pi+1, (6.23)

W
(+)
i = Ωk+, (6.24)

W
(−)
i = Ωk−

Ni

Ω
Pi

Ω
. (6.25)
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The transition rates at the boundaries are given by

W
(+N)
0 = Dn

∆x2ψ(∆U (N)
0,1 )N̄C , (6.26)

W
(−N)
0 = Dn

∆x2ψ(∆U (N)
1,0 )N1, (6.27)

W
(+N)
L = Dn

∆x2ψ(∆U (N)
L,L+1)NL, (6.28)

W
(−N)
L = Dn

∆x2ψ(∆U (N)
L+1,L)N̄E , (6.29)

W
(+N)
iB = Dn

∆y2ψ(∆U (N)
B,i )N̄B , (6.30)

W
(−N)
iB = Dn

∆y2ψ(∆U (N)
i,B )Ni, (6.31)

for electrons, and similar expressions for holes. ∆Ui,i+1 denotes the intrinsic energy change in the
whole BJT associated with the transition of one particle from the ith cell to the (i+ 1)th cell, and
∆UB,i, ∆Ui,B the intrinsic energy changes in the whole BJT for the particle transitions between
the ith cell and the Base cell. The detailed calculation is presented in Appendix A. The function
ψ(∆U) is defined by Eq. (4.24). At the ends of the chain, we have that exp(±∂X) = 1 for X = N0,
P0, NL+1, and PL+1 in the master equation (6.19).

For numerical purpose, the approximated Langevin stochastic process is simulated instead of
the Markovian stochastic process ruled by Eq. (6.19) (see Appendix B for the detailed procedure).
In the continuum limit, the Markovian stochastic process leads to the stochastic reaction-diffusion
equations (6.9)-(6.14), as shown in Appendix C for the p-n junction diodes.

6.3 The Currents and Counting Statistics
We consider the fluctuating electric currents flowing respectively across the contact with the Col-
lector and the contact with the Base. These electric currents are due to the random motion of
electrons and holes crossing the contact sections between the transistor and the corresponding
reservoirs. The instantaneous electric currents are thus defined as

IC(t) =
+∞∑

n=−∞
q(C)

n δ
(
t− t(C)

n

)
, (6.32)

IB(t) =
+∞∑

n=−∞
q(B)

n δ
(
t− t(B)

n

)
, (6.33)

where t(C)
n (respectively t

(B)
n ) are the random times of the crossing events and q

(C)
n (respectively

q
(B)
n ) are the transferred charges equal to ±e depending on whether the carrier is an electron or a

hole and if its motion is inward or outward the transistor. We also define the instantaneous total
electric currents including the contribution of displacement currents as

I ′
C(t) = IC(t)− ε∂t∂xΦΣC , (6.34)
I ′

B(t) = IB(t)− ε∂t∂yΦΣB . (6.35)

In the framework of the Langevin stochastic process (see Appendix B), the net charge current
at the contacts with the Collector and the Base are approximately given by

IC(t) = e

∫
dΣx · (jp − jn) ≈ e

(
F

(P )
0 − F (N)

0

)
, (6.36)

IB(t) = e

∫
dΣy · (jp − jn) ≈ e

∑
iB

(
F

(P )
iB − F (N)

iB

)
, (6.37)
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in terms of the fluxes (B.23)-(B.24) and (B.26)-(B.27). After spatial discretization and surface
integration over the section areas, the contribution of the displacement currents can be added to
get the total charge currents I ′

C(t) and I ′
B(t).

The corresponding random numbers of charges accumulated over the time interval [0, t] are
defined as

ZC(t) = 1
e

∫ t

0
IC(t′)dt′, (6.38)

ZB(t) = 1
e

∫ t

0
IB(t′)dt′. (6.39)

For the total electric currents, the accumulated charge numbers Z ′
C(t) and Z ′

B(t) can also be defined
similarly. Through numerous repeated measurements in simulation, we get the counting statistics
of ZC(t), ZB(t), and thus P(ZC , ZB , t) can be numerically constructed. Similarly, P(Z ′

C , Z
′
B , t)

can be numerically constructed from the counting statistics of Z ′
C(t) and Z ′

B(t). The mean charge
currents are given by

JC ≡ lim
t→∞

1
t
⟨ZC(t)⟩ = lim

t→∞

1
t
⟨Z ′

C(t)⟩, (6.40)

JB ≡ lim
t→∞

1
t
⟨ZB(t)⟩ = lim

t→∞

1
t
⟨Z ′

B(t)⟩, (6.41)

and the corresponding mean electric currents by IC = |e|JC and IB = |e|JB . The diffusivities of
the currents are defined as

DCC ≡ lim
t→∞

1
2t

varZCZC
(t) = lim

t→∞

1
2t

varZ′
C

Z′
C

(t), (6.42)

DBB ≡ lim
t→∞

1
2t

varZBZB
(t) = lim

t→∞

1
2t

varZ′
B

Z′
B

(t), (6.43)

DCB ≡ lim
t→∞

1
2t

covZC ZB
(t) = lim

t→∞

1
2t

covZ′
C

Z′
B

(t) (6.44)

in terms of the variances and the covariances between the accumulated random charge numbers

varZC ZC
(t) ≡ ⟨ZC(t)ZC(t)⟩ − ⟨ZC(t)⟩2, (6.45)

varZBZB
(t) ≡ ⟨ZB(t)ZB(t)⟩ − ⟨ZB(t)⟩2, (6.46)

covZC ZB
(t) ≡ ⟨ZC(t)ZB(t)⟩ − ⟨ZC(t)⟩⟨ZB(t)⟩ = covZBZC

(t). (6.47)

6.4 Fluctuation Theorem for Currents
We suppose that the voltages (6.7) and (6.8) are applied at the boundaries of the transistor.
Consequently, the transistor is driven out of equilibrium and the stochastic process of charge
transfers between the reservoirs eventually reaches a nonequilibrium steady state. This latter is
expected to depend on the applied voltages, or equivalently on the affinities,

AC = ln
[
P̄C

P̄E

eβe(ΦC −ΦE)
]

= ln
[
N̄E

N̄C

eβe(ΦC−ΦE)
]

= βeVC , (6.48)

AB = ln
[
P̄B

P̄E

eβe(ΦB−ΦE)
]

= ln
[
N̄E

N̄B

eβe(ΦB−ΦE)
]

= βeVB , (6.49)

which are determined by the differences of electrochemical potentials between the corresponding
reservoirs. Here, the Emitter is taken as the reference reservoir. The dependences of the mean val-
ues of the currents on the affinities define the characteristic functions of the transistor: JC(AC , AB)
and JB(AC , AB). In equilibrium, the affinities are vanishing together with the applied voltages
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and the mean values of the currents, so that JC(0, 0) = JB(0, 0) = 0. However, the diffusivities do
not necessarily vanish in equilibrium.

Beyond the mean values of the currents and the diffusivities, the process can be characterized
by higher cumulants or the full probability distribution P(ZC , ZB , t) that ZC(t) and ZB(t) charges
are crossing the Collector and the Base during the time interval [0, t], while the transistor is in a
nonequilibrium steady state of affinities AC and AB . This steady state is given by the stationary
solution of the master equation of the Markov jump process. Using the network representation of
this Markov jump process and its decomposition into cyclic paths [78] combined with the method
of Section 2.7, the process can be shown to obey a fluctuation theorem for all the currents as
a consequence of local detailed balance [31, 62]. This theorem states that the joint probability
distribution of random variables ZC and ZB at time t satisfies the following fluctuation relation,

P(ZC , ZB , t)
P(−ZC ,−ZB , t)

≃t→∞ exp (ACZC +ABZB) . (6.50)

A similar fluctuation relation holds if the displacement currents are included in the accumulated
charge numbers [62].

As a consequence of the fluctuation theorem, the thermodynamic entropy production is always
non-negative in accord with the second law of thermodynamics. The entropy production can indeed
be expressed as the Kullback-Leibler divergence between the probability distributions of opposite
fluctuations of the currents [61], giving the dissipated power divided by the thermal energy,

1
kB

diS

dt
= ACJC +ABJB = β (VCIC + VBIB) ≥ 0, (6.51)

as expected.
We notice that the fluctuation relation (6.50) holds in the long-time limit. The time-dependent

affinities converge towards their asymptotic values (6.48) and (6.49). While the time-dependent
affinities ÃC(t) and ÃB(t) can be defined such that

P(ZC , ZB , t)
P(−ZC ,−ZB , t)

= exp
[
ÃC(t)ZC + ÃB(t)ZB

]
. (6.52)

Similarly, the time-dependent affinities Ã′
C(t) and Ã′

B(t) can also be defined when the accumu-
lated charge numbers Z ′

C(t) and Z ′
B(t) are used instead. The convergence time is determined by

diffusion [108] and it can be estimated to range between the time of diffusion across the middle
part, tdiff ∼ l2p/D ∼ 9, and the one before recombination, tdiff ∼ `2/D ∼ 100.

The direct test of the fluctuation relation (6.50) requires the availability of an overlap be-
tween the probability distributions P(ZC , ZB , t) and P(−ZC ,−ZB , t). Since the maxima of these
distributions move apart under nonequilibrium conditions, the overlap rapidly decreases as time
increases. Therefore, the direct test of the fluctuation relation is restricted to short times. Nev-
ertheless, the test is possible as shown in Figure 6.2 for the joint probability distributions of the
accumulated charge numbers without and with the displacement currents. For the bare charge
numbers, Figure 6.2(a) depicts the joint distribution itself at time t = 20, which is roughly Gaus-
sian and shifted with respect to the origin because of the elapsed time. There is a significant
overlap with the opposite distribution P(−ZC ,−ZB , t) and Figure 6.2(b) shows several contours
of the two-dimensional function ln [P(ZC , ZB , t)/P(−ZC ,−ZB , t)] in the plane of the variables ZC

and ZB . These contours appear straight given the presence of statistical errors, in agreement
with the prediction of the fluctuation theorem that the function should be linear. The function
ln [P(ZC , ZB , t)/P(−ZC ,−ZB , t)] can thus be fitted to a linear function ÃC(t)ZC + ÃB(t)ZB ,
defining the finite-time affinities ÃC(t) and ÃB(t). However, their values remain smaller than the
applied affinities AC = AB = 0.1 because convergence is expected for t ≫ tdiff and has not yet
been reached in Figure 6.2.

As shown in Figure 6.2(c)(d), we have similar results for the joint probability distribution
P(Z ′

C , Z
′
B , t) of the charge numbers with the displacement currents. As seen in Figure 6.2(c),
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Ã′
B⟨t=20⟩≈0.0̃59

Ã′
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Figure 6.2: (a) Joint probability distribution P(ZC , ZB , t) of the transferred charges ZC and ZB

at time t = 20. The center of this distribution marked with the symbol "+" corresponds to the
mean values ⟨ZB⟩ ≈ 117.43 and ⟨ZC⟩ ≈ 75.21. Several contours of the distribution are also plotted.
(b) The function ln [P(ZC , ZB , t)/P(−ZC ,−ZB , t)] versus ZC and ZB at the same time t = 20. Sev-
eral contours are shown. The arrows indicate the gradient of the distribution. The time-dependent
affinities take the values ÃB(t = 20) ≈ 0.0387 and ÃC(t = 20) ≈ 0.0326. (c) Joint probability dis-
tribution P(Z ′

C , Z
′
B , t) of the transferred total charges Z ′

C and Z ′
B including the displacement cur-

rents, at the same time t = 20. This distribution is centered on the same mean values ⟨Z ′
B⟩ ≈ 117.43

and ⟨Z ′
C⟩ ≈ 75.21. (d) The corresponding function ln [P(Z ′

C , Z
′
B , t)/P(−Z ′

C ,−Z ′
B , t)] versus Z ′

C

and Z ′
B at the same time t = 20, giving the time-dependent affinities Ã′

B(t = 20) ≈ 0.0659
and Ã′

C(t = 20) ≈ 0.0752. For both cases, the affinities are set in the simulation to the value
AC = AB = 0.1. The simulation is carried out with the time step dt = 0.1 and the statistics over
3 × 107 trajectories. The pixels in the four panels are all of size 4 × 4. The values of physical
quantities and parameters listed in Table 5.1 and the Set I in Table 6.1 are used.
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the displacement currents have for effect that the distribution P(Z ′
C , Z

′
B , t) is narrower than

P(ZC , ZB , t) depicted in Figure 6.2(a). Consequently, the time-dependent affinities Ã′
C(t) and

Ã′
B(t) are larger than ÃC(t) and ÃB(t) and the convergence in time towards the asymptotic val-

ues of the affinities should be faster for the statistics of the transferred total charges Z ′
C and Z ′

B

including the displacement currents, than for the statistics of the transferred charges ZC and ZB .
In order to test the convergence of the time-dependent affinities towards their asymptotic values

over longer time scales, the method developed in Section 3.1 is used here. In this method, we have
the coarse-grained model

Collector
WCE

GGGGGGGGBFGGGGGGGG

WEC

Emitter, (6.53)

Base
WBE

GGGGGGGGBFGGGGGGGG

WEB

Emitter, (6.54)

Collector
WCB

GGGGGGGGBFGGGGGGGG

WBC

Base, (6.55)

where the charges are supposed to be transferred directly between the three reservoirs in the long-
time limit with the global transition rates {Wkl}k,l=C,B,E . Similar to Eqs. (3.111)-(3.116), we have
the following set of six nonlinear equations for the global transition rates:

WCE −WEC +WCB −WBC = JC , (6.56)
WBE −WEB +WBC −WCB = JB , (6.57)
WCE +WEC +WCB +WBC = 2DCC , (6.58)
WBE +WEB +WBC +WCB = 2DBB , (6.59)
WCB +WBC = −2DCB , (6.60)
WCBWBEWEC = WBCWEBWCE , (6.61)

where JC , JB , DCC , DBB , and DCB are the mean currents and diffusivities whose values can
be evaluated from counting statistics according to Eqs. (6.40)-(6.44). The values of the rates
{Wkl}k,l=C,B,E are determined from solving the nonlinear equations (6.56)-(6.61) with the Newton-
Raphson method (see Appendix E). Thereafter, the affinities are readily evaluated by

AC ≡ ACE = ln WCE

WEC
, (6.62)

AB ≡ ABE = ln WBE

WEB
. (6.63)

Figure 6.3 shows the comparison between the numerical affinities given by Eqs. (6.62)-(6.63)
and the theoretical predictions given by Eqs. (6.48)-(6.49) for several cases. Accurate agreement is
found if the affinities remain moderate, confirming the convergence of the time-dependent affinities
ÃC(t) and ÃB(t) towards their expected asymptotic values within the domain of validity of the
model (6.53)-(6.55). Subsection 3.1.5 gives an exact proof of the agreement between numerical
affinities and the theoretical predictions if the system is near equilibrium. It is also notable in
Figure 6.3 that for case (8) there exists obvious deviation beyond errors between the numerical
affinities and the theoretical expectations. The reason lies in the nonlinearity of the rates (6.20)-
(6.25) as well as those at the boundaries.

Despite the limited scope of application of this method, the agreement between the numerical
and theoretical values of the affinities brings further numerical support to the fluctuation relation
for the currents.

6.5 Response Properties
In this section, we focus on the numerical test of the fluctuation-dissipation relations (2.16), the
Onsager reciprocal relations (2.17) as well as their generalizations (2.18). The methods given in
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Figure 6.3: The comparison between the numerical affinities A(n)
C , A(n)

B given by Eqs (6.62)-(6.63)
(marked with asterisks) and the theoretical expectations A(t)

C , A(t)
B given by Eqs. (6.48)-(6.49)

(marked with circles). The values of both kinds of affinities as well as their errors are listed on
the right part of the figure. The statistic data used to evaluate numerical affinities are obtained
by simulation with the time step dt = 0.05, the total time t = 2.5 × 103, and 5 × 105 iterates for
every case. The values of physical quantities and parameters listed in Table 5.1 and the Set I in
Table 6.1 are used. The numerical method for estimating the error can be found in Appendix E.
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Figure 6.4: The mean charge currents as a function of the affinities AB and AC : (a) The current
JC from the Collector to BJT; (b) The current JB from the Base to BJT. The asterisks are the
numerical data points from the simulation. The surfaces are obtained from Lagrange interpola-
tion using the data points. Furthermore, the data points are used to get the second derivatives
∂2Ji/∂Aj∂Ak|(0,0) around the equilibrium point (AC = 0, AB = 0), as explained in Appendix E.
The numerical values of these second derivatives are labeled and also listed in Table 6.3. The
simulations are carried out with the time step dt = 0.05 and 109 iterates for every data point. The
values of physical quantities and parameters listed in Table 5.1 and the Set I in Table 6.1 are used.
The numerical method for estimating the error can be found in Appendix E.
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Appendix E for the numerical evaluation of derivatives and their error analysis are used.
The evaluation of the linear response coefficients relies on the determination of the mean charge

currents as a function of the affinities. To achieve this evaluation, we have computed the mean
charge currents for several values of the affinities, as shown in Figure 6.4. We have used the
Lagrange interpolation method (see Appendix E) to obtain one-variable polynomials approximating
JC(AC , AB = 0), JC(AC = 0, AB), JB(AC , AB = 0), and JB(AC = 0, AB) based on the numerical
data plotted in Figure 6.5(a)(c)(e). Subsequently, the linear response coefficients can be computed
by taking the first partial derivatives of the Lagrange polynomials at the equilibrium point (AC =
0, AB = 0). Their numerical values are listed in the first column of Table 6.2. The observation
that the two dashed lines in Figure 6.5(e) are tangent with each other at the equilibrium point
(AC = AB = 0) already confirms the Onsager reciprocal relations (2.17), which can be also checked
from the values of LC,B and LB,C within the numerical accuracy.

Furthermore, the equilibrium values of the diffusivities are computed from the linear regression
of several points of the quantities 0.5× varZC ZC

(t), 0.5× varZBZB
(t), and 0.5× covZCZB

(t) versus
t, as shown in Figure 6.5(b)(d)(f)3. The values of diffusivities are identified as the slopes of the
resulting lines, and given in the second column of Table 6.2. The differences between the linear
response coefficients and the diffusivities are reported in the third column of Table 6.2, showing
that the fluctuation-dissipation relations (2.16) are also satisfied within the numerical accuracy.

Next, the numerical values of the charge currents JC and JB are computed for different values
of the affinities AC and AB in order to construct the two-variable functions JC(AC , AB) and
JB(AC , AB) using two-dimensional Lagrange interpolations, as shown in Figure 6.4. The values of
second derivatives at the equilibrium point (AC = AB = 0),

Mi,jk ≡
∂2Ji

∂Aj∂Ak

∣∣∣∣
(0,0)

for i, j, k = C,B, (6.64)

are thus numerically evaluated using the numerical method explained in Appendix E. On the
other hand, the diffusivities Dij are again computed with the same method as illustrated in Fig-
ure 6.5(b)(d)(f), but for the transistor driven away from equilibrium. They are plotted in Figure 6.6
as functions of the affinities. Therefore, the derivatives of the diffusivities with respect to the affini-
ties

Rij,k ≡
∂Dij

∂Ak

∣∣∣∣
(0,0)

for i, j, k = C,B (6.65)

can also be evaluated numerically at the equilibrium point (AC = AB = 0). The results for
the quantities Mi,jk and Rij,k are given in Table 6.3 where we calculate the differences, Mi,jk −
Rij,k − Rik,j , testing the validity of the prediction (2.18) of the fluctuation theorem beyond the
linear transport properties. We see that these differences are smaller than the numerical errors in
agreement with the predictions.

6.6 Current-Voltage Characteristics
The purpose of this section is to show that the properties characterizing the functionality of
transistors can be described within the stochastic approach. In electronic technology, transistors
are primarily used to amplify signals in electric circuits. This amplification results from the coupling
between the two electric currents, IC and IB . By this coupling, one current can serve as input and
the other as output. The basic transistor action is the control of electric current at one terminal by
voltage applied across two other terminals. This is called the transistor effect. The amplification
factor is defined as the electric current at the Collector divided by that at the Base, IC/IB , which is
simply called the electric current gain. We may also introduce the differential amplification factor

3The reason that the values of diffusivities are computed from linear regression instead of directly from Eqs. (6.42)-
(6.44) is to increase the accuracy.
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Figure 6.5: Panels (a)(c)(e): the mean charge current as a function of one affinity with another
affinity being zero. The asterisks are numerical points from the simulation. The dashed lines show
the Lagrange polynomials interpolating numerical points. The first partial derivatives around
equilibrium point (AC = AB = 0) can be estimated from the Lagrange polynomials, with the
approximate values labeled. Panels (b)(d)(f): the quantities 0.5× varZCZC

, 0.5× varZBZB
, 0.5×

covZC ZB
respectively as a function of the time t used to compute them. Here, varZC ZC

, varZBZB
,

covZC ZB
are respectively defined by Eqs. (6.45)-(6.47). The asterisks are the numerical points,

from which dashed lines are obtained by linear regression. The resulting linear functions as well
as the values and errors of coefficients are labeled. The values of diffusivities are identified as the
slopes. The values of σ in all panels denote the errors of numerical points. The values of physical
quantities and parameters listed in Table 5.1 and the Set I in Table 6.1 are used. The numerical
method for estimating the error can be found in Appendix E.

Table 6.2: The numerical values of the quantities used for testing the fluctuation-dissipation rela-
tions (2.16) and the Onsager reciprocal relations (2.17).

(i, j) Li,j Dij(A = 0) Li,j −Dij(A = 0)
(C,C) 93.106± 0.019 92.991± 1.039 0.115
(C,B) −56.288± 0.019 −56.343± 0.488 0.055
(B,C) −56.303± 0.020 −56.343± 0.488 0.040
(B,B) 112.603± 0.020 113.158± 0.487 −0.555



70 Chapter 6. Charge Transport in Bipolar n-p-n Junction Transistors

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AC

84

88

92

96

100

104

D
CC

∂DCC
∂AC |(0, 0)= −33.642±9.897

(a)DCC(AC,AB=0)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AC

107

109

111

113

115

117

119

D
BB

∂DBB
∂AC |(0, 0)= −22.330±4.630

(b)DBB(AC,AB=0)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AC

-62

-60

-58

-56

-54

-52

D
CB

∂DCB
∂AC |(0, 0)=20.992±4.642

(c) DCB(AC,AB=0)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AB

80
84
88
92
96

100
104
108

D
CC

∂DCC
∂AB |(0, 0)=47.409±9.900

(d) DCC(AC=0,AB)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AB

104

108

112

116

120

124
D
BB

∂DBB
∂AB |(0, 0)=45.068±4.644

(e) DBB(AC=0,AB)

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
AB

-62

-60

-58

-56

-54

-52

-50

D
CB

∂DCB
∂AB |(0, 0)= −22.474±4.639

(f)DCB(AC=0,AB)

Figure 6.6: The diffusivities Dij versus one affinity Ak, the other affinity being zero. The numer-
ical data points are plotted together with the error bars and the dashed lines give the Lagrange
polynomial interpolations of the data points. These interpolations provide the first derivatives
∂Dij/∂Ak|(0,0) at the equilibrium point (AC = AB = 0). Their numerical values as well as the
errors are labeled and also listed in Table 6.3. The simulations are carried out with the time step
dt = 0.05, the total time t = 2500, and the statistics of 5 × 104 trajectories for every data point.
The values of physical quantities and parameters listed in Table 5.1 and the Set I in Table 6.1 are
used. The numerical method for estimating the error can be found in Appendix E.

Table 6.3: The numerical values of the quantities used for testing the nonlinear transport rela-
tions (2.18).

(i, j, k) Mi,ij Rij,k Rik,j Mi,jk −Rij,k −Rij,k

(C,C,C) −67.388± 0.620 −33.642± 9.897 −33.642± 9.897 −0.104
(C,B,B) −45.325± 0.620 −22.474± 4.639 −22.474± 4.639 −0.377
(C,C,B) 68.747± 0.097 47.409± 9.900 20.992± 4.642 0.346
(B,C,C) 42.064± 0.667 20.992± 4.642 20.992± 4.642 0.080
(B,B,B) 90.066± 0.665 45.068± 4.644 45.068± 4.644 −0.070
(B,C,B) −44.777± 0.107 −22.474± 4.639 −22.330± 4.630 0.027
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Figure 6.7: The profiles of (a) the charge carrier densities, (b) the current densities, and (c) the
electric potential across the BJT which is used as signal amplifier under the working conditions
VC = 20 and VB = 6. The simulations were carried out with the time step dt = 0.00015 and 106

iterates. The values of physical quantities and parameters listed in Table 5.1 and the Set II in
Table 6.1 are used.

as follows. When the voltage VC is fixed, the variation of the other voltage VB leads to variations of
IC and IB . The amplification factor is defined as the ratio between these two variations (regarded
here as signals),

α =
(
∂IC

∂IB

)
VC

, (6.66)

under specific working conditions. Since this definition does not involve the electric current at the
Emitter which often is grounded, the configuration is said to be "common-Emitter". To achieve
the functionality of signal amplification, the transistors should satisfy the following requirements:

• The concentration of the majority charge carriers in the Collector region should be over-
whelmingly larger than the concentration of minority charge carriers in the Base region.

• The concentration of the majority charge carriers in the Emitter region should be overwhelm-
ingly larger than the concentration of minority charge carriers in the Base region.

• The Collector-Base junction should be reverse biased.

• The Emitter-Base junction should be forward biased.

• The Base region should be very thin so that the majority charge carriers in the Emitter
region can easily get swept to the Collector region.

• The contacting section areas ΣC and ΣE should be larger than ΣB .

The third and fourth conditions just require the bipolar n-p-n junction transistor to work in
the forward active mode. The Set II in Table 6.1 gives a set of parameter values approaching
these requirements in order to show that the present stochastic model can describe transistors
in such regimes. The first two conditions are satisfied since N̄C = N̄E ≫ N̄B , and the last
one because Σ = ΣC = ΣE > ΣB . If the transistor was in equilibrium without applied voltage
(AC = AB = 0), the Nernst potentials (6.5) and (6.6) would take the values (ΦC −ΦE)eq = 0 and
(ΦB − ΦE)eq = −11.5 with the parameter Set II in Table 6.1. In equilibrium, the electric field
would have a symmetric profile around x = 0 with (ΦC − ΦB)eq = (ΦE − ΦB)eq = 11.5.

Figure 6.7 shows the profiles of charge carrier densities and current densities together with the
electric potential under nonequilibrium conditions with applied voltages corresponding to VC = 20
and VB = 6. In Figure 6.7(a), we see that the Base region is thin in the model, so that the fifth
condition is satisfied. As observed in Figure 6.7(b), the current densities are non-vanishing because
the transistor is out of equilibrium. According to Eqs. (6.7)-(6.8), we here have that ΦC−ΦE = 20
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Figure 6.8: (a) The mean electric currents IC and IB versus the voltage VB , with the other voltage
fixed to the value VC = 20. The lines join the numerical points depicted by the asterisks. (b)
The electric current IC versus the other electric current IB . The line also joins the asterisks.
The dashed line in the middle region is determined from Lagrange interpolation using the five
asterisks of this domain. The derivative of IC with respect to IB at the point (VC = 20, VB = 6)
is evaluated giving the amplification factor (6.67). The simulations were carried out with the time
step dt = 0.00015 and 106 iterates for every data point. The values of physical quantities and
parameters listed in Table 5.1 and the Set II in Table 6.1 are used.

and ΦB − ΦE = −5.5, so that ΦC − ΦB = 25.5 and ΦE − ΦB = 5.5, in agreement with the
electric field plotted in Figure 6.7(c). Since ΦC − ΦB = 25.5 is larger than (ΦC − ΦB)eq = 11.5,
the Collector-Base junction is reverse biased, as it should by the third condition. Moreover,
ΦE −ΦB = 5.5 is smaller than (ΦE −ΦB)eq = 11.5, so that the Emitter-Base junction is forward
biased and the fourth condition is also satisfied. Under these working conditions, the transistor
can indeed achieve signal amplification, as demonstrated in Figure 6.8. The electric currents IC

and IB are shown in Figure 6.8(a) as functions of VB , with VC fixed. Since the current IC is
greater than IB , the amplification factor IC/IB is larger than unity, as expected4. Furthermore,
Figure 6.8(b) depicts how the current IC increases with the other current IB and the associated
voltage VB . For VB = 6, the differential amplification factor (6.66) is evaluated to be

α(VC = 20, VB = 6) ≈ 4.278, (6.67)

which is also larger than unity, as required. It should be noticed that the amplification factors can
take different values for different working conditions of the transistor.

These results show that the stochastic approach is relevant to study transistors in their regimes
of signal amplification. Under the working conditions, a large number of electrons are injected from
the Emitter to the Base. Some of these electrons recombine with holes in the Base, giving rise to
the electric current IB . The majority of electrons, however, go through the middle n-type region
without recombining and give rise to the electric current IC . The electric current IC is directly
proportional to the electron current injected by the Emitter in the Base, and the electric current
IB is proportional to the hole current injected by the Base into the Emitter. It is worth noting
that the magnitude of electric current flowing in the Collector does not depend on the magnitude
of the Collector voltage. The Collector-Base junction simply needs to be reverse biased. Rather,
the electric current IC is fixed by the bias applied to the Emitter-Base junction.

4The typical value of electric current gain, IC/IB , ranges between 50 and 300. Since the one-dimensional
modeling of the transistor in the study, the electric current gain takes relatively low values. It is expected that,
if the transistor was modeled in three spatial dimensions, much higher values of electric current gain would be
achieved.



Chapter 7

Charge Transport in Tunnel Junctions

We have investigated in previous three chapters the properties of charge transport in mesoscopic
systems. The common point of these systems is that they are all spatially extended and, therefore,
multiple random variables are needed to characterize their discretized state. In this case, it becomes
impossible to obtain the explicit matrix form of evolution operator from the master equation ruling
the Markov jump process of the system under consideration. However, such an awkward situation
can be naturally circumvented if the system of interest is compact and has a single internal random
variable.

In this chapter, we study the charge transport across three mesoscopic tunnel junctions con-
nected to a common conductive island or quantum dot [109, 30]. Particularly, such a system
describes single-electron transistors [110, 111]. The number of excess electrons occupied in the
central region, N , constitutes the only single internal random variable that characterizes the state
of this system. In contrast with the stochastic model in Section 3.2, the rates for electron tunneling
have nonlinear dependence on the state variable. This leaves us only the numerical way to com-
pute the cumulant generating function for the currents as the leading eigenvalue of the modified
evolution operator including the counting parameters. Starting from the numerically obtained cu-
mulant generating function, the fluctuation relation is shown to hold, and the Onsager reciprocal
relations together with their generalizations to nonlinear transport properties are also shown to
be satisfied. Moreover, the staircase pattern of current-voltage characteristics due to the Coulomb
blockade effect is realized under certain conditions.

7.1 Tunnel Junctions
We consider three mesoscopic tunnel junctions coupled to a common conductive island or quantum
dot, as shown in Figure 7.1 [109, 30]. Electron tunneling events across the junctions frequently
happen when the energy Ec = e2/2C is larger than the thermal energy kBT , with C = C0+C1+C2.
The voltage of electrode 0 is fixed to the value V0 = 0 and taken as the reference. According
to classical electrodynamics (see Appendix A for detailed calculation), during the time interval
between two tunneling events, the voltage of the central region is found to be

VM = V0C0 + V1C1 + V2C2

C0 + C1 + C2
− Ne

C0 + C1 + C2
+ Vp, (7.1)

where N is the number of excess electrons concentrated in the central region characterizing the
state of the system in the semiclassical description, and Vp is included to account for any possible
misalignment of the Fermi level in the central region with respect to the three electrodes when the
junction system is in equilibrium, i.e., V1 = V2 = V0 = 0. This parameter can also be interpreted
in terms of the background charge q0 = −(C0 + C1 + C2)Vp in the central region, or as a gate
voltage tuned by a capacitively coupled electrode. From Eq. (7.1), we note that the shift of N in
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Figure 7.1: Schematic representation of the three junctions which are characterized by their re-
spective resistances {R0, R1, R2} and capacitances {C0, C1, C2}. Two electrodes are set with
voltages V1, V2 and the other is fixed to V0 = 0 as the reference. Vp is included to account for any
possible misalignment of the Fermi level of the central region with respect to those of the three
electrodes when V1 = V2 = V0 = 0.

discrete way can offset the influence of Vp on the junction system. So, only the remainder of Vp

divided by e/(C0 + C1 + C2),

Vp mod e

C0 + C1 + C2
, (7.2)

serves as an indicator of influence (except the number of excess electrons in the central region) of
Vp on the junction system. We will see in Figure 7.7 that the currents flowing across the junction
indeed show periodic pattern as a function of Vp.

7.2 Master Equation
We now denote by P(N, t) the probability of the system at time t having N excess electrons in the
central region. Then, P(N, t) obeys the master equation

d
dt
P(N, t) =

∑
i=0,1,2

∑
±

[
W

(±)
i (N ∓ 1)P(N ∓ 1, t)−W (±)

i (N)P(N, t)
]
, (7.3)

with the transition rates computed using Fermi’s golden rule and thus given by

W
(±)
i (N) = 1

e2Ri

∆U (±)
i (N)

exp
[
β∆U (±)

i (N)
]
− 1

. (7.4)

Here, ∆U (±)
i (N) denotes the intrinsic energy change of the whole junction system associated with

the tunneling of an electron. They can be expressed by

∆U (±)
i (N) = ∓e [VM(N)− Vi] + Ec. (7.5)

Appendix A provides detailed derivation of ∆U (±)
i (N). The long-range electrostatic interaction is

embodied in all transition rates (7.4) being nonlinear functions of excess number of electrons in
the central region.
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7.3 Counting Statistics
The graph 3.2 can be associated with the process of electron tunneling across the junctions. Ac-
cording to Schnakenberg’s graph analysis [78], two affinities A = (A1, A2) are calculated as

A1 = ln W
(+)
1 (N)W (−)

0 (N + 1)
W

(+)
0 (N)W (−)

1 (N + 1)
= −βeV1, (7.6)

A2 = ln W
(+)
2 (N)W (−)

0 (N + 1)
W

(+)
0 (N)W (−)

2 (N + 1)
= −βeV2. (7.7)

We now perform counting statistics by modifying Eq. (7.3) to include the counts of electrons
Z = (Z1, Z2) tunneling respectively from electrodes 1 and 2 to the central region, yielding the
extended master equation

d
dt
P(N,Z1, Z2, t) =

[ (
e−∂N − 1

)
W

(+)
0 (N) +

(
e+∂N − 1

)
W

(−)
0 (N)

+
(
e−∂N e−∂Z1 − 1

)
W

(+)
1 (N) +

(
e+∂N e+∂Z1 − 1

)
W

(−)
1 (N)

+
(
e−∂N e−∂Z2 − 1

)
W

(+)
2 (N) +

(
e+∂N e+∂Z2 − 1

)
W

(−)
2 (N)

]
P(N,Z1, Z2, t).

(7.8)

The cumulant generating function can thus be defined as

Q(λ1, λ2) ≡ lim
t→∞

−1
t

ln
∑

N,Z1,Z2

P(N,Z1, Z2, t) e−λ1Z1−λ2Z2 , (7.9)

where λ = (λ1, λ2) are the counting parameters. The cumulant generating function Q(λ) can be
obtained by solving the eigenvalue problem

L̂λΨλ(N) = −Q(λ)Ψλ(N), L̂†
λΨ̃λ(N) = −Q(λ)Ψ̃λ(N), (7.10)

with the operator L̂λ defined through the equation

d
dt
F (N, t) = L̂λF (N, t) =

[ (
e−∂N − 1

)
W

(+)
0 (N) +

(
e+∂N − 1

)
W

(−)
0 (N)

+
(
e−∂N e−λ1 − 1

)
W

(+)
1 (N) +

(
e+∂N e+λ1 − 1

)
W

(−)
1 (N)

+
(
e−∂N e−λ2 − 1

)
W

(+)
2 (N) +

(
e+∂N e+λ2 − 1

)
W

(−)
2 (N)

]
F (N, t),

(7.11)

and L̂†
λ denotes its adjoint. In Eq. (7.10), −Q(λ) is the leading eigenvalue, Ψλ(N) the correspond-

ing right-eigenfunction, and Ψ̃λ(N) the left-eigenfunction. The elements of the operator L̂λ are
given by

L̂λ(N,N ′) ≡ Γ(+)
λ (N ′)δN−1,N ′ + Γ(−)

λ (N ′)δN+1,N ′ −
[
Γ(+)

0 (N ′) + Γ(−)
0 (N ′)

]
δN,N ′ , (7.12)

where

Γ(±)
λ (N) = W

(±)
0 (N) +W

(±)
1 (N)e∓λ1 +W

(±)
2 (N)e∓λ2 . (7.13)

For numerical purpose, the operator with the elements L̂λλλ(N,N ′) is truncated as a square matrix
with boundaries Nmin = N ′

min and Nmax = N ′
max. The solution of Eq. (7.11) has the general form

F (N, t) = eL̂λtF (N, 0). (7.14)
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Figure 7.2: The normalized distribution Ψλ1,λ2(N) for λ1 = λ2 = 0 and for λ2 = 2λ1 = 2.
Asterisks are from numerical results with dash lines joining them. The parameter values are
C0 = C1 = C2 = 1, R0 = R1 = R2 = 1, β = e = 1, Vp = 0, V1 = −1, V2 = −2. The corresponding
affinities are A1 = 1 and A2 = 2.

where the initial condition F (N, 0) can be randomly chosen to assume that it has the component
of Ψλ(N)1. The matrix exponential eL̂λt can be computed using Padé approximation (see Ap-
pendix E). Since eL̂λ > 0, the Perron-Frobenius theorem applies and the leading eigenvalue −Q(λ)
of L̂λ corresponds to the the real maximum eigenvalue e−Q(λ) of eL̂λ in magnitude (for some value
t > 0). So, Ψλ(N) can be asymptotically evaluated as

Ψλ(N) ∼t→∞ eL̂λtF (N, 0), (7.15)

which is then normalized2

Ψλ(N)← Ψλ(N)√∑
N ′ Ψλ(N ′)Ψλ(N ′)

. (7.16)

The cumulant generating function Q(λ) is calculated as34

Q(λ) = −
∑

N,N ′

Ψλ(N)L̂λ(N,N ′)Ψλ(N ′). (7.17)

The stationary distribution is given by Pst(N) = Ψ0(N) (see Figure 7.2). Because of the non-
linearity of the transition rates (7.4), Pst(N) is no longer Poissonian in contrast with that of the
model with linear rates, e.g., the one in Section 3.2.

7.4 Fluctuation Theorem for the Current
According to the fluctuation theorem, we should have the symmetry relation

Q(λ1, λ2) = Q(A1 − λ1, A2 − λ2), (7.18)

which is the consequence of the symmetry [64, 112]

M̂−1L̂λM̂ = L̂†
A−λ, (7.19)

1Because of the inevitable roundoff error in numerical computation, this assumption is always reasonable.
2The computation in Eq. (7.15) with large time t makes Ψλ(N) too small, thus leading to numerical instability.

The solution to this issue is that we can repeat the following operations many times: (i) do the computation in
Eq. (7.15) with moderate time t; (ii) then normalize the obtained result with Eq. (7.16).

3Q(λ) can also be directly obtained by diagonalizing the matrix L̂λ(N,N ′) and then finding the largest eigenvalue.
4In Eq. (7.17) the function to the left-hand side of L̂λ(N,N ′) can be replaced by any other function, only if it

has the inner product unity with Ψλ(N). Here, Ψλ(N) itself is used for numerical convenience.
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Figure 7.3: The gray scale map of the cumulant generating function Q(λ1, λ2). Three contours are
shown. The symbol "+" marks the center located at (λ1 = 0.5, λ2 = 1.0). The two circles indicate
the coordinates (λ1 = 0.0, λ2 = 0.0) and (λ1 = 1.0, λ2 = 2.0), which are respectively joined by the
contour for Q(λ1, λ2) = 0.0. The parameter values are C0 = C1 = C2 = 1, R0 = R1 = R2 = 1,
β = e = 1, Vp = 0, V1 = −1, V2 = −2. The corresponding affinities are A1 = 1 and A2 = 2.

where the operator M̂ is defined as the diagonal matrix M̂(N,N ′) = M(N)δN,N ′ with the diagonal
elements obeying the recurrence

M(N) = eβ∆U
(−)
0 (N)M(N − 1). (7.20)

The symmetry (7.19) can be established by first noting that we should have Γ(−)
λ (N)M(N) =

Γ(+)
A−λ(N−1)M(N−1). Next, the relations (7.6) and (7.7) for the affinities lead to the simplification
W

(−)
0 (N)M(N) = W

(+)
0 (N − 1)M(N − 1). Finally, we have that ∆U (−)

0 (N) = −∆U (+)
0 (N − 1)

because of Eq. (7.5), so that the expression (7.4) for the rates implies that W (+)
0 (N−1)/W (−)

0 (N) =
exp

[
β∆U (−)

0 (N)
]
, hence the result (7.20).

Using the method developed above, the symmetry relation (7.18) is confirmed by the numerical
calculation of the cumulant generating function Q(λ1, λ2). Figure 7.3 shows the gray scale map of
Q(λ1, λ2) with several contours in the plane of the counting parameters λ1 and λ2 for the affinities
A1 = 1 and A2 = 2. In this figure, the symmetry (7.18) is apparent with respect to the inversion
transformation (λ1, λ2)→ (A1−λ1, A2−λ2). We observe that the cumulant generating function is
not symmetric under the reflections (λ1, λ2)→ (A1−λ1, λ2) and (λ1, λ2)→ (λ2, A2−λ2), showing
the evidence of correlation between the fluctuations of the two currents. Moreover, the cumulant
generating function in Figure 7.3 is partially displayed along the line λ2 = 1.0 in Figure 7.4(a) and
the line λ1 = 0.5 in Figure 7.4(b). These functions are compared with their transformation by the
symmetry (7.18). Their coincidence again confirms the validity of the fluctuation relation.

With the method presented in Chapter 3, the counting statistics of electron tunneling is per-
formed in simulation to numerically compute the affinities of this tunnel junction system. Gillespie’s
algorithm is implemented here in simulation according to the master equation (7.3). The values of
the mean currents and their diffusivities are evaluated in simulation. In the same way for the model
with linear rates in Section 3.2, six global transition rates {Wij}i,j=0,1,2 between electrodes are sup-
posed to exist, and their values are calculated by solving the nonlinear equations (3.111)-(3.116).
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Figure 7.4: The slices of the cumulant generating function Q(λ1, λ2), i.e., the function of λ1 for
λ2 = 1.0 in the panel (a) and the function of λ2 for λ1 = 0.5 in panel (b). In both panels,
the asterisks are numerical results and the dash lines join them. The circles are plotted from the
function Q(1.0−λ1, λ2 = 1.0) in panel (a) and Q(λ1 = 0.5, 2.0−λ2) in panel (b). Clearly, each circle
surrounds an asterisk. The difference between each asterisk and the center of its corresponding
circle is smaller than 1.0 × 10−14, so that the numerical error on cumulant generating function is
negligible. The parameter values are C0 = C1 = C2 = 1, R0 = R1 = R2 = 1, β = e = 1, Vp = 0,
V1 = −1, V2 = −2. The corresponding affinities are A1 = 1 and A2 = 2.

If the process was Poissonian, the affinities would be given by

A1 ≡ A10 = ln W10

W01
, (7.21)

A2 ≡ A20 = ln W20

W02
. (7.22)

Figure 7.5 presents the comparison between so-obtained numerical affinities and their theoretical
predictions. In this figure, the agreement is found between the two sets of affinities, especially in
the vicinity of equilibrium (A1 = A2 = 0). However, discrepancies beyond numerical error are also
clearly seen for large affinities. As such, the process can no longer be regarded as Poissonian if the
system is far from equilibrium. The reason lies in the nonlinearity of the rates (7.4) whose effect
on counting statistics has already been discussed in Chapter 4.

7.5 Response Properties
The mean current J1 of electron tunneling is depicted in Figure 7.6 as a function of the affinity A1
for different values of A2. According to Eq. (2.6), the value of J1 in Figure 7.6 is obtained from
two different methods, by numerical simulations (asterisks) and by numerically differentiating the
cumulant generating function Q(λ1, λ2) with respect to the counting parameter λ1 (circles). An
excellent agreement is found between both methods. The results show the nonlinear dependence
of the mean current on the affinity, so that the expansion around equilibrium should involve not
only linear, but also nonlinear response coefficients. The formulae for numerical differentiations
can be found in Appendix E.

As shown in Figure 7.6, the mean current J1 clearly manifests itself as the nonlinear response
of affinities A1 and A2. So, the consequences of the fluctuation relation at the level of the linear
and nonlinear response coefficients (2.11)-(2.12) can be investigated. In contrast with the way we
study the response properties in Section 6.5 for bipolar n-p-n junction transistors, we here start
from the cumulant generating function to evaluate the mean currents and their diffusivities using
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Figure 7.5: The comparison between numerical affinities (marked with asterisks) and their theo-
retical expectations (marked with circles). The values with corresponding errors are listed. The
parameter values are C0 = C1 = C2 = 1, R0 = R1 = R2 = 1, β = e = 1, Vp = 0. The numerical
affinities are evaluated from the statistics obtained in simulation over the time interval [0, 10000]
and 1 × 104 iterates for every case. The numerical method for estimating the error can be found
in Appendix E.
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Figure 7.6: The mean current J1 of electron tunneling as a function of A1, with A2 fixed. The
asterisks are the results from numerical simulation, and the circles are obtained from J1 = ∂Q/∂λ1
with numerical differentiations. The dash lines join the asterisks. The parameter values are
β = e = 1, C0 = 0.02, C1 = 0.03, C2 = 0.05, R0 = 1, R1 = 3, R2 = 2, Vp = 3.0.
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Table 7.1: The numerical values used for testing the fluctuation-dissipation relations (2.16) and
the Onsager reciprocal relations (2.17). Three significant digits are obtained. The derivatives are
approximated by numerical differentiations, which are accurate up to O(10−4) with the methods
implemented here. The parameter values are the same as those used for Figure 7.6.

(i, j) Li,j Dij(A = 0) Li,j −Dij(A = 0)
(1, 1) 7.59× 10−2 7.58× 10−2 1.15× 10−4

(1, 2) −2.53× 10−2 −2.53× 10−2 2.75× 10−5

(2, 1) −2.53× 10−2 −2.53× 10−2 3.03× 10−5

(2, 2) 1.01× 10−1 1.01× 10−1 1.43× 10−4

Table 7.2: The numerical values of the quantities used for testing the nonlinear response rela-
tions (2.18). Three significant digits are obtained. The derivatives are approximated by numerical
differentiations, which are accurate up to O(10−6) with the methods implemented here. The
parameter values are the same as those used for Figure 7.6.

(i, j, k) Mi,jk Rij,k Rik,j Mi,jk −Rij,k −Rik,j

(1, 1, 1) 5.27× 10−3 2.63× 10−3 2.63× 10−3 3.60× 10−6

(1, 2, 2) 2.54× 10−3 1.27× 10−3 1.27× 10−3 −1.51× 10−6

(1, 1, 2) −1.24× 10−2 −1.15× 10−2 −8.81× 10−4 −7.48× 10−6

(2, 1, 1) −1.76× 10−3 −8.81× 10−4 −8.81× 10−4 3.26× 10−6

(2, 2, 2) −1.01× 10−2 −5.07× 10−3 −5.07× 10−3 −2.13× 10−6

(2, 1, 2) −6.75× 10−3 1.27× 10−3 −8.01× 10−3 −6.33× 10−6

numerical differentiations (see Appendix E) according to Eqs. (2.6)-(2.7), and then proceed with
the evaluation of the response coefficients also with numerical differentiations.

Table 7.1 presents the values of all the linear response coefficients and diffusivities in the same
conditions as in Figure. 7.6. The fluctuation-dissipation relations (2.16) and the Onsager reciprocal
relations (2.17) are verified up to numerical accuracy. Beyond, Table 7.2 gives the values of the
nonlinear response coefficients (2.12) and the first responses (2.19) of the diffusivities, again in the
same conditions as in Figure 7.6. Table 7.2 shows that the relations (2.18) are also satisfied up to
numerical accuracy. Therefore, the implications of microreversibility beyond the linear regime are
verified in this nonlinear model.

It should be mentioned that the response coefficients of even orders are all vanishing if Vp is
an integer multiple of e/(C0 + C1 + C2), because the transport properties have the symmetries
Ji(A) + Ji(−A) = 0 and Dij(A) = Dij(−A) in this case. So, the non-zero response coefficients of
even orders can find their origin in the effect that excess electrons can not completely compensate
the voltage Vp due to the their discrete nature.

7.6 Current-Voltage Characteristics
The nonlinear dependence becomes stronger at lower temperature, as seen in Figure 7.7 where
the electric current I1 = −|e|J1 is shown as a function of voltages V1 and Vp for C1 ≫ C0 = C2,
R1 ≫ R0 = R2, and the temperature a hundred times lower than in Figure 7.6. We observe in Fig-
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Figure 7.7: Current-voltage characteristics for the tunnel junction system when the parameters are
chosen such that a pattern of Coulomb staircases is produced. The electric current defined as Ii =
−|e|Ji is shown versus the voltages V1 and Vp. The asterisks are numerical results from simulation
and dash lines join them. I1-V1 curves for Vp = −24, 0, 24 and I1-Vp curves for V1 = −16, 0, 16
are depicted. The parameter values are β = 100, e = 1, C1 = 0.1, C0 = C2 = 0.001, R1 = 100,
R0 = R2 = 1 and V2 = 0. This set of parameters is such that the tunnel junctions 0 and 2 play
identical roles, so an equivalent circuit would be given by replacing both junctions in parallel with
a single one having a capacitance twice larger and a resistance half smaller.

ure 7.7 that, under such conditions, Coulomb staircases manifest themselves in the current-voltage
characteristics, as for single-electron transistors. For the parameter values taken in Figure 7.7
where C0 = C2, R0 = R2, and V0 = V2 = 0, an equivalent single tunnel junction can be considered
to replace the tunnel junctions 0 and 2 connected in parallel, a capacitance twice larger, and a
resistance half smaller. Therefore, in the analogy with a single-electron transistor, the roles of the
source, the gate, and the drain would be respectively played by the electrode 1, electrode with Vp,
and the electrodes 0 and 2. The Coulomb staircases appear on the lines given by

V1 = C0 + C1 + C2

C1
Vp + e

C1

(
N ∓ 1

2

)
with N ∈ Z (7.23)

in the plane (Vp, V1), as indeed observed in Figure 7.7. If V1 is fixed, the staircases are separated
by ∆Vp = e/(C0 + C1 + C2), corresponding to the period of current-voltage characteristics as a
function of Vp. In the following, we call tunnel junction 1 the source channel, and the tunnel
junctions 0 and 2 collectively the drain channel.

The mean current I1 as a function of the voltage V1 forms plateaus separated by steep jumps.
Accordingly, the effective conductance G = dI1/dV1 forms sharp peaks, which is the manifestation
of the Coulomb blockade effect, as in single-electron transistors [111]. If β|∆U (±)

i | ≫ 1, the
rates (7.4) are given by W

(±)
i ≈ 0 for ∆U (±)

i > 0 and W
(±)
i ≈ |∆U (±)

i |/(e2Ri) for ∆U (±)
i < 0.

Because C1 ≫ C0 = C2, the voltage of the central region (7.1) can be approximately written
as VM ≈ V1 − Ne/C1, where we have omitted the contribution of Vp for convenience. Since the
resistance R1 is significantly larger than R0 = R2, the rates W (±)

1 play negligible roles with respect
to W

(±)
0 and W

(±)
2 . In such conditions, VM is closer to the drain voltage V0 = V2 = 0 than to

the source voltage V1, in such a way that the currents in both source and drain channels can be
balanced. Figure 7.8 shows the fixed voltage levels of the source, drain, and possible levels of the
central region. In this figure, the voltage level of source is lower than that of drain. According to the
Coulomb blockade effect, it can be inferred that the system switches between two states, with VM
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Figure 7.8: The voltage levels the source (electrode 1), drain (electrodes 0 and 2), and central
region corresponding to the Coulomb staircase pattern in Figure 7.7. The drain voltage is fixed
V0 = V2 = 0. The whole junction system switches between two states, during which electrons are
constantly transducted from the source to the drain. The subfigures (a) to (b) to (c) shows the
evolution of the voltage levels as the source voltage V1 being manipulated.

changing frequently. During the switches, ∆U (−)
i for i = 0, 2 change signs accordingly, and ∆U (+)

i

for i = 0, 2 always stay positive. So, when VM is in its higher level, the drain channel is closed,
whereas when VM is in its lower level, the drain channel is open. The source channel is always open
due to the large gap between VM and the source voltage V1. When the central region receives an
electron from the source, its voltage VM drops from the higher level to the lower level and at the
same time the drain channel becomes open. After that, an electron is quickly transducted from the
central region to the drain, VM goes back to its higher level, and the drain channel closes again.
The electric current I1 depends on the gap between VM and V1, which determines the frequency of
the switches of the system. If the source voltage V1 slowly decreases, the two possible voltage levels
of the central region also decrease as a whole, keeping the gap between VM and V1 unchanged and
thus I1 being constant (see Figure 7.8b). This explains the presence of plateaus in the current-
voltage characteristics in Figure 7.7. However, when the two voltage levels of the central region
as a whole gradually mismatch the location where they initially are, the drain channel suddenly
becomes always open, and subsequently an extra electron is transducted from the central region
to the drain. After that, the two voltage levels of the central region suddenly jump to where they
initially are, and continues to switch, but with a higher frequency as VM − V1 becomes larger (see
Figure 7.8c). This is the underlying mechanism why plateaus jump steeply.



Chapter 8

Conclusion and Perspectives

The present thesis has been devoted to the study of charge transport in mesoscopic systems, with
the focus on the fluctuation theorem and its implications. Moreover, the influence of long-range
electrostatic interaction between the constituent charged particles on transport properties has been
investigated and qualitatively clarified.

In Chapter 3, we studied the transport properties of particles in two Markov stochastic models.
In the first model, the system is composed of several reservoirs between which the particles are ex-
changed with constant transition rates. This indicates that the particle transport is a superposition
of several Poisson processes, and as a consequence the multivariate fluctuation relation was shown
to be satisfied at every instant of time. The remarkable point of this model is that the constant
rates can be fully determined from the mean values of the currents and their diffusivities, thus
enabling us to numerically evaluate the affinities as natural logarithm of two rates between every
pair of reservoirs. This normally requires to numerically solve the nonlinear equations where the
input parameters of the mean values of the currents and their diffusivities are obtained from the
counting statistics of signed cumulated fluxes. Moreover, this property suggests that this model
could be used to describe in a coarse-grained way the long-time behavior of particle transport in
other nonequilibrium steady state systems in contact with arbitrarily many reservoirs. In this re-
gard, it was proved that this coarse-grained model is exactly valid to estimate the values of affinities
in near-equilibrium regimes. In the proof, we used the fluctuation-dissipation relations linking the
linear response coefficients of currents and their diffusivities in equilibrium. In the second model
studied in Chapter 3, there are three reservoirs and the state of the system is fully characterized
by a single random variable, giving the concentration of particles inside the system. The transition
rates have linear dependence on the system state of particle concentration. We calculated the
finite-time moment generating function of signed cumulated fluxes, and from this we established
the finite-time fluctuation theorem. The time-dependent affinities were defined, converging in time
as 1/t to their asymptotic values. The global transition rates associated with the particle exchanges
over long enough time intervals between reservoirs were identified from the cumulant generating
function. The so-obtained affinities are equivalent with those evaluated from Schnakenberg’s graph
analysis. On the other hand, the numerically computed affinities are in good agreement with their
theoretical predictions. The successful description of the long-time behavior of particle transport
in the second model in terms of the first model brought a strong evidence that the first stochastic
model can serve as a coarse-grained description of those systems having linear transition rates in
regimes far from equilibrium. Moreover, the quantities defined by Eqs. (3.89)-(3.94) preserve the
structure of the nonlinear equations (3.111)-(3.116) with the diffusivities replaced by the time-
dependent ones. This indicates that the coarse-grained model is also suitable for the description
of particle transport over finite time intervals. The so-obtained affinities are thus time dependent
and, inferred from the analysis in Subsection 3.2.4, they are supposed to converge in time to their
asymptotic values with corrections going as 1/t. Numerical support can be found in Section 4.6
for a Markov jump process with linear rates between two particle reservoirs.
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To test whether the coarse-grained model is applicable to the nonequilibrium systems with
nonlinear transition rates, we proceeded in Chapter 4 to study the charge transport in a conduc-
tive channel maintained between two reservoirs. The stochastic approach developed in Ref. [62]
was adopted. The description is based on stochastic partial differential equations for the charge
densities. These balance equations are coupled to the Poisson equation for the electric potential
generated by the charges. This description is consistent with the laws of electricity, thermodynam-
ics, and microreversibility. In the noiseless limit, the macroscopic description is recovered. For
the purpose of numerically simulating the stochastic process, the channel was spatially discretized
into small cells, and a Markov jump process is introduced, which is ruled by a master equation
for the time evolution of the probability that the cells contain given numbers of particles. If these
numbers are large enough, the Markov jump process can be replaced by a Langevin stochastic
process involving Gaussian white noises, as shown in Appendix B. The numerical simulation of
the Langevin stochastic process is significantly more efficient than the one of the Markov jump
process, although giving results of comparable accuracy for large numbers of particles in the cells.
The key point for the stochastic evolution is to determine the intrinsic energy changes associated
with the particle jumps between cells (see Appendix A). Then, the transition rates are weighted by
the function (4.24), which satisfies the detailed balance condition (4.25) under equilibrium. How-
ever, due to the long-range electrostatic interaction, the transition rates no longer depend linearly
on the local particle concentrations. We performed the counting statistics of signed cumulated
particle transfers over a long enough time interval, and then calculated the values of the mean
current and its diffusivity, which further led to the numerical evaluation of the affinity according to
the coarse-grained model. It turned out that the numerically obtained affinity is generally larger
than its theoretical prediction, especially when the system is far from equilibrium. This is a strong
evidence that the range of application of the coarse-grained model is restricted to near-equilibrium
regimes for the system with nonlinear rates.

An explanation was given as to why the use of the coarse-grained model is limited. This
reason lies in the nonlinearity of the transition rates, which arises from the long-range electrostatic
interaction. Physically, the correlations between the charged particles induced by the long-range
electrostatic interaction make the diffusivity of the current smaller than expected, and therefore
the affinity numerically obtained is larger. This numerical observation seems to imply an inequality
between the mean current, the diffusivity, and the actual affinity. If the values of mean current and
affinity are known, we can determine the upper bound of the value of diffusivity. The equivalent
relation of the inequality remains to be found for nonequilibrium systems in contact with more
than two reservoirs.

We also noticed an interesting feature about charge transport in the conductive channel. The
charge density in the channel modulate the intensity of influence of the long-range electrostatic
interaction on the charged particles. When the density becomes very low, the fluctuating electric
field in the channel tends to be approximated as a static background field. In the low-density limit,
the transition rates are linear due to the static nature of the electric field in this case. In such
limiting case, we proved that the coarse-grained model can be applied in regimes arbitrarily far
from equilibrium. Moreover, the finite-time fluctuation theorem can be established, with the time-
dependent affinity converging to its asymptotic value in time as 1/t. This finding shows that the
density of charged particle flowing across the nonequilibrium system should be as low as possible
for those properties to hold.

In Chapter 5, the preceding stochastic approach was extended to describe charge transport
in p-n junction diodes, taking into account the random motion of electrons and holes as well
as the process of generation and recombination of electron-hole pairs. The spatially extended
description allows us to define the measured electric current by including the contribution of the
displacement current, which is essential for the study of current fluctuations [102, 62]. The profiles
of charge carrier densities and electric potential obtained with this stochastic approach agree with
those calculated with the macroscopic mean-field equations under equilibrium and nonequilibrium
stationary conditions. Since the stochastic description satisfies local detailed balance in consistency
with microreversibility, the fluctuation theorem holds for the carrier current and the measured total
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current. Using the coarse-grained model, the macroscopic affinity given by the applied voltage is
reached asymptotically in time as predicted by the fluctuation theorem. The convergence to the
macroscopic affinity is remarkably faster for the total current than the carrier current. The reason
is that the inclusion of the displacement current in the total current expresses the effects of the
long-range electrostatic interaction on the measurement of the current fluctuations. Therefore, the
random jumps of the charge carriers anywhere inside the diode have an instantaneous effect on
the measured total current in the quasi-static limit of Maxwell’s equations. The current-voltage
characteristics were computed for different concentration ratios of majority to minority carriers.
The Shockley model for the I-V characteristics of the p-n junction diode was shown to be valid
under the extreme condition where the concentration is overwhelmingly larger for the majority
carriers than for the minority carriers.

In Chapter 6, we continued our study of charge transport in other semiconductor devices,
bipolar n-p-n junction transistors, with the same stochastic approach. We have shown that a
fluctuation theorem holds for the two electric currents that are coupled together in the bipolar
n-p-n junction transistor. Using the coarse-grained model, the asymptotic values of affinities were
recovered from the first and second cumulants numerically obtained in counting statistics. However,
according to the reason that has been explained, the deviations of the numerically computed
affinities and their theoretical predictions were also observed to be beyond the error. We also
showed that, as corollaries of the fluctuation theorem for the currents, the fluctuation-dissipation
relations and Onsager reciprocal relations are satisfied. In particular, we verified in detail that the
second-order nonlinear response coefficients of the currents are related to the first-order responses
of the diffusivities, as predicted by theory [29, 69, 71]. The signal-amplifying effect, the typical
functionality of transistors, was realized within the stochastic approach.

In Chapter 7, we investigated charge transport in three tunnel junctions that are coupled to
a common quantum dot or conductive island, thus giving rise to two currents. Like the second
stochastic model in Chapter 3, the state of the present system is also characterized by one random
variable, representing its charge occupancy. The difference is that the transition rates for the
electron tunneling are nonlinear. The evolution operator of the master equation of this system is
modified to include the counting parameters. Because of the one-variable characterization of the
state, the modified evolution operator can be written in a matrix form, thus enabling the numerical
calculation to find the leading eigenvalue which is the cumulant generating function of the system.
The symmetry of the so-obtained cumulant generating function were checked, as predicted by
the fluctuation theorem. Moreover, the mean values of the currents and their diffusivities can
be obtained by numerically differentiating the cumulant generating function with respect to the
counting parameters. Continuing the procedure of numerical differentiations with respect to the
affinities, the responses of the cumulants can be evaluated. Comparing the results, the Onsager
reciprocal relations together with their generalizations were again tested. Under certain conditions,
the staircase pattern of the current-voltage characteristics was obtained. This finds its origin in
the Coulomb blockade effect.

In summary, we have studied in this thesis charge transport in several mesoscopic systems. In
particular, the functionalities realized in the two semiconductor devices, i.e., diodes and transistors,
illustrate that the stochastic approach provides a powerful computational tool for the simulation of
electronic devices. Besides, these mesoscopic systems were used to address the fundamental issue
of microreversibility in nonequilibrium statistical mechanics. The fluctuation theorem was shown
to hold in various cases. The coarse-grained model for nonequilibrium systems in contact with
several reservoirs was developed. The aim of this coarse-grained model is to give an estimation of
affinities from the first and second cumulants of the probability distribution of currents. The scope
of its application was clarified, and an interesting inequality was also found. Because of the relative
easy access to the first two cumulants in counting statistics, it is hoped that this coarse-grained
model can find more broader applications in physical, chemical, and biological systems.

Finally, an open question can be raised. It is naturally to conjecture that the dynamic nature
of electric field according to Maxwell’s equations would also make an impact on the transport
properties. The stochastic approach for charge transport that we have used relies on the assumption
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that the electric field propagates instantaneously, thus abruptly imposing interactions between
charged particles, no matter how long in the distance between them. However, this is not the
case in reality according to the Special Relativity. Therefore, a more complete stochastic approach
incorporating the dynamic nature of electric field remains to be developed, and with this approach
we may hope to obtain more realistic transport properties including all the electromagnetic effects.



Appendix A

Intrinsic Energy Change in Electrostatic
Systems

In this appendix, we explicitly give the calculation of the intrinsic energy change associated with
the transitions of charged particles in discretized mesoscopic systems that are studied in this thesis.
This intrinsic energy change is defined as the result of total electrostatic energy change minus the
work done by the external voltage source.

The Conductive Channel in Chapter 4
Using the results of Ref. [62], the discretized Poisson equation (4.19) is written in the matrix form

C ·Φ = O, (A.1)

where

C = α



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


with α = εΩ

∆x2 , (A.2)

and

Φ =



Φ1
Φ2
...

Φi

...
ΦL−1
ΦL


, O = e



N1 −N−
N2 −N−

...
Ni −N−

...
NL−1 −N−
NL −N−


+ α



ΦL
0
...
0
...
0

ΦR


. (A.3)

{Ni}L
i=1 are the numbers of mobile particles of positive charge +e in discretized cells, and N− is

the number of fixed ions of negative charge −e in each discretized cell. The electrostatic potential
is given by

Φ = C−1 ·O, (A.4)
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with (
C−1

)
ij

=

{
i

α(L+1) (L+ 1− j) if i ≤ j,
j

α(L+1) (L+ 1− i) if i > j.
(A.5)

The intrinsic energy change ∆U associated with the transitions of charged particles is calculated
in terms of the change of U defined as1

U = 1
2

Φ · C ·Φ = 1
2

O · C−1 ·O. (A.6)

When a charged particle transits from the ith to the (i+ 1)th cell, then

∆Ui,i+1 = 1
2
(
O′ · C−1 ·O′ −O · C−1 ·O

)
, (A.7)

where

O′
k = Ok − eδk,i + eδk,i+1. (A.8)

We thus have that

∆Ui,i+1 = +e(Φi+1 − Φi) + e2

2

[ (
C−1)

i,i
− 2

(
C−1)

i,i+1 +
(
C−1)

i+1,i+1

]
. (A.9)

Using Eq. (A.5), we find that

∆Ui,i+1 = +e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
. (A.10)

We notice that, for transitions at the boundaries, the above expression holds by taking the values
of the potentials in the reservoirs, Φ0 = ΦL and ΦL+1 = ΦR.

The p-n Junction Diode in Chapter 5
The calculation of intrinsic energy change in p-n junction diodes is much the same as that in
conductive channels, except that there are more species of charge carriers. The discretized Poisson
equation (5.40) is written in the matrix form (A.1) with the same expressions for Φ and C as those
in Eqs. (A.2)-(A.3). Instead, O is expressed as

O = e



P1 −N1 +D1 −A1
P2 −N2 +D2 −A2

...
Pi −Ni +Di −Ai

...
PL−1 −NL−1 +DL−1 −AL−1

PL −NL +DL −AL


+ α



ΦL
0
...
0
...
0

ΦR


, (A.11)

where

• {Pi}L
i=1 are the numbers of mobile holes of positive charge +e in discretized cells;

• {Ni}L
i=1 are the numbers of mobile electrons of negative charge −e in discretized cells;

1U is defined such that it not only includes the electrostatic energy stored in the system, but also accounts for
the work done by the external voltage source.
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• {Di}L
i=1 are the numbers of fixed donors of positive charge +e in discretized cells;

• {Ai}L
i=1 are the numbers of fixed acceptors of negative charge +e in discretized cells.

The intrinsic energy changes associated with transitions of electrons and holes between cells are
given by

∆U (N)
i,i+1 = −e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
, (A.12)

∆U (P )
i,i+1 = +e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
. (A.13)

For transitions at the boundaries, these expressions hold by taking the values of the potentials in
the reservoirs, Φ0 = ΦL and ΦL+1 = ΦR.

The Bipolar n-p-n Junction Transistor in Chapter 6
The species of charge carriers in n-p-n junction transistors are the same as those in p-n junction
diodes. The discretized Poisson equation (6.18) is written in the matrix form (A.1) with the same
expressions for Φ as that in Eq. (A.3). Instead, C is here expressed as

C = α



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


+ γ



0
. . .

0
2

0
. . .

0


(A.14)

with

α = εΩ
∆x2 , γ = εΩ

∆y2 , (A.15)

and

O = e



P1 −N1 +D1 −A1
P2 −N2 +D2 −A2

...
Pi −Ni +Di −Ai

...
PL−1 −NL−1 +DL−1 −AL−1

PL −NL +DL −AL


+ α



ΦC

0
...
0
...
0

ΦE


+ 2γ



0
...
0

ΦB

0
...
0


. (A.16)

Here, we have assumed that only the discretized cell with index i = m is in contact with the Base,
as the case of the actual scheme. The intrinsic energy change associated with the transition of an
electron of charge −e from the ith to the (i + 1)th cell is given by the change in the energy of
U (A.6), reading

∆U (N)
i,i+1 = 1

2
(
O′ · C−1 ·O′ −O · C−1 ·O

)
, (A.17)

where

O′
k = Ok + eδk,i − eδk,i+1. (A.18)
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We thus have that

∆U (N)
i,i+1 = −e(Φi+1 − Φi) + e2

2

[ (
C−1)

i,i
− 2

(
C−1)

i,i+1 +
(
C−1)

i+1,i+1

]
. (A.19)

A similar expression holds for hole transitions since they have the charge +e,

∆U (P )
i,i+1 = +e(Φi+1 − Φi) + e2

2

[ (
C−1)

i,i
− 2

(
C−1)

i,i+1 +
(
C−1)

i+1,i+1

]
. (A.20)

The inverse of the matrix C here is computed numerically2. For transitions at the boundaries, we
have

∆U (N)
0,1 = −e(Φ1 − ΦC) + e2

2
(
C−1)

1,1 , (A.21)

∆U (N)
1,0 = −e(ΦC − Φ1) + e2

2
(
C−1)

1,1 , (A.22)

∆U (N)
L,L+1 = −e(ΦE − ΦL) + e2

2
(
C−1)

L,L
, (A.23)

∆U (N)
L+1,L = −e(ΦL − ΦE) + e2

2
(
C−1)

L,L
, (A.24)

∆U (N)
B,i = −e(Φi − ΦB) + e2

2
(
C−1)

i,i
, (A.25)

∆U (N)
i,B = −e(ΦB − Φi) + e2

2
(
C−1)

i,i
, (A.26)

for electrons, and similar expressions for holes.

The Tunnel Junction in Chapter 7
Suppose there are N excess electrons in the central region between the three tunnel junctions (see
Figure 7.1), and for convenience, Vp = 0. Thus, we have

Q1

C1
+ Q0

C0
= V1 − V0, (A.27)

Q2

C2
+ Q0

C0
= V2 − V0, (A.28)

Q1 +Q2 −Q0 = Ne. (A.29)

Here, Qi denotes the charge stored in the ith capacitor, and the positive directions are set from
the electrodes 1, 2 to the electrode 0. Solving the above equations, we get

Q0

C0
= V0C0 + V1C1 + V2C2

C0 + C1 + C2
− Ne

C0 + C1 + C2
− V0, (A.30)

Q1

C1
= V1 −

V0C0 + V1C1 + V2C2

C0 + C1 + C2
+ Ne

C0 + C1 + C2
, (A.31)

Q2

C2
= V2 −

V0C0 + V1C1 + V2C2

C0 + C1 + C2
+ Ne

C0 + C1 + C2
. (A.32)

Consequently, we obtain the voltage of the central region,

VM(N) = V0C0 + V1C1 + V2C2

C0 + C1 + C2
− Ne

C0 + C1 + C2
. (A.33)

2The library GSL provides the function gsl_linalg_LU_invert for computing the inverse of a matrix from LU
decomposition. Since this is a C/C++ library, it can be conveniently called in highly computationally demanding
simulations.

https://www.gnu.org/software/gsl/
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The total electrostatic energy stored in the three junctions is given by

E(N) = Q2
0

2C0
+ Q2

1
2C1

+ Q2
2

2C2
, (A.34)

and therefore the change of electrostatic energy is

∆E = E(N ′)− E(N) = Q′2
0 −Q2

0
2C0

+ Q′2
1 −Q2

1
2C1

+ Q′2
2 −Q2

2
2C2

, (A.35)

The work done by the external voltage source can be calculated as

W = V0∆Q0 + V1∆Q1 + V2∆Q2, (A.36)

where ∆Qi denotes the charge transferred from the voltage source to the ith electrode. If an
electron tunnels form electrode 1 to central region, for example, then

∆Q0 = −Q′
0 +Q0, (A.37)

∆Q1 = Q′
1 −Q1 − e, (A.38)

∆Q2 = Q′
2 −Q2. (A.39)

The intrinsic energy change associated with the tunneling of an electron across one junction is
given by

∆U = ∆E −W . (A.40)

In this way, we finally obtain that

∆U (±)
i = ∓e [VM(N)− Vi] + Ec, (A.41)

where

Ec = e2

2(C0 + C1 + C2)
. (A.42)

Analogy Between the Discretized Conductive Channel and
Capacitors Connected in Series
The discretized conductive channel can be seen as many identical capacitors connected in series,
with each cell being the middle region between two neighboring capacitors. We set the positive
direction to be from the left reservoir to the left reservoir. Let q0, q1, q2, · · · , qL denote the charges
stored in capacitors, then from electrodynamics we have

qj = α(Φj − Φj+1), (A.43)

where α = εΩ/∆x2 is the capacitance of each capacitor. Summing Eq. (A.43) with subscript
running from j = 0 to j = L, we get

1
α

L∑
j=0

qj = ΦL − ΦR. (A.44)

where the notations ΦL = Φ0 and ΦR = ΦL+1 are used for convenience. From the law of charge
conservation, we have the recurrence

qj+1 − qj = e(Nj+1 −N−), (A.45)
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according to which we can write down the following expressions:

q0 = q0, (A.46)
q1 = q0 + e(N1 −N−), (A.47)
q2 = q0 + e(N1 −N−) + e(N2 −N−), (A.48)

...
qn = q0 + e(N1 −N−) + e(N2 −N−) + · · ·+ e(NL −N−). (A.49)

Summing the above expressions and using Eq. (A.44), we obtain

q0 = 1
L+ 1

[
α (ΦL − ΦR)− e

L∑
k=1

(L+ 1− k)(Nk −N−)

]
. (A.50)

When a particle of charge +e transits from the ith to (i + 1)th cell, the charges stored in the
capacitors redistribute themselves, giving the following values,

q′
j = qj + e

L+ 1
− eδj,i. (A.51)

The intrinsic energy change associated with this transition is calculated as

∆Ui,i+1 = ∆E −W

= 1
2α

 L∑
j=0

q′2
j −

L∑
j=0

q2
j

− (ΦL∆QL + ΦR∆QR)

= 1
2α

L∑
j=0

(q′
j + qj)(q′

j − qj)− [ΦL(q′
0 − q0)− ΦR(q′

L − qL)] . (A.52)

Substituting Eqs. (A.44) and (A.51) into Eq. (A.52), we finally obtain that

∆Ui,i+1 = +e(Φi+1 − Φi) + e2L∆x2

2(L+ 1)εΩ
, (A.53)

which is in agreement with Eq. (A.10). For transitions at the boundaries, the above expression
holds.



Appendix B

Stochastic Process of Langevin Type

The numbers of particles in the cells of discretized mesoscopic systems studied in this thesis are
typically large. In this large-number limit, the Markov jump process describing the time evolu-
tion of the mesoscopic systems can be approximated by the corresponding Langevin stochastic
process [86]. In this way, much faster simulation can be implemented. This appendix is meant to
explicitly present the details of such approximation.

The Markov Stochastic Model in Section 3.2
In the limit where N ≫ 1, the operators exp(±∂N ) can be expanded up to second order in the
partial derivatives ∂N in Eq. (3.54). In this way, we get the Fokker-Planck equation

∂tP =
2∑

i=0

{
− ∂N

[(
W

(+)
i −W (−)

i

)
P
]

+ ∂2
N

[(
W

(+)
i +W

(−)
i

)
P
]}

(B.1)

for the time evolution of the probability density P. This shows that the variables N obeys the
following stochastic differential equation of Langevin type,

dN
dt

=
2∑

i=0
Fi, (B.2)

expressed in terms of the fluxes

Fi = W
(+)
i −W (−)

i +
√
W

(+)
i +W

(−)
i ξi(t), (B.3)

and the Gaussian white noises ξi(t) satisfying the properties:

⟨ξi(t)⟩ = 0, (B.4)
⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′). (B.5)

The Conductive Channel in Chapter 4
In the limit where Ni ≫ 1, the operators exp(±∂Ni) can be expanded up to second order in the
partial derivatives ∂Ni in Eq. (4.20). In this way, we get the Fokker-Planck equation

∂tP =
L∑

i=0

{
− ∂Ni

[(
W

(+)
i−1 −W

(−)
i−1 −W

(+)
i +W

(−)
i

)
P
]

+ ∂2
Ni

[
1
2

(
W

(+)
i−1 +W

(−)
i−1 +W

(+)
i +W

(−)
i

)
P

]
+ ∂Ni

∂Ni+1

[
−
(
W

(+)
i +W

(−)
i

)
P
]}

.

(B.6)
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for the time evolution of the probability density P. This shows that the variables Ni obeys the
following stochastic differential equations of Langevin type,

dNi

dt
= Fi−1 − Fi, (B.7)

expressed in terms of the fluxes

Fi = W
(+)
i −W (−)

i +
√
W

(+)
i +W

(−)
i ξi(t), (B.8)

and the Gaussian white noises ξi(t) satisfying the properties:

⟨ξi(t)⟩ = 0, (B.9)
⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′). (B.10)

The p-n Junction Diode in Chapter 5
In the limit where X ≫ 1, the operators exp(±∂X) can be expanded up to second order in the
partial derivatives ∂X in Eq. (5.41) (X = Ni, Pi). In this way, we get the Fokker-Planck equation

∂tP =
L∑

i=0

{
− ∂Ni

[(
W

(+N)
i−1 −W (−N)

i−1 −W (+N)
i +W

(−N)
i

)
P
]

+ ∂2
Ni

[
1
2

(
W

(+N)
i−1 +W

(−N)
i−1 +W

(+N)
i +W

(−N)
i

)
P

]
+ ∂Ni

∂Ni+1

[
−
(
W

(+N)
i +W

(−N)
i

)
P
]

+ (N ⇌ P )

}

+
L∑

i=1

{
− (∂Ni + ∂Pi)

[(
W

(+)
i −W (−)

i

)
P
]

+ (∂Ni + ∂Pi)
2
[

1
2

(
W

(+)
i +W

(−)
i

)
P

]}
(B.11)

for the time evolution of the probability density P. This shows that the variables Ni and Pi obey
the following stochastic differential equations of Langevin type:

dNi

dt
= F

(N)
i−1 − F

(N)
i +Ri, (B.12)

dPi

dt
= F

(P )
i−1 − F

(P )
i +Ri, (B.13)

expressed in terms of the fluxes and reaction rates:

F
(N)
i = W

(+N)
i −W (−N)

i +
√
W

(+N)
i +W

(−N)
i ξ

(N)
i (t), (B.14)

F
(P )
i = W

(+P )
i −W (−P )

i +
√
W

(+P )
i +W

(−P )
i ξ

(P )
i (t), (B.15)

Ri = W
(+)
i −W (−)

i +
√
W

(+)
i +W

(−)
i ηi(t), (B.16)

and the Gaussian white noises ξ(N)
i (t), ξ(P )

i (t), ηi(t) satisfying the properties:

⟨ξ(N)
i (t)⟩ = ⟨ξ(P )

i (t)⟩ = ⟨ηi(t)⟩ = 0, (B.17)

⟨ξ(N)
i (t)ξ(N)

j (t′)⟩ = ⟨ξ(P )
i (t)ξ(P )

j (t′)⟩ = ⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′), (B.18)

⟨ξ(N)
i (t)ξ(P )

j (t′)⟩ = ⟨ηi(t)ξ(N)
j (t′)⟩ = ⟨ηi(t)ξ(P )

j (t′)⟩ = 0. (B.19)
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The Bipolar n-p-n Junction Transistor in Chapter 6

In the limit where X ≫ 1, the operators exp(±∂X) can be expanded up to second order in the
partial derivatives ∂X in Eq. (6.19) (X = Ni, Pi). In this way, we have the following Fokker-Planck
equation

∂tP =
L∑

i=1

{
− ∂Ni

[(
W

(+N)
i−1 −W (−N)

i−1 −W (+N)
i +W

(−N)
i

)
P
]

+ ∂2
Ni

[
1
2

(
W

(+N)
i−1 +W

(−N)
i−1 +W

(+N)
i +W

(−N)
i

)
P

]
+ ∂Ni∂Ni+1

[
−
(
W

(+N)
i +W

(−N)
i

)
P
]

+ (N ⇌ P )

}

+
L∑

i=1

{
− (∂Ni

+ ∂Pi
)
[(
W

(+)
i −W (−)

i

)
P
]

+ (∂Ni + ∂Pi)
2
[

1
2

(
W

(+)
i +W

(−)
i

)
P

]}

+
∑
iB

{
− ∂Ni

[(
W

(+N)
iB −W (−N)

iB

)
P
]

+ ∂2
Ni

[
1
2

(
W

(+N)
iB +W

(−N)
iB

)
P

]
+ (N ⇌ P )

}
, (B.20)

for the time evolution of the probability density P. This shows that the variables Ni and Pi obey
stochastic differential equations of Langevin type:

dNi

dt
= F

(N)
i−1 − F

(N)
i +Ri + χiBF

(N)
iB , (B.21)

dPi

dt
= F

(P )
i−1 − F

(P )
i +Ri + χiBF

(P )
iB , (B.22)

with the following fluxes and reaction rates:

F
(N)
i = W

(+N)
i −W (−N)

i +
√
W

(+N)
i +W

(−N)
i ξ

(N)
i (t), (B.23)

F
(P )
i = W

(+P )
i −W (−P )

i +
√
W

(+P )
i +W

(−P )
i ξ

(P )
i (t), (B.24)

Ri = W
(+)
i −W (−)

i +
√
W

(+)
i +W

(−)
i ηi(t), (B.25)

F
(N)
iB = W

(+N)
iB −W (−N)

iB +
√
W

(+N)
iB +W

(−N)
iB ξ

(N)
iB (t), (B.26)

F
(P )
iB = W

(+P )
iB −W (−P )

iB +
√
W

(+P )
iB +W

(−P )
iB ξ

(P )
iB (t), (B.27)



96 Appendix B. Stochastic Process of Langevin Type

and the Gaussian white noises ξ(N)
i (t), ξ(P )

i (t), ηi(t), ξ(N)
iB (t), ξ(P )

iB (t) satisfying the properties:

⟨ξ(N)
i (t)⟩ = ⟨ξ(P )

i (t)⟩ = ⟨ηi(t)⟩ = ⟨ξ(N)
iB (t)⟩ = ⟨ξ(P )

iB (t)⟩ = 0, (B.28)

⟨ξ(N)
i (t) ξ(N)

j (t′)⟩ = δijδ(t− t′), (B.29)

⟨ξ(P )
i (t) ξ(P )

j (t′)⟩ = δijδ(t− t′), (B.30)
⟨ηi(t) ηj(t′)⟩ = δijδ(t− t′), (B.31)

⟨ξ(N)
iB (t) ξ(N)

jB (t′)⟩ = δijδ(t− t′), (B.32)

⟨ξ(P )
iB (t) ξ(P )

jB (t′)⟩ = δijδ(t− t′), (B.33)

⟨ξ(N)
i (t) ξ(P )

j (t′)⟩ = ⟨ξ(N)
iB (t) ξ(P )

jB (t′)⟩ = 0, (B.34)

⟨ηi(t) ξ(N,P )
j (t′)⟩ = ⟨ηi(t) ξ(N,P )

jB (t′)⟩ = ⟨ξ(N,P )
i (t) ξ(N,P )

jB (t′)⟩ = 0. (B.35)

Discretized Langevin Stochastic Process in Time
To simulate the Langevin stochastic process, time is discretized into equal intervals ∆t and the
white Gaussian noises are replaced by Gaussian random variables. The typical stochastic differen-
tial equation of Langevin type reads

dX
dt

= F , (B.36)

with the fluctuating flux given by

F = W+ −W− +
√
W+ +W−ξ(t). (B.37)

Here, ξ(t) is the Gaussian white noise that satisfy the properties:

⟨ξ(t)⟩ = 0, (B.38)
⟨ξ(t)ξ(t′)⟩ = δ(t− t′). (B.39)

By discretization in time, we get

X(t+ ∆t) = X(t) + F∆t, (B.40)

where

F = W+ −W− +
√
W+ +W−

G(t)√
∆t

, (B.41)

with G(t) being the independent identically distributed Gaussian random variables of zero mean
value and unit variance1. After the discretization of time into equal intervals ∆t, the evolution can
be simulated with a recurrence involving independent Gaussian random variables. Moreover, the
currents can be expressed in the framework of Langevin stochastic process.

1The library GSL provides the function gsl_ran_gaussian for generating the Gaussian random numbers, with
the mean µ = 0 and the standard deviation σ as one of the arguments.

https://www.gnu.org/software/gsl/


Appendix C

The Continuum Limit

The Conductive Channel in Chapter 4
In the continuum limit where ∆x→ 0 and ∆t→ 0, we can recover the stochastic partial differential
equations (4.7) with the current density (4.8) from the Langevin stochastic equations (B.7)-(B.8),
as follows. First, we note that the approximation ψ(∆U) ≈ exp(−β∆U/2) holds if β∆U ≪ 1.
Next, using Eqs. (4.21), (4.22), and (4.23) in the limit ∆x→ 0, Eq. (B.8) gives the flux

Fi ≈ −
D

∆x2 e−βeΦi+1/2
(
eβeΦi+1Ni+1 − eβeΦiNi

)
+ 1

∆x
√
D(Ni +Ni+1)ξi(t), (C.1)

where Φi+1/2 ≈ (Φi + Φi+1)/2. Substituting this expression into Eq. (B.7), we find the continuity
equation (4.7) with the current density (4.8) in the form (4.14). Because of Eqs. (B.8)-(B.10), the
noise fields obey Eqs. (4.11)-(4.13). The stochastic partial differential equation is thus recovered
in the continuum limit.

The p-n Junction Diode in Chapter 5
In the continuum limit where ∆x → 0 and ∆t → 0, we can recover the stochastic partial differ-
ential equations (5.13)-(5.14) with the current and rate densities (5.15)-(5.17) from the Langevin
stochastic equations (B.12)-(B.16), as follows. Again, we note that the approximation ψ(∆U) ≈
exp(−β∆U/2) holds if β∆U ≪ 1. Next, using Eqs. (5.42), (5.43), and (5.48) in the limit ∆x→ 0,
Eq. (B.14) gives the flux

F
(N)
i ≈ − Dn

∆x2 eβeΦi+1/2
(
e−βeΦi+1Ni+1 − e−βeΦiNi

)
+ 1

∆x
√
Dn(Ni +Ni+1)ξ(N)

i (t), (C.2)

where Φi+1/2 ≈ (Φi + Φi+1)/2. Besides, using Eqs. (5.46) and (5.47), the rate (B.16) becomes

Ri = Ω
(
k+ − k−

Ni

Ω
Pi

Ω

)
+

√
Ω
(
k+ + k−

Ni

Ω
Pi

Ω

)
ηi(t). (C.3)

Substituting these expressions into Eq. (B.12) and dividing it by Ω, we find the electron balance
equation (5.13) with the current density (5.15) in the form (5.30), together with the source (5.17).
The hole balance equation (5.14) is similarly deduced from Eq. (B.13). Because of Eqs. (B.14)-
(B.19), the noise fields obey Eqs. (5.20)-(5.29) since δij/Ω → δ3(r − r′) in the limit Ω → 0. The
stochastic partial differential equations are thus recovered in the continuum limit.





Appendix D

Variable Rescaling

For numerical convenience, the values of physical quantities and parameters listed in Tables 5.1, 5.2
and 6.1 are directly used in simulation. Accordingly, the results in Chapters 5 and 6 are also given
in terms of these values that are used in the simulations. In this appendix, we present a procedure
for recaling the variables so that dimensionless quantities can be defined. In this way, it becomes
possible to the compare these dimensionless quantities with those from experiments which should
be also converted to dimensionless ones according to the same procedure.

The intrinsic carrier density ν =
√
k+/k− introduced in Eq. (5.4) is used to define the dimen-

sionless densities of all charge carriers1,

n∗ ≡ n/ν, p∗ ≡ p/ν, a∗ ≡ a/ν, d∗ ≡ d/ν. (D.1)

The intrinsic carrier lifetime is introduced,

τ = 1
k−ν

= 1√
k+k−

, (D.2)

so that we can define the dimensionless time

t∗ ≡ t/τ . (D.3)

Considering that Dn = Dp = D is supposed in simulation, the position is rescaled as

x∗ ≡ x/ldiff , where ldiff =
√
Dτ =

√
D√
k+k−

(D.4)

is the intrinsic carrier diffusion length before recombination. As a consequence of these definitions,
the dimensionless current densities are given by

jn∗ ≡
jn

junit
, jp∗ ≡

jp

junit
, with junit = νldiff

τ
=

√√√√√k+

k−
· k+D. (D.5)

The dimensionless electric field and potential are defined by

E∗ ≡
E
Eunit

with Eunit = 1
ldiffβe

=

√√
k+k−

D
· 1
βe

, (D.6)

1This ν denotes the electron and hole densities in the so-called intrinsic semiconductor where there is no impurity
doped.
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and

Φ∗ ≡
Φ

Φunit
with Φunit = 1

βe
. (D.7)

Using the values listed in Table 5.1, we have

ν = 1, τ = 100, ldiff = 1, junit = 0.01, Eunit = 1, Φunit = 1, (D.8)

and the relevant numerical results in Chapters 5 and 6 can be easily converted to the dimensionless
ones by dividing values in Eq. (D.8).

According to the above procedure of variable rescaling, the set of ODEs (5.32)-(5.37) takes the
following dimensionless form:

dn∗

dx∗
= −jn∗ − n∗E∗, (D.9)

dp∗

dx∗
= −jp∗ + p∗E∗, (D.10)

djn∗

dx∗
= 1− n∗p∗, (D.11)

djp∗

dx∗
= 1− n∗p∗, (D.12)

dE∗

dx∗
= α (p∗ − n∗ + d∗ − a∗) , (D.13)

dΦ∗

dx∗
= −E∗. (D.14)

These ODEs only depend on the unique dimensionless parameter

α ≡
(
ldiff

λ

)2

= ε−1βeνDτ , (D.15)

where

λ ≡
√

ε

βe2ν
(D.16)

is the intrinsic Debye screening length.



Appendix E

Numerical Methods

In this appendix, we briefly introduce some numerical methods that have been used in this thesis.

Newton-Raphson Method
In numerical analysis, the Newton-Raphson method is a root-finding algorithm for iteratively
producing better approximations to the roots of nonlinear equations. Suppose that F(x) is an
operator from the linear normed space H to the linear normed space Y. These two spaces can be
identical with each other, and their norms are denoted by || · ||H and || · ||Y , respectively. If when
||h||H → 0 we have

||F(x + h)− F(x)−P · h||Y = O(||h||2H), (E.1)

then we call P the derivative operator of F(x) at point x from H to Y. We henceforth use F′(x)
as the notation for the derivative operator P. In vector form, F, x, h are written as

F =

F1
...
Fm

 , x =

x1
...
xm

 , h =

h1
...
hm

 . (E.2)

If the function Fi is continuous and differentiable in the neighborhood of x, then

Fi(x1 + h1, · · · , xm + hm) = Fi(x1, · · · , xm) +
m∑

j=1

∂Fi(x1, · · · , xm)
∂xj

hj +O(||h||2H). (E.3)

So the derivative operator F′(x) can be expressed in matrix form as

F′(x) =
[
∂Fi

∂xj

]
. (E.4)

Now, suppose that X is the root of equation F(x) = 0, xn is an approximation to X, then we have

||F(X)− F(xn)− F′(xn) · (X− xn)||Y = O(||X− xn||2H), (E.5)

which can be approximately written as

F(xn) + F′(xn) · (X− xn) ≈ F(X) (E.6)

if ||X− xn|| is very small. Because F(X) = 0, we have

F(xn) + F′(xn) · (X− xn) ≈ 0. (E.7)
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x

y

x0x1x2
α

F(x)

O

Figure E.1: Schematic diagram of the Newton-Raphson method in the one-dimensional case.

If the root of equation

F(xn) + F′(xn) · (X− xn) = 0 (E.8)

exists，then it can be used as a further approximation to X and calculated as

xn+1 = xn − (F′(xn))−1 · F(xn). (E.9)

This iterative process begins with an initial guess x0 for the root of F(x) = 0, and successively
gives better and better approximation. Figure E.1 schematically shows how the Newton-Raphson
method implemented with a one-dimensional function f(x). For more detailed account of the
Newton-Raphson, readers are referred to Ref. [113].

Numerical Differentiation and Interpolation
In numerical analysis, differentiation describes the procedure for estimating the derivatives of a
mathematical function using several data points of this function. The simplest method is to
use finite difference approximations. In the following, we list some central-difference formulae
approximating the derivatives with the truncation error of different orders. Given some values of
a one-variable function f(x) at several equispaced nodes

{ih} for i = −n, · · · , n, (E.10)

we have

f ′(0) ≈ f1 − f−1

2h
, (E.11)

f ′′(0) ≈ f1 − 2f0 + f−1

h2 , (E.12)

f (3)(0) ≈ f2 − 2f1 + 2f−1 − f−2

2h3 , (E.13)

f (4)(0) ≈ f2 − 4f1 + 6f0 − 4f−1 + f−2

h4 , (E.14)
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all with the truncation error of order O(h2). Here, h denotes the equispaced interval and fi is the
short-hand notation of the function value f(ih). The formulae of higher order O(h4) are given by

f ′(0) ≈ −f2 + 8f1 − 8f−1 + f−2

12h
, (E.15)

f ′′(0) ≈ −f2 + 16f1 − 30f0 + 16f−1 − f−2

12h2 , (E.16)

f (3)(0) ≈ −f3 + 8f2 − 13f1 + 13f−1 − 8f−2 + f−3

8h3 , (E.17)

f (4)(0) ≈ −f3 + 12f2 − 39f1 + 56f0 − 39f−1 + 12f−2 − f−3

6h4 . (E.18)

These formulae can be checked with Taylor series. For mixed partial derivatives of f(x, y), the
function values fi,j [short-hand notation of f(ih1, jh2)] at a grid of equispaced nodes

{(ih1, jh2)} for i = −n, · · ·n and j = −m, · · · ,m, (E.19)

are used. Here, h1 and h2 are equispaced intervals in the x-axis and y-axis, respectively. Some
relevant formulae are

∂2f

∂x∂y
(0, 0) = f1,1 − f1,−1 − f−1,1 + f−1,−1

4h1h2
+O(h2

1h
2
2), (E.20)

∂3f

∂x2∂y
(0, 0) = f1,1 − 2f0,1 + f−1,1 − f1,−1 + 2f0,−1 − f−1,−1

2h2
1h2

+O(h2
1h

2
2), (E.21)

∂4f

∂x2∂y2 (0, 0) = f1,1 − 2f0,1 + f−1,1 − 2f1,0 + 4f0,0 − 2f−1,0 + f1,−1 − 2f0,−1 + f−1,−1

h2
1h

2
2

+O(h2
1h

2
2),

(E.22)

which can be deduced by integrating the formulae for one-variable functions.
In numerical analysis, interpolation describes the procedure used to construct a function which

goes through a given set of data points. According to the Weierstrass approximation theorem [114],
for every continuous function f(x) defined on an interval [a, b], there exists a set of polynomial func-
tions Pn(x) for n = 0, 1, 2, · · · , each of degree n, that approximates f(x) with uniform convergence
over [a, b] as n tends to infinity, that is

lim
n→∞

(
max

a≤x≤b
|f(x)− Pn(x)|

)
= 0. (E.23)

One the other hand, the polynomial Pn(x) of degree n interpolating the n+ 1 points

{xi, f(xi)} for i = 0, · · · , n, (E.24)

is unique. Three standard interpolation methods are available, i.e., those of Vandermonde, Newton,
Lagrange [115, 116]. In the following, we only present the Lagrange interpolation which is the most
clever construction of the interpolating polynomial directly leading to an analytical formula. We
henceforth use Ln(x) as the notation of Pn(x), indicating that the polynomial is obtained with the
Lagrange method. The Lagrange polynomial is constructed as follows,

Ln(x) =
n∑

i=0

 n∏
j=0,j ̸=i

(
x− xj

xi − xj

) f(xi), (E.25)

with the residual given by

Rn(x) = f(x)− Ln(x) = f (n+1)(ξ)
(n+ 1)!

ωn+1(x), (E.26)
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where

ωn+1 =
n∏

j=0
(x− xj). (E.27)

For the two-variable function f(x, y), the Lagrange polynomial

L(x, y) =
∑
i,j

 ∏
m̸=i,n ̸=j

(
x− xm

xi − xm

)(
y − yn

yj − yn

) f(xi, yj) (E.28)

is constructed using the points distributed on a regular grid. Interestingly, some formulae of
numerical differentiation can be obtained by differentiating Lagrange polynomials interpolating
the several given points. One thing to be cautious is the Runge’s phenomenon which is the
problem of oscillations at the edges of an interval that occurs when using polynomial interpolation
with too high degree over a set of equispaced interpolation points. For more detailed account of
interpolation, readers are referred to Refs. [115, 116].

Padé Approximation
In mathematics, Padé approximants form a particular type of rational fraction approximation to
the value of the function. They often gives a better approximation of the function than truncating
its Taylor series and may still work where the Taylor series does not converge. For these reasons
Padé approximants are extensively used in computer calculations. A function f(x) is represented
by a formal power series,

f(x) = c0 + c1x+ c2x
2 + · · · =

∞∑
l=0

clx
l, (E.29)

where c0 ̸= 0 by convention. The Padé approximation to f(x) is the quotient

Rm,n(x) = Pm(x)
Qn(x)

= a0 + a1x+ a2x
2 + · · ·+ amx

m

b0 + b1x+ b2x2 + · · ·+ bnxn
, (E.30)

where Pm(x) and Qn(x) are polynomials of degrees m and n, respectively. The denominator is
usually normalized by setting b0 = 1. So, f(x) = Rm,n(x) gives(

c0 + c1x+ c2x
2 + · · ·

) (
1 + b1x+ b2x

2 + · · ·+ bnx
n
)

= a0 + a1x+ a2x
2 + · · ·+ amx

m, (E.31)

the m + 1 independent numerator coefficients and n denominator coefficients making m + n + 1
unknown coefficients. Equating the coefficients of xm+1, xm+2, · · · , xm+n in Eq. (E.31), we get

bncm−n+1 + bn−1cm−n+2 + · · ·+ cm+1 = 0, (E.32)
bncm−n+2 + bn−1cm−n+3 + · · ·+ cm+2 = 0, (E.33)

...
bncm + bn−1cm+1 + · · ·+ cm+n = 0, (E.34)

which becomes a set of n linear equations for the n unknown denominator coefficients. By solving
the system of linear equation we find bi. The numerator coefficients a0, a1, · · · , am immediately
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Table E.1: A portion of the Padé table for exponential function ex.

1
1

1
1−x

1
1−x+ 1

2 x2
1

1−x+ 1
2 x2− 1

6 x3

1+x
1

1+ 1
2 x

1− 1
2 x

1+ 1
3 x

1− 2
3 x+ 1

6 x2
1+ 1

4 x

1− 3
4 x+ 1

4 x2− 1
24 x3

1+x+ 1
2 x2

1
1+ 2

3 x+ 1
6 x2

1− 1
3 x

1+ 1
2 x+ 1

12 x2

1− 1
2 x+ 1

12 x2
1+ 2

5 x+ 1
20 x2

1− 3
5 x+ 3

20 x2− 1
60 x3

1+x+ 1
2 x2+ 1

6 x3

1
1+ 3

4 x+ 1
4 x2+ 1

24 x3

1− 1
4 x

1+ 3
5 x+ 3

20 x2+ 1
60 x3

1− 2
5 x+ 1

20 x2
1− 1

2 x+ 1
10 x2+ 1

120 x3

1− 1
2 x+ 1

10 x2− 1
120 x3

follow from Eq. (E.31) by equating the coefficients of 1, x, x2, · · · , xm:

a0 = c0, (E.35)
a1 = c1 + b1c0, (E.36)
a2 = c2 + b1c1 + b2c0, (E.37)

...

am = cm +
m∑

i=1
bicm−i. (E.38)

After obtaining all the coefficients in the polynomials Pm(x) and Qn(x), the Padé approximant
Rm,n(x) is calculated. It is common practice to display the Padé approximants Rm,n in a table
which is therefore called Padé table. Table E.1 is a portion of Padé table for the exponential
function ex. For detailed account of Padé approximation, readers are referred to Refs. [117, 118,
119]1.

Error Analysis
The formula for derivatives approximated by numerical differences can be written in the following
general form,

∂m+nf

∂xm∂yn
=
∑
i,j

ki,jf(xi, yj) +O(hr
1h

s
2). (E.39)

Apart from the truncation error itself, another source of error is the numerical evaluation of the
function at different points. Suppose that the variances of the numerical values of the function
are denoted as σ2 [f(xi, yj)], then the root-mean-square errors on the derivatives (E.39) can be
evaluated as

RMSE
(
∂m+nf

∂xm∂yn

)
≡

√
σ2
[
∂m+nf

∂xm∂yn

]
≈
√∑

i,j

k2
i,jσ

2 [f(xi, yj)] (E.40)

up to a correction of O(hr
1h

s
2) coming from truncation error.

Given a random sample {Z1, · · · , Zn} of size n from a Gaussian distribution of mean value µ
and variance σ2, the sample average is defined as ⟨Z⟩ = (1/n)

∑n
i=1 Zi, having the expected value

1The Python package Scipy provides the function linalg.expm for computing the matrix exponential using Padé
approximation.

https://www.scipy.org/
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µ. The sample average ⟨Z⟩ has the root-mean-square error

RMSE (⟨Z⟩) =

√√√√√E

( 1
n

n∑
i=1

Zi − µ

)2
 =

√
σ2

n
. (E.41)

The unbiased sample variance S2
n−1 =

∑n
i=1(Z − ⟨Z⟩)2/(n− 1) has the expected value σ2 and the

root-mean-square error on it is equal to

RMSE
(
S2

n−1
)

=

√√√√√E

( 1
n− 1

n∑
i=1

(Z − ⟨Z⟩)2 − σ2

)2
 =

√
2

n− 1
σ4. (E.42)

If we define the mean current J ≡ ⟨Z⟩/t and the diffusivity D ≡ S2
n−1/(2t), then the root-mean-

square errors on them can be estimated as

RMSE (J) =
√
σ2

nt2
≈
√

2D
nt

, (E.43)

RMSE (D) =

√
2σ4

4t2(n− 1)
≈
√

2D2

n− 1
. (E.44)

The procedure used to estimate the error on numerical computation of the affinities A1 =
ln(W10/W01) and A2 = ln(W20/W02) in the Section 3.2 is as follows. From Eqs. (3.111)-(3.118),
the expressions of the numerical affinities are expanded with respect to the values of the mean
currents and their diffusivities up to linear terms such as

∆A1 ≈ a∆J1 + b∆J2 + c∆D11 + d∆D22 + e∆D12, (E.45)

in terms of some coefficients a, b, c, d, and e, which are related to the transition rates in Eqs.(3.111)-
(3.116). Accordingly, the root-mean-square error is estimated as

RMSE (A1) ≈
√
a2σ2(J1) + b2σ2(J2) + c2σ2(D11) + d2σ2(D22) + e2σ2(D12), (E.46)

where σ2(Ji) and σ2(Dij) are the variances which apparently can be obtained as the square of
Eqs. (E.43)-(E.44). A similar expression holds for the error on A2.
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Computer Programming

Computer programming is an art, because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially because it produces objects of beauty.
A programmer who subconsciously views himself as an artist will enjoy what he does and
will do it better.

— Donald E. Knuth

Computer programming plays an increasing important role in scientific research. Actually, it has
become one of the pillars in scientific research, to be complementary with theory and experiment.
A scientist might build a model to describe a physical system according to the underlying laws,
then use a computer to calculate the results and display them. This has become a widely adopted
paradigm in scientific community. So, computer programming is an essential part of training
for a student to become a scientist. A set of easy-to-adopt and effective practices for computer
programming are described in Ref. [120]. In order to give readers a glimpse at the numerical work
behind presented results, the present appendix is devoted to some general aspects of computer
programming in this thesis studies. In this appendix, we will have some general remarks about
object-oriented programming, briefly introduce some useful softwares and libraries, and show some
C++ codes used for numerical simulations.

Object-Oriented Programming with C++ and Python
Object-oriented programming (OOP) is a programming paradigm focusing on objects, which are
entities associated with attributes (also known as member data) and methods (also known as
member functions). The most basic concept in OOP is the class, which is a compound data type
constructed from the elementary data type, such as integers and floating-point numbers. The
corresponding methods are also offered in class definition. The defined class then serves as a
blueprint of the thing of interest that can either be concrete or abstract. An instantiation of the
defined class is called an object. The advantages of OOP include but are not limited to

• structured way of programming (intuitive and very quick to develop for a prototype);

• easy to adapt and maintain;

• easy to package up code into libraries for use by others.

There are many general-purpose programming languages with the object-oriented feature, such as
C++ [121, 122, 123, 124] and Python. C++ is at low-level and compiled, with the capability of
performing stunning feats of computation. It is often used in simulations, especially those that
are computationally expensive. On the contrary, Python is at high-level and interpreted, allowing
developers to write programs with fewer lines than some other programming languages. The most
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notable advantage of Python is that there are a lot of well-documented libraries available for data
analysis, visualization, and so on. It should be mentioned here that there are API (Application
Programming Interfaces) for bridging C++ and Python together. This is what is called hybrid
programming, and in doing so we can have strengths from both sides.

Some Useful Softwares and Libraries
There is no point to reinvent the wheel, as the saying goes. Using a variety of available softwares
and libraries can greatly improve the efficiency of scientific research. Here, we list some softwares
and libraries with brief introduction. They are

• Linux – It represents a family of open source Unix-like operating systems widely used in
scientific computing. The common distributions are Ubuntu, CentOS, Debian, and so on.

• Vim – It is a highly configurable text editor for efficiently creating and changing any kind of
text.

• GNU Make – It is a utility that requires a file, Makefile, which defines a set of tasks to be
executed. It is used to facilitate compiling a program from source code. Ref. [125] gives more
detailed account.

• GSL (GNU Scientific Library) – It is a numerical library for C/C++ programmers. It a free
software under the GNU General Public License.

• g++ – It is an open-source C++ compiler included in GCC (GNU Compiler Collection).

• OpenMP (Open Multi-Processing) – It is an application programming interface (API) that
supports multi-platform shared memory multiprocessing programming in C/C++ and For-
tran.

• OpenMPI – It is an open-source message passing interface (MPI). It is often used in parallel
computation in computer clusters.

• CUDA (Compute Unified Device Architecture) – It is a parallel computing platform and ap-
plication programming interface (API) that allows software developers to use CUDA-enabled
graphics processing unit (GPU) for general purpose processing.

• Matplotlib – It is a Python 2D plotting package which produces publication quality figures
in a variety of formats.

• Numpy – It is a fundamental package for scientific computing with Python. It offers many
routines for processing the operations between arrays.

• Scipy – It is a Python-based ecosystem of open-source softwares for mathematics, science,
and engineering.

C++ Code for Simulating the Diode System
Here, we show the code for simulating the diode system. It is written in the following files:

• Class_vector.cpp, Class_vector.h,

• Class_matrix.cpp, Class_matrix.h,

• Class_diode.cpp, Class_diode.h,

• Function_diode_evolving.cpp,

https://www.linux.org/
https://www.vim.org/
https://www.gnu.org/software/make/
https://www.gnu.org/software/gsl/
https://gcc.gnu.org/
https://www.openmp.org/
https://www.open-mpi.org/
https://developer.nvidia.com/cuda-toolkit
https://matplotlib.org/
https://numpy.org/
https://www.scipy.org/
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• Function_random_number_generating.cpp,

• Main.cpp,

• Makefile,

which are compiled and linked with the tool Make according to instructions written in Makefile.
Object-oriented programming is implemented such that we define a diode class named Cdiode. An
instantiation of Cdiode is a diode object which is a state specifying the discretized distribution of
electrons, holes, and potentials. The time evolution of the diode system is driven by a function
which takes a diode object at time t and the time step dt as the arguments and return another
diode object at time t+ dt. The brief description of functionalities of the code in each file can be
found in the captions of the code appended below.

Listing F.1: Class_vector.cpp. The definition of the vector class Cvector. This class is used as
a supporting data type in the definition of the diode class Cdiode.

1 #include <iostream>
2 #include "Class_matrix.h"
3 using std::cin;
4 using std::cout;
5 using std::endl;
6 class Cvector
7 {
8 public:
9 int m_dimensions;

10 double *m_vector;
11
12 Cvector(void);
13 Cvector(double num, int dim);
14 Cvector(const Cvector &vector);
15 ~Cvector(void);
16 Cvector &operator=(const Cvector &vector);
17 Cvector operator+(const Cvector &vector) const;
18 Cvector operator-(const Cvector &vector) const;
19 Cvector operator*(double multiplier) const;
20 double &operator()(int);
21
22 private:
23 friend Cvector operator*(double multiplier, Cvector vector);
24 };
25
26 Cvector::Cvector()
27 {
28 m_dimensions=0;
29 m_vector=nullptr;
30 }
31
32 Cvector::Cvector(double num, int dim)
33 {
34 m_dimensions=dim;
35 m_vector=new double[m_dimensions];
36 for(int i{0}; i<m_dimensions; i++) *(m_vector+i)=num;
37 }
38
39 Cvector::Cvector(const Cvector &vector)
40 {
41 m_dimensions=vector.m_dimensions;
42 m_vector=new double[m_dimensions];
43 for(int i{0}; i<m_dimensions; i++) *(m_vector+i)=*(vector.m_vector+i);
44 }
45
46 Cvector::~Cvector()
47 {
48 delete [] m_vector;
49 m_vector=nullptr;
50 m_dimensions=0;
51 }
52
53 Cvector &Cvector::operator=(const Cvector &vector)
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54 {
55 if(this==&vector) return *this;
56 delete [] m_vector;
57 m_vector=nullptr;
58 m_dimensions=vector.m_dimensions;
59 m_vector=new double[m_dimensions];
60 for(int i{0}; i<m_dimensions; i++) *(m_vector+i)=*(vector.m_vector+i);
61 return *this;
62 }
63
64 Cvector Cvector::operator+(const Cvector &vector) const
65 {
66 Cvector vec(0.0, m_dimensions);
67 for(int i{0}; i<m_dimensions; i++) *(vec.m_vector+i)=*(m_vector+i)+*(vector.m_vector+i);
68 return vec;
69 }
70
71 Cvector Cvector::operator-(const Cvector &vector) const
72 {
73 Cvector vec(0.0, m_dimensions);
74 for(int i{0}; i<m_dimensions; i++) *(vec.m_vector+i)=*(m_vector+i)-*(vector.m_vector+i);
75 return vec;
76 }
77
78 Cvector Cvector::operator*(double multiplier) const
79 {
80 Cvector vec(0.0, m_dimensions);
81 for(int i{0}; i<m_dimensions; i++) *(vec.m_vector+i)=*(m_vector+i)*multiplier;
82 return vec;
83 }
84
85 double &Cvector::operator()(int index)
86 {
87 return *(m_vector+index);
88 }
89
90 Cvector operator*(double multiplier, Cvector vector)
91 {
92 return vector*multiplier;
93 }

Listing F.2: Class_vector.h. The declaration of Cvector.
1 #ifndef class_vector_h
2 #define class_vector_h
3 class Cmatrix;
4 class Cvector
5 {
6 public:
7 int m_dimensions;
8 double *m_vector;
9

10 Cvector(void);
11 Cvector(double, int);
12 Cvector(const Cvector &);
13 ~Cvector(void);
14 Cvector &operator=(const Cvector &);
15 Cvector operator+(const Cvector &) const;
16 Cvector operator-(const Cvector &) const;
17 Cvector operator*(double) const;
18 double &operator()(int);
19
20 private:
21 friend Cvector operator*(double, Cvector);
22 };
23 #endif

Listing F.3: Class_matrix.cpp. The definition of the matrix class Cmatrix. This class is used as
a supporting data type in the definition of the diode class Cdiode.

1 #include <iostream>
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2 #include "Class_vector.h"
3 using std::cin;
4 using std::cout;
5 using std::endl;
6 class Cmatrix
7 {
8 public:
9 int m_dimensions;

10 double **m_matrix;
11
12 Cmatrix(void);
13 Cmatrix(double num, int dim);
14 Cmatrix(const Cmatrix &matrix);
15 ~Cmatrix(void);
16 Cmatrix &operator=(const Cmatrix &matrix);
17 Cvector operator*(const Cvector &vector) const;
18 double &operator()(int row, int column);
19 };
20
21 Cmatrix::Cmatrix()
22 {
23 m_dimensions=0;
24 m_matrix=nullptr;
25 }
26
27 Cmatrix::Cmatrix(double num, int dim)
28 {
29 m_dimensions=dim;
30 m_matrix=new double*[m_dimensions];
31 for(int i{0}; i<m_dimensions; i++) *(m_matrix+i)=new double[m_dimensions];
32 for(int i{0}; i<m_dimensions; i++)
33 {
34 for(int j{0}; j<m_dimensions; j++)
35 {
36 if(i==j) *(*(m_matrix+i)+j)=num;
37 else *(*(m_matrix+i)+j)=0.0;
38 }
39 }
40 }
41
42 Cmatrix::Cmatrix(const Cmatrix &matrix)
43 {
44 m_dimensions=matrix.m_dimensions;
45 m_matrix=new double*[m_dimensions];
46 for(int i{0}; i<m_dimensions; i++) *(m_matrix+i)=new double[m_dimensions];
47 for(int i{0}; i<m_dimensions; i++)
48 {
49 for(int j{0}; j<m_dimensions; j++) *(*(m_matrix+i)+j)=*(*(matrix.m_matrix+i)+j);
50 }
51 }
52
53 Cmatrix::~Cmatrix()
54 {
55 for(int i{0}; i<m_dimensions; i++)
56 {
57 delete [] *(m_matrix+i);
58 *(m_matrix+i)=nullptr;
59 }
60 m_dimensions=0;
61 delete [] m_matrix;
62 m_matrix=nullptr;
63 }
64
65 Cmatrix &Cmatrix::operator=(const Cmatrix &matrix)
66 {
67 if(this==&matrix) return *this;
68 for(int i{0}; i<m_dimensions; i++)
69 {
70 delete [] *(m_matrix+i);
71 *(m_matrix+i)=nullptr;
72 }
73 delete [] m_matrix;
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74 m_matrix=nullptr;
75 m_dimensions=matrix.m_dimensions;
76 m_matrix=new double*[m_dimensions];
77 for(int i{0}; i<m_dimensions; i++)
78 {
79 *(m_matrix+i)=new double[m_dimensions];
80 for(int j{0}; j<m_dimensions; j++) *(*(m_matrix+i)+j)=*(*(matrix.m_matrix+i)+j);
81 }
82 return *this;
83 }
84
85 Cvector Cmatrix::operator*(const Cvector &vector) const
86 {
87 Cvector vec(0.0, m_dimensions);
88 for(int i{0}; i<m_dimensions; i++)
89 {
90 for(int j{0}; j<vector.m_dimensions; j++) *(vec.m_vector+i)=*(vec.m_vector+i)+*(*(

↪→ m_matrix+i)+j)**(vector.m_vector+j);
91 }
92 return vec;
93 }
94
95 double &Cmatrix::operator()(int row, int column)
96 {
97 return *(*(m_matrix+row)+column);
98 }

Listing F.4: Class_matrix.h. The declaration of Cmatrix.
1 #ifndef class_matrix_h
2 #define class_matrix_h
3 class Cvector;
4 class Cmatrix
5 {
6 public:
7 int m_dimensions;
8 double **m_matrix;
9

10 Cmatrix(void);
11 Cmatrix(double, int);
12 Cmatrix(const Cmatrix &);
13 ~Cmatrix(void);
14 Cmatrix &operator=(const Cmatrix &);
15 Cvector operator*(const Cvector &) const;
16 double &operator()(int, int);
17 };
18 #endif

Listing F.5: Class_diode.cpp. The definition of the diode class Cdiode.
1 #include <iostream>
2 #include <cmath>
3 #include "Class_vector.h"
4 #include "Class_matrix.h"
5 using std::cin;
6 using std::cout;
7 using std::endl;
8 class Cdiode
9 {

10 public:
11 static int m_L[2];
12 static double m_epsilon;
13 static double m_alpha;
14 static double m_beta;
15 static double m_e;
16 static double m_dL;
17 static double m_D_electron;
18 static double m_D_hole;
19 static double m_k_generation;
20 static double m_k_recombination;
21 static double m_volume;
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22 static double m_section;
23 static double m_electron_L;
24 static double m_electron_R;
25 static double m_hole_L;
26 static double m_hole_R;
27 static double m_potential_L;
28 static double m_potential_R;
29 static Cvector m_acceptor;
30 static Cvector m_donor;
31 static Cvector m_electron_initial_state;
32 static Cvector m_hole_initial_state;
33 static Cmatrix m_c_inverse;
34 static bool initializing(double e_L, double h_L, double p_L, double e_R, double h_R,

↪→ double p_R);
35
36 Cvector m_electron;
37 Cvector m_hole;
38 Cvector m_charge;
39 Cvector m_potential;
40
41 Cdiode(void);
42 bool coordinating(void);
43 Cdiode &operator=(const Cdiode &state);
44 };
45
46 int Cdiode::m_L[2]={20, 20};
47 double Cdiode::m_epsilon=0.01;
48 double Cdiode::m_alpha=0.0;
49 double Cdiode::m_beta=1.0;
50 double Cdiode::m_e=1.0;
51 double Cdiode::m_dL=0.1;
52 double Cdiode::m_D_electron=0.01;
53 double Cdiode::m_D_hole=0.01;
54 double Cdiode::m_k_generation=0.01;
55 double Cdiode::m_k_recombination=0.01;
56 double Cdiode::m_electron_L=0.0;
57 double Cdiode::m_electron_R=0.0;
58 double Cdiode::m_hole_L=0.0;
59 double Cdiode::m_hole_R=0.0;
60 double Cdiode::m_potential_L=0.0;
61 double Cdiode::m_potential_R=0.0;
62 double Cdiode::m_volume=0.0;
63 double Cdiode::m_section=0.0;
64 Cvector Cdiode::m_acceptor(0.0, 0);
65 Cvector Cdiode::m_donor(0.0, 0);
66 Cvector Cdiode::m_electron_initial_state(0.0, 0);
67 Cvector Cdiode::m_hole_initial_state(0.0, 0);
68 Cmatrix Cdiode::m_c_inverse(0.0, 0);
69
70 bool Cdiode::initializing(double e_L, double h_L, double p_L, double e_R, double h_R, double p_R)
71 {
72 int L=m_L[0]+m_L[1];
73 m_electron_L=e_L;
74 m_electron_R=e_R;
75 m_hole_L=h_L;
76 m_hole_R=h_R;
77 m_potential_L=p_L;
78 m_potential_R=p_R;
79 m_acceptor=Cvector(0.0, L);
80 m_donor=Cvector(0.0, L);
81 m_electron_initial_state=Cvector(0.0, L);
82 m_hole_initial_state=Cvector(0.0, L);
83 m_c_inverse=Cmatrix(0.0, L);
84 for(int i=0; i<m_L[0]; i++)
85 {
86 m_electron_initial_state(i)=400;
87 m_hole_initial_state(i)=1600;
88 m_acceptor(i)=m_hole_initial_state(i)-m_electron_initial_state(i);
89 m_donor(i)=0;
90 }
91 for(int i=m_L[0]; i<L; i++)
92 {
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93 m_electron_initial_state(i)=1600;
94 m_hole_initial_state(i)=400;
95 m_acceptor(i)=0;
96 m_donor(i)=m_electron_initial_state(i)-m_hole_initial_state(i);
97 }
98 m_volume=std::sqrt(m_k_recombination*m_electron_initial_state(0)*m_hole_initial_state(0)/

↪→ m_k_generation);
99 m_section=m_volume/m_dL;

100 m_alpha=m_epsilon*m_volume/(m_dL*m_dL);
101 for(int i{0}; i<L; i++)
102 {
103 for(int j{0}; j<L; j++)
104 {
105 if(i<=j)
106 m_c_inverse(i, j)=1.0*((i+1)*(L-j))/(m_alpha*(L+1));
107
108 else
109 m_c_inverse(i, j)=1.0*((j+1)*(L-i))/(m_alpha*(L+1));
110 }
111 }
112 return true;
113 }
114
115 Cdiode::Cdiode()
116 {
117 int L=m_L[0]+m_L[1];
118 m_electron=Cvector(0.0, L);
119 m_hole=Cvector(0.0, L);
120 m_charge=Cvector(0.0, L);
121 m_potential=Cvector(0.0, L);
122 m_electron=m_electron_initial_state;
123 m_hole=m_hole_initial_state;
124 coordinating();
125 }
126
127 Cdiode &Cdiode::operator=(const Cdiode &state)
128 {
129 m_electron=state.m_electron;
130 m_hole=state.m_hole;
131 m_charge=state.m_charge;
132 m_potential=state.m_potential;
133 return *(this);
134 }
135
136 bool Cdiode::coordinating()
137 {
138 int L=m_L[0]+m_L[1];
139 m_charge=m_e*(m_donor-m_acceptor-m_electron+m_hole);
140 Cvector O=m_charge;
141 O(0)=O(0)+m_alpha*m_potential_L;
142 O(L-1)=O(L-1)+m_alpha*m_potential_R;
143 m_potential=m_c_inverse*O;
144 return true;
145 }

Listing F.6: Class_diode.h. The declaration of Cdiode.
1 #ifndef class_diode_h
2 #define class_diode_h
3 class Cvector;
4 class Cvector;
5 class Cdiode
6 {
7 public:
8 static int m_L[2];
9 static double m_epsilon;

10 static double m_alpha;
11 static double m_beta;
12 static double m_e;
13 static double m_dL;
14 static double m_D_electron;
15 static double m_D_hole;
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16 static double m_k_generation;
17 static double m_k_recombination;
18 static double m_volume;
19 static double m_section;
20 static double m_electron_L;
21 static double m_electron_R;
22 static double m_hole_L;
23 static double m_hole_R;
24 static double m_potential_L;
25 static double m_potential_R;
26 static Cvector m_acceptor;
27 static Cvector m_donor;
28 static Cvector m_electron_initial_state;
29 static Cvector m_hole_initial_state;
30 static Cmatrix m_c_inverse;
31 static bool initializing(double, double, double, double, double, double);
32
33 Cvector m_electron;
34 Cvector m_hole;
35 Cvector m_charge;
36 Cvector m_potential;
37
38 Cdiode(void);
39 bool coordinating(void);
40 Cdiode &operator=(const Cdiode &);
41 };
42 #endif

Listing F.7: Function_diode_evolving.cpp. The function that drives the time evolution of the
diode system. The algorithm is based on the stochastic process of Langevin type.

1 #include <iostream>
2 #include <tuple>
3 #include <cmath>
4 #include <vector>
5 #include "Class_vector.h"
6 #include "Class_matrix.h"
7 #include "Class_diode.h"
8 std::vector<double> random_number_generating(int);
9 using std::cin;

10 using std::cout;
11 using std::endl;
12 std::tuple<Cdiode, Cvector, Cvector, double> diode_evolving(Cdiode &state, double dt)
13 {
14 int L=Cdiode::m_L[0]+Cdiode::m_L[1];
15 double alpha=Cdiode::m_alpha;
16 double beta=Cdiode::m_beta;
17 double e=Cdiode::m_e;
18 double epsilon=Cdiode::m_epsilon;
19 double dL=Cdiode::m_dL;
20 double D_electron=Cdiode::m_D_electron;
21 double D_hole=Cdiode::m_D_hole;
22 double kg=Cdiode::m_k_generation;
23 double kr=Cdiode::m_k_recombination;
24 double volume=Cdiode::m_volume;
25 double potential_L=Cdiode::m_potential_L;
26 double potential_R=Cdiode::m_potential_R;
27 double electron_L=Cdiode::m_electron_L;
28 double electron_R=Cdiode::m_electron_R;
29 double hole_L=Cdiode::m_hole_L;
30 double hole_R=Cdiode::m_hole_R;
31 Cvector F_n(0.0, L+1), F_p(0.0, L+1);
32 double current{0.0};
33 double k_electron, k_hole;
34 double CDU, DUp, DUm, fp, fm;
35 double Wg, Wr;
36 double R[L];
37 double Wp_electron[L+1], Wm_electron[L+1], Wp_hole[L+1], Wm_hole[L+1];
38
39 k_electron=D_electron/(dL*dL);
40 k_hole=D_hole/(dL*dL);
41



116 Appendix F. Computer Programming

42 CDU=0.5*e*e*L/(alpha*(L+1));
43
44 DUp=e*(state.m_potential(0)-potential_L)+CDU;
45 fp=beta*DUp/(exp(beta*DUp)-1.0);
46 DUm=e*(0-state.m_potential(0)+potential_L)+CDU;
47 fm=beta*DUm/(exp(beta*DUm)-1.0);
48 Wp_electron[0]=fm*k_electron*electron_L;
49 Wm_electron[0]=fp*k_electron*state.m_electron(0);
50 Wp_hole[0]=fp*k_hole*hole_L;
51 Wm_hole[0]=fm*k_hole*state.m_hole(0);
52
53 for(int i{1}; i<L; i++)
54 {
55 DUp=e*(state.m_potential(i)-state.m_potential(i-1))+CDU;
56 fp=beta*DUp/(exp(beta*DUp)-1.0);
57 DUm=e*(0-state.m_potential(i)+state.m_potential(i-1))+CDU;
58 fm=beta*DUm/(exp(beta*DUm)-1.0);
59 Wp_electron[i]=fm*k_electron*state.m_electron(i-1);
60 Wm_electron[i]=fp*k_electron*state.m_electron(i);
61 Wp_hole[i]=fp*k_hole*state.m_hole(i-1);
62 Wm_hole[i]=fm*k_hole*state.m_hole(i);
63 }
64
65 DUp=e*(potential_R-state.m_potential(L-1))+CDU;
66 fp=beta*DUp/(exp(beta*DUp)-1.0);
67 DUm=e*(0-potential_R+state.m_potential(L-1))+CDU;
68 fm=beta*DUm/(exp(beta*DUm)-1.0);
69 Wp_electron[L]=fm*k_electron*state.m_electron(L-1);
70 Wm_electron[L]=fp*k_electron*electron_R;
71 Wp_hole[L]=fp*k_hole*state.m_hole(L-1);
72 Wm_hole[L]=fm*k_hole*hole_R;
73
74 std::vector<double> gaussian{random_number_generating(3*L+2)};
75 int j{0};
76 double S;
77 S=(Wp_electron[0]+Wm_electron[0])/dt;
78 S=sqrt(S)*gaussian[j++];
79 F_n(0)=Wp_electron[0]-Wm_electron[0]+S;
80 S=(Wp_hole[0]+Wm_hole[0])/dt;
81 S=sqrt(S)*gaussian[j++];
82 F_p(0)=Wp_hole[0]-Wm_hole[0]+S;
83 for(int i{1}; i<L; i++)
84 {
85 S=(Wp_electron[i]+Wm_electron[i])/dt;
86 S=sqrt(S)*gaussian[j++];
87 F_n(i)=Wp_electron[i]-Wm_electron[i]+S;
88 S=(Wp_hole[i]+Wm_hole[i])/dt;
89 S=sqrt(S)*gaussian[j++];
90 F_p(i)=Wp_hole[i]-Wm_hole[i]+S;
91 }
92 S=(Wp_electron[L]+Wm_electron[L])/dt;
93 S=sqrt(S)*gaussian[j++];
94 F_n(L)=Wp_electron[L]-Wm_electron[L]+S;
95 S=(Wp_hole[L]+Wm_hole[L])/dt;
96 S=sqrt(S)*gaussian[j++];
97 F_p(L)=Wp_hole[L]-Wm_hole[L]+S;
98
99 for(int i{0}; i<L; i++)

100 {
101 Wg=kg*volume;
102 Wr=kr*state.m_electron(i)*state.m_hole(i)/volume;
103 S=(Wg+Wr)/dt;
104 S=sqrt(S)*gaussian[j++];
105 R[i]=Wg-Wr+S;
106 }
107
108 Cdiode next_state;
109
110 for(int i{0}; i<L; i++)
111 {
112 next_state.m_electron(i)=state.m_electron(i)+dt*(F_n(i)-F_n(i+1)+R[i]);
113 if(next_state.m_electron(i)<0) cout<<"alarm"<<endl;
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114 next_state.m_hole(i)=state.m_hole(i)+dt*(F_p(i)-F_p(i+1)+R[i]);
115 if(next_state.m_hole(i)<0) cout<<"alarm"<<endl;
116 }
117 next_state.coordinating();
118 for(int i{0}; i<L+1; i++)
119 {
120 current+=e*(F_p(i)-F_n(i))/(L+1); // total current including the contribution of

↪→ displacement current
121 }
122 return std::make_tuple(next_state, F_n, F_p, current);
123 }

Listing F.8: Function_random_number_generating.cpp. The function that generates indepen-
dent identically distributed Gaussian random numbers of zero mean value and unit variance.

1 #include <iostream>
2 #include <tuple>
3 #include <vector>
4 #include <gsl/gsl_rng.h>
5 #include <gsl/gsl_randist.h>
6 using std::cin;
7 using std::cout;
8 using std::endl;
9 static gsl_rng* generator=nullptr;

10
11 bool random_initializing()
12 {
13 generator=gsl_rng_alloc(gsl_rng_default);
14 gsl_rng_set(generator, 0); // seeded with 0
15 return true;
16 }
17
18 std::vector<double> random_number_generating(int num)
19 {
20 gsl_rng_env_setup(); // setup the environment for random number generation
21 double sigma{1.0};
22 gsl_rng* r=generator;
23 std::vector<double> gaussian(num, 0.0);
24 for(auto &gau:gaussian) gau=gsl_ran_gaussian(r, sigma); //generating gaussian distribution

↪→ numbers with mu=0 and sigma
25 return std::move(gaussian);
26 }
27
28 bool random_finalizing()
29 {
30 gsl_rng_free(generator);
31 delete [] generator;
32 generator=nullptr;
33 return true;
34 }

Listing F.9: Main.cpp. The main function in which the counting statistics of the signed cumulated
charge transfers is performed.

1 #include <iostream>
2 #include <fstream>
3 #include <cmath>
4 #include <iomanip>
5 #include <tuple>
6 #include "Class_vector.h"
7 #include "Class_matrix.h"
8 #include "Class_diode.h"
9 std::tuple<Cdiode, Cvector, Cvector, double> diode_evolving(Cdiode &, double);

10 bool random_initializing(void);
11 bool random_finalizing(void);
12 using std::cin;
13 using std::cout;
14 using std::endl;
15 int main(int argc, char *argv[])
16 {
17 random_initializing();
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18
19 int L=Cdiode::m_L[0]+Cdiode::m_L[1];
20 double e=Cdiode::m_e;
21 double beta=Cdiode::m_beta;
22 double dt=0.05;
23
24 int e_L{400}, h_L{1600};
25 int e_R{1600}, h_R{400};
26 double V{1.0};
27 double p_L=V-std::log(h_L/h_R)/(beta*e);
28 double p_R{0.0};
29
30 Cdiode::initializing(e_L, h_L, p_L, e_R, h_R, p_R);
31
32 Cvector F_n(0.0, L+1), F_p(0.0, L+1);
33 double current;
34
35 Cdiode state;
36
37 for(int i{0}; i<50000; i++) std::tie(state, std::ignore, std::ignore, std::ignore)=

↪→ diode_evolving(state, dt);
38
39 std::ofstream fout("Statistics.out");
40 fout.setf(std::ios_base::showpoint);
41 fout.setf(std::ios::right);
42
43 int runs{5000};
44 double Delta_t=10.0;
45 int times=static_cast<int>(Delta_t/dt);
46 for(int i{0}; i<runs; i++)
47 {
48 double charge_1{0.0}, charge_2{0.0};
49 for(int j{0}; j<times; j++)
50 {
51 std::tie(state, F_n, F_p, current)=diode_evolving(state, dt);
52 charge_1+=(F_p(L/2)-F_n(L/2))*dt;
53 charge_2+=current*dt/e;
54 }
55 fout<<std::setw(15)<<std::setprecision(8)<<charge_1<<" ";
56 fout<<std::setw(15)<<std::setprecision(8)<<charge_2<<’\n’;
57 if((100*i)%runs==0) cout<<100.0*i/runs<<endl;
58 }
59
60 fout.close();
61
62 random_finalizing();
63 return 0;
64 }

Listing F.10: Makefile. The file to be read by the compiling-and-linking utility Make.
1 objects=Main.o Class_vector.o Class_matrix.o Class_diode.o Function_diode_evolving.o

↪→ Function_random_number_generating.o
2 Main: $(objects)
3 g++ -std=c++11 -o Main $(objects) -lgsl -lgslcblas
4 Main.o: Main.cpp Class_vector.h Class_matrix.h Class_diode.h
5 g++ -std=c++11 -c Main.cpp
6 Class_vector.o: Class_vector.cpp Class_matrix.h
7 g++ -std=c++11 -c Class_vector.cpp
8 Class_matrix.o: Class_matrix.cpp Class_vector.h
9 g++ -std=c++11 -c Class_matrix.cpp

10 Class_diode.o: Class_diode.cpp Class_vector.h Class_matrix.h
11 g++ -std=c++11 -c Class_diode.cpp
12 Function_diode_evolving.o: Function_diode_evolving.cpp Class_vector.h Class_matrix.h Class_diode.h
13 g++ -std=c++11 -c Function_diode_evolving.cpp
14 Function_random_number_generating.o: Function_random_number_generating.cpp
15 g++ -std=c++11 -c Function_random_number_generating.cpp
16 clean:
17 rm -rf $(objects)
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