
Some Practical Aspects of Lattice-based Cryptography

Thesis submitted by François GÉRARD
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Chapter 1

Abstract and Organization

The topic of this thesis is post-quantum cryptography, that is to say, cryptography resist-
ing classical and quantum cryptanalysis. This topic gained a lot of traction in the past few
years, helped by the establishment of a standardization process by the American National
Institute of Standards and Technology (NIST). While the design and security properties
of post-quantum cryptosystems have been studied for a longer time, the call for propos-
als from NIST at the end of 2016 resulted in a portfolio of concrete instanciations for
encryption and signature schemes. There exists several families of assumptions enabling
post-quantumness. In this thesis, we focus exclusively on schemes basing their security on
the hardness of computational problems over mathematical objects called lattices. More
specifically, our main concern will be the practical aspects of lattice-based cryptography,
that is to say we care about efficiency and security once the cryptosystem is used in the
real world. Let us be more specific on the different topics that will be covered.

Efficient implementations

Using a cryptographic algorithm in practice naturally requires to implement it on a spe-
cific platform. Since cryptography comes, as a necessary overhead, on top of the function-
alities of a user service it should not slow it down significantly and should also be deploy-
able at a reasonable cost. Therefore, finding fast algorithms computing the mathematical
transformations specified by a cryptographic scheme and implementing them efficiently
is the first milestone to practicality. This is particularly true with public-key primitives
requiering to perform computations on algebraic objects. Chapter 3 will discuss this topic
by presenting a research work about efficient implementations of algorithms manipulating
polynomials in the ring Zq[X]/〈Xn + 1〉 on a popular microcontroller. This Chapter will
be supported by our paper “Cortex-M4 Optimizations for {R,M}LWE Schemes” [6].

Side-Channel countermeasures

Side-Channel Attacks exploit weaknesses in implementations and/or devices performing
computations. In Chapter 4, we will discuss power analysis, a type of attack measuring
the power consumption of a device while it runs a cryptographic algorithm and trying to
extract some secret data from those measurements afterward. It is clear that this type of
attack is only relevant once the cryptosystem is used in practice in specific environments.
However, general countermeasures can be designed independently of the real world usage.
Among them, we will present a popular technique called masking that will be applied to
a signature scheme candidate for standardization in the NIST project. Power analysis will
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be introduced via our paper ’Breaking Kalyna 128/128 with Power Attacks [53]’ and the
post-quantum relevant part is the masking scheme of our paper “An Efficient and Provable
Masked Implementation of qTESLA” [61].

Efficient design

One looking for efficiency will of course try to choose the more efficient cryptosystem
available to oneself. However, when several security goals have to be met, stacking
multiple primitives might incur an unforeseen overhead. Therefore, designing primitives
streamlined to cover different security requirements at the same time can result in an ef-
ficiency boost. In the lighter Chapter 5, we will present a primitive called signcryption.
The goal of a signcryption scheme is to offer the functionalities (and of course security)
of both a signature and an encryption scheme at the same time. The Chapter presents a
post-quantum lattice-based signcryption scheme which is the result of our paper “SETLA:
Signature and Encryption from Lattices” [59].

Organization of the Main Chapters
The three main Chapters (3, 4 and 5) will start with a section called “Preamble” in which I
will talk in first person to explain the events or context that led me to work on the covered
topic. The text will then switch to scientific writing using the pronoun “we” to give
specific introduction and preliminaries, followed by a section presenting contributions.
Since most contributions made their way to the literature, the title of the corresponding
sections indicate in which conference/journal they were published. Finally, Chapters are
closed by a “Thoughts and future works” section that switch back to first person. The
goal of this last section is to look back at the accomplished work with a critical eye and
discuss possible flaws or extensions.
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Mathematical Notations
The mathematical notations used in the text are fairly standard and should be easily un-
derstandable without help. Non-standard notations will explained at the time they are
needed.
Sets of numbers. We use Z and R to denote the integers and the real numbers. Sets are
written with the usual bracket notation {a, b, c, . . . }. The integers between a ∈ Z and b ∈
Z will be expressed using the interval notation [a, b] or the set notation {a, a+ 1, . . . , b}.
Modular arithmetic. The short notation Zq is used for Z/qZ. It will be mostly repre-
sented with the classical representatives set {0, 1, . . . , q−1} or the centered representative
set {− bq/2c , . . . , b(q − 1)/2c}. We write mod q to denote either an equivalence modulo
q or, during computations, an explicit reduction modulo q in whatever set of representa-
tives is used. The context should clearly imply which one it is. An explicit reduction to
the set of centered representative modulo q is written mod±q.
Rings and fields. The main rings used are Zq and the polynomial ring Rq = Zq[X]/〈f〉
for a given irreducible polynomial f which will almost always be Xn + 1, with n a power
of two, making it a cyclotomic polynomial. Since q will often be a prime, Zq is often
a field but this property will not be used. The rare times an explicit k elements field is
needed are noted as GF (k). In two Chapters, the important notation (that will be recalled
in the text) Rq,[B] appears. It means the set of polynomials in Rq with coefficients in
[−B,B] for B < q/2.
Elements, vectors and matrices. Elements of groups, rings or fields are written us-
ing lowercase letters, e.g. a ∈ Z, vectors are written using bold lowercase letters , e.g.
v ∈ Zn, and matrices are written using bold uppercase letters, e.g. M ∈ Zn×m. The no-
tation ‖v‖p denotes the `p-norm. When the subscript is omitted, we mean the Euclidean
norm ‖·‖2. Be careful that we will work most of the time with polynomials that are ele-
ments in a polynomial ring. They are therefore written with lowercase letters but are still
multidimensional objects and are sometimes interpreted as a vector of their coefficients.
The interpretation should be clear from context.
Sampling and distributions. When a random value v is drawn from a distribution D, we
write v r←− D. The notation is extended to randomized algorithms, e.g. for an algorithm
A, x r←− A() means that A is run on some implicit randomness and returns x. When the
notation is used with a set (this can be the set of elements of an algebraic structure) instead
of a distribution or an algorithm, we mean the uniform distribution over this set. When
we want to refer explicitly to the uniform distribution over the set S, we sometimes write
U(S).
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Chapter 2

Introduction and Preliminaries

2.1 Introduction
If I had to discuss the most fundamental lifestyle change between my youth in the 90s and
the writing of this thesis in 2020, I would, without hesitation, point out the usage of digital
technologies. This feeling is confirmed by a quick glance at the market capitalization of
large public companies: Apple, Microsoft, Google, Amazon, Facebook and Alibaba are
currently shining somewhere at the top. The rise of those companies is correlated with the
soaring success of the Internet. Barely existent at the time of my birth, it is now present in
almost all households of developed country and an everyday tool for a large part of their
population, used for entertainment, services or communication.

At the core of those changes lie the concept of information exchange and processing.
While it is not new that people are communicating, storing and interpreting data, the
means to do it drastically changed through history. From an ancient library filled with
books to a modern data center, from Philippides running between Marathon and Athens to
high speed data flow through a network, from Byzantine generals reading attack orders to
a machine learning algorithm trying to beat the best Starcraft players. Those modifications
in speed and magnitude enabled the creation of a real business around information where
data are as valuable as tangible goods.

Naturally, higher demand for data processing and collection leads to higher demand
for data security. Unfortunately, the term data security is quite vague and encompass a lot
of informal notions. Is a message written on a paper note in my pocket while I am driving
my car securely transmitted? Is an IP packet traveling in an unattainable underground
wire securely transmitted? Those questions can solely be answered if one provides a
clear and unambiguous definition of security.

The scientific field studying the core concepts of secure data transmission is called
cryptography. While it has a long history as an “art”, the formal, rigorous, scientific
version of cryptography really developed itself during and after the second world war
and grew significantly in parallel with the expansion of information technologies such as
phones, computers, and their global evolution, internet connected devices.

Giving a rigorous framework to security requires to formally describe what are the
possible threats to the considered system. In cryptography, those threats are often called
the adversary. Thus, one way to give a formal notion of security is to define an adver-
sary by putting hypothesis on its capabilities along with tasks that should be unachievable
for him, used to model desirable security properties. Security is then argued by formally
showing that solving those tasks would contradict the hypothesis. For instance, the adver-
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sary, modelled as an algorithm, is (almost) always assumed to run in polynomial time (in
some security parameter). If we can then show that breaking a desired security property
implies solving a hard 1 problem, we know that the property will hold under the assump-
tion that the problem is indeed hard. This is actually the well known concept of reduction
from computability theory. One of the major challenges to migrate cryptography from
scientific papers to concrete information systems is to actually make hypothesis on the
adversary that translate well into the real world.

The work of this thesis lies in the field of post-quantum cryptography, which is a sub-
set of cryptography in which the adversary is assumed to be also equipped with a quantum
computer. This assumption changes the landscape of the public-key side of cryptography.
Indeed, some computational problems widely used in the asymmetric setting (factoring
and the discrete logarithm) that are believed to be outside of P for a classical adversary
become tractable for a quantum adversary. Note that the assumption that the (set of al-
gorithms used by the) adversary runs in polynomial time still holds, the gap between
classical and post-quantum cryptography lies in the fact that the set of problems solvable
in polynomial time by a quantum computer is currently believed to be a proper superset
of P.

The goal of this thesis is to discuss the practicals aspects of post-quantum cryptogra-
phy and, more concretely, schemes built using hard problems on lattices. The term “prac-
tical” is very broad and has different meaning in different situations but is used here has
a mean to say “ways to bring lattice-based cryptography from theory to the real world”.
More specifically, the core of the document will be split in three main parts: high-speed
implementations, counter-measures against physical attacks, and application of existing
efficient designs. Those topics illustrate the various issues underlying the quest to make
post-quantum cryptography usable in practice.

2.2 Cryptography
Our starting point for this brief introduction to cryptography will be the definition of the
popular “old but good” Handbook of Applied Cryptography [88]:

Cryptography is the study of mathematical techniques related to aspects of
information security such as confidentiality, data integrity, entity authentica-
tion, and data origin authentication.

For the purpose of this thesis, we would like to update this quote in the following way:

Cryptography is the study of mathematical techniques, and the issues aris-
ing from their instanciation in real-life applications, related to aspects of
information security such as confidentiality, data integrity, entity authentica-
tion, and data origin authentication.

The reason for this modification is that, over the years, studying practicals issues like
physical attacks or efficient implementations has been a more and more common activ-
ity in the academic literature. This phenomenon is due to the tremendous growth and
diversification of electronic devices between the birth of computer science as a branch
of mathematics and today. Having researchers, as neutral observers, comparing, in a

1By hard, we mean computationally hard, that is to say out of reach in practice!
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scientific setting, performances of various architectures or products from different man-
ufacturers is now a common practice. Furthermore, cryptographic implementations are
often (especially on the asymmetric side) computations involving mathematical objects
from number theory and algebra, which are topics fitting well the type of people who live
in the academic world.

Returning to our definition, we see the word “mathematical” appearing quickly. The
reason behind it is that cryptography primarily deals with information and computation
from an abstract point of view. Quite often, cryptographic schemes are designed solely
from a mathematical point of view together and complexity theory notions are used to
argue hardness. The issues that may arise when implementing it in a real-life device
are often studied afterward. We will see in Chapter 4 a concrete example in which this
approach may be noxious when considering physical attacks. Nevertheless, it has a cru-
cial advantage, which is that, outside of basic assumptions on computational capabilities,
cryptographic algorithms do not depend on the machine used to run them. This means a
paradigm shift in the way we build computers would not invalid the design of the schemes.
Naturally, there will always be design choices taking into consideration real-life variables.
For example, the famous Advanced Encryption Standard comes with three possible key
lengths: 128, 192, and 256, which are values chosen after estimated upper bounds on
the brute-forcing power of realistic future adversaries. Further come the four following
notions:

• Confidentiality: The data transferred during communication should remain secret
to an unauthorized party (the adversary). The adversary can see that some data is
communicated but the content should be kept unknown to him. The basic crypto-
graphic primitive used to ensure confidentiality is called encryption.

• Data integrity: The data received at the endpoint should be the same as the data sent
at the starting point. Here, we usually do not segregate malicious and unintentional
data modification. An unreliable channel might be seen as an adversary performing
random modifications on the data. The basic cryptographic building block used for
data integrity is called hash function but more advanced constructions like message
authentication codes (MAC) and signatures also ensure integrity.

• Entity authentication: Entities involved in a communication should be able to prove
their identity to each other. This can be achieved using authentication protocols,
MACs or signatures.

• Data origin authentication: The receiver of some data should be able to identify
the source. More precisely, it should be possible to verify that data claimed to be
sent by an entity E is indeed coming from E and not from an impersonator. Again,
MACs and signatures are used in this case.

The reason why the three last properties are ensured with common cryptographic algo-
rithms is that they are mostly needed together in practice. Indeed, if undetected modifica-
tions to the message can be performed, efforts to validate sender’s identity are somewhat
worthless. Similarly, if genuine senders cannot be distinguished from impersonators, the
adversary does not need to modify existing messages. Conversely, confidentiality can be
enabled or disabled without affecting other properties.

The four security notions discussed above form the basis of cryptography. It is hard
to imagine a real-life context in which none of them is needed in a sensible (i.e. needing
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security) environment. Actually, these are needed so regularly that specialized crypto-
graphic primitives encompassing all of them were designed: authenticated encryption and
signcryption, which is the topic of Chapter 5. Nevertheless, cryptography went beyond
these basic notions with primitives offering richer properties. We can, for example, cite
homomorphic encryption, with which it is possible to compute on encrypted data with-
out revealing them or ring signatures, offering the possibility to sign a message under an
aggregate of identities. These advanced constructions are also studied in a post-quantum
setting and homomorphic encryption is especially strongly tied to lattice-based cryptog-
raphy. However, the main topics of this thesis are the simpler constructions of encryption
and signature as they are the core of all cryptography and, hence, naturally studied and
put in place first.

2.2.1 Encryption
Probably the most well-known application, encryption aims to conceal the content of a
message to an adversary eavesdropping the communication channel. The situation is the
following: a sender (a.k.a. Alice) wants to send a message to a receiver (a.k.a Bob) but
every data transiting between Alice and Bob can be read by an eavesdropper (a.k.a Eve).
Alice will then encrypt the message into a random looking piece of data called the cipher-
text and send it on the channel. At the other endpoint, Bob will decrypt the ciphertext
to retrieve the original message. Eve will only see the random looking ciphertext on the
channel and will not learn anything about the message. Of course, it should be impossible
for Eve to decrypt, which means that Bob has some capabilities that Eve does not have.

No introduction to encryption would be adequate without the infamous and over used
toy example of Caesar’s cipher. In this cipher, Alice and Bob communicate with messages
that are words over the 26 letters of the Latin alphabet. Before communicating, they will
first agree on a secret value k called the key. Then, when Alice wants to send a message
to Bob, she shifts every letter of k positions in the alphabet (if some letter goes past Z, it
loops back to A) and send the result on the channel. When Bob receives the ciphertext,
he applies the shift in reverse to retrieve the original message. The assumption is that Eve
cannot read the message because she does not know the secret shifting value k.

While this cipher provides no security for a myriad of reasons (the first one being
that there is only 26 possible shifts, which is a piece of cake to brute-force for a modern
computer), it is of great helpfulness to illustrate a formal abstraction of an encryption
scheme.

Definition 1. (Encryption) An encryption scheme is a tuple (M, C,K,Gen,Enc,Dec)
where:

• M, C,K are sets called the messages, ciphertexts and keys spaces.

• Gen : λ→ K is a key generation function taking as input a security parameter and
outputting a key.

• Enc : K×M→ C is a function taking as inputs a key and a message and outputting
a ciphertext called the encryption procedure.

• Dec : K × C → M is a function taking as inputs a key and a ciphertext and
outputting a message called the decryption procedure.
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An alternative and elegant definition is to see Enc and Dec as families of functions
indexed by elements of K.

It is generally assumed that mapping the real-life message to the message space is a
trivial operation. For example, in the case of Caesar’s cipher, the encryption and decryp-
tion procedures are often described as M = C = K = Z26, Enc : k,m[i] 7→ c[i] =
m[i] + k mod 26 and Dec : k, c[i] 7→ m[i] = c[i] − k mod 26 which assumes that the
message is a sequence of numbers in Z26 and the trivial map sending each letter to its in-
dex in the alphabet is used to encode the real-life message. As encryption schemes often
have message spaces that are {0, 1}∗ or sets with elements easy to encode with integers,
the usual binary representation used by computers fits well for digital applications.

Asymmetric cryptography

Assuming our example above replaces Caesar’s cipher by a modern and secure encryption
method, it illustrates the importance of the knowledge of the key as it is the only difference
between Bob and Eve2. This raises an important question: how can Alice and Bob agree
on a shared key if they do not have a secure communication channel yet? The answer
could simply be that having a shared secret is an assumption of the system and this should
be done by another mean, e.g. meeting in person, but this is not satisfactory on a large
scale, especially in a world where data is traveling lightning fast across the globe. The
solution comes from what is called asymmetric (mainly called public-key) cryptography.
Whereas symmetric cryptography has algorithms using identical secret keys shared among
participants, asymmetric cryptography associates two different keys to each participant, a
private one that is kept secret and a public one that is known to the adversary. A public-key
encryption scheme would be formalized as follows:

Definition 2. (Public-key (asymmetric) Encryption) A public-key encryption scheme is a
tuple (M, C,PK,SK,Gen,Enc,Dec) in which:

• M, C,PK,SK are sets called the messages, ciphertexts, public keys and secret
keys3 spaces.

• Gen : λ→ SK×PK is key generation function taking as input a security parameter
and outputting a key pair.

• Enc : PK ×M→ C is a function taking as inputs a public key and a message and
outputting a ciphertext.

• Dec : SK×C →M is a function taking as inputs a secret key and a ciphertext and
outputting a message.

In this setting, when Alice wants to secretly send a message m to Bob, they undergo
the following steps: Bob first run the key generation algorithm Gen to get a key pair
(sk, pk) and announces publicly pk. Alice then computes the ciphertext c = Enc(pk,m)
and sends it on the channel. Finally Bob computes m = Dec(sk, c) and retrieve the mes-
sage. The main assumption is that the message cannot be computed from the ciphertext
without knowing the secret key sk. However, this naive property is not sufficient and

2Actually, cryptographic schemes ensure their security solely by the secrecy of the key(s), all the algo-
rithms and parameters used are public.

3While the adjective private fits better the setting of asymmetric cryptography, private keys are often
called secret keys in order to clear confusion concerning the shortened form “pk”.
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more advanced required security notions will be presented in Section 2.2.4. While the
general idea is the same as in the previous section, the notable difference here is that no
prior secret information was shared between Alice and Bob, she only needs to know his
public key. An issue that will not be discussed here but which has a tremendous impor-
tance in practice is that it might be hard to associate public keys to real-life identities. In
the scenario we just described, when Alice sees the announce of the public key from Bob,
she needs to ensure that it is not an impersonator claiming to be Bob.

At first sight, it seems that symmetric encryption should be superseded by public-key
encryption as it offers the same service without a need for key distribution. While it
is a theoretically acceptable argument, in practice, public-key algorithms are using sub-
stantially more resources than their symmetric counterpart. Therefore, it is common to
operate a hybrid mode in which asymmetric cryptography is firstly used to share a secret
symmetric key and all subsequent communications are secured with symmetric encryp-
tion.

2.2.2 Diffie-Hellman Key Exchange
Since the public-key part of a hybrid mode is solely used to establish a shared key be-
tween participants, specialized cryptographic algorithms having this only purpose were
proposed. The most popular of them, due to Diffie and Hellman [46], is actually seen as
the first example of concrete public-key cryptography. Its security is related to the discrete
logarithm problem:

Definition 3. (discrete logarithm problem) Let G be a finite cyclic group equipped with a
multiplicative law ◦ and g one of its generator. Given an element y ∈ G, find the integer
x such that gx = g ◦ g . . . g︸ ︷︷ ︸

x times

= y.

The Diffie-Hellman key exchange works in any group but would not be secure in
groups in which the discrete logarithm problem is tractable. Its first instanciation was
using the multiplicative subgroup of a finite prime field of p elements, which is usually
denoted Z∗p. More recent constructions use groups of points on elliptic curves over finite
fields but are out of scope of this document as the conceptual view of the key exchange is
kept the same and they do not offer post-quantum security either4.

The key exchange is depicted as a protocol in Figure 2.1. Working in a cyclic group
of order q with generator g, the concept is quite simple: first, Alice and Bob respectively
pick random numbers a and b in (canonical representatives of elements of) Zq which can
be seen as private keys in the asymmetric framework. Then, Alice publishes pka = ga

and Bob publishes pkb = gb which can be seen as public keys. To establish the shared
secret, Alice will rise the public key of Bob to its private key and vice versa for Bob. They
both end up with the shared value k = gab.

The adversary eavesdropping on the channel only sees the values ga and gb. If the
discrete logarithm problem is hard in the group used to perform the protocol, the adversary
cannot retrieve neither a nor b. Nonetheless, it should be carefully noted that their goal is
not to retrieve a or b but to find the shared key gab. This is why claiming that the security
is based on the discrete logarithm is inaccurate, the actual underlying problem is simply
called the (computational) Diffie-Hellman problem (CDHP).

4Some elliptic curves are used in post-quantum cryptography but not with the discrete logarithm as-
sumption.
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Alice Bob

a
r←− Zq

pka = ga

b
r←− Zq

pkb = gb

k ← (pkb)
a = gba k ← (pka)

b = gab

Figure 2.1: Diffie-Hellman key exchange in a group G of order q with generator g. We
note that the order of the messages is not important here, Bob can send pkb before receiv-
ing pka.

Definition 4. (Computational Diffie-Hellman problem) Let G be a finite group equipped
with a multiplicative law and g one of its generator. Given two elements gx and gy, find
gxy.

Nevertheless, the most straightforward way to solve the CDHP is to actually compute
the discrete logarithm on one of the two inputs to get x or y and use it together with the
other input to compute gxy. This is why Diffie-Hellman is often mistakenly described as
a protocol basing its security on the discrete logarithm.

2.2.3 From Key Exchange to Encryption: the ElGamal Cryptosys-
tem

Assuming we have access to a symmetric encryption scheme, the Diffie-Hellman key
exchange is sufficient to create a public-key encryption scheme. Indeed, Alice can pick
a, compute the shared key k = pkab , encrypt her message with the symmetric scheme
under the key k and send to Bob the symmetric encryption together with ga. We will soon
describe such a cipher due to ElGamal [55].

But first, we need to introduce the concept of perfect secrecy and give a cipher that
offers this property called the (generalized) one-time pad. This cipher will be implicitly
used in the construction of ElGamal.

Definition 5. (perfect secrecy) A cipher achieves the perfect secrecy property if, for c =
Enc(m), the probability of the message being m is unchanged by learning the ciphertext
c. That is to say ∀m,P [M = m] = P [M = m|C = c].

Intuitively, this captures the fact that an adversary seeing the ciphertext will not gain
any information on the plaintext. The strength of this approach is that the security is not
based on a computational assumption but rather on an information-theoretic argument,
which means that the adversary can be assumed to have access to an unlimited amount of
computational resources.
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Generalized one-time pad

Now, let us discuss a really simple symmetric encryption scheme that we will call the
Generalized one-time pad (GOTP).

Definition 6. (Generalized one-time pad)
Let (G, ◦) be a finite group.

• M = K = C = G.

• Enc : (k,m) 7→ c = k ◦m

• Dec : (k, c) 7→ m = k−1 ◦ c

Encryption is simply given by applying the group law operator on the message and
the key and decryption reverse this operation using the existence of an inverse for every
k.

Proposition 1. The cipher in Definition 6 offers perfect secrecy under the assumption that
the key is drawn from a perfectly uniform distribution.

Proof. Let I be an arbitrary set indexing the elements of G. The probability of having a
ciphertext c is given by

P [C = c] =
∑
i∈I

P [M = mi] · P [K = c ◦m−1
i ].

Since the key is drawn from a uniform distribution, we have

P [C = c] =
∑
i∈I

P [M = mi] ·
1

|G|
=

1

|G|
.

Using the fact that
P [C = c|M = m] = P [K = c ◦m−1],

we have by the same argument that

P [C = c|M = m] =
1

|G|
= P [C = c].

By Bayes,

P [M = m|C = c] =
P [C = c|M = m] · P [M = m]

P [C = c]
= 1 · P [M = m] = P [M = m]

.

We note that Ceasar’s cipher is similar to the GOTP using (G, ◦) = (Z26,+). Its lack
of security actually comes from the fact that the same group element k is used to encrypt
multiple elements (letters) in Z26, this is why this cipher is called “one-time” pad, the key
must be used only once per plaintext (group element).
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Public parameters:

• cyclic group G of order q generated by g

• encoding function H mapping messages to G

Decryption key: sk r←− Zq
Encryption key: pk ← gsk

ElGamal Encrypt(pk,m):

1: r
r←− Zq

2: c1 ← gr

3: c2 ← pkr ◦ H(m)
4: return c1, c2

ElGamal Decrypt(c1, c2, sk):

1: m← c2 ◦ c−sk1

2: m← H(m)
3: return m

Figure 2.2: ElGamal Encryption

The usual one-time pad

The usual one-time pad (OTP) denotes the cipherM = C = K = {0, 1}∗, Enc(k,m) =
k ⊕m and Dec(k, c) = k ⊕ c in which encryption and decryption can be computed us-
ing the same circuit with a simple XOR operation between inputs. This is a variant of
the cipher in Definition 6 with (G, ◦) = (Z2,+) which runs multiple instances in paral-
lel. The reason for its attractiveness is twofold: representation of messages as bitstrings
comes for free in digital communications and the + operation in Z2 is self-inverse and
trivial to compute. While this encryption scheme is very simple and very fast, its obvious
drawback is that the key and the message should have the same size, which is unpracti-
cal in many scenarios, e.g. encrypting a whole hard drive. Actually, the one-time pad is
more realistically seen as a tool used to construct other cryptosystems instead of a whole
cipher. This tool could be lousy stated as “a random bitstring can be used to perfectly
hide another bitstring of the same size”. The most straightforward construction based on
the OTP is called a stream cipher. The idea is to create a key expansion algorithm taking
as input a small key and outputting an arbitrary large keystream. To encrypt, use the key
expansion algorithm to get a keystream as long as the message and then simply XOR both
of them. The security of such a construction depends on the pseudo-randomness of the
keystream, that is to say, on the quality of the key expansion algorithm.

The ElGamal cryptosystem

Let us now describe the ElGamal encryption scheme. It was proposed in 1985 by Taher
Elgamal [55] in a paper discussing public-key cryptosystems. It results from the obser-
vation that the Diffie-Hellman protocol can be performed in a non-interactive way. Let
us say Bob as computed a keypair (sk, pk = gsk) and publicly announced pk. When
Alice wants to encrypt a message for him, she picks a secret value r associated with a
public value5 c1 = gr and computes her side of the Diffie-Hellman protocol to get an
ephemeral key pkr. This key is then used to encrypt the message encoded as a ring ele-
ment using the Generalized one-time pad. Decryption is straightforward, Bob computes

5which correspond to the pair (a, pka) in Figure 2.1.
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his side of the DH key exchange and trivially decrypts. Figure 2.2 formally describes the
cryptosystem. The security of this encryption scheme is naturally closely tied to the one
of the Diffie-Hellman key exchange but we shall be more precise with security notions
when discussing encryption schemes. We will now describe a popular way to formalize
security using a game between an adversary and a challenger.

2.2.4 Semantic Security
Since the word “security” has different meaning depending on the context, it is widespread
to express it in terms of a game between an adversary and a challenger in which the
capability of each entity is clearly defined. Answering the question of whether the game
correspond to the real-life situation in which the cryptosystem is used is a responsibility
of the user.

The most popular and essential security notion is semantic security, which basically
states that amount of information on the plaintext the adversary can learn from the cipher-
text should be negligible. It is formalized by the property of indistinguishability under
chosen plaintext attack (IND-CPA) described by the following game:

Definition 7. (IND-CPA game) Let PKE = (M, C,PK,SK,Gen,Enc,Dec) be a public-
key encryption scheme 6 and λ a security parameter. The challenger and the adversary,
both modeled as algorithms running in polynomial time in λ play the following game:

1. The challenger runs the key generation algorithm to get a key pair (sk, pk) ←
Gen(λ) and publicly announces pk.

2. The adversary arbitrarily chooses two messages of the same size m0,m1 and trans-
mits them to the challenger.

3. The challenger picks a random bit b r←− {0, 1}, sets c← Enc(pk,mb) and returns c
to the adversary.

4. The adversary outputs a bit b′ and wins the game if b′ = b.

The encryption scheme PKE is IND-CPA iff the advantage of the adversary |Pr[b =
b′]− 1

2
| is a negligible function in λ.

The above security notion is aimed toward passive adversaries, that is to say an ad-
versary simply observing the channel. We now introduce the stronger notion of indistin-
guishability under chosen ciphertext attack (IND-CCA) in which the adversary also has
access to a decryption oracle helping him to distinguish encrypted messages. The decryp-
tion oracle is a black box function capable of decrypting any message, it is used to model
the fact that in a real-life scenario, the adversary might have access to the decryption of
ciphertexts different from the one they are attacking.

Definition 8. (IND-CCA game) Let PKE = (M, C,PK,SK,Gen,Enc,Dec) be a public-
key encryption scheme and λ a security parameter. The challenger and the adversary,
both modeled as algorithms running in polynomial time in λ play the following game:

1. The challenger runs the key generation algorithm to get a key pair (sk, pk) ←
Gen(λ) and publicly announces pk.

6the symmetric case is treated similarly.
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2. The adversary can query a decryption oracle ODecsk(.) on arbitrary inputs.

3. The adversary arbitrarily chooses two messages of the same size m0,m1 and trans-
mits them to the challenger.

4. The challenger picks a random bit b r←− {0, 1}, sets c← Enc(pk,mb) and returns c
to the adversary.

5. The adversary can query again the decryption oracle, on any input, except c.

6. The adversary outputs a bit b′ and wins the game if b′ = b.

The encryption scheme PKE is IND-CCA iff the advantage of the adversary |Pr[b =
b′]− 1

2
| is a negligible function in λ.

Note that the IND-CCA game we just described is often called the adaptive case or
IND-CCA2 game. In the non-adaptive case, the adversary cannot query the oracle any-
more after seeing the ciphertext c (the step 5 is skipped).

CPA Security of ElGamal under the decisional Diffie-Hellman assumption

We will now show how to argue the security of an encryption scheme such as ElGa-
mal under a computational assumption. The assumption used here is the hardness of the
Decisional Diffie-Hellman problem (DDHP) and is stronger than the one assuming the
hardness of the problem described in Definition 4 (computational Diffie-Hellman prob-
lem).

Definition 9. (Decisional Diffie-Hellman problem) Let G be a finite group of order q
equipped with a multiplicative law and g one of its generator. Distinguish tuples of the
form (ga, gb, gab) for uniformly random a, b in Zq from tuples sampled uniformly at ran-
dom from G×G×G.

This captures the fact that keys exchanged during the Diffie-Hellman protocol are
indistinguishable from a random group element even for the adversary eavesdropping the
values ga and gb. If the Decisional Diffie-Hellman assumption holds, an adversary cannot
tell the difference between a genuinely generated key gab and a random value in G.

Using this assumption, a game-based proof can be used to prove semantic security of
the ElGamal encryption scheme. Proving security using a sequence of games is a popular
technique to prove security properties. The idea is to start from the game modeling the
desired property and to iteratively modify it without violating any underlying assumption
until reaching a game trivially unwinnable by the adversary. Those transitions define what
is commonly called a sequence of games and each transition should offer only a negligible
advantage to the adversary. A thorough and simple introduction of this technique can be
found in [116].

The security of the ElGamal encryption scheme is straightforward using this tech-
nique. Let us abstract the adversary as an algorithm A and define Game 0 as
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Game 0

1. sk r←− Zq, pk ← gsk

2. (m0,m1)
r←− A(pk)

3. b r←− {0, 1}, r r←− Zq, c1 ← gr, c2 ← pkr ◦ H(mb)

4. b′ b←− A(pk, c1, c2)

Game 0 is clearly equivalent to the IND-CPA game. The advantage of the adversary
is |Pr[WIN0]− 1

2
| with WIN0 the event that b = b′.

Let us now define a game in which the advantage of the adversary is 0.

Game 1

1. sk r←− Zq, pk ← gsk

2. (m0,m1)
r←− A(pk)

3. b r←− {0, 1}, r r←− Zq, c1 ← gr, e r←− G, c2 ← e ◦ H(mb)

4. b′ b←− A(pk, c1, c2)

The difference between Game 0 and Game 1 is that instead of using the public key to
encrypt H(mb) to c2, we use a random element e fromG. It can be seen that the probability
Pr[WIN1] of winning game 1 is actually exactly 1

2
. Indeed, by randomly sampling e,

the second part of the ciphertext c2 is actually an instance of the GOTP offering perfect
secrecy. This means that c2 does not convey any information on mb. Since c1 is not linked
to the message in any way, the input of the adversary in the last step does not depend on
the message at all and the adversary can only guess and win with probability 1

2
. Hence, in

this game, the advantage of the adversary is |Pr[WIN1]− 1
2
| = 0.

Proposition 2. The ElGamal cryptosystem is semantically secure if the Decisional Diffie-
Hellman assumption holds.

Proof. Let ADVDDH be the probability that an adversary can distinguish randomly drawn
triples from G from triples of the form (ga, gb, gab) with a, b

r←− Zq. The transitional
advantage between Game 0 and Game 1 is ADVDDH . Indeed, the difference between the
two games is that the value pkr = gsk·r has been replaced by a random element e from the
group. Distinguishing between those two cases is exactly an instance of the Decisional
Diffie-Hellman problem which means the advantage of the adversary to distinguish the
transition between the two games is also ADVDDH . Hence, the advantage of the adversary
against Game 0 is the advantage against Game 1 to which we shall add ADVDDH . Since
the advantage of the adversary in Game 1 is 0, their advantage in Game 0 is ADVDDH ,
which is negligible by hypothesis that the DDHP is hard.

We note that it can be shown that Proposition 2 is actually an equivalence [120].
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2.2.5 From Encryption to Key Exchange: Key Encapsulation Mech-
anism

A public-key encryption scheme can be easily transformed into a key exchange. Indeed,
instead of running a protocol between Alice and Bob, let Alice chose a random key k and
encrypt it under the public key of Bob c = E(pk, k). She then sends c to Bob and he
retrieves the shared key k using his secret key. Such a procedure is called a key encapsu-
lation mechanism (KEM).

Definition 10. A key encapsulation mechanism (KEM) is tuple {K, C,PK,SK,Gen,
Encaps,Decaps} in which:

• K, C,PK,SK are sets called the symmetric keys, ciphertexts, public keys and secret
keys spaces.

• Gen : λ→ SK×PK is key generation function taking as input a security parameter
and outputting a key pair.

• Encaps : PK → C × K is a function taking as input a public key and outputting a
ciphertext together with a symmetric key.

• Decaps : SK × C → K is a function taking as inputs a secret key and a ciphertext
and outputting a symmetric key.

As explained above, creating a KEM from a PKE (Gen,Enc,Dec) is straightforward.
Both Gen algorithms are the same and Decaps is set to Dec. To construct Encaps, one
simply has to pick a random k, encrypt it under the public key to get a ciphertext c =
Enc(pk, k) and output c, k.

Semantic security can also be defined for KEM in the following way,

Definition 11. (IND-CPA game for KEM) Let KEM = (K, C,PK,SK,Gen,Encaps,Decaps)
be a Key Encapsulation Mechanism and λ a security parameter. The challenger and the
adversary, both modeled as algorithms running in polynomial time in λ play the following
game:

1. The challenger runs the key generation algorithm to get a key pair (sk, pk) ←
Gen(λ) and publicly announces pk.

2. The challenger runs (c, k0) ← Encaps(pk), picks a random k1 from K, a bit b and
sends c, kb to the adversary.

3. The adversary outputs a bit b′ and wins the game if b′ = b.

The key encapsulation mechanism KEM is IND-CPA iff the advantage of the adversary
|Pr[b = b′]− 1

2
| is a negligible function in λ.

Basically, the mechanism is CPA-secure if the adversary cannot distinguish encap-
sulated keys from uniformly random keys from the space upon seeing to corresponding
ciphertext. Similarly to a PKE, we naturally extend to the CCA-secure version by letting
the adversary query a decapsulation oracle ODecaps().
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2.2.6 Digital Signature
While the goal of encryption was to hide information from an adversary eavesdropping
on the communication channel, digital signatures ignore privacy of messages to focus on
their genuineness. More precisely, they aim at ensuring that a message actually comes
from the claimed source and was not modified along the way by an adversary. The gen-
eral case is that Alice and Bob are simply communicating and Bob wants to be certain
that the messages he reads are coming from Alice and remained untouched during their
transmission. Actually, digital signature offer a property quite stronger than that which is
called non-repudiation. Non-repudiation prevents Alice to claim that she does not agree
on a message she previously signed. It means that the signature acts as a “proof of agree-
ment” on a message. Let us say Alice sent a message m stating that she will buy Bob’s
car for a certain amount of money together with a signature on the message σ(m). If she
later refuses to proceed with the transaction, Bob can present σ(m) to a judge to prove
that she committed herself to buy the car.

Digital signature fall into the category of public-key cryptography, which means that
entities have key pairs (sk, pk) and are identified by their public keys. The symmetric
counterpart of signature is called Message Authentication Code and do not offer non-
repudiation 7. Similar to the situation we discussed earlier for encryption, digital signa-
tures, while more powerful, are significantly slower than message authentication codes.

The usual straightforward definition is the following:

Definition 12. A (digital) signature scheme is a tuple (M,S,PK,SK,Gen, Sign,Verify)
where:

• M,S,PK,SK are sets called the messages, signatures, public keys and secret keys
spaces.

• Gen : λ→ SK×PK is key generation function taking as input a security parameter
and outputting a key pair.

• Sign : SK×M→ S is a function taking as inputs a secret key and a message and
outputting a signature.

• Verify : PK × S ×M → {0, 1} is a function taking as inputs a public key and a
signature and outputting a bit indicating if the signature is valid for the message.

Wishing to send a message m to Bob, Alice will first generate a key pair (sk, pk) ←
Gen(λ) using the key generation algorithm. She then runs the signing algorithm using
her secret key to get a signature σ ← Sign(sk,m) and forwards it to Bob together with
the message. Upon receiving (m,σ), Bob runs the verification algorithm Verify(pk, σ,m)
using her public key and accepts the message as genuine if the verification returns 1.

2.2.7 Basic Security Notions for Signatures
Similarly to encryption schemes, the security of signatures, while pretty intuitive, is for-
malized using games between a challenger and an adversary. Plethora of variants have
been defined and can be found in classical textbooks. For the sake of simplicity, we will

7This is because no public information is linked to entities and symmetric keys give the same computa-
tional capabilities to every party.
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focus on two elementary notions defined in [71] illustrating well the kind security require-
ment one is looking for. In the following, as usual, the challenger and the adversary are
modeled as a polynomial-time algorithms in some implicit security parameter λ.

Existential unforgeability under a random-message attack

Definition 13. A signature scheme (M,S,PK,SK,Gen, Sign,Verify) is said to be exis-
tentially unforgeable under a random-message attack (UF-RMA) if the probability that
an adversary wins the following game is negligible in λ

1. A finite, polynomial in λ, number of messages m0, . . . ,mn are chosen at random
fromM.

2. The challenger samples a key pair (sk, pk)
r←− Gen(λ) and publishes pk.

3. The challenger computes the signatures σ0 ← Sign(sk,m0), . . . , σn ← Sign(sk,mn)
and send them to the adversary.

4. The adversary performs the attack knowing the messages, the signatures and the
public key and finishes by outputting a pair (m,σ).

5. The adversary wins the game if Verify(pk, σ,m) = 1 and ∀i ∈ {0, n},m 6= mi.

This game models the basic scenario in which an adversary cannot control messages
that are signed and only sees signatures transmitted on the channel. A weaker notion of
security called unforgeability under no-message (UF-NMA) models the case in which the
adversary does not even see a single signature before performing the attack.

Unforgeability under a chosen-message attack

Definition 14. A signature scheme (M,S,PK,SK,Gen, Sign,Verify) is said to be exis-
tentially unforgeable under a chosen-message attack (UF-CMA) if the probability that an
adversary wins the following game is negligible in λ

1. The challenger samples a key pair (sk, pk)
r←− Gen(λ) and publishes pk.

2. The adversary can query the challenger for genuine signatures on any message.
The messages for which the adversary made a query are kept in a list Q.

3. The adversary finishes by outputting a pair (m,σ).

4. The adversary wins the game if Verify(pk, σ,m) = 1 and m /∈ Q.

In this stronger security model, the adversary can chose himself which message/sig-
nature pairs are available to perform the attack. The goal is to model a situation in which
someone wishing to compromise a system can somehow convince the owner of the secret
key to sign specific messages.

Note that both UF-NMA and UF-CMA security notions described above are said to
be the weak versions. In the strong versions, the adversary also wins the game if a new
signature on a message already signed is found.
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Hash functions

Signatures schemes tend to use a cryptographic tool called hash functions. Those func-
tions are often well-known as they appear in other areas of computer science even though
they do not require the same properties as cryptographic hash functions. Since we will use
them as black-boxes and not discuss their design nor their security, we simple handwave
some general definitions and security properties.

Definition 15. A hash function is a function h : X → Y, x 7→ y = h(x) such that
|X| > |Y |. It associate to each element x ∈ X and element y ∈ Y called hash, image,
fingerprint or digest of x.

Definition 16. A cryptographic hash function is a hash function for which the following
problems are intractable:

• One-wayness: Given a value y ∈ Y , find a value x ∈ X such that h(x) = y

• Second pre-image resistance: Given x ∈ X , find a different x′ ∈ X such that
h(x) = h(x′).

• Collision resistance: Find x, x′ ∈ X s.t. h(x) = h(x′)

Note that since the input space is bigger than the output space, there always exist
collisions. An additional common property is called the avalanche property. Informally,
it states that a small perturbation in the inputs should result in a huge variation in the
output. Generally, cryptographic hash functions are defined as a mapping from {0, 1}∗ to
{0, 1}n but there also exists extendable-output functions mapping to arbitrary size outputs.
Those are regularly used in cryptographic schemes to generate pseudo-random numbers
from a seed or when a fixed-length digest is required by the scheme.

2.2.8 Identification Schemes
A well-known, and very relevant to this thesis, way of creating signature schemes is to
start from an identification scheme and to transform it using a technique called the Fiat-
Shamir transform. This technique will be explained in Section 2.2.9 but we shall first of
course briefly discuss the underlying topic which is identification schemes.

Identification schemes are protocols between two parties: a prover P and a verifier V .
The goal is that at the end of the protocol, the verifier is convinced that prover is indeed P
and not an impostor. It is easy to imagine situations in which this is useful (e.g. opening
a locked door) as it is a basic requirement of access control.

One simple way to create an identification scheme is to use a hash function h (or any
one-way function) and set the identity of P to y = h(x) for some secret x chosen by
P . When P wants to prove its identity to V , the value x is transmitted and V checks
whether y is actually equal to h(x). If it is the case, it proves the identity since P is the
only person capable of providing a preimage of y. This is basically the scenario of the
login/password authentication system used everywhere on the internet but it is very weak
in a vacuum since it reveals the secret x to the verifier and anyone eavesdropping on the
channel8. Thus, we will be interested in a stronger version using a public-key setting
called canonical identification schemes.

8When login to a website, the connection is (normally) already encrypted and the server is assumed to
be trusted.
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Prover Verifier

w ← P1(sk) w

c c
r←− C

z ← P2(sk, w, c) z

Accept if V(pk, w, c, z) = 1

Figure 2.3: Canonical identification scheme

Definition 17. A canonical identification scheme is a tuple (PK,SK,W , C,Z,Gen,P,V)
in which:

• PK,SK,W , C and Z are called the public keys, secret keys, commitments, chal-
lenges and responses spaces.

• Gen : λ→ SK×PK is key generation function taking as input a security parameter
and outputting a key pair.

• P = {P1,P2} is a set of functions defining the prover side such that P1 : SK → W
and P2 : SK ×W × C → Z

• V : PK ×W × C × Z → {0, 1} is the verification function

The identification procedure is a three-steps protocol between the prover and the ver-
ifier. Let us assume the prover generated a key pair (sk, pk). It starts with the prover
running P1 to get a value w called the commitment that is sent on the channel. The verifier
will then reply with a randomly chosen c r←− C from the challenge space. Using the pre-
viously chosen commitment w and the newly received challenge c, the prover computes
a response z ← P2(sk, w, c). Finally, the verifier accepts if V(pk, w, c, z) = 1. If the
tuple (w, c, z) (we let the public key be implicit) is such that the verification is a success,
we call (w, c, z) an accepting transcript. Figure 2.3 illustrates a canonical identification
scheme. Such three-moves protocols are sometimes called Σ-protocols.

Before moving on to the Fiat-Shamir transform, let us define two common properties
facilitating security arguments for identification schemes.

Definition 18. (Honest-verifier zero-knowledge) An identification scheme has the honest-
verifier zero-knowledge (HVZK) property if there exists an efficient simulation algorithm
sim taking as input only a public key and outputting an accepting transcript indistinguish-
able from genuine executions of the protocol between a prover holding the corresponding
private key and an honest verifier9.

This properties aims at providing security against passive adversaries. Indeed, if any-
one can create accepting transcripts at will using only public values, it means that no

9By honest, we mean a verifier simply following the protocol as described above.
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information on the secret is gained through the observation of accepting transcripts. In
particular, observation of genuine transcript created by an execution of the protocol be-
tween the holder of the secret key and an honest verifier will not reveal information on
the said key.

Definition 19. An identification scheme has the special soundness property if it is com-
putationally infeasible for an entity not knowing the secret key to find two accepting tran-
scripts (w, c, z) and (w′, c′, z′) such that w = w′ and c 6= c′.

The intuition behind this property is that if it is impossible to find two transcripts
(w, c, z) and (w′, c′, z′) such that w = w′ and c 6= c′, any adversary able to attack the
identification scheme without recovering the secret key has a probability of success at
most 1

|W| , which can be made negligible by picking a large enough set W . Indeed, say
an adversary attacking the scheme with commitment w got a challenge c and output a
response z such that (w, c, z) is a valid transcript and that it would have been impossible
to attack on (w, c′). Since the adversary cannot know a priori which challenge will be sent
by V and, thus, the commitment w was chosen independently of c, it would have been
impossible that the attack succeeds on any c′ 6= c, which would mean that the probability
of success is upper bounded by Pr[c r←−W ] = 1

|W| .

2.2.9 From Identification to Signatures: The Fiat-Shamir Transform
The reason why we introduced identification scheme (beside the fact that it is an interest-
ing topic!) is that there exists a way to construct a signature from a canonical identification
scheme called the Fiat-Shamir transform.

The idea is for a prover to play the authentication protocol alone while making the
game depend on the message. Hence, the transcript of the game correspond to a signa-
ture on the message and anyone in possession of the public key can play the role of the
verifier later on to verify the validity of the signature. One should be careful here because
since identification games having the HVZK property are simulable, a signature should
correspond to a genuine execution of the protocol. The solution is to force the prover to
simulate a verifier using what is called a random oracle.

Random Oracle

Definition 20. A random oracle is a black box taking as input arbitrary values and return-
ing uniformly random values from its output space but that stays consistent when queried
multiple times on the same input.

Random oracle (RO) are theoretical objects that cannot be instanciated in practice but
can easily be simulated for a polynomial number of queries. Indeed, the simulator will
store a list of pairs of the form (xi, yi) in which xi is the i-th query and yi the i-th answer.
Upon receiving a new query x, the simulator performs a search in the list and outputs yi
if x = xi for some i. If not, a value y chosen uniformly at random from the output set is
returned and the pair (x, y) added to the list. Since random oracles are not instanciable in
the real world, they are approximated with classical hash functions. While this functions
are deterministic and, thus, not random oracles, from the point of view of a user, a “good”
hash function is indistinguishable from a random oracle as it is obviously consistent but
will return a random looking output on a new fresh input due to the one-wayness property
concealing the relation between outputs and inputs and the avalanche property concealing
the link between close inputs.
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Let (Gen,P = {P1,P2},V) be a canonical identification scheme with associated usual
spaces and H : {0, 1}∗ → C a random oracle. The key generation algorithm of the
signature scheme is simply Gen.

Fiat-Shamir Sign(sk,m):
1: w ← P1(sk)
2: c← H(w,m)
3: z ← P2(sk, w, c)
4: return σ = (w, z)

Fiat-Shamir Verify(pk, σ = (w, z),m):
1: c← H(w,m)
2: return V(pk, w, c, z)

Figure 2.4: Fiat-Shamir signature based on a canonical identification scheme

The Fiat-Shamir transform

As explained above, the goal of the Fiat-Shamir transform is to modify an identification
scheme such that it depends on the message and corresponds to a genuine execution with
an honest verifier. Both those constraints are met by using a random oracle H having the
challenge space as output space and simulating a verifier by computing the challenge as
c ← H(w,m) with m the message to sign and w the commitment. Indeed, in this case,
the game obviously depends on the message and flows as a genuine execution because

1. the challenge is uniformly distributed and,

2. the temporality of the protocol is maintained since the challenge cannot be com-
puted before w is chosen.

The Fiat-Shamir transform is more formally described in Figure 2.4. Note that for
identification schemes in which w is easy to compute from pk, c and z, the signature
output is often (c, z) instead of (w, z) because it generally has a shorter representation.

Schnorr signature

Figure 2.5 presents a signature scheme constructed using the Fiat-Shamir transformation
called Schnorr signature [111]. The scheme base its security on the hardness of the dis-
crete logarithm problem and is a simple illustrative example of a Fiat-Shamir signature.

Showing unforgeability properties of this signature involves arguments that are out of
scope of this introduction and will not be done here. Nevertheless, we would like to point
out three facts:

• Under the discrete logarithm assumption, y is hard to compute from w and thus
unknown to an eavesdropper. This means that z is independent of the secret key sk
(and thus does not reveal any information on it) under the GOTP perfect secrecy
property (Definition 6).

• Under the discrete logarithm assumption, the underlying identification scheme achieves
special soundness. Indeed, for the public key pk = gsk, from two transcripts
(w, c, z) and (w′, c′, z′) with w = w′ and c 6= c′, the adversary can easily extract
sk = (z − z′) · (c− c′)−1 and, thus, solve the discrete logarithm problem.
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Public parameters:

• (multiplicative) cyclic group G of order q generated by g

• random oracle H : {0, 1}∗ → Zq

Signing key: sk r←− Zq
Verifying key: pk ← gsk

Schnorr Sign(sk,m):

1: y
r←− Zq

2: w ← gy

3: c← H(w,m)
4: z ← y + sk · c mod q
5: return σ = (c, z)

Schnorr Verify(pk, σ = (c, r),m):
1: w′ ← gz · pk−c

2: return c ?
= H(w′,m)

Figure 2.5: Schnorr signature

• The underlying protocol has the HVZK property. Picking c and z at random in Zq
and setting w ← gz · pk−c gives accepting transcripts (w, c, z) that can be shown to
perfectly simulate a genuine execution with an honest verifier.

The Schnorr signature, beside its simplicity, is of great interest for this thesis as it
is also the basis on which popular lattice-based signatures scheme from Chapter 4 were
built.

2.3 Post-Quantum Cryptography
As explained in the informal high level introduction to cryptography, modeling and as-
sessing the capabilities of the adversary is a fundamental requirement to build useful
cryptographic schemes. Indeed, if a scheme is proven secure in a model that does not
correspond to any real-life scenario, the security proof is worthless.

The most common assumption generally made is that we face a probabilistic polynomial-
time (PPT) adversary. That is to say, an adversary that uses algorithms running in poly-
nomial time in some security parameter and that can access some randomness during its
computation. One implicit hypothesis is that the adversary uses a classical computer. In
a world in which the adversary has access to a quantum computer, some security assump-
tions, especially on the hardness of several cryptographic problems, do not hold anymore.
Adding quantum computers to the list of possible tools, one can see three cryptographic
scenarios:

1. Classical Cryptography: Everyone, adversaries and legitimate participants, is us-
ing a classical computer. This is the scenario that as been mostly considered through
the history of cryptography.

2. Post-Quantum Cryptography: The adversaries are equipped with quantum com-
puters while the honest participants have to defend using solely classical computa-
tions. This is the topic of this thesis.
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3. Quantum Cryptography: Everyone, adversaries and legitimate participants, is
using a quantum computer. While this scenario could somehow make sense in a
distant future, it assumes that every device using cryptography is quantum capa-
ble and that there always exists a quantum communication channel, which is quite
unrealistic as of now.

The scenario in which the adversary is classical and the honest participants are quantum is
irrelevant since it is basically the same (or better) as classical cryptography from the point
of view of the defender. In this thesis, we care about the second scenario, the one that
models a world in which a powerful adversary, for example a large company or a state,
get access to a quantum computer and tries to use it to attack some cryptographically se-
cured communication. Before stating why it is important to care about this scenario right
now, we should first explain what is alarming about it. While no full-fledged large scale
quantum computer has been publicly built yet, a large effort studying its algorithmic capa-
bilities from an abstract model have been made during the past decades. The scariest result
concerning cryptography is Shor’s algorithm. In 1994, Peter Shor described a quantum
algorithm [115] that can solve both the integer factorization and the discrete logarithm
problem in polynomial time. This means that, in a quantum world, all the cryptographic
schemes described earlier which base their security on the Diffie-Hellman problem (and
thus discrete logarithm) are insecure. Actually, the bad news is that almost all public-key
schemes used in practice right now are based either on the discrete logarithm (for specific
groups)or the integer factorization problems. For example, the TLS protocol, which is
used all over the Internet, is currently only using key exchanges and signature schemes
insecure against a quantum adversary. Explaining the details of Shor’s algorithm require
a decent background in quantum computing and is not required to understand the practi-
cal challenges post-quantum cryptography is facing. Thus, in this thesis, we will mostly
ignore how a quantum computer is working and focus solely on schemes that are believed
to resist quantum attacks. The curious reader is redirected to the excellent textbook of
Nielsen and Chuang [96]. The reason why this method is sound is that, for practical pur-
poses, as long as the scheme is proven to be secure under a quantum-resistant problem,
the fact that the adversary is quantum is irrelevant in theory 10. Actually, post-quantum
schemes were not really crafted to counter a quantum adversary, what often happened
is that an already existing scheme that had not been extensively studied (because it of-
fered less efficiency than discrete logarithm/factorization-based algorithms) gained some
popularity because no quantum attacks against it are known. For example, the McEliece
cryptosystem [87] was described in 1978, almost twenty years before the groundbreaking
work of Shor, and its modern derivatives are considered as viable post-quantum candi-
dates. This phenomenon is somewhat due to fundamental open questions in complexity
theory. Since the P vs NP problem is still unsolved, we do not even know if hard prob-
lems in the cryptographic sense do exist. Hence, instead of creating hard problems based
on the adversary, we instead pick existing problems that are strongly believed to be out of
reach. Since the same kind of questions are open for quantum computing, post-quantum
cryptography also relies on problems only believed to be hard for a quantum computer.
Actually, it is not even known whether the classes of efficiently solvable problems on a
classical (P) and on a quantum (BQP) computer are different. Since quantum resistant
cryptographic algorithms can be built from several hard problems, they are regrouped in
different categories. The main ones are:

10In practice, one should use stronger parameters sets against quantum adversaries.
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Figure 2.6: Lattice together with two of its basis, B = {b1,b2} and B′ = {b′1,b′2}

• Lattice-based cryptography;

• Code-based cryptography;

• Isogeny-based cryptography;

• Hash-based cryptography;

• Multivariate cryptography.

Each category has its advantages and drawbacks and choosing among them for standard-
ization is not an easy task. This thesis focus solely on lattice-based cryptography but the
goal is not to advocate for the superiority of this category. The personal view of the au-
thor is that lattice-based cryptography is promising because of its versatility, plethora of
cryptographic constructions can be built based on lattice problems and it gives a unified
framework to study them. Beside, their structured variants seem to offer relatively good
trade-offs between bandwidth and efficiency. Nevertheless, this kind of considerations
are always context dependent. Sometimes having large keys is not an issue, sometimes
slow computations are acceptable, there is not a clear undebatable metric here.

2.3.1 Lattices
We now move on to the main tools used to construct the cryptographic schemes that
are studied in this thesis. This shallow introduction to lattices aims to provide to the
reader a high level overview of the field and useful definitions required to understand
upcoming chapters. The theoretical work behind lattices, both on the mathematical and
cryptographic sides is quite deep an clearly out of scope. More details and references
about the history of lattice cryptography can be found in the excellent survey of Peikert
[101] that has been very useful to write this section.

A n dimensional lattice Λ is an additive discrete subgroup of Rn. It is composed of
the set of vectors that can be expressed as a linear combination of linearly independent
vectors B = {b1,b2, ...,bm} with bi ∈ Rn, m ≤ n. More precisely:

Λ(B) =

{
m∑
i=1

ai · bi|ai ∈ Z

}
(2.1)
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Base:
b1 = (3.5,−2)
b2 = (4,−2)

SVP:
v1 = −1 · b1 + 1 · b2

SIVP:
v2 = 2 · b1 +−2 · b2

v3 = −8 · b1 + 7 · b2

CVP(3.2, 2.8):
v4 = −14 · b1 + 13 · b2

BDD(-3.2, 2.1):
v5 = −2 · b1 + 1 · b2

Figure 2.7: All-in-one figure showing the different basic lattice problems together with
their solutions in a simple lattice of dimension 2.

The matrix B ∈ Rn×m is called the basis of the lattice λ. If m = n, the lattice is said to
be full-rank. This will be assumed.

A lattice can be expressed by an infinite amount of basis. For all unitary matrix U ∈
Zn×n, Λ(B) = Λ(B ·U). When the basis is clear from context, we simply write B.

Definition 21. (minimum distance) The minimum distance of a lattice Λ, denoted λ1(Λ)
is the quantity min

v∈Λ,v 6=0
‖v‖.

Said otherwise, it is the norm of a shortest nonzero vector of the lattice. Furthermore,
we can also define λ2 as the second shortest vector not on the same line as λ1, then, λ3 as
the shortest vector not in the span of {λ1, λ2} and so on and so forth.

Definition 22. (successive minimum distances) The i-th successive minimum distance λi
is defined as the minimum norm of the largest element in a set of i linearly independent lat-
tice vectors. More formally, it is defined as λi = min

r
{r | dim(span(B(0, r) ∩ Λ)) ≥ i}

with dim(V ) the dimension of the vector space V , span(S) the vector subspace spanned
by S and B(c, r) the ball of radius r centered in c.

2.3.2 Hard Problems on Lattices
Lattices are simple to construct geometric objects but nevertheless offer some easy to de-
fine hard problems. The algorithmic challenges offered by lattices appeared in computer
sciences prior to their usage in cryptography and, even before, the theory of lattices has
been studied in the mathematical literature in fields such as the geometry of numbers. This
extensive scrutiny of lattice related problems grants a certain level of confidence toward
their hardness, which is very valuable in cryptography. However, it should be mentioned
that concrete instanciations are pretty far from the original lattice problems as they are
only equivalent through non-tight reductions. The problems presented below will be re-
ferred to as the basic lattice problems.
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Shortest vector problem

The first problem we define asks to find short vectors in the lattice from an arbitrary basis.
It is called the Shortest Vector Problem (SVP).

Definition 23. (SVP) Given a basis B of a lattice Λ, find a vector v such that ‖v‖ =
λ1(Λ).

Definition 24. (SVPγ) Given a basis B of a lattice Λ of dimension n and an approximation
factor γ = f(n), find a vector v such that ‖v‖ ≤ γ · λ1(Λ).

The function f plays an important role in the hardness of this problem. If we take
f(n) = 1, it is equivalent to the basic SVP problem, which is NP-hard. For f polynomial
in n, we lose the NP-Hardness in general but the problem is still believed to be intractable,
even for a quantum adversary. For exponential f , polynomial time algorithms solving
those problems exist, the most famous being the basis reduction algorithm LLL [76].

Similar to the discrete logarithm problem, there also exists a decisional version.

Definition 25. (gapSVPγ) Given a basis B of a lattice Λ of dimension n and a value
γ = f(n), decide if λ1(Λ) ≤ 1 or if λ1(Λ) > γ. If λ1(Λ) is in between, the decider
algorithm can output an undefined result.

Shortest Independent Vector Problem

The Shortest Independent Vector Problem (SIVP) is a sibling of SVP in which the goal is
not to find a shortest vector but a set of linearly independent vectors such that the norm of
the largest vector in the set is minimal.

Definition 26. (SIVP) Given a basis B of a lattice Λ of dimension n, find a set of linearly
independent vectors V = {vi} such that max

i
‖vi‖ = λn(Λ).

Definition 27. (SIVPγ) Given a basis B of a lattice Λ of dimension n and an approxi-
mation factor γ = f(n), find a set of linearly independent vectors V = {vi} such that
max
i
‖vi‖ = γ · λn(Λ).

Closest Vector Problem

The last lattice problem we define is called the Closest Vector Problem (CVP). In this
one, we work with points that are in the ambient space and try to determine where is the
closest lattice point.

Definition 28. (CVP) Given a basis B of a lattice Λ and a target point t ∈ Rn, find the
vector v ∈ Λ such that the distance between t and v is minimal.

The Closest Vector Problem also offers a variant in which a lattice point close to the
target is ensured to exist, it is called the Bounded Distance Decoding (BDD) problem.

Definition 29. (BDD) Given a basis B of a lattice Λ and a target point t ∈ Rn, find the
vector v ∈ Λ closest to t, given that there exists v ∈ Λ such that ‖t− v‖ < λ1(Λ)/2.

Figure 2.7 shows a graphical representation of the different problems briefly discussed
in this section.
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2.3.3 SIS, LWE and their Algebraically Structured Variants
Having difficult problems is a natural requirement to construct cryptography. Neverthe-
less, these problems do not tell how to construct efficient schemes from them. In lattice-
based cryptography, it is often the case that the proposed cryptosystem is actually based
on an intermediate problem that has a reduction from the basic lattice problems described
in the previous section. Among them, the two problems relevant to this thesis are the Short
Integer Solution (SIS) and the Learning With Errors (LWE) problems. For completeness,
we must also cite the famous NTRU cryptosystem [21, 65, 123] that belongs to the lattice
family but is based on related but different problems that the ones we will develop now.

Short Integer solution

One of the first fundamental lattice related problem is called the Shortest Integer Solution
(SIS) problem. It has been first described by Ajtai [1] in a paper seen as the cornerstone
of a large amount of lattice-based cryptosystem.

Definition 30. (SIS) Given a random matrix A ∈ Zn×m and a bound b, find a vector
s ∈ Zm such that ‖s‖ < b and A · s ≡ 0 mod q.

Basically, the problem is to find a small linear combination of the columns of a ma-
trix in Zn×mq giving the zero vector. This shares similarities with the famous knapsack
problem. The bound b is crucial to its hardness because otherwise, simple Gaussian elim-
ination yield a valid solution. The problem is obviously meaningful if there exists at least
a solution, this can be forced by choosing relevant parameters. For example, if we take
m > n log2 q and b >

√
m, we have more vectors in {0, 1}m than in Znq , hence there

exists v and v′ such that A · v = A · v′. The vector s = v− v′ is such that A · s ≡ 0 and
‖s‖ < b.

The SIS problem can be seen as an average-case (approximate) SVP problem over a
specific class of lattices. Indeed, let us consider the lattice

Λ(A) = {v ∈ Zm | A · v ≡ 0 ∈ Znq , }

a short vector in such a lattice is precisely a solution to the SIS problem. Nevertheless,
while this result is connecting the SIS problem and lattices problems from Section 2.3.2, it
does not tell much about the hardness of the problem since it might be the case that finding
short vectors in such lattice is actually much easier than the general case. Fortunately,
way stronger results for this problem are known. When Ajtai introduced SIS, his paper
came with a worst-case to average-case reduction (that has been studied further by other
researchers in the literature) from several basic lattice problems such as gapSVPγ and
SIVPγ with γ = Õ(n) [90], to the SIS problem. This means that an adversary capable to
efficiently solve a randomly chosen instance of SIS with non-negligible probability can
be transformed in polynomial time into an adversary solving some basic lattice problem
on an arbitrary lattice! This result is actually very strong because it indicates that the
average instance of the SIS problem is theoretically as hard as the hardest instance of
the base problem. Nevertheless, it should be mentioned that the concrete cryptosystems
based on SIS are not instanciated according to this reduction since it would make them
impractical due to the non-tightness of the proof. This result should be more realistically
seen as an indication that the problem is hard by nature.
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A simple collision resistant function from SIS

As a proof of concept of cryptographic primitive based on SIS, we show a simple con-
struction of a collision resistant function. Let A ∈ Zn×m be a matrix such that the SIS
problem with b >

√
m is hard, the function

f : {0, 1}m → Znq : x 7→ A · x

is collision resistant. Indeed, finding two inputs x and x′ such that f(x) = f(x′) trivially
gives a vector s = x− x′ which is a solution to the SIS problem.

Learning With Errors

The flagship problem of modern lattice-based cryptography is called Learning With Er-
rors (LWE). It offers myriad of applications and was introduced by Regev [109] in 2005
. The author subsequently won the prestigious Gödel prize in 2018 for his analysis of
the problem. It can be used for very efficient constructions of public-key encryption and
signatures but also offers the possibility to create advanced primitives such as fully homo-
morphic encryption. Also enjoying valuable hardness results, its popularity grew strongly
with the urgent need for post-quantum primitives.

Let q and n be positive integers and χ a zero mean narrow distribution over Z which
is usually a discrete Gaussian or a binomial distribution.

Definition 31. (search-LWE) For a fixed s ∈ Znq , givenm samples (ai, 〈ai, s〉+ei mod q)
with the ai sampled uniformly from Znq and the ei sampled from χ, find s.

This search version of LWE is more commonly stated as solving a noisy system of
equations over Zq: given a matrix A ∈ Zm×nq and a target vector t = A · s + e mod q
with coefficients of the m dimensional vector e sampled from χ, find s.

Similarly to SIS, the search-LWE problem can be expressed as a basic lattice problem.
Let us consider the lattice

Λ(A) = {v ∈ Zm | A · s ≡ v mod q},

search-LWE is equivalent to a BDD problem.
An even more powerful version of this problem, which renders the LWE problem

somewhat analogous to the Decisional Diffie-Hellman problem is the following version:

Definition 32. (decision-LWE) Given m samples (ai, bi) ∈ Znq ×Zq with each ai sampled
uniformly at random, decide if the bi were also sampled uniformly at random or if they
were computed as bi = 〈ai, s〉+ ei mod q for a fixed s and each ei sampled from χ.

Basically, this problem asks to distinguish LWE samples from uniformly random el-
ements from Znq × Zq. Similarly to the decisional Diffie-Hellman problem, this is really
useful to argue the semantic security of encryption schemes. This problem is also more
commonly described by regrouping the samples in a matrix A ∈ Zm×nq .

Equivalently to SIS, the hardness of the learning with errors problem is based on a worst-
case to average case reduction. In his original work, Regev provided a quantum reduction
from gapSVPγ and SIVPγ on arbitrary lattices to decision-LWE for γ = Õ(n/α) where
0 < α < 1 is a parameter related to the standard deviation αq of the error distribution.
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The reduction being quantum means that an adversary who can solve LWE and who have
access to a quantum computer can also solve gapSVPγ and SIVPγ . The results has been
improved later with the apparition of fully classical worst-case to average-case reductions
for LWE [32, 99]. It has also been showed that picking the secret s from the same distri-
bution as the error does not affect the hardness of the problem (and others LWE related
problems). While it is not a tremendous change to the definition, it is a really useful prop-
erty in practice, crucial to the construction of certain schemes.
We also note that the problem stays hard for different instances sharing the same ai
but with different secrets. For instance, it is still hard to distinguish tuples of the form
(ai, 〈ai, s1〉 + e1,i, 〈ai, s2〉 + e2,i) from tuples sampled uniformly from Znq × Z2

q . Indeed,
with such a distinguisher, upon receiving a pair of the form (ai, bi), one could craft a new
sample b′i = 〈ai, s′〉 + e′i and call the distinguisher on (ai, bi, b′i) to solve decision-LWE.
Intuitively, since the ai are public, new samples with different secrets can be computed
by anyone and thus, do not help distinguishing.

Ring-LWE

It is natural that the number one characteristic of a cryptograhic problem should be se-
curity. Nevertheless, to be useful in the real world, outside of academic papers, it must
also be efficient. Depending on the context, this efficiency can be expressed in terms of
different metrics but the most common ones are speed, key sizes or ciphertext/signature
size. Lattices constructions based on SIS or LWE are known to suffer greatly from large
key sizes and this issue spanned a line of research studying some algebraically structured
variants offering better performances at the price of more specific assumptions. Studying
all the variants and there subtleties requires a quite strong arsenal of tools from algebraic
number theory and would be well out of scope of this thesis. We redirect the interested
reader to [102] and the numerous references therein for an overview of the different fla-
vors. For our purpose, we restrict ourselves to the most commonly used variant. With q
and χ defined as in the plain LWE section, letRq be the ring Zq[X]/〈φn〉with φn the n-th
cyclotomic polynomial 11 and where n is often chosen as a power of two (which means
φn is of the form X2k + 1 and n = 2k+1).

Definition 33. (search-RLWE) For a fixed s ∈ Rq, given m samples (ai, bi = ai · s+ ei)
with the ai sampled uniformly from the ring Rq and the ei ∈ Rq having coefficients
sampled from χ, find s.

At first sight, it looks like not much has been gained from the original LWE problem,
the inner product over Znq has been replaced by the product in the n dimensional ring
Rq. In fact, the huge performance gain comes from the fact that the bi are n dimensional
in RLWE while they are only a scalar in LWE. This means that the number of sample
needed for a given cryptographic application can be divided by n. Actually, most scheme
based on RLWE only use a couple of samples while some LWE schemes can use up
to thousands of samples. Also, on the computational side, thanks to fast polynomial
muliplication algorithms, schemes based on RLWE are faster than their LWE counterpart
using the same dimension. Naturally, RLWE also offers a decisional variant.

Definition 34. (decision-RLWE) Given m samples (ai, bi) ∈ Rq ×Rq with each ai sam-
pled uniformly at random, decide if the bi were also sampled uniformly at random or if

11The n-th cyclotomic polynomial is the product
∏

i∈{1,...,ϕ(n)}(x − ωi) with ωi the primitive roots of
unity of order n.
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they were computed as bi = ai · s + ei for a fixed s ∈ Rq and each ei ∈ Rq having
coefficients sampled from χ.

On the side of hardness, results similar to the non-structured case are known. The
difference is that reductions are defined for basic lattice problems over a special class of
lattices called ideal lattices. The crucial question is naturally how both problems compare
to each other in terms of security. Of course RLWE cannot be harder than LWE but its
structure does not seem enable any devastating attack. More details in [83, 84]. Actually,
this idea of giving algebraic structure to the problem was first applied to SIS [89].

Definition 35. (R-SIS) LetR be a ring, b an integer and a ∈ Rm, find a nonzero s ∈ Rm

such that 〈a, s〉 =
∑

i ai · si = 0 and ‖s‖ < b.

The results for this problem regarding efficiency of constructions and hardness are
similar to the ones of RLWE. Therefore, we will not expand more on this topic.

2.3.4 NIST Standardization Process
A question we ignored until now is the usefulness, or more precisely, the need for post-
quantum algorithms. Surely, advances in quantum computing are made here and there,
but nothing concrete that would weaken cryptography has been announced yet. The threat
of quantum cryptanalysis is currently only speculation from a theoretical model. Even
though proof of concept implementations on small quantum computers have been demon-
strated, maybe some unknown physical constraint actually undermines the realization of
a large scale quantum machine. Yet, the threat seems to be real and growing and even
if some are still reluctant to accept the necessity of post-quantum cryptography, a large
amount of people think that the risks are too high to be ignored. Hence, the field of
post-quantum cryptography has been growing a lot in the past years. The reason why the
research community is getting so active a long time prior to the creation of the first large
quantum computer is because a lot of things take time before having a full-fledged ready
to deploy solution. Mainly,

• Building secure and practical schemes;

• Getting confidence in the underlying assumption;

• Deploying the scheme outside of academia.

And beside that, a really common argument in favor of putting more forces toward quantum-
resistant schemes is that some messages might need to keep their security for an extended
amount of time. If some information has to stay secret for, say, twenty years, the encryp-
tion method used to encrypt it has to stay unbreakable for twenty years. This means that
post-quantum security might already be needed right now.

In this context, at the dawn of 2017, the National Institute of Standards and Technol-
ogy (NIST) started the Post-Quantum Cryptography Standardization project. The goal
was to create a framework in which researchers could officially propose concrete solu-
tions for encryption (or key encapsulation) and signatures in a post-quantum world. The
original deadline for proposal was at the end of November 2017. After this date, all the
proposed schemes, 69 candidates, became public and the “competition” entered its first
round. Since all candidates had to provide a detailed specification document together with
concrete parameter sets and at least an implementation, this motivated a lot of research.
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Attacks on some proposals rapidly flourished and improvements were made. In early Jan-
uary 2019, the project started its second round. While the first one was more about the
design of the schemes, NIST announced that performances will have more importance
in this second phase. Among the original candidates, 17 encryption/key encapsulation
schemes and 9 signature schemes were selected to advance. At the time of writing this
section, the second round is still ongoing. The lattices candidates in the race are:

• Encryption/KEM: CRYSTALS-KYBER [113], FRODOKEM [95], LAC [78],
NEWHOPE [106], NTRU [123], NTRU PRIME [21], ROUND5 [56], SABER [44],
THREE BEARS, [64].

• Signature schemes: CRYSTALS-DILITHIUM [82], FALCON [107], QTESLA
[22].

In this thesis, we will focus mainly on NEWHOPE, QTESLA and to a lesser extend,
KYBER. Those schemes are RLWE-based equivalents of the ElGamal encryption scheme
and the Schnorr signature.
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Chapter 3

Efficient KEMs Implementations on
Embedded Devices

3.1 Preamble
This Chapter will discuss the work I did on high-speed implementations of lattice-based
KEM on the Cortex-M4 microcontroller. It actually started with an idea I had for quite
some time (early 2019 according to an email exchange with Gregor Seiler I found buried
in my mailbox) which was to instanciate NEWHOPE with q = 3329. My feeling was
that it is performance-wise lagging behind its Module-LWE sibling KYBER because the
“partially splitting NTT” technique offering a larger choice in modulus was not used.
Since my goal was to increase performances, I wanted to implement it on a platform which
offered some point of comparison. The Cortex-M4 microcontroller was an obvious choice
as it is the preferred platform for embedded devices in the NIST project and a full-fledged
library to perform benchmarks and comparison called PQM4 is available [68, 70]. Since
I had never worked on this platform before, I started with a smaller project which was to
close a gap in implementation techniques between the early work of Alkim on NEWHOPE

[13] and recent research in the context of the standardization process [31]. It basically
consisted in revisiting the work of [13] with SIMD instructions. This led to a speed-
up over their implementation and was integrated to the PQM4 library during summer
2019. Following my plan, I then implemented my idea of NEWHOPE with modulus
3329, with the expected success. While conversing with Matthias Kannwischer (who
is managing PQM4), I learned that a team of researchers composed of Erdem Alkim,
Yusuf Alper Bilgin and Murat Cenk was working on something similar. I discovered that
they already had a paper accepted at Latincrypt 2019 [8] under the title “Compact and
Simple RLWE Based Key Encapsulation Mechanism”. Unfortunately, we were prior to
the conference and the preprint was not available online. I contacted them shortly after to
get a preliminary version and sadly realized that they already proposed a reduced modulus
version of NEWHOPE (among other things) called NEWHOPE-COMPACT. On the bright
side, their paper was coming with an AVX2 implementation but nothing on the embedded
side. We then decided to team up and this led to a paper that went beyond my original
idea by improving the Cortex-M4 implementations of KYBER and NEWHOPE (and hence
the unpublished work that I did during summer) in addition to the first implementation of
NEWHOPE-COMPACT on this platform [6].
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3.2 Introduction
Cryptography is not created to live in a vacuum. At some point, it will be implemented in
some service that uses it as a subroutine to protect data. For example, in a web browser,
while the main task of the program is actually to display websites, sensitive communica-
tions are secured with some cryptographic algorithms before transiting on the network.
Since users will understandably be unhappy if the programs they use are slow, the over-
head of cryptography has to be considered. Hence, one of the most intuitive practical
issue a cryptographic algorithm faces is pure efficiency in terms of speed. Of course, one
can simply justify that security has a cost, but at some point, a trade-off between speed
and security will be made and, if security levels (and bandwidth/storage) are similar, the
fastest algorithm will be preferred. The good news is that cryptographic algorithms are
often pretty lightweight relatively to other computing tasks. People nowadays are running
all kind of graphical applications/games which take a lot of resources on their smartphone
or computer. The additional cost of cryptography is thus often limited (but should not
necessarily be neglected). Nevertheless, in the big world of small devices, the situation is
different. Since the trend of the last couple of years seems to be to connect all everyday
objects to the internet, the need for cryptographic implementations on embedded devices
is very strong. Indeed, the set of connected objects like cars, refrigerators, watches, cam-
eras, . . . , that is now often called the Internet of Things, contains a lot of private data
that must be secured. Furthermore, this type of systems are mostly very specialized, very
limited in resources and designed to support only their base application. Thus, adding a
cryptographic computation to the code might be greatly detrimental to performances. This
is why it is required to study implementations tailored for commonly used architectures.
This chapter will present contributions made to efficient implementations of lattice-based
key encapsulation mechanisms on the Cortex-M4 platform. Beside the first part intro-
ducing needed background, it presents the result of an unpublished work that has been
integrated in the PQM4 library [69] and a paper co-authored with Alkim et al. [6].

3.3 Polynomial Multiplication
The lattice-based KEMs we will study in this chapter are based on the ring learning with
errors problem. The main computational tasks of such RLWE-based scheme are thus op-
erations in the ringRq = Zq[X]/〈φi〉 of polynomials with coefficients in Zq taken modulo
the i-th cyclotomic polynomial φi of degree ϕ(i) = n. Since the modulus q used in prac-
tice is quite small (usually less than 232), the addition is a straightforward cheap O(n)
operation. The main bottleneck in terms of computation is the multiplication. Indeed,
Rq is a quotient ring and thus has a specific multiplication law. Fortunately, since i is
generally taken to be a power of two, the cyclotomic polynomial φi is of the form Xn + 1
and a simple procedure to multiply inRq is to multiply the two elements in Zq[X] and re-
duce modulo Xn + 1. This reduction step is actually very easy because one simply needs
to replace all the Xn terms by −1 (since Xn ≡ −1 mod Xn + 1). Thus, multiplying
in the ring is not sensibly harder than a standard polynomial multiplication. Still, stan-
dard polynomial multiplication is more expensive than addition. The naive schoolbook
algorithm runs in O(n2) and for cryptographic parameters (n = 512 or n = 1024), the
quadratic complexity hinders performances in practice. On the bright side, polynomial
multiplication has already been extensively studied in the literature and algorithms such
as Karatsuba/Toom-Cook are notably faster than the naive method. Still, for some rings,
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even faster methods based on discrete Fourier transforms called NTTs are used.

3.3.1 NTT-based Multiplication
A Discrete Fourier Transform (DFT) over a finite field Zq, called a Number Theoretic
Transform, is a function NTT : Znq → Znq mapping a n-dimensional vector
x = {x0, x1, . . . , xn−1} to an n-dimensional vector x̂ = {x̂0, x̂1, . . . , x̂n−1} such that

x̂k =
n−1∑
i=0

xi · ωi·k (3.1)

with ω a primitive n-th root of unity in Zq, which exists only if q ≡ 1 mod n.
Its inverse, simply called the Inverse Number Theoretic Transform, is defined as

INTT : Znq → Znq , x̂ = {x̂0, x̂1, . . . , x̂n−1} 7→ x = {x0, x1, . . . , xn−1} such that

xk =
1

n

n−1∑
i=0

x̂i · ω−i·k (3.2)

It is well known that DFT can be used to compute the cyclic convolution of vectors
( [42, 112]). Given two vectors a,b ∈ Znq , the vector

c = INTT(NTT(a) ◦ NTT(b))

with ◦ the component-wise multiplication of vectors, is the cyclic convolution of a and
b, that is to say the vector c ∈ Znq such that ci =

∑
j+k≡i mod n aj · bk. The reason why

this property is very interesting is because if we interpret n-dimensional polynomials as
vectors of their coefficients, the cyclic convolution between them corresponds to a multi-
plication in Zq[X]/〈Xn − 1〉. This is really close to the needed Rq multiplication. Actu-
ally, theRq multiplication corresponds to what is called the negative wrapped convolution
( [121] p.73) of a and b which introduces the −1 factor needed to perform the multipli-
cation modulo Xn + 1. Fortunately, this can also be computed using the NTT. Let γ be a
primitive 2n-th root of unity such that γ2 = ω, a′ = (a0, γ · a1, γ

2 · a2, . . . , γ
n−1 · an−1)

and b′ = (b0, γ · b1, γ
2 · b2, . . . , γ

n−1 · bn−1), the negative wrapped convolution c of
a = (a0, a1, a2, . . . , an−1) and b = (b0, b1, b2, . . . , bn−1) is given by

c =
(
1, γ−1, γ−2, . . . , γ−(n−1)

)
◦ INTT(NTT(a′) ◦ NTT(b′)). (3.3)

The purpose of multiplying by powers of γ beforehand is to implicitly multiply by −1
coefficients that wrap around during the cyclic convolution, thanks to the equivalence
γn ≡ −1. This yields a really efficient way to multiply polynomials inRq.

3.3.2 Fast Fourier Transform Algorithms
Even though we described how the NTT can be used to perform polynomial multiplica-
tion, it is not clear that this method is actually helpful. Indeed, looking at Equation 3.1,
it seems that computing the whole NTT actually also requires O(n2) operations in Zq.
Luckily, various algorithms regrouped into the generic acronym FFT (Fast Fourier Trans-
form) have been developed and reduced the complexity to O(n log n) [36]. Since the
right-hand side of 3.3 contains only (i)NTTs and cheap component-wise multiplications,
we have a O(n log n) algorithm for our polynomial multiplication inRq as well.
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Decimation In Time FFT

FFT algorithms use a divide-and-conquer strategy to efficiently computes DFTs. Let us
start from Equation 3.1,

x̂k =
n−1∑
i=0

xi · ωi·kn ,

in which we write explicitly the order of the primitive root of unity, i.e. ωn means that ω
is a primitive n-th root of unity. If we separate the even and odd indices of the sum, we
have

x̂k =

n
2
−1∑
i=0

x2i · ω2i·k
n +

n
2
−1∑
i=0

x2i+1 · ω(2i+1)·k
n

=

n
2
−1∑
i=0

x2i · ω2i·k
n + ωkn

n
2
−1∑
i=0

x2i+1 · ω(2i)·k
n

=

n
2
−1∑
i=0

x2i · ωi·kn
2

+ ωkn

n
2
−1∑
i=0

x2i+1 · ωi·kn
2

(3.4)

since ω2
n = ωn

2
. Let us now set

Ak =

n
2
−1∑
i=0

x2i · ωi·kn
2

and

Bk =

n
2
−1∑
i=0

x2i+1 · ωi·kn
2
,

we have
x̂k = Ak + ωknBk for k = 0, 1, . . . ,

n

2
− 1

and

x̂k+n
2

=

n
2
−1∑
i=0

x2i · ω
i·(k+n

2
)

n
2

+ ω
k+n

2
n

n
2
−1∑
i=0

x2i+1 · ω
i·(k+n

2
)

n
2

=

n
2
−1∑
i=0

x2i · ωi·kn
2
− ωkn

n
2
−1∑
i=0

x2i+1 · ωi·kn
2

= Ak − ωknBk for k = 0, 1, . . . ,
n

2
− 1 (3.5)

which means that the Fourier transform of both xk and xk+n
2

can be easily computed from
Ak and Bk. The interesting observation is that since k ranges from 0 to n

2
− 1, Ak and Bk

are themselves Fourier transforms of dimension n
2
, which gives a nice recursive algorithm

called the Decimation In Time (DIT) FFT. The two computations

• x̂k ← Ak + ωknBk

• x̂k+n
2
← Ak − ωknBk

are called a butterfly, due to the shape of the diagram in Figure 3.1. Since others FFT
also use butterflies, this one is more specifically called a Cooley-Tukey butterfly due to
the credited authors of this method [37].
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dim. 4 DFT

Figure 3.1: The Cooley-Tukey butterfly and its usage to perform a full DIT FFT recur-
sively.

Decimation In Frequency FFT

An alternative technique, which result in a slightly different algorithm is to separate the
odd/even indices of the x̂ vector instead of the x vector. This method is called decimation
in frequency (DIF) 1. Recall Equation 3.1,

x̂k =
n−1∑
i=0

xi · ωi·kn ,

with primitive n-th root of unity ωn. Splitting the sum in two parts,

x̂k =
n−1∑
i=0

xi · ωi·kn

=

n
2
−1∑
i=0

xi · ωi·kn +
n−1∑
i=n

2

xi · ωi·kn

=

n
2
−1∑
i=0

xi · ωi·kn +

n
2
−1∑
i=0

xi+n
2
· ω(i+n

2
)·k

n

=

n
2
−1∑
i=0

(
xi + xi+n

2
· ωk·

n
2

n

)
· ωk·in for k = 0, 1, . . . , n− 1, (3.6)

1This nomenclature should be clear to the reader familiar with Fourier transforms but is somewhat
irrelevant in our context.
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2

)
· ωin

Figure 3.2: Gentleman-Sande Butterfly

we separate the even values of k from the odd ones. For the even values k = 2j,

x̂2j =

n
2
−1∑
i=0

(
xi + xi+n

2
· ωj·nn

)
· ω2j·i

n

=

n
2
−1∑
i=0

(
xi + xi+n

2

)
· ωj·in

2
for k = 0, 1, . . . ,

n

2
− 1. (3.7)

For the odd values k = 2j + 1,

x̂2j+1 =

n
2
−1∑
i=0

(
xi + xi+n

2
· ω(2j+1)·n

2
n

)
· ω(2j+1)·i

n

=

n
2
−1∑
i=0

(
xi + xi+n

2
· ω

n
2
n

)
· ωin · ω

j·i
n
2

=

n
2
−1∑
i=0

((
xi − xi+n

2

)
· ωin
)
· ωj·in

2
for k = 0, 1, . . . ,

n

2
− 1. (3.8)

Again, from 3.7 and 3.8, we expressed the size n transform as a combination of two size
n
2

transforms, which leads to a recursive FFT algorithm. The dividing part before the
recursion is to compute the values

(
xi + xi+n

2

)
and

(
xi − xi+n

2

)
· ωin, this operation is

called a Gentleman-Sande butterfly (Figure 3.2) [57]. The combination step after solving
the size n

2
subproblems is trivial as they respectively give the even and odd values of the

transform.

NTT used in lattice-based cryptography

Really efficient iterative algorithms were derived from the recursive procedures described
by the DIT and DIF methods, see [36] for an extensive survey. In the lattice-based cryp-
tography literature, several approaches with similar performances have flourished over
the years. For example, NEWHOPE straightforwardly implements the multiplication in
Rq from Equation 3.3 using a DIF FFT while some other works merged the multiplica-
tion with 2n-th roots of unity directly into the transform. One common issue with in-place
computations of the NTT is that the output vector is in bitreversed order, which means
that a coefficient at index i in the output vector actually corresponds to the coefficient at
index BitRev(i) in the NTT of the input vector, with BitRev(.) a function reversing the
binary representation of its input (see Table 3.1). In NEWHOPE, the bitreversal step is
explicitly performed on polynomials. In KYBER, the NTT and INTT algorithms used
are designed such that no bitreversal is needed. Indeed, its NTT maps polynomials in
normal order to polynomials in bitreversed order while its INTT maps polynomials in bi-
treversed order to polynomials in normal order. Hence, when computing a multiplication
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c = INTT(NTT(a) ◦NTT(b)), there is no need for a bitreversal since the INTT “undoes”
the scrambling of the NTT.

i Bin(i) RevBin(i) BitRev(i)
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Table 3.1: Bitreversal table on 3 bits

The algebraic approach

An algebraic approach to the computation of the NTT is presented in [114]. Multiplying
polynomials by computing an expression of the form IDFT(DFT(a)◦DFT(b)) is actually
two evaluations followed by an interpolation. Indeed, it is clear from Equation 3.1 that the
DFT is evaluating n times the polynomial with coefficients xi at different roots of unity.
The pointwise multiplication ◦ is then a multiplication of the evaluated points between
them and finally, the inverse DFT interpolates the n points to a polynomial. To multiply
two elements in the ring Zq[X]/〈Xn + 1〉, the trick is to evaluate the polynomial at the
roots of Xn + 1 in Zq such that the multiples of this polynomial disappear during the
evaluation. Since, in RLWE, Xn + 1 is the 2n-th cyclotomic polynomial, n is a power of
two and its roots are the n = ϕ(2n) values γ, γ3, . . . , γ2n−1 with γ a primitive 2n-th root
of unity in Zq. Hence, the NTT can be seen as the computation of the isomorphism

Zq[X]/〈Xn + 1〉 →
∏

i∈{1,3,...,2n−1}

Zq[X]/〈X − γi〉 : p 7→
(
p(γ), p(γ3), . . . , p(γ2n−1)

)
(3.9)

It can be efficiently computed using the Chinese Remained Theorem. The idea is to map
the ring

Zq[X]/〈Xn − γn〉
to

Zq[X]/〈Xn/2 − γn/2〉 × Zq[X]/〈Xn/2 + γn/2〉
by computing the straightforward CRT map

p 7→ (p mod Xn/2 − γn/2, p mod Xn/2 + γn/2).

Since Xn/2 + γn/2 = Xn/2 − γn+n/2 and n is a power of two, the same map can be
computed again on both components until reaching a product of rings in which the base
multiplication is cheap.

The core operation, which is to reduce a polynomial p modulo Xn/2 ± ζ (for ζ a
specific power of γ) corresponds in fact in computation of Cooley-Tukey butterflies. The
computation of the NTT consists in applying n/2 butterflies to pairs of coefficients of
the whole polynomial iteratively between 1 and log2 n times, each iteration being referred
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i=0(X + f9(ζ, i))

...
...

...
...

...

...
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...

. . .p259 p̂259

. . .p258 p̂258

. . .p257 p̂257

. . .p256 p̂256

. . .p3 p̂3

. . .p2 p̂2

. . .p1 p̂1

. . .p0 p̂0

Figure 3.3: Full NTT on a dimension 512 polynomial. The function fj(ζ, i) =

ζBitRev(2j−1+i) selects the correct root to compute the isomorphism. All those roots are
usually precomputed and correctly ordered in a table. Techniques to reduce q skip some
levels: for example, using q = 3329 requires to skip the two lasts (gray) layers.

to as a layer. Figure 3.3 pictures a full NTT consisting of 9 layers mapping the ring
Zq[X]/〈X512 + 1〉 to a product of rings of the form Zq[X]/〈X − ζ〉. In KYBER, the NTT
is actually stopped earlier because Zq does not offer high order enough roots of unity
to compute all of the layers. This means that the NTT itself is less expensive but the
base operation (which is pointwise multiplication for a full NTT) in the product of rings
is more computationally intensive. This base operation is polynomial multiplication in
rings of the form Zq[X]/〈Xa − b〉.

3.4 Lattice-Based Key Exchange/Key Encapsulation
We focus now on NEWHOPE and KYBER, two candidates in the NIST standardization
project. They both stem from the same line of research studying RLWE-based equivalents
of Diffie-Hellman and ElGamal. Basically, the idea is to replace values y = gx (or y =
g ◦ x for an abstract group) by RLWE samples of the form y = a · x + e. For example,
in the Diffie-Hellman key exchange, Alice picks a, Bob picks b, they respectively send
ga and gb and both use their secret to compute the shared key gab. In the RLWE version,
Alice picks s, Bob picks s′, they respectively send a · s + e and a · s′ + e′ and both use
their secret to compute

• k = s · (a · s′ + e′) = a · s′ · s+ e′ · s for Alice and,

• k′ = s′ · (a · s+ e) = a · s · s′ + e · s′ for Bob.
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They both end up with different values (which is quite problematic for a key exchange!)
but the difference between k and k′ (which is e′ · s− e · s′) is really small because s, s′, e
and e′ are all sampled from a narrow error distribution, for example a centered binomial
of low variance (with respect to q). Hence, one can hope to define a reconciliation or
decoding procedure that maps a set to a smaller set such that values that are close in the
input set are mapped to the same output. This type of procedure is basically a rounding,
for example, one can drop the least significant bits of each value. Recall that in the case
of RLWE, we are working with polynomials, thus the rounding should be applied to each
of the coefficients, which are elements of Zq. Unfortunately, rounding procedures do not
work for corner cases. For example, if we define the simple rounding function (we assume
q is even for the sake of simplicity)

f(x) =

{
0 if 0 ≤ x < q/2

1 if q/2 ≤ x < q

and trivially extend it to a function rounding polynomials by applying f independently to
each coefficient, if a coefficient of Alice ai is slightly below q/2 and the corresponding
coefficient of Bob bi = ai + δi slightly over, the reconciliation fails. Since this scenario is
very likely with large polynomials, RLWE key exchange add another message to the pro-
tocol called the reconciliation vector that helps the other party correctly rounding without
revealing sensitive information on the shared key to the adversary, see [100] and Sec-
tion 5.6. Similarly to the discrete logarithm case, the DH-like RLWE key exchange can
be converted to an ElGamal-like public-key encryption scheme. This is basically what
has been done with NEWHOPE and KYBER.

3.4.1 NewHope
NEWHOPE is the generic name for two KEMs algorithms called NEWHOPE-CPA-KEM
and NEWHOPE-CCA-KEM. They are both constructed from the lattice-based public-
key encryption scheme called NEWHOPE-CPA-PKE, which is the main component.
Since NEWHOPE-CPA-KEM and NEWHOPE-CCA-KEM both use standard generic
techniques to convert a semantically secure public-key encryption scheme into passively
and actively secure key encapsulation mechanisms, all the lattice-based parts and, thus,
all the optimizations proposed reside in NEWHOPE-CPA-PKE.

NEWHOPE-CPA-PKE

NEWHOPE-CPA-PKE is a PKE based on a scheme previously known in the literature
under the name NEWHOPE-SIMPLE [11] which is an encryption-based variant of the
RLWE-based key exchange NEWHOPE-USENIX [12, 28]. It is parameterized by the
integers n, q and k defining the ringRq = Zq[X]/〈Xn + 1〉 and the binomial distribution
ψk =

∑k
i=1 bi − b′i with each bi and b′i sampled uniformly at random from {0, 1}. It is an

ElGamal-like variant of the lattice-based key exchange loosely described in Section 3.4.
The algorithm is explicitly give in Figure 3.4, it contains a certain amount of subroutines
that we simply functionally outline:

• GenA: Samples a uniformly random element inRq. Uses SHAKE256 internally to
generate random values.
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Algorithm 1 NH-CPA-PKE.Gen

Output: public key pk = (b̂′, ρ)
Output: secret key sk = ŝ

1: seed
r←− {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: â← GenA(ρ)
4: s← PolyBitRev(Sample(σ, 0))
5: e← PolyBitRev(Sample(σ, 1))
6: b̂← â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 3 NH-CPA-PKE.Decrypt
Input: ciphertext c = (û, h)
Input: secret key sk = ŝ
Output: message µ ∈ {0, · · · , 255}32

1: v′ ← Decompress(h)
2: return µ = Decode(v′ − INTT(û ◦ ŝ))

Algorithm 2 NH-CPA-PKE.Encrypt

Input: public key pk = (b̂, ρ)
Input: message µ ∈ {0, 1}256

Input: seed coin ∈ {0, · · · , 255}32

Output: ciphertext (û′, h)

1: â← GenA(ρ)
2: s′ ← PolyBitRev(Sample(coin, 0))
3: e′ ← PolyBitRev(Sample(coin, 1))
4: e′′ ← Sample(coin, 2)
5: t̂← NTT(s′)
6: û← â ◦ t̂+ NTT(e′)
7: v′ ← INTT(b̂ ◦ t̂) + e′′ + Encode(µ)
8: return c = (û,Compress(v′))

Figure 3.4: NEWHOPE-CPA-PKE, the RLWE-based ElGamal-like main component of
NEWHOPE-CPA-KEM and NEWHOPE-CCA-KEM

• PolyBitRev: Reorders the coefficient of the polynomial with a bitreversal using a
precomputed table.

• Sample: Samples from the binomial distribution ψk. Uses SHAKE256 internally to
generate random values with the seed σ and an integer acting as a domain separator.

• Encode: Encode each bit of the message in bn/256c coefficients of a polynomial
in Rq. For a given bit b of the message, each of those coefficients is set to b · q

2
.

The output is a polynomial of dimension n with coefficients in {0, q
2
} that contains

bn/256c copies of the message.

• Decode: Recovers the message from a noisy encoded polynomial. The idea is,
for each bit encoded as a value between 0 and q − 1, to sum the distance to q/2
of the bn/256c corresponding coefficients and output 1 if the sum is greater than
bn/256c · q/4. For example, with n = 256 (which would not be secure !), it simply
sets the bit to 0 if the distance with q/2 is over q/4, which means that the encoded
bit is in [0, q/4[∪[3q/4, q − 1].

• Compress and Decompress: Modulus switching from q to 8 to compress parts of the
ciphertext, reducing bandwidth usage. The decompression function switches back
to values between 0 and q−1. This is analogous to discarding low bits of the values.
Of course, some information is lost in the process but the decoding procedure can
tolerate quite some amount of noise.

A full formal description of those functions can be found in the technical specification
document submitted to the NIST project [119]. Those functions are not an optimization
target because either they are pretty lightweight, or their performance depends heavily
on the hash function which is independently optimized. The speedup presented in this
chapter will actually be improvements inside the NTT.
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Algorithm 4 NH-CPA-KEM.Gen

1: pk, sk ← NH-CPA-PKE.Gen()
2: return pk, sk

Algorithm 5 NH-CPA-KEM.Decaps
Input: ciphertext c
Input: secret key sk

1: k′ ← NH-CPA-PKE.Decrypt(c, sk)
2: return k = SHAKE256(32, k′)

Algorithm 6 NH-CPA-KEM.Encaps

Input: public key pk

1: coin
r←− {0, . . . , 255}32

2: k′||coin′ ← SHAKE256(64, coin)
3: c← NH-CPA-PKE.Encrypt(pk, k′; coin′)
4: k ← SHAKE256(32, k′)
5: return (c, k)

Figure 3.5: NEWHOPE-CPA-KEM

NewHope CPA-KEM and CCA-KEM

The conversion from an IND-CPA public-key encryption scheme is basically the one pre-
sented in Definition 2.2.5 and is formally shown in Figure 3.5. However, it is more com-
plicated to switch from a CPA-PKE to a CCA-KEM. The usual technique is to apply a
black-box transformation called the Fujisaki-Okamoto transform [54]. Sadly, it is proven
secure in the classical random oracle model but does not work for a quantum adversary.
In [66], Hofheinz, Hövelmanns, and Kiltz described a couple of alternative transforma-
tions that are suitable for schemes with non-zero failure probabilities in the quantum case.
One of them is used to obtain NEWHOPE-CCA-KEM from NEWHOPE-CPA-PKE and
can be found in Figure 3.6.

Parameter sets

The parameters of NEWHOPE are:

• The dimension n,

• The modulus q,

• The parameter of the error distribution k.

The most sensitive of them in terms of security is the dimension n. One looking for a
significant increase in hardness of the underlying RLWE instance will switch to a higher
dimension. Since NEWHOPE is defined with a cyclotomic polynomial of the formXn+1,
n should be a power of two. The security also depends, to a lower extend, on the ratio
between q and k. Indeed, intuitively, if k is very small in comparison to q, the underlying
RLWE instance is easier to solve since the errors are small. Finding a good trade-off
between those three values is complex and requires to do a careful analysis of the current
best cryptanalytic techniques. The method used by the authors of NEWHOPE is described
in the specification document and will not be explained here. Another practical constraint
for choosing parameters is that the NTT requires a prime q and the existence of 2n-th
roots of unity in Zq. For them to exist, the relation q ≡ 1 mod 2n should hold. Actually
the modulus of NEWHOPE is chosen as the smallest prime for which this holds for n ∈
{512, 1024}, which are the first possible dimensions of the ring that offer reasonable
security estimates. The proposed parameters can be found in Table 3.2. NIST security
strength categories correspond to security levels defined by NIST in the framework of the
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Algorithm 7 NH-CCA-KEM.Gen

1: pk, sk ← NH-CPA-PKE.Gen()
2: s← {0, . . . , 255}32

3: return pk, ŝk = sk||pk||SHAKE256(32, pk)||s)

Algorithm 8 NH-CCA-KEM.Encaps

Input: public key pk

1: coin
r←− {0, . . . , 255}32

2: µ← SHAKE256(32, coin)
3: k′||coin||d← SHAKE256(96, µ||SHAKE256(32, pk))
4: c← NH-CPA-PKE.Encrypt(pk, µ, coin′)
5: k ← SHAKE256(32, k′||SHAKE256(32, c||d))
6: return (ĉ = c||d, k)

Algorithm 9 NH-CCA-KEM.Decaps

Input: ciphertext ĉ
Input: secret key ŝk

1: c||d← ĉ
2: sk||pk||h||s← ŝk
3: µ′ ← NH-CPA-PKE.Decrypt(c, sk)
4: k′||coin′′||d′ ← SHAKE256(96, µ′||h)
5: b1 ← NH-CPA-PKE.Encrypt(pk, µ′; coin′′) == c
6: b2 ← d == d′

7: fail← ¬(b1 ∧ b2)
8: k′0 = k′

9: k′1 = s
10: return k = SHAKE256(32, k′fail||SHAKE256(32, c||d))

Figure 3.6: NEWHOPE-CCA-KEM
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Parameter Set NEWHOPE512 NEWHOPE1024

Dimension n 512 1024
Modulus q 12289 12289
Noise Parameter k 8 8
Decryption error probability 2−213 2−216

Claimed post-quantum bit security 101 233
NIST Security Strength Category 1 5

Table 3.2: Parameter sets of NEWHOPE

standardization process, 1 is the lowest and 5 is the highest. The security levels 1,3 and 5
can be tough to correspond to a symmetric bit-security of 128, 192 and 256 bits.

3.4.2 Kyber
We move on to the next NIST candidate improved by our work: KYBER [29, 118]. Com-
ing from the same family as NEWHOPE and FRODO, it is a promising representative for
LWE-based encryption/KEM. Since it shares many similarities with NEWHOPE that has
just been depicted in the previous section, we will just give a light description of the cryp-
tosystem, major differences with NEWHOPE and information relevant to our contribution.

Module Learning With Errors

The first obvious difference between NEWHOPE and KYBER is that KYBER is based
on a variant of Learning With Errors called Module Learning With Errors (MLWE) [75].
Depending on the parameters used, this problem is exactly LWE, exactly RLWE, or some-
thing in-between. It is parametrized by a modulus q, a dimension n, a ring Rq, which,
similarly to RLWE, will usually be Zq[X]/〈Xn+1〉, an integer k and an error distribution
χ overRq.

Definition 36. (search-MLWE) For a fixed s ∈ Rk
q , givenm samples (ai, 〈ai, s〉+ei) with

the ai sampled uniformly fromRk
q and the ei sampled from χ, find s.

Definition 37. (decision-MLWE) Given m samples (ai, bi) ∈ Rk
q × Rq with each ai

sampled uniformly at random, decide if the bi were also sampled uniformly at random or
if they were computed as bi = 〈ai, s〉+ ei for a fixed s and each ei sampled from χ.

Basically, while LWE asked to undo a noisy matrix-vector multiplication over entries
in Zq and RLWE a noisy polynomial multiplication in Rq, MLWE asks to undo a noisy
matrix-vector multiplication over entries in Rq. If k is set to 1, the dot product in Rq

collapses to a polynomial multiplication in Rq and this is simply a RLWE instance. If
n is set to 1, Rq collapses to Zq and this is a LWE instance. Thus, MLWE is a modular
problem which links the two problems (LWE and RLWE) defined in Section 2.3.3 and
cryptosystems can be defined in a modular fashion to base their security on each problem
depending on the parameters used.
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Algorithm 10 KYBER-CPA-PKE.Gen

Output: public key pk = (b̂, ρ)
Output: secret key sk = ŝ

1: seed
r←− {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: Â← GenMatrixA(ρ)
4: s← SampleVec(σ, 0)
5: e← SampleVec(σ, 1)
6: b̂← Â ◦ NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

Algorithm 11 KYBER-CPA-PKE.Decrypt
Input: ciphertext c = (u′, h)
Input: secret key sk = ŝ
Output: message µ as a polynomial inRq

1: u← Decompress(u′)
2: v′ ← Decompress(h)
3: return µ = v′ − INTT(ŝT ◦ NTT(u))

Algorithm 12 KYBER-CPA-PKE.Encrypt

Input: public key pk = (b̂, ρ)
Input: message µ as a polynomial inRq

Input: seed coin ∈ {0, · · · , 255}32

Output: ciphertext (û′, h)

1: Â← GenMatrixA(ρ)
2: s′ ← SampleVec(coin, 0)
3: e′ ← SampleVec(coin, 1)
4: e′′ ← SampleVec(coin, 2)
5: t̂← NTT(s′)
6: u← INTT(ÂT ◦ t̂) + e′

7: v′ ← INTT((b̂T ◦ t̂) + e′′ + µ
8: return (Compress(u),Compress(v′))

Figure 3.7: KYBER-CPA-PKE

Kyber-CPA-PKE

Like NEWHOPE, KYBER is an IND-CCA Key Encapsulation Mechanism KYBER-CCA-
KEM constructed from a CPA Public-Key Encryption scheme KYBER-CPA-PKE using
a variant of the Fujisaki-Okamoto transform. Figure 3.7 gives a high-level overview of
the underlying PKE. It is simple to show its semantic security under the decision-MLWE
assumption. It uses the following subroutines:

• GenMatrixA: Generates a k × k matrix with entries in Rq using SHAKE256 on a
seed given as input.

• SampleVec: Samples a k dimensional vector with entries from a binomial distribu-
tion using SHAKE256 on a seed and a nonce given as input.

• Compress and Decompress: Same purpose as the NEWHOPE equivalent, are defined
in a way such that they are also used to scale the message during encryption and
decode the noisy message during decryption. 2

Parameter sets

KYBER fixes the dimension of the ring Rq to 256 across all parameter sets. This choice
permits to naturally encode a 256-bit message, which is the key size mainly used for a
post-quantum PKE used as KEM, in a single ring element, using one coefficient per bit.
The mains parameters are thus :

• k: The size of the vectors and of the square matrix Â.

2Figure 3.7 already assumes that the message is rightly encoded to avoid overloading the algorithms.
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Parameter Set KYBER512 KYBER768 KYBER1024

Rank k 2 3 4
Dimension k · n 512 768 1024
Modulus q 3329 3329 3329
Noise Parameter η 2 2 2
Compression Parameter du, dv 10,3 10,4 11,5
Decryption error probability 2−178 2−164 2−174

Claimed post-quantum bit security 100 164 230
NIST Security Strength Category 1 3 5

Table 3.3: Parameter sets of KYBER

• η: The parameter of the binomial distribution Bη =
∑η

i=1 bi − b′i, with bi and b′i in
{0, 1}, used to sample the error and secret vectors 3.

• du, dv: The amount of compression applied to the ciphertext. Setting the compres-
sion to high would lead to non-negligible probability of failure during decryption.

All of them, together with estimated correctness and security estimations are resumed in
Table 3.3. Some interesting remarks about those parameters:

• Since the dimension of the underlying LWE problem is actually given by k · n,
KYBER can actually be instanciated with a dimension 768 = 3 · 256 problem. To
keep power of two cyclotomics as defining polynomials, NEWHOPE is stuck with
512 and 1024 without any possible intermediate value.

• The values q and η (and implicitly n) are the same in each set, which means that k
really defines the security/performances trade-off.

• The modulus q is a prime but is not congruent to 1 modulo 2n, which means that a
full NTT on the ring elements cannot be performed.

• Since the modulus has been reduced, the support of the error distribution was also
reduced (this mean lower bandwidth and less random number generation needed)
while still offering decent security. This virtuous circle could be somewhat contin-
ued but a too narrow distribution might lead to more efficient cryptanalysis [4].

3.5 Fast NTT for Fast Implementations of NewHope and
Kyber on Cortex-M4

As indicated earlier, polynomial multiplication is the heaviest operation of lattice KEMs
such as KYBER or NEWHOPE. Actually, in an optimized implementation, most of the
time is eventually spent in the hash functions used to generate random numbers, but the
speed issues of such functions is not specific to lattice-based cryptography and the choice
of the hash function is arbitrary. Candidates for the NIST project chose SHAKE but other

3This is actually the same definition as the distribution for NEWHOPE but decided to keep different
notations to be consistent with the specifications of both schemes.
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means of random numbers generation can be considered. On the other hand, polynomial
multiplication will always be needed. Since NTTs give an elegant way to perform those
multiplications when the parameters are chosen such that those transforms exist, all the
optimization work boils down to speed them up.

3.5.1 Efficient Reduction Algorithms
Beside actually efficiently computing the NTT using FFT algorithms described in Sec-
tion 3.3.2, another difficulty lies in the fact that computations must be performed in the
field Zq. While this might seems totally trivial at first sight since every programmer knows
the modulus operator, reducing modulo q in an efficient and constant time manner is a bit
more challenging. Furthermore, always reducing modulo the same q offers some possible
speed-ups over using the % operator.

Lazy reductions

Mathematically, Zq = Z/qZ is composed of the q cosets {x + qZ}06x6q−1 and rings
operations are defined on those sets. In practice, one chooses an element of each coset to
represent it. The two obvious choices are to take the integers between 0 and q − 1 (the
x in the definition above), often called the canonical representatives, or between bq/2c
and b(q−1)/2c, often called the centered representatives. Operations are then performed
in the integers and results are mapped to a representative by subtracting an appropriate
multiple of q, this map is called a (full) reduction. The % operator computes reductions
to representatives that are language or operand dependent. However, the choice of the
representative does not matter at all for the computations to be correct in Zq. Thus, a
technique used to minimize the amount of computation is to simply avoid reductions
for intermediate results. For example, instead of computing ((a+b)%q + c)%q, one
computes (a+b+c)%q. Of course, the bulk of the work is not to avoid reducing but to
estimate how many operations can be safely performed without having a result larger than
what the datatype we use can hold. This technique is called lazy reductions.

Barrett reduction

A well-known technique to reduce an integer modulo q is to compute

r ← x− bx
q
c · q.

It is not really lightweight since it requires a division by q, however, multiplying by an
approximation of the constant 1

q
will still give a result in the right coset since the values can

only differ from some multiple of q. The better the approximation is, the closer the result
will be from a full reduction. Unfortunately, as q is a positive integer, 1

q
is smaller than

1 would require floating-point arithmetic. Working only with integers, the hope comes
from the fact that there is one type of integer division which is easy on any reasonable
hardware: division by a power of two. Thus, the idea is to pick two integers s, c such
that 1

q
≈ c/2s to approximate the constant. The reduction can then be simply computed

as r = x - ((x*c)>>s)*q. Setting c to the integer closest to 2s/q, the only real
parameter is s. An higher s gives a better approximation but one should be careful to
avoid overflow on the product of x by c. The Barrett reduction was described by Barrett
in [17].
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Montgomery reduction

The last reduction technique we present is due to Peter Montgomery [93], who sadly
passed away a few weeks before writing this section. It uses the fact that if, for an integer
M (coprime with q) called the Montgomery constant, reductions and divisions by M are
easy, there exists a really efficient procedure to compute a 0 6 r 6 q − 1 such that r ≡
x·M−1 mod q, given x. This procedure is called a Montgomery reduction (MRed()) and
is given in Algorithm 13. Of course, picking M a power of two is the obvious choice here
since divisions and reductions modulo M will thus be very fast using shifts and masks.
Nevertheless, it is not directly clear that such a reduction is helpful. Indeed, to retrieve
the reduction of x modulo q from r, one has to multiply r by M and . . . reduce modulo
q, which was the original problem! Actually, the Montgomery reduction algorithm shines
when several arithmetic operations have to be performed modulo q. Let us consider two
values a and b reduced modulo q. The values a·M mod q and b·M mod q are said to be
the Montgomery domain representatives (or Montgomery forms) of a and b. Arithmetic
in Montgomery domain can be efficiently performed. Indeed, aM ± bM ≡ (a ± b)M
mod q and MRed(aM · bM) = MRed(ab ·M2) = (ab ·M) mod q. Hence, when a lot of
arithmetic operations are needed, converting all values in Montgomery form, computing
everything in Montgomery domain and converting back to the normal domain at the end
is more efficient than using usual reductions in all computations. Another really useful
application is multiplication of a value v by a precomputed constant k. Indeed, instead
of storing k, one stores k′ = kM mod q and simply computes MRed(v · k′) to reduce
v · k modulo q. This is really helpful in the NTT since precomputed roots of unity can be
stored in Montgomery domain.

Algorithm 13 Montgomery reduction
Input: x ∈ {0, · · · ,Mq − 1}
Input: Precomputed qinv ∈ {0, . . . , q − 1} such that qinv · q ≡ −1 mod M
Output: r ∈ {0, . . . , 2q − 1} such that r ≡ x ·M−1 mod q

1: u← (x · qinv) mod M . Reduction explicitly computed
2: r ← (x+ u · q)/M . Exact division (x+ u · q ≡ 0 mod M )
3: return r

3.5.2 Cortex-M4
The embedded platform targeted by our work is the ARM Cortex-M4. This is the pre-
ferred processor for benchmarks of post-quantum algorithms in the framework of the
NIST project. It implements the ARMv7E-M architecture offering 16-bit SIMD (Single
Instruction Multiple Data) instructions called the DSP extension. It has 14 general pur-
pose registers that are available for the programmer. In practice, we follow the steps of
the PQM4 library [68, 70] and work with a STM32F4DISCOVERY board.

3.5.3 SIMD and Useful Instructions
The reason why this platform offers large room for optimization is the availability of par-
allel instructions used to speed up the NTT. We give here a quick list of useful instructions
that are needed to understand the work presented in Section 3.6.1. We use the subscripts
h and l to denote the high/low order bits of a register. Every register r is 32 bits long and
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its two half-words rh and rl are 16 bits long. We use the notation r = [rh, rl] to denote
that r contains rh in its high part and rl in its low part.

Load and stores

Memory access is done through the usage of simple load (ldr) and store (str) instruc-
tions that accept an optional immediate offset in addition to a register containing a pointer.
Several variants permit to instead automatically add the offset to the pointer before or after
performing the load/store. The two several facts are relevant for us:

• The vanilla ldr and str instructions load 32 consecutive bits from memory but
there exists versions loading only half-words (16 bits) called ldrh and strh.

• Thanks to pipelining, consecutive loads and stores can offer economies of scale, the
first instruction takes 2 cycles as usual and the following ones are performed in a
single cycle.

Parallel addition and subtraction

The instructions usub16 and uadd16 offer the possibility to interpret the 32-bit regis-
ters as vectors of two 16-bit values and add or subtract them in parallel. This is especially
helpful since polynomials coefficients in NEWHOPE and KYBER are stored on 16 bits.
For example, the naive polynomial addition can thus be performed by chunks of two
coefficients.

• uadd16 c,a,b→ c = [ah + bh, al + bl]

• usub16 c,a,b→ c = [ah − bh, al − bl]

Signed multiplication on half-words

A very powerful and versatile instruction, or family of instructions is smul[bt][bt].
It offers the possibility to execute a 16 × 16 → 32 signed multiplication. The b and t
part (standing for bottom and top) selects which half-word of each operand is used for the
multiplication.

• smulbb c,a,b→ c = al + bl

• smulbt c,a,b→ c = al + bh

• smultb c,a,b→ c = ah + bl

• smultt c,a,b→ c = ah + bh

Those instructions all have a variant that accumulate the result in a specified register
called smla[bt][bt]. For example:

• smlabb d,a,b,c→ d = c+ al ∗ bl
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Left and right shifts

Naturally, the instruction set also offers simple instructions such as shifts.

• asr b,a,#n→ b = a >> n

• lsr b,a,#n→ b = (unsigned)a >> n

• lsl b,a,#n→ b = a << n

Packing instructions

We will sometime face the difficulty that half-words in different registers have to be reor-
ganized in a single one before using multiple parallel instructions. This is performed with
packing instructions.

• pkhbt c, a, b, lsl#n→ c = [(b << n)h, al]

• pkhtb c, a, b, asr#n→ c = [ah, (b >> n)l]

Choosing n in {0, 16} effectively offers to put all the possible combinations of half-words
of a and b into c.

3.6 Original NewHope NTT
The first contribution is an ARM assembly implementation of the NTT used in NEWHOPE

that was pushed to PQM4 in September 2019 [69]. NEWHOPE’s NTT closely follows
the decimation in frequency method of Section 3.3.2. We give the exact C code of the
reference implementation in Listing 3.1 since every detail is important for the assembly
version. We note that, as illustrated by Equation 3.3, a pointwise multiplication by powers
of γ before the forward transformation and powers of γ−1 after the inverse transformation
must be performed. Since these are straightforward and pretty fast, they are not discussed
here. In NEWHOPE’s code, the NTT function of Listing 3.1 is used as a subroutine of
two higher level functions: poly_ntt and poly_invntt. We focus on the dimension
512 NTT, the dimension 1024 case is treated similarly.

1 void ntt(uint16 t * a, const uint16 t* omega)
2 {
3 int i, start, j, jTwiddle, distance;
4 uint16 t temp, W;
5
6
7 for(i=0;i<9;i+=2)
8 {
9 // Even level

10 distance = (1<<i);
11 for(start = 0; start < distance;start++)
12 {
13 jTwiddle = 0;
14 for(j=start;j<NEWHOPE N−1;j+=2*distance)
15 {
16 W = omega[jTwiddle++];
17 temp = a[j];
18 a[j] = (temp + a[j + distance]); // Omit reduction (be lazy)
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19 a[j + distance] = mont reduce((W * ((uint32 t)temp + 3*NEWHOPE Q − a[j + distance])));
20 }
21 }
22 if(i+1<9){
23 // Odd level
24 distance <<= 1;
25 for(start = 0; start < distance;start++)
26 {
27 jTwiddle = 0;
28 for(j=start;j<NEWHOPE N−1;j+=2*distance)
29 {
30 W = omega[jTwiddle++];
31 temp = a[j];
32 a[j] = (temp + a[j + distance]) % NEWHOPE Q;
33 a[j + distance] = mont reduce((W * ((uint32 t)temp + 3*NEWHOPE Q − a[j + distance])));
34 }
35 }
36 }
37 }
38 }

Listing 3.1: NTT of NEWHOPE

The NTT has 9 = log2 512 stages (also called layers) performed in pairs by the outer
for-loop. Those stages correspond to the deepness of the recursive calls in the FFT meth-
ods. They can also be seen (as the columns) in Figure 3.3 even though the NTT depicted
there is not the one of NEWHOPE.

Structure of a Layer

Each layer performs a sequence of 256 = 512
2

Gentleman-Sande butterflies. The organiza-
tion of the butterflies is actually the reverse of the one in Figure 3.3. Let us call distance-n
butterfly a butterfly having its inputs n coefficients apart. The first layer performs 256
packs of one distance-1 butterfly, the second layer performs 128 packs of two distance-2
butterflies, etc . . . Finally, the last layer performs 2 packs of 128 distance-128 butterflies.
The two inner loops correctly organize those 256 = n

2
butterflies at each stage. Gener-

alizing to an arbitrary dimension n, the full NTT requires the computation of n
2
· log2 n

butterflies and thus has a complexity O(n log n).

Gentleman-Sande butterfly

At the heart of the inner loop is the computation of a Gentleman-Sande butterfly. For an
appropriate root of unity ω and two values a, b, it computes a + b and ω · (a − b). In the
optimization section, we will call a the first input of the butterfly and b the second input
of the butterfly. The difference between odd and even layers is that even layers use lazy
reductions in the first part of the butterfly. Indeed, NEWHOPE sets q to 12289 < 214 and
stores polynomials as arrays of 16-bit unsigned integers, which means that the addition of
two reduced values lies in the range [0, 2q−2], which does not overflow. It is thus possible
to skip a reduction every other layer. We note that the reduction on odd layers is performed
with the % operator in the reference code. It will be replaced by a Barrett reduction in the
optimized version. The second part of the butterfly presents more difficulties. First, the
inner operation is a subtraction, which could lead to an underflow on unsigned operands.
Since any multiple of q can be freely added without changing the result, 3q is added to
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the first operand such that the result will always be positive (3q is the largest multiple
that cannot overflow the addition since intermediate values can grow up to 2q because of
lazy reductions). Second, the multiplication with the root of unity will give a result on
more than 16 bits. Hence, a reduction right after this multiplication has to be performed.
Fortunately, since roots are precomputed and stored in Montgomery domain, a cheap
Montgomery reduction right after the multiplication will yield the correct result modulo
q.

3.6.1 Optimized Assembly Code on Cortex-M4
Compilers are pretty good at outputting fast assembly code from implementations in
low-level programming languages such as the reference C code of the NTT used in
NEWHOPE. However there are some tasks that are not so easy for the compiler and
that can be sped-up using handmade assembly optimizations. This can lead to a signifi-
cant reduction of computation time. For example, taking the current numbers of PQM4,
the reference implementation of KYBER512 takes approximately 900 000 cycles to en-
capsulate, while the M4 optimized version needs approximately 600 000 cycles. Here,
we focus on the following:

• Maximizing parallelism using SIMD instructions;

• Maximizing register usage to reduce memory access.

The state-of-the-art implementation of NEWHOPE on Cortex-M4 before our work was the
one presented in [13] in 2016. A more up-to-date work on a NTT algorithm on Cortex-
M4 is the implementation of the transform used in KYBER from [31]. The contribution
of our work is to implement techniques of [31] in the NTT of NEWHOPE. These changes
outperformed the implementation of [13] but were later superseded by the results of Sec-
tion 3.7.

Montgomery reduction

Algorithm 14 Cortex-M4 assembly Montgomery reduction
Input: registers q, qinv, tmp, v

1: smulbt tmp, v, qinv
2: smulbb tmp, tmp, q
3: usub16 tmp, v, tmp
4: asr tmp, #16

NEWHOPE’s reference code implements the Montgomery reduction of Algorithm 13
with M = 218, the choice of a power of two is obvious since the algorithm requires
a division by M and a reduction modulo M and 18 is the maximal exponent such that
the multiplication u · q does not overflow in a 32-bit data type (because u is a value
reduced modulo M and 213 < q < 214). In our optimized implementation, we changed
the constant to M = 216. This modification improves the performances of the reduction
on Cortex-M4 since it offers instructions operating directly on chosen half-words. The
reductions modulo M and the division by M can thus be performed implicitly at no
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cost at all by choosing the appropriate instruction. For example, let us say we want
to compute c=(unsigned)(a*b)>>16; d=k*c;, a straightforward translation to
assembly would result in 2 multiplications and 1 shift. But if we compute the second
multiplication as smultb d, c, k, the shift can be omitted since the instruction will
directly use the 16 most significant bits of c for the multiplication. The Montgomery
reduction is the same as the one of [31] and is given in Algorithm 14 and [114]. The
slight difference with the usual Montgomery reduction is that the input is multiplied by
q−1 instead of −q−1 at the beginning, which then requires a subtraction instead of an
addition. The right shift instruction at the end can be omitted if the next instruction can
deal with inputs in MSB position. The first instruction is smulbt because the constant
q−1 is stored in the high part of the register having the alias qinv. Actually, in our
implementation, both q and q−1 are stored in the same register of the processor.

Double butterfly

Algorithm 15 Cortex-M4 assembly Double Butterfly
Input: registers root, q, qinv, tmp1, tmp2, c 0, c 1

1: usub16 tmp2, c 0, c 1
2: uadd16 c 0, c 0, c 1
3: smulbb tmp1, root, tmp2
4: smulbt tmp2, root, tmp2
5: mont red q, qinv, c 1, tmp1
6: mont red q, qinv, tmp1, tmp2
7: pkhbt c 1, c 1, tmp1, lsl#16

Since coefficients (and more generally intermediate values during the stages of the
NTT) are stored on 16 bits and DSP vectorized instructions interpret the 32-bit registers
as two 16-bit values, it is possible to parallelize the computation of butterflies. The goal
of a double butterfly is to compute two consecutive butterflies of the same pack using
vectorized instructions. The first step is to load, in two registers, the four 16-bit values
corresponding to the first and second inputs of each butterfly. Since the two first inputs
and the two second inputs are consecutive in memory, this can be efficiently done using
the ldr instruction loading 32 bits in a register. We load in c 0 the two first inputs and
in c 1 the two second inputs. We insist on the fact that c 0 and c 1 now contain four
16-bit values that can be used to compute two butterflies. Once inputs are loaded, the
code of Algorithm 15 is used to compute the two butterflies in parallel. Beside the root,
the constants and the inputs, two extra temporary registers are used. Indeed, since the
multiplication yields a result on 32 bits before the reduction, all the computations cannot
take place in the 16-bit half-words of c 0 and c 1. We remark that, on Cortex-M4, the
vectorization is only available for signed instructions. This means that a signed version
of the reference code had to be written first.

First layer butterflies

While double butterflies were already used in [31], an additional difficulty specific to the
NTT of NEWHOPE appeared on the first layer. Indeed, in the first stage, the packs of
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butterflies are of size 1 (same as the last stage of Figure 3.3), which means that two con-
secutive values in memory correspond to the first and second inputs of the same butterfly.
Hence, a slightly modified algorithm had to be used to compute butterflies of the first
layer. We load both inputs of two consecutive butterflies using two ldr instructions and
perform reorganization in c 0 and c 1 with packing instructions to compute two first
layer butterflies in parallel. The reason why a code slightly different from Algorithm 15
has to be used is that since both butterflies belong to different pack, the multiplication
inside both of them is performed with a different root of unity.

Loops

Loops do not really offer any optimization window. The major issue with them is that the
loop counter has to be stored somewhere and will either use a register or incur loads and
stores from memory. However, since the NTT instructions does not depend on the inputs,
the loops could be fully unrolled and invisible in the assembly code. This would of course
notably increase code size. For example, the latest available Cortex-M4 optimized code
for NEWHOPE in PQM4 is around 1.5 times larger than the reference code while fully
unrolling all the loops of polynomial operations increases code size up to a factor of ten
(depending on the parameter set used). There is no right answer for this issue, whether
a huge code size is acceptable depends on the context in which it is used. We followed
the strategy of previous works by unrolling all the stages and the smaller of the two inner
loops.

Layer merging

Beside vectorized instructions, minimizing the number of memory access is very impor-
tant and can be optimized by writing directly the code in assembly. Where memory access
are needed, they should be sequentially organized since isolated loads take 2 cycles while
consecutive access benefit from pipelining and reduce the cost of subsequent load/store
instructions to a single cycle. In the NTT, it is possible to merge the computation of
several layers in order to avoid storing and reloading intermediate values. The goal is to
load enough values from memory such that more than one layer can be computed without
storing the intermediate output of butterflies in memory. Figure 3.8 illustrates the merge
of the two first layers, if only 2 coefficients can be stored in the registers at the same time,
the procedure would be:

1. Load {p0, p1};

2. Compute and store {p′0, p′1};

3. Load {p2, p3};

4. Compute {p′2, p′3} and store p′3;

5. Load p′0, compute and store {p′′0, p′′2};

6. Load {p′1, p′3}, compute and store {p′′1, p′′3}.

In total 7 loads and 7 stores are performed. On the other hand, if 4 coefficients can be hold
in registers at the same time, we can simply load the 4 values {p0, p1, p2, p4} and directly
compute and store the output {p′′0, p′′1, p′′2, p′′4}without storing in memory the p′i. Beside the
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Figure 3.8: Layer Merging. If inputs (pi) are loaded by chunks of 4, the outputs (p′′i ) can
be computed without storing the intermediate values (p′i) in memory.

direct gain in number of instructions, all the loads and all the stores are consecutive, which
was not the case in the procedure above. For the sake of simplicity, the explanation above
makes the assumption that a butterfly is computed in place from its inputs. Of courses in
practice, extra registers are needed for the root of unity, constants and temporary values.
Nevertheless, since those extra registers are needed for all butterflies, the assumption can
be made without loss of generality. The final point is that the more registers we have, the
more layers we can merge and the better the performances are. Unlike [31], we were able
to merge the three first layers before merging the others 2 by 2. This is due to the special
structure of the first layer of the NTT of NEWHOPE. In full generality n layers can be
merged if 2n values can be loaded at the same time. In our implementation, we have 4
registers available (the allocation of the 14 registers can be found in Table 3.4), so we can
merge layers by 2. However, keep in mind we actually load 2 coefficients per register and
compute double butterflies. We thus actually have 8 values in the registers at the same
time. We could then hope to merge 3 layers. Unfortunately, we do not load 8 arbitrary
values since a register holds a pair of 2 values that are consecutive in memory. In short,
we indeed have 8 values at the same time, but not the ones we need to merge 3 layers.
The only exception is the first layer. Since it is made of distance-1 butterflies, the 8 values
loaded happen to be the ones needed for the merge, and this is why we could perform the
three first layers at once.

Performances gain

Since the speed records of this work have been subsequently beaten by the one presented
in the next section, we do not detail them much here. The NTT was around 25% faster
than the state-of-the-art implementation from [13] and the overall gain for the scheme
is presented in Table 3.5. The gain might look slim for a 25% increase in the main
operation of the PKE. This symptomatic of a scheme generating a lot of random values
from SHAKE256. Actually, as it will be explained in greater details later, optimized
schemes can spend up to 80% of their run-time in the hash function. Hence, even if the
polynomial multiplication is greatly enhanced, the impact on the whole scheme is less
important. However, since the design of the scheme does not depend on the random
number generator used, optimizing the NTT is still crucial. Indeed, schemes are mostly
designed with an abstract random oracle or extendable-output function used to generate
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Register High part Description
r0 p Pointer to the polynomial
r1 root Pointer to the array of roots of unity
r2 c 0 Coefficient 0
r3 c 1 Coefficient 1
r4 c 2 Coefficient 2
r5 c 3 Coefficient 3
r6 q/qinv Constants q (low part) and q−1 (high part)
r7 root12 Root used in the first layer of each pack of 2 merged layers
r8 root3 Root used in the second layer of each pack of 2 merged layers
r9 loop loop counter
r10 barrett c Constant used for Barrett reductions
r11 tmp1 Temporary value 1
r12 tmp2 Temporary value 2
r14 tmp3 Temporary value 3

Table 3.4: Registers allocation for the NTT of NEWHOPE. In the first three layers, r8 is
actually used as an offset needed to compute the address of the root of unity.

Scheme PQM4 with NTT of [13] Our work before Section 3.7
NEWHOPE-CPA-512 915293 700489
NEWHOPE-CPA-1024 1495457 1371633
NEWHOPE-CCA-512 1134083 918558
NEWHOPE-CCA-1024 1903231 1777918

Table 3.5: Overall performance gain for NEWHOPE on Cortex-M4 in average number of
cycles

random numbers which is latter instanciated with a concrete hash function. Thus changing
the random number generator does not change the core design of the scheme. This means
that using a faster generator would be possible and would give more weight to the speed
of the NTT in the overall computation time.

3.7 Cortex-M4 Optimizations for {R,M}LWE Schemes
(CHES 2020)

The second part of this chapter describes the optimization work [6] co-authored with
Erdem Alkim, Yusuf Alper Bilgin and Murat Cenk.

Contributions

In the following sections, we describe an optimized Cortex-M4 implementation of
NEWHOPE, KYBER, and a recently proposed derivative of those schemes called
NEWHOPE-COMPACT. We present various optimizations, mainly in terms of speed and
stack usage on the ARM microcontroller. Since those schemes naturally share structural
similarities, general improvements are applicable to all of them. Our implementation
outperforms the current state-of-the art for KYBER and NEWHOPE and gives a unified
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framework to compare the three schemes since they use the same level of optimization,
which was not the case in previous works [68,70]. Our contributions are listed as follows:

• We propose 2 cycles modular reduction implementation for Montgomery arith-
metic, which translates subtraction to addition to be able to use special instructions.

• We show that small polynomial multiplications can be implemented efficiently us-
ing lazy reduction techniques. Hence, we show that an early termination of the
NTT with an optimized base multiplication of polynomials of degree greater than
2 can lead to an overall speed improvement.

• We show that even the target architecture has only 14 usable registers, 16 coeffi-
cients can be used during butterfly layers. This allowed us to merge up to 4 layers
of the NTT and reduce the number of load and store instructions.

• We provide trade-offs between stack usage and speed of the implementation for
computing addition of two polynomials after an NTT based polynomial multiplica-
tion.

Our code is currently publicly available at

https://github.com/erdemalkim/NewHope-Compact-M4

and, at the time of writing, in the PQM4 library.

3.7.1 Polynomial Multiplication in Kyber
Similarly to NEWHOPE, the polynomial multiplication of KYBER is performed in a ring
of the form Zq[X]/〈Xn + 1〉. The main difference is that since we saw in Section 3.4.2
that the parameters used are q = 3329 and n = 256, a full NTT cannot be performed
since 2n-th roots of unity exist in Zq[X] only if q ≡ 1 mod 2n, which is not the case
here. Nevertheless, q ≡ 1 mod n and thus n-th roots of unity do exist. This means that,
following the algebraic approach from Section 3.3.2, it is not possible to compute a full
NTT

Zq[X]/〈Xn + 1〉 →
∏
i

Zq[X]/〈X − γi〉,

but it is possible to compute a “partial” NTT

Zq[X]/〈Xn + 1〉 →
∏
i

Zq[X]/〈X2 − γi〉.

The partial NTT is a fairly standard FFT using Cooley-Tukey butterflies in the forward
transform and Gentleman-Sande butterflies in the inverse mapping. The only major dif-
ference is that it stops a layer before the end. Since it is a variant of the FFT techniques
described above, we omit the details here. This approach has the two following conse-
quences:

• The computation of the NTT is slightly faster since it skips the last layer;

• The base multiplication ◦ is a multiplication in short rings of the form Zq[X]/〈X2−
ri〉 instead of pointwise multiplications.

The base multiplication is thus more expensive while the NTT is less expensive. At the
end of the day, the computational cost of the multiplication in Z[X]q/〈Xn + 1〉 is similar
to a multiplication using a full NTT. The designers of the scheme thus decided to keep
this technique as it offers more flexibility in the parameters choice.
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Table 3.6: Parameters of NEWHOPE-COMPACT512, NEWHOPE-COMPACT768 and
NEWHOPE-COMPACT1024 derived high level properties [8]

Parameter Set NH-COMPACT512 NH-COMPACT768 NH-COMPACT1024

Dimension n 512 768 1024
Modulus q 3329 3457 3329
Noise Parameter k 2 2 2

Decryption error
probability 2−256 2−170 2−181

Claimed post-quantum
bit security 100 163 230

NIST Security
Strength Category 1 3 5

3.7.2 NewHope-Compact
Having this new technique in mind, it is natural to wonder if it could be applied to
NEWHOPE as well. Indeed, the modulus of NEWHOPE was chosen as the smallest prime
congruent to 1 modulo 2048 but nothing prevents reducing the modulus in the same way
KYBER did. This was proposed at Latincrypt 2019 by Almik, Bilgin and Cenk [8], who
are also the co-authors of the contribution we discuss here. The resulting scheme, called
NEWHOPE-COMPACT, which is presented as a RLWE KEM based on NEWHOPE and
KYBER, is basically NEWHOPE instanciated with the parameters of Table 3.6, that is to
say with the modulus and error distribution of KYBER. They also propose a reordering of
coefficients to use the same NTT code across parameters. We remark that the authors pro-
pose an instanciation of the scheme with dimension n = 768, which provides a trade-off
between the very compact dimension 512 and the very secure dimension 1024. Since 768
is not a power of two, the corresponding cyclotomic polynomial is not of the form Xn+1
but is actuallyX768−X384+1. Thus, the NTT strategy described earlier in this chapter do
not work. However, [85] showed that a really close variant offering similar performances
is possible. Since the mapping is slightly different, the modulus for dimension 768 has
been adapted for the underlying field to offer the needed roots of unity.

3.7.3 Speed Optimizations of Polynomial Multiplication
We first describe speed optimizations for the multiplication in Rq. Such a multiplica-
tion is composed of the computation of the NTT, its inverse, and a base multiplication
between elements in NTT domain. The base multiplication operation depends on the
targeted algorithm. For NEWHOPE, it is simply the usual multiplication in Zq while for
the others algorithms, KYBER and NEWHOPE-COMPACT, it is a small polynomial mul-
tiplication modulo Xn′ + r performed with a schoolbook algorithm. KYBER requires a
base multiplication with n′ = 2 for all parameter sets while NEWHOPE-COMPACT uses
n′ = n/128. The optimizations we describe now are applied to KYBER, NEWHOPE

and NEWHOPE-COMPACT. Their exact implementation might slightly differ from one
algorithm to the other but we sometime gloss over differences to avoid overloading the
description.
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Usage of Montgomery, Barret and Lazy reductions

The Montgomery reduction of [31] takes 3 clock cycles. This is actually the one we
presented in Algorithm 14 except that the last shift is not performed and the output is
instead defined as the high part of the output register. In our work, we decided to store−q
instead of q and thus to have a Montgomery reduction performing an addition instead of a
subtraction as last instruction. This way, we are able to perform the multiplication and the
addition in a single clock cycle using the multiply and accumulate instruction smlabb,
which saves one cycle per reduction (see Algorithm 16). Since Montgomery reductions
are used in each butterfly of each layer during a NTT, this saves a sensible amount of
cycles. In KYBER, there are 896 reductions in NTT/INTT and 512 reductions in base
multiplication, this means that 3200 clock cycles are saved for a full multiplication inRq.

Algorithm 16 Signed Montgomery reduction using Montgomery factor β = 216.
Input: a where −β

2
q ≤ a < β

2
q

Output: reduced a→ r′ where r′ = β−1a (mod q), and −q < r′ < q

1: smulbb t, a, mqinv . t← (a mod β) · (−q−1)

2: smlabb a, t, q, a . atop ←
⌊ (t mod β)·q+a

216

⌋
Similarly to [31], we use the Barret reduction of [114]. The assembly implementa-

tion of this reduction on a packed argument, that is to say taking as inputs two 16-bit
coefficients packed in a single 32-bit register, is given in Algorithm 17 and takes 8 clock
cycles. Actually, the two cycles Montgomery reduction that we just presented enables
a faster algorithm to reduce packed values in normal domain (Algorithm 18). Indeed, 2
cycles to convert each value to Montgomery domain, 4 cycles to reduce both values and 1
cycle to repack them correctly means a reduction on packed argument in 7 cycles, which
beats the Barrett reduction, even for values not in Montgomery domain. The only small
drawback is that its output range is larger. Thus, when it does not matter, we always use
Montgomery reductions.

The usage of lazy reductions in the NTT depends on the type of butterfly used and
the size of the modulus. We did not propose any improvement on this side in the NTT
but made a larger use of lazy reductions in the base multiplication algorithm. Instead of
reducing after each multiplication in the schoolbook algorithm, we reduce only after a
sum of products of coefficients. For example, in the base multiplication of KYBER given
in Algorithm 19, we compute c0 as

c0 ← (((a0 · b0 + a1 · b1) mod q) · r) mod q

instead of reducing after each multiplication. While the gain is pretty slim yet non negli-
gible for KYBER, it is especially relevant for NEWHOPE-COMPACT that uses a base mul-
tiplication on polynomials of larger size. In particular, for NEWHOPE-COMPACT1024,
this is a multiplication in Zq[X]/(X8 − r) and we can add up to 8 products before reduc-
ing. However, using lazy reductions, one should always be careful to not overflow. In our
case, working in absolute value, each coefficient is < 3329 and thus, a sum of 8 products
is 6 8 ∗ 33282 = 88604672 which is below the maximum value 215 · 3329 = 109084672
that the Montgomery reduction can handle.
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Algorithm 17 Barrett reduction on packed argument using β = 216.
Input: 32-bit signed integer a with ah and al both containing coefficients, precomputed
Barrett constant v
Output: r = rh | rl where rh ≡ ah (mod q), rl ≡ al (mod q),
0 ≤ rh, rl ≤ q and 0 ≤ q < 215

1: smulbb t1, a, v . t1 ← al · v
2: smultb t2, a, v . t2 ← ah · v
3: asr t1, t1, #(log(β) + blog(q)c − 1) . t1 ← t1 >> (log(β) + blog(q)c − 1)
4: asr t2, t2, #(log(β) + blog(q)c − 1) . t2 ← t2 >> (log(β) + blog(q)c − 1)
5: smulbb t1, t1, q . t1 ← t1 · q
6: smulbb t2, t2, q . t2 ← t2 · q
7: pkhbt t, t1, t2, lsl#16 . t← (t1&0xFFFFu)|(t2 << 16)
8: usub16 r, a, t . rh ← ah − th and rl ← al − tl

Algorithm 18 Signed Montgomery reduction on packed argument using Montgomery
factor β = 216.
Input: 32-bit signed integer a with ah and al both containing coefficients, precomputed
Montgomery constant v
Output: r = rh | rl where rh ≡ ah (mod q), rl ≡ al (mod q)

1: smulbb t1, a, v
2: smulbb r1, t1, mqinv . r1 ← (t1 mod β) · (−q−1)

3: smlabb r1, r1, q, t1 . r1h ←
⌊ (r1 mod β)·q+t1

216

⌋
4: smultb t2, a, v
5: smulbb r2, t2, mqinv . r2 ← (t2 mod β) · (−q−1)

6: smlabb r2, r2, q, t2 . r2h ←
⌊ (r2 mod β)·q+t2

216

⌋
7: pkhtb r, r2, r1, asr #16 . r ← (r2h|(r1h >> 16))

Algorithm 19 Multiplication of polynomials in Zq[X]/(X2 − r) for KYBER.
Input: a and b ∈ Zq[X]/(X2 − r) where r is a root of unity.
Output: c ∈ Zq[X]/(X2 − r).

1: function basemul(a, b)
2: c0 ← (a0 · b0) mod q + ((a1 · b1) mod q) · r) mod q
3: c1 ← (a0 · b1) mod q + (a1 · b0) mod q
4: return c
5: end function
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More Aggressive Layer Merging

As previous works remarked, reducing the number of loads and stores by merging several
layers of the NTT can lead to noticeable performance gain. While [31] merged layers two
by two using 4 registers to store 8 coefficients and kept other registers to store constants
and loops counters, we used a more aggressive strategy by storing 16 coefficients in 8
registers. This enables the possibility to merge three and sometimes four (same situation
as explained earlier in the layer merging of NEWHOPE) layers. Naturally, sacrificing some
registers to store more coefficients comes at a certain cost since they were used to keep
constants, loop counters and pointers. Since the NTT always performs the same amount
of computations, we can unroll all the loops using the .rept directive and get rid of loop
counters but, of course, doing so dramatically increases code size and thus, we decided
to propose it only as an option. Therefore, we instead decided to rely more actively on
register spilling, that is to stay store and load seldom used values on the stack instead of
keeping them always in registers, and constant reloading from the code. Our conclusion
is that, speed-wise, the advantages of merging more layers outweigh the disadvantages of
refilling the registers with appropriate values when needed.

3.7.4 Optimization of NewHope and NewHope-Compact for Stack
Usage

On embedded devices, it is often the case that memory usage introduces a significant
bottleneck. Outside of real-time systems, one can always wait for a slow algorithm, but if
the algorithm needs more memory than what can be found on the device, it is completely
unusable. While the Cortex-M4 on our board offers quite a large amount of memory, we
decided to optimize for stack usage as well.

The approach we took was to reduce the minimum amount of stack space required to
compute the cipher while keeping performance mostly unaffected. While it is possible to
follow a more aggressive approach to reduce stack usage, such implementations would
be considerably slower than ours. The three main metrics regarding implementation are
speed, stack usage and code size. The one to optimize severely depends on the context
in which the cipher will be used. In our work, we tried to optimize the first two while
keeping the last one reasonable.

Key generation

The core of the key generation is the computation of b̂ ← â ◦ NTT(s) + NTT(e). Since
each coefficient of the output of the NTT depends on all the coefficients of the input, all
the coefficients of s and e must have been generated before proceeding to the addition.
Hence, at least two full polynomials should be stored in memory. To reduce the memory
usage, we used the observation that polynomial multiplication can be performed on-the-
fly in the NTT domain and, likewise, adding an error to a polynomial can be performed
on-the-fly in normal domain. Indeed, the operation ◦ works sequentially on parts of its
inputs (one coefficient at the time for NEWHOPE and four, six or eight for NEWHOPE-
COMPACT depending on the parameter set used) and does not need all of them in memory
at the same time. Similarly, the error polynomial can be computed coefficient by coeffi-
cient and added directly, but only if the addition considered is in the normal domain. This
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is why instead of computing

b̂← â ◦ NTT(s) + NTT(e),

we compute
b̂← NTT(INTT(â ◦ NTT(s)) + e)

and perform the multiplication and the addition on-the-fly. This requires one more INTT
but allows to only store one polynomial in memory, containing s and b̂ subsequently. This
approach reduces stack usage significantly and since our benchmarks show that comput-
ing one extra optimized INTT only increase the key generation time by around 5%, we
believe that this is a good trade-off. This trick can be similarly applied to KYBER. Note
that the small relative cost of this technique is specific to our context and is mainly due to
the fact that hashing is the main performance bottleneck. This issue will be discussed in
more detail in Section 3.7.6. If a faster hash function is used, the decrease in performance
will be higher than 5%. That being said, the absolute cost of the trick is always the same
and is one INTT.

Encryption

The encryption procedure is mainly driven by the following computations:

1. t̂← NTT(s′)

2. û← â ◦ t̂+ NTT(e′)

3. v′ ← INTT(DecodePoly(b̂′) ◦ t̂) + e′′ + Encode(µ)

The first two yield a situation similar to the key generation but unfortunately require two
polynomials on the stack frame. Indeed, since t̂ appears in the second and last compu-
tation, the result of â ◦ t̂ cannot be stored in the same memory space as t̂ (and since it
would need to go through a INTT, it does need to be fully stored). Once û is computed,
it can be packed in the ciphertext and free one of the two polynomials. The last computa-
tion is quite friendly for stack usage. Since both the base multiplication and the addition
operate on small portions of the polynomial, e′′ + Encode(µ) can be computed coeffi-
cient by coefficient and b̂ can be partially unpacked from the inputs, it could technically
be computed with one polynomial plus a small overhead in the stack frame. Since two
polynomials were already allocated previously and only maximal stack usage is relevant,
we actually fully unpack b̂. Finally, the stack usage is bigger than the one of the key
generation because of the extra polynomial stored.

Decryption

The decryption of NEWHOPE is quite lightweight in terms of stack usage. However, since
the CCA transform is running the encryption procedure during decryption, the stack usage
is essentially the same as for encryption.

3.7.5 Tradeoffs Between Secret Key Size and Speed
There are different possible tradeoffs between secret key size and speed of the implemen-
tation [29, 113]. For example, if the secret key size is critical, one can only store the
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seed used for all randomness and perform key generation again during decapsulation. As
also stated by [29, 113], another optimization could to store the secret key in the normal
domain instead of the NTT domain because then, each coefficients could be compressed
to 3 bits (since their possible values are between -2 and 2). Since our implementations
of the NTTs used in KYBER and NEWHOPE-COMPACT are fast, we decided that such
modifications are good trade-offs. Even though it is usually stated that the most time con-
suming part of such algorithms is the randomness generation and hashing, we observed
that sampling polynomials from the secret distribution is fast enough due to the low en-
tropy of each coefficient. Sampling the secret key is actually lightweight in comparison
to the generation of the public parameter a because we can extract two coefficients from
only one byte when sampling from the centered binomial distribution while uniform sam-
pling needs two bytes to extract only one coefficient. Hence, we decided to store only the
seed, whose size is 32 bytes, to sample the secret key. Then, the secret key is sampled
again during decapsulation, and is transformed to NTT domain. These operations reduce
the secret key size by 736 bytes for KYBER512 and NEWHOPE-COMPACT512, 1120
bytes for KYBER768 and NEWHOPE-COMPACT768, and 1504 bytes for KYBER1024
and NEWHOPE-COMPACT1024. On the other hand, they increase the decapsulation time
by around 7% for KYBER and 9% for NEWHOPE-COMPACT.

3.7.6 Results and Comparison
Our optimizations were implemented in the three siblings schemes NEWHOPE, NEWHOPE-
COMPACT, and KYBER. Comparing different schemes across parameter sets is often
complicated because performance is always strongly correlated with the targeted security
level. Most of the implemented schemes propose parameter sets for NIST security levels
1, 3, and 5, which correspond to 128, 192, and 256 bits of security. Fortunately, since
all the schemes involved in our tests are similar and based on {R,M}LWE, the dimension
of the underlying lattice problem can currently be roughly translated into NIST security
levels. Hence, we compare them for dimensions 512, 768 (if available), and 1024, which
correspond to the three aforementioned security levels.

3.7.7 Speed Comparison
The results of our benchmarks in terms of speed can be found in Table 3.7. The code was
compiled and run in the same conditions as the schemes benchmarked in pqm4 [68]. We
use the latest arm-none-eabi-gcc release (version 9.2.1) that is currently available.
We compare the two candidates NEWHOPE and KYBER against their previous Cortex-M4
optimized implementations available in pqm4 and also add the newcomer NEWHOPE-
COMPACT. One can see that NEWHOPE and KYBER perform around 10% better with
our optimizations, while using less stack space (see Table 3.8). Furthermore, NEWHOPE-
COMPACT is more than 40% faster compared to NEWHOPE and more than 25% faster
compared to KYBER for all security levels. This is explained by the two following obser-
vations:

• NEWHOPE-COMPACT is a variant of NEWHOPE using a smaller modulus and dis-
tribution, which means an increased performance during polynomial multiplication
because of lazy-reductions and less hashing needed to sample from the error distri-
bution.
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• NEWHOPE-COMPACT is based on RLWE, while KYBER is based on MLWE. Hence,
even though they share similar parameter sets, the inherent performance penalty of
using the less structured version of LWE hurts KYBER.

Scheme Previous work This work
Speed

This work
Stack Opt.

This work
Short sk

NEWHOPE

512
G: 588k a

E: 918k a

D: 904k a

G: 561k (−4.6%)
E: 865k (−5.8%)
D: 820k (−9.3%)

G: 578k (−1.7%)
E: 865k (−5.8%)
D: 820k (−9.3%)

G: 555k (−5.6%)
E: 865k (−5.8%)
D: 968k (+7.1%)

1024
G: 1 161k a

E: 1 777k a

D: 1 760k a

G: 1 117k (−3.8%)
E: 1 687k (−5.1%)
D: 1 612k (−8.4%)

G: 1 157k (−0.3%)
E: 1 689k (−5.0%)
D: 1 614k (−8.3%)

G: 1 106k (−4.7%)
E: 1 686k (−5.1%)
D: 1 918k (+9.0%)

NH-CMPCT

512 -
G: 335k
E: 531k
D: 484k

G: 349k
E: 532k
D: 484k

G: 330k
E: 531k
D: 526k

768 -
G: 501k
E: 782k
D: 717k

G: 524k
E: 784k
D: 718k

G: 494k
E: 782k
D: 786k

1024 -
G: 658k
E: 1 022k
D: 940k

G: 686k
E: 1 025k
D: 941k

G: 648k
E: 1 022k
D: 1 030k

KYBER

512
G: 514k b

E: 652k b

D: 621k b

G: 452k (−12.1%)
E: 586k (−10.1%)
D: 542k (−12.7%)

G: 461k (−10.3%)
E: 586k (−10.1%)
D: 543k (−12.6%)

G: 446k (−13.2%)
E: 586k (−10.1%)
D: 579k (−6.9%)

768
G: 976k b

E: 1 146k b

D: 1 094k b

G: 860k (−11.9%)
E: 1 031k (−10.0%)
D: 967k (−11.6%)

G: 872k (−10.7%)
E: 1 030k (−10.1%)
D: 966k (−11.7%)

G: 850k (−12.9%)
E: 1 030k (−10.1%)
D: 1 021k (−6.7%)

1024
G: 1 575k b

E: 1 779k b

D: 1 709k b

G: 1 394k (−11.5%)
E: 1 603k (−9.9%)
D: 1 522k (−10.9%)

G: 1 410k (−10.5%)
E: 1 603k (−9.9%)
D: 1 523k (−10.9%)

G: 1 381k (−12.3%)
E: 1 603k (−9.9%)
D: 1 595k (−6.7%)

a
https://github.com/mupq/pqm4/,
commit be0c421aaecaad4443071bfcf62ad397d4f40832.

b
[31]

Table 3.7: Cycle count comparison for the {R,M}LWE schemes improved by our work.
G: key generation, E: encapsulation, D: decapsulation.

Moreover, some design decisions affect the performance or the stack usage of the
scheme. These design decisions are unrolling NTT loops by using the .rept directive
instead of the loop counter, optimizing the stack usage, and the trade-off between the
size of the secret key and performance. These three decisions can be easily enabled or
disabled. The effects of the last two choices on the performance and the stack usage
are given in Table 3.7. Using the .rept directive instead of the loop counter decreases
the cycle count by n per NTT call, where n is the degree of the polynomial for selected
parameters. However, the code size increases by a factor of 10 to 50. Optimizing the stack
usage decreases the memory used by key generation while increasing the cycle count of
the same function. Finally, applying the method described in Section 3.7.5 to reduce the
size of the secret key increases the cycle count of the decapsulation while decreasing it
for the key generation.

3.7.8 Dominance of Hashing
The speed difference shown in Table 3.7 might look slim at first sight. This is due to the
fact that, as pointed out by previous works, those schemes have been optimized so much
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Scheme NEWHOPE
(This work)

NEWHOPE
[68]a

NH-CMPCT
(This work)

KYBER
(This work)

KYBER
[31]

512
G: 2 056
E: 2 864
D: 2 880

G: 5 960
E: 9 168
D: 10 296

G: 2 160
E: 2 984
D: 2 984

G: 2 392
E: 2 344
D: 2 360

G: 2 952
E: 2 552
D: 2 560

768 - -
G: 2 600
E: 3 936
D: 3 936

G: 3 240
E: 2 856
D: 2 864

G: 3 848
E: 3 128
D: 3 072

1024
G: 3 072
E: 4 904
D: 4 920

G: 11 080
E: 17 360
D: 19 576

G: 3 176
E: 5 024
D: 5 024

G: 3 776
E: 3 744
D: 3 760

G: 4 360
E: 3 584
D: 3 592

a
https://github.com/mupq/pqm4/, commit
be0c421aaecaad4443071bfcf62ad397d4f40832.

Table 3.8: Stack usage comparison for the {R,M}LWE schemes improved by our work.
G: key generation, E: encapsulation, D: decapsulation.

that the bottleneck is now the generation of random numbers through hashing instead of
the polynomial multiplication procedure. Table 3.9 shows the time spent hashing for all
algorithms and parameter sets. As we can see, with a minimum of 66% for the decap-
sulation of NEWHOPE-COMPACT, all the algorithms are severely dominated by hashing.
Even if polynomial multiplications were somehow instantaneous, the results of Table 3.7
would be somewhat similar.

Scheme Dimension 512 Dimension 768 Dimension 1024

NEWHOPE

G: 75%
E: 80%
D: 72%

-
G: 73%
E: 78%
D: 71%

NEWHOPE-COMPACT

G: 75%
E: 78%
D: 67%

G: 72%
E: 77%
D: 66%

G: 73%
E: 77%
D: 66%

KYBER

G: 76%
E: 80%
D: 69%

G: 77%
E: 80%
D: 72%

G: 78%
E: 80%
D: 73%

Table 3.9: Time spent hashing. G: key generation, E: encapsulation, D: decapsulation.

3.7.9 Comparing Polynomial Multiplications
The reader might wonder why to bother optimizing polynomial multiplications further
if it is not the bottleneck anymore. The reason is twofold: first, SHAKE is used to ex-
pand the seed in every scheme implemented. However, the choice of the seed expansion
algorithm is somewhat orthogonal to the scheme and does not affect post-quantum as-
sumptions. Hence, using a faster hash function would reduce the impact of hashing on
the performance. Furthermore, it might be unnecessary to use a cryptographic hash func-
tion to generate the public parameters. For instance, [30] uses a faster, non-cryptographic
RNG to speed-up a scheme based on LWE. Second, even if SHAKE is used, since its
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usage will likely grow in all future cryptographic applications, we might eventually see
hardware accelerations for it on a lot of architectures. This would naturally drastically
decrease the time spent hashing in our schemes and make the polynomial multiplication
is the most important optimization target again. Recall that, as stated in Section 3.7.4, this
would increase the relative cost of the reduced stack usage trick used in the key genera-
tion. Nevertheless, we think that outside of unrealistically fast polynomial generation, the
trade-off can still be useful.

Since our work is the first Cortex-M4 implementation of NEWHOPE-COMPACT, we
do not have any point of comparison for our technique for this scheme. Table 3.10 shows
the speed-up for the dimension of the NTT used in all parameter sets of NEWHOPE and
KYBER and the cycle count of all subroutines of the polynomial multiplication for each
algorithm and dimension. The total cost of multiplication operations for each scheme is
presented in Table 3.11. This table was obtained by summing all the time spent in the three
multiplication subroutines: NTT, INTT, and ◦. Note that the stack optimized version of
our implementation is used in this table to show its actual impact on the performance.
It can be seen that KYBER and NEWHOPE-COMPACT have similar performance, while
NEWHOPE is slower. This is mainly due to the extra layers of the NTT and the increased
number of reductions caused by the larger modulus. Note that our INTT cycles do not
include any bitreversal operation, because we need INTT to output a bitreversed order for
the stack optimization (Section 3.7.4). To be able to verify test vectors with the reference
implementation of NEWHOPE, we have implemented a separate bitreversal operation that
takes roughly 4n-cycle for the selected parameter set, which is not included in the INTT.
It can be seen that our implementation of NEWHOPE NTT is slightly slower compared
to the implementation from [68] 4, while we have noticeably better performance for the
INTT. Table 3.11 shows that even though we have a slower NTT, the total number of
cycles spent in polynomial operations is reduced compared to [68].

Scheme Dimension NTT INTT ◦

NEWHOPE

512 28662 (-3.7%) 22836 (-35.8%) 4736 (-13.2%)
512 ( [68]a) 29767 35813 5459

1024 63387 (+6.1%) 49880 (-30.7%) 9396 (-13.3%)
1024 ( [68]a) 59752 71942 10836
1024 ( [13]) 86769 97340 14977

NEWHOPE-COMPACT

512 12799 13052 7052
768 19647 21226 12749

1024 25536 26039 18510

KYBER
256 6847 (-11.7%) 6975 (-25.6%) 2317 (-24.7%)

256 ( [31]) 7754 9377 3076
a
https://github.com/mupq/pqm4/, commit be0c421aaecaad4443071bfcf62ad397d4f40832.

Table 3.10: Comparison of the polynomial multiplication functions of all the schemes.
Kyber actually uses the exact same NTT code for all dimensions.

3.8 Conclusion
In this chapter, we described two interleaved implementation works that led to new speed
records for some RLWE/MLWE KEM and a paper about optimizations and trade-offs [6].

4which is actually our implementation of Section 3.6.1 as it was integrated to PQM4.
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Scheme Dimension Keygen Encaps Decaps

NEWHOPE

512 84896 89632 117204
512 ( [68]a) 64993 106265 147537

1024 186050 195446 254722
1024 ( [68]a) 130340 213118 295896

NEWHOPE-COMPACT

512 45702 52754 72858
768 73269 86018 119993
1024 95621 114131 158680

KYBER

512 50606 48521 73824
512 ( [31]) 43320 62095 93132

768 82860 76245 110712
768 ( [31]) 74208 97682 139549

1024 119748 108603 152234
1024 ( [31]) 111248 139421 192118

a
https://github.com/mupq/pqm4/,
commit be0c421aaecaad4443071bfcf62ad397d4f40832.

Table 3.11: Total time spent in polynomial multiplication subroutines (NTT, INTT, and
◦).

The targeted platform is the Cortex-M4 processor which is the embedded system used
in the framework of the NIST project. Improvements came from better use of SIMD
instructions offered by the ARMv7E-M architecture. More specifically, we proposed new
efficient implementations for NEWHOPE, NEWHOPE-COMPACT and KYBER. The core
speed optimizations are due to a more aggressive layer-merging strategy and improved
reductions in the NTT and the base multiplication. We provided an implementation that
has already been integrated into the PQM4 library as well as experiment results comparing
the proposed trade-offs. The code is written in a modular fashion that allows the user to
easily switch between versions. Our results show that all optimization techniques have
advantages and disadvantages and might be useful for different applications.

3.9 Thoughts and Future Works
While I guess there will probably always be some percentages to gain here and there, it is
clear that the huge cost of randomness generation is hindering further progress in terms of
speed. Even though our improvements on the NTT (which is the core operation) are quite
good, only slim gains are perceptible on the whole scheme. Of course, as discussed at the
end of the chapter, if future devices are equipped with special SHAKE instructions, the
relative weight of those gains will increase, but the inertia of the industry on this matter
is hard to predict. Actually, I would argue for benchmarks without the hash function in
optimization papers to get a better idea of the improvements. That being said, the huge
amount of randomness needed is not so often discussed when comparing post-quantum
schemes while, in practice, it might be a clear drawback. Optimization works discussing
the problem with randomness generation are good remainders that this issue is crucial to
cryptography. However, I think that when we do a comparison between optimizations,
this parameter can disappear. This work also shows another problem of optimized imple-
mentations: several metrics. To get the absolute fastest code, one can inline and unroll
everything and write a single large blob of assembly code; to get the smallest stack usage,
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one can keep every polynomial as a seed and generate each coefficient one the fly when
needed. Of course, these extreme examples are nonsense but they illustrate the fact that
some reasonable choices have to be made. The problem is that the definition of reasonable
differs from one person to the other. Naturally, some objectives improvements are possi-
ble if they improve one metric while keeping others mostly untouched but my point is that
what is considered a better implementation depends a lot on the context. Actually, I think
improvements of practical performances are highly tied to design parameters choices. For
example, NEWHOPE-COMPACT is largely more efficient than NEWHOPE while the un-
derlying algorithm is basically the same. If the NEWHOPE team decides to support the
parameter sets of the compact version, it could give a large boost to the practical side of
the submission. Actually with the current state of randomness generation, such scheme
should aim to reduce the modulus and the support of the distribution as much as possi-
ble to increase speed. However, it is known that too narrow distributions enable some
cryptanalysis, so things are not so easy. Regarding future works, I would say that, for the
reason exposed above, there is not much room for improvements in the current framework
(Cortex-M4 and software SHAKE). Nevertheless, it is important to give the same level of
attention to all post-quantum candidates to have fair comparisons in PQM4. I also think
that targeting various embedded architectures, from small 8-bit microcontrollers to pow-
erful smartphones, is interesting. Since the groundwork for optimized implementation is
already there, porting on other devices should be relatively easy. Finally, if we are talk-
ing about embedded devices, side-channel resistant implementations would be welcomed.
Not so much countermeasures have been studied yet but, fortunately, this is the topic of
the next chapter!
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Chapter 4

Protecting Lattice-based Cryptography
Against Physical Attacks

4.1 Preamble
This chapter is about side-channel attacks and countermeasures. I was introduced to this
topic by the researchers working in my group at the beginning of my PhD. At the time,
most of them were working on side-channel related topics. While they were working on
symmetric algorithms and I was already taking the path of lattice-based cryptography, I
still gained some useful knowledge on the topic. This led to a small research paper with
my colleagues from ULB at SPACE 2016 [53]. While its topic is not related to lattice-
based cryptography, it will be used to introduce side-channel attacks in this Chapter and a
more important research paper discussing the masking countermeasure on the QTESLA
lattice-based signature authored with Mélissa Rossi from ENS, published at CARDIS
2019 [61].

4.2 Introduction
In Chapter 3, our goal was to implement as efficiently as possible existing cryptographic
algorithms on a specific device. The underlying assumption was that the implemented
scheme features all the required security properties and that once the code exactly imple-
ments the mathematical operations specified by the designers, the work is done and the
user can safely use it. Unfortunately, some unforeseen threats while using the implemen-
tation might appear. For example, imagine the user is using a program encrypting some
plaintext on its personal computer. What if another program finds an exploit in the operat-
ing system and reads some intermediate values in RAM during the encryption procedure?
The cipher was originally not designed to be computationaly secure while revealing its
computation steps and this could lead to a total reveal of the plaintext and/or the key. Such
information is called a side-channel information, it was obtained from outside of the usual
communication channel of the scheme. Now, it is accepted that meeting security goals
on an infected computer is pretty much impossible. Furthermore, it is not “cryptograph-
ically” possible to contain every threats of the real world. For example, what if a user
writes the secret key on a piece of paper in sight of the attacker? However, there exists
plenty of side-channel attacks that can be mitigated in practice that are studied in the lit-
erature. Among them, we will focus on the popular power analysis attacks. In those, the
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adversary is given the power consumption of an electronic device while it is computing
some cryptographic algorithm and tries to derive some secret information from it. This
new threat appeared in the literature a bit before 2000 in [73]. A very interesting property
it has is that it falls in the category of non-invasive attacks. This means that the attacker
does not have to modify the device or access its internal components and can perform the
attack from the outside. It does not really make it a remote attack since accurately mea-
suring consumption requires to be close (and quite often unrealistically close in academic
settings !) but, since the device can be left untouched, the attack is harder to detect.

4.3 Power analysis attacks
A measurement of power consumption over a certain period of time is called a trace. In
its simplest version, a power attack will directly derive information from a trace. For
example, let us assume the existence of an unrealistic device loading data bit by bit from
memory, one per cycle, having its power consumption drastically different when loading
a 0 or a 1. Also assume that a measurement device capable to measure consumption at
the same frequency as the clock of the device is available. Once the attacker finds the
instant in time when the key is loaded to start performing cryptographic operations, just
looking at the values in the trace directly reveals it. This type of attack is called a sim-
ple power analysis (SPA). However, these are quite hard to conduct in practice since the
situation above was idealized for the attacker. In real-life, measurements are noisy and
the power consumption of individual bits is unlikely to clearly appear in the trace. This
is why a more powerful class of attacks, called differential power analysis (DPA), consist
in analyzing a large amount of traces obtained during several executions of a crypto-
graphic algorithm on different data (e.g. a different plaintext each time for an encryption
scheme). Having multiple traces reduces the noise and running it on different inputs helps
by showing the impact on consumption of the constant secret information (the key) under
several circumstances. That being said, some attacks on a single (or low amount of) trace
can be devastating, especially if a profiling phase capturing the behavior of the device is
performed beforehand by the attacker (see template attacks [35]).

4.3.1 Correlation Power Analysis
We now describe a very powerful DPA attack that we performed on a block cipher called
Kalyna. This attack, called correlation power analysis is a statistical approach aiming at
finding a correlation between the expected variation of a device’s power consumption for
a given key hypothesis and the real variation of the consumption somewhere in the power
traces, confirming the hypothesis.

Let us say that a device containing a (secret) key sk is running a cryptographic al-
gorithm successively on a set of plaintexts P = {p1, p2, ..., pm}. During the ith encryp-
tion, there should be an operation depending on both pi and sk. Let us call it f(pi, sk).
Given a set of power traces T measured while the device encrypts the plaintexts in P ,
we aim to find a correlation between the variation of the power consumption at a cer-
tain point in the traces and the expected variation of the power consumption while per-
forming f(·, ·), according to an appropriate leakage model. In order to do so, we pre-
compute, for each element kj of a set of key hypothesis K, the expected power consump-
tion ej = {L(f(p1, kj)), L(f(p2, kj)), ..., L(f(pm, kj))} where L(·) is the leakage model
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function. If we find j such that ej correlates with a place in the traces, we can, with high
confidence, say that kj = sk. More precisely, we can split the process in three phases.

Measurement phase

We acquire power traces by measuring the consumption of a device running the crypto-
graphic algorithm for a set of plaintexts P = {p1, p2, ...pm}. Each trace can be seen as a
vector t ∈ Rn with each element representing the instantaneous consumption at a given
point in time and n depending on the measurement device. We end up with a matrix
T ∈ Rm×n containing the data of all the measurements made.

Expected consumption estimation

First, we choose an operation f(p, sk) depending on (a part of) the plaintext and on a
part of the key. Then, for each possible key hypothesis kj and each message pi ∈ P , we
compute L(f(pi, kj)) with L(·) a function depending on the leakage model mapping the
co-domain of f(·, ·) on a value e ∈ R representing the expected consumption of the device
just after performing f(pi, kj). Finally we store those values in a matrix E ∈ Rm×|K| in
which each column expresses the expected variation of the device’s power consumption
as a function of the plaintext, for a given key hypothesis.

Finding the key

In this last phase, we are going to find which key hypothesis corresponds to the real key
used by the device. To do that, we look for a column c1 of T and a column c2 of E such
that c1 and c2 correlates greatly. If we are able to find them, the key kj that spanned c2
in E is the key sk used by the device with high probability. To evaluate the correlation,
we usually simply use the sample correlation coefficient which associates to two S-size
datasets D = {d1, d2, ..., dS} and D′ = {d′1, d′2, ..., d′S} the value:

r =

∑S
i=1(di −D) · (d′i −D′)√∑S

i=1(di −D)2 ·
∑S

i=1(d′i −D′)2

where X denotes the mean value of the dataset X .

4.4 Concrete attack: Breaking an Implementation of Ka-
lyna ! (SPACE 2016)

We now move on to experimental results of our attack on our implementation of Kalyna.
Since symmetric encryption is fairly off-topic of this thesis, we will not introduce all
the notions required to understand the inner workings of the cipher. However, these are
fairly standard (e.g. S-box) and accessible to anyone with a background in symmetric
cryptography.

Kalyna

Kalyna is a SPN block cipher chosen as the new encryption standard of Ukraine during
the Ukrainian National Public Cryptographic Competition [97, 98]. Kalyna is a Rijndael-
like cipher based on five operations: substitutions i.e. S-boxes (SubBytes), rows shifting
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(ShiftRows), column mixing (MixColumns), exclusive-or (XorRoundKey) and addition
modulo 264 (AddRoundKey).

Both the encryption and the key schedule use those five operations. The key schedule
generates a couple of dependent round keys: round keys with even indices are generated
by using the five transformations while round keys with odd indices are simple rotations
of the previous (even) round keys. Those round keys are derived from an intermediate
key Kt which is itself derived from the master key K. Kalyna supports block size and
key size of 128, 256 and 512 bits with the key length equal or double of the block size.
Kalyna can be referred as Kalyna b/k where b and k denote the block size and the key size
(in bits).

4.4.1 Encryption Algorithm
In this section we will describe Kalyna 128/128 encryption algorithm with block size
and key size of 128 bits which is the version we attacked. Kalyna 128/128 algorithm
is summarized in Figure 4.1. The 128-bit inputs (round keys and ciphertext) of Kalyna
128/128 are represented with matrices in GF (8)8×2 in an AES-like fashion. We simply
call STATE the internal matrix containing the plaintext before encryption.

AddRoundKey

At the beginning and at the end of the encryption, the round key is added to STATE. The
addition is a 264 modular addition where each column (interpreted of the round key is
added to each column of STATE.

SubBytes

Four S-boxes are used in Kalyna. Each byte si,j of STATE is passed through the corre-
sponding S-box: si,j = SBox(i mod 4)(si,j) with 0 ≤ i ≤ 7 and 0 ≤ j ≤ 1.

ShiftRows

This operation depends on the block size. For Kalyna 128/128 the four last bytes of each
column of STATE are swapped together.

MixColumns

The bytes of each column of STATE are linearly combined by multiplying them with an
8×8 MDS matrix overGF (28) which is obtained by rotating the vector v = (0x01, 0x01,
0x05, 0x01, 0x08, 0x06, 0x07, 0x04) ∈ GF (28)8. Unlike AES, the MixColumns opera-
tion takes place in every round of the encryption.

XorRoundKey

Finally, at the end of each round (except for the final round), the round key is bitwise
XOR-ed with STATE.
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Figure 4.1: Kalyna 128/128 encryption scheme (left part) and Kalyna 128/128 key sched-
ule (right part).

4.4.2 Key Scheduling
Kalyna uses a two steps key schedule. During the first step, Kt is computed from the
master key K.

In the second step, K and Kt are used with another value tmvi:{
tmv0 = 0x01000100..0100

tmvi+2 = tmvi << 1

where “<< 1” corresponds to a binary left shift of one position and .. is a padding of
zeroes. Round keys with even indices are generated with round operations while round
keys with odd indices are generated by rotating the previous (even) round key in the
following way: k2i+1 = k2i <<< 7.

Figure 4.1 summarizes Kalyna 128/128 key schedule. This key schedule does not
allow better recovery of the master key from a round key than brute force [3].

4.4.3 Side-Channel Attacks on Kalyna
The goal of an attacker during a side-channel attack on a block cipher scheme is to get
the master key that is used to generate all round keys during the encryption. For modern
block cipher like DES and AES, an attacker that knows a set of plaintexts would focus the
attack on the output of the S-box of the first round in order to recover the first round key.
In case of ciphers such as AES, DES or Present [25] it is easy to reconstruct the master
key from its round keys. For example, in AES-128 the first round key is the master key
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and in Present-80 the first round key immediately gives us 64 most significant bits of the
master key. In some cases it is necessary to consider more that the first round key, e.g., in
AES-256 the second round key has also to be targeted in order to get the second half of
the master key. In the case of DES, an attacker would have to brute force one byte of a
key (because of the compression function Permutation Choice) in order to get the master
key from the extracted round key.

Kalyna block cipher does not allow to easily run the key scheduling algorithm back-
wards and it is not using its master key directly in the encryption process as one of the
round keys. Thus, getting the master key from round keys of Kalyna cipher is not as
easy as for other commonly used ciphers such as mentioned above. This property makes
Kalyna an interesting case-study for side-channel attacks.

The attacker has a choice between targetingK (the master key),Kt (the derived master
key that is used to generate round keys) or to target directly the round keys Ki. All of
these values might be targeted using a profiled attack in a usual way (as for any other
block cipher) and it would be easier for an attacker to directly target K in order to extract
the entire master key at once. However it implies that the attacker has to build a profile
on the basis of a similar device. Here, we try to avoid this constraint.

Considering non-profiled attacks and the particular case of Kalyna, the easiest target
seems to be the round keys because they are used with different inputs (different plain-
texts).

In the following, we are considering a scenario where an attacker is not able to mount
a profiled attack on the device and we are focusing on classical non-profiled CPA. Our
CPA on Kalyna targets all round keys Ki.

CPA on Kalyna

Our approach was to apply a classical CPA attack round by round. We use the Hamming
weight model as leakage model and attack the output of the S-boxes. Once a round key
is found the solution is used for attacking the next round: computing Kalyna cipher until
the next round with all the guessed round keys. A great property of Kalyna for our attack
is that we can use the round keys dependency to improve and verify our guesses: if k2∗i+1

is not equivalent to k2∗i with the rotation then k2∗i must have been incorrectly guessed.
For the first round key we have also to take the carry bit into account: due to the fact
that the cipher starts with a modular addition, the CPA attack not only have to consider
the message pi and the key hypothesis kj but also the carry bit cb when computing the
leakage L(f(pi, kj, cb)). Thus the attack on one byte of the round key of Kalyna depends
on the attack on the previous byte (except the first byte of each column). This property
forces the attacker to perform more computations during the attack. When all the keys
are retrieved, the attack succeeds the same way as it had retrieved the master key since
having those keys is sufficient to decrypt.

4.4.4 Experiments
Data acquisition setup

For our experiments we have implemented Kalyna on a 8-bit microcontroller ATMega 328.
We used a fixed key and random plaintexts during the execution of the algorithm. We ac-
quired 1000 power traces using Infiniium MSO9254A oscilloscope that was set up to
acquire 200 MSamples/s. Each power trace is the average of 64 single acquisitions, the
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Figure 4.2: Average success rate of the four S-boxes when attacking K0.

averaging was done by the oscilloscope in order to reduce noise. A small 10 Ω resis-
tor was placed between the group of our 5 Volt power supply and the ground pin of the
microcontroller in order to do the acquisitions.

Our attack

Based on a set of traces, we begin the attack with the bytes of K0. The first roundkey is a
particular key to attack since we have to take the carry into account1 (except for the first
byte of each column). Once we have a complete guess forK0 andK1 we must ensure that
they match (i.e. K1 is a rotation of K0). If K0 and K1 do not match, we must consider
adding more traces to the set and start again. Otherwise we can focus on roundkeys 2 to
9. Each time a pair of roundkeys is found we verify whether they match or not (starting
the attack again in case they do not). For the final roundkey K10, we execute the cipher
until the final AddRoundKey operation and retrieve it based on the computation and the
ciphertext. Algorithm 20 summarizes our attack.

CPA results

Figure 4.2 shows the average2 probability of success of a practical attack on the four S-
boxes for the first roundkey (K0). We performed our attack with a growing set of traces
in order to experimentally estimate the success probability in function on the number or
traces used. We did 100 attacks for each number of used traces. Each of those attacks
were executed with randomly chosen traces (out of a set of 1000 traces).

Figure 4.3 shows the average (from 100 experiments) success rate of the entire attack:
retrieving all the 10 keys,K0 toK9 (the last round key can be retrieved from the ciphertext
and the execution of the algorithm until the last AddRoundKey operation). With 250
traces the success rate of the attack is 96%.

1An error propragation of the carry will be noticed at the end of K1 recovery and will result in a mis-
matching of K0 and K1. This will imply restarting the recovery of K0 with more traces.

2Since is each S-box is used four times for each round we averaged the results of each S-box for the
same round.
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Algorithm 20 Pseudo-code of CPA attack on Kalyna 128/128
Require: Set of traces, ciphertext
Ensure: Roundkeys K0 to K10

. Attacking K0 and K1

1:
2: for i← 0, 1 do
3: CPA on byte 0 of column i of K0

4: for j ← 1, 7 do
5: CPA on byte j of column i of K0 using guessed byte (j − 1)
6: end for
7: for i← 0, 1 do
8: for j ← 0, 7 do
9: CPA on byte j of column i of K1

10: end for
11: end for
12: end for
13: if K1 is not a rotation of K0 then
14: add more traces to the set of traces
15: restart attack of K0 and K1

16: end if
17: . Attacking K2 to K9

18:
19: for k ← 1, 4 do
20: for i← 0, 1 do
21: for j ← 0, 7 do
22: CPA on byte j of column i of K2∗k
23: end for
24: end for
25: for i← 0 to 1 do
26: for j ← 0 to 7 do
27: CPA on byte j of column i of K2∗k+1

28: end for
29: end for
30: if K2∗k+1 is not a rotation of K2∗k then
31: add more traces to the set of traces
32: restart attack of K2∗k and K2∗k+1

33: end if
34: end for
35: . Attacking K10

36:
37: pre cipher← execute encryption until final AddRoundKey using K0 to K9

38: from ciphertext and pre cipher compute K10
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Figure 4.3: Average success rate of the entire attack as a function of the number of traces.

4.5 Masking
Our real-life attack of last section showed that side-channel attacks are doable in prac-
tice. We will now discuss a potential countermeasure against it called masking. The goal
of a masking scheme is to randomize the values handled by the device during the exe-
cution of a cryptographic algorithm to blind the adversary. For example, in our attack
on Kalyna, the successful recovery of a key byte was severely linked to the reuse of the
same key for each encryption. Indeed, the correlation was computed between real and
estimated consumption measurements for a given key (byte) hypothesis. If this key byte
is randomized at each execution, the attack fails. Of course refreshing the key each time
is unsatisfactory, so we have to find a way to randomize values while keeping the final
result mathematically equivalent to the original scheme. In a masked scheme, sensitives
values v are split in multiples values vi called shares. The idea is that if the adversary
successfully recovers one of the vi, it does not help to recover v. Actually, even recover-
ing all the vi but one should not help. This method is an example of something known in
the cryptographic literature under the name secret sharing. At each execution, the vi will
be randomized such that they successively take different values while their combination
stays v. Simply splitting each key byte in two shares would be devastating for our attack
on Kalyna since it targets a specific instant in the trace. However, there exists more so-
phisticated attacks that target multiple points at the same time called high-order attacks.
This is why, in practice, values might be split in more than two shares. When sensitive
values are split in N + 1 shares, we call it a masking of order N .

Arithmetic and Boolean masking

Let us introduce two types of additive combination in the following definition.

Definition 38 (Arithmetic and Boolean masking). A sensitive value x is shared with mod
q arithmetic masking if it is split into N + 1 shares (xi)0≤i≤N such that

x = x0 + · · ·+ xN (mod q). (Arithmetic masking mod q)

It is shared with Boolean masking if it is split into N + 1 shares (xi)0≤i≤N such that

x = x0 ⊕ · · · ⊕ xN . (Boolean masking)
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More generally, if our value x can be encoded as a group element for any group (G, ◦),
a masking of orderN is a tuple (xi)0≤i≤N = (x0, x1, . . . , xn) such that x = x0◦x1 · · ·◦xn.
In our case, we use the arithmetic masking in Zq because the main mathematical objects of
the scheme are polynomials in Zq[X]/〈Xn+1〉 and the Boolean masking which represent
values as a direct sum of GF (2) because it is the representation used by computers. We
call (xi)0≤i≤N the masked value of x.

Gadgets

A masking scheme is an implementation of a cryptographic scheme that performs its
computations on masked sensitive values. In the case of a signature scheme, it takes as
input a masked secret key and an unmasked message (because it is public and known to the
adversary) and outputs an unmasked signature. The important point is that all sensitive
values used during the execution of the algorithm must be masked. Identifying which
intermediate values need to be kept in masked form and which can be safely unmasked
might be challenging in some cases since designers do not study the security of their
scheme “from the inside”. It is thus required to design subroutines implementing the
functionality of the scheme without unmasking its inputs. Such subroutines are called
gadgets.

Definition 39. A (u, v)-gadget is a probabilistic algorithm that takes as inputs u shared
values, and returns randomized v-tuples of shared values.

The output is said to be randomized because even if the value resulting from the com-
bination of the shares is the same at each execution 3, the value of each individual share
will change. In practice, we will sometimes take the liberty to call “gadget” any algorithm,
even not randomized, that performs operations on masked values.

4.6 Lattice-Based Signatures
Our second work presented in this chapter is a masking scheme for the NIST candi-
date QTESLA. We decided to mask this signature because a similar work on its sibling
DILITHIUM had already been published and thus masking QTESLA would enable fairer
comparisons in the framework of the standardization project. This signature scheme is
the result of several iterations over a scheme of Lyubashevsky [80, 81] constructing a lat-
tice version of Schnorr signature. Thus, we will now describe how this type of signature
works and quickly explain the different variants that appeared in the literature.

4.6.1 GLP
For the sake of brevity, we will not describe in details the earliest versions of these sig-
natures but directly jump to a version illustrating the concept. This version, called the
GLP [63] signature scheme, is now mainly considered deprecated but is actually the first
one that has been masked. In the following, we use the notation Rq,[k] to denote polyno-
mials in Zq[X]/〈Xn + 1〉 with coefficients in [−k, k].

3This is not always the case because the functionality implemented by the gadget might also be random-
ized, e.g. the generation of a masked key.
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Public parameter: a
Secret key: s, e r←− Rq,[1]

Public key: t← a · s+ e
Random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = 32}
Sign(s, e,m):

1: do
2: y1, y2

r←− Rq,[B]

3: c← H(a · y1 + y2,m)
4: z1 ← s · c+ y1, z2 ← e · c+ y2

5: while
(
z1 /∈ Rq,[B−32] or z2 /∈ Rq,[B−32]

)
6: return z1, z2, c

Verify(z1, z2, c, t,m):
1: v ← a · z1 + z2 − t · c
2: return 1 if c = H(v,m) and

both zi are small else 0

Figure 4.4: GLP signature scheme.

Decisional Compact Knapsack

To argue security and offer an efficient implementation, the authors used a small pa-
rameters version of decisional RLWE called the decisional Compact Knapsack prob-
lem (DCK). In that version, the secret and error distributions are U({−1, 0, 1}) which
means that the adversary receives tuples of the form (a, a · s + e) with a

r←− Rq and
(s, e)

r←− (Rq,[1] × Rq,[1]), and must distinguish them from samples from U(Rq × Rq).
One can also naturally define the corresponding search problem. This is simply a variant
of RLWE but we keep the nomenclature of the literature for consistency.

The scheme

The scheme is described in Figure 4.4. The public key is a simple DCK sample and the
private key consists in the corresponding secret and error polynomials. We emphasis that
unlike the RLWE key exchanges exposed earlier, the error vector is part of the private
key and is required to sign. The Fiat-Shamir structure of the signature is clear and the
underlying identification scheme acts as a proof of knowledge of values s and e such that
t = as + e. Similarities with the Schnorr signature described in Figure 2.5 are obvious.
The commitment is an instance of the underlying hard problem that is recovered by the
verifier, the challenge is the output of the random oracle on the instance and the message
to sign and the signature is of the form z = sc + y. As such, it could be simply seen as
Schnorr over DCK instead of the discrete logarithm. However, we observe two crucial
differences:

• the signature is composed of two values z1, z2 and,

• the signature process has to be restarted if each signature component does not fall
in a certain range.

The first observation is easily explained by the fact, unlike for the discrete logarithm, the
secret is composed of two values s and e. Hence, values depending on both s and e have
to be transmitted to the verifier for him to recover exactly the commitment a ·y1 +y2. The
second one is the implementation of a mechanism called rejection sampling. The value
B is a parameter of the scheme that gives a trade-off between security and effiency. If
B is small, the acceptance probability will be low and the signature procedure will have
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to restart often. If B is large, an adversary can attempt to forge a signature by picking a
random v, computing c = H(v,m) and trying to find z1, z2 such that v = a ·z1 +z2− t ·c.
Indeed, the hardness of this problem actually depends on the shortness of (z1, z2).

Rejection sampling

Obviously, we do not want an adversary to learn anything about the private key from the
signature. In the case of Schnorr signature, we made the following reasoning in Sec-
tion 2.2.9: z = sc + y does not help to recover s because y is uniformly random and
unknown to the adversary, hence offering perfect secrecy on s. Also, the value y is kept
unknown because even though the adversary can compute the commitment gy, the dis-
crete logarithm is assumed to be hard. Similarly here, to have any security, it should
be computationally hard to compute the secret key (s or e) from any public value. Un-
fortunately, the reasoning above fails. While it is also true that from the commitment
ay1 + y2, it is computationally hard to find y1 and/or y2 under the DCK assumption, the
signature components z1 = sc + y1 and z2 = ec + y2 do not offer perfect secrecy on
s and e because the computations are taking place in the ring Rq while the yi are sam-
pled from a subset of Rq and thus, does not perfectly hide the products. Indeed, we
showed in the introduction that the Generalized One-time pad offers perfect secrecy only
if the “key” is sampled from a uniform distribution over the group (which would be the
additive group of Rq in our case). Let us simply focus on an expression of the form
z = sc + y since z1 and z2 are equivalent or this issue. The problem is that the distri-
bution of sc + y depends on the value of the product sc. For example, writing (p)j the
j-th coefficient of a polynomial p, if (z)j = B + 32, the adversary directly learns that
(y)j = B and (sc)j = 32, which are both sensitive values. This problem would not ap-
pear with a uniform (y)j because for any (z)j there would be as many possible (y)j as
there are possible (sc)j . The solution proposed in the signature is to output z if and only
if its coefficients are values that are possible for any product sc. In our case, if all the
coefficients of z are in the interval [−B + max(‖sc‖∞)), B − max(‖sc‖)∞)], they all
appear with equal probability, independently of the value sc. From the point of view of
the adversary, the coefficients of z will be distributed according to a uniform distribution
over [−B + max(‖sc‖∞ , B −max(‖sc‖∞]. Figure 4.5 graphically illustrates this phe-
nomenon. In the case of GLP, max(‖sc‖∞) = 32 since ‖c‖ = 32 and s has coefficients
in {−1, 0, 1}. The reader might wonder why not simply pick uniform y1, y2, this is be-
cause the scheme bases its security on the shortness of z1, z2. Otherwise, the adversary
could trivially pick random v, z1, set z2 ← v − az1 + tc, c ← H(v,m) and compute
the forgery z1, z2, c. The rejection sampling procedure we just described is tailored for
uniform distributions. The general case is covered by a nice lemma of [81]:

Lemma 1. Let V be an arbitrary set, and h : V → R and f : Zm → R be probability
distributions. If gv : Zm → R is a family of probability distributions indexed by all v ∈ V
with the property that

∃M ∈ R such that ∀v, Pr[Mgv(z) ≥ f(z); z
r←− f ] ≥ 1− ε

then the distribution of the output of the following algorithm A:

1. v r←− h
2. z r←− gv

3. output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)
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[−B,B]

[−B,B] + sc1

[−B,B] + sc2

[−B,B] + sc3

[−B,B] + sc4

[−B + U,B − U ]

Figure 4.5: Rejection sampling. The distribution of the z during the signing procedure is
the uniform distribution over [−B,B] shifted by some sc. The signature is output only
if z falls into the colored interval, otherwise the procedure is restarted. Thus, from the
point of view of the adversary, the signature are uniform values in [−B +U,B−U ]. The
constant U is chosen as the maximum of the product sc in absolute value.

is within statistical distance4 ε/M of the distribution of the following algorithm F:

1. v r←− h
2. z r←− f
3. output (z, v) with probability 1/M

Moreover, the probability that A outputs something is at least (1− ε)/M .

Basically, this lemma extends the technique to more general probability distributions.
It introduces the notion of a scaling factor M that has to be chosen such that f(z) ≤
Mgv(z), for all v. For distributions with infinite support, such an M might not exist.
This is why the lemma also introduces an ε variable that let the output distribution be
statistically close to but not exactly the same as the targeted distribution. In practice, ε
should be chosen such that it is cryptographically negligible. In the case of GLP (for one
coefficient of the polynomials), gv is the family of uniform distributions over [−B,B]
shifted by the different possible sc and M = 2B+1

2(B−32)+1)
. The probability of acceptance

for the whole z1 and z2 is thus ( 1
M

)2n = (1− 64
2B+1

)2n.

Signature compression

The authors of GLP observed that a compression algorithm could be applied to their
scheme in order to reduce signature size. In particular, using their notation, they propose
to rewrite a polynomial p in a low part

p(0) = p mod (2(B − 32) + 1)

4simply defined as ∆(A,B) = 1
2

∑
x∈X |A(x)− B(x)| for two distributions A and B over X
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Public parameter: A r←− Zm×nq

Secret key: S r←− χn×kσ

Public key: T← AS + E mod q with E
r←− χm×kσ such that |Ei,j| > 7σ for all (i, j)

Sign(m,S,T):

1: y
r←− Rq,[B]

2: v← Ay mod q
3: c← H(bved,m)
4: c← F (c)
5: z← y + Sc
6: w← Az−Tc mod q
7: if |[wi]2d | > (2d−1 − 7ωσ)
8: restart
9: if z /∈ Rq,[B−U ]

10: restart
11: return z, c

Verify(T,A, z, c,m):
1: c← F (c)
2: w← Az−Tc
3: c′ ← H(bwed,m)
4: return (c′ = c) and (z ∈ Rq,[B−U ])

Figure 4.6: Bai-Galbraith signature

and a high part
p(1) = (p− p(0))/(2(B − 32) + 1).

And give in the appendix of the paper an algorithm z′ ← Compress(y, z) such that (y +
z)(1) = (y+z′)(1) and z′ admits a short representation. Then they propose that the signing
procedure uses (ay1+y2)(1) as commitment and outputs (z1, z

′
2 = Compress(az1−tc, z2))

instead of (z1, z2). This technique greatly reduces the signature size without affecting too
much its efficiency. To this day, the original parameter sets still offer decent performances.
However, the advances in cryptanalysis, the superior design of the schemes we present
next and the concerns about the DCK ( [117]) makes it a deprecated algorithm.

4.6.2 A Scheme from Bai and Galbraith
The next important scheme we introduce is due to Bai and Galbraith [15] and can be found
in Figure 4.6. We will call it the BG signature in the following. It is defined over LWE
with public keys of the form T = AS + E in which S and E are also matrices (but with
small entries). Since both the secret and the error are matrices, the public key should be
seen as multiple parallel instances of LWE. Starting from the compressed GLP signature,
the core of their design is to go one step further by completely removing the z2 part from
the signature. The argument is that it is important to prove the knowledge of an S such
that T = AS + E for a short E but the exact value of E is irrelevant. The scheme is
parameterized by q, B, n in the same way as GLP but also adds some extra parameters:

• m and k control the number of sample and the number of parallel instances of LWE;

• σ is the standard deviation of the discrete Gaussian distributions used to sample the
secret and error matrices;

• d is the number of bits removed while rounding (see below);
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• ω is the weight of the challenge vector (it is the same as the 32 constant of GLP);

• U = 14σ
√
ω is a bound on the value of Sc.

The algorithm is eventually rather similar to the compressed version of GLP in its func-
tioning. However, the high part extraction and compression are replaced by a rounding
function and a “well rounded” verification.

Rounding function and well rounded verification

For an integer v, let us write [v]2d the representative in (−2d−1, 2d−1] of v modulo 2d. The
rounding of an integer x is defined as

bxed = (x− [x]2d)/2
d.

This high order bits extraction is used to compute the commitment of the signature which
is bAy mod qed. During signature verification, an approximate value Az−Tc ≈ Ay
is computed and will correspond to the commitment after rounding. To avoid having
cases in which bAyed 6= bAz−Tced, an extra well rounded check is performed at line
7 during signing: if, for any coefficient w of Az−Tc, |[w]2d | is greater than a fixed
threshold, the signing procedure is restarted.

Posterity

The BG signature is the basis of most efficient Fiat-Shamir lattice-based signatures pro-
posed to this day5. Optimization, new parameters and an efficient software implemen-
tation where presented in [43]. Later, the TESLA family appeared with signatures using
standard lattices [9] and, for more efficiency, ideal lattices [2,16]. Following the discovery
of a flaw in the security proof, the original TESLA scheme was revisited in [10]. The two
most up-to-date schemes are the ones currently candidates in the NIST standardization
project:

• QTESLA, the current iteration of the TESLA family, for which we will soon de-
scribe a masking scheme as main contribution of this chapter;

• DILITHIUM, which is a MLWE derivative of BG/GLP that has been designed by a
team close to the one of KYBER6.

4.6.3 qTESLA
We now describe QTESLA, a (family of) lattice-based signature based on the RLWE
problem and round 2 candidate for the NIST’s post-quantum competition. Its design
is basically the same as the one of Bai-Galbraith signature, but since the masking of
QTESLA is the main contribution of this chapter, we explain it in greater details here.
When we were working on the masking scheme, the QTESLA submission was propos-
ing two different type of parameters sets: heuristic and provably secure. The provably
secure parameter sets offered a tight security proof based on the hardness of decisional

5One notable exception might be the BLISS signature scheme [49] which is closer to the original design
of Lyubashevsky but is somewhat cumbersome to implement securely.

6Both of them are actually part of “Cryptographic suite” called CRYSTALS. https://
pq-crystals.org/index.shtml

91

https://pq-crystals.org/index.shtml
https://pq-crystals.org/index.shtml


RLWE in the quantum random oracle model (QROM), that is to say a model in which
the adversary can query the random oracle on quantum states. On the other hand, the
heuristic parameter sets aimed to have shorter and faster signatures that base their secu-
rity on post-quantum assumptions in the classical random oracle model as it is done in
GLP/BG/DILITHIUM. Since the usefulness of the quantum random oracle model is still
not clear, is not used in the direct rival DILITHIUM (however it is possible to instanciate it
in the QROM, see [72]) and hurts performances, we decided to focus on the heuristic ver-
sion. While our work was in the peer review phase of CARDIS 2019, the QTESLA team
removed the heuristic parameters from its submission to focus on the provably secure
instanciation. Later, our work was accepted to the conference and thus we present experi-
mental results on unsupported parameter sets. However, we emphasis that the parameters
were not broken, only removed from the submission and that the masking scheme does
not depend on the set used, all the contributions on the masking side are still very relevant
and applicable to the provably secure version. Nonetheless, even though the scaling at
high masking orders is expected to be the same, the lightest provably secure parameter
set is (according and old version of the specification document) around 6 times slower,
outputs signatures 2 times larger and has a public key 10 times larger than the lightest
heuristic set. It would thus be unlikely to chose this version over DILITHIUM in a small
device prone to side-channel attacks.

QTESLA Parameters

The parameters used in the signature are really similar to the ones of GLP and BG, but
we recall them for completeness:

• n: Dimension of the ring

• q: Modulus

• σ: Standard deviation of the discrete gaussian

• h: Number of nonzero entries of the polynomial c

• E and S: Rejection parameters

• B: Bounds for the coefficients of the hiding polynomial y

• d: Number of bits dropped in rounding (used in the computation of [·]M )

• δ: overall acceptance probability

The two parameter sets we used in our experiments are listed in Table 4.1. We use the
names QTESLA-I and QTESLA-III as they used to appear in the original submission.

Scheme

Hereunder will be explicitly described the main algorithms, namely key generation, sign
and verify. Beforehand, let us briefly recall the functionality of each of the subroutines
and functions for completeness. We redirect the interested reader to [7] or the NIST
submission for a detailed description.
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Parameters QTESLA-I QTESLA-III
n 512 1024
q 4 205 569 ≈ 222 8 404 993 ≈ 223

σ 22.93 10.2
h 30 48
E 1586 1147
S 1586 1233
B 220 − 1 221 − 1
d 21 22
δ 0.16 0.24

Table 4.1: Parameters for QTESLA-I and QTESLA-III

• PRF: Pseudorandom function, used to expand a seed into arbitrary size random-
ness.

• GenA: Generates a uniformly random polynomial a ∈ Rq.

• GaussSampler: Sample a polynomial according to a gaussian distribution, param-
eters of the distribution are fixed in the sampler.

• CheckS: Verify that the secret polynomial s does not have too large coefficients.

• CheckE: Verify that the secret polynomial e does not have too large coefficients.

• ySampler: Sample a uniformly random polynomial y ∈ Rq,[B].

• H: Collision resistant hash function.

• Enc: Encode a bitstring into a sparse polynomial c ∈ Rq,[1] with ||c||1 = h

• [·]L : Z→ Z, w 7→ w mod±2d

• [·]M : Z→ Z, w 7→ (w mod±q − [w]L)/2d

Key generation (Algorithm 21)

The key generation will output a RLWE sample together with some seeds used to gener-
ate public parameters and to add a deterministic component to the signing procedure. The
algorithm starts by expanding some randomness into a collection of seeds and generates
the public polynomial a before moving on to the two secret values s and e. Those two
values are sampled from a Gaussian distribution and have to pass some checks to ensure
that the products s · c and e · c do not have too large coefficients. After that, the main
component t of the public key is computed as t = a · s + e. The output consists of the
secret key sk = (s, e, seeda, seedy) and the public key pk = (seeda, t).

Sign (Algorithm 22)

The signing procedure takes as input a message m and the secret key sk and outputs
a signature Σ = (z, c). First, in order to generate the randomness needed in the algo-
rithm, a seed is derived from a fresh random value r, seedy and m. Next, a polynomial
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y ∈ Rq,[B] is sampled to compute the value v = a · y mod±q. The algorithm will now
hash the rounded version of v together with the message and encode the result in a sparse
polynomial c with only h entries in {−1, 1}. The candidate signature is computed as
z = y + s · c. Before outputting the result, two additional checks must be performed: we
must ensure that z is in Rq,[B−S] and that w = v − e · c mod±q is well rounded, mean-
ing that ||[w]L||∞ < 2d−1 − E and ||w||∞ < bq/2c − E should hold. When one of the
check fails, the signing procedure is restarted by sampling a new y. When eventually both
checks pass, the signature Σ = (z, c) is output.

Verify (Algorithm 23)

Signature verification is pretty lightweight and straightforward for this type of signature.
Taking as input the message m, signature Σ = (z, c) and public key pk = (seeda, t), it
works as follow: First, it generates the public parameter a, then computes w = a · z− t · c
and accepts the signature if the two following conditions hold:

1. z ∈ Rq,[B−S]

2. c 6= Enc(H([w]M ,m))

Algorithm 21 QTESLA key generation
Result: Secret key sk = (s, e, seeda, seedy), public key pk = (seeda, t)

1: counter← 1
2: pre-seed r←− {0, 1}κ
3: seeds, seede, seeda, seedy ← PRF(pre-seed)
4: a← GenA(seeda)
5: do
6: s← GaussSampler(seeds,counter)
7: counter← counter + 1
8: while (CheckS 6= 0)
9: do

10: e← GaussSampler(seeds,counter)
11: counter← counter + 1
12: while (CheckE 6= 0)
13: t← a · s+ e mod q
14: sk ← (s, e, seeda, seedy)
15: pk ← (seeda, t)
16: return sk, pk

4.7 Masking qTESLA at any Order (CARDIS 2019)
Due to their newness, lattice-based signatures have not been extensively studied from
a side-channel point of view. Even though quite a few attacks appeared in the litera-
ture [23, 33, 34, 51, 52, 103], less has been done on the side of countermeasures. On the
very specific domain of masking Fiat-Shamir lattice-based signatures, only two papers are
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Algorithm 22 QTESLA sign
Data: Secret key sk = (s, e, seeda, seedy), message m
Result: Signature Σ = (z, c)

1: counter← 1
2: r

r←− {0, 1}κ
3: rand← PRF(seedy, r,H(m))
4: y ← ySampler(rand, counter)
5: a← GenA(seeda)
6: v ← a · y mod±q
7: c← Enc(H([v]M ,m))
8: z ← y + s · c
9: if z 6∈ Rq,[B−S] then

10: counter← counter + 1
11: goto 4
12: end if
13: w ← v − e · c mod±q
14: if ||[w]L||∞ ≥ 2d−1 − E or ||w||∞ ≥ bq/2c − E then
15: counter← counter + 1
16: goto 4
17: end if
18: return (z, c)

Algorithm 23 QTESLA verify
Data: message m, signature Σ = (z, c) and public key pk = (seeda, t)
Result: accept or fail

1: a← GenA(seeda)
2: w ← a · z − t · c mod±q
3: if z 6∈ Rq,[B−S] or c 6= Enc(H([w]M ,m)) then
4: return fail
5: end if
6: return accept
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prior to our work. The first one [19] presents a masking of GLP that lays the foundations
for this line of research. The second one [92] discusses the masking of the more recent
DILITHIUM scheme and provides some practicals experiments. It was thus natural for us
to take care of the other NIST candidate: QTESLA.

Our code is currently available at

https://github.com/fragerar/Masked_qTESLA.

4.7.1 Masking-Friendly Design
In the process of masking QTESLA, we decided to make slight modifications in the
signing procedure in order to facilitate masking. The idea is that some design elements
providing small efficiency gains may be really hard to carry on to the masked version
and actually do even more harm than good. Our two main modifications are the modulus
which is chosen as the closest power of two of the original parameter set and the removal
of the PRF to generate the polynomial y.

Power of two modulus.

Modular arithmetic is one of the core component of plenty of cryptographic schemes.
While, in general, it is reasonably fast for any modulus (but not necessarily straightfor-
ward to do in constant time), modular arithmetic in masked form is very inefficient and
one of the bottleneck in term of running time. In [19], a gadget SecAddModp is defined
to add two integers in boolean masked form modulo p. The idea is to naively perform
the addition over the integers and to subtract p if the value is larger than p. While this
works completely fine, the computational overhead is large in practice and avoiding those
reductions would drastically enhance execution time. The ideal case is to work over Z2n .
In this case, almost no reductions are needed throughout the execution of the algorithm
since overflowing operations naturally reduce modulo a (larger) power of two and, when
explicitely needed, can be simply performed by applying a mask on boolean shares. The
reason why working with a power of two modulus is not the standard way to instanciate
lattice-based cryptography is that it removes the possibility to use the number theoretic
transform (NTT) to perform efficient polynomial multiplication in O(n log n). Instead,
multiplication of polynomial has now to be computed using the Karatsuba/Toom-cook
algorithm which is slower for parameters used in state-of-the-art algorithms. Neverthe-
less, in our case, not having to use the heavy SecAddModp gadget largely overshadows
the penalty of switching from NTT to Karatsuba. Since modulus for both parameter sets
were already close to a power of two, we rounded up to the closest one, i.e. 222 for
QTESLA-I and 223 for QTESLA-III. This modification does not change the security of
the scheme. Indeed, security-wise, for the heuristic version of the scheme that we study,
we need a q such that q > 4B 7 and the corresponding decisional LWE instance is still
hard. Yet, the form of q does not impact the hardness of the problem as shown in [74]
and, since q was already extremely close to a power of two for both parameters sets, the
practical bit hardness of the corresponding instance is not sensibly changed.

7The other condition on q in the parameters table of the submission is to enable the NTT.
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Removal of the PRF.

It is well known that in Schnorr-like signatures, a devastating attack is possible if the ad-
versary gets two different signatures using the same y. Indeed, they can simply compute
the secret s = z−z′

c−c′ . While such a situation is very unlikely due to the large size of y, a
technique to create a deterministic version of the signature was introduced in [94]. The
idea is to compute y as PRF(secret seed,m) such that each message will have a differ-
ent value for y unless a collision is found in PRF. This modification act as a protection
against very weak entropy sources but is not necessary to the security of the signature and
was not present in ancestors of QTESLA. Unfortunately, adding this determinism also
enabled some side-channel attacks [34, 104]. Hence, the authors of QTESLA decided to
take the middle ground by keeping the deterministic design but also seeding the oracle
with a fresh random value r.
While those small safety measures certainly make sense if they do not incur a signifi-
cant performance penalty, we decided to drop it and simply sample y at random at the
beginning of the signing procedure. The reason is twofold. First, keeping deterministic
generation of y implied masking the hash function evaluation itself which is really inef-
ficient if not needed and would unnecessarily complicate the masking scheme. Second,
implementing a masking countermeasure is, in general, making the hypothesis that a rea-
sonable source of randomness (or at least not weak to the point of having a nonce reuse
on something as large as y) is available to generate shares and thus can be also used for
the signature itself.

4.7.2 Existing Gadgets
First, let us describe gadgets already existing in the literature. Since they are not part of
our contribution, we decided to only recall their functionalities without formally describ-
ing them.

• SecAnd: Computes the logical and between two values given in boolean masked
form, output also in boolean masked form. Order 1 algorithm: [39]. Order n algo-
rithm [19].

• SecAdd: Computes the arithmetic add between two values given in boolean masked
form, output also in boolean masked form. Order 1 algorithm: [39]. Order n algo-
rithm [19]. It implicitly reduces the result modulo 2word size.

• SecArithBoolModq: Converts a value in arithmetic masked form to a value in
boolean masked form. Order 1 algorithm: [62]. Order n: [41]. We slightly modify
it to an algorithm denoted GenSecArithBoolModq taking into account non power
of two number of shares. It can be found in Algorithm 24. When a masked value
composed of an odd number of shares t is presented to the algorithm, it first splits
them in two uneven parts of size bt/2c + 1 and bt/2c before proceeding to the
recursive call. The subroutine Expand takes as input an arbitrary number of shares
t′ and expand them in 2t′ shares. Applying Expand to both parts, we end up with a
part p1 of size t + 1 and a part p2 of size t− 1. We merge the two last shares of p1

and append a zero to p2 to get two size t masking that are finally added together to
yield the final boolean masking. Note that in practice, the top level call is done from
another (non recursive) function that reduces the result in order to have a conversion
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modulo q. We recall that thanks to our power of two modulus, this can be done by
simply keeping log2 q bits of each shares.

• SecBoolArith: Converts a value in boolean masked form to a value in arithmetic
masked form. Order 1 algorithm: [62]. Order n algorithm: [38]. This gadget does
not explicitly appear in the following but is used inside DataGen.

• DataGen: Takes as input an integer B and outputs a polynomial y ∈ Rq,[B] in
arithmetic masked form. Uses the boolean to arithmetic conversion.

• FullXor: Merges shares of a value in boolean masked form and output the unmasked
value.

• FullAdd: Merges shares of a value in arithmetic masked form and output the un-
masked value.

• Refresh: Refreshes a boolean sharing using fresh randomness [67].

Algorithm 24 GenSecArithBoolModq

Data: An arithmetic masking (ai)0≤i≤N of some integer x
Result: A boolean masking (bi)0≤i≤N of the same integer x

1: if N = 0 then
2: b0 ← a0

3: return (bi)0≤i≤N
4: end if
5: HALF← bN/2c
6: (xi)0≤i≤HALF ← GenSecArithBoolModq((ai)0≤i≤HALF)
7: (x′i)0≤i≤2∗HALF ← Expand((xi)0≤i≤HALF)
8: (yi)0≤i≤b(N−1)/2c ← GenSecArithBoolModq((ai)HALF+1≤i≤N)
9: (y′i)0≤i≤2∗b(N−1)/2c ← Expand((yi)0≤i≤b(N+1)/2c)

10: if N is even then
11: y′2∗b(N−1)/2c ← 0
12: x′2∗HALF−1 ← x′2∗HALF−1 ⊕ x′2∗HALF
13: end if
14: (bi)0≤i≤N ← SecAdd((x′i)0≤i≤N , (y

′
i)0≤i≤N)

4.7.3 New Gadgets
To comply with the specifications of QTESLA, our signature scheme includes new com-
ponents to be masked that were not covered or different than in [19,92]. In all the follow-
ing, RADIX refers to the size of the integer datatype used to store the shares.

Absolute value (Algorithm 25): The three checks during the signing procedure are
: z 6∈ Rq,[B−S], ||[w]L||∞ ≥ 2d−1 − E and ||w||∞ ≥ bq/2c − E. They all involve going
through individual coefficients (or their low bits) of a polynomial and checking a bound
on their absolute value. In the first version of our work, we were actually making two
comparisons on each signed coefficients before realizing that it was actually less intensive
to explicitly compute the absolute value and do only one comparison. The gadget takes
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Algorithm 25 Absolute Value - AbsVal
Data: A boolean masking (xi)0≤i≤N of some integer x and an integer k
Result: A boolean masking (|x|i)0≤i≤N corresponding to the absolute value of x mod±2k

1: (maski)0≤i≤N ← ((xi)0≤i≤N << (RADIX− k)) >> (RADIX− 1))
2: (x′i)0≤i≤N ← Refresh((xi)0≤i≤N)
3: (xi)0≤i≤N ← SecAdd((x′i)0≤i≤N , (maski)0≤i≤N))
4: (|x|i)0≤i≤N ← ((xi)0≤i≤N ⊕ (maski)0≤i≤N) ∧ (2k − 1)

Algorithm 26 Masked rounding - MaskedRound

Data: An arithmetic masking (ai)0≤i≤N of some integer a
Result: An integer r corresponding to the modular rounding of a

1: (MINUS Q HALFi)0≤i≤N ← (−q/2− 1, 0, ..., 0)
2: (CONSTi)0≤i≤N ← (2d−1 − 1, 0, ..., 0)
3: (a′i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N
4: (bi)0≤i≤N ← SecAdd((a′i)0≤i≤N , (MINUS Q HALFi)0≤i≤N)
5: b0 = ¬b0

6: (bi)0≤i≤N ← ((bi)0≤i≤N >> RADIX− 1) << log2 q
7: (a′i)0≤i≤N ← (a′i)0≤i≤N ⊕ (bi)0≤i≤N
8: (a′i)0≤i≤N ← SecAdd((a′i)0≤i≤N , (CONSTi)0≤i≤N)
9: (a′i)0≤i≤N ← (a′i)0≤i≤N >> d

10: return t := FullXor((a′i)0≤i≤N)

as input any integer x masked in boolean form and outputs |x mod±2k|. Since computers
are performing two’s complement arithmetic, the absolute value of x can be computed as
follows:

1. m← x >> RADIX − 1

2. |x| ← (x+m)⊕m

As we work on signed integers, one can note that the >> in the first step is an arith-
metic shift and actually writes the sign bit in the whole register. If x is negative then
m = −1 (all ones in the register) and if x is positive then m = 0. The gadget AbsVal
is using the same technique to compute |x mod±2k|. The small difference is that the sign
bit is in position k instead of position RADIX. This is why line 1 is moving the sign bit
(modulo 2k) in first position before extending it to the whole register to compute the mask.

Masked rounding (Algorithm 26)

In the Bai-Galbraith signature, a compression technique was introduced to reduce the size
of the signature. It implies rounding coefficients of a polynomial. Revealing the polyno-
mial before rounding would allow an adversary to get extra information on secret values
and thus, this operation has to be done on the masked polynomial. Recall that the opera-
tion to compute is [v]M = (v mod±q − [v]L)/2d.
The first step is to compute the centered representative of v, i.e. subtract q from v if
v > q/2. Taking advantage of our power of two modulus, this operation would be really
easy to do if the centered representative was defined as the integer congruent to v in the
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Algorithm 27 Masked well-rounded - MaskedWR

Data: Integer a ∈ Zq in arithmetic masked form (ai)0≤i≤N
Result: A boolean masking r of (‖a‖ ≤ q/2− E) ∧ (‖[a]L‖ ≤ 2d−1 − E)

1: (SUP Qi)0≤i≤N ← (−q/2 + E, 0, ..., 0)
2: (SUP Di)0≤i≤N ← (−2d−1 + E, 0, ..., 0)
3: (a′i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N
4: (xi)0≤i≤N ← AbsVal((a′i)0≤i≤N , log2 q)
5: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUP Qi)0≤i≤N))
6: (bi)0≤i≤N ← (xi)0≤i≤N >> (RADIX− 1)
7: (a′i)0≤i≤N ← Refresh((a′i)0≤i≤N)
8: (a′i)0≤i≤N ← (a′i)0≤i≤N ∧ 2d − 1
9: (yi)0≤i≤N ← AbsVal((a′i)0≤i≤N , d)

10: (yi)0≤i≤N ← SecAdd((yi)0≤i≤N , (SUP Di)0≤i≤N))
11: (b′i)0≤i≤N ← (yi)0≤i≤N >> (RADIX− 1)
12: (bi)0≤i≤N ← SecAnd((bi)0≤i≤N , (b

′
i)0≤i≤N)

13: return r := FullXor((bi)0≤i≤N)

range [−q/2, q/2) since it would be equivalent to copying the qth bit of v in the most
significant part, which can be performed with simple shift operations on shares. Unfortu-
nately, the rounding function of QTESLA works with representatives in (−q/2, q/2]. As
we wanted compatibility with the original scheme, we decided to stick with their design.
Nevertheless, we were still able to exploit our power of two modulus. Indeed, in this
context, switching from positive to negative representative modulo q is merely setting all
the high bits to one. Hence, we subtract q/2 + 1 from v, extract the sign bit b and copy ¬b
to all the high bits of v.
The second step is the computation of (v − [v]L)/2d. We used a small trick here. Sub-
tracting the centered representative modulo 2d is actually equivalent to the application of
a rounding to the closest multiple of 2d with ties rounded down. Hence we first computed
v + 2d−1 − 1 and dropped the d least significant bits. This is analogous to computing
bxe = bx+ 0.499 . . . c to find the closest integer to a real value.

Masked well-rounded (Algorithm 27)

Unlike GLP, the signature scheme can fail to verify and may have to be restarted even
if the rejection sampling test has been successful. This results from the fact that the sig-
nature acts fas a proof of knowledge only on the s part of the secret key and not on the
error e. Nonetheless, thanks to rounding, the verifier will be able to feed correct input to
the hash function if the commitment is so called ’well-rounded’. Since not well-rounded
signatures would leak information on the secret key, this verification has to be performed
in masked form.
The MaskedWR gadget has to perform the two checks ||[w]L||∞ < 2d−1 − E and
||w||∞ < bq/2c−E. While the cost of this rather simple operation is negligible compared
to polynomial multiplication in the unprotected signature, this test is fairly expensive in
masked form. Indeed, it requires four comparisons in addition to the extraction of the low
bits of w.
After trying the four comparisons method, we realized that the best strategy was actually
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Algorithm 28 Rejection Sampling - MaskedRS

Data: A value a to check, in arithmetic masked form (ai)0≤i≤N
Result: 1 if |a| ≤ B − S else 0

1: (SUPi)0≤i≤N ← (−B + S − 1, 0, ..., 0)
2: (a′i)0≤i≤N ← GenSecArithBoolModq((ai)0≤i≤N)
3: (xi)0≤i≤N ← AbsVal((a′i)0≤i≤N , log2 q)
4: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUPi)0≤i≤N)
5: (bi)0≤i≤N ← ((xi)0≤i≤N >> RADIX− 1)
6: return rs := FullXor((bi)0≤i≤N)

to compute both absolute values with the AbsVal gadget. While comparisons only require
one SecAdd and one shift, which is less than AbsVal, the cost of all SecAnd operations
between the results of those comparisons makes our approach of computing the absolute
value slightly better.

Rejection sampling (Algorithm 28)

The rejection sampling procedure consists in ensuring that the absolute value of all co-
efficients of a polynomial z are smaller than a bound B. In [19], a gadget verifying that
the centered representative of a masked integer is greater than −B was applied to both
z and −z. In [92], a less computationally intensive approach was taken: their rejection
sampling gadget takes as input an arithmetic masking of a coefficient a ∈ Zq identified by
its canonical representative and check directly that either a− B is negative or a− q + B
is positive. This can be easily done using precomputed constants (−B − 1, 0, ..., 0) and
(−q + B, 0, ..., 0). Our approach is similar but we use instead the same technique as in
the MaskedWR algorithm, that is to first compute the absolute value of a and perform
the masked test ||a|| ≤ B. This saves the need for a masked operation to aggregate both
tests.

Gaussian Generation (Algorithm 29)

This gadget is needed for the key generation. Following the round 2 specifications of
QTESLA, we mask the technique of cumulative distribution table (CDT) used in the key
generation. It consists in precomputing a table of the cumulative distribution function of
a half Gaussian of standard deviation σ with a certain precision θ. This table contains say
T elements pj for j ∈ [0, T ] such that

pj = 2 ·
∑
i≤j

1

σ
√

2π
e
−i2
2σ2 with θ bits of precision.

The factor 2 is set to consider the half Gaussian. To produce a sample, we generate a
random value in (0, 1] with the same precision, and return the index of the last entry in
the table that is smaller than that value. We present the masked version of table look up
in Algorithm 29. The parameters T and θ are respectively the number of elements of the
table and the bit precision of its entries. Note that this algorithm samples only half of the
Gaussian, this means that to get a centered distribution, one should sample random signs
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for each coefficient afterward. Since, for correctness purpose, the key generation algo-
rithm of QTESLA is checking the sum of the absolute value of the h largest coefficients
of each polynomial after Gaussian sampling, we delay the sign choice to later in the key
generation.

Algorithm 29 Gaussian Generation - GaussGen
Data: A table of T probability values pj with θ bits of precision.
Result: An arithmetic masking of an element following a Gaussian of standard deviation
σ

1: initialize (ri)0≤i≤N as a θ-bit Boolean masking of a uniform random value r ∈ (0, 1]
2: (xi)0≤i≤N ← (0, . . . , 0)
3: for 0 ≤ j ≤ T do
4: initialize (ki)0≤i≤N as a θ-bit Boolean masking of −pj
5: (δi)0≤i≤N ← SecAdd

(
(ri)0≤i≤N , (ki)0≤i≤N)

6: (bi)0≤i≤N ← (δi)0≤i≤N � (θ − 1) . 1 when r < pj or 0 otherwise
7: (b′i)0≤i≤N ← SecAnd ((bi)0≤i≤N , (xi)0≤i≤N)
8: initialize (Ji)0≤i≤N as a θ-bit Boolean masking of the index j
9: (bi)0≤i≤N ← SecAnd (¬(bi)0≤i≤N , (Ji)0≤i≤N) . j when r ≥ pj or 0 otherwise

10: (xi)0≤i≤N ← (b′i)0≤i≤N ⊕ (bi)0≤i≤N
11: (xi)0≤i≤N ← Refresh((xi)0≤i≤N)
12: end for
13: return SecBoolArith((xi)0≤i≤N)

For the parameters, we take the exact same table as in the reference implementation.
This table is kept unmasked because it contains public information. For QTESLA-I,
(T, θ) = (208, 64) and for QTESLA-III, (T, θ) = (134, 128).

Due to the large size of the table, this process is quite heavy and impacts the efficiency
of the key generation. To optimize the size of the table, a Renyi divergence technique is
often used. It consists in using an upper bound on the relative error between the CDT
distribution and an ideal Gaussian. This upper bound decreases with the maximum num-
ber of queries to the algorithm and it is often lower than a statistical distance estimation.
Thus, with Renyi divergence techniques, smaller tables allow the same bit security. In-
terestingly, we could not manage to adapt this method because GaussGen is part of the
key generation. First, the maximum amount of queries to the key generation is not clearly
bounded in the specifications. Secondly, the security of the key generation is based on a
decisional problem (Decisional-RLWE) and it is currently an open problem to apply the
Renyi divergence techniques to decisional problems. Another possible optimization to
reduce the size of the table would be to use the recursivity provided in [91] (proved with
the statistical distance). However, the size of the table will not decrease enough to get an
efficient and practical Gaussian sampling.

Masked Check (Algorithm 30)

This gadget is needed for the key generation. Its purpose is to check that the sum of the
largest coefficients of the secret key is not too large. To recover the largest coefficients,
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this algorithm uses a straightforwardly masked bubble sort by doing h passes on the list
of coefficients. The bubble sort uses a masked exchange subroutine where the bit 0 or 1,
representing the need for an exchange or not, is also masked. It finishes with a masked
comparison with a precomputed bound.

Algorithm 30 Masked Check - MaskedCheck

Data: An arithmetic masking of a polynomial (si)0≤i≤N , a bound S
Result: ms := 1 if the sum of its h largest coefficients is larger than the bound S and 0
otherwise

1: (BOUNDi)0≤i≤N = (−S, 0, . . . , 0)

2: Find the h largest coefficients ((c
(0)
i )0≤i≤N , . . . , (c

(h−1)
i )0≤i≤N) of (si)0≤i≤N with a

masked bubble sort.
3: (sumi)0≤i≤N ← SecAdd((c

(0)
i )0≤i≤N , . . . , (c

(h−1)
i )0≤i≤N)

4: (δi)0≤i≤N ← SecAdd((sumi)0≤i≤N , (BOUNDi)0≤i≤N)
5: (δi)0≤i≤N ← ((δi)0≤i≤N >> RADIX− 1)
6: return ms := FullXor(δ)

Algorithm 31 Masked signature
Data: message m, secret key sk = ((si)0≤i≤N , (ei)0≤i≤N), seed sd
Result: Signature (zunmasked, c)

1: a← GenA(sd)
2: (yi)0≤i≤N ← DataGen(B)
3: for i = 0, . . . , N do
4: vi ← a · yi
5: end for
6: c← MaskedHash((vi)0≤i≤N ,m)
7: c← Encode(c)
8: for i = 0, . . . , N do
9: zi ← yi + si · c

10: end for
11: if rs := FullRS((zi)0≤i≤N) = 0 then
12: goto 2
13: end if
14: for i = 0, . . . , N do
15: wi ← vi − ei · c
16: end for
17: if r := FullWR((wi)0≤i≤N) = 0 then
18: goto 2
19: end if
20: zunmasked ← FullAdd((zi)0≤i≤N)
21: return (zunmasked, c)

4.7.4 Masked Scheme
In all signature schemes, two algorithms can leak the secret key through side channels:
the key generation algorithm and the signing algorithm.
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Masked sign

The masked signature can be found in Algorithm 31. It uses the gadgets described in Sec-
tion 4.7.3: the gadgets FullRS, FullWR and FullRound denote the extension of MaskedRS,
MaskedWR and MaskedRound to all coefficients j ∈ [0, n− 1] of their input polynomial.
Beside the removal of the PRF for y, its structure follows closely the unmasked version of
the signature.After generating the public parameter a with the original GenA procedure,
the gadget DataGen is used to get polynomials yi such that y =

∑N
i=0 yi belongs toRq,[B].

Then, thanks to the distributive property of the multiplication of ring elements, we can
compute v = a · y =

∑N
i=0 a · yi using regular polynomial multiplication, without relying

on any complex gadget. The polynomial c is computed using the subroutine MaskedHash
which is using the MaskedRounding gadget to compute QTESLA’s rounding and hash-
ing on a masked polynomial. Once c has been computed, the candidate signature can be
computed directly on shares with the masked secret key as z = y+s ·c =

∑N
i=0 yi+si ·c.

Writing FullRS and FullWR to denote the extension of the MaskedRS and MaskedWR
gadgets to all the coefficients of a polynomial, the security and correctness parts of the
signature follow trivially. Once all checks have been passed, the signature can be safely
unmasked using FullAdd and the signature output.

UF-CMA security of the masked scheme

In Theorem 1, we will prove that one iteration of the signature is secure in the probing
model. This means that the model assumes that the adversary will only see the leakage
of one iteration of the signature. Indeed, from a practical point of view, since the masked
key is the same at each iteration, the adversary can thus attack the individual shares si
using DPA over multiple signatures. This is unsatisfactory since it gives an easy attack in
practice and the common security model UF-CMA allows the adversary to make multiple
queries to a signing oracle before outputting a forgery. This issue in discussed in [19] with
an extention of the UF-CMA game to the probing model. The solution to get security
with multiple queries (and thus in practice, the observation of multiple signatures) is to
introduce a key update algorithm that refreshes the key shares and that should be run after
each signature.

Algorithm 32 MaskedHash

Data: The n coefficients a(j) to hash, in arithmetic masked form (a
(j)
i )0≤i≤N and the

message to sign m
Result: Hash of the polynomial c

1: Let t be a byte array of size n
2: for j = 1 to n do
3: tj ← MaskedRound((a

(j)
i )0≤i≤N)

4: end for
5: c← H(t,m)
6: return
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Masked key generation

As the number of signature queries per private key can be high (up to 264 as required
by the NIST competition), whereas the key generation algorithm is typically only exe-
cuted once per private key, the vulnerability of the key generation to side channel attacks
is therefore less critical. We nevertheless present an (inefficient) masked version of the
key generation algorithm that can be found in Algorithm 33. One can remark that the
bottleneck gadget, GaussGen, needs to make T comparisons for each coefficient of the
polynomial which goes to a total of T · n comparisons for the whole generation. With
a value of T around 200, sampling from the table is actually sensibly heavier than sign-
ing. Thus, our goal with this masked QTESLA key generation is to prove that masking
without changing the design is costly but still doable. On the bright side, the Gaussian
generation of QTESLA, even masked, is already quite efficient at the cost of storing the
table [20]. However, for a practical implementation in which the key generation might be
vulnerable to side channels, one could prefer changing the design of the scheme. For ex-
ample, DILITHIUM generates the keys uniformly at random on a small interval and thus
avoids this issue. One downside of this faster key generation is that the parameters of
the scheme should be adapted in order to avoid having to much rejections in the signing
algorithm.

In Algorithm 33, the element a is generated in unmasked form because it is also part
of the public key. Then, s and e are drawn using the gadget GaussGen introduced in
Section 4.7.3. Another gadget FullCheck is also introduced in the key generation. It
checks that the sum of the h largest entries (in absolute value) is not above some bounds
that can be found in Table 4.1. Then the public key t is computed in masked form and
securely unmasked with the FullAdd gadget.

Algorithm 33 Masked key generation
Result: Secret key sk = ((si)0≤i≤N , (ei)0≤i≤N , sd), public key pk = (sd, t)

1: pre-seed r←− {0, 1}κ
2: sd← PRF(pre-seed)
3: a← GenA(sd)
4: do
5: (si)0≤i≤N ← GaussGen()
6: while (MaskedCheck((si)0≤i≤N , S) 6= 0)
7: do
8: (ei)0≤i≤N ← GaussGen()
9: while (MaskedCheck((ei)0≤i≤N , E) 6= 0)

10: initialize (signsi )0≤i≤N and (signei )0≤i≤N as two 1-bit arithmetic masking of either
−1 or 1

11: (si)0≤i≤N ← SecAnd ((signsi )0≤i≤N , (si)0≤i≤N)
12: (ei)0≤i≤N ← SecAnd ((signei )0≤i≤N , (ei)0≤i≤N)
13: (ti)0≤i≤N ← a · (si)0≤i≤N + (ei)0≤i≤N mod q
14: t← FullAdd((ti)0≤i≤N)
15: sk ← ((si)0≤i≤N , (ei)0≤i≤N , sd)
16: pk ← (sd, t)
17: return sk, pk
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4.7.5 Proof of Masking
In Section 4.5, we give the intuition that masking was helping again side-channel attacks.
However, to formally analyze this countermeasure, we need to somehow model the capa-
bilities of the attacker. Of course, it is hopeless to try to prevent all type of side-channel
attacks since these are somewhat arbitrary powerful but the goal is to provide security for
a large class of them. The model we use is called the probing model [67]. Basically, a
cryptographic implementation is N -probing secure if any set of at most N intermediate
variables is statistically independent of the secrets. It thus models an adversary that can
perform observations on δ ≤ N arbitrary values during the execution of the algorithm.
Naturally, a randomly masked (at order N ) value is secure in the probing model but some
complications appear when considering gadgets that manipulates multiple shares. Here,
the concept of observation is defined in terms of probing a wire in a circuit implementing
the cryptographic scheme.

Proofs by composition

To achieve N -probing security, Barthe et al. formally defined two security properties
in [18], namely non-interference and strong non-interference, which ease the security
proofs for small gadgets and allows to securely combine secure gadgets together.

Definition 40. A gadget isN -non-interfering (N -NI) iff any set of at mostN observations
can be perfectly simulated from at most N shares of each input.

Definition 41. A gadget is N -strong non-interfering (N -SNI) iff any set of at most N
observations whose Nint observations on the internal data and Nout observations on the
outputs can be perfectly simulated from at most Nint shares of each input.

It is easy to check that N -SNI implies N -NI which implies N -probing security. The
strong non-interference only appears in the proofs for subgadgets inside the signature and
key generation algorithm. An additional notion was introduced in [19] to reason on the
security of lattice-based schemes in which some intermediate variables may be revealed
to the adversary.

Definition 42. A gadget with public outputs X is N -non-interfering with public outputs
(N -NIo) iff every set of at most N intermediate variables can be perfectly simulated with
the public outputs and at most N shares of each input.

In the full version of our work [60], we proved some security properties of our new
gadgets of Section 4.7.3. Since this part of the work was not done by the author of
this thesis, results are given in Table 4.2 and proofs are omitted. However, to exemplify
the concept, we give the proof of the main masking theorem stating the security of the
composition used to compute the signature. For simplicity and without losing generality,
the theorem only considers one iteration for the signature: the signing algorithm outputs
⊥ if one of the tests in steps 12 or 18 in Algorithm 31 has failed. We also assume the
security properties of Table 4.2. We denote by

(
r(j)
)

0≤j<n,
(
rs(j)

)
0≤j<n and

(
u(j)
)

0≤j<n
the outputs of FullRS, FullWR and FullRound (the values for each coefficient j ∈ [0, n −
1]).
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Existing Gadgets New Gadgets

Name Property Reference

SecAnd N -NI [39], [19]
SecAdd N -NI [39], [19]
SecABModq N -SNI [62], [41]
SecBoolArith N -NI [62], [41]
FullXor N -NIo [19]
FullAdd N -NIo [19]
DataGen N -NIo [19]
MultAdd N -NI [19], denoted H1

Refresh N -SNI [67]

Name Property

GenSecArithBoolModq N -NI
AbsVal N -NI
MaskedRound N -NIo
FullRound N -NIo
MaskedWR N -NIo
FullWR N -NIo
MaskedRS N -NIo
FullRS N -NIo
GaussGen N -NI
MaskedCheck N -NIo

Table 4.2: Security properties of the known and new gadgets.
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Figure 4.7: Masked Signature structure (The white (resp. blue, red) gadgets are proved
N -NI (resp. N -NIo, unmasked)). The non sensitive element sd is omitted for clarity.

Theorem 1. Each iteration of the masked signature in Algorithm 31 is N -NIo secure
with public outputs8 {(

r(j)
)

0≤j<n ,
(
rs(j)

)
0≤j<n ,

(
u(j)
)

0≤j<n

}
(and the signature if returned).

Proof. The overall gadget decomposition of the signature is in Figure 4.7.

Gadgets. The gadget ×a multiplies each share of the polynomial y by the public value
a. By linearity, it isN -NI. The gadget FullRound denotes the extension of the MaskedRound
to all coefficients of v and is N -NIo. The gadget MultAdd takes (yi)0≤i≤N , (si)0≤i≤N
and c (resp. (vi)0≤i≤N , (ei)0≤i≤N and c) and computes (zi)0≤i≤N = (yi)0≤i≤N − c ·
(si)0≤i≤N (resp. (wi)0≤i≤N = (vi)0≤i≤N − c(ei)0≤i≤N ). The gadget End simply outputs

8Here also, the number of iterations of the gadget DataGen is omitted as a public output.
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(FullAdd((zi)0≤i≤N), c) if rs and r are true; and ⊥ otherwise. By the N -NIo security of
FullAdd, this gadget is also N -NIo secure.

Thus, all the subgadgets involved are either N -NI secure, N -SNI secure, N -NIo
secure or they do not manipulate sensitive data. We prove that the final composition of
all gadgets is N -NIo. We assume that an attacker has access to δ ≤ N observations. Our
goal is to prove that all these δ observations can be perfectly simulated with at most δ
shares of (si)0≤i≤N and (ei)0≤i≤N and the knowledge of the outputs.
In the following, we consider the following distribution of the attacker’s δ observations:

• δ1 observed during the computations of DG that produces shares of (yi)0≤i≤N ,

• δ2 observed during the computations of the gadget ×a that produces the shares of
(vi)0≤i≤N ,

• δ3 observed during the computations of FullRound,

• δ4 observed during the computations of the upper MultAdd gadget that produces
(zi)0≤i≤N ,

• δ5 observed during the computations of the lower MultAdd gadget that produces
(wi)0≤i≤N ,

• δ6 observed during the FullRS,

• δ7 observed during the FullWR,

• δ8 observed during the End.

Some observations may be done on the unmasked gadgets (GenA, Hash and Enc) but
their amount will not matter during the proof. Finally, we have

∑8
i=1 δi ≤ δ.

We build the proof from right to left. The gadgets End, FullRS, FullRound and
FullWR are N -NIo secure with the output (z, c) or ⊥ (resp.

(
rs(j)

)
0≤j<n,

(
u(j)
)

0≤j<n,(
r(j)
)

0≤j<n). As a consequence, all the observations from their call can be perfectly
simulated with at most δ8 (resp. δ6, δ7) shares of z (resp. z, w). For the upper MultAdd
gadget, there are at most δ8 + δ6 observations on the outputs and δ4 local observations.
The total is still lower than δ and thus they can be simulated with at most δ4 + δ6 + δ8 ≤ δ
shares of y and s.
Concerning the lower MultAdd gadget, there are at most δ7 observations on w and δ5

made locally. Thus they can be simulated with at most δ5 + δ7 ≤ δ shares of v and e.
The gadget FullRound is N -NIo so all the observations from its call can be simulated
with at most δ3 shares of v. Thus, there are δ3 + δ5 + δ7 observations on the output of
gadget ×a. And then, they can be simulated with at most δ3 + δ5 + δ7 + δ2 shares of y.
Summing up all the observations of y gives (δ3 + δ5 + δ7 + δ2) + (δ4 + δ6 + δ8) ≤ δ. This
allows to conclude the proof by applying the N -NIo security of DG. All the observations
on the algorithm can be perfectly simulated with at most δ4 + δ6 + δ8 ≤ δ shares of s,
δ5 + δ7 ≤ δ shares of e and the knowledge of the public outputs.
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4.7.6 Practical Aspects and Implementation Details
Our masking scheme has been implemented inside the reference code of QTESLA avail-
able on the repository of their project [108].

We added two new files called base gadgets.c and sign gadgets.c contain-
ing all the algorithms manipulating masked values. The actual masked signature (Algo-
rithm 31) is available in sign.c. Beside, some modifications related to the new modulus
have been made in various places but the overall structure of the code is the same as be-
fore. The random oracle of the signature is implemented with cSHAKE.

Randomness

The generation of random numbers plays an important role in the performances of the
scheme since most of the basic gadgets need fresh randomness in the form of unsigned 32-
bit integers. Our function retrieving randomness is called rand uint32(). It is defined
as a macro in params.h in order to easily be disabled for testing purpose. Our tests with
the randomness enabled were performed using xoshiro128** [24], a really fast PRNG
that has been recently used to speed-up public parameters generation in a lattice-based
cryptosystem [30]. One looking for real life application of our technique and believing
masking need strong randomness would maybe want to use a cryptographically secure
PRNG instead. Another option could be to expand a seed with the already available
cSHAKE function but as we will see in the next section, it might be pretty expensive as
the number of random bytes required grows very fast with the number of shares.

Performances

We benchmarked our code on a laptop with a CPU Intel Core i7-6700HQ running at
2.60GHz as well as on a Cortex-M4 microcontroller for the masking of order 1. We em-
phasis that unlike the work presented in the previous chapter, the code was not optimized
for the Cortex-M4, we directly compiled our reference C code without modification.The
result for individual gadgets over 1 000 000 executions can be found in Table 4.3. The
table is divided in two parts: the top part contains measurements for the signing gadgets
implementing functionalities of the signature and the bottom part contains measurements
for the base gadgets implementing elementary operations. Unsurprisingly, we see that
the most expensive signing gadget is MaskedWR. Indeed, it has to perform two absolute
value computations in addition to two comparisons. Nevertheless, an actual substantial
overall gain of performances would rather come from an improvement of the conversion
from arithmetic to boolean masking since it the slowest base gadget and is used in all
signing gadgets. Furthermore, it should be also pointed out that most gadgets have a
non negligible dependency on the speed of SecAnd since it is called multiple times in
SecAdd which itself appears multiple times in signing gadgets. The results for the full
signature are given in Table 4.4 and Table 4.5. Asymptotically, the complexity of the
scheme will be driven by the most expensive gadget, GenSecArithBoolModQ which
runs in O(N2 · log RADIX) [40]. However, we believe that for the low orders that might
realistically be used in practice, asymptotic complexity is a somewhat irrelevant met-
ric of efficiency. Actually, during informal testings, we observed that for some orders,
a gadget was faster than one of its lower complexity equivalent because it needed less
randomness. Since a large portion of the execution time is spent in calls to the random
number generator, we decided to benchmark with and without the PRNG. The mention
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Masking order Order 1 Order 2 Order 3 Order 4 Order 5

RG 98 410 840 1 328 2 416

MaskedRound 164 1 400 2 454 4 314 6 142

MaskedWR 280 2 080 3 914 6 432 9 034

MaskedRS 178 1 440 2 496 4 432 6 254

SecAdd 44 294 592 870 1 192

SecAnd 20 28 44 70 96

GenSecArith-
BoolModQ 96 786 1 152 3 148 3 500

SecBoolArith 20 42 108 288 884

Table 4.3: Median speed of principal gadgets in clock cycles over 1000000 executions

RNG off means that rand uint32() was set to return 0. The mention RNG on means
that rand uint32() was set to return the next value of xoshiro128**. The purpose
is to give an idea of how the algorithm itself is scaling, regardless of the speed at which
the device is able to provide randomness. At the same time, the discrepancy between the
values with and without the RNG underlines how masking schemes of this magnitude
are sensitive to randomness sampling. In Table 4.7, we also computed the average num-
ber of calls to rand uint32() to see how much randomness is needed for each order.
Each call is retrieving a uniformly random 32-bit integer. As expected, this number is
growing fast when the masking order is increased. The results for the masked signature
at order 1 on Cortex-M4 microcontroller are given in Table 4.6. We speculate that the
scaling difference between the microcontroller and the computer is due to the fact that ar-
chitectural differences matter less for the masking code than for the base signature code.
Furthermore, we can see that QTESLA-III is scaling better than QTESLA-I. Beside the
natural variance of the experiments, we explain this result by the fact that increasing the
masking order reduces the impact of the polynomial multiplication on the timing of the
whole signature in favor of masking operations. Factoring out polynomial operations,
QTESLA-III is scaling better because the probability of rejection for this parameters
set is lower than for QTESLA-I. Hence, even if n is twice as large, less than twice the
masking operations are performed overall.

As noted in [92], the power of two modulus allows to get a reasonable penalty factor
for low masking orders. Without such a modification, the scheme would have been way
slower. Besides, our implementation seems to outperform the masked implementation of
DILITHIUM as given in [92]. The timing of our order 1 masking for QTESLA-I is around
1.3 ms, and our order 2 is around 7.1 ms. This result comes with no surprise because the
unmasked version of QTESLA already outperformed DILITHIUM. However, we do not
know if our optimizations on the gadgets could lead to a better performance for a masked
DILITHIUM.
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Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5
QTESLA-I (RNG

off)
645 673 2 394 085 7 000 117 9 219 826 16 577 823 24 375 359

QTESLA-I (RNG
on)

671 169 2 504 204 13 878 830 24 582 943 39 967 191 59 551 027

QTESLA-I (RNG
on) Scaling

1 ×4 ×21 ×37 ×60 ×89

Table 4.4: Median speed of masked signature in clock cycles over 10000 executions for
QTESLA-I on Intel Core i7-6700HQ running at 2.60GHz

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5
QTESLA-III (RNG

off)
1 252 645 4 511 179 9 941 571 14 484 664 25 351 066 34 415 499

QTESLA-III (RNG
on)

1 318 868 4 138 907 21 932 379 33 520 922 59 668 280 83 289 124

QTESLA-III (RNG
on) Scaling

1 ×3 ×17 ×25 ×45 ×63

Table 4.5: Median speed of masked signature in clock cycles over 10000 executions
QTESLA-III

4.8 Conclusion
In this chapter, we described the two faces of side-channel: attacks and countermeasures.
First, we provided experimental results of a CPA attack performed on a new block ci-
pher called Kalyna. The expected success of our attack confirmed that even if the cipher
is different, the threat of side-channel attacks will still be present if the designer do not
take them in consideration during design by facilitating the implementation of counter-
measures. Second and more importantly, we provided a masking scheme on the NIST
lattice-based signature QTESLA. This work is part of a common effort from the com-
munity to study different aspects of NIST’s post-quantum competition candidates. This
is especially relevant to the second round of the process in which practical aspects must
be studied more closely. While the masking of QTESLA is naturally similar to other
Fiat-Shamir lattice-based signatures, some specificities had to be taken into consideration
in order to get a fully masked scheme. Unlike previous work, we used state-of-the-art
algorithms for all the gadgets and specialized ones for masking of order 1. Furthermore,
thanks to small modifications to the scheme itself, namely the removal of the PRF and
the usage of a power of two modulus, the cost of masking is reasonable, at least for small
orders. This indicates that some design elements that seem to be a good idea for the unpro-
tected scheme might be actually problematic in practice. We backed up these claims by
providing benchmarks with a C implementation inside the original code of the designers
of the scheme.

4.9 Thoughts and Future Works
The CPA on Kalyna was pretty straightforward and unsurprisingly gave good results.
Even though attacking the round keys was a bit more involved than retrieving a master
key, there is no reason that a straightforward implementation of such a cipher would

111



Masking order Unmasked Order 1
QTESLA-I Cortex-M4 11 304 025 23 519 583

Table 4.6: Median speed of masked signature in clock cycles over 1000 executions for
QTESLA-I on Cortex-M4 microcontroller

Masking order Order 1 Order 2 Order 3 Order 4 Order 5
QTESLA-I 85 810 1 383 459 2 761 525 4 923 709 7 638 422

QTESLA-III 115 392 1 826 545 3 721 800 6 482 130 10 005 714

Table 4.7: Average number of calls to rand uint32()

resist basic DPA. Yet, it helped me discovering the topic of side-channel attacks and
was the very first scientific paper I was involved in. It was also interesting for me to
see that these attacks are doable in practice and do not only exist in textbooks. On the
other hand, I think the paper on QTESLA is very relevant. In the framework of the
NIST standardization project, a lot of effort has been recently put toward practicality
and finding countermeasures against side-channel attacks is part of it. My opinion is
that we are now aware that this type of attack exists and thus, must be discussed before
standardization. For example, to mask the lattice-based schemes studied in this thesis, it
seems clear that choosing q as a power of two is the preferred choice. However, most
schemes use q ≡ 1 mod 2n to enable fast polynomial multiplication with the NTT.
This raises the following question: do we care more about efficiency for unprotected
implementation than for masked implementation? This question might we tricky because
the two points of view

• I use a prime q because I do not always need side-channel protections and when I
do, I accept a huge overhead, and;

• I use a power of two q because Karatsuba/Toom-Cook is still pretty fast and is a
good tradeoff for side-channel countermeasure;

both make sense depending on the context. I personally do not have a strong opinion on
that but I feel like this issue is mostly ignored in the process right now and since some
things might have to be modified in the design of the primitives themselves, it will be too
late in the later rounds of the project.

Regarding future works, there are two directions that interest me. First, I would like
to compare more closely the performances of masked DILITHIUM and QTESLA with
implementation optimized for embedded devices. I feel like the speed results from the
masking of DILITHIUM published in [92] might be improved by applying some of our
techniques. Second, I am interested in finding a design for lattice-based Fiat-Shamir
signatures that is as masking friendly as possible. This was actually the goal when I
started working with Mélissa Rossi but we dropped the idea because the community was
mostly interested by NIST candidates and not new proposals. However, I am still curious
and I think a design à la GLP with large parameters and low rejection probability might
give good scaling results.
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Chapter 5

Efficient Design for Lattice-Based
Cryptography

5.1 Preamble
While being the last, this chapter discuss the first research paper I initiated and conducted
to publication by myself. It is authored by me and my non-cryptographer friend Keno
Merckx who helped me bound the failure probability of the scheme. The reason why I
put this work last is that the scheme itself is built upon lattice-based signature and en-
cryption and thus the flow of the document is better with Chapter 3 and Chapter 4 previ-
ously introducing relevant material. The topic of this work is the design of a signcryption
scheme based on lattice assumptions. Since there exists a variant of the famous signcryp-
tion scheme of Zheng based on Schnorr signature, the idea to transpose it to the lattice
setting came pretty fast to my mind. However, several iterations were needed to reach
a satisfactory result. An early version of the scheme based on the GLP signature was
proposed but rejected due the oldness of the underlying scheme. After several modifica-
tions, a version based on the scheme of Bai-Galbraith/Tesla sharp was accepted to CANS
2018 [59]. Since lattice signatures and KEMs evolved in the past two years due to the
ongoing NIST competition, some parts might feel slightly outdated but the concept of the
scheme still stands.

5.2 Introduction
The two last chapters were studying two practical issues of existing schemes, namely
optimized implementations and resistance to physical attacks. Nevertheless, another way
to gain efficiency is to have a scheme which is streamlined for the needs of the user.
Indeed, cryptographic schemes are mainly designed as black boxes which have a very
specific task. The user setting up a secure environment will pick several of this boxes
and use them one after the other to reach all the security requirements. The advantage
of this approach is that cryptographers only have to focus on the security of the boxes
and users subsequently have the responsibility to use them properly. But sometimes,
some properties covered by different type of primitives are so often needed together that
creating a specific one covering all of them makes sense.

This is especially true for the most natural security properties that are confidentiality,
data integrity and authentication. In a public-key setting, they are ensured using a PKE
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and a signature scheme. Those cryptographic primitives have been developed somewhat
independently and can be used separately, depending on the context. If the adversary is
passive, i.e they can only read the channel but not write on it, encryption can be enough.
If the secrecy of the message is not important, signing can be enough. Yet, in a situation
in which an active adversary is present during a sensitive communication, confidentiality,
data integrity and authentication must all be guaranteed at the same time. It is clearly
possible to use encryption and signature together but it implies accepting the overhead
of using two building blocks and forces a careful security analysis since concatenating
two cryptographic primitives in a naive way can be dangerous, for example, revealing the
signature on a message will often endanger its confidentiality.

In symmetric cryptography, a lot of effort has been put toward the development of
authenticated encryption schemes. The idea is to merge a symmetric encryption scheme
with a message authentication code in a single block providing all the security properties
listed above. This work gave rise to a dedicated workshop (DIAC) and a competition to
establish a portfolio called CAESAR.

On the public-key side, the equivalent primitive is called signcryption. The goal of
a signcryption scheme is to provide the security properties of both encryption and signa-
ture at a lower cost than concatenating them. The (academic) story started at CRYPTO
in 1997 with the original paper of Zheng [124]. In this work, the author used a clever
combination of ElGamal encryption and signature to create an efficient scheme leading a
line of research aiming at formalizing, studying security and enhancing signcryption [45].
Unfortunately, the techniques used were based on the Diffie-Hellman (or RSA) assump-
tion and their security would be compromised in case of the emergence of a large quantum
computing power.

In the following sections, we introduce a construction of a signcryption scheme in
the Fiat-Shamir with aborts framework of Lyubashevsky based on the signature of Bai
and Galbraith [15]. It is inspired from a Schnorr-like variant of the original work of
Zheng [124] proposed by Malone-Lee [86]. We provide two versions of the scheme, both
relying on the concept of sharing a key while signing and forwarding a symmetric encryp-
tion of the message under this key. The first one uses a usual lattice-based key exchange
while the second one encrypts the key in a KEM (key encapsulation mechanism) fashion.
Those two flavors of the scheme provide a tradeoff between efficiency and storage. The
key exchange version is slower but uses less memory/bandwidth. We also provide a con-
crete instantiation with parameters chosen according to the methodology of [15] enabling
correctness of the scheme and compares the gains of using this specific scheme instead of
a naive concatenation of signature and key exchange.

Signcryption has not been extensively studied in the post-quantum world yet. Some
works on lattice-based schemes exist [77, 79, 110, 122], however, they are all based on
trapdoors and thus provide less practical instantiations. Our work was, at the time of pub-
lication, the first one studying signcryption using the Fiat-Shamir with aborts technique
on lattices. We called the scheme SETLA (Signature and EncrypTion from LAttices) as
a tribute to the TESLA family of signatures and to facilitate references to it in the text.

5.3 Signcryption
A signcryption scheme is a cryptographic primitive aiming to act at the same time as en-
cryption and signature on some data. The usual situation is that of a sender (a.k.a Alice)
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willing to send a message m to a receiver (a.k.a Bob) while ensuring at the same time
confidentiality, integrity and authentication. It is the public-key analog of authenticated
encryption.

Definition 43. Formally, a signcryption scheme with message spaceM and signcryptext
space C is a tuple ΓM,C = (ParamGen, KeyGenSender, KeyGenReceiver,
Signcrypt, Unsigncrypt) composed of the five following algorithms:

• ParamGen(λ): a randomized algorithm taking as input the security parameter λ
and outputting the parameters params of the system. We consider params as an
implicit input of all the algorithms.

• KeyGenSender(): a randomized algorithm generating a key pair (ska, pka) for the
sender (Alice). We will call ska the secret signing key and pka the public verification
key.

• KeyGenReceiver(): a randomized algorithm generating a key pair (skb, pkb) for
the receiver (Bob). We will call skb the secret decryption key and pkb the public
encryption key.

• Signcrypt(ska, pkb,m): a randomized algorithm taking as input Alice’s secret
signing key ska, Bob’s public encryption key pkb, a messagem ∈M and outputting
a signcryptext C ∈ C.

• Unsigncrypt(pka, skb, C): a deterministic algorithm taking as input Alice’s public
verification key pka, Bob’s secret decryption key skb, a signcryptext C ∈ C and
outputting a either a message m ∈ M if the signcryptext is valid or a failure
symbol ⊥.

It should be noted that, for efficiency and simplicity reasons, the two key generation al-
gorithms can be merged in a single KeyGen algorithm outputting a key pair (sk, pk) in
which sk act simultaneously as decryption and signing key and pk as verification and
encryption key.
The natural correctness property is that, for every valid m,

Unsigncrypt(pka, skb, Signcrypt(ska, pkb,m)) = m

with an overwhelming probability.

Non-repudiation. There is no settled answer to the question of non-repudiation for a
signcryption scheme. Indeed, since we want confidentiality of the message, it is not
clear if a public verification mechanism is required. But if Alice can later repudiate the
message in front of a judge, can we really call it a signature? The consensus is to set
up a mechanism allowing Bob to generate a signature from the signcryptext at the price
of revealing the message. Hence, if at some point Alice tries to be dishonest, he can
create a publicly verifiable signature and present it to the judge. Hence, we extend the
signcryption scheme with two optional algorithms:

• SignExtract(pka, skb, C): a deterministic algorithm taking the same inputs as
Unsigncrypt and outputting a publicly verifiable signature σ(m).
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• PublicVerif(pka, σ(m)): a deterministic algorithm taking as input the parameters
of the system, the public key of Alice and a signature onm and outputting 1 if σ(m)
is a valid signature on m, 0 otherwise.

In practice, the SignExtract algorithm can be merged with Unsigncrypt to output at
the same time m together with its signature σ(m).

5.4 Security model for signcryption
We naturally extend the security games of encryption and signature to the case of sign-
cryption. As an example, here follow the usual IND-CPA and sUF-CMA games, which
are analogous to Definition 7 and Definition 14:

Definition 44. The signcryption scheme is said to be IND-CPA secure if the probability
of an adversary (having a set of two PPT algorithms A,A′) winning the following game
is negligibly close to 1

2

1. The challenger first runs the ParamGen algorithm and outputs public parameters
params. After that, the challenger generates Alice’s key pair
(pka, ska)← KeyGenReceiver() and Bob’s pair (pkb, skb)← KeyGenReceiver().

2. The adversary runsA on input (pka, pkb). It has access to a Signcrypt(ska, pkb,m)
and an Unsigncrypt(pka, skb, C) oracle. The algorithm finishes by outputting two
messages m0 and m1.

3. The challenger chooses a bit b r←− {0, 1} and outputs Ĉ ← Signcrypt(ska, pkb,mb)

4. The adversary then runs A′ on input (Ĉ, pka, ska) and finishes by outputting a bit
b′.

The adversary wins the IND-CPA game if b′ = b.

Definition 45. The signcryption scheme is said to be sUF-CMA secure if the probability
of the adversary (having a PPT algorithm A) winning the following game is negligible.

1. The challenger first runs the ParamGen algorithm and outputs public parameters
params. After that, the challenger generates Alice’s key pair
(pka, ska)← KeyGenReceiver() and Bob’s pair (pkb, skb)← KeyGenReceiver().

2. The adversary runsA on input (pka, pkb). It has access to a Signcrypt(ska, pkb,m)
and an Unsigncrypt(pka, skb, C) oracle. The algorithm finishes by outputting a
signcryptext Ĉ.

The adversary wins the sUF-CMA game if Ĉ has not been output by the Signcrypt ora-
cle and Unsigncrypt(pka, skb, Ĉ) 6= ⊥.

Finding the right security model for signcryption seems to be a bit more complex than
for other basic primitives. Indeed, since for every communication each participant plays
a dual role using at the same time is own secret and the public value of the other one, it is
unclear what power we should give to the adversary. To clarify the situation, signcryption
schemes security is defined according to two notions, insider security and outsider secu-
rity.
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Signing key: sk r←− Zq
Verification key: pk ← gsk

ElGamal sign(sk,m):

1: r
r←− Zq

2: c← H(m||gr)
3: z ← r · (sk + c)−1

4: return c, z

ElGamal Verify(c, z, pk):
1: ω ← (pk ◦ gc)z(= gr)
2: return c = H(m||ω)

Figure 5.1: Variant of ElGamal Signature

Outsider security

In the outsider model, the sender and the receiver are both honest and try to prevent an
external adversary from retrieving information about the message or modifying it without
being detected. It is the model used in the symmetric case of authenticated encryption
where all the valid users are “the same” in the sense that they all have the same power and
are not associated to a public identity. Here, the adversary only has access to the public-
key of the different users of the system and tries to break the IND-CPA or sUF-CMA
property of the scheme. A signcryption scheme insecure in the outsider model would be
of no use.

Insider security

The insider security model is more complete but its usefulness in practice is more debat-
able. In this one, the receiver and the sender can be the adversary (a more realistic view
is that an adversary is given the private key of one of them). Concerning the dishonest
receiver, his goal is to forge a signcryptext (signcrypted with his own public key) on a new
message without knowing the sender’s secret key. For the dishonest sender, her goal is to
unsigncrypt a signcryptext created with her private key. The pertinence of this model is
quite context dependent. If Bob is the only entity capable of verifying the authenticity of
a message, his power to forge a message for himself is irrelevant. Likewise, if Alice can
decrypt signcryptext she created with her signing key, we can fairly consider she knows
the message. The argument against this claim is to try to protect past (or future) commu-
nication if Alice’s private key is somehow compromised. In our case, we will not allow
Bob to forge a message because we want to enable non-repudiation, meaning that he is
not the only one capable verifying the signature anymore. On the other side, we allow Al-
ice to be able to recover a message from past signcryption and argue that it is acceptable
since the loss of a secret key often means a total break of the system.

5.5 Zheng’s Scheme
The first signcryption scheme is due to Zheng’s great idea to merge a variant of the ElGa-
mal signature scheme with a non-interactive Diffie-Hellman key exchange. The signature
scheme is described in Figure 5.1, Zheng realized that in such a signature, the first part
of the verification procedure is to retrieve a group element gr (without knowing r) from
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Public parameters:

• Cyclic group G of order q generated by g

• Symmetric encryption scheme E with keyspace K

• Encoding function H mapping bitstrings to Zq

• Key derivation function KDF : {0, 1}∗ → K

Alice’s keys: ska
r←− Zq; pka ← gska

Bob’s keys: skb
r←− Zq; pkb ← gskb

Zheng Signcrypt(ska, pka, pkb,m):

1: r
r←− Zq

2: K ← KDF(pkrb)
3: c← H(m||pka||pkb||pkrb)
4: z ← r · (ska + c)−1

5: E ← E(K,m)
6: return c, z, E

Zheng Unsigncrypt(c, z, skb, pka, pkb):
1: ω ← (pka ◦ gc)z (= gr)
2: K ← KDF(ωskb)
3: m← E−1(K, E)

4: verif ← c
?
= H(m||pka||pkb||ωskb)

5: return m if verif else ⊥

Figure 5.2: Original Zheng’s signcryption scheme

public values. The interesting point is that communicating such a value is exactly the first
part of a Diffie-Hellmann key exchange (Alice chooses a and sends ga). The value (c, z)
are actually not only a signature, but also a Alice’s side of a key exchange. Thus, if Bob
previously published a public key of the form pkb = gskb , Alice can compute a one-time
shared secret key K = pkr that Bob will reconstruct by computing K = ωskb . This key
can be used to symmetrically encrypt a message that will be append to the signature to
get a scheme performing signature and encryption of a message at the same time and in
which the performance gain comes from sharing the nonce r between the signature and
the key exchange. The signcryption scheme of Zheng is depicted in Figure 5.2.

5.5.1 Schnorr Variant
The work of Zheng led to a plethora of variants (see [45], Part II). Among them, a very
natural extension of this idea of reusing nonce was to apply it to Schnorr signature. This
was proposed by Malone-Lee in [86]. Indeed, similarly to the variant of ElGamal sig-
nature described above, in Schnorr signature, the signer also picks a random r and the
verifier also retrieves gr. We give Malone-Lee’s scheme in Figure 5.3. The constructions
follows naturally from the one of Zheng, exposed in the previous section. The reason
why this scheme is very interesting to us is that the lattice-based signatures studied in
this thesis are themselves based on Schnorr signatures. It was thus easier to derive a
post-quantum signcryption scheme from the proposal of Malone-Lee than from Zheng’s
version. One reason is that Zheng’s sigcryption scheme has an inversion modulo q which
does not translate to anything concrete in the lattice setting.
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Public parameters:

• Cyclic group G of order q generated by g

• Symmetric encryption scheme E with keyspace K

• Encoding function H mapping bitstrings to Zq

• Key derivation function KDF : {0, 1}∗ → K× {0, 1}`

Alice’s keys: ska
r←− Zq; pka ← gska

Bob’s keys: skb
r←− Zq; pkb ← gskb

Malone-Lee Signcrypt(ska, pka, pkb,m):

1: y
r←− Zq

2: K1, K2 ← KDF(pkyb )
3: c← H(m||pka||pkb||gy||K2)
4: z ← y − ska · c
5: E ← E(K1,m)
6: return c, z, E

Malone-Lee Unsigncrypt(c, z, skb, pka, pkb):
1: ω ← gz ◦ pkca (= gy)
2: K1, K2 ← KDF(ωskb)
3: m← E−1(K1, E)

4: verif ← c
?
= H(m||pka||pkb||ω||K2)

5: return m if verif else ⊥

Figure 5.3: Malone-Lee’s signcryption scheme. Based on Schnorr signature.

5.6 Reconciliation Mechanism
A common issue in learning with errors key exchanges [12, 27, 28, 47, 100] is that both
parties end up with two values that are close to each other but not exactly the same. It is
due to the fact that, as in the encryption scheme, it is often made of ElGamal-like cryp-
tography but with noisy elements. For example in the RLWE version, Alice eventually
computes ass′ + e′s while Bob has ass′ + es′. Obviously, the key exchange cannot be
considered successful if each party has a different value. The solution is to use a reconcil-
iation mechanism deriving a common value from noisy data (a.k.a fuzzy extractor [48]).

Clearly, any reconciliation technique has an error tolerance threshold over which
agreement cannot be reached. To increase the threshold, a possibility is to use multiple
values to agree on a common bit. The motivation is that polynomials used in RWLE-based
are often of size 512 or 1024 to ensure the security of the underlying lattice problem while
symmetric secrets of bit size 256 appear to be enough, even in a post-quantum world.
Hence we should use mappings from Znq to {0, 1}256 with n ∈ {512, 1024}. Of course
mappings for higher n or larger symmetric keys can be used but in practice, those param-
eters are good enough. For the key exchange version of our construction, we borrow the
notations from NEWHOPE [12]. In their paper, they show how to agree on a n bit key
from either a polynomial of degree 2n or 4n. The description of their whole reconcilia-
tion mechanism is quite tedious and takes a lot of space. Hence we redirect the interested
reader to their paper for a full explanation and analysis. By borrowing their notations, we
mean that we will use two algorithms HelpRec(x) and Rec(x′, r) (as defined below) but
that the scheme is unaffected by how those functions work under the hood, they could
implement any reconciliation mechanism.

• HelpRec(x) taking as input a ring element and outputting a reconciliation vector r
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• Rec(x′, r) taking as input a ring element and a reconciliation vector and outputting
a symmetric key K

If x and x′ are close to each other (the distance between their coefficients is small), the
output of Rec(x, r) and Rec(x′, r) are the same.

5.7 SETLA: Signature and Encryption from Lattices
(CANS 2018)

Hereunder, we describe both versions of our scheme. The discussion in Section 5.9 will
only be made for the first version for the sake of brevity but the analysis is basically the
same. In the following, when we talk about lattice signatures, we mean lattice-based
signatures obtained from the Fiat-Shamir transformation.

5.7.1 SETLA-KEX Signcryption
First we describe how to integrate encryption into a lattice signature, following the steps
of the ElGamal modification of Zheng. From a high-level point of view, the idea of
the original signcryption scheme is to sign a message with an ElGamal signature and to
perform a non-interactive Diffie-Hellman ephemeral key exchange (KEX) at the same
time reusing the “commit” value of the signature. The gain in efficiency comes from
the fact that the same operation is used in both primitives. Subsequently, the message is
symmetrically encrypted with the key derived from the exchange and forwarded to the
receiver. While the first scheme of Zheng was not directly translatable in a lattice version,
the scheme Malone-Lee is a good candidate. Indeed, even though its primary advantage
over Zheng in pre-quantum cryptography was to enable non-interactive non-repudiation,
namely that Bob alone can create a valid signature from a signcryptext, the second dif-
ference is that it is based on Schnorr signature. A explained above, the lattice-based
signatures schemes coming from identification schemes through Fiat-Shamir transform
being Schnorr-like [10,15,49,81], this is where post-quantum can meet signcryption. We
use a ring version of the signature proposed by Bai and Galbraith as a base to construct
the scheme but it can be generalized to most signatures derived from the original work of
Lyubashevsky as long as the parameters offer at the same time security and correctness
for the key reconciliation. We actually also have a construction based on GLP working
out of the box with the original parameters which is omitted since the scheme is consid-
ered widely deprecated now.

Algorithm 34 SETLA Key generation
Input: Public parameter a1, a2 ∈ Rq

Output: Key pair pk = (t1, t2), sk = (s, e1, e2)

1: s, e1, e2
r←− Rq,[1]

2: t1 ← a1 · s+ e1, t2 ← a2 · s+ e2

3: return pk = (t1, t2), sk = (s, e1, e2)
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Key generation (Algorithm 34).

The key generation is simple and straightforward for a scheme using ideal lattices cryp-
tography. It uses some public parameters a1, a2 shared among all users and output two
RLWE samples pk = (t1, t2) together with a secret polynomial s. The error and secret
distributions are the same and output a polynomial with uniform coefficients in {−1, 0, 1}.
The choice of such a distribution is suboptimal in terms of security since it has low vari-
ance and its special structure may enable specialized attacks [117] but has been made for
reasons that will come clear later. Note that in the context of signcryption, both Alice and
Bob will run the key generation procedure to retrieve their keys since two key pairs are
used in the full signcrypt/unsigncrypt procedure. In the following, we use subscripts, e.g.
pka = (ta,1, ta,2), to differentiate them.

Algorithm 35 SETLA-KEX Signcrypt
Input: Public parameters a1, a2, Bob’s public key pkb, Alice’s keys (sa, ea,1, ea,2, pka), a
message m, random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric encryption
algorithm E
Output: a signcryptext of m: C = (z, c, E , r)

1: do
2: y, y′

r←− Rq,[B]

3: v ← tb,1 · y + y′ = a1 · sb · y + eb,1 · y + y′

4: r← HelpRec(v)
5: K ← Rec(v, r)
6: c← H(ba1 · yed, ba2 · yed,m,K, pka, pkb)
7: z ← sa · c+ y
8: w1 ← a1 · y − ea,1 · c, w2 ← a2 · y − ea,2 · c
9: while not( z inRq,[B−ω] and ba1 · yed = bw1ed and ba2 · yed = bw2ed )

10: E ← E(K,m)
11: return z, c, E , r

SETLA-KEX Signcrypt (Algorithm 35).

The signcrypt procedure contains three interleaved parts: signature, key exchange and
encryption. The signature follows the structure of [2, 16] as a Fiat-Shamir signature
from a sigma protocol. First, a commitment consisting of two rounded polynomials
ba1 · yed, ba2 · yed depending on a masking value y is computed. Then, an unpredictable
challenge c is retrieved by simulating a verifier with a random oracle H taking inputs
depending on the commitment. Finally, the response consists of a polynomial of the form
z = s · c + y. Note that for reasons related specifically to signcryption schemes, the ran-
dom oracle should take as input a symmetric key K and both public identities. If the key
were not included in the input, the adversary playing a signcryption specific CCA2 game
would easily be able to distinguish between two messages m0,m1 by computing both
H(.,mi, ., .) and verifying the equality with c. Having the public identities in the hash is
a common practice in signcryption schemes to prove security in advanced models [45].
The key exchange part is performed by deriving a secret value K from a noisy version
of a1 · sb · y. Alice cannot find the exact value since it would mean she knows Bob’s
secret key but she can find an approximate value from Bob’s public key by computing
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tb,1 · y = a1 · sb · y + e′b,1 · y ≈ a1 · sb · y. This is exactly the technique employed in
lattice-based key exchanges such as NEWHOPE. The efficiency gain comes from the fact
that Bob will later be able to retrieve an approximation version of a1 · y without send-
ing him any other ring element than the polynomials computed in the signature (z, c). As
in [12,28], Alice gets a symmetric key by applying a reconciliation procedure on the noisy
shared value. The last part is straightforward, now that a key is available, a symmetric
cipher E is used to encrypt the data.
Finally, Alice outputs the signature (z, c), the symmetric ciphertext E and a small recon-
ciliation vector r. It means that the message was at the same time encrypted and authenti-
cated in an asymmetric manner with only the overhead of sending a symmetric ciphertext
(obviously we need to send something at least as long as the message for encryption) and
a small reconciliation vector on the top of the signature.

Algorithm 36 SETLA-KEX Unsigncrypt
Input: Public parameters a1, a2, Bob’s keys (sb, pkb), Alice’s public key pka, a signcryp-
text C = (z, c, E , r), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥

1: w1 ← a1 · z − ta,1 · c, w2 ← a2 · z − ta,2 · c
2: K ← Rec(w1 · sb, r)
3: m← E−1

K (E)
4: return m if c = H(bw1ed, bw2ed,m,K, pka, pkb) and z ∈ Rq,[B−ω] else ⊥

SETLA-KEX Unsigncrypt (Algorithm 36).

The goal of this algorithm is to allow Bob to find the secret key to decrypt the symmetric
cipher and at the same, to provide authentication of the message through a signature.
First, Bob will recover the commitment part of the signature by rounding the values
w1 ← a1 · z − ta,1 · c and w2 ← a2 · z − ta,2 · c. Without rounding, c would have
been different since Alice queried the random oracle with ba1 · yed and ba2 · yed. The
difference with the original signature scheme is that Bob must now find the key K and
the message in order to verify the hash value. To recover it, he shall use the reconciliation
vector r with an approximate version of a1 ·sb ·y. Such a value can be found by computing
the product w1 · sb = a1 · sb · y + ea,1 · sb · c ≈ a1 · sb · y. Once the message is decrypted,
Bob verifies the signature by checking the size of z and the hash value. He outputs the
message if everything is correct and a failure symbol otherwise.

SETLA-KEX Signature Extraction (Algorithm 37).

An interesting feature of Malone-Lee’s signcryption scheme is that the receiver Bob can
himself create a fully valid publicly verifiable signature under Alice’s secret key on the
message he unsigncrypted. Our scheme also inherits this capability. Even if we chose
to start from this scheme for its similarity with Schnorr signature (and thus, lattice-based
signatures), this really helpful feature carries to our construction. The corresponding
verification algorithm is very similar to Algorithm 23 and basically the same as the verifi-
cation algorithm in [16], the verifier computes w1 and w2 as in Algorithm 37 and accepts
if c = H(bw1ed, bw2ed,m,K, pka, pkb) and z ∈ Rq,[B−ω].
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Algorithm 37 SETLA-KEX SignExtract
Input: Public parameters a1, a2, Bob’s keys (sb, pkb), Alice’s public key pka, a signcryp-
text C = (z, c, E , r), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m together with its signature σ(m) or a failure symbol

1: w1 ← a1 · z − ta,1 · c, w2 ← a2 · z − ta,2 · c
2: K ← Rec(w1 · sb, r)
3: m← E−1

K (E)
4: b← c = H(bw1ed, bw2ed,m,K, pka, pkb) and z ∈ Rq,[B−ω]

5: return m,σ(m) = (K, z, c) if b = 1 else ⊥

5.7.2 SETLA-KEM Signcryption
Now, we describe the second version of the scheme based on key encapsulation instead
of direct key exchange. The approach is similar to the one first used in NEWHOPE-
SIMPLE [11] and now in the NIST submission or KYBER. The high-level perspective
is now to perform a noisy ElGamal encryption of a chosen key during signature instead
of noisy Diffie-Hellman. While in NEWHOPE-SIMPLE the goal of the new approach
is to make the protocol simpler by getting rid of the reconciliation mechanism but not
really to enhance the scheme, here, using an encryption based method leads to better
performances in terms of speed and can enable parallelism, at the cost of a significantly
larger signcryptext.

Algorithm 38 SETLA-KEM Signcrypt
Input: Public parameters a1, a2, Bob’s public key pkb, Alice’s key (sa, ea,1, ea,2, pka), a
message m, random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric encryption
algorithm E
Output: a signcryptext of m: C = (z, c, x, E)

1: K
r←− {0, 1}256

2: do
3: y

r←− Rq,[B]

4: c← H(ba1 · yed, ba2 · yed,m,K, pka, pkb)
5: z ← sa · c+ y
6: w1 ← a1 · y − ea,1 · c, w2 ← a2 · y − ea,2 · c
7: while not( z inRq,[B−ω] and ba1 · yed = bw1ed and ba2 · yed = bw2ed )
8: y′

r←− Rq,[B]

9: x← tb,1 · y + y′ + Encode(K)
10: E ← E(k,m)
11: return z, c, x, E

SETLA-KEM Signcrypt (Algorithm 38).

In the same way as before, one can find three phases: signature, key encapsulation and
symmetric encryption. The signature is now more isolated and almost exactly the same
as in [16], the small difference is that the random oracle (as in the KEX version) takes as
input the message, the symmetric decryption key and the public identities.
The key encapsulation part is a RLWE encryption (similar to NEWHOPE) of a randomly
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sampled key K. Like ElGamal (Figure 2.2), such an encryption consists of two values
c1 = a ·y1 +y2 and c2 = pkb ·y1 +y3 +Encode(m) (û and v′ in Figure 3.4). Basically, c2 is
the message masked with a ring element depending on the public-key looking random un-
der the decisional-RLWE assumption and c1 is a value allowing the owner of sb to remove
the mask without conveying any (computable) information on y1 under the search-RLWE
assumption. Here we gain efficiency by having the value ba1 · yed acting at the same time
as the commitment of the signature and the c1 part of the encryption scheme. The c2 part
is given by x.
Globally, the KEM version is adding a lot of overhead on the size of the signcryptext
which is problematic since this is where we are looking for efficiency. Nevertheless,
we see two advantages of using encryption instead of key exchange. First, the scheme
is faster because it has less computation in the rejection sampling loop (which can run
several times depending on the parameters) and we can now parallelize the symmetric en-
cryption algorithm. Indeed, in the KEX version, the key depends on y and was not known
until the end of the rejection sampling procedure, hence, everything had to be sequential
and a multiplication with tb,1 had to be done at each iteration. Now, the symmetric en-
cryption can start at the same time as the rejection sampling. It is fair to say that in general
symmetric operations are lightweight in comparison to polynomial multiplication. Nev-
ertheless, if a really large message has to be encrypted, say such that EK(m) takes as long
as the do...while loop, the saving becomes non-negligible. Obviously, this argument only
makes sense if the rejection sampling procedure itself is not affected by the size of the
message. One solution would be to pre-hash the message before the loop and only inject
this hash in the random oracle. Actually this issue is not specific to signcryption, all the
signature schemes using rejection sampling would be badly affected by a really long mes-
sage if the hash function cannot restart from its previous sate. Hence, in this case, hashing
the message once before would save some computation. This small modification could be
done in the KEX version as well as in existing Fiat-Shamir lattice-based signatures.
Second, depending on the parameters, if the correctness is an issue, having the key en-
coded as a polynomial with coefficients in {0, q−1

2
} is optimal for the reconciliation since

they are at“maximum distance” in Zq. Also, because the symmetric key needed being of-
ten smaller than the encoding polynomial, having control over the value eases the process
of embedding an error-correcting code in the extra space. Even though in the current state
of affairs and with the parameters proposed in Section 5.9 the KEM version would not
outperform neither the KEX version nor the naive concatenation of efficient schemes, we
think the construction may be of interest in some contexts.

Algorithm 39 SETLA-KEM Unsigncrypt
Input: Public parameter a1, a2, Bob’s key (sb, s

′
b, pkb), Alice’s public key pka, a sign-

cryptext C = (z, c, x, E), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥

1: w1 ← a1 · z − ta,1 · c
2: w2 ← a2 · z − ta,2 · c
3: K ← Decode(x− w1 · sb)
4: m← E−1(E)
5: return m if c = H(v,m,K, pka, pkb) and z ∈ Rq,[k−ω] else ⊥
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SETLA-KEM Unsigncrypt (Algorithm 39).

The unsigncrypt algorithm follows in the obvious manner. Bob retrieves the c1 part of the
RLWE encryption from the signature and run the decryption algorithm to find the key.
Then, he decrypts the symmetric ciphertext and verifies the signature.

5.8 Security Arguments
The security aspects of interest for signcryption are unforgeability and privacy. The con-
struction combining both a signature scheme using the Fiat-Shamir heuristic and a public
key encryption scheme, we argue the security by using the forking lemma [105] and a
standard hybrid argument. This does not provide a formal argument of security in a sign-
cryption specific security model since it does not consider the primitive as an encryption
and a signature but rather successively as an encryption or a signature. We do not claim
that this is a sufficient analysis, nevertheless, having both unforgeability and privacy of
the two underlying schemes is a good pointer toward the fact the design is sound. Provid-
ing a formal argument in advanced signcryption models is a tedious task (see [14]) and
we do not attempt to do so here.

5.8.1 Unforgeability
The underlying signature of the signcryption scheme is the ring variant of the Bai-Galbraith
signature which is itself a derivative of the original proposal of Lyubashevsky [81]. The
full security argument can be found in [15] but the idea is to use the forking lemma to
get two different signatures for the same commitment that would allow us to solve a
special SIS instance. We use the adversary to get two forgeries z, c and z′, c′ for differ-
ent random oracles but the same random tape (hence the same y). We have (providing
the argument for only one RLWE sample instead of two as in the signature for the sake
of simplicity) ba · z − ta · ced = ba · z′ − ta · c′ed = ba · yed. This means that for
some small e, a · z − ta · c = a · z′ − ta · c′ + e and thus, with ta = a · sa + ea,
a · (z − z′ − sa · c + sa · c′) + (ea · (c′ − c) + e) = 0. As pointed in [15] section 4.2, (if
z − z′ − sa · c+ sa · c′ and ea · (c′ − c) + e are non-zero) we have found a solution to the
SIS instance. This argument still holds for the signcryption scheme.

5.8.2 Confidentiality
We argue the confidentiality of the scheme with a sequence of games showing semantic
security under the Decisional Compact Knapsack assumption in the random oracle model.
We model the adversary as a tuple of two algorithms A = (A1,A2), the first choosing
messages for the game according to the public keys and the second trying to guess which
one was signcrypted. The encryption scheme E is seen as an ideal primitive. The sequence
of games for the KEX version can be found in Figure 5.4. Games for the KEM version
are really similar.

Game 0: Game 0 is the usual CPA game against SETLA, the adversary chooses two
messages m0,m1 and tries to guess which one was signcrypted.
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Game 0:
1: (m0,m1)← A1(pka, pkb)
2: b

r←− {0, 1}
3: y, y′

r←− Rq,[B]

4: v ← tb,1 · y + y′

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed, h2 ← ba2 · yed
8: c← H(h1, h2,m,K, pka, pkb)
9: z ← sa · c+ y

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: if z not inRq,[B−ω], goto 3
13: E ← E(k,m)
14: b̂← A2(z, c, E , r)
15: return b̂

Game 1:
1: (m0,m1)← A1(pka, pkb)
2: b

r←− {0, 1}
3: y, y′

r←− Rq,[B]

4: v ← tb,1 · y + y′

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed, h2 ← ba2 · yed
8: c← H(h1, h2,m,K, pka, pkb)
9: z

r←− Rq,[B−ω]

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: with probability P, goto 3
13: E ← E(k,m)
14: b̂← A2(z, c, E , r)
15: return b̂

Game 2:
1: (m0,m1)← A1(pka, pkb)
2: b

r←− {0, 1}
3: y, y′

r←− Rq,[B]

4: a′
r←− Rq

5: v ← a′ · y + y′

6: r← HelpRec(v)
7: K ← Rec(v, r)
8: h1 ← ba1 · yed, h2 ← ba2 · yed
9: c← H(h1, h2,m,K, pka, pkb)

10: z
r←− Rq,[B−ω]

11: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
12: if h1 6= bw1ed or h1 6= bw2ed, goto 3
13: with probability P, goto 3
14: E ← E(k,m)
15: b̂← A2(z, c, E , r)
16: return b̂

Game 3:
1: (m0,m1)← A1(pka, pkb)
2: b

r←− {0, 1}
3: y, y′

r←− Rq,[B]

4: v
r←− Rq

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed, h2 ← ba2 · yed
8: c← H(h1, h2,m,K, pka, pkb)
9: z

r←− Rq,[B−ω]

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: with probability P, goto 3
13: E ← E(k,m)
14: b̂← A2(z, c, E , r)
15: return b̂

Figure 5.4: Sequence of games for the KEX version

Game 1: By virtue of the rejection sampling performed during signcryption, the output
distribution of z should be exactly the same as a uniform over Rq,[k−ω]. Hence, we can
replace z by random elements over this range without modifying the view of the adversary.

Game 2: Using the RLWE assumption, we can replace the public key of Bob by a
random element inRq without being detected by the polynomial time adversary.

Game 3: In game 3, we use the same argument again to replace v by a uniformly random
value (and hence K is uniform as well by design of Rec).

In conclusion, using the fact that both H(.) and E(.) are modeled as ideal primitives
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and that H takes one random unknown to the adversary value (K) uncorrelated to the
message, they do not reveal anything about their inputs. Hence, the values given to A2

looks all random and independent from the messages. Thus, the adversary cannot guess
which one was signcrypted.

ROM vs QROM

It is known that the forking lemma cannot be used if the adversary has quantum access
to the random oracle. This issue has been recently discussed a lot in the literature on
lattice-based signatures and some schemes took it into consideration [10] while others
ignored it to focus on performances [50]. Since our goal is to improve practicability, we
decided to stick to the classical ROM. Having a classical reduction is essential to claim
provable security but the implications of the QROM issue in practice are not clear enough
to require QROM security for all the schemes. We redirect the interested reader to [26,72]
for more details.

5.9 Analysis and Parameters

5.9.1 Parameters Selection
To select the parameters, we followed the methodology described in [10]. It allows the
scheme to reduce to worst-case problems on ideal lattices. Be careful that it does not
mean that the parameters are chosen such that the problem we reduce to is hard (since
the proofs are non-tight) but merely that the reduction works. This is a common practice
and as pointed in [72], it is reasonable to assume that it does not create any security
issue. Our parameters can be found in Table 5.1. The dimension n has been set to 1024
because it seems to be the minimal lattice dimension such that RLWE is hard with such a
small error distribution. The value m represents the number of rows of the LWE instance
written in matrix form. Here it means that we work with two polynomials (which are
explicit in the construction) since m = 2n. The entropy of the output of the random
oracle is given by κ = log2

(
2ω
(
n
ω

))
, that is to say the logarithm of the cardinality of the

set {v | v ∈ Rq,[1], ‖v‖1 = ω}. The modulus q = 225 − 212 + 1 is a prime such that
q ≡ 1 mod 2n .The parameters d and B are chosen such that the acceptance probability
of the signature is not too low (δ ≈ 0.56) in order to keep the runtime reasonable and
qm−n ≥ 2(d+1)m+κ

(2B)n
as required in the security proof of [15].

To assess the security of the scheme, we used the LWE-Estimator tool of Albrecht and
al. [5]. We ran the estimator with the following command:

n = 1024; q = 33550337;
stddev = sqrt(2/3); alpha = alphaf(sigmaf(stddev), q)
_ = estimate_lwe(n, alpha, q,
secret_distribution=(-1,1),reduction_cost_model=BKZ.sieve)

It estimates a bit security of 131 against the most efficient attack. The estimation of the
hardness of directly forging the signature without recovering the private key has been
made in the same way as in [43]. It gave overwhelming results, which is not a surprise
since the parameters are a harder version of the most secure parameters set of [63].
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n m ω d B q κ

1024 2048 16 15 215 33550337 ≈
225 131

Table 5.1: Parameters targeting 128 bits of classical security. We only claim classical
security of 128 bits because we use a 128-bit hash (similar to [16])

5.9.2 Failure Probability
The main bottleneck of the signcryption scheme is the correctness regarding decryption.
Indeed, as in a lot of RLWE-based protocols, the two parties end up with two ring ele-
ments close to each other but not exactly the same. In our case, the difference between
the value of Alice and the value of Bob is ∆ab = eb,1 · y − ea,1 · c · sb + y′. While in
those schemes the parameters are chosen in order to get correctness with overwhelming
probability, we face here a strong constraint which is that the parameters should also be
compatible with the signature scheme. In their case, the y is coming from the error distri-
bution and hence is very small. In our case, it is the masking polynomial for the signature
s · c+ y which should be significantly larger. Obviously, one strategy to reduce the norm
of ∆ab is to reduce B. This would give better results for correctness but unfortunately
decrease the speed of the scheme since the rejection sampling loop would have to run
longer to find a small enough z. This is the reason why we decided to use such a small
distribution for the secret and the errors. Of course, it is possible to work with slightly
larger distributions in a more specific context in which correctness matters less.

We now provide an analysis of the failure probability for the KEX-version. Using the
reconciliation method of NewHope, the KEX-Unsigncrypt algorithm recovers the correct
key if ‖∆ab‖∞ <

⌊
3q
8

⌋
(actually the requirement is that the `1 norm of packs of 4 coeffi-

cients should be smaller than
⌊

3q
4

⌋
− 2). In the following, we write (p)i, to denote the i-th

coefficient of a polynomial p.
We shall bound the magnitude of one coefficient (∆′ab)i = (e′b,1 · y)i. Since the polyno-
mial product is computed modulo 〈Xn + 1〉 and all distributions are symmetric, one such
coefficient is the result of a sum of n products between a coefficient of a polynomial in
Rq,[1] and a polynomial inRq,[B].

Let S ∼ U ({−1, 0, 1}) and Y ∼ U ([−B,B]) be random variables, we denote their
product SY . Each coefficient of ∆′ab is the sum of n samples from SY , hence (∆′ab)i ∼∑n

i=1(SY )i. Fortunately, computing the exact distribution SY is easy:

Pr [SY = 0] =
2B + 3

6B + 3

Pr [SY = z | z ∈ [−B,B]\{0}] =
2

6B + 3

Since the value of B is reasonable, to find the distribution of ∆′ab, one could hope to
compute log(n) time the convolution of the distribution with itself. Unfortunately, this
approach failed to give accurate results because of numerical stability issues. Instead, as
in [12], we use the Chernoff-Cramer inequality to bound the sum of the random variables.
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Chernoff-Cramer inequality Let χ be a distribution over R and let X1, . . . , Xn be i.i.d.
symmetric random variables of law χ. Then, for any t such that Mχ(t) = E[etX ] < ∞ it
holds that

Pr

[∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > α

]
< 2e−αt+n log(Mχ(t)).

Using the above inequality with

MSY (t) =
2B + 3

6B + 3
+

2

6B + 3
·
(
et(B+1) − 1

et − 1
+
e−t(B+1) − 1

e−t − 1
− 2

)
and setting α =

⌊
q
4

⌋
−B−nω, t ≈ 2.5·10−5, n = 1024 and k = 215 (our parameters from

the previous section), we find that Pr
[
(∆′ab)i >

⌊
3q
16

⌋]
≈ 2−115. By virtue of the union

bound on the 1024 coefficients, we get that the failure probability is at most ≈ 2−105.

5.9.3 Performances
Even if the construction of the signcryption scheme is conceptually interesting on its own,
its usage only makes sense if we gain something over the trivial solution of concatenating
an encryption/key exchange and a signature scheme. In Table 5.2, we compare the per-
formances regarding bandwidth between SETLA and a selection of schemes of the same
kind. Since lattice-based schemes are already doing great in terms of speed, especially
when they can take advantage of SIMD (Single Instruction Multiple Data) instructions,
reducing bandwidth will a major factor for adoption in the future. We decided to compare
SETLA to the pairs given in the table for the following reasons:

• DILITHIUM + KYBER: They were very recently designed and are part of the same
family of algorithms.

• QTESLA + NEWHOPE: They are the two up-to-date RLWE based schemes and
are both candidates for future standardization.

• TESLA] + KYBER: This seems to be the most efficient pair regarding compactness
out of the reasonably secure Fiat-Shamir/key exchange schemes in the literature.

For the record, we also indicates the performances of the GLP version of signcryption
that is using the original parameters of the signature [63]. It obviously gives goods results
since we get the key exchange for free without modifying the parameters but the secu-
rity has been reduced so much over the years that it does not seem reasonable to use it
without further modifications. The signcryptext size for SETLA was computed without
the symmetric cipher (since it depends on the size of the message itself and should be
added to the naive construction as well 1) and with Peikert’s reconciliation which is less
efficient but more compact than the one of NEWHOPE but still gives good correctness
results in practice. The last column compares the gain in compactness of signcryptext
when using SETLA instead of the mentioned scheme. We see that at the price of a larger
public key, SETLA outperforms the naive concatenation of popular schemes by a sig-
nificant margin. This is not a surprise since we only have to output a signature and the
key exchange is done implicitly. The large public key comes partially from the lack of

1The considered naive constructions are actually KEM + signature and not directly encryption + signa-
ture.
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Scheme |sk| |pk| |Signcryptext| Gain
DILITHIUM [50]+KYBER [29] 2863(=463+2400) 2560(=1472+1088) 3852(=2700+1152) 48%
QTESLA + NEWHOPE [12] 3648(=1856+1792) 4800(=2976+1824) 4896(=2720+2176) 60%
TESLA] [16]+KYBER 4512(=2112+2400) 4416(=3328+1088) 2768(=1616+2176) 29%
SETLA-KEX 608 6400 1972 -
GLP-Signcrypt 202 1475 1247 -

Table 5.2: Comparison between similar schemes using the naive construction. Values are
given in bytes. This Table was made in early 2018, parameters of some of the schemes
have been modified since then, trough rounds of the NIST project.

flexibility of RLWE which limits fast implementations to power of two cyclotomics and
m as a multiple of n. Regarding speed, an update for the parameter set and an optimized
implementations for all schemes involved would be needed to directly compare numbers.
However, if the signcryption scheme has comparable dimension and rejection probabil-
ity than the signature in the naive construction, the polynomial multiplication saved is in
favor of signcryption. Furthermore, while each individual scheme uses a different pub-
lic parameter for each public key, the signcryption scheme shares it accross participants.
Since we saw in Chapter 3 that generation of the public parameter can be a non-negligible
part of the computation, this would also play in favor of signcryption.

5.10 Conclusion
In this Chapter we presented a lattice-based signcryption scheme called SETLA. We chose
a scheme of Malone-Lee as starting point and proposed two constructions both using the
Bai-Galbraith signature at their cores. The first construction directly embeds a RLWE key
exchange in the signature exactly as in the classical signcryption scheme while the second
one uses RLWE encrypt as a key encapsulation mechanism. The KEX version seems to
globally outperform the KEM version since even if it is heavier in terms of computation,
this is not the main issue with lattices. We proposed a set of parameters targeting 128
bits of classical security following the reduction of Bai and Galbraith. We provided an
analysis of correctness and a comparison with most recent schemes (using the naive con-
struction) in the literature regarding signcryptext size. We also made a research oriented
implementation to verify the soundness of the scheme while providing reasonable bench-
marks. We conclude that it is possible to instantiate SETLA with parameters providing
security, correctness and efficiency while still outperforming the naive construction of
encrypt-then-sign with state-of-the-art schemes.

5.11 Thoughts and Future Works
Looking back at signcryption, I would say it was a great introduction to research for
me. I discovered this less popular primitive by expanding my general knowledge about
cryptography in the early stages of my thesis and it took me quite a while to put everything
together but I feel like I learned a lot along the way. The main reason is that proposing
a scheme requires to take care of many things such as design, sketch of security proofs,
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choice of parameters and implementation. Even if all are pretty simple in this case, those
tasks require some versatility.

Although important for my personal development, if would rate this result quite weak
from a scientific point of view. One with good understanding of the design of lattice-
based primitives and signcryption would easily find the connection between the scheme
of Malonne-Lee and a NEWHOPE/ring-TESLA hybrid. Also, the proofs of security in a
signcryption model are lacking, which is a bit disappointing for a signcryption scheme.
Furthermore, I realized later that implementation results are not really relevant if not op-
timized for a specific architecture. Finally, signcryption schemes are still quite unknown
and seldom studied in cryptography. Overall, everything holds and the idea is, in my opin-
ion, very neat, but this topic is way less important than the ones exposed in the previous
chapters.

For future works, I think deriving a MLWE version and, obviously, proposing a proof
in a signcryption model are the two most natural directions. The reason why a module
version is very much needed is actually technical. In the proof of Bai and Galbraith, it is
required that m > n for the underlying LWE instance. Since in RLWE, each polynomial
represents exactly n samples, it is required to take at least two them (and we havem = 2n)
for the proof to work. Module-LWE offers more flexibility on this side and would thus
provide better performances. Implementation-wise, the scheme does not present any more
challenge than the lattice-based signatures/KEMs it is based on and its performances are
expected to follow theirs.
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Chapter 6

Conclusion

This manuscript presented several practical issues faced by lattice-based cryptography,
illustrated by novel research in the field. Since each chapter already concluded and dis-
cussed its main topic separately, this general conclusion will quickly summarize what has
been done and give some final thoughts but will be short.

In Chapter 3, we presented new advances in fast implementations on embedded de-
vices. In particular, we focused on polynomial multiplication techniques in Zq[X]/〈Xn+
1〉 using specialized Fast Fourier Transform algorithms called Number Theoretic Trans-
forms. The targeted platform was the ARM Cortex-M4 core which features SIMD instruc-
tions enabling assembly level optimizations. Beside improving speed, we also discussed
several possible trade-offs in terms of code size, stack usage and bandwidth. Our results
show improvements over previous work and were integrated in the current reference li-
brary for such kind of implementations. Confirming the conclusion of other researchers,
after optimizing the polynomial multiplication, the run-time is vastly dominated by the
random numbers generation through the hash function, which is somewhat independent
of the scheme itself. While the amount of random numbers needed depends on the scheme
and the parameters chosen, the need for fast random number generators is not specific to
lattice-based cryptography.

In Chapter 4, we tackled the issue of side-channel attacks. We described how an at-
tacker accessing power consumption of a device running a cryptographic algorithm might
retrieve some secret data. Afterward, we discussed a countermeasure called masking
which aims at splitting sensitive data in independent shares to increase the amount of in-
formation that an attacker needs to extract from the power consumption in order to learn
secret values. The flagship contribution is a masking scheme for the lattice-based sig-
nature QTESLA that is proven secure in a simple yet relevant model called the probing
model. The masked signature has been implemented and experimental results assessing
its scaling in function of the masking order have been presented.

In Chapter 5, we discussed a lesser-known cryptographic primitive called signcryp-
tion. The goal of such a scheme is to act as both a signature and an encryption on a
message more efficiently than concatenating those two basic primitives. Since signcryp-
tion was already scarcely studied in classical cryptography, it goes without saying that
the post-quantum side has been barely investigated. We proposed a lattice-based sign-
cryption scheme obtained by merging Ring Learning with Errors schemes presented in
previous chapters. The scheme was supported by a brief analysis of security, correctness
and efficiency.

As final thoughts, I would like to express that working on practical issues in the frame-
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work of academia was pretty interesting. Quite often, it is believed that academia takes
care of the theory while the industry simply makes it work in the real world. The truth
is that for some issues like the ones exposed in this thesis manuscript, it is important to
have people making the bridge between theoreticians and engineers. While the former
sometimes brush off the performance aspect or are not well versed in coding, the latter
might not grasp every subtleties of the design and make some small but harmful mistakes
during implementation. When I started doing research, I was expecting a more theoretical
work, but I now believe I prefer keeping a foot in the practical side. Being able to work on
implementations while avoiding the inherent pressure of industry is, in my opinion, a real
benefit of academia as it offers the possibility to explore many possible approaches with-
out being too constrained by deadlines. Finally, I am really excited about the future of the
NIST project as it has already spanned a lot of research and discussions on post-quantum
algorithms. Having several concrete instanciations in a sort of formal competition gives
many new opportunities to work on implementations, side-channel attacks, comparisons
and cryptanalysis. My only complaint would be that the rigidity of the process makes it
hard to tweak algorithms along the way, even if improvements or new ideas are found.
For example, if the idea to create a masking friendly Fiat-Shamir lattice-based signature
scheme as suggested in Chapter 4 is sometime materialized, it would likely stay outside
of the process instead of being integrated as a variant of existing schemes. Naturally, I
understand that this rigidity is well needed to avoid restarting analysis from scratch every
time a candidate decides to incorporate major changes and I am truly looking forward to
see what is going to happen in the round 3 which is, at the time those lines are written,
supposed to start soon.
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secure module-lattice-based kem. 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 353–367, 2017.

[30] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Mar-
tijn Stam. Fly, you fool! Faster frodo for the ARM cortex-M4. Cryptology ePrint
Archive, Report 2018/1116, 2018. https://eprint.iacr.org/2018/
1116.

[31] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient high-
speed implementation of Kyber on cortex-M4. In AFRICACRYPT 19, LNCS, pages
209–228. Springer, Heidelberg, 2019.

139

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116


[32] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
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conversion between Boolean and arithmetic masking of any order. In Lejla Batina
and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages 188–
205. Springer, Heidelberg, September 2014.

[42] R. Crandall and C.B. Pomerance. Prime Numbers: A Computational Perspective.
Lecture notes in statistics. Springer New York, 2006.
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