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Abstract

In the mid-eighties, the development of radioactive-ion beams enabled the exploration of
regions of the nuclear landscape away from the valley of stability. Close to the neutron
dripline, in the light neutron-rich region, halo nuclei were observed. These nuclei exhibit a
surprisingly large matter radius and a strongly clusterized structure. These two features
can be explained by the weak binding of one or two neutrons which allows them to tunnel
far from the rest of the nucleons, surrounding the nucleus by a diffuse halo. These nuclear
structures have challenged the usual description of the nucleus, described as a compact
many-body object with nucleons piling up into well defined orbitals. Because they are
short-lived, these nuclei are often studied through reaction processes, such as elastic
scattering, breakup and knockout. To infer precise information from the experimental
data, an accurate reaction model coupled with a realistic description of the nucleus is
needed.

Compared to other state-of-the-art methods, the eikonal approximation is very cheap
from a computational viewpoint. This model assumes that the projectile-target relative
motion does not differ much from the initial plane wave. It also makes the adiabatic
approximation, which sees the internal coordinates of the projectile as frozen during the
collision. These two assumptions hold for reactions occurring at high energy, i.e., above
60 MeV/nucleon, in which the deflection of the projectile by the target is small and the
collision time is brief.

In this thesis, I focus on improvements of the eikonal approximation. First, I study
the extension of the validity of the eikonal model down to 10 MeV/nucleon, in the energy
range of the facilities HIE-ISOLDE at CERN and ReA12 at the upcoming FRIB. To this
end, I analyse different corrections to the eikonal approximation, which account for the
deflection of the projectile by the target. I assess their accuracy for the elastic-scattering
and breakup observables of one-neutron halo nuclei at 10 MeV/nucleon. Next, I develop
a dynamical correction to the eikonal approximation, which applies to both nuclear and
Coulomb interactions while conserving the eikonal numerical cost. I study this correction
in the cases of breakup reactions of one-neutron halo nuclei on light and heavy targets.
Then, I investigate which nuclear-structure information can be inferred from knockout
reactions of one-neutron halo nuclei. To do so, I conduct a sensitivity analysis of their
observables to the nuclear structure of the projectile, described within a halo effective
field theory. In particular, I study the influence onto the cross sections of the ground-state
wave function, the presence of subthreshold bound states and resonances.

Keywords: halo nuclei, nuclear reactions, eikonal approximation, breakup, knockout,
low-energy corrections, reaction dynamics.



Résumé

Le développement de faisceaux radioactifs dans le courant des années 80 a rendu possible
l’exploration des régions de la charte des noyaux situées loin de la vallée de la stabilité.
Près de la limite de la stabilité, dans la région des noyaux légers riches en neutrons, les
noyaux à halo ont été observés. Ces noyaux présentent un rayon de matière étonnament
grand et une structure en amas très prononcée. Ces deux caractéristiques sont expliquées
par la faible énergie de liaison d’un ou deux neutrons, qui leur permet de se trouver par
effet tunnel loin des autres nucléons, entourant le noyau d’un halo diffus. Ces structures
nucléaires ont remis en question la description habituelle du noyau, décrit comme un
object compact composé de nucléons qui s’empilent dans des orbitales bien définies. À
cause de leurs très courtes durées de vie, ces noyaux sont souvent étudiés par le biais de
réactions, telles que la diffusion élastique, les réactions de dissociation et de knockout.
Afin de déduire des informations fiables à partir des données expérimentales, un modèle
précis de réaction incluant une description réaliste des noyaux est nécessaire.

Comparée aux autres méthodes, l’approximation eikonale présente un coût numérique
réduit. Ce modèle suppose que le mouvement relatif projectile-cible diffère peu de l’onde
plane incidente. Il repose également sur l’approximation adiabatique, qui considère que les
coordonnées internes du projectile sont figées pendant la collision. Ces deux hypothèses
sont valables pour les réactions se produisant à haute énergie, au-dessus de 60 MeV/nucléon,
dans lesquelles la déflexion du projectile par la cible est faible et la durée de la collision
est courte.

Dans cette thèse, je me concentre sur plusieurs corrections à l’approximation eikonale.
Dans un premier temps, j’étudie l’extension de la validité de ce modèle jusqu’à 10 MeV/nu-
cléon, dans la gamme d’énergie de HIE-ISOLDE au CERN et de ReA12 au futur FRIB.
Pour ce faire, j’analyse différentes corrections à l’approximation eikonale améliorant la
déflexion du projectile par la cible. J’évalue leur précision pour les observables de diffusion
élastique et de dissociation de noyaux à halo d’un neutron à 10 MeV/nucléon. Ensuite,
je développe une correction dynamique à l’approximation eikonale, qui s’applique aux
interactions nucléaire et Coulombienne tout en conservant son faible coût numérique. Je
l’étudie pour des réactions de dissociation de noyaux à halo d’un neutron incident sur
des cibles légères et lourdes. Après, je détermine quelles informations de la structure
nucléaire peuvent être déduites à partir des réactions de knockout de noyaux à halo
d’un neutron. Pour ce faire, j’effectue une analyse de sensibilité de leurs observables à
la structure nucléaire du projectile, décrit dans une théorie effective des champs. En
particulier, j’étudie l’influence sur les sections efficaces de la fonction d’onde de l’état
fondamental, la présence d’états liés sous le seuil et de résonances.

Mots-clés: noyaux à halo, collisions nucléaires, approximation eikonale, réaction de
dissociation, réaction de knockout, corrections à basses énergies, dynamique de réaction.
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Introduction

All the chemical elements on Earth and in the Universe were created in Stars billions of
years ago by means of reactions between atomic nuclei [1, 2]. Nuclei being the fuel of
Stars and the core of matter, studying their structure and how they interact is therefore
essential to understand where we come from and how the Universe is evolving. Before the
eighties, the study of very radioactive nuclei was difficult, because they are not observed
in Nature as they decay too quickly. In the mid-eighties, the acceleration of short-lived
nuclei became possible, allowing experimentalists to access parts of the nuclear landscape
still unexplored. In most cases, these exotic nuclei are probed by making them collide
with a target before they have the time to decay [3]. Several facilities have been built
to this end, such as CYCLONE at Louvain-la-Neuve in Belgium, ISOLDE at CERN in
Switzerland, GANIL in France, GSI in Germany, NSCL and the upcoming FRIB in the
USA and RIKEN in Japan [4, 5]. To extract reliable information from these collisions, an
accurate reaction model coupled with a realistic description of the nucleus is needed.

It is well known from quantum mechanics that the neutrons and protons inside the
nucleus tend to rearrange to minimize their energy. Consequently, the formation of tightly-
bound clusters of nucleons arises in both stable and unstable nuclei [6]. Close to the
dripline, the nuclear binding is weak and this clustering effect is enhanced. In particular,
in the light exotic sector of the nuclear chart, halo nuclei present a strongly clusterized
structure, in which one or two loosely-bound nucleons have a high probability of presence
far from the rest of the nucleons [7, 8]. Accordingly, they exhibit a surprisingly large
matter radius. They are usually seen as a compact core to which one or two nucleons
are loosely bound, surrounding the core by a diffuse halo. Haloes have challenged the
usual description of a nucleus, seeing the nucleons as piling up in well defined orbitals and
forming compact object.

Due to its low-binding energy, the halo dissociates easily from the core when the
nucleus is colliding with a target. These reactions—called breakup—hence reveal the
cluster structure inside the nucleus. They are often used to probe halo nuclei since they
exhibit high statistics [9, 10]. Because the computing power is limited, the description of
each nucleon involved in the collision is feasible only for very light systems. It is therefore
common in reaction theory to describe the nucleus as a bound state of nucleon clusters [11].
The collision of a halo nucleus with a target is thus modelled as a few-body problem. State-
of-the-art methods, such as the Faddeev formalism [12, 13] and the Continuum-Discretized
Coupled Channels method [14, 15, 16, 17], solve the few-body problem in a fully-quantal
approach and are accurate. Nevertheless, these methods are computationally-challenging
and thus often restricted to a simple description of the projectile, e.g., to a small number
of clusters. This motivates the use of approximations, such as the eikonal model [18], that
are less time consuming.

The eikonal approximation assumes that the projectile is only slightly deflected by
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INTRODUCTION

the target during the collision1 . In its most usual implementation, it also includes the
adiabatic approximation which sees the internal coordinates of the projectile as frozen
during the collision. These two assumptions hold only at high enough energy, i.e., above
60AMeV2, where the deflection of the projectile by the target is small and the collision time
is shorter than the excitation time of the projectile. Additionally to its small numerical
cost, the eikonal model provides a simple semiclassical interpretation of the collision. The
projectile is seen as following a straight-line trajectory at constant impact parameter and
velocity, along which its wave function accumulates a phase resulting from its interaction
with the target.

Nowadays, facilities such as HIE-ISOLDE at CERN and the future ReA12 at FRIB, are
or will be able to deliver radioactive-ion beams at energies around 10A MeV. Extending
the validity of the eikonal model to such energies would therefore be of great interest.
This is the first goal of my thesis. To improve the eikonal description at low energies, I
study corrections that account for the deflection of the projectile by the target. Since
the adiabatic approximation might no longer hold at these energies, I also assess the
significance of the dynamical effects, associated with the excitation of the projectile during
the reaction. I evaluate the accuracy of these corrections for elastic-scattering and breakup
observables of one-neutron halo nuclei [20, 21, 22].

Because it relies on the adiabatic approximation, the eikonal model does not correctly
treat the Coulomb interaction [23, 24]. Indeed, an adiabatic approach is not suited for
infinite-range interactions, because the collision time can no longer be considered small.
The second objective of my thesis is to correct for this adiabatic treatment by including
dynamical effects at first order induced by both the Coulomb and nuclear interactions. In
collaboration with Daniel Baye, we have developed a model that is compatible with the
Coulomb interaction, while keeping the small numerical cost of the eikonal approximation.
We have studied the accuracy of such a model to describe the breakup of one-neutron halo
nuclei on light and heavy targets, i.e., with a small and large Coulomb repulsion between
the nuclei [25].

Knockout reactions correspond also to the dissociation of the nucleus into its more
fundamental clusters but they refer to an inclusive measurement, in which only the charged
core is detected. These reactions exhibit therefore even higher statistics than exclusive
breakup, where all fragments are measured in coincidence after the dissociation. Hence
these reactions are often favoured for the low intensities available at radioactive-ion beam
facilities and have been one of the first probes of exotic nuclei [9]. In the last thirty
years, various exotic nuclei have been studied with these reactions. It has been noted
by Gade and collaborators that the ratio between experimental data and theoretical
predictions of one-nucleon knockout decreases when the binding energy of the removed
nucleon increases [26, 27]. Surprisingly, this trend is not observed in the analysis of other
reactions performed on the same nuclei, such as transfer [28, 29]. Several groups have
attempted to explain this trend, but none of them has managed to explain why only the
information inferred from these reactions are binding-energy dependent. In this thesis, my
goal is to make a first step in that direction by understanding why theory and experiments
agree well for loosely-bound nuclei and to pin down what structure information can be

1The eikonal approximation was first developed in ray optics to describe the reflection and refraction
of light by an object. It assumes that the lights travels in a straight line, which is valid if the size of the
object is large compared to the wavelength of the light. The etymology of the word eikonal also echoes
with the ray optics: eikonal comes from the greek word είκών which means image [19].

2This notation A MeV refers to MeV per nucleon and is used in the rest of this thesis.

2



INTRODUCTION

safely inferred from these data [30, 31].
The first Chapter of this thesis introduces the notion of halo nuclei, their discovery

and main features. I will also discuss the different reactions that are studied in this thesis,
and how the halo structure manifests itself in their observables. In Chapter 2, I will
present two- and three-body models of reaction and the different formalisms used in this
thesis to solve the corresponding Schrödinger equation. The different corrections aiming at
extending the eikonal model down to 10A MeV are studied in Chapter 3. The inclusion of
dynamical effects at first order within the eikonal model and an analysis of their impact on
breakup cross sections are presented in Chapter 4. In the last Chapter, I will evaluate the
sensitivity of knockout reactions to the description of the projectile’s structure. Finally, I
will conclude and discuss the prospects of this thesis.

3



Chapter 1

Probing halo nuclei with reactions

1.1 Halo nuclei

1.1.1 Discovery of halo nuclei
In the mid-eighties, the development of radioactive-ion beams (RIBs) has opened the door
to regions of the nuclear landscape still unexplored. This technological breakthrough has
enabled the discovery of unexpected nuclear structures. In particular, in the lower left
corner of the nuclear chart, halo nuclei have been observed [8, 32, 33]. These nuclei exhibit
a much larger radius compared to their isobars. Their large size challenges the usual vision
of nuclei as compact objects but can be understood with the quantum tunnel effect. Being
located close to the neutron dripline, the binding energies of the last one or two neutrons
are very low. This weak binding allows them to tunnel out into the classically-forbidden
region far from the rest of the nucleons. These neutrons thus form a diffuse halo around a
tight core composed of the other nucleons [7].

6He and 11Li were the first halo nuclei discovered by Tanihata et al. [32, 33]. These
two nuclei exhibit two neutrons in their halo and can thus be seen as composed of three
clusters, a compact core with two halo neutrons. Besides their halo structure, these nuclei
are Borromean [34], meaning that the three-cluster system is bound but both binary
subsystems are unbound. For example, 11Li is bound but 10Li and the dineutron are
unbound. Since the experiment of Tanihata et al., other halo nuclei have been discovered.
Among these, one-neutron halo nuclei, such as 11Be and 15C, exhibit one neutron in their
halo.

Table 1.1 displays the separation energies of one neutron Sn or two neutrons S2n, the
root mean square distance rrms

n between the halo neutron and the core of 11Be and 15C,
as well as the root mean square distance rrms

2n between the two halo neutrons of 6He and
11Li. We can see that these root mean square distances are of the order of 5 to 7 fm.
These distances are more than twice the size of the core of the halo nucleus which is about
1.4-2.6 fm [35, 36, 37, 38], suggesting that the halo neutrons have a high probability to be
located far from the core.

Close to the proton dripline, proton-halo nuclei, such as 8B, have also been observed.
However, due the additional Coulomb repulsion between the proton halo and the core, the
formation of a proton halo is less probable than neutron halo and is favoured for nuclei
with charge Z < 10 [39]. Fig. 1.1.1 displays the light region of the nuclear chart up to
fluorine where most of the halo nuclei have been observed.

4



CHAPTER 1. PROBING HALO NUCLEI WITH REACTIONS

Sn or S2n [MeV] rrms
n or rrms

2n [fm] Refs.
11Be ≡ 10Be + n 0.5016 5.77 ± 0.16 [35, 40]
15C ≡ 14C + n 1.218 5.82 ± 0.6 [36, 41]
6He ≡ 4He + n+ n 0.973 5.9 ± 1.2 [37, 42]
11Li ≡ 9Li + n+ n 0.3691 6.6 ± 1.5 [37, 40]

Table 1.1: Neutron separation energies Sn or S2n, the rms distances between
the halo neutron with the core rrms

n and between both halo neutrons rrms
2n for

archetypical one- and two-neutron halo nuclei, respectively.

N

Z

n

1H 2H 3H

3He 4He 6He 8He

6Li 7Li 8Li 9Li 11Li

7Be 9Be 10Be 11Be 12Be 14Be

8B 10B 11B 12B 13B 14B 15B 17B 19B

9C 10C 11C 12C 13C 14C 15C 16C 17C 18C 19C 20C

12N 13N 14N 15N 16N 17N 18N 18N 20N 21N

13O 14O 15O 16O 17O 18O 19O 20O 21O 22O

17F 18F 19F 20F 21F 22F 23F

Stable nuclei

Neutron-rich nuclei

Proton-rich nuclei

One-neutron halo nuclei

Two-neutron halo nuclei

Proton halo nuclei

Figure 1.1.1: Light region of the nuclear chart where most halo nuclei are observed.
Figure courtesy of Frederic Colomer.
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CHAPTER 1. PROBING HALO NUCLEI WITH REACTIONS

n

c
r

Figure 1.1.2: Simple two-body model of one-neutron halo nuclei.

1.1.2 Simple model of one-neutron halo nuclei
There is no clear definition of halo nuclei. However, it is common knowledge that halo
nuclei are loosely bound, display a large spatial extension due to the fact that the halo
neutrons have a high probability of presence outside the range of the nuclear potential,
and exhibit a clear cluster structure [43]. I illustrate this definition in this section by
modelling a one-neutron halo nucleus of mass number A with a simple two-body model.

Because the halo neutron has a high probability of presence far from the rest of
the nucleons, the A-body problem can be seen as a two-cluster system, composed of a
core c assumed in its ground state1 and a valence neutron n. The wave function of the
A-body system is therefore approximated by a two-body wave function describing the
core-neutron relative motion. This simplification is represented in Fig. 1.1.2 and is called
the single-particle approximation. The orbital angular momentum of the neutron in the
ground state of the halo nucleus is denoted l, its spin s and its total angular momentum j,
obtained from the coupling of l and s.

In this single-particle approximation, the core and the neutron are assumed structureless
and their interaction is simulated through an effective central potential Vlj in the partial
wave lj, which is adjusted to reproduce the one-neutron separation energy Sn of the ground
state. In this simple model, the radial wave function unlj describing the core-neutron
relative motion in the ground state is solution of the radial Schrödinger equation [44][

−
d2

dr2 + l(l + 1)
r2 + 2µcn

~2 Vlj(r)
]
unlj(r) = −κ2unlj(r), (1.1.1)

with r the core-neutron relative coordinate, κ =
√

2µcnSn/~2 and µcn the core-neutron
reduced mass. The radial wave functions unlj are characterized by an additional quantum
number n, which corresponds to their number of nodes. In this equation, we can note the
presence of a repulsive term proportional to l(l + 1). The attractive effective potential
combined with this repulsive term form the centrifugal barrier. This barriers tends to push
the valence neutron close to the core and thus prevents the formation of a halo. Therefore,
to ensure that the centrifugal barrier is not too large, the orbital angular momentum l of
the ground state of a one-neutron halo nucleus is mostly 0 or 1 [39, 45, 46].

Since the valence neutron has a large probability of presence far from the core, the
main properties of halo nuclei are influenced by the asymptotic part of the radial wave
function. For a short-range interaction, such as the nuclear force, the radial wave function
of the ground state behaves asymptotically [44]

unlj(r) −→
r→∞

bnlj e
−κr, (1.1.2)

1As it will be explained in the next section, in an actual nucleus, different states of the core contribute
to the halo-nucleus ground-state wave function.
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where bnlj is the single-particle asymptotic normalization constant (SPANC). This constant
is linked to the probability of the valence neutron to be located far from the core. By
approximating the wave function by its asymptotic behaviour, the root mean square
core-neutron distance can be approached by [7]

rrms
n ≈

√√√√∫+∞
0 dr r2 |bnlj e−κr|2∫+∞

0 dr |bnlj e−κr|2
(1.1.3)

=
√

~2

4µcnSn
. (1.1.4)

This simple model illustrates that the neutron is tunnelling into the classically-forbidden
region, outside the potential range. Both the probability of finding a neutron outside this
range and the root mean square core-neutron distance increase when the binding energy
of the ground state decreases. Therefore, one-neutron halo nuclei are characterized by
binding energies smaller than a few MeVs [39, 45, 46].

A similar picture can be used to describe two-neutrons halo nuclei, in which a three-
cluster description of the nucleus is used, i.e., two valence neutrons and a core. Two criteria
favouring the appearance of the halo can also be determined: the centrifugal repulsive
term has to be small and the two-neutrons separation energy S2n has to be lower than a
few MeVs [39, 45, 46].

1.1.3 Single-particle approximation
In the previous section, I have considered an extreme version of the single-particle approx-
imation, which assumes that the core of the one-neutron halo nucleus is in its ground
state. In an actual nucleus, the configurations in which the core is in an excited state also
contribute to the halo-nucleus ground state. To express these different configurations, I
denote here the spins characterizing the states of the halo nucleus J and the core Ic with
M,π and Mc, πc the corresponding projections and parities. In general, a state JπM of a
one-neutron halo nucleus can be described as a combination of configurations, in which the
neutron is bound to the core, which is itself in a state Iπcc Mc. The A-body wave function
ψJ

πM
A describing the state JπM can thus be expressed [47]

ψJ
πM

A (r1, · · · , rA−1, r) =
∑
Iπcc

[
χI

πc
c Mc
A−1 (r1, · · · , rA−1)⊗ΘJπM

Iπcc Mc
(r)

]JπM
, (1.1.5)

where r1, · · · rA−1 are the coordinates of the A− 1 nucleons composing the core, χI
πc
c Mc
A−1

is the core wave function in the state Iπcc Mc and ΘJπM
Iπcc Mc

is the c-n overlap wave function.
These overlap functions are defined as [47]

ΘJπM
Iπcc Mc

(r) =
∫
dr1 · · · drA−1

[
ψJ

πM
A (r1, · · · , rA−1, r)

]∗
χI

πc
c Mc
A−1 (r1, · · · , rA−1), (1.1.6)

and are usually decomposed into their radial Ulj and angular parts [48]

ΘJπM
Iπcc Mc

(r) =
∑
ljm

1
r
Ulj(r) 〈Ωr|ljm〉 , (1.1.7)

where Ωr is the angular part of r, l and j are respectively the orbital and total angular
momenta of the neutron bound to the Iπcc Mc core forming a JπM state of the halo nucleus
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and m is the projection of j. Similarly to the single-particle wave function (1.1.2), the
radial overlap function is also characterized by an asymptotic normalization constant
(ANC) [48]

Ulj(r) −→
r→∞
Clj e−κr. (1.1.8)

It is common in reaction theory to approximate the overlap wave function by a
normalized single-particle wave function obtained from an effective potential Vlj, i.e.,
Ulj ≈ unlj [see Eq. (1.1.1)]. In this single-particle view, the A-body wave function is
approximated by [49]

ψJ
πM

A (r1, · · · , rA−1, r) ≈
∑
Iπcc lj

√
SJ

πIπcc
lj

[
χI

πc
c Mc
A−1 (r1, · · · , rA−1)⊗ 1

r
unlj(r) 〈Ωr|ljm〉

]JπM
,

(1.1.9)
where SJπI

πc
c

lj are the so-called spectroscopic factors. These factors can be interpreted as
the probability of finding the halo neutron bound to the Iπcc core in a lj orbital. They are
obtained from structure calculations through [47]

SJ
πIπcc

lj =
∫
dr |Ulj(r)|2 . (1.1.10)

Within this approximation, one can relate the SPANC bnlj (1.1.2) to the projectile ANC
Clj (1.1.8) through [48]

Clj =
√
SJ

πIπcc
lj bnlj. (1.1.11)

When SJ
πIπcc

lj = 1, the projectile is described by only one single-particle state and the
asymptotic normalization constants are equal.

As it will be explained in the following of this Chapter, the spectroscopic factors are
often inferred from experimental data using the single-particle approximation (1.1.9) and
compared to theoretical predictions from nuclear-structure models. However, one should
keep in mind that these factors are model-dependent [50]. Indeed, the probability of an
orbital occupancy depends on the effective nucleon-nucleon potential used to solve the
A-body Schrödinger equation.

1.1.4 Description of 11Be
Because all the calculations in this thesis are made for 11Be, I discuss here in more details
its structure. Being a one-neutron halo nucleus, 11Be is often seen as a 10Be compact core
to which a halo neutron is loosely bound. Besides its halo structure, this nucleus also
exhibits an anomalous order of states compared to the one predicted by a simple shell
model reasoning. In an extreme shell model view, 10Be has a 0+ ground state since its
neutrons fill the shells up to p3/2, the halo neutron occupies the p1/2 shell and 11Be has
a 1/2− ground state. This prediction is not verified by experiments which find a 1/2+

ground state, indicating that an s halo neutron is coupled to the 0+ ground state of 10Be.
As we can see on the spectrum of 11Be in the column “Exp.” in Fig. 1.1.3, the 1/2− state
exists but is at slightly higher energy than the 1/2+. The unexpected order of these two
states is called the parity inversion [38].

Interestingly, recent ab initio calculations [51] have been able to reproduce the parity
inversion of 11Be. This structure model is called ab initio referring to the fact that its

8
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Figure 1.1.3: Spectrum of 11Be relatively to the 10Be-n separation threshold,
obtained with the no-core shell model with continuum and various chiral nuclear
forces. The light boxes correspond to the resonance widths. The extreme left and
right columns are the experimental values. This figure is taken from Ref. [51].

building blocks are each individual nucleon and its only input is a realistic nucleon-nucleon
interaction. Calci et al. have shown in Ref. [51] that the parity inversion can be obtained
with the no-core shell model with continuum [52] (NCSMC) for the chiral nuclear force
denoted N2LOSAT (see Fig. 1.1.3). They have found that the 1/2+ ground state of 11Be
is dominated by the single-particle component 0+ ⊗ s1/2 with a spectroscopic factor
S

1/2+0+

s1/2 = 0.9 and has a small 2+⊗ d5/2 admixture characterized by S1/2+2+

d5/2 = 0.16. They
have also estimated the ANC of the 0+⊗ s1/2 halo configuration to be Cs1/2 = 0.786 fm−1.

Their analysis emphasizes that the 10Be-n continuum of states, describing the states
where the halo neutron is unbound to the core, influences greatly the properties of the
bound states. Moreover, the order of these states is highly sensitive to the choice of
the nucleon-nucleon force (see the results for different nuclear forces in the columns of
Fig. 1.1.3). They also note that the parity inversion can be obtained only when the
three-nucleons force is included in their model. This confirms that the parity inversion
results from a many-body effect, as already proven in previous works (see the discussion
in Sec. 13.6 of Ref. [38]).

Fig. 1.1.3 also shows the 10Be-n resonant states, located above the 10Be-n separation
threshold. Interestingly, the NCSMC calculation with N2LOSAT also reproduces fairly
well the resonant part of the 11Be spectrum. In particular, Calci et al. predict that
the 5/2+ and 3/2+ resonant states have strong single-particle components [51]. These
resonances therefore influence the 10Be-n relative motion and impact the breakup cross
sections, as it will be discussed further in this Chapter. These states are respectively
located at 1.28 MeV and at 2.86 MeV and characterized by the widths Γ5/2+ = 100 keV
and Γ3/2+ = 122 keV [40].
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Figure 1.2.1: Radioactive-ion beam facilities in the world. This figure is taken
from Ref. [54].

1.2 Experimental probes

1.2.1 Experimental facilities
Because halo nuclei are located far from the valley of stability, they are very short lived.
For example the half-lifetime of 11Be is about 13.8 s and the one of 11Li about 8.7 ms.
Their direct study through usual spectroscopic techniques, where they would constitute
a fixed target, is therefore not possible. They are thus often probed through indirect
techniques, such as reactions in which the exotic nuclei are the projectiles.

There are two main methods used to generate these exotic beams. The in-flight
separation technique [53] relies on a heavy-ion primary beam at high energy impinging on
a light target. The isotopes of the secondary beam is produced through the fission and
the fragmentation of the primary beam and are selected with magnetic rigidity. Because
the secondary beam retains 90% or more of the kinetic energy of the primary beam,
this method is well suited to provide exotic beams at high energies (between 50A and
1500A MeV) [53]. Different facilities such as NSCL and the future FRIB in the USA,
RIKEN in Japan, GSI in Germany and GANIL in France apply this technique (see map
in Fig. 1.2.1).

The second method is the isotope separation on-line [55] (ISOL) which uses light-ion
or neutron beams impinging on a thick target often composed of heavy elements. Two
reactions, the fission and spallation, occur in the target. The reaction products are
thermalized inside the target and diffuse out to an ion source. After being ionized, the
isotopes are selected with magnetic rigidity and reaccelerated at energies up to around
10A MeV [55]. The ISOL method is applied in different facilities such as CERN in
Switzerland and at TRIUMF in Canada (see map in Fig. 1.2.1).

I present in the next sections different observables that are used to study the halo
structure. After briefly reviewing the interaction cross sections, the magnetic dipole and
electric quadrupole moments, I discuss the elastic and inelastic scatterings, the diffractive-
breakup and knockout cross sections, since these are the reaction channels I study in this
thesis.
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Figure 1.2.2: Interaction radii for He, Li and Be isotopes as a function of their
mass numbers. The data are taken from Refs. [32, 56]. Figure courtesy of Frederic
Colomer.

1.2.2 Interaction cross sections
Historically, the first experimental probe of halo nuclei is the interaction cross section.
Tanihata et al. [32, 33] measured these observables for various He, Li and Be isotopes.
This cross section is defined as the total cross section in which the projectile number of
nucleons changes. Using a simple geometrical model where both the projectile and the
target are seen as hard spheres, the interaction cross section σI can be written as [33]

σI = π(RI,P +RI,T )2, (1.2.1)

where RI,P and RI,T are respectively the projectile and the target interaction radii. Since
the interaction radius of the projectile does not vary much for different targets [32, 33], it
can be extracted from measurements using various targets.

The interaction radii are somehow related to the size of the nucleus since a larger spatial
extension would lead to a larger interaction cross section. In stable nuclei, the nuclear
density inside the nucleus is rather constant for different number of mass A, suggesting
that each nucleon occupies the same volume in the nucleus. This leads to the semiclassical
liquid-drop model which sees the nucleus as a quantum droplet of radius [57]

R = r0A
1/3 (1.2.2)

where r0 ∼ 1.2− 1.4 fm describes the space that the nucleon takes inside the nucleus.
Fig. 1.2.2 displays the interaction radii of He, Li and Be isotopes as a function of

their mass number. We can see that most of the stable nuclei follow roughly the law
in 1.2A1/3 fm, and therefore are well described by the semiclassical liquid-drop model.
However, 11Be, 11Li and 14Be deviate from this law and exhibit larger interaction radii.
This enhancement can be caused by a large size and/or a strong deformation of the nucleus.
Further analyses [56] have shown that these large interaction radii are due to long tail of
the nuclear density, which is now understood as the halo structure [7]. Note that even if the
interaction radius of 6He does not deviate strongly from the 1.2A1/3 law, it is surprisingly
large compared to the one of 4He.
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µ [µN ] Q [mb]
9Li 3.4391 ± 0.00006 -27.4 ± 1.0
11Li 3.6678 ± 0.0025 -31.2 ± 4.5

Table 1.2: Magnetic dipole (µ) and electric quadrupole (Q) moments of 9Li and
11Li. The values are taken from Refs. [58, 59, 60] and are respectively expressed
in nuclear magneton µN and in mb.

1.2.3 Magnetic dipole and electric quadrupole moments
We have just seen that the large interaction radii of halo nuclei are caused by a long tail
of the density. To study separately the distribution of protons inside the nucleus, it is
useful to analyse the magnetic dipole (µ) and electric quadrupole (Q) moments. These
observables are mainly sensitive to the distribution of protons inside the nucleus.

A series of experiments [58, 59, 60] have shown that both moments are rather constant
for 9Li and 11Li isotopes. Their results are summarized in Table 1.2. This indicates that
the distribution of protons is similar in both nuclei, which is consistent with the picture of
11Li seen as a 9Li core to which two neutrons are loosely bound.

1.2.4 Elastic- and inelastic-scattering cross sections
The elastic-scattering process corresponds to the deflection of a projectile by a target, in
which both nuclei stay in their ground states. Because all the results in this thesis are
obtained with 11Be, I illustrate the effect of the halo on elastic-scattering cross sections
of 11Be. Fig. 1.2.3 displays the experimental elastic-scattering cross sections of 9Be (red
triangles), 10Be (blue diamonds), and 11Be (black squares) off a 64Zn target at 24.5 MeV
as a function of the deflection angle θ [61]. The 9Be cross section has been measured in
Catania, and the experiments on 10Be and 11Be have been conducted at REX-ISOLDE at
CERN.

While the elastic-scattering cross sections of 9Be and 10Be are similar, the one of 11Be
strongly differs from them. Indeed, the angular distribution does not exhibit a peak at
θ ∼ 40◦ as in the cases of 9Be and 10Be and the total cross section is smaller. Di Pietro
et al. have shown that this reduction is caused by an enhancement of the transfer and
the breakup channels of 11Be [62]. Because these two reactions are peripheral, i.e., they
are mostly sensitive to the tail of the ground-state wave function of the projectile, this
indicates that 11Be has an anomalous large spatial extension compared to 9Be and 10Be.
This is consistent with the halo structure of 11Be.

In the inelastic scattering, the projectile or/and the target are in their excited states.
For example, the inelastic-scattering reaction

11Be + 208Pb→ 11Be∗ + 208Pb at 64A MeV, (1.2.3)

was measured at RIKEN [63]. In this reaction, 11Be is first in its 1/2+ ground state and is
excited to 1/2− bound state. From this measurement, they could extract the E1 strength
for the Coulomb excitation from the 1/2+ ground state to the 1/2− excited state of 11Be.

In this thesis, I analyse elastic-scattering observables of 11Be in the study of the
extension of the range of validity of the eikonal model down to low energies in Chapter 3.
The accuracy of each correction is evaluated by comparing these cross sections. I also
examine the impact of the inelastic-scattering strength onto the diffractive-breakup channel
of 11Be in Chapter 5.
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Figure 1.2.3: Elastic-scattering cross sections of 9Be (red triangles), 10Be (blue
diamonds), and 11Be (black squares) off 64Zn target at 24.5 MeV. This figure is
taken from Ref. [61].

1.2.5 Diffractive breakup
Breakup reactions of halo nuclei correspond to the dissociation of the halo from the
core, and hence reveal the cluster structure inside the nucleus. Because halo nuclei are
loosely bound, the probability that the halo neutron dissociates from the core is large.
Accordingly, breakup cross sections have high statistics. In diffractive-breakup—also
referred as exclusive breakup—reactions, both the halo neutron and the core are detected
in coincidence after the dissociation [35, 64]. Their observables usually depend on the
core-neutron relative physical quantity. In particular, an interesting observable is the
breakup distribution as a function of the core-neutron relative energy after dissociation.
Fig. 1.2.4 shows the experimental diffractive-breakup cross section of 11Be with (a) 208Pb
at 69A MeV and (b) 12C at 67A MeV as a function of the relative 10Be-n energy after
dissociation. These reactions have been measured at RIKEN [35, 65]. The collision on
a lead target is dominated by the Coulomb interaction, and thus by electric transitions.
This implies that the cross section is particularly large because the strengths of the electric
transitions Eλ depend on rλ and are thus enhanced by the halo structure. Moreover, the
breakup cross section of 11Be with lead is strongly related to the energy distribution of
the E1 strength from the ground state to the 10Be-n continuum [10, 35, 66, 67]. This is
particularly true for the very forward angles since they exclude most of the higher-order
Coulomb and nuclear-induced transitions [35, 66, 68, 69]. This can be understood in a
semiclassical view by the fact that forward angles correspond to large impact parameters
and are therefore mainly influenced by the Coulomb interaction.

At forward angles, the breakup distribution after the collision on a carbon target has
a similar shape as the one after the breakup on lead. As just seen, this is explained by
the fact that the Coulomb interaction dominates in this angular range. Nevertheless,
the statistics are smaller since the Coulomb interaction is minor on a light nucleus. On
the contrary, for a larger angular cutoff, the shape of the breakup distribution obtained
with a carbon target strongly differs from the one with a lead target, suggesting that
other reaction mechanisms take place in this nuclear-dominated reaction. In particular,
there are two peaks at Erel = 1.28 MeV and 2.86 MeV. These peaks are located at the

13



CHAPTER 1. PROBING HALO NUCLEI WITH REACTIONS

Figure 1.2.4: Relative 10Be-n energy distribution after the diffractive breakup
of 11Be with (a) 208Pb at 69A MeV and (b) 12C at 67A MeV. The open circles
correspond to data for the whole acceptance region [up to (a) 6◦ and (b) 12◦] and
the open diamonds to data for the selected forward angles [up to (a) 1.3◦ and (b)
0.5◦]. This figure is taken from Ref. [35].

energy of the resonant states 5/2+ and 3/2+ (see the spectrum of 11Be in Fig 1.1.3). The
widths of the peaks are of the order of the widths of the resonances Γ5/2+ = 100 keV
and Γ3/2+ = 122 keV [40]. These two peaks are less visible in the Coulomb-dominated
breakup distribution, because the 5/2+ and 3/2+ states cannot be reached by direct E1
transitions from the initial s ground state. In the collision with a carbon target, nuclear-
induced transitions populate these resonant states because they have a large single-particle
component.

Besides carrying information on the cluster structure inside the nucleus and the E1
strength function, Coulomb-dominated energy distributions are also used to infer radiative
capture rates that are of astrophysical interest [70, 71]. Indeed, if the Coulomb breakup
of two- or three-cluster nuclei is seen as resulting from an exchange of virtual photons
between the projectile and the target, it can be seen as the time-reversed reaction of the
radiative capture. Further studies [66, 67, 68, 69, 72, 73, 74] have shown that to extract
accurate capture rates and E1 strength functions, the interferences between the Coulomb
and nuclear interactions should be well accounted for.

These diffractive-breakup energy distributions are analysed in Chapters 3, 4 and 5. In
Chapter 3, I assess the accuracy of the corrections to the eikonal approximation by studying
the energy distribution after the diffractive breakup of 11Be on a carbon target at 20A
and 10A MeV. I also analyse how the dynamical correction to the eikonal approximation
developed in Chapter 4 reproduces the diffractive-breakup energy distributions of 11Be
measured at RIKEN. In the last Chapter, I study the influence of a resonance 5/2+ on the
energy distribution following the diffractive breakup of 11Be with 9Be at 60A MeV.
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1.2.6 Knockout cross sections
Knockout reactions of one-neutron halo nuclei correspond also to the dissociation of the
halo from the core but contrary to the diffractive breakup only the remaining core of the
halo nucleus is detected after the dissociation [9, 75, 76, 77, 78]. These so-called inclusive
reactions exhibit much higher statistics since the neutron is not measured. Hence they are
often favoured for the low intensities available at radioactive-ion beam facilities. Knockout
reactions are usually performed at high energy (between 50A MeV and 100A MeV) on
light targets. Typical observables are the parallel- and transverse-momentum distributions
of the remaining core [79].

If the reaction occurs at high-enough energy, the adiabatic approximation, which sees
the internal coordinates of the projectile as frozen during the collision, can safely be made.
Indeed, at high energy, the collision time is brief and the nucleons inside the projectile do
not have the time to rearrange. In this view, the momentum distribution of the remaining
core after the reaction is the same as the one that the core had inside the projectile prior
to the collision. According to the Heisenberg principle, a larger spatial extension of the
nucleus is associated with a narrow momentum distribution. These observables therefore
provide information on the core-neutron spatial distribution within the projectile and
should be surprisingly narrow for spatially-extended nuclei, such as halo nuclei.

The first measurement of momentum distribution of 9Li after the dissociation of 11Li
was made by Kobayashi et al. [80]. The authors have noted that both the transverse- and
parallel-momentum distributions of the core were particularly narrow, confirming that
11Li has a large root mean square radius and exhibits a halo structure. A few years later,
it was shown in Ref. [81] that the transverse-momentum distribution is more sensitive
to the reaction mechanisms than the parallel-momentum distribution. The authors of
Ref. [81] have also emphasized that the shape of the parallel-momentum distribution is
rather insensitive to the projectile-target interaction, confirming that this observable is a
reasonable probe of the projectile ground-state wave function.

Following the experiment of Kobayashi et al., a series of measurements have been done
on various exotic nuclei. Fig. 1.2.5 displays the parallel-momentum distribution of the
remaining core after the one-neutron knockout on a carbon target of isotopes in the light
sector of the nuclear chart. These measurements have been performed at GANIL [75]. We
can directly note that the distributions are narrower, when N = 8 and N = 14 are crossed.
These neutron numbers are associated with the filling of the p shell and the d5/2 sub-shell.
Such distributions bare therefore signs of shell structure. Moreover, 14B and 15C have
an enhanced one-neutron knockout cross sections, suggesting that these two isotopes are
particularly loosely bound and may exhibit a halo structure.

Because these distributions are sensitive to the ground-state wave function, these
observables can also be used as spectroscopic tool. This is illustrated in Fig. 1.2.6, which
displays the parallel-momentum distribution of 10Be in its 0+ ground state after the
one-neutron knockout of 11Be with 12C at 60A MeV. This experiment was measured at
the NSCL [76]. The curves are obtained within the eikonal model of reaction assuming
different orbital angular momenta l of the neutron. The theoretical calculations assuming
that the halo neutron is in an s wave are in good agreement with the experimental data.
This confirms the parity inversion of 11Be discussed previously.

As explained in Sec. 1.1.3, in an actual nucleus, several configurations contribute to
each state. In the analysis of knockout reactions, it is common to use the spectator core
model which approximates the theoretical cross sections σJπI

πc
c

th for a one-neutron removal
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Figure 1.2.5: Parallel-momentum distribution of the remaining core after the
one-neutron knockout of various isotopes on a carbon target. This figure is taken
from Ref. [75].

Figure 1.2.6: Parallel-momentum distribution of 10Be after the one-neutron
knockout of 11Be with 12C at 60A MeV. Only the cross section leading to the
ground state of 10Be is shown. The curves are calculations assuming that the
halo neutron in a s, p or d orbital. This figure is taken from Ref. [76].
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from the initial state Jπ of the halo nucleus to a final state Iπcc of the core by [9, 82]

σJ
πIπcc

th =
∑
lj

SJ
πIπcc

lj σsp(lj), (1.2.4)

where σsp are the cross sections calculated assuming a normalized single-particle wave
function describing the neutron bound to the core in the lj orbital. Al-Khalili has studied
in Ref. [83] the deviations from such an approximation by allowing couplings between
different single-particle states. He has shown that these couplings enhances the knockout
cross sections of 11Be by less than 9% and decreases 15C cross sections by less than 6%.
Because these deviations are relatively small, the spectator model (1.2.4) seems to be
reliable, at least for loosely-bound nuclei.

Using this spectator view, Aumann et al. have conducted an analysis of the distribution
of 10Be in its 0+ and 2+ states after the neutron is knocked out. They deduce that the
1/2+ ground state of 11Be is dominated by the single-particle component 0+ ⊗ s1/2 with
a small 2+ ⊗ d5/2 admixture [76]. They have also evaluated the total theoretical cross
section σth with [9, 82]

σth =
∑
Iπcc

σJ
πIπcc

th , (1.2.5)

where σJπI
πc
c

th (1.2.4) are obtained with the eikonal model of reaction and the spectroscopic
factors are predicted by shell model calculations. They have shown that this value is in
good agreement with the experimental data.

In Refs. [26, 27], Gade et al. have analysed for various nuclei the agreement between
knockout experimental data and the theoretical predictions obtained with the eikonal
model of reaction and the shell-model spectroscopic factors. Their systematic study is made
for both neutron- and proton-removal of loosely- and deeply-bound nucleons. They have
studied the ratio Rs = σexp/σth, called the quenching factor, between the experimental
cross section σexp summed over all final states of the core Iπcc and the corresponding
theoretical prediction σth (1.2.5). Assuming that the reaction model used for the analysis
is accurate, this factor should therefore indicate deviations from shell-model predictions
of the spectroscopic factor. In Fig. 1.2.7, Gade et al. plot the quenching factor inferred
from a one-neutron (red) [resp. one-proton (blue)] knockout as a function of the difference
∆S of the neutron [resp. proton] and proton [resp. neutron] separation energies, i.e,
∆S = Sn − Sp for one-neutron knockout experiments and ∆S = Sp − Sn for one-proton
knockout experiments. Because the asymmetry of the number of protons and neutrons
inside the nucleus is closely related to the separation energies, the nuclei located further
from ∆S = 0 are more asymmetric. As illustrated in Fig. 1.2.7 and noted by Gade et al.,
the quenching factor is strongly dependent on the asymmetry of the studied nucleus [26, 27].

The fact that the quenching factor is smaller than 1 is not surprising. Analyses of
other reactions, such as quasi-elastic electron scattering (e,e′p) [84, 85], (p,2p) and (p,pn)
reactions at 350A-400A MeV [86] and transfer reactions around 10A-30A MeV [28, 29, 87],
also predict a quenching factor around 0.6. The reduction of the quenching factor is
associated to the lack of nucleon-nucleon correlations within the shell model, which thus
tends to overestimate the single-particle orbital occupancy. However, the strong dependence
of the quenching factor on the asymmetry of the nucleus inferred from knockout data has
not been observed in the analyses of the other experiments [28, 86]. Part of this asymmetry
dependence might also be explained by the lack of nucleon-nucleon correlations within
the shell model. Indeed, if the shell model misses more correlations for deeply-bound
than loosely-bound nucleons, the deviations from the shell model should be greater for

17



CHAPTER 1. PROBING HALO NUCLEI WITH REACTIONS

Figure 1.2.7: Quenching factors obtained from various knockout reactions as
a function of the parameter ∆S, used as a measure of the asymmetry of the
number of neutron and proton. The red data points are inferred from one-neutron
knockout reaction and the blue points from the one-proton knockout. The black
squares are deduced from quasi-elastic electron scattering (e,e′p) [84, 85]. This
figure is taken from Ref. [26]

the knockout of a deeply-bound than a loosely-bound nucleon. A recent study [88] on
neutron-rich oxygen isotopes goes in that direction: it shows that when nucleon-nucleon
correlations are included, the spectroscopic strengths decrease for a larger separation
energy of the nucleon. However, it is not clear why such a reduction is not observed in
other reaction observables. Another recent study [89] also points out that the model of
reaction might also be at stake. In particular, the adiabatic treatment of the reaction
would not be appropriate for reactions involving deeply-bound nuclei with beam energies
smaller than 80A MeV.

Knockout cross sections are powerful probes of nuclei, since they carry information
about the size of the nucleus and can be used as a spectroscopic tool. Unfortunately, the
discrepancy with shell model predictions is still not well understood. The slope in Fig. 1.2.7
is still the object of numerous theoretical studies nowadays. In this thesis, I will try to
understand the upper left corner of the Fig. 1.2.7, i.e, why theoretical predictions and
experimental data agree well for loosely-bound nuclei. To do so, I analyse the sensitivity
of knockout cross sections of one-neutron halo nuclei to the description of the projectile
nuclear structure in Chapter 5. I also analyse the influence of dynamical effects on
parallel-momentum observables in Chapter 4.
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Chapter 2

Nuclear reaction theory

This thesis focuses on collisions involving a one-neutron halo nucleus with a target, and more
particularly on the elastic-scattering, breakup and knockout channels. Since one-neutron
halo nuclei exhibit a clear clusterized structure (see Chapter 1), they are often modelled
as two-body objects and their collision as a three-body problem [11]. Because solving this
system exactly can be heavy from a computational viewpoint, many approximations have
been developed [11]. The aim of this Chapter is to summarize the models used in this thesis
and their ranges of validity. To understand the three-body problem, notions of reaction
theory are needed. The first section thus focuses on simpler two-body collisions [44].
By describing the collision of two nuclei as two- or three-body problems, some reaction
channels are neglected. The optical model accounts for these channels through the use of
complex potentials and is exposed in the second section. Finally, in the third section, the
exact solutions of the three-body problem and some approximations are presented.

2.1 Two-body scattering
I consider a projectile P , of mass mP and charge ZP e, impinging on a target T , of mass
mT and charge ZT e. I assume both nuclei to be structureless and spinless, and their
interaction to be modelled by a central potential V . In the center-of-mass rest frame1,
their relative motion is described by the solution Ψ of the following stationary Schrödinger
equation [44] [

p2

2µ + V (r)
]

Ψ(r) = E Ψ(r), (2.1.1)

where r is the P -T relative coordinate, p the corresponding momentum, E the total energy
in this rest frame and

µ = mPmT

mP +mT

(2.1.2)

is the P -T reduced mass.
I consider first2 only the nuclear interaction simulated by a nuclear potential VN , i.e,

V = VN in Eq. (2.1.1), which respects [44]

lim
r→∞

r2VN(r) = 0. (2.1.3)

1See the removal of the center-of-mass motion in Appendix 10A of Ref. [90].
2The treatment of the Coulomb interaction will be introduced further in the Chapter.
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CHAPTER 2. NUCLEAR REACTION THEORY

T

P
r

k

ẑ
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Figure 2.1.1: Coordinate system: the projectile-target relative coordinate r is
expanded in its transverse b and longitudinal z components.

I am interested in the stationary scattering states, associated with positive-energy
solutions E = ~2k2/(2µ) of Eq. (2.1.1). These solutions are characterized by the initial
wave vector k and behave asymptotically as [44]

Ψk(r) −→
r→∞

eikr + fk(Ω)e
ikr

r
(2.1.4)

where Ω is the angle between the initial k and final k′ momenta. The equation (2.1.4) can
be seen as the superposition of a free “incoming” plane wave and a “outgoing” scattered
wave. The amplitude of the scattered wave deflected to an angle Ω is given by the function
fk, called the scattering amplitude. All the dependency on the potential is contained into
this scattering amplitude: if there is no potential, the solutions are plane waves and the
scattering amplitude is nil [44]. We can also note that the scattered wave has the same
wave number as the incident wave, i.e., |k′| = |k| = k. It results from the fact that I study
here elastic scattering and thus the total kinetic energy is conserved.

I consider in the following developments that the projectile propagates towards the
target with the momentum ~k = ~kẑ and velocity v = ~k/µ, where I choose the z-axis
along the incoming beam (see the coordinate system in Fig. 2.1.1). Moreover, since the
potential is assumed to be central, the dependency of the scattering amplitude on the
azimuthal angle can be removed. Accordingly, the solutions (2.1.4) become

Ψk(r) −→
r→∞

eikz + fk(θ)e
ikr

r
, (2.1.5)

where θ is the angle between ẑ and the direction of propagation of the scattered wave k̂′.
The scattering amplitude fk can be computed as [90, 91]

fk(θ) = 1
2π

µ

~2

〈
eik
′r
∣∣∣∣VN ∣∣∣∣Ψk

〉
(2.1.6)

= 1
2π

µ

~2 Tfi(θ), (2.1.7)

where the T -matrix elements Tfi are defined.
The elastic scattering cross section is directly obtained from the square modulus of

this amplitude [44]
dσ

dθ
= |fk(θ)|2. (2.1.8)

In the following, I present an exact method to compute this scattering amplitude—called
the partial-wave expansion—and the eikonal approximation.
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CHAPTER 2. NUCLEAR REACTION THEORY

2.1.1 Partial-wave expansion
The Schrödinger equation (2.1.1) can be rewritten as a function of the orbital momentum
operator L [44] [

− ~2

2µ

(
1
r

∂2

∂r2 r −
L2

~2r2

)
+ VN(r)

]
Ψ(r) = EΨ(r), (2.1.9)

where only the nuclear interaction is considered. In this method, the solutions of Eq. (2.1.9)
are expanded onto the eigenstates of L2 and Lz, called the spherical harmonics Y ml

l . The
partial waves hence read [44]

φlml(r) = 1
r
ul(r)Y ml

l (Ω), (2.1.10)

where l is the orbital angular momentum and ml is its projection.
The scattering states φklml , associated with positive-energy solutions, are characterized

by the wave number k and their radial component ukl are solutions of the radial Schrödinger
equation [44] [

d2

dr2 −
l(l + 1)
r2 − 2µ

~2 VN(r) + k2
]
ukl(r) = 0. (2.1.11)

These functions ukl tend asymptotically to [44]

ukl(r) −→
r→∞

cos[δl(k)]kr jl(kr) + sin[δl(k)]kr nl(kr), (2.1.12)

where δl are the nuclear phase shifts, jl and nl are the spherical Bessel functions of the
first and the second kind, respectively [92]. From these solutions, the scattering amplitude
can be determined [44]

fk(θ) = 1
2ik

+∞∑
l=0

(2l + 1)
[
e2iδl(k) − 1

]
Pl(cos θ), (2.1.13)

where Pl are Legendre polynomials [92].
Eq. (2.1.13) can also be written as a function of the nuclear S-matrix Sl, which relates

the initial and final state of the collision. It reads [44]

fk(θ) = 1
2ik

+∞∑
l=0

(2l + 1) [Sl(k)− 1]Pl(cos θ), (2.1.14)

with [44]
Sl(k) = e2iδl(k). (2.1.15)

Since the projectile and the target are charged, the Coulomb potential should also be
accounted for, which for pointlike particles reads

VC(r) = ZTZP e
2

4πε0r
, (2.1.16)

with ε0 the vacuum electric permittivity. Since this long-range potential deforms the initial
plane wave at large distance [first term of (2.1.5)], the scattering amplitude cannot be
computed with Eq. (2.1.14).
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CHAPTER 2. NUCLEAR REACTION THEORY

For a pure Coulomb potential, i.e., V = VC in Eq. (2.1.1), the stationary scattering
states behave asymptotically as [90]

ΨC
k(r) −→

|r−z|→∞
ei[kz+η ln k(r−z)] + fCk(θ)e

i(kr−η ln 2kr)

r
, (2.1.17)

where
η = ZTZP e

2

4πε0~v
(2.1.18)

is the Sommerfeld parameter. The Coulomb interaction distorts both the incoming and
the scattered waves through a logarithm function, varying slowly with the distance. The
factor fCk is called the Coulomb scattering amplitude and is given by [90]

fCk(θ) = − η

2k sin2 θ
2
e2i(σ0−η ln sin θ

2) (2.1.19)

with σ0 = arg Γ(1 + iη). (2.1.20)

When both the Coulomb and nuclear interactions are considered, i.e., V = VN + VC in
Eq. (2.1.1), the stationary scattering states behave asymptotically as [90]

Ψk(r) −→
r→∞

ΨC
k(r) + f add

k (θ)e
i(kr−η ln 2kr)

r
, (2.1.21)

where the additional scattering amplitude f add
k is given by [90]

f add
k (θ) = 1

2ik

∞∑
l=0

(2l + 1)e2iσl [Sl(k)− 1]Pl(cos θ). (2.1.22)

The Coulomb phase shifts σl are defined as [90]

σl = arg Γ(l + 1 + iη) (2.1.23)

= σ0 +
l∑

n=1
arctan η

n
. (2.1.24)

As in Eq. (2.1.8), the differential cross section is computed from the total scattering
amplitude [44, 90]

dσ

dθ
= |fCk(θ) + f add

k (θ)|2. (2.1.25)

Therefore, the calculation of the cross sections requires only the knowledge of the nuclear
phase shifts δl, which can be computed numerically, e.g. with a Numerov algorithm or with
the R-matrix method [93]. In practice, the resolution of all radial equations associated
with each l is not feasible, the scattering amplitude (2.1.22) is approached by a finite sum.
Truncating this sum is valid thanks to the presence of the centrifugal term l(l + 1)/r2 in
Eq. (2.1.11). This term strongly suppresses the radial wave function when [90]

~2

2µa2 l(l + 1)� E, (2.1.26)

where a is the range of the nuclear potential. The nuclear phase shifts are therefore negligible
for large l. Since the number of radial equations to solve and thus the computational time
increase with the energy, the partial-wave expansion is mostly used at low energies.
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CHAPTER 2. NUCLEAR REACTION THEORY

2.1.2 Eikonal approximation
The eikonal approximation [18] is based on the fact that, at sufficiently high energy, the
projectile is only slightly deflected by the target and the wave function does not differ
much from the initial plane wave [first term of (2.1.5)]. The eikonal model factorizes this
plane wave out of the wave function [91]

Ψk(r) = eikzΨ̂(r) (2.1.27)

which modifies Eq. (2.1.1) into [91]

2ik∂Ψ̂
∂z

(r) + ∆rΨ̂(r)− 2µ
~2 VN(r)Ψ̂(r) = 0, (2.1.28)

where only the nuclear interaction is considered.
The eikonal approximation assumes that the function Ψ̂ varies smoothly with r and

neglects its second derivatives in front of its first derivative [91]

|∆rΨ̂(r)| � k

∣∣∣∣∣ ∂∂z Ψ̂(r)
∣∣∣∣∣ . (2.1.29)

It simplifies the Schrödinger equation (2.1.1) into [91]

∂Ψ̂(r)
∂z

= − i

~v
VN(r)Ψ̂(r). (2.1.30)

Note that by neglecting the derivatives of the wave function along the transverse coordinate
b (see Fig. 2.1.1), part of the interference between the neighbouring bs is missing in the
eikonal approximation.

Eq. (2.1.30) can be solved analytically and the eikonal solutions read [91]

Ψeik
k (b, z) = eikze

− i
~v

∫ z
−∞ dz′ VN (r′)

, (2.1.31)

where r′ depends on z′. They can be interpreted semiclassically as the projectile following a
straight-line trajectory at constant impact parameter b and accumulating a phase through
its interaction with the target during the collision. Asymptotically, these solutions behave
as [91]

Ψeik
k (b, z) −→

z→+∞
eikzeiχ

N (b) (2.1.32)

with χN(b) = − 1
~v

∫ +∞

−∞
dz VN(r) (2.1.33)

the nuclear eikonal phase.
The eikonal scattering amplitude is obtained with Eqs. (2.1.6) and (2.1.31)

fk(θ) = µ

2π~2

∫
dr e−iq⊥b

∫ ∞
−∞

dz e−iqzzVN(r)e
i
~v

∫ z
−∞ dz′ VN (r′)

, (2.1.34)

where q⊥ and qz are respectively the transverse and longitudinal components of the
transferred momentum ~q = ~(k′−kẑ). Its norm is given by ~q = 2~k sin θ

2 (see coordinate
system in Fig. 2.1.1). Since the eikonal model assumes that the wave function does not
differ much from a plane wave, the transferred momentum is approximated to be purely
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transverse q ≈ q⊥ and the exponential depending on qzz is neglected. This corresponds
to a small-angles approximation. Thereby, the scattering amplitude becomes [91]

fk(θ) ≈ −ik
∫ ∞

0
b db J0(qb)

[
eiχ

N (b) − 1
]
, (2.1.35)

where J0 is a Bessel function [92] and the relation (9.1.21) of Ref. [92] is used. The main
advantage of this model is that the whole information about the collision is contained
within the eikonal phases, which are easily computed from the nuclear potential.

Similarly to the partial-wave expansion S-matrix (2.1.15), the nuclear eikonal S-matrix
Seik can be defined and the scattering amplitude (2.1.35) is written as [91]

fk(θ) = −ik
∫ ∞

0
b db J0(qb)

[
Seik(b)− 1

]
, (2.1.36)

with
Seik(b) = eiχ

N (b). (2.1.37)
When the Coulomb potential (2.1.16) is considered, the eikonal phase (2.1.33) diverges

logarithmically. To cope with this issue, the Coulomb interaction is accounted for by
adding to the nuclear eikonal phase χN (2.1.33) [91]

χCPT (b) = 2η ln (kb) (2.1.38)

which leads to the exact Coulomb scattering amplitude.
The eikonal scattering amplitude considering both the Coulomb and a short-range

interactions reads [91]

fk(θ) = fCk(θ)− ik
∫ ∞

0
b db J0(qb)eiχCPT (b)

[
Seik(b)− 1

]
, (2.1.39)

where fCk is the Coulomb scattering amplitude (2.1.19). The eikonal scattering amplitude
is thus simply obtained by an integral over all impact parameters which depends on
the eikonal S-matrix. Note that both the scattering amplitudes of the partial-wave
expansion (2.1.25) and of the eikonal model (2.1.39), are given by the sum of a Coulomb
term and an additional term which depends on both the short-range nuclear interaction
and the Coulomb potential.

This high-energy model holds only when the projectile is slightly deflected by the
target, and the deviations from the incoming plane wave are small. In Chapter 3, different
corrections aiming to extend the range of validity of the eikonal approximation towards
lower energies are studied. They are all based on the idea of improving the P -T nuclear
and Coulomb deflections within the eikonal model.

2.2 The optical model
So far, the elastic-scattering process is assumed to be the only possible outcome of the
collision. However, other channels such as breakup or rearrangement reactions are open,
especially between composite projectiles and targets such as nuclei. The optical model
simulates these inelastic reactions as absorption from the elastic channel and its use implies
a simple modification of the nuclear potential. It is based on the same idea as the complex
refractive index in optics, which simulates the absorption of photons in transparent media.
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CHAPTER 2. NUCLEAR REACTION THEORY

Thus, the optical model simulates the other channels by a complex scattering potential,
called optical potential.

These optical potentials are formally derived in Ref. [94], where it is shown that they
are non-local and energy-dependent. This non-locality arises from the antisymmetrization
of the nuclei many-body wave functions and from the couplings between the different
channels [94]. Because non-locality is difficult to treat, optical potentials are often
parametrized as local interactions3. The energy dependency is usually not explicitly taken
into account within the reaction model. In this thesis, the optical potentials are assumed
local and their energy dependency is not treated explicitly in the reaction model.

These potentials are given by the sum of a nuclear VN and Coulomb VC potentials

V (r) = VN(r) + VC(r). (2.2.1)

The nuclear part is often parametrized by a Woods-Saxon form

VN(r) = −VR fWS(r, RR, aR)− i WI fWS(r, RI , aI) + i 4aDWD

d

dr
fWS(r, RD, aD), (2.2.2)

where

fWS(r, RX , aX) = 1

1 + e
r−RX
aX

. (2.2.3)

This Wood-Saxon shape is chosen for phenomenological potentials since it reproduces
roughly the densities of nuclear matter [57]. The radii RR, RI and RD depend thus on the
size of both interacting nuclei. The parameters aR, aI and aD are the diffusenesses of the
distributions and VR, WI and WD are the depths. The Coulomb interaction VC is often
described by the potential of a uniformly charged sphere of radius RC , which reads

VC(r) = ZPZT
e2

4πε0
×


(

3
2−

r2

2R2
C

)
1
RC

for r ≤ RC

1
r

for r ≥ RC

(2.2.4)

Usually, all parameters of the nuclear and Coulomb potentials are fit to reproduce elastic-
scattering data.

The effect of such complex potentials can be understood with the continuity equation.
With a complex interaction, the probability current [90]

J = 1
2µ

[
Ψ∗k

(
pΨk

)
+ Ψk

(
pΨk

)∗]
(2.2.5)

does not verify the equation of continuity. Indeed, since the Hamiltonian is no longer
Hermitian, its divergence is non-zero and is given by [90]

div J(r) = 2
~

Im{V (r)}|Ψk(r)|2, (2.2.6)

where Ψk is a stationary scattering state, solution of the Schrödinger equation (2.1.1)
using an optical potential. Because we want to model absorption from the elastic-scattering

3Recent studies have shown that the non-locality of the nuclear force affects significantly transfer
reactions [95, 96].
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channel, the divergence should be negative: the number of scattered particles should be
inferior to the number of incident particles. Therefore, the imaginary part of the potential
Im{V } should be negative.

With a complex scattering potential, the nuclear phase shifts δl (2.1.12) and the
nuclear eikonal phases χN (2.1.33) are complex. In both models, it is clear that the
S-matrices, respectively (2.1.15) and (2.1.37), are no longer unitary. The contributions of
each l in the partial-wave expansion or b in the eikonal model to the respective scattering
amplitudes (2.1.22) and (2.1.39) are diminished. This supports the interpretation that a
complex potential models absorption from the elastic channel.

2.3 Three-body reactions

2.3.1 Three-body model of the reaction
I now consider the collision of a one-neutron halo nucleus projectile P with a target T . As
mentioned in Chapter 1, one-neutron halo nuclei have a very clusterized structure and
they can be modelled as two-body objects [7], composed of a core c of mass mc and charge
Zc and a loosely-bound neutron n of mass mn. The number of mass, the mass and the
charge of the projectile are denoted respectively A, mP = mc +mn and ZP = Zc. I assume
here all particles to be structureless and the spins of the target and the core to be nil. The
spin of the neutron is considered and denoted I.

In this simplified view, the structure of the halo nucleus is thus described by the
internal single-particle Hamiltonian [11, 15, 38]

hcn = p2

2µcn
+ Vcn(r), (2.3.1)

where p and r are respectively the c-n relative momentum and coordinate (see coordinate
system in Fig. 2.3.1), µcn = mcmn/(mc + mn) is the c-n reduced mass and Vcn is a real
effective potential simulating the c-n interaction. In this thesis (except in Chapter 5), the
c-n potential is composed of a central term V0 and a spin-orbit potential

Vcn(r) = V0(r) + L · I
~2 VLI(r), (2.3.2)

where L and I are respectively the orbital and spin angular momentum operators. The
central term is parametrized as a purely real Woods-Saxon potential (2.2.2)–(2.2.3) and
the spin-orbit term as

VLI(r) = VLS
1
r

d

dr
fWS(r, RR, aR) (2.3.3)

with the Woods-Saxon function fWS (2.2.3).
The internal Hamiltonian is diagonalized in the basis coupling the orbital angular

momentum L and the spin of the neutron I. The basis states are the common eigenstates
of the set of operators L2, I2 J2 and J z, with the total angular momentum defined as [90]

J = L + I. (2.3.4)

In the coupled basis, the eigenstates φljm are associated with the quantum numbers of the
orbital angular momentum l, the total angular momentum j and its projection m. Since
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Figure 2.3.1: Coordinates of the three-body system: the internal coordinate of
the projectile r ≡ (s, z), the projectile-target relative coordinate R ≡ (b, Z), the
core-target relative coordinate RcT , the fragment-target relative coordinate RnT

and their transverse components bcT and bnT .

the internal Hamiltonian is invariant under rotation, the eigenstates can be expressed as
the product of a radial function and a spin-angular part [90]

φljm(r) = 1
r
ulj(r) 〈Ωr|ljm〉 , (2.3.5)

with Ωr the angular part of r. The spin-angular part is related to the eigenstates of the
operator sets {L2,Lz} and {I2, Iz} through [90]

〈Ωr|ljm〉 =
+l∑

ml=−l

+I∑
ν=−I

(lImlν|jm)Y ml
l (Ωr) |Iν〉 (2.3.6)

where ml and ν are respectively the projection of l and I.
As mentioned in Secs. 1.1.2 and 2.1.1, the eigenvalues can be positive or negative. The

negative energies Enlj are discrete and correspond to bound states, which are characterized
by the number of nodes n of their radial wave function. Their radial part is normalized
and behaves asymptotically as [15]

unlj(r) −→
r→∞

bnlj i κnlj h
(1)
l (iκnljr) (2.3.7)

where bnlj is the single-particle asymptotic normalization coefficient (SPANC), κnlj =√
2µcn|Enlj|/~2 and h(1)

l is a modified spherical Bessel function of the third kind [92]. As
seen in Chapter 1, the SPANC bnlj is related to the ANC Clj (1.1.8) of the c-n overlap
function through Eq. (1.1.11).

The positive-energy part of the spectrum is continuous and describes the states in which
the neutron is not bound to the core. These states φkljm are associated with the c-n wave
number k and the energy E = ~2k2/(2µcn). Their radial parts ukl behave asymptotically
as [44]

uklj(r) −→
r→∞

cos[δlj(k)]kr jl(kr) + sin[δlj(k)]kr nl(kr), (2.3.8)

with δlj the phase shifts, jl and nl the spherical Bessel functions of the first and the second
kind, respectively [92].
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As usual in reaction theory, I neglect the structure of the target and simulate its
interaction with the projectile constituents c and n by local optical potentials VcT and
VnT (2.2.1), respectively [11, 15, 38]. After removing the center-of-mass contribution (see
Refs. [97, 98]), the P -T relative motion is described by the three-body wave function Ψ,
solution of the Schrödinger equation [11, 15, 38][

P 2

2µ + hcn + VcT (RcT ) + VnT (RnT )
]

Ψ(R, r) =EtotΨ(R, r), (2.3.9)

where P and R are respectively the P -T relative momentum and coordinate (see Fig. 2.3.1)
and µ is the P -T reduced mass (2.1.2). The c-T and n-T coordinates, respectively RcT

and RnT are related to R and r through

R = mc

mP

RcT + mn

mP

RnT (2.3.10)

and r = RnT −RcT . (2.3.11)

Eq. (2.3.9) is solved with the initial condition that the projectile is in its ground
state φn0l0j0m0 and is impinging on the target with a momentum K = KẐ and velocity
v = ~KẐ/µ along the beam direction, that I choose to be the Z axis (see Fig. 2.3.1),
i.e., [11, 15, 38]

Ψ(m0)(R, r) −→
Z→−∞

exp(iKZ + · · ·) φn0l0j0m0(r). (2.3.12)

where the “· · · ” reflects the fact that long-range interactions distort the incoming plane
wave even at large distance. Accordingly, the total energy Etot in Eq. (2.3.9) is related
to the energy of the projectile ground state En0l0j0 and the initial P -T momentum ~K
through

Etot = En0l0j0 + ~2K2

2µ . (2.3.13)

2.3.2 Cross sections
The cross sections can be calculated with the T -matrix formalism [97, 99], which requires
the knowledge of the three-body wave function Ψ, solutions of the Schrödinger equation
(2.3.9) with (2.3.12) as initial condition. As explained in Chapter 1, I focus in this thesis
on three channels: the elastic scattering, the diffractive breakup and the knockout.

The elastic scattering corresponds to the deflection of the projectile to a certain angle
Ω. The T -matrix element for the elastic scattering of a one-neutron halo nucleus in the
direction K ′ ≡ (K ′,Ω) reads [97, 99]

Tfi(Ω) =
〈
eiK

′Rφn0l0j0m′0

∣∣∣∣VcT + VnT

∣∣∣∣Ψ(m0)
〉
. (2.3.14)

where m′0 is the final projection of the total angular momentum of the ground state. Since
the projectile stays in its initial state, the energy conservation imposes K ′ = K. The
elastic-scattering cross section from an initial state with a projection m0 to a final state
with m′0 can be obtained through Eqs. (2.1.7)–(2.1.8).

The diffractive breakup of one-neutron halo nuclei corresponds to the dissociation of
the halo neutron from the core. In this exclusive process, both fragments survive the
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collision and typical observables depend on a c-n relative quantity, e.g., c-n relative energy
or c-n relative momentum. The T -matrix element for the diffractive breakup is given
by [97, 99]

Tfi(K ′,k) =
〈
eiK

′Rφ
(−)
kν

∣∣∣∣VcT + VnT

∣∣∣∣Ψ(m0)
〉
, (2.3.15)

where K ′ ≡ (K ′,Ω) is the final wave vector between the target and center-of-mass of
P , and φ

(−)
kν is an incoming stationary scattering state characterized by the final c-n

wave vector k = (k,Ωk) and the spin projection ν. The partial-wave expansion of these
stationary scattering states φ(−)

kν depend directly on the wave functions of the c-n continuum
φkljm (2.3.5), i.e., the eigenfunctions of the Hamiltonian (2.3.1) with positive eigenvalues.
They read [97]

φ
(−)
kν = 4π

k

+∞∑
l=0

l+I∑
j=|l−I|

+j∑
m=−j

(lIm− νν|jm)Y m−ν∗
l (Ωk)e−i[δlj(k)+lπ/2]φkljm(r). (2.3.16)

The diffractive breakup cross section as a function of Ω, the deflection angle of the
center-of-mass of P , and k can be obtained as [97, 99]

dσbu

dkdΩ = 1
(2π)5

µK ′

~3v
|Tfi(K ′,k)|2. (2.3.17)

There are two possible processes that contribute to the knockout reaction: the diffractive
breakup, where the neutron survives the collision, and the stripping, where the neutron is
absorbed by the target. Consequently, the stripping cross section has to account for all
possible absorption channels of the neutron with the target. In Ref. [100], Hussein and
McVoy derive this cross section assuming that the core acts as a spectator during the
reaction, i.e., it can only scatter with the target. With this approximation and the use of
a closure relation, they show that the stripping cross section as a function of the deflection
angle of the core, ΩcT , and its energy EcT reads [100]

dσstr

dΩcTdEcT
= 2

~v
µcTKcT

(2π)3~2

〈
ρ(+)
n

∣∣∣−Im{VnT}
∣∣∣ρ(+)
n

〉
(2.3.18)

where
ρ(+)
n (RnT ) =

∫
dRcT ζ

(−)∗
K ′

cT
(RcT )Ψ(m0)(R, r), (2.3.19)

K ′
cT ≡ (KcT ,ΩcT ) is the final c-T momentum,KcT =

√
2µcTEcT/~2 and µcT = mcmT/(mc+

mT ) is the c-T reduced mass. The wave function ζ(−)
K ′

cT
is an incoming scattering state of

the c-T system. This distorted wave function is solution to Eq. (2.1.1) applied to the c-T
system, i.e., with the potential VcT and energy EcT .

2.3.3 Solving the three-body Schrödinger equation

2.3.3.1 Exact solution

As just seen, the collision of a one-neutron halo nucleus with a target is modelled as a
three-body problem, composed of the core c, the halo neutron n and the target T . Within
this framework, the reaction observables depend directly on the three-body wave function,
describing the relative motion between the fragments. The exact solution of the three-body
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Figure 2.3.2: Three different Jacobi sets and their coordinates (Ri, ri) with
i = 1, 2, 3. The first Jacobi set corresponds to the coordinates that are used in
the rest of this Chapter, (R1, r1) = (R, r) (see Fig. 2.3.1).

problem has to consider all possible reaction channels between these three objects. The
coordinates defined previously (see Fig. 2.3.1) are only convenient for the elastic scattering
and the breakup of the projectile. Indeed, describing the asymptotic condition of a c-T or a
n-T bound state in this set of coordinates is numerically challenging, when not impossible.

To decouple these reactions channels and to express properly their asymptotic behaviour,
the Jacobi sets (Ri, ri) with i = 1, 2, 3 (see Fig. 2.3.2) can be used. The first Jacobi set is
the same as the one used so far (R1, r1) = (R, r) (see Fig. 2.3.1). The second and third
Jacobi sets are convenient to describe n-T and c-T bound states, respectively. Faddeev [12]
has suggested to write the three-body wave function as a linear combination of three
functions ψ(i) expressed in each Jacobi set

Ψexact =
3∑
i=1

ψ(i)(ri,Ri). (2.3.20)

Using this definition, the Schrödinger equation (2.3.9) transforms into a set of three coupled
equations [12, 15]

(
Etot − P1

2

2µ −
p12

2µcn − Vcn
)
ψ(1) = Vcn

(
ψ(2) + ψ(3)

)
(
Etot − P2

2

2µ2
− p22

2µnT − VnT
)
ψ(2) = VnT

(
ψ(1) + ψ(3)

)
(
Etot − P3

2

2µ3
− p32

2µcT − VcT
)
ψ(3) = VcT

(
ψ(1) + ψ(2)

) (2.3.21)

where Pi and pi are the momentum corresponding to the coordinates Ri and ri, respectively.
The reduced masses appearing in Eq. (2.3.21) are defined as µ2 = (mn+mT )mc/(mP +mT ),
µnT = mnmT/(mn+mT ) and µ3 = (mc+mT )mn/(mP +mT ). Because the three functions
ψ(i) are coupled, they are all influenced by the different channels. Therefore, the description
of one channel requires the knowledge of all three functions [15].

Nowadays, different groups solve this system of equations for problems describing up to
five bodies (e.g. see Refs. [13, 101]). The main drawbacks are the numerical cost and the
limitation to nuclei with low charges. Indeed, the infinite range of the Coulomb potentials
makes the decoupling of the asymptotics of ψ(i) challenging.

2.3.3.2 Continuum-Discretized Coupled Channels

The Continuum-Discretized Coupled Channels (CDCC) method [17] approaches the
solution of the three-body system within the first Jacobi set (R1, r1) = (R, r). This ap-
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proximation holds if there are no c-T and n-T bound states or resonances in the low-energy
part of the c-T or n-T continuum [102]. Consequently, the Faddeev equations (2.3.21) are
reduced to Eq. (2.3.9).

Since the effective potential Vcn is real, the internal Hamiltonian (2.3.1) is Hermitian
and its eigenstates φnljm and φkljm form a complete basis of the vectorial space of the
projectile internal coordinate r. This basis is particularly well suited to describe the
elastic-scattering and breakup channels of the projectile. The idea of CDCC is to expand
the three-body wave function onto these eigenstates, composed of a finite number of bound
states φnljm and a continuum of unbound states φkljm [11, 15, 102]

Ψ(R, r) =
∑
nljm

φnljm(r)ψnljm(R) +
∑
ljm

∫ ∞
0

dE φkljm(r)ψkljm(R). (2.3.22)

Asymptotically, the coefficients of this expansion ψnljm and ψkljm describe the projectile-
target relative motion. In particular, the first sum of Eq. (2.3.22) corresponds to the elastic
and inelastic outcomes of the collision while the second represents the breakup channel.

The main difficulty of this basis is due to the continuum in energy, i.e., the integral on
E in Eq. (2.3.22), which is not practical when inserted into the three-body Schrödinger
equation (2.3.9). The idea of the CDCC method is to discretize this continuum in small
intervals, called bins, and to truncate the corresponding sum. There are several ways
to achieve this (see Refs. [14, 15]), but the most common one is the average method.
In this method, the radial wave functions ũilj of each bin i defined by [ki−1, ki] form
a square-integrable basis. These functions are constructed through a superposition of
stationary scattering states [11, 15, 102]

ũilj(r) =
√

2
πNi

∫ ki

ki−1
dk wi(k)uklj(r) (2.3.23)

where wi is a weight function, Ni =
∫ ki
ki−1

dk |wi(k)|2 is a normalization constant and uklj
is the radial part of a c-n scattering state (2.3.8). The discrete energies Ẽilj associated to
the bin wave functions φ̃iljm are given by

Ẽilj =
〈
φ̃iljm

∣∣∣hcn∣∣∣φ̃iljm〉 . (2.3.24)

With this discretization, the three-body wave function (2.3.22) becomes [11, 15, 102]

ΨCDCC(R, r) =
∑
p

φp(r)ψp(R) (2.3.25)

where φp represent either bound states p = nljm (φnljm with Enlj < 0) or a bin state p =
iljm (φ̃iljm with Ẽilj > 0). Using the expansion (2.3.25), the Schrödinger equation (2.3.9)
transforms into a set of coupled equations [11, 15, 102][

−P 2

2µ + Vpp(R)− (Etot − Ep)
]
ψp(R) +

∑
p 6=p′

Vpp′(R)ψp′(R) = 0, (2.3.26)

where Ep = Enlj for bound states and Ep = Ẽilj for bin states. The potentials Vpp′(R) =
〈φp|VnT + VcT |φp′〉 couple bound and continuum states.

The coefficients ψp are also expanded onto the spherical harmonics Y ML
L [11, 15, 102]

ψp(R) =
∑
LML

iLχpL(R)Y ML
L (ΩR), (2.3.27)
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where L is the orbital angular momentum associated with the P -T motion and ML is its
projection. The three-body wave function is thus described by the total angular momentum
Jtot resulting from the coupling of L and j. By inserting the expansion (2.3.27) into
Eq. (2.3.26), the CDCC partial-wave coupled equations for each Jtot become [11, 15, 102]{

− ~2

2µ

[
d

dR2 −
L(L+ 1)

R2

]
+ V Jtot

αα (R)− (Etot − Ep)
}
χJtot
α (R)

+
∑
α 6=α′

iL
′−LV Jtot

αα′ (R)χJtot
α′ (R) = 0 (2.3.28)

where α represents the channel characterized by the quantum numbers {p, L} and
V Jtot
αα′ (R) =

〈
[φpYL]Jtot

∣∣∣VnT + VcT
∣∣∣[φp′YL′ ]Jtot

〉
are the coupling potentials. The equa-

tions (2.3.28) are solved with the boundary conditions [11, 15, 102]

χJtot
α (R) −→

R→∞

1
√
vα

[
Iα(KαR)δαα0 −Oα(KαR)SJtot

αα0

]
(2.3.29)

where Iα = Gα − i Fα and Oα = I∗α are respectively an incoming and outgoing Coulomb
function [92], Kα =

√
2µ(Etot − Ep)/~2 and vα = ~Kα/µ are the asymptotic momentum

and velocity in the channel α and α0 is the initial channel, i.e., at Z → −∞ [15]. The
S-matrix elements SJtot

αα0 , defined in this boundary condition, represent the amplitude of
populating the channel α from the initial channel α0. The elastic-scattering and breakup
cross sections are computed from these S-matrix elements and their expressions can be
found in Ref. [15].

This method is fully quantal and is thus very accurate [103, 104, 105]. Contrary to
the Faddeev formalism, it does not have a restriction on the charge of the nuclei involved
in the reaction. The main drawback of CDCC is that the numerical cost scales with the
energy since higher partial waves L of ψp (2.3.27) have to be considered and thus more
coupled equations (2.3.28) have to be solved. It also has convergence issues at energies
below 10A MeV due to the discretization of the continuum [103].

2.3.3.3 Dynamical Eikonal Approximation

Similarly to the two-body case (see Sec. 2.1.2), the eikonal model [18] reflects the fact that
at high-energy the projectile is only slightly deflected by the target and thus their relative
wave function does not differ much from the initial plane wave (2.3.12). By factorizing
this plane wave out of the wave function

Ψ(R, r) = eiKZ Ψ̂(R, r), (2.3.30)

and neglecting the second derivative of Ψ̂ in front of its first derivative, the Schrödinger
equation (2.3.9) modifies into [97, 106]

i~v
∂

∂Z
Ψ̂DEA(R, r) =[hcn − En0l0j0 + VcT (RcT ) + VnT (RnT )]Ψ̂DEA(R, r). (2.3.31)

This equation corresponds to the Dynamical Eikonal Approximation (DEA) [97, 106].
It is equivalent to a time-dependent Schrödinger equation which considers straight-line
trajectories, i.e, at constant impact parameter with a constant velocity v and with t = Z/v.
However, it is important to emphasize that no semiclassical approximation has been made
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and therefore b and Z are quantum variables. The main difference between the DEA and
a time-dependent model is that some interferences between the neighbouring bs are taken
into account within the DEA. Note that it still misses part of these interferences since the
second derivatives along the coordinate b is neglected.

Because this partial-derivative equation (2.3.31) has a similar form as a time-dependent
Schrödinger equation, it can be computed with similar numerical methods. In this work,
it is solved through a numerical evolution calculation as a function of the transverse
coordinate b [107, 108]. The observables are computed from the asymptotic behaviour
of the wave function, i.e., at Z → +∞. The derivation of the DEA cross sections can be
found in Refs. [97, 109]; I present the main steps in Appendix A. This model reproduces
well breakup data above 40A MeV, where the P -T deflection is small [107, 109]. It also
provides energy distribution of breakup on a heavy target at 68A MeV close to CDCC
calculations [110]. Compared to CDCC, the DEA has a reduced numerical cost.

2.3.3.4 Usual eikonal approximation

The usual eikonal model [18] makes a subsequent approximation: the adiabatic or sudden
approximation, which sees the internal coordinates of the projectile as frozen during the
collision. This approximation only holds at high energy, where the collision occurs in
a brief time, and the nucleons inside the projectile do not have the time to rearrange.
The internal Hamiltonian is therefore replaced by the energy of the initial state of the
projectile (2.3.12), i.e., hcn ≈ En0l0j0 in Eq. (2.3.31). The eikonal equation reads [18]

i~v
∂

∂Z
Ψ̂eik(R, r) =[VcT (RcT ) + VnT (RnT )]Ψ̂eik(R, r). (2.3.32)

The solutions satisfying Eq. (2.3.32) can be derived analytically as in the two-body
case (2.1.31), they read [11]

Ψeik(m0)(R, r) = eiKZe
− i

~v

∫ Z
−∞ dZ′ VcT (R′cT )+VnT (R′nT )

φn0l0j0m0(r) (2.3.33)

where R′(c,n)T =
√
b2

(c,n)T + Z ′2. Both elastic-scattering and breakup cross sections, derived
in Appendix A, are computed from the asymptotic behaviour of Ψeik which reads [11]

Ψeik(m0)(R, r) −→
Z→+∞

eiKZeiχcT (b,s)+iχnT (b,s)φn0l0j0m0(r), (2.3.34)

where
χ(c,n)T (b, s) = − 1

~v

∫ +∞

−∞
dZ V(c,n)T (b(c,n)T , Z) (2.3.35)

are respectively the c-T and n-T eikonal phases. Note that the eikonal phases only depend
on the transverse part of R and r, respectively b and s (see Fig. 2.3.1). Compared to
more elaborate models, e.g. CDCC and the DEA, the eikonal model exhibits an additional
symmetry across the plane of the projectile’s internal transverse coordinate s, as briefly
discussed in the Appendix of Ref. [111]. I study an impact of this additional symmetry in
Chapter 4.

As in the two-body case (see Sec. 2.1.2), the eikonal solutions (2.3.33) can be interpreted
semiclassically as the projectile following a straight-line trajectory at constant impact
parameter b and accumulating a phase through its interaction with the target during
the collision. This model is powerful because the eikonal phases have simple expressions,
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depending only on the optical potentials, and the cross sections are evaluated directly
from these phases. Unfortunately, it is restricted to high energies, above 60A MeV where
the P -T deflection is small and the adiabatic approximation holds. As mentioned above,
I study in Chapter 3 the extension of this model to low energies through the use of
corrections to the P -T Coulomb and nuclear deflections.

2.3.3.5 Coulomb-corrected eikonal approximation

The eikonal model has another drawback, it is incompatible with the infinite range of the
Coulomb interaction, causing two divergences when this interaction becomes significant.
The logarithmic divergence of the eikonal phase in the P -T elastic scattering has already
been explained in Sec. 2.1.2. This can be solved by using the phase χCPT (2.1.38) leading
to the exact Coulomb scattering amplitude. The second divergence is due to the adiabatic
treatment of the collision, which does not hold for long-range interactions as the collision
time can then no longer be considered short. To explain this divergence, I write the eikonal
phases (2.3.35) as a sum of Coulomb and nuclear contributions [112]

χcT (b, s) + χnT (b, s) = χCPT (b) + χC(b, s) + χN(b, s), (2.3.36)

where χN is the nuclear part of the eikonal phases. The phase χC corresponds to the
Coulomb tidal force responsible for the Coulomb breakup, it depends on the difference be-
tween the c-T and P -T Coulomb interactions. It reads for a one-neutron halo nucleus [112]

χC(b, s) = −η
∫ +∞

−∞
dZ

( 1
RcT

− 1
R

)
(2.3.37)

= −η ln
(

1− 2mn

mP

b̂ · s
b

+ m2
n

m2
P

s2

b2

)
. (2.3.38)

The divergence occurs in the integration of the breakup matrix elements, which are
computed from the operators (see Appendix A)

eiχ
C
PT eiχ

C

eiχ
N = eiχ

C
PT

[
1 + i χC − 1

2
(
χC
)2

+ · · ·
]
eiχ

N (2.3.39)

When integrated in b, the first-order term χC causes a divergence due to its slow decrease
in b [112].

In Ref. [23], they propose to use of an upper cutoff bmax, limiting the bs in the
computation of the breakup cross sections. It is chosen as

bmax = ~v
2|En0l0j0|

, (2.3.40)

to ensure that the characteristic time of excitation ~/|En0l0j0| is shorter than the time of
the collision b/v. The authors of Ref. [23] also introduce a factor 2. This cutoff method is
artificial and does not account for the influence of the wave function at large bs, which
play an important role for Coulomb-dominated collisions, viz. on heavy targets.

Alternatively to the cutoff method, the authors of Ref. [24] have proposed to replace
within the breakup matrix element (2.3.39) the diverging Coulomb first-order term χC by
the Coulomb first-order-perturbation approximation χCFO [24]

eiχ
C
PT eiχ

C

eiχ
N → eiχ

C
PT

(
eiχ

C − iχC + iχCFO

)
eiχ

N

. (2.3.41)
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The first-order-perturbation theory solves perturbatively a time-dependent Schrödinger
equation considering straight-line trajectories and a pure Coulomb interaction [98, 109].
Because this theory does not rely on the adiabatic approximation, the Coulomb first-order-
perturbation approximation does not diverge. It reads

χCFO(E, b, r) = −η
∫ +∞

−∞
dZ ei

ωZ
v

( 1
RcT

− 1
R

)
(2.3.42)

where ω = (E − En0l0j0)/~.
For one-neutron halo nuclei, the dipole term is dominant [113], and the first-order-

perturbation Coulomb approximation can be approximated by its dipole contribution
χ
C,(λ=1)
FO (see its derivation in Appendix B), i.e., [112]

χCFO(E, b, r) ≈ χ
C,(λ=1)
FO (E, b, r) (2.3.43)

= −2ηω
v

mn

mP

[
K1

(
ω

v
b
)

b̂ · s + iK0

(
ω

v
b
)
z
]
, (2.3.44)

where K0 and K1 are modified Bessel functions [92]. In Ref. [112], the authors show that
this model is efficient to describe Coulomb-dominated breakup of one-neutron halo nuclei
at energies around 70A MeV. In this thesis, I adopt for this model the name chosen in
Ref. [112]: Coulomb-Corrected Eikonal approximation (CCE).

Note that the phase χCFO (2.3.42) can be computed exactly [25]. In Chapter 4, its exact
expression is given and the influence of higher-order Coulomb terms is studied. Chapter 4
also presents an alternative model correcting for the eikonal Coulomb divergence.

2.3.4 Comparison of models and motivations
We have seen in this Chapter that in nuclear reaction theory, the collision of a one-neutron
halo nucleus with a target is often modelled as a three-body collision. The three fragments,
i.e. the core, the neutron and the target, involved in the collision, are assumed structureless.
In this framework, the halo nucleus is described by a single-particle Hamiltonian with an
effective potential, and its interaction with the target is modelled through optical potential.
Different ways of solving this three-body problem have also been discussed.

The exact description of this three-body collision is solution to the Faddeev coupled
equations. In this formalism, all transfer and breakup channels between the three fragments
are accounted for. It has therefore a large numerical cost. Another drawback of this method
is that it can only be applied to low-charged systems, in which the Coulomb interaction is
not too important. Since it does not have any restriction on the nuclei charges and is fully
quantal, CDCC is a powerful method. It provides accurate results for collisions involving
halo nuclei [103]. Nevertheless, the discretization of the continuum is not straightforward
and can induce some convergence issues at energies below 10A MeV [103].

Compared to CDCC, the eikonal approximation has a reduced computational time,
and still keeps a quantal description of the collision. Unfortunately, this high-energy
approximation is only valid at energies where the deflection of the projectile by the target
is small, i.e., above 40A MeV for the DEA [107, 109] and 60A MeV for the usual eikonal
model and the CCE [112]. Since facilities, such as HIE-ISOLDE at CERN and the future
ReA12 at FRIB, reaccelerate their RIB at energy only up to 10A MeV, extending the
validity of this model to these energies would be of great interest. In the first part of
this thesis (Chapter 3), I analyse corrections aiming at improving the treatment of the
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Coulomb and nuclear interactions, in order to extend the range of validity of the eikonal
approximation down to 10A MeV.

As mentioned in Chapter 1, Coulomb-dominated breakup cross sections are enhanced
for halo nuclei and are often used to study their structure [10, 35]. The usual eikonal model
is not precise for such reaction because its adiabatic treatment is incompatible with the
long-range Coulomb interaction. The CCE solves efficiently the problem, but it treats the
Coulomb and nuclear interactions on different footings. Indeed, the nuclear part is treated
with the usual eikonal model and the Coulomb interaction mixes the eikonal approach
and the first-order perturbation theory. The authors in Refs. [66, 67, 68, 69, 72, 73, 74]
have shown that the Coulomb and nuclear interferences impact greatly the accuracy of the
information extracted from Coulomb-dominated breakup cross sections. For this reason,
in collaboration with Daniel Baye, we have developed a simplification of the DEA, keeping
the reduced numerical cost of the eikonal model, and removing elegantly the divergence
due to the adiabatic approximation. This model is derived and studied in Chapter 4.

We have seen in Chapter 1 that knockout experiments have been widely used to probe
the shell structure of halo nuclei. Because these reactions are measured at energies around
50A-100A MeV, they are often analysed with the eikonal model. As explained in Chapter 1,
the agreement between theory and experiment worsens with the binding energy of the
studied nucleus [27]. To understand why the agreement is good for loosely-bound nuclei
and to determine what can be safely extracted from knockout reactions of one-neutron
halo nuclei, I study the sensitivity of their observables to the nuclear structure of the
projectile and to the choice of optical potentials in Chapter 5.
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Chapter 3

Extension of the eikonal model to
low energies

3.1 Introduction
In this Chapter, I study various corrections to the eikonal approximation aiming to extend
the range of validity of the eikonal model down to 10A MeV, which is in the energy range
of HIE-ISOLDE at CERN and the future ReA12 at FRIB. As mentioned previously, the
eikonal solutions can be interpreted semiclassically as the projectile following a straight-
line trajectory at constant impact parameter b along which it feels an external field that
simulates its interaction with the target. In actual semiclassical models, the trajectory
differs from a straight line because the projectile is deflected by its interaction with the
target. At high enough energy, the difference is negligible, and straight-line trajectories
make sense. However, at low energy, the deflection can no longer be neglected, and the
eikonal model is not accurate. To extend the range of validity of the eikonal approximation
down to lower energies, its modelisation of the deflection of the projectile has to be
improved.

A first step in that direction has been made by Lenzi et al. [114] and Fukui et al. [115]
for Coulomb-dominated collisions, viz. on heavy targets. Lenzi et al. have shown that the
eikonal approximation combined with a semiclassical Coulomb correction [116] is accurate
for the elastic scattering of one-body projectile on a heavy target at energies around
10A MeV. This correction improves the projectile-target Coulomb repulsion by replacing
in the computation of the P -T interaction the impact parameter b of each straight-line
trajectory by the distance of closest approach of the corresponding classical Coulomb
trajectory b′C , where b′C > b. Fukui et al. [115] have studied this correction for three-
body collisions, involving a one-neutron halo nucleus. They have demonstrated that this
correction is accurate for Coulomb-dominated breakup at 20A MeV. Since the Coulomb
deflection is already well accounted for by this semiclassical approach, this Chapter focuses
on corrections to the nuclear deflection within the eikonal model, in order to extend its
range of validity for nuclear-dominated reactions, viz. on light targets, down to 10A MeV.

The first correction I have studied is Wallace’s correction [117, 118, 119], which is based
on a perturbative expansion of the T -matrix (2.1.7). The perturbation accounts for the
deviations of the wave vector from both the initial and final wave vectors experienced in
the scattering [118]. However, as noted in Refs. [120, 121], this correction has convergence
issues below a certain energy at which the perturbative approach is no longer valid. I
address this problem and present a systematic method to ensure the convergence of the

37



CHAPTER 3. EXTENSION OF THE EIKONAL MODEL TO LOW ENERGIES

correction, which enables me to use it at 10A MeV. Since this correction induces an
overestimation of the nuclear attraction, I couple it to the semiclassical Coulomb correction
mentioned above. With this implementation, the deflection of the projectile by the target
due to both the nuclear and Coulomb interactions are improved within the eikonal model.
This study is presented in Sec. 3.3

As this combination of corrections does not provide a very consistent model, I have also
studied the extension of the semiclassical correction to the nuclear interaction [114, 121].
The idea is to replace the impact parameter by the distance of closest approach computed
considering both the Coulomb and nuclear interactions, to improve simultaneously the
Coulomb and nuclear deflections within the eikonal model. The encouraging results
obtained in Ref. [114, 121] for structureless nuclei suggest that it could be accurate for
collisions involving more complex structures such as halo nuclei. In Sec. 3.4, I study this
correction applied to two-body collisions and its generalization to three-body systems.

The exact continued S-matrix correction [122, 123, 124] is another way to improve the
eikonal approximation. It is based on an exact correspondence between the partial-wave
expansion (see Sec. 2.1.1) and the usual eikonal model (see Sec. 2.1.2). Wallace has
demonstrated that the scattering amplitude of the partial-wave expansion (2.1.22) can be
expressed exactly as a sum of integrals over the impact parameter [124], with the zeroth
term corresponding to the eikonal scattering amplitude (2.1.39) where the eikonal phase
is replaced by the exact phase shift. Brooke et al. have extended this correction to the
elastic scattering of one-neutron halo nuclei; they have proven its accuracy in Ref. [122].
Its generalization to the breakup channel is presented in Sec. 3.5.

In the last part, I derive a Distorted-Wave Eikonal Approximation (DWEA) which
uses a Coulomb distorted wave instead of a plane wave in the factorization of the eikonal
wave function. The main advantage of this approach is that it naturally accounts for
the Coulomb deflection of the projectile by the target, which is needed to reproduce
elastic-scattering observables, as well as part of the transverse derivatives neglected by
the eikonal approximation [see Eq. (2.1.29)]. Through the use of a change of coordinates,
an equation similar to the eikonal one can be obtained. I emphasize in Sec. 3.6 the main
practical difficulties of this model.

My methodology is to assess these corrections first in a simple case, the elastic scattering
of structureless nuclei. If they are accurate, I generalise them to three-body collisions,
involving a one-neutron halo nucleus. I take two nuclear-dominated collisions as test
cases, first the elastic scattering of 10Be with 12C for the two-body collisions, then the
elastic scattering and diffractive breakup of the one-neutron halo nucleus 11Be with 12C at
20A MeV and 10A MeV. As seen in Chapter 2, the description of such systems requires
optical potentials to simulate the interaction between the colliding nuclei and an effective
potential for the internal structure of the halo nucleus. Sec. 3.2 provides the two-body
interactions used in the calculations of this Chapter.

Finally, in Sec. 3.7, I draw the conclusions from the analysis of these corrections.
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VR RR aR WI RI aI WD RD aD
[MeV] [fm] [fm] [MeV] [fm] [fm] [MeV] [fm] [fm]

10Be-12C 250.0 3.053 0.788 247.9 2.982 0.709 0 0 0
n-12C 46.9395 2.5798 0.676 1.8256 2.5798 0.676 7.1585 2.9903 0.5426

Table 3.1: Parameters of the Woods-Saxon optical potential (2.2.2)–(2.2.3) used
to simulate the nuclear 10Be-12C and n-12C interactions. They are taken from
Refs. [125, 126], respectively.

3.2 Two-body interactions and numerical details
The test case used in this study is the elastic scattering of 11Be off 12C at 20A MeV and
10A MeV. The halo nucleus 11Be is described as an inert 10Be core, assumed to be in its
0+ ground state, to which a neutron is bound by 0.5 MeV. All particles, 10Be, n and 12C,
are assumed structureless. I also neglect the spin of the neutron, in order to reduce the
computational time of all the models considered in this Chapter. This simplification is
mainly motivated by the heavy computational time of CDCC. This means that all the
expressions derived in Sec. 2.3 and the cross sections in Appendix A simplify with j = l
and m = ml.

The 11Be nucleus is described within the single-particle model detailed in Sec. 2.3.1. As
seen in Sec. 1.1.4, 11Be has a 1/2+ ground state and is consistent with a 1s1/2 single-particle
state. However, because the spin of the neutron is neglected, the ground state of 11Be
is modelled 1s single-particle state in this Chapter. The 10Be-n interaction is simulated
by a purely real Woods-Saxon potential (2.2.2)–(2.2.3) similar to the one developed in
Ref. [127]. I adjust the real depth VR = 62.98 MeV to reproduce the energy of 1/2+

ground state in the 1s wave with the parameters RR = 2.585 fm and aR = 0.6 fm in the
notations of Eqs. (2.2.2)–(2.2.3). The same potential is used in all partial waves but in
the d wave, where I use VR = 69.15 MeV to account for the known 5/2+ resonance in
the 10Be-n continuum (see Sec. 1.1.4). This potential produces a d resonance at energy
Ed = 1.27 MeV and with a width Γd = 160 keV, which are close to the experimental values
E5/2+ = 1.28 MeV and Γ5/2+ = 100 keV. The 1/2− excited state of 11Be is not described
by this potential.

As explained in Sec. 2.2, the interactions of each fragments, 10Be and n, with the
target are modelled with optical potentials with a Woods-Saxon shape (2.2.2)–(2.2.3).
The parameters of the 10Be-12C potential considered in this study are provided in the first
line of Table 3.1. It has been chosen following Ref. [128]; it corresponds to the potential
developed in Ref. [125] to reproduce 12C-12C elastic scattering at 25A MeV. The energy
dependence of this potential is neglected. To account for the change in the projectile mass
number, the radii are rescaled by (101/3 + 121/3)/(121/3 + 121/3). The Coulomb interaction
is described by the potential of a uniformly charged sphere (2.2.4) of radius RC = 5.777 fm.
The n-12C interaction is also modelled with a Woods-Saxon shape (2.2.2)–(2.2.3). I use the
Koning-Delaroche global nucleon-nucleus potential [126], whose parameters are functionals
fit to reproduce interactions of neutrons and protons impinging on targets with number of
mass 24 ≤ A ≤ 209 at 1 keV up to 200 MeV. Its parameters are computed for a n-12C
collision at 20 MeV and are listed in the second line of Table 3.1. Since the goal of this
work is to compare the eikonal model with its corrections, I use the same optical potentials
in all calculations.

For the two-body collision, I compare the eikonal model and its correction to the
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exact solution, given by the partial-wave expansion (see Sec. 2.1.1). For the three-body
reaction, I choose to use as benchmark the CDCC method [15, 17] (see Sec. 2.3.3.2), which
provides accurate results at these energies and does not have any issue with the Coulomb
interaction. To verify that my CDCC results are not sensitive to the discretization of
the 10Be-n continuum, I have made CDCC calculations with the program FRESCO [14]
considering different discretizations. Converged results are obtained with the following
model space: the 10Be-n continuum is described up to the c-n orbital angular momentum
lmax = 6, the maximum c-n energy is set to be Emax = 10 MeV, the number of bin states
per partial wave is between 11 (for large l), 25 (at low l) and up to 49 (within the d wave to
account for the presence of the resonance), and the total angular momentum is considered
up to Jmax = 20 000. The input file of the FRESCO program is given in Appendix C.
The eikonal calculations in this Chapter are obtained using the following model space: the
10Be-n continuum is described up to the c-n orbital angular momentum lmax = 10 and a
mesh in impact parameter up to 100 fm, with a step of 0.25 fm up to 30 fm and of 2 fm
beyond. The dynamical eikonal approximation (DEA) uses the same numerical inputs as
in Ref. [112].

3.3 Wallace’s correction

3.3.1 T -matrix expansion
This correction results from an expansion of the T -matrix (2.1.7), developed in the PhD
thesis of Wallace [117, 118, 119]. He has derived it for a two-body collision. The idea is
to use a correction to the eikonal propagator which accounts for the deviations due to
the nuclear interaction of the projectile-target wave vector from the initial and final wave
vectors during the collision. Since this correction cancels for the Coulomb interaction, I
present here the derivation of this correction for the neutral case, i.e, only considering the
nuclear potential VN .

As in Sec. 2.1, I consider a projectile P impinging on a target T with a initial wave
vector k = kẑ (see Fig. 2.1.1), where the beam direction is chosen along the z-axis. For
two-body collisions, the T -matrix element (2.1.7) can be written as a function of the exact
propagator Γ, the final wave vector k′ ≡ (k, θ, φ) and the initial plane wave [first term of
Eq. (2.1.5)] [91]

Tfi(θ) =
〈
eik
′r
∣∣∣∣VN + VNΓVN

∣∣∣∣eikz〉 (3.3.1)

with θ the angle between the initial and final wave vectors and r ≡ (b, z) the P -T
coordinate (see Fig. 2.1.1). The inverse of Γ is defined as [91]

Γ−1 = 1
2µ

(
~2k2 − p2

)
− VN + iκ, (3.3.2)

where κ is a positive infinitesimal quantity, p and µ (2.1.2) are respectively the P -T
relative momentum and reduced mass.

Different forms of the eikonal propagator exist, but I present here the form g used
in Ref. [118]. It is obtained by neglecting the quadratic terms in the expansion of the
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≈ −2~
(
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)
·
[
p− ~

(
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)]
. (3.3.5)

With Eqs. (3.3.2) and (3.3.5), the inverse of the eikonal propagator reads [118]

g−1 = ~
µ

(
k′ + k

2

){
~
(

k′ + k

2

)
− p

}
− VN + iκ. (3.3.6)

By writing the eikonal wave function (2.1.31) with this propagator [91]〈
r
∣∣∣Ψeik

k

〉
=

〈
r
∣∣∣1 + gVN

∣∣∣eikz〉 , (3.3.7)

the eikonal T -matrix (3.3.1) reads [91, 118]

T eik
fi (θ) =

〈
eik
′r
∣∣∣∣VN ∣∣∣∣Ψeik

k

〉
. (3.3.8)

For central potentials, the correction terms N of the transition matrix are defined
as [118]

Γ = g + gNΓ, (3.3.9)

where N = 1
2µ(p− ~k′) · (p− ~k). (3.3.10)

This correction accounts for the deviations of the wave vector from the initial and final
wave vectors, due to the nuclear attraction between the nuclei during the reaction.

By solving iteratively Eq. (3.3.9), the exact propagator is given by a series of terms
involving the eikonal propagator and the correction term N [118]

Γ = g + gNg + gNgNg + ... (3.3.11)

which leads to an expansion of the T -matrix (3.3.1)

Tfi(θ) =
〈
eik
′r
∣∣∣∣(VN + VNgVN) + VNgNgVN + VNgNgNgVN + ...

∣∣∣∣eikz〉 (3.3.12)

= T(0)
fi (θ) + T(1)

fi (θ) + T(2)
fi (θ) + · · · (3.3.13)

The first term of this expansion, in parenthesis in Eq. (3.3.12), corresponds to the eikonal
T -matrix T(0)

fi = T eik
fi (3.3.8) and each additional term corrects for the nuclear deviations

of the projectile by the target neglected in the eikonal model. The scattering amplitude at
the order n can be expressed as [118]

T (n)
fi (θ) =

n∑
j=0

T(j)
fi (θ) (3.3.14)

= −i~v
∫ +∞

0
b db J0(qb)t(n)(b), (3.3.15)
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with

t(0)(b) =
(
eiχ

N (b) − 1
)
, (3.3.16)

t(1)(b) =
(
ei[χ

N (b)+τN1 (b)] − 1
)
, (3.3.17)

τN1 (b) = − 1
~v

ε

2

∫ +∞

−∞
dz

(
1
r

d

dr

)
r2V 2

N(r), (3.3.18)

v = ~k/µ the initial P -T relative velocity, χN the nuclear eikonal phase (2.1.33) and
~q = ~|k′ − kẑ| the transferred momentum. The nth corrective term is proportional to εn,
with ε the expansion parameter [118]

ε = 1
~kv

= 1
2E (3.3.19)

and E = ~2k2/(2µ) the total kinetic energy. The first-order corrective phase τN1 can be
interpreted as the classical energy density transfer between the incoming wave and the
outgoing wave at the impact parameter b and divided by the velocity v [118].

When applied to the Coulomb potential between pointlike particles VC (2.1.16), the
correction (3.3.18) is identically zero. I have also verified numerically that this correction
to the Coulomb interaction stays negligible when I consider the potential of a charged
sphere (2.2.4). It is thus only significant for the nuclear interaction. The corrected
amplitude at the nth order is similar to the eikonal scattering amplitude (2.1.39), it
reads [118]

fk(θ) = fCk(θ)− ik
∫ ∞

0
b db J0(qb)eiχCPT (b)t(n)(b), (3.3.20)

with χCPT (2.1.38) the Coulomb eikonal phase and fCk (2.1.19) the Coulomb scattering
amplitude. Because only the first order affects significantly the eikonal model [118], I
do not present here the second and the third orders. Their analysis can be found in my
Master’s thesis [129].

3.3.2 Two-body collisions
As in Refs. [120, 121], I have observed that Wallace’s correction has some convergence
issues at low energy. These are due to the failure of the perturbation treatment: at low
energies and small impact parameters bs, the expansion parameter ε (3.3.19) takes too large
values to dampen the derivatives contained in the corrective phase τ1 (3.3.18), which are
thus no longer small compared to the standard eikonal phase χN (2.1.33). To illustrate the
source of these problems, Fig. 3.3.1 displays the T -matrices t(n) (3.3.16)–(3.3.17) computed
for a 10Be projectile impinging on 12C at 10A MeV as a function of the impact parameter b
(upper scale) and the angular momentum l (bottom scale) with l = kb. The exact T -matrix
is given by Sl− 1 (solid red line) with the S-matrix Sl (2.1.15). I compare this exact value
to the eikonal T -matrix (3.3.16) (dashed green line) and the T -matrices obtained with
Wallace’s correction at the first order (3.3.17) (short-dashed blue line).

In Fig. 3.3.1, both real and imaginary parts of the T -matrix obtained with Wallace’s
correction diverge at small impact parameters (b ≤ 1.5 fm). In that impact-parameter
range, the collision is dominated by deep inelastic processes leading to strong absorption
from the elastic channel. Accordingly, the T -matrix should be close to −1, as in the exact
calculation and at the usual eikonal approximation. A close analysis of the problem [129]
shows that it is due to a small or negative imaginary part of the corrected eikonal phase,
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Figure 3.3.1: Analysis of the convergence issue of Wallace’s correction at low
energies. The (a) real and (b) imaginary parts of the T -matrices for the elastic
scattering of 10Be off 12C at 10A MeV as a function of the angular momentum and
the impact parameter b. The solid red lines are obtained with the partial-wave
expansion, the dashed green with the eikonal approximation, the small dashed
blue with Wallace’s correction and the dotted magenta with Wallace’s correction
combined with the semiclassical Coulomb correction.

i.e., Im{χN + τN1 } < 0. Because this negative value appears in an imaginary exponential
[see Eq. (3.3.17)], it causes a sudden increase of the modulus of the T -matrix instead of
the strong damping expected. This erroneous behaviour happens due to the combination
of two effects. First, the correction term to the eikonal phase τ1 (3.3.18) involves the
derivative of the nuclear potential. At places where the potential varies quickly, i.e., at
short P -T distances, the integrand in Eq. (3.3.18) can become quite large. Second, at
low energy, the expansion parameter ε (3.3.19) is not small enough to dampen these large
variations of the integral.

To avoid the unrealistic values of the T -matrices in the small-b region, I introduce
a cutoff in impact parameter from which I compute the corrections. Below this cutoff,
the T -matrices are set equal to −1. I have also observed that replacing the corrected
T -matrix by the usual eikonal one in that region, i.e., by setting τ1 = 0 below the cutoff,
provides equally good results [129]. Detailed analyses of various optical potentials have
shown that the results are not very sensitive to the choice of the cutoff and that a good
rule of thumb is to take it slightly larger than the radius RR of the real part of the optical
potential (2.2.2) [129]. In the case studied here, RR = 3.053 fm (see Table 3.1), and
Fig. 3.3.1 shows that this cutoff can be taken between 1.7 and 4 fm, where the exact
T -matrix is close to −1.

The elastic-scattering cross sections normalized to Rutherford for a 10Be projectile
impinging on 12C at 20A MeV and 10A MeV are plotted in Fig. 3.3.2 as a function of
the scattering angle θ. I compare each correction to the exact solution obtained with a
partial-wave calculation (solid red lines). Since the eikonal approximation (long-dashed
green lines) assumes that the deviation of the wave function from the initial plane wave
are small (2.1.29) and relies on a small-angles approximation (2.1.35), it is more accurate
at forward angles than at larger angles. It fails to reproduce the magnitude and the
oscillatory pattern of the cross sections at larger angles: at the eikonal approximation,
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Figure 3.3.2: Study of Wallace’s correction for the elastic scattering of 10Be off
12C at (a) 20A MeV and (b) 10A MeV. The cross sections are normalized to
Rutherford and plotted as a function of the scattering angle θ.

the cross sections are overestimated and the oscillations are damped and shifted towards
forward angles. These differences with the exact cross section increase at lower energy,
where the beam is deflected by the target to larger angles and the approximations (2.1.29)
and (2.1.35) are worst.

Wallace’s correction (short-dashed blue lines) slightly improves the eikonal calculations:
it reduces the cross sections at large angles, which brings them a bit closer to their exact
value, and it better reproduces the magnitude of the oscillations. However, the corrected
cross sections still lie too high compared to the exact solutions, suggesting that this scheme
does not properly account for the absorption from the elastic channel simulated by the
optical potential. Physically, it can be interpreted as an underestimation of the inelastic
channels of the collision. The results are also shifted to even more forward angles, leading
to oscillations out of phase with the exact cross sections. Because Wallace’s correction acts
only on the nuclear interaction, I interpret this excessive shift by the fact that the correction
tends to increase the attraction between the nuclei and, accordingly, to underestimate the
scattering angle.

To counter this shift, the Coulomb repulsion has to be better accounted for. I therefore
introduce the aforementioned semiclassical Coulomb correction [91, 114, 115, 116]. It
consists in replacing in the eikonal nuclear phases χN and its correction τN1 the impact
parameter b by the distance of closest approach b′C of the corresponding Coulomb trajectory

χN(b)→ χN(b′C) τN1 (b)→ τN1 (b′C), (3.3.21)

where the Coulomb distance of closest approach reads [91, 116]

b′C = η +
√
η2 + b2k2

k
(3.3.22)

and η is the Sommerfeld parameter (2.1.18). As b′C is larger than the initial impact
parameter of projectile, it simulates well the repulsion of the particles (see schematic view
in Fig. 3.3.3). The influence of this correction is larger at lower energies [115].

I have also applied the shift of the impact parameter to the Coulomb distance b′C within
the computation of the Coulomb eikonal phase χCPT (2.1.38) . My analysis shows that this
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Figure 3.3.3: Schematic deflection of the projectile’s trajectory due to the
Coulomb repulsion.

shift does not significantly affect the calculations. Therefore, the Coulomb phase is not
shifted and is evaluated in b, i.e., χCPT (b).

We see in Fig. 3.3.1 that the sole action of the Coulomb correction (dotted magenta lines)
in this nuclear-dominated reaction is to shift the S-matrix to smaller impact parameters
closer to the exact S-matrix. Accordingly, Fig. 3.3.2 shows that the Coulomb correction
shifts the cross sections to larger angles. This leads to oscillations in the cross sections that
are in phase with the exact ones. Although the oscillations are better reproduced, the cross
sections are still overestimated at large angles. Hence, the combination of Wallace’s and
the semiclassical Coulomb corrections provides only a minor improvement of the eikonal
model at low energies.

3.3.3 Extension to three-body collisions
I have also applied Wallace’s correction to collisions involving a one-neutron halo nucleus.
As the neutron is assumed spinless, the elastic-scattering cross section derived with the
eikonal model reads [j = l and m = ml in Eq. (A.16)]

dσel

dΩ = K2 1
2l0 + 1

∑
ml0m

′
l0

∣∣∣∣∫ +∞

0
b db J|ml0−m′l0 |

(qb)S(ml0)
0m′

l0
(b)
∣∣∣∣2 . (3.3.23)

where the elastic-scattering amplitude is defined as [see Eq. (A.17)]

S
(ml0)
0m′

l0
(b) =

〈
φn0l0m′l0

∣∣∣eiχcT eiχnT ∣∣∣φn0l0ml0

〉
− δml0m′l0 , (3.3.24)

R ≡ (b, Z) is the P -T relative coordinate (see Fig. 2.3.1), ~q = ~|K ′ − KẐ| is the
transferred momentum defined from the final K ′ ≡ (K,Ω) and initial K = KẐ (2.3.12)
P -T wave vectors, φn0l0ml0

is the ground state of the projectile characterized by the
quantum numbers n0l0ml0 , χ(c,n)T are respectively the c-T and n-T eikonal phases (2.3.35).

Wallace’s correction is easily generalized to the elastic scattering of one-neutron halo
nucleus: each c-T and n-T nuclear part of the eikonal phases, χNcT and χNnT , has to be
corrected by a term τN1cT and τN1nT respectively. The elastic-scattering amplitude becomes

S
(ml0)
0m′

l0
(b) = eiχ

C
PT (b)

〈
φn0l0m′l0

∣∣∣eiχCeiχNcT+iτN1cT+iχNnT+iτN1nT
∣∣∣φn0l0ml0

〉
− δml0m′l0 , (3.3.25)

where χCPT is the P -T Coulomb phase (2.1.38) and χC is the Coulomb tidal force (2.3.38).
The corrective terms τN1cT and τN1nT are computed through Eq. (3.3.18) with the corre-
sponding optical potentials VcT and VnT . As in the two-body case, this correction has
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Figure 3.3.4: Study of Wallace’s correction for the elastic scattering of 11Be off
12C at (a) 20A MeV and (b) 10A MeV. The cross sections are normalized to
Rutherford and plotted as a function of the scattering angle θ.

convergence issues at low energies and I solve them with a cutoff in impact parameters,
taken slightly larger than the real radius of the potential.

The elastic-scattering cross sections of 11Be off 12C at 20A MeV and 10A MeV are
plotted in Fig. 3.3.4. As mentioned in Sec. 3.2, I use CDCC calculations (solid red lines)
as benchmark. Although the eikonal approximation (long-dashed green lines) includes
the breakup channel, we still note that, as in the two-body calculations, it remains larger
than the CDCC ones at large angles and that it fails to reproduce the oscillatory pattern
(the oscillations are shifted towards forward angles and their magnitude is damped). The
disagreement between the eikonal model and CDCC increases at low energy. As in the
two-body case, Wallace’s correction improves slightly the eikonal cross sections, bringing
them closer to CDCC calculations and is more accurate at 20A MeV than at 10A MeV.
Above 15◦, it is still not sufficient and it overestimates CDCC at both 20A MeV and
10A MeV. Since it also induces a shift to forward angles at 10A MeV, leading to oscillations
out of phase with the CDCC ones, I generalize the semiclassical Coulomb correction to
the three-body case.

The generalization of the Coulomb semiclassical correction follows the idea of Ref. [115].
The impact parameter of the projectile b is shifted to the Coulomb distance of closest
approach b′C (3.3.22) within the computation of the eikonal phases. The nuclear eikonal
phases and the corrective terms are thus computed with b′C = b′C b̂ and the core-neutron
transverse coordinate s

χNcT (b, s)→ χNcT (b′C , s) τN1cT (b, s)→ τN1cT (b′C , s) (3.3.26)
χNnT (b, s)→ χNnT (b′C , s) τN1nT (b, s)→ τN1nT (b′C , s) (3.3.27)

As in the two-body collision, shifting the Coulomb phases χCPT and χC does not impact
significantly the results. Hence, I do not apply the semiclassical shift to these phases.

Fig. 3.3.4 shows that the combination of both Wallace’s and Coulomb semiclassical
corrections (dotted magenta lines) improves the oscillation pattern but still overestimates
the cross sections at large angles. Moreover, the accuracy gain of this correction is
insufficient at both energies. Further analyses have also shown that the correction to the
neutron-target eikonal phase τN1nT is negligible. I have also conducted a sensitivity analysis
of Wallace’s correction to the choice of the potential, in all cases, it lacks absorption at
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large angles. Because it is not accurate for elastic-scattering observable at 10A MeV, I
have not studied the efficiency of this correction for breakup reactions. A summary of this
analysis has been published in Refs. [20, 21].

3.4 Semiclassical correction
Similarly to the semiclassical Coulomb correction (3.3.21), an extension of this idea to
the nuclear interaction is used in Refs. [114, 121]. They propose to replace the impact
parameter by the distance of closest approach of the classical trajectory computed from
both interactions. This correction aims at improving simultaneously the nuclear and
Coulomb deflections of the projectile by the target within the eikonal model.

3.4.1 Real distance of closest approach
In a first attempt, I consider only the real part of the nuclear potential Re{VN} and I study
a two-body collision. As in Sec. 2.1.2, I consider that initially the projectile propagates
towards the target along the z-axis with a wave vector k = kẑ and a velocity v = ~k/µ.
Because the potentials VN (2.2.2) and VC (2.2.4) are assumed central, both the energy
E and angular momentum L are conserved. In classical mechanics, these equations of
conservation expressed in spherical coordinates r ≡ (r, θ, φ) read [116]

µv2

2 =1
2µ

(dr
dt

)2

+ r2
(
dθ

dt

)2+ VC(r) + Re{VN(r)}

µvb =µr2dθ

dt

(3.4.1)

where t is the time variable and b is the impact parameter, i.e., defined by the transverse
coordinate r sin θ at t→ −∞. From this system, the radial velocity can be written as

dr

dt
= ±

√√√√ 2
µ

[
µv2

2 − VC(r)− Re{VN(r)} − µv2b2

2r2

]
, (3.4.2)

where the + and − signs correspond respectively to the outgoing and incoming trajectories.
At the distance of closest approach b′, i.e., the turning point, the radial velocity is null.

This distance is therefore solution to
µv2

2 − VC(b′)− Re{VN(b′)} = µv2

2

(
b

b′

)2

. (3.4.3)

This distance of closest approach can also be approximated by a perturbation formula
which reads [130, 131]

b′ ≈ b′C +
Re[VN(b′C)]

µv2b2

b′3C
−
{
∂

∂r
[Re{VN(r)}+ VC(r)]

}
r=b′C

. (3.4.4)

The elastic-scattering cross sections obtained with the semiclassical correction using the
exact b′1 and its approximated value (3.4.4) are similar for the optical potentials detailed in

1I have computed this distance exactly with two different methods: the calculation of the whole
trajectory with a Newton-Raphson algorithm and a dichotomy method applied to Eq. (3.4.3).
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Figure 3.4.1: Schematic Coulomb-dominated (dashed blue line) and nuclear-
dominated (dashed magenta line) trajectories.

Sec. 3.2. Because evaluating b′ with the approximation (3.4.4) is more efficient numerically
than computing its exact value, the results shown in this section are obtained with the
approximation (3.4.4).

The distance of closest approach b′ is larger than the actual impact parameter for
a Coulomb-dominated trajectory and smaller for a nuclear-dominated trajectory (see
Fig. 3.4.1). Therefore replacing the impact parameter by b′ within the computation of the
nuclear eikonal phase (2.1.33) might improve the deflection of the projectile by the target
during the collision. As proposed in Ref. [121], a factor b′/b is also introduced to ensure
the conservation of L

χN(b) → b′

b
χN(b′). (3.4.5)

This is equivalent to replacing the asymptotic velocity by the tangential velocity at the
turning point. Similarly to the Coulomb semiclassical correction, shifting the Coulomb
eikonal phase (2.1.38) does not affect the cross sections and I evaluate this phase at b, i.e.,
χCPT (b).

The authors of Ref. [114] demonstrate the efficiency of this correction for a collision
involving highly-charged nuclei, i.e., the elastic scattering of 16O off 208Pb at 12.5A MeV.
They model the 16O-208Pb nuclear interaction by a Woods-Saxon optical potentials (2.2.2)–
(2.2.3) with parameters taken from Ref. [132]: VR = −50 MeV, WI = −42.2 MeV,
RR = RI = 9.1458 fm and aR = aI = 0.755 fm. The Coulomb interaction is simply
simulated by the Coulomb potential between two pointlike particles (2.1.16). I reproduce
their results in Fig. 3.4.2(a). Compared to the exact cross section (solid red line), which
starts decreasing at 25◦, the eikonal cross section (dashed green line) falls off at too small
an angle, i.e., at 20◦. The semiclassical correction (dotted black line) corrects this shift
and leads to results close to the exact one. The trajectories for various impact parameters
b are plotted in Fig. 3.4.2(b), where we can see that the Coulomb repulsion is dominant in
this case.

Because this correction is very efficient for Coulomb-dominated systems, I analyse its
accuracy in a nuclear-dominated case, the elastic scattering of 10Be off 12C at 10A MeV.
The Rutherford-normalized cross sections, as well as the classical trajectories are displayed
in Fig. 3.4.32. Although there is a small improvement of the oscillation pattern of the cross

2For this figure, the optical potential used to simulate the 10Be-12C nuclear interaction reproduces
the elastic scattering of 10Be with 12C at 59.4A MeV [133, 134] . It is parametrized as a Woods-
Saxon potential (2.2.2)–(2.2.3) with VR = 123.0 MeV, WI = 65.0 MeV, RR = 3.33 fm, RI = 3.47 fm,
aR = aI = 0.80 fm.
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Figure 3.4.2: Analysis of the real semiclassical correction for the elastic scattering
of 16O off 208Pb at 12.5A MeV [114]. (a) The Rutherford-normalized cross section
as a function of the scattering angle θ. (b) Set of real classical trajectories at
different impact parameters, obtained for a Coulomb potential (2.1.16) and the
real part of the nuclear interaction Re{VN} (2.2.2).

section at forward angles (below 20◦), this correction is still insufficient at large angles as it
stays above the exact cross section. As previously, I interpret this by a lack of absorption
from the elastic-scattering channel within the eikonal model. We see in the panel (b) that,
as expected, the trajectories are mainly influenced by the nuclear interaction, and the
distance of closest approach tends to be smaller than the impact parameter.

I have also evaluated the impact of the nuclear interaction onto b′ within the semiclassical
correction (3.4.5). My tests show that elastic-scattering cross sections obtained with the
corrections using b′ (3.4.5) and b′C (3.3.21) have a similar magnitude. The only difference
is that, when only the Coulomb interaction is corrected, the oscillations are shifted to
larger angles, leading to an oscillatory pattern out of phase with the exact solution. This
suggests that both interactions have to be corrected simultaneously.

This analysis indicates that the real semiclassical correction is valid for Coulomb-
dominated system. Although, it improves the oscillatory pattern of the elastic-scattering
cross sections for nuclear-dominated collisions, the magnitude of these observables are still
overestimated at large angles, suggesting that the absorption from the elastic-scattering
channel is still underpredicted. I have published this analysis in Ref. [20].

3.4.2 Complex distance of closest approach
To enhance the absorption from the elastic-scattering channel, I study the generalization
of the semiclassical correction to complex distances b′′, computed from the whole optical
potentials, as proposed in Ref. [121]. In this way, the imaginary part of the potential would
affect mostly small impact parameters, which would hopefully cause a reduction of the
cross sections at large angles. This complex distance b′′ is solution of an equation similar to
Eq. (3.4.3), obtained from the conservation of energy and orbital angular momentum [116]

µv2

2 − VC(b′′)− VN(b′′) = µv2

2

(
b

b′′

)2

. (3.4.6)

I have computed this distance exactly with a Newton-Raphson algorithm.
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Figure 3.4.3: Same as Fig. 3.4.2 but for the elastic scattering of 10Be off 12C at
10A MeV.

If the imaginary part of the potential and thus of b′′ are small compared to their real
part, the solution can be approximated by the first iteration of the Newton-Raphson
method. In this perturbation view, the complex distance of closest approach b′′ reads [135]

b′′ ≈ b′ + i c (3.4.7)

where b′ is the real distance of closest approach that I compute with Eq. (3.4.4) and c is
given by [130, 135]

c = Im{VN(b′)}
µv2b2

b′3
−
{
∂

∂r
[Re{VN(r)}+ VC(r)]

}
r=b′

. (3.4.8)

In the computation of the nuclear eikonal phase (2.1.33), the impact parameter b is
thus replaced by the complex distance of closest approach

χN(b) → χN(b′′). (3.4.9)

This implies that the nuclear potentials VN (2.2.2) is computed from a complex distance

r′′ =
√
b′′2 + z2. (3.4.10)

Computing the nuclear potential (2.2.2) with this complex distance r′′ induces contributions
from the real depth VR (resp. imaginary depths WI and WD) of the potential to the
imaginary part of the eikonal phase Im{χN} (resp. real part of the eikonal phase Re{χN}).
Therefore, the ratio of the real and imaginary parts of the eikonal phase Re{χN}/Im{χN}
changes, and the absorption from the elastic-scattering channel is modified. I did not shift
the impact parameter to the complex distance b′′ within the computation of the Coulomb
eikonal phase (2.1.38) because the Coulomb interaction should not induce absorption and
thus should stay real.

Because r′′ is defined as the square root of a complex quantity, it has two possible
values. As I interpret the overestimation of the cross sections at large angles by the eikonal
model as a lack of absorption from the elastic-scattering channel, I would like to reduce
the ratio Re{χN}/Im{χN}. This ratio diminishes when the imaginary part of r′′ has
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the same sign as the imaginary part of b′′, i.e., it is negative for optical potentials with
Im{VN(b′)} < 0 [see Eqs. (3.4.7)–(3.4.8)]. On the contrary, taking the square root which
has a positive imaginary part causes an increase of the ratio Re{χN}/Im{χN} and thus of
the cross sections. To improve the absorption, I compute the nuclear potential appearing
in the χN (2.1.33) with the negative root of r′′, i.e., VN(r′′).

I have compared the accuracy of the correction using the exact complex distance of
closest approach, solution to Eq. (3.4.6), and its perturbative approximation (3.4.7)-(3.4.8).
Both cross sections obtained for the elastic scattering of 10Be with 12C at 10A MeV lead
to similar results up to θ ∼ 30◦ and at larger angles, the approximation (3.4.7)-(3.4.8)
leads to slightly better results. I have also verified that these observations are robust to
changes in the beam energy as well as in the ratio of the imaginary and real depths of the
optical potential. Similar tests made on the elastic scattering of 12C off 16O at 10A MeV
(with the potential given in Ref. [121]) confirm these conclusions. Therefore, for numerical
reasons, I have applied the correction (3.4.9) with the approximation (3.4.7)-(3.4.8).

Similarly to the real case (3.4.5), the conservation of the angular momentum can be
ensured by adjusting the asymptotic velocity to the tangential velocity at the turning
point of the classical trajectory, i.e, by multiplying the eikonal phase by b′′/b. However,
my results indicate that, in the cases considered here, it does not impact significantly the
elastic-scattering cross sections at angles below 30◦ at 10A MeV. At larger angles, the
cross sections are small and are usually not measured. I do not consider the ratio b′′/b in
the following.

The Rutherford-normalized elastic-scattering cross sections of 10Be off 12C at 20A MeV
and 10A MeV are plotted in Fig. 3.4.4. The complex semiclassical correction (dash-dotted-
dotted black lines) reduces the cross sections at large angles, which now lie close to the
exact solution (solid red lines). Moreover, the oscillations are better reproduced at forward
angles, even though, at larger angles, the oscillations have too large an amplitude. Using
a complex distance of closest approach seems therefore the best way to simultaneously
properly account for the absorption from the elastic channel and reproduce the correct
oscillatory pattern. These findings are in full agreement with those of Ref. [121], where
the 12C-16O and 16O-208Pb elastic scattering are studied. Because these results are so
encouraging and robust to the choice of nuclei, I study in the next section the extension of
the complex semiclassical correction to more complex reactions: the elastic scattering and
the breakup of a one-neutron halo nucleus.

3.4.3 Extension to three-body collisions
To apply the complex semiclassical correction to the elastic scattering of one-neutron
halo nuclei, it has to be generalized to three-body collisions (see the set of coordinates
in Fig. 2.3.1). Similarly to the Coulomb semiclassical correction in Sec. 3.3, the complex
semiclassical correction can be generalized by replacing the impact parameter b by the
complex distance of closest approach b′′ (3.4.7)–(3.4.8). The core-target and neutron-target
nuclear eikonal phases (2.3.35)–(2.3.36) are then computed from b′′ = b′′b̂ and s

χN(c,n)T (b, s)→ χN(c,n)T (b′′, s) (3.4.11)

This complex distance can be computed with different deflecting interactions. I consider
two of them; the first uses VcT and the second VcT + VnT , both evaluated at the distance R
between the projectile center-of-mass and the target. These two methods lead to similar
cross sections below 30◦ at 20A MeV and 50◦ at 10A MeV. Since the differences between
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Figure 3.4.4: Study of the complex semiclassical correction for the elastic scattering
of 10Be off 12C at (a) 20AMeV and (b) 10AMeV. The cross sections are normalized
to Rutherford and plotted as a function of the scattering angle θ.

these two calculations are small, only the results obtained with VcT as deflecting interaction
are presented here.

I have also tried a second generalization of the complex semiclassical interaction. I
substitute within the nuclear eikonal phases (2.3.35)–(2.3.36), the c-T and n-T impact
parameters bcT and bnT by their complex distances of closest approach b′′cT and b′′nT obtained
from VcT and VnT , respectively, i.e.,

χNcT (b, s) = χNcT (bcT )→ χNcT (b′′cT ) (3.4.12)
χNnT (b, s) = χNnT (bnT )→ χNnT (b′′nT ) (3.4.13)

The drawback is that it affects the spatial extension of the projectile during the collision
and thus violates the adiabatic approximation.

The elastic-scattering amplitude (3.3.24) at a certain b is thus computed with the
phases (3.4.11) in the first implementation and with the phases (3.4.12) –(3.4.13) in the
second one. As in the two-body case, the Coulomb interaction should not induce absorption
and I do not shift the impact parameter within the Coulomb eikonal phases χCPT (2.1.38)
and χC (2.3.38) to the complex distance of closest approach. Moreover, shifting these
phases to the real distance of closest approach b′ does not impact significantly the results.
Hence, I evaluate both Coulomb phases with b and s.

At low energy, the adiabatic treatment of the collision becomes inadequate, since the
collision time is not brief, and the dynamical effects start to play a role [136]. To test
the influence of the sudden approximation at the energies considered here, I also extend
the complex semiclassical correction to the DEA. As for the eikonal model, there are
two possible generalizations. The first one shifts the projectile-target impact parameter b
within the computation of the potentials in Eq. (2.3.31) to the complex distance of closest
approach b′′ [similarly to Eq. (3.4.11)]

R ≡ (b, θ, Z) → R′′ ≡ (b′′, θ, Z) (3.4.14)

where I compute b′′ (3.4.7)–(3.4.8) with VcT and VcT + VnT as deflecting interaction. As in
the eikonal model, both choices of deflecting interactions lead to similar cross sections below
30◦ at 20A MeV and 50◦ at 10A MeV. The second generalization replaces in Eq. (2.3.31)
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the transverse components of RcT and RnT by their corresponding complex distances of
closest approach b′′cT and b′′nT obtained through Eq. (3.4.7)–(3.4.8)

RcT ≡ (bcT , θ, Z) → R′′cT ≡ (b′′cT , θ, Z). (3.4.15)
RnT ≡ (bnT , θ, Z) → R′′nT ≡ (b′′nT , θ, Z). (3.4.16)

In both implementations, shifting the Coulomb interactions induce a negligible modification
of the results. To be consistent with the implementations of the semiclassical correction in
the eikonal model, the results presented here are obtained without applying this shift to
the Coulomb interaction.

The elastic-scattering cross sections of the one-neutron halo nucleus 11Be impinging on
a 12C target at 20A MeV and 10A MeV are plotted in Fig. 3.4.5. I consider the CDCC
method as the reference calculation (solid red lines). As already analysed in Sec. 3.3,
the eikonal approximation (long-dashed green lines) overestimates CDCC cross sections
at large angles and fails to reproduce the oscillatory pattern. Interestingly, the DEA
cross sections (short-dashed magenta lines) lie close to the eikonal ones, indicating that
the dynamics of the projectile has little effect on the elastic-scattering process at these
energies.

At both energies, each implementation of the complex semiclassical correction seems to
act similarly when applied to the eikonal model and the DEA. The first implementations in
the eikonal model (3.4.11) (Eik. b′′, dash-dotted-dotted black lines) and the DEA (3.4.14)
(DEA b′′, short-dashed gray lines) reproduce well CDCC cross sections at 20A MeV over
the angular range considered here. At 10A MeV, the corrected DEA provides better
results than the corrected eikonal, as it is closer to CDCC. Above 15◦, it overestimates
the magnitude of the oscillation, and induces a slight shift to larger angles. Nevertheless,
the first implementation is accurate at both energies and improves significantly the
accuracy of both the eikonal model and the DEA. The second implementations in the
eikonal approximation (3.4.12)–(3.4.13) (Eik. b′′cT & b′′nT , dash-dotted blue lines) and the
DEA (3.4.15)–(3.4.16) (DEA b′′cT & b′′nT , dotted orange lines) both produce a cross section
in worst agreement with the reference CDCC calculation than the original eikonal and
DEA calculations at 20A MeV, as the cross sections at angles above 15◦ fall below CDCC
predictions. Surprisingly, it is not the same situation at 10A MeV, where they are as
precise as CDCC up to 25◦. At larger angles, the magnitude of the cross sections is
well reproduced, even if the amplitudes of the oscillations are overcorrected. From this
analysis, it seems that the first implementations in the eikonal model (3.4.11) and in
the DEA (3.4.14) are more reliable than the second ones, respectively (3.4.12)–(3.4.13)
and (3.4.15)–(3.4.16).

At 10A MeV, both implementations of the semiclassical correction improve greatly the
eikonal description of the elastic scattering of halo nuclei at low energies, and, as such,
properly correct the deflection of the projectile by the target. In particular, they simulate
better the absorption from the elastic channel and reproduce the oscillatory pattern of
the reference calculation. In addition, the major differences between these semiclassical
corrections and the CDCC results are observed only at large angles, where measurements
with exotic nuclei are usually difficult because of the low beam intensities achieved in RIB
facilities. These encouraging results have driven me to extend this correction to breakup
reactions.

Following the same idea, the complex semiclassical correction can be directly generalized
to breakup reactions. To avoid the Coulomb divergence within the eikonal breakup matrix
element, I use the CCE (see Secs. 2.3.3.4 and 2.3.3.5). In the CCE, the distribution of
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Figure 3.4.5: Analysis of the complex semiclassical correction for the elastic
scattering of 11Be off 12C at (a) 20A MeV and (b) 10A MeV. I display the
two different implementations of the corrections applied to both the eikonal
approximation and the DEA: the one shifting the projectile impact parameter [see
Eqs. (3.4.11) and (3.4.14), b′′] and the other applied separately to each fragment’s
impact parameters [see Eqs. (3.4.12)–(3.4.13) and (3.4.15)–(3.4.16), b′′cT & b′′nT ].
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Figure 3.4.6: Analysis of the complex semiclassical correction applied to the
eikonal model and the DEA for the breakup cross sections of 11Be off 12C (a)
at 20A MeV and (b) at 10A MeV. The breakup cross sections are plotted as a
function of the 10Be-n relative energy after dissociation E.

breakup as a function of the c-n relative energy after dissociation E = ~2k2/(2µcn) reads
[j = l and m = ml in Eq. (A.42)]

dσbu

dE
= 4µcn

~2k

1
2l0 + 1

∑
ml0

∑
lml

∫ +∞

0
b db

∣∣∣∣S(ml0 )
klml

(b)
∣∣∣∣2 (3.4.17)

where the partial breakup amplitude is given by [j = l and m = ml in Eq. (A.50)]

S
(ml0 )
klml

(b) = ei[δl(k)−lπ/2]eiχ
C
PT (b) 〈φklml |

[
eiχ

C − iχC + iχ
C,(λ=1)
FO

]
eiχ

N
∣∣∣φn0l0ml0

〉
, (3.4.18)

µcn is the c-n reduced mass and χC,(λ=1)
FO is the dipole contribution of the first-order Coulomb

approximation (2.3.44). I have applied both implementations (3.4.11) and (3.4.12)–(3.4.13)
of the complex semiclassical correction to the nuclear phases appearing in the partial
breakup amplitude (3.4.18).

The breakup cross section of 11Be on 12C at 20A MeV and at 10A MeV as a function
of the 10Be-n relative energy after dissociation E is plotted in Fig. 3.4.6. As explained in
Chapter 1, these observables are sensitive to the continuum, in particular, the resonances
cause peaks in the distribution [35]. In Fig. 3.4.6 , the peak is located at the energy of
the d resonance in the 10Be-n (see Sec. 3.2). Compared to CDCC (solid line), the CCE
(dashed green line) reproduces the right shape of the distribution at both 20A MeV and
10A MeV, except in the range between 0.25 MeV and 1 MeV, where it predicts a local
minimum. Unfortunately, it underestimates the cross sections by approximatively 30% at
20A MeV and 50% at 10A MeV, over the whole energy range. As in the elastic-scattering
case, including the dynamics does not impact significantly the cross section: the DEA
(short-dashed magenta lines) leads to a slightly larger cross section and improves the shape
of the distribution between 0.25 MeV and 1 MeV, but this is far from enough to reach the
CDCC accuracy.

Fig. 3.4.6 also shows that the second implementation of the semiclassical correction,
shifting separately the c-T and n-T impact parameters, applied to the CCE (3.4.12)–
(3.4.13) (dash-dotted blue lines) and to the DEA (3.4.15)–(3.4.16) (dotted orange lines)
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acts similarly on breakup observables at 20A MeV: it deteriorates the accuracy of these
models, the cross sections are reduced below 1 MeV and there is no improvement at larger
energy. However, at 10A MeV, the correction (3.4.12)–(3.4.13) applied to the CCE slightly
improves the shape of the breakup distribution. Unfortunately, it still lies far from CDCC.
The semiclassical correction (3.4.15)–(3.4.16) applied to the DEA reduces the magnitude
of the cross sections and thus worsens the DEA calculations. Since the results obtained
with the first implementation in the CCE (3.4.11) and in the DEA (3.4.14) lead to similar
conclusions, I do not display the cross sections here. This suggests that using the complex
distance of closest approach increases the absorption from all reaction channels and not
just in the elastic-scattering one.

As shown in Appendix E, the complex semiclassical correction is sensitive to the choice
of optical potentials. However, since in all cases it does not reproduce the breakup cross
sections, I have not investigated more deeply the sensitivity to these interactions. The
analysis made in this section is therefore specific to the potentials used in this Chapter.
My conclusions are that this complex semiclassical correction is not a good approach,
because it increases the absorption in all reaction channels and is sensitive to both the
choice of optical potentials and beam energy. The analysis of this complex semiclassical
correction has been published in Refs. [21, 22].

3.5 Exact continued S-matrix correction

3.5.1 Derivation of the exact continued S-matrix correction
Another way to correct the P -T relative motion is based on the exact correspondence
between the partial-wave expansion and the eikonal model. Wallace has demonstrated it
in the case of the elastic scattering of structureless nuclei, interacting through only the
nuclear interaction [124]. I will account for the Coulomb interaction in a second step, as it
is done in Ref. [123] .

First, I present Wallace’s derivation for the neutral case. His main idea was to
link the exact scattering amplitude (2.1.14) to the eikonal scattering amplitude (2.1.36).
Eq. (2.1.14) can be written as

fk(θ) =
∑
l

A(l)Pl(cos θ). (3.5.1)

If the potential varies smoothly, an analytic continuation A(λ) of A(l) can be defined
as [123, 124]

A(λ) = −iλ
k

[
S

(
λ

k

)
− 1

]
, (3.5.2)

with S

(
l + 1/2
k

)
= Sl(k), (3.5.3)

where Sl is the nuclear S-matrix (2.1.15) [124]. Regge demonstrated that physical values
are realised for half-integer values of the λ with λ = l + 1/2 [137].

The sum in Eq. (3.5.1) is then converted into an integral using the Euler Summation
Formula [92]. Wallace has demonstrated that, if the phase shifts at large l tend to zero
and if their derivative is smaller than π/2 [124], we have∑

l

A(l)Pl(cos θ) =
∫ ∞

0
dλA(λ)Pλ−1/2(cos θ)−R1

[
sin

(
θ

2

)]
, (3.5.4)
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where R1 is a remainder, small at forward angles. He has then used the expansion of the
Legendre function [124]

Pλ−1/2(cos θ) =
∞∑
j=0

1
(2j)!

(
d

dλ

)2j

bj

(
d

dλ

[
λ

2

])
J0

[
2λ sin

(
θ

2

)]
, (3.5.5)

where the operators bj (x) = B
(2x)
2j (x) acts on the Bessel function J0 and B

(2x)
2j (x) are

the generalized Bernoulli polynomials. The expressions of the first few orders j of these
polynomials bj are listed in Ref. [124]. With Eqs. (3.5.4) and (3.5.5), Wallace has shown
that [124]

∑
l

A(l)Pl(cos θ) =
∫ ∞

0
dλ J0

[
2λ sin

(
θ

2

)] ∞∑
j=0

1
(2j)!bj

(
−λ2

d

dλ

)(
d

dλ

)2j

A(λ)

+R2

[
sin

(
θ

2

)]
−R1

[
sin

(
θ

2

)]
︸ ︷︷ ︸

=0

, (3.5.6)

where the remainder R2 appears from the integration by part and cancels with R1 [124].
In the impact parameter representation b = λ/k, Eq. (3.5.6) is the expansion of an

exact Fourier-Bessel representation of the scattering amplitude [124]

fk(θ) = −ik
∫ ∞

0
b db J0(qb)[SFB(b)− 1] (3.5.7)

where q = 2k sin(θ/2). This scattering amplitude is similar to the eikonal one (2.1.36),
where the eikonal S-matrix Seik is replaced by the Fourier-Bessel S-matrix SFB(b), which
reads [124]

SFB(b) = 1
b

∞∑
j=0

1
(2j)!bj

(
− b2

d

db

)(
1
k

d

db

)2j

b S(b) (3.5.8)

= S(b)W [δ] (3.5.9)
with S(b) = e2iδ(b) (3.5.10)

W [δ] = 1
b

∞∑
j=0

1
(2j)!bj

(
−ib

dδ

db
(b)− 1

2b
d

db

)(
i
2
k

dδ

db
(b) + 1

k

d

db

)2j

b, (3.5.11)

δ(b) the analytic continuation of the exact phase shift δl and l = kb − 1/2. Since the
expansion of the S-matrix SFB is in k−2, it will converge rapidly when k is large [124]. It
is important to emphasize that no approximation is used to transform the partial-wave
expansion sum (3.5.1) to this integral representation (3.5.7).

Brooke et al. proposed in Refs. [122, 123] to take only the first term of the expan-
sion (3.5.8), i.e., to use W [δ] = 1 in Eq. (3.5.9). This corresponds to a small-angles
approximation. The scattering amplitude is thus approximated by an eikonal ampli-
tude (2.1.36), where the nuclear eikonal S-matrix Seik (2.1.37) is replaced by the analytic
continuation S (3.5.3) of the exact S-matrix Sl (2.1.15) [122, 123]

fEC
k (θ) = −ik

∫ ∞
0

b db J0(qb) [S(b)− 1] , (3.5.12)

where the impact parameter is linked to the angular momentum through l = kb − 1/2.
Brooke et al. have coined this approximation the exact continued S-matrix correction
(EC) [122, 123].
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Figure 3.5.1: Analysis of the validity of the exact-continued S-matrix correction
(EC) for the elastic scattering of 10Be off 12C at (a) 20A MeV and at (b) 10A MeV.

Since the P -T Coulomb phase χCPT (2.1.38) leads to the exact Coulomb scattering
amplitude, Brooke et al. have proposed in Refs. [122, 123] to account for the Coulomb
interaction as in the eikonal model (2.1.39). The scattering amplitude computed with the
exact continued S-matrix correction when both the nuclear and Coulomb interactions are
considered reads [122, 123]

fEC
k (θ) = fCk(θ)− ik

∫ ∞
0

b db J0(qb)eiχCPT (b) [S(b)− 1] , (3.5.13)

In my calculations, I thus simply replace the nuclear eikonal phase χN (2.1.33) by the exact
phase shift 2δl (2.1.12). I choose the angular momentum to be the closest integer l to the
value obtained through l = kb− 1/2. I have checked that using this rough interpolation
leads to similar results as more elaborate two- or four-points interpolation for noninteger l
values.

First, I test the validity the exact continued S-matrix in a two-body collision. The
Rutherford normalized elastic-scattering cross sections of 10Be off 12C at 20A MeV and
10A MeV are plotted in Fig. 3.5.1. We see that the exact continued S-matrix correction
(EC, dash-dotted-dotted black lines) is very precise at both energies, its cross sections lie
on top of the exact ones almost over the entire angular range considered here. They start
to differ at 10A MeV only above 30◦. The discrepancy appears at the lowest energy due to
the convergence in k−2 of the expansion (3.5.8) and at large angles, because only the first
term of Eq. (3.5.8) is considered. Nevertheless, this correction is accurate and hopefully is
also efficient for three-body collisions.

3.5.2 Extension to three-body collisions
To extend the exact continued S-matrix correction to this three-body system, I follow
Refs. [122, 123], where they approximate the elastic-scattering amplitude S(ml0)

0m′
l0

(b) (3.3.24)
by the matrix element of the product of the exact S-matrix of each constituent c, n

S
(ml0)
0m′

l0
(b) = eiχ

C
PT (b)

〈
φn0l0m′l0

∣∣∣eiχCScTSnT ∣∣∣φn0l0ml0

〉
− δml0m′l0 , (3.5.14)

where ScT and SnT are the analytic continuations (3.5.3) of the exact nuclear S-matrix
Sl (2.1.15) of the c-T and n-T collisions, respectively. As in the two body-case, I link

58



CHAPTER 3. EXTENSION OF THE EIKONAL MODEL TO LOW ENERGIES

EC
Eik.
DEA

CDCC

θ [deg]

σ
/σ

R

4035302520151050

101

100

10−1

10−2

10−3

(a)

EC

DEA
Eik.

CDCC

θ [deg]

σ
/σ

R

4035302520151050

101

100

10−1

10−2

10−3

(b)

Figure 3.5.2: Analysis of the exact continued S-matrix for the elastic scattering
of 11Be off 12C at (a) 20A MeV and (b) 10A MeV.

the angular momentum of each fragment to their impact parameter through l(c,n)T =
K(c,n)b(c,n)T − 1/2. This approximation makes sense in an adiabatic model, where the core
and the neutron propagate at constant impact parameters, bcT and bnT , respectively.

To evaluate the accuracy of this correction for three-body collisions, the elastic scattering
cross sections for 11Be with 12C at 20A MeV and at 10A MeV are plotted in Fig. 3.5.2. As
for the other corrections, I use CDCC (solid red line) as benchmark. The exact continued
S-matrix correction, displayed by the dash-dotted-dotted black line, reproduces well the
magnitude of CDCC cross sections up to 15◦ at 20A MeV and up to 20◦ at 10A MeV.
Contrary to the semiclassical correction, the accuracy of this correction does not depend
significantly on the beam energy. At large angles, i.e. above 15◦ at 20A MeV and 20◦ at
10A MeV, it underestimates the CDCC predictions. In addition, the oscillatory pattern
is precise but is slightly shifted to larger angles. My analysis indicates that this shift is
due to the adiabatic assumption, still considered in this correction. The discrepancy with
CDCC appears at large angles probably because the exact continued S-matrix truncates
the series (3.5.8) at the zeroth order, which corresponds to a small-angles approximation.

Since it leads to interesting results for the elastic scattering, I apply this correction to
the breakup of a one-neutron halo nucleus. To avoid the Coulomb divergence, I use the
CCE (see Sec. 2.3.3.5) instead of the usual eikonal model. Similarly to the elastic-scattering,
I replace within the computation of the partial-breakup amplitude (3.4.18) the nuclear
eikonal S-matrix by the product of the exact S-matrix of each constituent c, n

S
(ml0 )
klml

(b) = eiχ
C
PT (b) 〈φklml |

[
eiχ

C − iχC + iχ
C,(λ=1)
FO

]
ScTSnT

∣∣∣φn0l0ml0

〉
. (3.5.15)

The breakup cross sections for 11Be with 12C at 20A MeV and 10A MeV obtained with
the generalization (3.5.15) are plotted in Fig. 3.5.3. Interestingly, the exact continued
S-matrix correction gives results close to the DEA, although it still relies on the adiabatic
approximation. This suggests that part of the projectile dynamics is restored through that
correction. Unfortunately, even if this approach improves simultaneously both reaction
channels, it is still not precise for breakup cross sections. From the short analysis presented
in Appendix E, this conclusion seems to be independent of the choice of the optical
potentials. This analysis has been published in Ref. [22].

Because the failure of the exact continued S-matrix correction might be due to too
simplistic a generalization (3.5.15), I have tried to derive this correction properly from
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Figure 3.5.3: Analysis of the exact continued S-matrix for the breakup of 11Be
off 12C at (a) 20A MeV and (b) 10A MeV. The breakup distributions are plotted
as a function of the relative c-n energy after dissociation E.

CDCC breakup amplitudes. As explained in Sec 2.3.3.2, the CDCC method relies on a
discretization of the continuum states of the projectiles in bins. All projectile states are
denoted p with p = ilml for the bins in the continuum and p = nlml for the bound states.
The CDCC description of the three-body system is then solution to the partial-wave
coupled equations for each Jtot (2.3.28), with Jtot resulting from the coupling of P -T
and c-n angular momenta, respectively L and l. Each channel of the collision is thus
characterized by the set of quantum numbers α = {p, L}. The breakup amplitude for
populating the bin state p′ = i′l′m′l from the initial s ground state, i.e., l0 = ml0 = 0, with
a P -T final wave vector K ′

p′ = (K ′p′ ,Ω) reads [15]

F̃m′
l
0(K ′

p′) = 4π
K

√
K ′p′

K

∑
LL′

(L′ −m′ll′m′l|L0) exp[i(σL + σL′)]
1
2iS

L
α′α0(p′)Y 0

L (Ω0)Y −m
′
l

L′ (Ω)

(3.5.16)
where σL is the Coulomb phase shift (2.1.23), α0 = {n0l0ml0 , L} and α′ = {p′, L′} are
respectively the initial and final channels and SLα′α0(p′) are the S-matrix elements (2.3.29)
associated with an excitation of the projectile to the bin state p′. The differential cross
section for the breakup of the projectile to a bin state p′ as a function of the scattering
angle of the center-of-mass of the projectile Ω is thus given by [15]

dσ(p′)
dΩ =

+l′∑
ml′=−l′

∣∣∣F̃m′
l
0(K ′

p′)
∣∣∣2 . (3.5.17)

I discuss here the difficulty that I have faced to relate the CDCC breakup cross
sections to the eikonal one. The main challenge of this derivation is to transform the
sums over the angular momenta into a continuous integral over the impact parameter,
as in Eq (3.5.6). Because the P -T orbital angular momentum L is not conserved, the
CDCC amplitude (3.5.16) contains two sums over the P -T angular momenta, generating
couplings between the different states of the projectile. The analytic continuations of the
angular momenta would therefore lead to two integrals over the impact parameters. I
did not succeed to relate the CDCC breakup amplitude (3.5.16) to the eikonal one (A.32)
because Eq. (A.32) contains only one integral over b. This is due to the fact that the
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derivatives over the transverse coordinate are neglected [see Eq. (2.1.29)]. This can be
understood semiclassically as a lack of couplings between the different “trajectories” at
neighbouring bs. It becomes more problematic at lower energies when the projectile spends
more time around the target as its velocity is smaller. The projectile feels therefore more
its interaction with the target, and more couplings between the angular momenta L arise.

The effects of these couplings between angular momenta onto reactions observables
depend strongly on the transitions between the projectile states, triggered by its interaction
with the target. For 11Be, there are two main transitions from the ground state to the
10Be-n continuum. First, the Coulomb tidal force induces a strong E1 transition from the
s-wave ground state to the p-wave continuum. The strength of this E1 transition is larger
for Coulomb-dominated breakup, viz. on heavy targets. Second, the nuclear interaction
increases mainly the population of the d resonance, by allowing direct quadrupolar
transitions from the s-wave ground state to this resonant state. Besides these two favoured
ones, there are many other transitions within the 10Be-n continuum and 11Be bound states
that occur during the collision.

To verify that the poor eikonal description of breakup at low energies is due to a lack
of couplings between the angular momenta, I compare in Fig. 3.5.4 the contributions of
dominating partial-waves to the energy distribution. Subfigures (a), (b) and (c) correspond
respectively to the s, p and d contributions to the breakup of 11Be with 12C at 10A MeV
obtained with CDCC (solid red lines), the DEA (short-dashed magenta lines), the CCE
(dashed green lines) and the exact continued S-matrix (dash-dotted-dotted black lines).
Compared to CDCC, all s-, p- and d-wave contributions are underestimated by the DEA,
the CCE and the exact continued S-matrix correction. This suggests that the reaction
mechanisms are not well described within these eikonal models and that the transitions
that populate the continuum are underpredicted. In particular, the E1 transition which
mainly populates the p wave below 1 MeV and the quadrupolar transition which excites
the d resonance (see Appendix D) seem to be underestimated. Moreover, since the s-wave
contribution is not well reproduced, it also suggests that the couplings within all the
projectile states are not well simulated.

Finally, it is worth noting that the exact continued S-matrix changes the eikonal
partial-wave cross section to a negligible extent except in the p wave, where it worsens
the eikonal description. This correction does therefore not simulate well the transitions
from the ground state to the continuum and within the continuum. My conclusions is
that to improve these transitions and thus the description of breakup observables, the
couplings between the different “trajectories” at different bs within the eikonal model have
to be enhanced. This would hopefully improve the transitions between the states of the
projectile.
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Figure 3.5.4: Partial-wave analysis of the accuracy of the DEA, eikonal model
and the exact continued S-matrix correction. Subfigures (a), (b) and (c) show
respectively the s, p and d contributions to the 10Be-n energy distribution after
the breakup of 11Be with 12C at 10A MeV. The total breakup cross section is
displayed in Fig. 3.5.3(b).
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3.6 Distorted-Wave Eikonal Approximation
The main motivation of the DWEA is to simultaneously improve the deflection of the
projectile by the target and restore some of the couplings between the different eikonal
“trajectories”. The idea is not to factorize a plane wave from the wave function but the
asymptotic behaviour of a Coulomb wave function (2.1.17) and includes part of the second
derivatives, which are neglected in the eikonal model (2.1.29). The P -T Coulomb deflection
would therefore be included naturally. The numerical cost of the eikonal model can be
recovered through a change of variables. This section presents the derivation of this model
and emphasizes the main practical challenges.

3.6.1 Theoretical derivations
I derive this approximation in a simple case, the collision of two structureless and spinless
nuclei, described by the Schrödinger equation (2.1.1). I consider both the nuclear and
Coulomb potentials (2.1.16), i.e., V = VN + VC in Eq (2.1.1). Similarly to the eikonal idea
(2.1.27), I factorize the asymptotic behaviour of a Coulomb wave function (2.1.17) from
the total wave function

Ψ(r) = eiϕ(r) Ψ̃(r). (3.6.1)
with the Coulomb phase ϕ [90]

ϕ(r) = kz + η ln(kr − kz), (3.6.2)

the P -T relative coordinate r ≡ (ρ, φ, z), the initial P -T wave number k and the Sommer-
feld parameter η (2.1.18).

In cylindrical coordinates, the Laplacian applied to this factorization reads

∆rΨ(r) =
(
∂2

∂ρ2 + 1
ρ

∂

∂ρ
+ 1
ρ2

∂2

∂φ2 + ∂2

∂z2

)
eiϕ(r) Ψ̃(r). (3.6.3)

Using

∂r

∂ρ
= ρ

r
(3.6.4)

and
∂r

∂z
= z

r
(3.6.5)

the partial derivatives of ϕ can easily derived as

∂ϕ

∂ρ
(r) = η

ρ

r(r − z) , (3.6.6)

∂2ϕ

∂ρ2(r) = −ηr
3 − 2z2r + z3

r3(r − z)2 , (3.6.7)

∂ϕ

∂z
(r) = k − η

r
, (3.6.8)

∂ϕ

∂z2(r) = η
z

r3 , (3.6.9)

and the following relation is respected

∆rϕ(r) = 0. (3.6.10)
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With the relations (3.6.6)–(3.6.10), Eq. (3.6.3) becomes

∆rΨ(r) = −


[
∂ϕ

∂ρ
(r)

]2

+
[
∂ϕ

∂z
(r)

]2
 eiϕ(r) Ψ̃(r)

+2ieiϕ(r)
[
∂ϕ

∂ρ
(r)∂Ψ̃

∂ρ
(r) + ∂ϕ

∂z
(r)∂Ψ̃

∂z
(r)

]
+ eiϕ(r)∆rΨ̃(r). (3.6.11)

Following the idea of the eikonal model, I assume that the wave function does not differ
much from this distorted wave and I neglect ∆rΨ̃ compared to its first-order derivatives.
The P -T kinetic term of the Schrödinger equation (2.1.1) becomes

− ~2

2µ∆rΨ(r) ≈ ~2

2µ


[
∂ϕ

∂ρ
(r)

]2

+
[
∂ϕ

∂z
(r)

]2
 eiϕ(r) Ψ̃(r)

−i~
[
~
µ

∂ϕ

∂ρ
(r)∂Ψ̃

∂ρ
(r) + ~

µ

∂ϕ

∂z
(r)∂Ψ̃

∂z
(r)

]
eiϕ(r). (3.6.12)

Considering the fact that the Sommerfeld parameter η (2.1.18) depends on k−1, at high
energies, i.e., large k, the first factor of the first term of Eq. (3.6.12) can be approximated
by

~2

2µ


[
∂ϕ

∂ρ
(r)

]2

+
[
∂ϕ

∂z
(r)

]2
 = ~2

2µk
2 − ~2

µ

kη

r
+ ~2

µ

η2

r(r − z) (3.6.13)

≈ ~2

2µk
2 − ZPZT e

2

4πε0r
. (3.6.14)

The results (3.6.14) corresponds to the difference of the initial kinetic energy and the
Coulomb potential (2.1.16).

In the second term of Eq. (3.6.12), the factors multiplying the derivatives of Ψ̃ have
the dimensions of velocities, defined as

vρ(r) = ~
µ

∂ϕ

∂ρ
(r) = ~η

µ

ρ

r(r − z) (3.6.15)

vz(r) = ~
µ

∂ϕ

∂z
(r) = ~k

µ
− ~η
µr
. (3.6.16)

These variables can be interpreted semiclassically as the transverse vρ and longitudinal vz
components of the velocity of a projectile which asymptotically is a straight line at an
impact parameter b. The following relations are thus respected

ρ −→
z→−∞

b (3.6.17)

vρ(r) −→
z→−∞

0 (3.6.18)

vz(r) −→
z→−∞

v, (3.6.19)

where v = ~k/µ is the initial relative P -T velocity.
We can now define a new time variable τ as

vρ(r) =
∂ρ

∂τ
(3.6.20)

vz(r) =
∂z

∂τ
. (3.6.21)
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This new variable τ can be interpreted semiclassically as the intrinsic time of the trajectories
following

z = z0 +
∫ τ

−∞
dτ ′ vz(ρ′, z′) (3.6.22)

ρ = b+
∫ τ

−∞
dτ ′ vρ(ρ′, z′), (3.6.23)

where z0 is the initial value of z and (ρ′, z′) depend on (b, τ ′).
With the definitions of the velocities (3.6.15)–(3.6.16) and of τ (3.6.20)–(3.6.21), the

second term of Eq. (3.6.12) becomes

−i~
[
~
µ

∂ϕ

∂ρ
(r)∂Ψ̃

∂ρ
(r) + ~

µ

∂ϕ

∂z
(r)∂Ψ̃

∂z
(r)

]
= −i~

[
vρ(r)∂Ψ̃

∂ρ
(r) + vz(r)∂Ψ̃

∂z
(r)

]
(3.6.24)

= −i~∂Ψ̃
∂τ

[r(b, τ)]. (3.6.25)

Using the DWEA approximation of the Laplacian (3.6.12), the approximation (3.6.14)
and the new variable τ (3.6.25), the Schrödinger equation considering both the nuclear
and Coulomb becomes, i.e., V = VN + VC in Eq. (2.1.1), becomes

i~
∂Ψ̃
∂τ

[r(b, τ)] =
[
VC(r) + VN(r)− ZPZT e

2

4πε0r

]
Ψ̃[r(b, τ)] (3.6.26)

= VN(r)Ψ̃[r(b, τ)]. (3.6.27)

Since the Coulomb deflection is already taken into account within the factorization (3.6.1),
it does not appear in the DWEA equation (3.6.27). This equation describes a projectile
following a trajectory defined by a velocity, whose components are given by Eqs. (3.6.15)
and (3.6.16).

The DWEA scattering amplitude is derived by inserting the DWEA wave func-
tion (3.6.1) into Eq. (2.1.6)

fk(θ) = 1
2π

µ

~2

〈
eik

′r
∣∣∣∣VC + VN

∣∣∣∣eiϕ(r)Ψ̃
〉
, (3.6.28)

where k′ is the final wave vector and |k′| = k because I am interested in the elastic-
scattering channel. Using the Gellman-Golderger formula–also called the two potential
formula–the scattering amplitude can be written as

fk(θ) = 1
2π

µ

~2

〈
ψ
C(−)
k′

∣∣∣VC ∣∣∣eikz〉+ 1
2π

µ

~2

〈
ψ
C(−)
k′

∣∣∣VN ∣∣∣eiϕ(r)Ψ̃
〉

(3.6.29)

where ψC(−)
k′

is an incoming Coulomb function and is given by the exact solution of
the Schrödinger equation considering only the Coulomb potential (2.1.16), i.e., V =
VC in Eq. (2.1.1). The asymptotic behaviour of this function is given by the one of(
ψC
−k′

)∗
(2.1.17).
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I approximate the first term of Eq. (3.6.29) by its Born approximation

1
2π

µ

~2

〈
ψ
C(−)
k′

∣∣∣VC ∣∣∣eikz〉 ≈ 1
2π

µ

~2

〈
eik

′r
∣∣∣∣VC ∣∣∣∣eikz〉 (3.6.30)

= µ

~2

∫ +∞

0
dr r2

∫ π

0
sin θ dθ e−iqr cos θVC(r) (3.6.31)

= µ

~2
2
q

∫ +∞

0
dr r sin(qr)VC(r) (3.6.32)

= µ

~2
ZTZP e

2

4πε0

2
q

∫ +∞

0
dr sin(qr), (3.6.33)

where ~q = ~(k′ − kẑ) is the transferred momentum. By screening the integrand in
Eq. (3.6.33) ∫ +∞

0
dr sin(qr) = lim

λ→0

∫ +∞

0
dr e−λr sin(qr) (3.6.34)

= 1
2i lim

λ→0

[∫ +∞

0
dr e−λr+iqr −

∫ +∞

0
dr e−λr−iqr

]
(3.6.35)

= 1
2i lim

λ→0

[
1

λ− iq
− 1
λ+ iq

]
(3.6.36)

= 1
q
, (3.6.37)

we can show that this scattering amplitude leads to the Rutherford cross section

dσR

dθ
=

∣∣∣∣ 1
2π

µ

~2

〈
ψ
C(−)
k′

∣∣∣VC ∣∣∣eikz〉∣∣∣∣2 (3.6.38)

=
(
ZTZP e

2

4πε0

)2
µ2

4~4k4 sin−4
(
θ

2

)
. (3.6.39)

Therefore, I approximate the first term of Eq. (3.6.29) by the exact Coulomb scattering
amplitude fCk (2.1.19)

1
2π

µ

~2

〈
ψ
C(−)
k′

∣∣∣VC ∣∣∣eikz〉 ≈ fCk(θ). (3.6.40)

Now I focus on the additional scattering amplitude given by the second term of
Eq. (3.6.29), it reads

f add
k (θ) = 1

2π
µ

~2

∫
dr

[
ψ
C(−)
k′

(r)
]∗
VN(r)eiϕ(r)Ψ̃(r) (3.6.41)

= i
1

2π
µ

~

∫
dr

[
ψ
C(−)
k′

(r)
]∗
eiϕ(r)∂Ψ̃

∂τ
(r). (3.6.42)

Here I replace in Eq. (3.6.41) the right-hand side of Eq. (3.6.27) by its left-hand side. By
changing the variable (ρ, φ, z)→ (b, φ, τ), this equation becomes

f add
k (θ) = i

1
2π

µ

~

∫ 2π

0
dφ
∫ +∞

0
b db

×
∫ ∞
−∞

dτ J(b, τ)
{
ψ
C(−)
k′

[r(b, τ)]
}∗
eiϕ[r(b,τ)]∂Ψ̃

∂τ
[r(b, τ)], (3.6.43)

where J is the Jacobian associated with the change of variable.
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If I assume, as in the eikonal model that the transferred momentum is purely transverse,
the product of the Coulomb wave function

(
ψ
C(−)
k′

)∗
and its asymptotic behaviour eiϕ

should be bound, i.e, {
ψ
C(−)
k′

[r(b, τ)]
}∗
eiϕ[r(b,τ)] −→

τ→±∞
g±(b), (3.6.44)

where g± is the asymptotic value of this product for each b at τ → ±∞. As a first step, I
could use this asymptotic value and approximate the scattering amplitude as

f add
k (θ) ≈ i

1
2π

µ

~

∫ 2π

0
dφ
∫ +∞

0
b db g(b)

∫ ∞
−∞

dτ J(b, τ)∂Ψ̃
∂τ

[r(b, τ)]. (3.6.45)

To recover the eikonal efficiency, J needs to be extracted from the integral on τ , and thus
I need to find a good approximation of the Jacobian by a value independent on τ .

The Jacobian J is defined as

J(b, τ) =
∣∣∣∣∣∂ρ∂b ∂ρ

∂τ
∂z
∂b

∂z
∂τ

∣∣∣∣∣
= ∂ρ

∂b
vz −

∂z

∂b
vρ, (3.6.46)

where I use the definitions of the velocities vρ (3.6.20) and vz (3.6.21). The partial
derivatives appearing in the Jacobian (3.6.46) can be computed numerically along the
trajectories defined by Eqs. (3.6.22)–(3.6.23).

By taking the limit τ → −∞, I recover the Jacobian associated with straight-line
“trajectories”, i.e.,

J(b, τ) −→
τ→−∞

v. (3.6.47)

After the collision at τ → +∞, the Jacobian reads

J(b, τ) →
τ→+∞

[
1 +

∫ +∞

−∞
dτ

∂vρ(ρ, z)
∂b

]
v −

∫ +∞

−∞
dτ

∂vz(ρ, z)
∂b

lim
τ→+∞

vρ(ρ, z). (3.6.48)

If the projectile stays far from the target, i.e., at large bs, the trajectories are close to
straight lines, vρ tends to zero and the Jacobian is thus equal to the asymptotic velocity v.
If the projectile passes close to the target, i.e., at small bs, the “trajectories” are distorted
and the Jacobian takes values different from v.

3.6.2 Analysis of the DWEA trajectories and Jacobian
In this section, I present a numerical analysis of the DWEA trajectories defined by
vρ (3.6.20) and vz (3.6.21) and of the Jacobian (3.6.46). I use as a test case the elastic
scattering of 10Be off 208Pb at 10A MeV.

Fig. 3.6.1 displays respectively (a) the classical Coulomb and (b) the DWEA trajectories
for different impact parameters b. Interestingly, compared to classical Coulomb trajectories,
these DWEA trajectories do not cross each other. This means that the variable change is
bijective in all points of the (ρ, z) space, except for the ones behind the target that cannot
be reached by these trajectories. This part of the space should not play an important
physical role since it corresponds to the small-b region where the nuclear absorption is
large.
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Figure 3.6.1: Comparison of (a) the classical Coulomb and (b) DWEA trajectories
for the 10Be impinging on 208Pb at 10A MeV.

Compared to the eikonal approximation which assumes the velocity to be constant
along the trajectory, the longitudinal velocity vz varies during the collision. Fig. 3.6.2
shows the relative difference of the vz (3.6.16) and the initial velocity v (3.6.19) for 10Be
impinging on 208Pb at 10A MeV. We can see that the velocity decreases when the projectile
approaches the target at z = 0 fm and increases again after the target. This is caused by
the second term of Eq. (3.6.16), accounting for the P -T Coulomb repulsion. As expected,
this change in longitudinal velocity is stronger for small impact parameters b.

In Fig. 3.6.3, I plot the Jacobian (3.6.46) normalized to the asymptotic velocity
v calculated for 10Be impinging on 208Pb at 10A MeV. As predicted, for all impact
parameters, the Jacobian is initially simply given by the asymptotic velocity v. At large
impact parameter bs, the Jacobian does not deviate much from this value during the
collision because the trajectory is close to a straight line. For smaller impact parameters,
the Jacobian decreases when the projectile starts to interact with the target, around z ∼ 0.
This reduction is smoother and smaller for larger impact parameters, as their trajectories
is less deflected. Because the Jacobian varies for most of the impact parameters which
contribute to the cross section, approximating it by a value independent on τ would not
be precise.

Because the Jacobian varies in τ , it cannot be extracted from the integral over τ in
Eq. (3.6.45). Hence, I have not been able to recover the eikonal form and its numerical cost.
In this form, the DWEA calculations would therefore be too heavy in practice. However,
it would be interesting to conduct a numerical study the scattering amplitude (3.6.45) to
evaluate if these variations in the Jacobian impact much the cross sections. This could be
done by integrating by part over τ .
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Figure 3.6.2: Analysis of the deviation of the longitudinal velocities vz (3.6.16)
from the initial velocity v for the 10Be impinging on 208Pb at 10A MeV.
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Figure 3.6.3: Normalized Jacobian of the coordinate change (ρ, z)→ (b, τ) as a
function of the longitudinal coordinate z. This is calculated for 10Be impinging
on 208Pb at 10A MeV.
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3.7 Summary and prospects
The near-future facilities HIE-ISOLDE at CERN or ReA12 at FRIB will deliver RIBs
at about 10A MeV. Around these energies, CDCC can have convergence issues [103] and
is expensive computationally. This motivates the study of the extension of the eikonal
model down to low energies. We have seen in this Chapter that for the elastic-scattering
of structureless nuclei at low energies, the eikonal model overestimates the cross sections
and dampens its oscillations at large angles. These two effects increase at lower energies,
where the eikonal approximation is less accurate. The eikonal model behaves similarly in
the case of the elastic scattering of one-neutron halo nucleus, as it also lacks absorption at
large angles. The breakup channel is also not well described by the eikonal approximation,
which underestimates CDCC calculations by approximatively 50% at 10A MeV and does
not reproduce the right shape of the distribution.

In this Chapter, the extension of the eikonal model down to 10A MeV, in the energy
range of HIE-ISOLDE at CERN or ReA12 at FRIB, is investigated through the study
of corrections to the deflection of the projectile by the target. Because the authors of
Refs. [114, 115] have already proven the efficiency of a Coulomb semiclassical correction, I
have focused in this Chapter on corrections to the nuclear deflection within the eikonal
model, in order to extend its range of validity for nuclear-dominated reactions down to
10A MeV.

Wallace’s correction [117, 118, 119] relies on a T -matrix expansion, which accounts
for the deflection of the projectile due to its nuclear interaction with the target. We
have seen that, for one-body and two-body projectiles, this correction induces a shift of
the oscillations of the cross sections to forward angles at low energy. I have interpreted
this shift as a overestimation of the nuclear attraction between the colliding nuclei. To
counter this shift, I have used the Coulomb semiclassical correction, which simulates the
Coulomb repulsion between the nuclei. By combining both corrections, the oscillations are
in phase with the exact ones. Unfortunately, the magnitude of the cross section is still
overestimated at large angles. Since it is not accurate for the elastic scattering channel, I
have not studied the extension of this correction to breakup reactions.

In order to have a correction that treats both interactions on the same footing, I have
generalized the semiclassical correction to the nuclear attraction. As a first attempt, I
have shifted the impact parameter to the real distance of closest approach computed from
the sum of the Coulomb and real part of the nuclear potential. As observed in Ref. [114],
this correction improves significantly the accuracy of two-body collisions dominated by
the Coulomb repulsion where the nuclear interaction plays a small role. Unfortunately, I
have shown here that it is not efficient for nuclear-dominated collisions [20].

On the contrary, the complex semiclassical correction [121] that uses a complex distance
of closest approach is much more efficient, as it increases the absorption from the elastic-
scattering channel within the eikonal model. Accordingly, it significantly reduces the
elastic-scattering cross sections at large angles of both one- and two-body projectiles
computed at the eikonal approximation, leading to values respectively close to the exact
and CDCC calculations. Although its generalization to breakup reactions is straightforward,
it tends to deteriorate the accuracy of the eikonal model as it reduces the breakup cross
sections [21, 22]. This suggests that the semiclassical complex correction increases the
absorption in all reaction channels. Moreover, this correction is not reliable since it is
sensitive to both the choice of the optical potentials and the beam energy.

Another way to better simulate the deflection of the projectile by the target is to
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use the exact continued S-matrix correction [122, 123]. This correction, developed by
Wallace for two-body collisions [124] consists on replacing the eikonal S-matrix by the
exact S-matrix. Previous work [122] demonstrates its efficiency for the elastic scattering
of both structureless nuclei and one-neutron halo nuclei with a target, I have generalized
it here to breakup reactions. Unfortunately, this correction brings only a small accuracy
gain in the description of nuclear-dominated breakup at the eikonal approximation [22].

All aforementioned corrections improves only the eikonal description of elastic scattering
of one-neutron halo nuclei at energies reachable by HIE-ISOLDE and ReA12 but fail
for breakup reactions. Because, they all focus on improving the nuclear deflection of
the projectile by the target, I believe that to improve the eikonal description of breakup
observables, another flaw of the model should be tackled. My analysis has emphasized
that the dynamics of the projectile has little effects on both elastic-scattering and breakup
observables at 10A MeV. By comparing the breakup matrix elements of CDCC and the
eikonal model, I have noted that CDCC accounts for more couplings between the angular
momenta. This lack of couplings between the eikonal “trajectories” is a consequence of
the neglect of the transverse derivatives of the wave function, contained in the kinetic
term. My analysis of the contribution of dominating partial-waves to the breakup cross
sections indicates that transitions between the ground state and the continuum as well
as within the continuum are not well reproduced by the eikonal model. I believe that to
better account for these transitions, the couplings between the eikonal “trajectories” have
to be enhanced.

This motivates the development of the DWEA, which aims at simultaneously improving
the Coulomb deflection of the projectile by the target and including part of these transverse
derivatives. Instead of the usual plane wave, the asymptotic form of a Coulomb function
is factorized out of the projectile-target wave function. By reasoning similarly as in the
eikonal model and with a change of variables, I have found an eikonal-like equation,
depending on an intrinsic time τ and the impact parameter b. Unfortunately, the Jacobian
associated to this change of variable varies with τ and cannot be extracted from the
integral over τ in the scattering amplitude. Therefore, I have not been able to recover the
eikonal efficiency. Further studies could be made to better understand the influence of
this Jacobian on the cross sections.

Another avenue to address the lack of couplings between the angular momenta within
the eikonal model would be to account for part of the second-order derivatives of the
projectile-target wave function, neglected by the eikonal approximation. In order to keep
the numerical cost small, I propose to treat only the first derivative along the transverse
coordinate as a perturbation. This test would probably give an estimate of the significance
of these couplings. I hope that it could simultaneously improve both the eikonal description
of the elastic-scattering and breakup channels at 10A MeV. Nevertheless, one should keep
in mind that the main advantage of the eikonal approximation is its numerical cost, it might
not be worth to develop more elaborate corrections if they are expensive computationally.
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Chapter 4

Simplification to the Dynamical
Eikonal Approximation

4.1 Introduction
As mentioned in Chapter 1, Coulomb-dominated breakup reactions of halo nuclei can be
used to infer the E1 strength functions from the ground state to the core-neutron con-
tinuum [10, 35, 64] and radiative-capture rates of astrophysical interest [70, 71]. Further
works [66, 67, 68, 69, 72, 73, 74] emphasize that information inferred from Coulomb-
dominated breakup reactions depend strongly on the interferences between the transitions
due to both Coulomb and nuclear interactions. Because it relies on the adiabatic ap-
proximation and is thus incompatible with long-range interactions, the usual eikonal
approximation diverges for Coulomb-dominated breakup (see Sec. 2.3.3.4). The dynamical
eikonal approximation (DEA) does not have this issue, since it accounts for the dynamical
effects. Moreover, its predictions are in good agreement with breakup data of one-neutron
halo nuclei on light and heavy targets [107]. Unfortunately, the DEA is associated with
a large numerical cost, since it is solved with an evolution calculation of the wave func-
tion [107, 108]. This motivates the development of approximations, which would be cheaper
from a computational viewpoint.

The Coulomb-corrected eikonal approximation (CCE) solves efficiently the Coulomb
divergence within the usual eikonal model. It simply replaces the diverging term by the
first-order-perturbation Coulomb approximation (see Sec. 2.3.3.5). This model improves
significantly the energy and parallel-momentum distributions for Coulomb-dominated
breakup of one-neutron halo nuclei at 69 MeV [112]. Nonetheless, this correction mixes
two reaction models and treats the nuclear and the Coulomb interactions on different
footings.

In this Chapter, a simplification to the DEA (S-DEA), developed in collaboration with
Daniel Baye, is presented. The S-DEA naturally removes the Coulomb divergence while
treating both interactions within the same framework. This model is derived from an
approximate solution of the DEA equation (2.3.31) and has the advantage of having a
numerical cost similar to the usual eikonal model. After presenting the S-DEA in Sec. 4.2,
its efficiency is studied in the cases of the nuclear- and Coulomb-dominated breakups of a
one-neutron halo nucleus, viz. on light and heavy targets. I consider 11Be impinging on
12C and 208Pb targets at 67A MeV and 69A MeV, respectively. Both of these reactions
have been measured at RIKEN [35] and the experimental data are well reproduced by the
DEA [107]. I compare the breakup observables computed with the S-DEA to the ones
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obtained with the full DEA and the CCE. I also present an analysis of the interferences
between the transitions induced by both the Coulomb and nuclear interactions. Finally,
the conclusions and some prospects for this model are given.

This work has been published in Phys. Rev. C [25].

4.2 Theoretical developments
As seen in Chapter 2, the reactions involving one-neutron halo nuclei are modelled as
three-body collisions. I use in this Chapter the same three-body description and same
system of coordinates (see Fig. 2.3.1) as the ones presented in Sec. 2.3. Within the DEA
framework, the P -T relative motion is described by the solution ΨDEA of Eq. (2.3.31),
rewritten here for convenience

i~v
∂

∂Z
Ψ̂DEA(R, r) =[hcn − En0l0j0 + VcT (RcT ) + VnT (RnT )]Ψ̂DEA(R, r). (4.2.1)

The S-DEA is based on a unitary transformation of the wave function Ψ̂DEA

Ψ̂DEA(R, r) = e−i(hcn−En0l0j0 ) Z~v e
− i

~v

∫ Z
−∞ dZ′ V PTC (R′)Ψ̃(R, r) (4.2.2)

where V PT
C is a pure Coulomb potential (2.1.16) between the projectile and the target.

With the initial condition on Ψ (2.3.12), this new wave function tends initially to the
ground state of the projectile φn0l0j0m0 , i.e.,

Ψ̃(m0)(R, r) −→
Z→−∞

φn0l0j0m0(r). (4.2.3)

By inserting the unitary transformation (4.2.2) into the DEA equation (4.2.1), it
becomes

i~v
∂

∂Z
Ψ̃(R, r) = ei

hcnZ
~v [VcT (RcT ) + VnT (RnT )− V PT

C (R)]e−i
hcnZ
~v Ψ̃(R, r). (4.2.4)

This equation is at the basis of all perturbation treatments [138]. We adopt here another
strategy and we approximate the solution of (4.2.4) by the first term in the exponent of
Magnus expansion [139] (equivalent to the first factor of the Fer expansion [140])

Ψ̃(R, r) ≈ exp
{
− i

~v

∫ Z

−∞
dZ ′ ei

hcnZ
′

~v
[
VcT (R′cT ) + VnT (R′nT )− V PT

C (R′)
]
e−i

hcnZ
′

~v

}
× φn0l0j0m0(r). (4.2.5)

The breakup cross sections, obtained with these new wave functions (4.2.5), can be
derived similarly to the ones of the DEA, the usual eikonal model and the CCE (see
Appendix A). As for these three models, the S-DEA breakup distribution as a function of
the c-n relative energy E after dissociation reads [see Eq. (A.42)]

dσbu
dE

= 4µcn
~2k

1
2j0 + 1

∑
m0

∑
ljm

|S(m0)
kljm(b)|2. (4.2.6)

where µcn is the c-n reduced mass and k =
√

2µcnE/~2 is the final c-n wave number. The
S-DEA partial breakup amplitudes are obtained by inserting the definition of the wave
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function (4.2.5) into Eqs. (A.10) and (A.31). They read

S
(m0)
kljm(b) = ei[δlj(k)−lπ/2]eiχ

C
PT (b)

∫
dr [φkljm(r)]∗

× exp
− i

~v

∫ +∞

−∞
dZ ei

hcnZ
~v
[
VcT (RcT ) + VnT (RnT )− V PT

C (R)
]
e−i

hcnZ
~v


× φn0l0j0m0(r), (4.2.7)

where χCPT is the P -T Coulomb phase (2.1.38), φkljm is a continuum state of the projectile
associated with the phase shift δlj (2.3.8).

I make now an additional approximation of these amplitudes: the operators hcn in the
exponentials are evaluated by their eigenvalues corresponding to the closest wave functions,
i.e., the final c-n energy E on the left-hand side and the energy En0l0j0 on the right-hand
side. I therefore obtain eikonal-like partial breakup amplitudes where the eikonal phases
are replaced by their first-order-perturbation approximations χFO, i.e.,

S
(m0)
kljm(b) ≈ eiχ

C
PT (b) 〈φkljm|exp[iχFO]|φn0l0j0m0〉 (4.2.8)

with χFO(E, b, r) = − 1
~v

∫ +∞

−∞
dZ ei

ωZ
v

[
VcT (RcT ) + VnT (RnT )− V PT

C (R)
]
(4.2.9)

and ω = (E − En0l0j0)/~. The Coulomb χCFO and nuclear χNFO parts of the first-order-
perturbation approximation are evaluated separately

χFO(E, b, r) = χCFO(E, b, r) + χNFO(E, b, r). (4.2.10)

Contrary to the CCE which approximates χCFO by its dipole term (2.3.44), I evaluate it
exactly. With the relations (9.6.13) and (9.6.21) of Ref. [92], it can be derived as

χCFO(E, b, r) = −η
∫ +∞

−∞
dZ ei

ωZ
v

( 1
RcT

− 1
R

)
(4.2.11)

= −2η
{

exp
[
i
ω

v

mn

mP

z
]
K0

(
ω

v
bcT

)
−K0

(
ω

v
b
)}

, (4.2.12)

where η is the Sommerfeld parameter (2.1.18). The nuclear first-order-perturbation
approximation reads

χNFO(E, b, r) = − 1
~v

∫ +∞

−∞
dZ ei

ωZ
v

[
VcT (RcT )− ~vη

RcT

+ VnT (RnT )
]

(4.2.13)

= − 1
~v

∫ +∞

−∞
dZ ei

ωZ
v

eiωv mnmP z
VcT (

√
b2
cT + Z2)− ~vη√

b2
cT + Z2


+e−i

ω
v
mc
mP

z
VnT (

√
b2
nT + Z2)

 (4.2.14)

and is evaluated numerically. To improve the numerical efficiency of their evaluation, I
compute the integrals of (4.2.14) for a uniform b-mesh. Then, I interpolate them for each
bcT and bnT and multiply them by the exponentials accounting for the position of the
fragments, i.e., the exponentials depending on z.

Additionally to its simple implementation, the S-DEA wave functions naturally tend
to those obtained at the first-order-perturbation theory at large bs.
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VR RR aR VLI
[MeV] [fm] [fm] [MeV fm 2]

Odd l 39.74 2.585 0.6 21
Even l 62.55 2.585 0.6 21

Table 4.1: Parameters of the real Woods-Saxon 10Be-n potential (2.3.2) taken from
Ref. [127]. It is given by the sum of a real Woods-Saxon potential (2.2.2)–(2.2.3)
and a spin-orbit term (2.3.3).

VR RR aR WI RI aI RC

[MeV] [fm] [fm] [MeV] [fm] [fm] [fm]
10Be-12C 123.0 3.33 0.8 65.0 3.47 0.9 5.33
n-12C 34.54 2.68 0.75 13.4 2.88 0.58

10Be-208Pb 70.0 7.43 1.04 58.9 7.19 1.0 5.92
n-208Pb 29.46 6.93 0.75 13.4 7.47 0.58

Table 4.2: Parameters of the optical potential (2.2.1)–(2.2.4) used to simulate
the nuclear 10Be-12C, n-12C, 10Be-208Pb and n-208Pb interactions [133, 142, 143].

4.3 Nuclear- and Coulomb-dominated breakups

4.3.1 Two-body interactions
I now evaluate the accuracy of the S-DEA for the breakups of 11Be with 12C at 67A MeV
and with 208Pb at 69AMeV. For these two cases, the DEA reproduces well the experimental
data [35, 107].

As it was done in the previous Chapters, 11Be is described as a 10Be core in its 0+

ground state to which a neutron is bound by 0.504 MeV. Contrary to the Chapter 3 where
I assume the neutron spinless, I consider here its spin. To simulate the 10Be-n interaction,
I follow Ref. [127], where they use the sum (2.3.2) of a central potential and a spin-orbit
term, adjusted to the three first levels: 1/2+, 1/2− and 5/2+, modelled respectively as
a 1s1/2 state, a 0p1/2 state and a d5/2 resonance. The central part is parametrized as
a purely real Woods-Saxon potential (2.2.2)–(2.2.3) and the spin-orbit potential as in
Eq. (2.3.3). The parameters of these two potentials can be found in Tab. 4.1

The 10Be-T and n-T interactions are modelled by optical potentials with Woods-Saxon
shape (2.2.2)–(2.2.3). The same parameters as in Ref. [112], displayed in Tab. 4.2, are
taken. The 10Be-12C potential reproduces the elastic scattering of 10Be with 12C at
59.4A MeV [133, 134]. To describe the 10Be-208Pb interaction, I follow Refs. [108, 141],
I take the parametrisation of Bonin et al. which reproduces the elastic scattering of α
on 208Pb at 699 MeV [142]. In both cases, the Coulomb interaction is simulated by the
potential of a uniformly charge sphere (2.2.4) of radius RC . The global optical potential
of Becchetti an Greenlees [143] is used for the n-T interactions.
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Figure 4.3.1: Analysis of the accuracy of the S-DEA for the energy distribution
of the diffractive breakups of 11Be with (a) 208Pb at 69A MeV and (b) 12C at
67A MeV. Panel (b) also displays an inset of the energy distributions between
3.5 MeV and 7 MeV.

4.3.2 Energy distributions
To evaluate the accuracy of the S-DEA, I first analyse the breakup cross section as a
function of the relative 10Be-n energy. Fig. 4.3.1 displays these distributions for the
breakup of 11Be on 208Pb at 69A MeV and on 12C at 67A MeV, respectively (a) and (b),
obtained at the eikonal model, the CCE, the DEA and with the approximation (4.2.8). For
these two reactions, the DEA (solid red line) reproduces well the experimental data [107]
and is used as reference. As explained in Sec. 2.3.3.4, the eikonal model (dashed green
lines) does not treat properly the Coulomb interaction and diverges at large bs. With
the cutoff in impact parameter proposed in Ref. [23] (see Sec. 2.3.3.4), the usual eikonal
model leads to results close to the DEA ones for the nuclear-dominated reaction but fails
to describe the Coulomb-dominated breakup, due to the incompatibility of this long-range
interaction with the adiabatic assumption.

Both panels (a) and (b) of Fig. 4.3.1 show that the CCE (dash-dotted blue lines)
improves the eikonal treatment of the Coulomb interaction and gives accurate energy
distributions for both reactions. For the Coulomb-dominated breakup distribution in
Fig. 4.3.1(a), the approximation (4.2.8) (dotted magenta lines) is accurate at E < 2.5 MeV.
Even if it slightly overestimates the peak of the distribution, it lies close to the DEA
and the CCE. Moreover, this discrepancy in the peak is smaller than the experimental
uncertainty [35]. The nuclear-dominated distribution in Fig. 4.3.1 (b) is also well reproduced
by the approximation (4.2.8), which is on top of the CCE at E < 2 MeV. For both reactions,
the approximation (4.2.8) starts to increase at higher energies and completely fails to
reproduce the shape and the magnitude of the breakup cross section.

These unrealistic values at large E are caused by a negative imaginary part of the
first-order-approximations Im{χFO} < 0 (4.2.10), which leads to a strong increase in
the breakup matrix elements (4.2.8) as they depend on exp[iχFO]. Since the potentials
are multiplied by imaginary exponentials [see Eqs. (4.2.12)–(4.2.14)], both the imaginary
and real parts of the potentials contribute to Im{χFO}. As explained in Chapter 2, the
imaginary parts of the optical potentials are negative and simulate the absorption into
channels other than the elastic one in the core or the neutron interactions with the target.
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Unfortunately, the complex exponentials in Eq. (4.2.14) reduce the contribution of the
imaginary part of the c-T (resp. n-T ) potential by a factor cos

[
ω
v

(
Z ′ + mn

mP
z
)]

(resp.
cos

[
ω
v

(
Z ′ − mc

mP
z
)]
). The absorption is hence diminished. Moreover, if the cosines are

negative, the imaginary part of the potential contribute negatively to Im{χFO} and lead
to unrealistic cross sections. Furthermore, the contributions of the real parts of the optical
potentials to the imaginary parts of the first-order-perturbation phases can also be negative.
This is the case for the imaginary part of the Coulomb first-order-perturbation phase when
z < 0 [see Eq. (4.2.12)]. For the nuclear interaction [see Eq. (4.2.14)], the real part of
the c-T (resp. n-T ) nuclear potential Re{VcT} < 0 (resp. Re{VnT} < 0), has a negative
contribution to Im{χNFO}, when sin

(
Z ′ + mn

mP
z
)
> 0 [resp. sin

(
Z ′ − mc

mP
z
)
< 0]. All these

negative contributions to Im{χFO} lead to unrealistic values of the cross sections.
To cure partly this problem, I treat separately the absorptive part of the potentials

with the usual eikonal approximation. This ensures that the imaginary parts of the
optical potentials suppress the unphysical contributions of the real potentials. The S-DEA
partial-breakup amplitude is thus defined by

S
(m0)
kljm(b) = eiχ

C
PT (b) 〈φkljm|eiχ

C
FOeiχ

N
S-DEA|φn0l0j0m0〉 (4.3.1)

with

χNS-DEA(E, b, r) = Im {χN(b, s)}

− 1
~v

∫ +∞

−∞
dZ ei

ωZ
v

eiωv mnmP z
Re

{
VcT (

√
b2
cT + Z2)

}
− ~vη√

b2
cT + Z2


+e−i

ω
v
mc
mP

zRe
{
VnT (

√
b2
nT + Z2)

} (4.3.2)

where χN is the nuclear eikonal phase (2.3.36).
The distributions obtained with the S-DEA (4.3.1) are plotted in Fig. 4.3.1 by the

dash-dotted-dotted black lines. For both collisions with lead and carbon targets, the
S-DEA is accurate over the whole considered energy range. Note that, the distribution
of the Coulomb-dominated breakup still exhibits an unphysical increase at E = 12 MeV.
However, at these energies, the breakup cross section is negligible.

4.3.3 Parallel-momentum distributions
Since the S-DEA is accurate for energy distributions on both light and heavy targets, I
study it for parallel-momentum distributions. As mentioned in Chapter 1, these observables
are interesting because they are measured in inclusive processes, such as knockout (see
Chapter 5). Their expression is similar to the ones (A.48) of the DEA, CCE and the
eikonal model, presented in Appendix A. It reads [97, 107, 112]

dσbu
dk‖

= 8π
2j0 + 1

∑
m0

∫ ∞
0

bdb
∫ ∞
|k‖|

dk

k

∑
νm

∣∣∣∣∣∣
∑
lj

(lIm− νν|jm)Y m−ν
l (θk, 0)S(m0)

kljm(b)
∣∣∣∣∣∣
2

, (4.3.3)

where θk = arccos
(
k‖/k

)
is the colatitude of the c-n relative wave vector k after breakup

and ν is the spin projection. Interestingly, this observable sums coherently the partial
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Figure 4.3.2: Analysis of the accuracy of the S-DEA for the parallel-momentum
distribution of breakup cross sections of 11Be with (a) 208Pb at 69A MeV and (b)
12C at 67A MeV.

breakup amplitudes and is therefore sensitive to their interferences. This observable is
thus a particularly severe test for reaction models.

Fig. 4.3.2 displays the breakup distribution as a function of the relative 10Be-n parallel
momentum, after the breakup of 11Be (a) on 208Pb at 69A MeV and (b) on 12C at
67A MeV1. For the lead and carbon targets, the integrations over k in Eq. (4.3.3) are
limited to respectively kmax = 0.7 fm−1 and kmax = 1.4 fm−1, which correspond to energies
in the continuum of Emax = 11.3 MeV and Emax = 45 MeV. These values are enough to
reach the convergence. In both cases, the DEA (solid red lines) lead to an asymmetric
distribution centered in k‖ = −0.02 fm−1 and k‖ = −0.04 fm−1 for the lead and carbon
targets, respectively. This asymmetry and the fact that it is not centered in k‖ = 0 are also
seen in the experimental data of knockout reactions [76]. They are caused by interferences
between higher-order transitions from the bound states to the continuum and within the
continuum during the reaction.

The usual eikonal model (dashed green lines) overestimates the magnitude of the
cross section and does not reproduce the asymmetry of the distribution. Indeed, the
eikonal distribution is perfectly symmetric around k‖ = 0. This can be understood with
the analytical expression of the eikonal cross section, obtained from Eq. (4.3.3) and the
partial-breakup amplitude (A.49)

S
(m0)
kljm(b) = ei[δlj(k)−lπ/2] 〈φkljm|eiχcT eiχnT |φn0l0j0m0〉 , (4.3.4)

where χ(c,n)T are the c-T and n-T eikonal phases (2.3.35)
To understand the symmetries of these partial breakup amplitude, I expand the eikonal

phases onto the spherical harmonics in the vectorial space defined by r

exp [iχcT (b, s) + iχnT (b, s)] =
∑
λµ

Fλµ(b, r)Y µ
λ (Ωr), (4.3.5)

with Fλµ(b, r) =
∫
dΩr Y

µ∗
λ (Ωr) exp[iχcT (b, s) + iχnT (b, s)].(4.3.6)

1We have noted that the magnitudes of the parallel-momentum distributions in Figs. 4, 5, 8 and 9 of
Ref. [112] are underestimated by a factor 2.
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The property of the spherical harmonics imposes

Y µ
λ (θr, φr) = (−1)λ+µY µ

λ (π − θr, φr). (4.3.7)

Since the eikonal phases χ(c,n)T (2.3.35) are symmetric across the plane defined by s, i.e.,
θr → π − θr, only even λ+ µ multipoles contribute in the eikonal model.

By using the expansion (4.3.5) and the expressions of the eigenstates of the projec-
tile (2.3.5)–(2.3.6), the partial breakup amplitude (4.3.4) becomes

S
(m0)
kljm(b) =

∑
mlν

∑
ml0ν0

∑
λµ

(lImlν|jm)(l0Iml0ν0|j0m0)ei[δlj(k)−lπ/2]

∫
dr uklj(r)Fλµ(b, s)un0l0j0(r)∫
dΩr Y

ml∗
l (Ωr)Y µ

λ (Ωr)Y
ml0
l0 (Ωr) 〈Iν|Iν0〉︸ ︷︷ ︸

=δνν0

(4.3.8)

=
∑

mlml0ν

∑
λµ

(lImlν|jm)(l0Iml0ν|j0m0)ei[δlj(k)−lπ/2]

∫
dr uklj(r)Fλµ(b, s)un0l0j0(r)

(−1)m
√√√√(2l0 + 1)(2λ+ 1)

4π(2l + 1) (l0λ00|l0)(l0λml0µ|lml), (4.3.9)

where un0l0j0 (2.3.7) and uklj (2.3.8) are the radial wave functions of the ground and
scattering states, respectively. The Clebsch-Gordan coefficients in this expression impose
several conditions onto the quantum numbers: ml = m− ν, ml0 = m0− ν, µ = ml−ml0 =
m−m0 and l0 + λ+ l has to be even. With these conditions, one can deduce that even
λ+ µ correspond to even l0 + l+m−m0. Therefore, only the amplitudes S(m0)

kljm with even
l0 + l +m−m0 contribute in the eikonal model.

In the case studied here, the ground state of the projectile is in the s wave, i.e.,
l0 = ml0 = 0 and m0 = ν. Therefore, only S

(ν)
kljm with even l + m − ν are significant

at the usual eikonal approximation. The symmetry of the spherical harmonics (4.3.7)
combined with this condition on the quantum number implies that the parallel-momentum
distribution (4.3.3) are symmetric in θk → π − θk, and thus in k‖ → −k‖.

On the contrary, the CCE cross sections (dash-dotted blue lines), plotted in Fig. 4.3.2,
are not perfectly symmetric. Mathematically, it is due to the fact that the imagi-
nary part of dipole contribution of the Coulomb first-order-perturbation approximations
Im{χC,(λ=1)

FO } (2.3.44) is asymmetric in θr → π−θr and S(ν)
kljm with odd l+m−ν contribute.

Physically, it means that the CCE includes part of dynamics of the reaction. For the
Coulomb-dominated breakup, the CCE lies close to the DEA results and is precise, as
already observed in Ref. [112]. However, the CCE fails to reproduce the breakup on the
carbon target, its distribution is nearly symmetric and lies close to the eikonal result. This
can be explained by the fact that its Coulomb correction (2.3.41) and thus Im{χC,(λ=1)

FO }
are small for such nuclear-dominated reactions [112].

Since the S-DEA (dash-dotted-dotted black lines) also includes dynamical effect, it also
leads to asymmetric parallel-momentum distributions in Fig. 4.3.2. Mathematically, it is
also explained by the asymmetric terms in θr → π − θr in both Coulomb and nuclear first-
order-perturbation approximations (4.2.12)–(4.2.14). However, it leads to too symmetrical
a distribution compared to the DEA for the Coulomb-dominated breakup. The peak
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Figure 4.4.1: Analysis of the asymmetry of parallel-momentum distributions for
the pure Coulomb breakup of 11Be with 208Pb at 69A MeV obtained with the
CCE and the S-DEA. These calculations are performed with a cutoff in impact
parameter bmin = 10 fm.

of the distribution is also overestimated. On the contrary, the shape and magnitude of
the parallel-momentum distributions obtained with the S-DEA for the carbon target are
improved compared to the usual eikonal approximation, and the cross section lies closer to
the DEA one. This suggests that a first-order simplification of the DEA already improves
significantly the parallel-momentum distributions. Similarly to the energy distribution on
the carbon target, the S-DEA underestimates the DEA magnitude.

4.4 Asymmetry of parallel-momentum distributions
obtained with the CCE and S-DEA

As mentioned in the previous section, the asymmetry of parallel-momentum distributions is
caused by dynamical effects in higher-order transitions between the states of the projectile.
In this section, I study the asymmetry of both CCE and S-DEA parallel-momentum
distributions to understand how well these transitions are accounted for by these two
models. In particular, I analyse the influence of electric transitions for the breakup on
the lead target, as it is dominated by the Coulomb interaction. Then, I make a similar
analysis of the transitions in nuclear-dominated breakup on the carbon target.

I first study purely Coulombic calculations by switching off the nuclear interaction.
Fig 4.4.1 illustrates the results of these calculations for the parallel-momentum distribution
of 11Be with 208Pb at 69A MeV. The nuclear absorption, is simulated with a cutoff in
impact parameter bmin = 10 fm. On one hand, the CCE (dash-dotted blue line) reproduces
exactly the DEA Coulomb contribution (solid red line). This indicates that the CCE
includes correctly the dynamical effects due to the Coulomb interaction and that the
small discrepancy with the DEA observed in Fig. 4.3.2(a) is caused by the adiabatic
treatment of the nuclear interaction. On the other hand, the S-DEA distribution (dashed-
dotted-dotted black line) lacks asymmetry and slightly overestimates the DEA results. In
the pure Coulomb breakup, the asymmetry of distributions are caused by the imaginary
parts of either the dipole term of the Coulomb first-order-perturbation approximation
Im{χC,(λ=1)

FO } (2.3.44) in the CCE or that of the full Coulomb phase Im{χCFO} (4.2.12) in
the S-DEA. To illustrate this, I put Im{χC,(λ=1)

FO } = 0 within the CCE (2.3.41) (dashed
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Figure 4.4.2: Analysis of the influence of higher-order terms of χCFO on the S-DEA
parallel-momentum distributions for the pure Coulomb breakup of 11Be with
208Pb at 69A MeV. These calculations are performed with a cutoff in impact
parameter bmin = 10 fm.

magenta line) and Im{χCFO} = 0 within the S-DEA (4.3.2) (dotted green line) in Fig. 4.4.1.
Interestingly, both distributions are symmetric and perfectly superimposed, suggesting
that the real part of the Coulomb first-order-perturbation is treated similarly in both
models.

There are two main differences between the CCE and the S-DEA in the treatment of
the Coulomb interaction. First, the CCE depends linearly on the Coulomb first-order-
perturbation approximation χCFO [see Eq. (2.3.41)]. In this thesis, χCFO is approximated
by its dipole contribution χC,(λ=1)

FO within the CCE, which is dominant for the Coulomb
breakup of one-neutron halo nuclei [113]. Second, the S-DEA includes dynamical effects
in all electric transitions at all orders since its treatment of the Coulomb tidal force reads
exp

[
iχCFO

]
(4.2.12).

I first verify that the χCFO ≈ χ
C,(λ=1)
FO is a good approximation, and that higher-order

multipoles of the Coulomb interaction, e.g., E2 transitions, can be safely neglected. To do
so, I plot in Fig. 4.4.2 the Coulomb contribution to the parallel-momentum distributions
for the breakup of 11Be on 208Pb at 69A MeV obtained with the S-DEA approximating
exp

[
iχCFO

]
≈ exp

[
iχ

C,(λ=1)
FO

]
(dash-dotted-dotted magenta line). I compare this calculation

to the one obtained with the DEA (solid red line), the CCE (dash-dotted blue line) and the
S-DEA considering the full Coulomb phase (dash-dotted-dotted black line). As previously,
I use a cutoff bmin = 10 fm to simulate the nuclear absorption. We can see that the S-DEA
approximating exp

[
iχCFO

]
≈ exp

[
iχ

C,(λ=1)
FO

]
is on top of the standard S-DEA, and therefore

the dipole approximation is valid here. Using the sum of the dipole and quadrupole (B.11)
terms of the Coulomb interaction in the S-DEA, i.e., exp

[
iχCFO

]
≈ exp

[
iχ

C,(λ=1)
FO + iχ

C,(λ=2)
FO

]
,

leads to the same conclusion. This confirms that the E1 transitions are dominant for this
collision.

Then, I investigate if approximating the S-DEA operator by its first order, i.e.,
exp

[
iχCFO

]
≈ 1+ iχCFO, and therefore neglecting higher-order transitions would lead to a dis-

tribution close to the CCE one. This approach corresponds to the first-order-perturbation
theory (FO) and leads to the distribution plotted in dotted green in Fig. 4.4.2. As already
seen in Ref. [112], the resulting distribution is almost perfectly symmetric. Moreover, it is
a bit more symmetric than the S-DEA, suggesting that the S-DEA grasps more dynamical
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effects.
The operator of the CCE appearing in the S(m0)

kljm depends linearly on χ
C,(λ=1)
FO [see

Eq. (A.50)]. To understand how electric transitions are modelled, I expand this operator
onto the spherical harmonics in the vectorial space defined by r

eiχ
C
PT (b)

[
eiχ

C(b,s) − iχC(b, s) + iχ
C,(λ=1)
FO (E, b, r)

]
=
∑
λµ

Fλµ(E, b, r)Y µ
λ (Ωr), (4.4.1)

where

Fλµ(E, b, r) = eiχ
C
PT (b)

∫
dΩr Y

µ∗
λ (Ωr)

[
eiχ

C(b,s) − iχC(b, s) + iχ
C,(λ=1)
FO (E, b, r)

]
. (4.4.2)

As explained previously, the property (4.3.7) imposes that the asymmetric terms in
θr → π−θr are contained in the multipoles with odd λ+µ. Therefore, the asymmetric term
Im{χC,(λ=1)

FO } contributes to only the dipole term λ = 1 and µ = 0 of the operator (4.4.1).
Since the ground state of the projectile is in the s wave, this implies that the dynamical
effects affects only the p waves in the core-neutron continuum.

On the contrary, the operator appearing in the S-DEA S
(m0)
kljm (4.3.1) depends exponen-

tially on the term χCFO. Its expansion onto the spherical harmonics in the vectorial space
defined by r reads

eiχ
C
PT (b)eiχ

C
FO(E,b,r) =

∑
λµ

Fλµ(E, b, r)Y µ
λ (Ωr), (4.4.3)

with

Fλµ(E, b, r) = eiχ
C
PT (b)

∫
dΩr Y

µ∗
λ (Ωr)eiχ

C
FO(E,b,r). (4.4.4)

The asymmetric terms are contained in exp
[
−Im{χCFO}

]
. These terms as well as dynamical

effects are included in all electric transitions at all orders. They therefore contribute to all
multipoles with odd λ+ µ and affect all partial waves in the core-neutron continuum.

To understand how this influences the shape of the parallel-momentum distributions, I
plot in Fig. 4.4.3 the Coulomb contribution for the breakup of 11Be with 208Pb obtained
with different maximum values lmax in the sum over l in Eq. (4.3.3). In the results shown
here, I take the order of the higher multipoles λmax of the operators (4.4.1) and (4.4.3)
equal to lmax, i.e., λmax = lmax. As expected, the distributions at lmax = 0 (green lines) are
symmetric for both the CCE (dash-dotted lines) and S-DEA (dash-dotted-dotted lines).
Indeed, because the sum l +m− ν = 0 when l = 0, this contribution is always symmetric
due to the property of the spherical harmonics (4.3.7). For both models, the asymmetry
first arises when lmax = 1 (blue lines) from the interferences of the monopole λ = 0
and dipole λ = 1 terms of the CCE operator (4.4.1) and S-DEA operator (4.4.3). The
asymmetry of the CCE distribution is more pronounced, indicating that the interferences
between eiχC − iχC and χC,(λ=1)

FO in Eq. (4.4.2) push the distribution to negative k‖. Note
that the magnitude of both distributions increases drastically at lmax = 1, because this
reaction is dominated by direct E1 transitions.

The main difference between the two models appears at lmax = 2 and is due to
the influence of the quadrupole term λ = 2 of the CCE operator (4.4.1) and S-DEA
operator (4.4.3). As we have seen that higher-order multipoles of the Coulomb interaction
can be safely neglected, the quadrupole terms λ = 2 of the CCE and S-DEA operators
describe mainly higher-order E1 transitions, such as two successive E1 transitions. In
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Figure 4.4.3: Coulomb contribution to the parallel-momentum distributions
for 11Be with 208Pb at 69 MeV/nucleon obtained with the CCE (dash-dotted
lines) and the S-DEA (dash-dotted-dotted lines). They are computed with
lmax = 0 in the sum over l in Eq. (4.3.3) (green lines), lmax = 1 (blue lines) and
lmax = 2 (magenta lines). These calculations are performed with a cutoff in
impact parameter bmin = 10 fm.

the CCE, this term is treated adiabatically, as it depends on exp
[
iχC

]
− iχC which is

symmetric, and thus barely influences the shape of the distribution. In the S-DEA, the
quadrupole term λ = 2 of the S-DEA operator (4.4.3) includes dynamical effects and
depends on powers of χCFO, which all contain an asymmetric component. Due to the
property of the spherical harmonics (4.3.7), each partial-wave contribution to the parallel-
momentum distribution (4.3.3) differs by a phase (−1)l for two opposite k‖. Because
the ground state of the projectile is in the s wave, l = λ. Therefore, the quadrupole
term λ = 2 operator (4.4.3) contributes in an opposite way to its dipole term λ = 1, i.e.,
more to positive k‖ values. It thus tends to diminish the asymmetry of the distribution.
Therefore, all electric transitions at all orders influence the shape of the parallel-momentum
distribution in the S-DEA and the total effect is a reduction of the asymmetry due to
direct E1 transitions.

I now perform a similar analysis for the nuclear interaction, performing purely nuclear
calculations, i.e., assuming the charge of the target to be nil. Fig. 4.4.4(a) displays the
results of these calculations in the case of the breakup of 11Be on 12C at 67A MeV. The
DEA distribution exhibits a similar asymmetry as in Fig. 4.3.2(b) where the Coulomb
interaction is accounted for. This means that for this nuclear-dominated reactions, the
asymmetry of the distribution is mainly due to the nuclear interaction. Since the Coulomb
interaction is not considered here, the CCE (dash-dotted blue line) is reduced to the usual
eikonal approximation and leads to perfectly symmetric distributions. On the contrary,
the S-DEA distribution (dash-dotted-dotted black lines) is asymmetric, illustrating the
interest of the S-DEA that includes dynamical effects due to the nuclear interaction.

I proceed as in the analysis of the pure Coulomb case and I plot in Fig. 4.4.4(b) the
nuclear contribution for the breakup of 11Be with 12C obtained with different maximum
values lmax in the sum over l in Eq. (4.3.3). As previously, I take λmax = lmax. As expected,
the CCE (dash-dotted lines) distributions obtained with various lmax are perfectly sym-
metric. In the S-DEA, the asymmetry starts to be visible when lmax = 2. Contrary to the
Coulomb first-order-perturbation approximation, the nuclear S-DEA phase χNS-DEA (4.3.2)
has two imaginary exponentials, one depending on z, and another one on −z. The asym-
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Figure 4.4.4: Analysis of the asymmetry of parallel-momentum distributions for
the pure nuclear breakup of 11Be with 12C at 67A MeV obtained with the DEA
(solid lines), the CCE (dash-dotted lines) and the S-DEA (dash-dotted-dotted
lines). (a) Fully converged distributions and (b) distributions computed with
lmax = 0 in the sum over l in Eq. (4.3.3) (green lines), lmax = 1 (blue lines),
lmax = 2 (magenta lines) and lmax = 3 (black lines).

metric part of Im{χNS-DEA} is thus given by the sum of two terms of opposite signs and
depending on z, bcT and bnT . This complex dependence implies that partial waves with
odd and even l do not necessarily have opposite contributions to the asymmetry of the
parallel-momentum distribution. In this case, we observe in Fig. 4.4.4(b) that both odd
and even partial-waves contribute to the asymmetry of the S-DEA (dash-dotted-dotted
lines), i.e., push the distribution to negative k‖. Contrary to the Coulomb-dominated
reaction, the asymmetry of the total distribution in Fig. 4.4.4(b) is overestimated compared
to the DEA. This analysis suggests that the S-DEA improves the descriptions of electric
and nuclear transitions compared to the usual eikonal approximation but still misses part
of the dynamics of the reaction.

4.5 Summary and prospects
In collaboration with Daniel Baye, we have developed a simplification to the DEA, which
has a similar numerical cost as the usual eikonal approximation. This model relies on two
approximations: the first is made on the solutions of the DEA wave functions (4.2.5) and
the second on the breakup matrix element (4.2.8). This leads to an eikonal-like model,
where the eikonal phases are replaced by the expression of the breakup transition obtained
at first-order perturbation theory. Compared to the eikonal approximation, this model does
not diverge for the Coulomb breakup and its wave functions have the correct behaviour at
large bs, i.e., it tends to the first-order-perturbation theory.

I have studied this model for both nuclear- and Coulomb-dominated breakups of 11Be.
The energy distributions are well reproduced at low energies, i.e., E ≤ 2 MeV, but take
unphysical values at larger energies. This is due to negative values of the imaginary part
of the first-order-perturbation approximation, which arise at small bs. We have shown
that precise energy distributions can be obtained when the approximation is applied to
only the real part of the potentials, treating the imaginary part at the usual eikonal model.
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This ensures that the unphysical contributions are suppressed.
Compared to the usual eikonal approximation, the S-DEA improves the parallel-

momentum distribution of both breakup reactions since it lies closer to the DEA results.
For nuclear-dominated breakup, the S-DEA improves both the shape and the magnitude
of the distribution, confirming that the asymmetry is due to dynamical effects during the
collision. It is therefore an excellent model to describe both energy and parallel-momentum
distributions of breakup with light targets. The S-DEA does however not reproduce fully
the asymmetry of the parallel-momentum distribution of Coulomb-dominated reactions.
This underestimation of the asymmetry is caused by interferences between higher-order
E1 transitions, that decrease the effect of the dominant direct E1 transitions.

Since the S-DEA elegantly solves the Coulomb divergence within the eikonal model
and significantly enhances its accuracy while keeping a small numerical cost, it would be
interesting to study its extension to three-body projectiles, such as two-neutron halo nuclei.
An extension of the CCE to such projectiles has already been studied for 6He and 11Li in
Refs. [111, 144]. Computing breakup observables of three-body projectiles with the S-DEA
would require both the calculations of the breakup states and the generalisation of the
S-DEA to four-body reactions. This could be done using the hyperspherical harmonics [34].

As there are still some differences with the DEA, higher-order approximations could
be studied. A first step could be to improve the crude approximation of the breakup
matrix elements (4.2.8). This could be done by expanding the wave function onto a basis
of eigenstates of the c-n internal Hamiltonian, composed of bound states and pseudostates
for the c-n continuum (as in CDCC, see Sec. 2.3.3.2). The matrix elements could then
be obtained through a diagonalization method [145] and an interpolation between the
energies of the pseudostates. Besides the more complex implementation of this model,
two additional issues might arise. First, the diagonalization of the matrix might be heavy
from a computational viewpoint since the first-order-perturbation approximations (4.2.12)–
(4.2.14) are complex. Second, the lack of absorption that we have observed with Eq. (4.2.8)
might also appear in this matrix through eigenvalues with an negative imaginary part.
Despite these two difficulties, this modification of the S-DEA might improve the shape of
its parallel-momentum distribution, since it will include more dynamical effects.
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Chapter 5

Sensitivity of knockout observables
to the halo structure

5.1 Introduction
As seen in Chapter 1, one-neutron knockout reactions correspond to the removal of one
neutron from the projectile. They are inclusive processes, meaning that only the core is
detected after the dissociation. These reactions are of great interest for halo nuclei, because
their cross sections are large thanks to the low binding energy of the halo neutron to the
core [9]. Moreover, knockout observables exhibit a much higher statistics than exclusive
measurements, in which both the core and the neutron are detected in coincidence. Hence,
they are often favoured for the low intensities available at radioactive-ion beam facilities.
Because these reactions are measured at intermediate to high energies, i.e between 50A to
100A MeV, they are usually studied with the eikonal approximation [9]. As mentioned
in Chapter 1, the agreement between the theoretical predictions and experiment worsens
when the knocked out nucleon is more bound [26, 27]. In this Chapter, I try to understand
why theory and experiment agree so well for loosely-bound nuclei and to determine what
nuclear-structure information can be safely inferred from these reactions. To do so, I
conduct a thorough sensitivity analysis of the knockout cross sections for one-neutron halo
nuclei to the projectile structure and to the optical potentials simulating its interaction
with the target.

Theoretical models for inclusive breakup reactions of two-body projectiles have been
developed in the eighties in Refs. [100, 146, 147, 148]. The corresponding observables are
obtained through the sum of the diffractive breakup, where both the halo neutron and the
core survive the collision, and the stripping cross sections, where the neutron is absorbed
by the target. The cross sections are usually expressed as a function of the momentum
of the detected core along the beam axis, also referred as the parallel-momentum of the
core. Sec. 5.2 presents the eikonal derivation of knockout cross sections. In particular,
the diffractive breakup cross section is expressed as a function of the momentum of the
remaining core. Then, the stripping cross section is derived following the formalism of
Hussein and McVoy [100], relying on the spectator core model.

This analysis is conducted on the one-neutron knockout of 11Be with 9Be at 60A MeV,
which was measured at National Superconducting Cyclotron Laboratory [76, 77]. To
study in detail the sensitivity of knockout observables to the nuclear structure of the
projectile, 11Be is described within halo effective field theory (Halo-EFT [149, 150, 151]).
This model exploits the clear separation of scales observed in halo nuclei, viz. the large size
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of the halo Rhalo compared to the compact size of the core Rcore, to expand the projectile
Hamiltonian upon the small parameter Rhalo/Rcore < 1 . This very systematic expansion
facilitates the identification of the nuclear-structure observables which affect most the
reaction process. Following Refs. [66, 152], I apply this method up to next-to-leading order
(NLO) to simulate the 10Be-n interaction. Sec. 5.3 summarizes the Halo-EFT description
of 11Be used in this Chapter.

After providing the numerical details and the optical potentials considered in this
study in Sec. 5.4.1, I investigate, in Sec. 5.4.2 the sensitivity of the parallel-momentum
distribution of the remaining 10Be core to the 11Be ground-state wave function. For this
purpose, various Halo-EFT potentials, generating different ground-state wave functions,
are considered. Secs. 5.4.3 and 5.4.4 present sensitivity studies of knockout observables to
other features of the projectile description, namely the presence of an excited subthreshold
bound state and the description of the 10Be-n continuum. A similar analysis on the
hypothetical one-neutron knockout of 11Be with 12C at 68A MeV has been published in
Refs. [30, 31].

After pinning down what is the relevant information of the projectile description for
knockout reactions, I assess how the choice of optical potentials affects the shape and the
magnitude of the parallel-momentum distributions in Sec. 5.5. To do so, I compare the
eikonal predictions obtained with different sets of optical potentials to experimental data.
The significance of the dynamical effects, which are neglected in the eikonal model, are
also discussed.

Finally, I draw conclusions from these two sensitivity analyses and give some prospects
of this work in Sec. 5.6.

5.2 Knockout cross sections

As explained in Chapter 1, one-neutron knockout reactions correspond to the one-
neutron removal of the projectile by a target. Knockout cross sections are inclusive and
are often given as a function of the parallel-momentum of the core after the neutron
has been knocked out [76, 77, 78, 82]. There are two possible processes that contribute
to this reaction: the diffractive breakup, where the neutron survives the collision, and
the stripping, where the neutron is absorbed by the target. One-neutron knockout cross
sections are thus obtained through the sum of the diffractive and the stripping cross
sections. In particular, its distribution as a function of the parallel momentum of the
remaining core in the projectile restframe kc‖ reads [153, 154]

dσko

dkc‖
=
dσbu

dkc‖
+
dσstr

dkc‖
. (5.2.1)

where σko, σbu and σstr are respectively the knockout, the diffractive-breakup and the
stripping cross sections. As mentioned before, these reactions occur at energies where the
eikonal model is valid, and are thus often analysed with this model. This section presents
the derivation of these cross sections within the eikonal framework [100, 153].

As in Chapter 4, the spin of the neutron I is considered and the optical potentials, VcT
and VnT , simulating respectively the c-T and n-T interactions are assumed central. The
diffractive-breakup cross section as a function of the c-n parallel-momentum k‖ after the
dissociation is given by Eq. (A.48). To compute the knockout cross section (5.2.1), this
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distribution has to be expressed as a function of the parallel-momentum of the core kc‖ in
the projectile restframe. In the non-relativistic regime, the impulsion of each fragment
x = c or n in the projectile restframe is defined as [44]

px = mxux, (5.2.2)

where mx and ux are respectively the mass and the velocity of the fragment x. The
conservation of impulsion in the projectile center-of-mass imposes [97]

mcuc +mnun = 0 (5.2.3)

Combining this equation with the definition of the relative velocity u between the core
and the fragment

u = un − uc, (5.2.4)

we obtain

uc = −mn

mP

u. (5.2.5)

These velocities are linked to the momenta through uc = ~kc/mc and u = ~k/µcn with
µcn = mcmn/mP the c-n reduced mass and mP = mc + mn the projectile mass. These
momenta are thus simply related through

kc = −k. (5.2.6)

The diffractive breakup cross section as a function of the parallel-momentum of the core is
thus just obtained by changing the sign of k‖ in Eq. (A.48)

dσbu
dkc‖

(kc‖) = dσbu
dk‖

(−k‖). (5.2.7)

To compute the stripping cross section, I use the formalism of Hussein and McVoy [100].
As mentioned in Chapter 2, it assumes that the core acts only as a spectator during the
collision, i.e., it can only scatter elastically with the target. The stripping distribution
as a function of the deflection angle of the core ΩcT and its final energy EcT is obtained
through Eqs. (2.3.18)–(2.3.19). These equations depend on the three-body wave function
Ψ(m0), solution of Eq. (2.3.9) with Eq. (2.3.12) as initial condition. At the usual eikonal
approximation, this wave function reads (2.3.33)

Ψeik(m0)(R, r) = eiKZe
− i

~v

∫ Z
−∞ dZ′ VcT (R′cT )+VnT (R′nT )

φn0l0j0m0(r) (5.2.8)

where ~K = ~KẐ and v = ~K/µ are respectively the initial relative P -T momentum
and velocity, µ (2.1.2) is the P -T reduced mass, φn0l0j0m0 is the projectile ground-state
wave function, RcT ≡ (bcT , ZcT ), RnT ≡ (bnT , ZnT ) and r ≡ (s, z) are respectively the
c-T , n-T and c-n coordinates (see Fig. 2.3.1).

To derive the cross section, I write this three-body wave function (5.2.8) as a function
of (RcT ,RnT ). Using the definitions of the coordinates (2.3.10)–(2.3.11), the eikonal
three-body wave function (5.2.8) reads

Ψeik(m0)(RcT ,RnT ) = e
iK mc

mP
ZcT e

iK mn
mP

ZnT e
− i

~v

∫ ZcT
−∞ dZ′cT VcT (R′cT )

e
− i

~v

∫ ZnT
−∞ dZ′nT VnT (R′nT )

× φn0l0j0m0(RnT −RcT ). (5.2.9)
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Initially, the c-T and n-T relative velocities, respectively vcT and vnT , are equal to the
relative P -T velocity v. The initial momenta of the core and the neutron are thus given by

KxT = µxT
µ

K (5.2.10)

with x = (c, n) and µxT = mxmT/(mx + mT ) the x-T reduced masses. In Ref. [100],
Hussein and McVoy approximate these momenta by

KxT ≈ mx

mP

K. (5.2.11)

This approximation holds if mT � mP . The three-body wave function modifies accordingly
into [100]

Ψeik(m0)(RcT ,RnT ) = eiKcTZcT eiKnTZnT e
− i

~v

∫ ZcT
−∞ dZ′cT VcT (R′cT )

e
− i

~v

∫ ZnT
−∞ dZ′nT VnT (R′nT )

× φn0l0j0m0(RnT −RcT ). (5.2.12)

The stripping distributions also depend on the final c-T distorted wave function ζeik
K ′

cT

characterized by the relative c-T wave vector K ′
cT ≡ (K ′cT ,ΩcT ) with K ′cT =

√
2µcTEcT/~2.

As the spectator approximation assumes that the core can only scatter elastically with the
target, the initial and final wave numbers of the core are equal by energy conservation,
i.e., K ′cT = KcT . Similarly to the diffractive breakup derivation (see Appendix A), the
transferred momentum ~q = ~(K ′

cT −KcT ) is assumed to be purely transverse, i.e, qZ ≈ 0
and K ′

cT · Ẑ ≈KcT · Ẑ. With this approximation, the final distorted wave function ζeik
K ′

cT
can be written as [see Eq. (2.1.31)] [100]

ζ
(−)eik
K ′

cT
(RcT ) = eiK

′
cT RcT e

i
~v

∫ +∞
ZcT

dZ′cT V
∗
cT (R′cT )

. (5.2.13)

By using the definitions of the eikonal wave functions (5.2.12) and (5.2.13), Eq. (2.3.19)
becomes [100]

ρ(+)
n (RnT ) = eiKnTZnT e

− i
~v

∫ ZnT
−∞ dZ′ VnT (R′nT )

×
∫
dRcT e

−iqRcT eiχcT (bcT )φn0l0j0m0(RnT −RcT ), (5.2.14)

where χcT is the c-T eikonal phase (2.3.35).
As experimentally the beam is not polarized, different initial projections m0 of the

ground state are possible. The cross section is just averaged over the values m0. By
inserting the expression (5.2.14) into Eq. (2.3.18), the differential stripping cross section
reads [100]

dσstr

dΩcTdEcT
= µcTKcT

(2π)3~2
1

2j0 + 1
∑
m0

∫
dbnT

×
∫ +∞

−∞
dZnT

2
~v

Im{−VnT (R′nT )}e−
2
~v

∫ ZnT
−∞ dZ′ Im{VnT (RnT )}

×
∣∣∣∣∫ dRcT e

−iqRcT eiχcT (bcT )φn0l0j0m0(RnT −RcT )
∣∣∣∣2 (5.2.15)

= µcTKcT

(2π)3~2
1

2j0 + 1
∑
m0

∫
dbnT

(
1−

∣∣∣eiχnT (bnT )
∣∣∣2)

×
∣∣∣∣∫ dRcT e

−iqRcT eiχcT (bcT )φn0l0j0m0(RnT −RcT )
∣∣∣∣2 , (5.2.16)
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where χnT is the n-T eikonal phase (2.3.35). In the spectator model, the transferred
momentum is equal to the relative c-n momentum after the reaction, i.e., q = k. With
Eq. (5.2.6), the transferred momentum is linked to kc through

q = −kc. (5.2.17)

With this relation and a change of variable RcT and RnT to r (2.3.11), the cross section
becomes

dσstr

dΩcTdEcT
= µcTKcT

(2π)3~2
1

2j0 + 1
∑
m0

∫
dbnT

(
1−

∣∣∣eiχnT (bnT )
∣∣∣2)

×
∣∣∣∣∫ dr e−ikcreiχcT (bnT ,s)φn0l0j0m0(r)

∣∣∣∣2 . (5.2.18)

It can also be expressed as a function of the final c-T relative momentum

dσstr

dK ′
cT

= 1
(2π)3

1
2j0 + 1

∑
m0

∫
dbnT

(
1−

∣∣∣eiχnT (bnT )
∣∣∣2)

×
∣∣∣∣∫ dr e−ikcreiχcT (bnT ,s)φn0l0j0m0(r)

∣∣∣∣2 . (5.2.19)

or as a function of the final momentum of the core in the projectile restframe [100, 153, 154]

dσstr

dkc

= 1
(2π)3

1
2j0 + 1

∑
m0

∫
dbnT

(
1− |eiχnT (bnT )|2

)
×

∣∣∣∣∫ dr e−ikcreiχcT (bnT ,s)φn0l0j0m0(r)
∣∣∣∣2 . (5.2.20)

The cross section as a function of the parallel-momentum is obtained by integrating
along the transverse momentum kc⊥. By using the property [154]∫

dkc⊥ e
ikc(s−s′) = (2π)2δ(s− s′), (5.2.21)

the parallel-momentum distribution reads

dσstr

dkc‖
= 1

2π
1

2j0 + 1
∑
m0

∫
dbnT

(
1− |eiχnT (bnT )|2

) ∫
ds

∣∣∣∣eiχcT (bnT ,s)
∣∣∣∣2

×
∣∣∣∣∫ ∞
−∞

dz e−ikc‖zφn0l0j0m0(r)
∣∣∣∣2 . (5.2.22)

The distribution of the one-neutron knockout as a function of the parallel-momentum of
the core after the collision is thus obtained through the sum (5.2.1) of the diffractive (5.2.7)
and the stripping (5.2.22) cross sections.
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5.3 Halo-EFT description of the projectile
To understand which structure information is probed by knockout reactions, I study
the one-neutron knockout of 11Be on a 9Be target at 60A MeV. This knockout reaction
was measured at the National Superconducting Cyclotron Laboratory [76, 77]. As in
Chapters 3 and 4, we model 11Be within the single-particle model (see Sec. 1.1.3). The
halo nucleus 11Be is seen as an inert 10Be core, assumed to be in its 0+ ground state,
to which a neutron is bound by 0.504 MeV. The ground 1/2+ and excited 1/2− states
of 11Be are described by the single-particle states 1s1/2 and 0p1/2, respectively, with
unit spectroscopic factors (1.1.9)–(1.1.10), i.e., S1/2+0+

s1/2 = S
1/2−0+

p1/2 = 1. Contrary to the
previous Chapters, the effective internal Hamiltonian of the projectile (2.3.1) is constructed
within Halo-EFT (see Ref. [151] for a recent review). This model expands the projectile
Hamiltonian upon the small parameter Rcore/Rhalo ≈ 0.4 [152]. The core and the halo
neutron are considered structureless and thus constitute the degrees of freedom of the
Halo-EFT and the breakdown scale of the EFT is set by the size of the core. Similarly, this
expansion can be done with the ratio of momenta associated with the neutron separation
energy Sn = 0.504 MeV and with the energy of the first excited state 2+ of the 10Be core
of energy E2+ = 3.4 MeV, i.e., with

√
Sn/E2+ ≈ 0.4 [152].

Halo-EFT is expressed through Lagrangians, in which the operators are expanded up
to a given order. Since Halo-EFT can be described as an extension of pionless-EFT, the
interactions involved in the Lagrangians are contact interactions [151]. The coefficients of
these interactions are called the low-energy constants and have to be constrained. Usually
they are adjusted to reproduce experimental data or outputs of structure calculations [151].
The Halo-EFT description of 11Be at leading order (LO) involves one low-energy constant
in the s1/2 channel. At NLO, one additional parameter in the s1/2 and two in the p1/2
channels need to be constrained1 [151, 152].

Following Refs. [66, 152], I use a description of 11Be at NLO. The effective c-n potential
Vcn in Eq. (2.3.1) is parametrized as contact interactions and their derivatives, which are
regulated by Gaussians to obtain numerically tractable potentials. The potential in the
partial wave lj reads [152]

V lj
cn(r) = −V lj

0 e
− r2

2r2
0 − V lj

2 r
2e
− r2

2r2
0 , (5.3.1)

where V lj
0 and V lj

2 are adjustable parameters, which can be fit to reproduce experimental
data or predictions from microscopic models in that partial wave. The range of the
Gaussians r0 is an unfit parameter, which can be varied to estimate the sensitivity of the
calculations to the short-range physics of the projectile. Since in this parametrization,
there is no spin-orbit term and the effective potential does not depend explicitly on the
spin of the neutron, the first derivative of the potential is not considered. Indeed, the
part of the nuclear potential independent on the spin has to be scalar and thus can only
depend on powers of r2 [155].

As mentioned before, at NLO, the potential (5.3.1) has to be constrained in the s1/2
and p1/2 partial waves. It is fit to reproduce the experimental binding energies of the 1/2+

1If there were no bound state in the p wave, the interactions would scale “naturally” and the p-wave
interaction would only appear at next-to-next-to-next-to-leading order (N3LO). However, as the 1/2−

state is modelled as a 0p1/2 state, the interaction needs to be enhanced in the p1/2 wave. Therefore, a
p1/2-wave interaction arises at LO [151, 152], which is NLO for the whole nucleus, because the expansion
has a different counting in each partial wave.
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r0 V lj
0 V lj

2 Enlj bnlj
[fm] [MeV] [MeV] [MeV] [fm−1/2]

1s1/2

1.2 50.375 45 -0.504 0.786
2 80.54 -2.97 -0.504 0.786
1.2 -86.03 108.62 -0.504 0.829

0p1/2 1.2 96.956 0 -0.184 0.129

Table 5.1: Depths of the Halo-EFT potential (5.3.1) at NLO used to simulate
the 10Be-n interaction in the s1/2 and p1/2 partial waves. The depths are fit to
the experimental binding energy and the ANC predicted by Calci et al. [51].

(E1/2+ = −0.504 MeV) and 1/2− (E1/2− = −0.184 MeV) bound states of 11Be. Halo-EFT
potentials are also adjusted to the ANC of these states [see Eqs. (1.1.11) and (2.3.7)]
predicted by the ab initio no-core shell model with continuum (NCSMC) calculations of
Calci et al. [51]: b1s1/2 = Cs1/2 = 0.786 fm−1/2 and b0p1/2 = Cp1/2 = 0.129 fm−1/2.

To test the influence of the 1s1/2 ground state on the reaction calculations, I generate
various s1/2 Halo-EFT potentials. First, I consider two Gaussian ranges r0 = 1.2 fm and
2 fm. Then, since the ab initio calculations predict a spectroscopic factor S1/2+0+

s1/2 = 0.9 for
the 0+⊗s1/2 configuration [51] (see Sec. 1.1.4), I also fit the potentials to reproduce a wave
function with the same ANC when its norm is reduced to

√
0.9, i.e., b1s1/2 = 0.829 fm−1/2[=

0.786/
√

0.9 fm−1/2, see Eq. (1.1.11)]. The parameters V s1/2
0 and V s1/2

2 obtained from these
different fits are displayed in Table 5.1 alongside the resulting eigenenergies and SPANCs.
The 1s1/2 wave functions generated from these potentials are plotted in Fig. 5.4.1(a).

Similarly, in the p1/2 partial wave, I have initially considered two Gaussian ranges
r0 = 1.2 and 2 fm. and I have fit the potential depths to reproduce the binding energy
and ANC of the excited state 1/2−. However, since the cross sections obtained with these
two potentials are similar, only the results obtained with the potential fit with r0 = 1.2 fm
in the p1/2 are displayed in this thesis. The potential depths in the p1/2 are listed in the
last line of Table 5.1.

5.4 Sensitivity to the projectile’s structure

5.4.1 Optical potentials and numerical details
The test case of this sensitivity analysis is the one-neutron knockout of 11Be with 9Be
target at 60A MeV. As seen in Chapter 2, the P -T interactions are simulated through
optical potentials. The potentials chosen for both c-T and n-T interactions have a
Woods-Saxon shape (2.2.2)–(2.2.3). For the 10Be-9Be interaction, I use the parameters
of Ref. [133], which reproduce the 10Be-12C elastic scattering at 59.4A MeV [134]. To
account for the different sizes of 9Be and 12C targets, I rescale the radii of the potential
by (101/3 + 91/3)/(101/3 + 121/3). The parameters of this optical potential is listed in the
first line of Table 5.2. The Coulomb interaction is simulated by a potential generated
by a uniformly charged sphere (2.2.4) of radius RC = 1.2 (101/3 + 91/3) fm. The n-9Be
interaction is modelled by the potential developed in Ref. [156], fit to elastic scattering
data of a nucleon off a nucleus with A ≤ 13 at energies between 65 MeV and 75 MeV. The
parameters of this potential at the beam energy considered here are listed in the third
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VR RR aR WI RI aI WD RD aD
[MeV] [fm] [fm] [MeV] [fm] [fm] [MeV] [fm] [fm]

10Be-9Be 123.0 3.17 0.8 65.0 3.31 0.8 0 0 0 PRC55
127.0 3.39 0.78 13.9 5.29 0.7 0 0 0 PRC87

n-9Be 33.08 2.38 0.65 4.15 2.38 0.65 9.175 2.83 0.178 JPG45
22.6 2.85 0.295 5.3 2.7 0.3 15.25 2.7 0.3 PRC89

Table 5.2: Parameters of the Woods-Saxon optical potentials (2.2.2)–(2.2.3) used
to simulate the 10Be-9Be and n-9Be interactions for the one-neutron knockout of
11Be on 9Be at 60A MeV [133, 156, 157, 158].

line of Table 5.22. For both potentials, the energy dependence is neglected in the reaction
model.

All the computations use the following model space: the 10Be-n continuum is described
up to the c-n orbital angular momentum lmax = 10 and a mesh in impact parameter is
considered up to 100 fm, with a step of 0.25 fm up to 30 fm and of 2 fm beyond. In
this Chapter, all parallel-momentum distributions for the diffractive breakup (5.2.7) are
obtained with the CCE. The stripping cross section (5.2.22) is obtained by integrating bnT
up to 10 fm, which is enough to reach convergence. Both contributions (A.48) and (5.2.22)
are integrated up to kmax = 1.5 fm−1, which corresponds to Emax = 51.3 MeV. Note that
at these large continuum energies, other reaction channels than the elastic scattering of
10Be-n are open. These large energies contributions might therefore be better modelled by
an optical potential than the Halo-EFT interaction considered here. In this thesis, I do
not study the impact of these other channels and I use the Halo-EFT potential to describe
the 10Be-n continuum.

In the following, the parallel-momentum distributions are expressed in the projectile
restframe. The total diffractive-breakup and stripping cross sections mentioned in the text
are obtained by integrating respectively the diffractive-breakup energy distribution (A.42)
up to 100 MeV in the continuum and the stripping parallel-momentum distribution (5.2.22)
up to kmax = 2.1 fm−1, which corresponds to Emax = 100 MeV. These two values ensure
the convergence of the total cross sections.

5.4.2 Ground-state wave function
As detailed in Sec. 5.3, I have generated different 10Be-n potentials leading to various
1s1/2 ground-state wave functions. The corresponding ground-state wave functions are
plotted in Fig. 5.4.1(a). By construction, the two wave functions obtained with different
ranges (r0 = 1.2 fm in red line and r0 = 2 fm in green line) exhibit identical asymptotics
and differ at short distance, i.e., below 6 fm. The ground-state wave function reproducing
a larger SPANC (2.3.7) (blue lines) has larger asymptotics and a very different short-range
behaviour. To determine if the breakup process is sensitive only to the asymptotics, I
normalize this third wave function to the spectroscopic factor 0.9 predicted by Calci et
al. [51]. By construction, this normalized wave function (brown lines) exhibits the same
asymptotics as the previous ones while being very different below r ≈ 4 fm.

The corresponding parallel-momentum distributions of 10Be for the diffractive breakup
(dashed lines) and stripping (dotted lines) of 11Be on 9Be at 60A MeV are plotted in

2The second and fourth lines of Table 5.2 are discussed further in this Chapter, in Sec. 5.5.
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r0 = 1.2 fm b1s1/2=0.829 fm−1/2 rescaled
r0 = 1.2 fm b1s1/2=0.829 fm−1/2
r0 = 2 fm b1s1/2=0.786 fm−1/2
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Figure 5.4.1: Influence of the ground-state wave function onto the parallel-
momentum distribution of 10Be resulting from the diffractive breakup (dashed
lines) and the stripping (dotted lines) of 11Be on 9Be at 60A MeV. Panel (a)
shows the radial wave functions of the 1s1/2 ground state of 11Be, obtained with
the potentials detailed in Sec. 5.3. Panel (b) displays the parallel-momentum
distribution obtained with these ground-state wave functions.

Fig. 5.4.1(b). The two cross sections obtained with the potentials fit with r0 = 1.2 fm and
r0 = 2 fm (red and green lines, respectively) are almost superimposed to one another for
both the stripping and the diffractive processes. This confirms the results of Refs. [159,
160, 161] which show that these observables are not sensitive to changes in the ground-state
wave function at small distance r. When the reaction is computed with the ground-state
wave function fit to the larger SPANC (blue lines), we observe an increase of about 10%
in both cross sections. After scaling that initial wave function to the 0.9 spectroscopic
factor predicted by Calci et al. [51], the cross sections are nearly identical to the previous
ones (brown lines).

The total diffractive-breakup σtotal
bu , stripping σstr and knockout σko cross sections

obtained with different ground-state wave functions reproducing the ANC of Calci et
al. are displayed in Table 5.3. We can see that all these cross sections are similar, the
deviations from the case obtained with b1s1/2 = 0.786 fm−1/2 and a unit spectroscopic
factor are maximum 2.5%. Therefore, similarly to the exclusive breakup [161], the inclusive
breakup of one-neutron halo nuclei is purely peripheral, in the sense that it is sensitive
only to the tail of the initial ground-state wave function. This confirms the result obtained
by Hansen using a simple geometric model, where the stripping cross sections are shown
to be proportional to the square of the SPANC [159], and to the confirmation of this result
within an eikonal framework [160]. The tiny difference observed in both the diffractive
and stripping part comes from contributions at high 10Be-n relative energies, where the
process starts to be slightly more sensitive to the projectile radial wave function at small
distances, viz. r < 4 fm. An analysis of the diffractive breakup distribution as a function
of the relative 10Be-n energy shows that this cross section scales perfectly with the square
of the ANC at E < 40 MeV.

This analysis confirms that the one-neutron knockout of one-neutron halo nuclei is a
peripheral reaction. Therefore, information about the internal part of the wave function
cannot be reliably inferred from such measurements. This is in particular true for the
spectroscopic factor. Since calculations performed with two wave functions that exhibit
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r0 b1s1/2 S
1/2+0+

s1/2 σtotal
bu × S1/2+0+

s1/2 σstr × S1/2+0+

s1/2 σko × S1/2+0+

s1/2
[fm] [fm−1/2] [mb] [mb] [mb]
1.2 0.786 1 107.8 83.4 201.1
2 0.786 1 108.2 84.6 202.8
1.2 0.829 0.9 106.5 81.4 197.9

Table 5.3: Influence of the asymptotics of the ground-state wave function onto the
total diffractive-breakup, stripping and knockout cross sections for the collision
11Be with 9Be at 60A MeV. They are obtained with the different ground-state
wave functions plotted in Fig. 5.4.1.

different norms but the same ANC provide nearly identical results, it is not clear how
accurate the spectroscopic factors extracted from knockout measurements are. However,
what is clear from this analysis, is that the parallel-momentum distributions for both
diffractive breakup and stripping, are sensitive to the asymptotics of the ground-state wave
function. It suggests that these observables would be good candidates to extract accurately
the ANC of the wave function of halo nuclei, as done in Refs. [162, 163, 164, 165]. To
confirm this, I analyse in the next sections the sensitivity of these observables to other
features of the projectile description, viz. the presence of an excited subthreshold bound
state and the description of the projectile continuum.

5.4.3 Excited states
This section investigates how the presence of the 1/2− excited state in the 11Be description
affects knockout observables. Due to the form of the stripping cross section (5.2.22),
which depends only on the ground state wave function, this study is restricted to the sole
diffractive breakup. As explained previously, this 1/2− bound state is described as a 0p1/2
single-particle state, using the Halo-EFT 10Be-n potential (5.3.1) with the parameters
listed in the last line of Table 5.1.

The presence of that subthreshold state significantly changes the low-energy continuum
in the p1/2 partial wave [152, 166, 167], which itself affects the calculation of breakup cross
sections at low energy [152, 166]. We therefore expect to see some influence of that state
in the diffractive component of the parallel-momentum distribution of the 10Be following
the breakup of 11Be. To investigate this in detail, I consider first two 10Be-n interactions
in that partial wave. In addition to the V p1/2

cn potential described in Sec. 5.3, I consider no
interaction at all, hence without considering the 1/2− excited state of 11Be and describing
the 10Be-n motion in the p1/2 continuum by mere plane waves. Fig. 5.4.2 shows the
p1/2 waves in the continuum at (a) E = 0.3 MeV and (b) E = 2 MeV, obtained with
the Halo-EFT potential (dashed green lines) and a nil potential, i.e., plane waves (solid
magenta lines). One can see that the presence of the 1/2− bound state induces a node at
distances r ∼ 6.5 fm at E = 0.3 MeV and r ∼ 4.5 fm at E = 2 MeV. In addition to this
node, the distorted wave differs from the plane wave in the asymptotic region due to the
phase shift (2.3.8).

The panels (c) and (d) of Fig. 5.4.2 display the cross sections for the diffractive breakup
of 11Be on 9Be at 60A MeV as a function of (c) the 10Be-n relative energy and (d) the
parallel-momentum of the remaining 10Be. Fig. 5.4.2(c) also includes the contribution
of the p1/2 partial wave separately. We see that the presence of the 1/2− bound state
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Figure 5.4.2: Influence of the presence of a subthreshold bound state in the
projectile spectrum on breakup observables for 11Be on 9Be at 60A MeV. Radial
wave functions for different c-n interactions in the p1/2 waves at (a) E = 0.3 MeV
and (b) E = 2 MeV in the 10Be-n continuum and of the 1s1/2 ground-state.
Diffractive-breakup cross section as a function of (c) the 10Be-n relative energy
(total and p1/2 contribution) and (d) the parallel-momentum of 10Be.
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1s1/2 1s1/2 1s1/2 1s1/2
+ 0p1/2 + p1/2 pw + SuSy p1/2 + p1/2 opw

σtotal
bu [mb] 107.8 109.3 109.3 107.4
σ
p1/2
bu [mb] 7.9 9.4 9.4 7.6
σinel [mb] 2.1 0 0 2.1

σtotal
bu + σinel [mb] 109.9 109.3 109.3 109.5

Table 5.4: Influence of the presence of a subthreshold bound state on the total
breakup and inelastic cross sections for the collision 11Be with 9Be at 60A MeV.
They are obtained from computations considering both the 1/2+ ground-state and
the 1/2− excited state (1s1/2 + 0p1/2), when the 1/2− excited state is not included
(1s1/2 + p1/2 pw), when this 1/2− state is removed by supersymmetry [168, 169,
170] (1s1/2 + SuSy p1/2) and when the 1/2 continuum is described by plane
waves orthogonalized to the 0p1/2 wave function (1s1/2 + p1/2 opw).

in the description of the projectile reduces the p1/2 diffractive breakup, mostly at low
energies in the continuum (compare the dashed green line to the solid magenta one).
This is reflected in the parallel-momentum distribution by the drop of the amplitude of
the peak by approximatively 2.1%. Note that the presence of the 1/2− state enhances
the energy distribution above 25 MeV but the cross sections are very small at such high
energies. Table 5.4 displays the diffractive-breakup cross sections σtotal

bu , its p1/2 breakup
contribution σp1/2

bu and the inelastic-scattering cross section σinel. It shows that the presence
of the 1/2− bound state reduces the diffractive-breakup cross sections σtotal

bu by 1.5 mb,
which corresponds to a relative diminution of 1.4%. Only the p1/2 breakup contribution
σ
p1/2
bu is affected by the presence of the 1/2− state.
Adding the 1/2− bound state also opens another reaction channel, the inelastic excita-

tion of 11Be from the ground state 1/2+ to the excited state 1/2−. I evaluate the inelastic
cross sections from a ground state n0l0j0 to an excited state nlj with the usual eikonal
model. The corresponding cross section reads (see Appendix A)

σnljinel = 2π
2j0 + 1

∑
m0m

∫ +∞

0
b db

∣∣∣ 〈φnljm|eiχCeiχN |φn0l0j0m0〉
∣∣∣2 , (5.4.1)

where χC,N are the eikonal phases (2.3.36). The total inelastic-scattering cross section is
listed in Table 5.4. Interestingly, the flux of probability lost in the p1/2 breakup seems to
be transferred to the inelastic cross section σinel. This suggests that, for such reactions
at intermediate energies where the dynamical effects are small, a conservation of the
probability flux within a partial wave is approximately respected.

This decrease in the cross section can be qualitatively explained by studying the
overlap of p1/2 radial wave function in the continuum with the one of the 1s1/2 ground
state, appearing in the CCE partial breakup amplitude (A.50). At both energies in the
continuum in Fig. 5.4.2, the node of the distorted p1/2 wave is located in a range where
the 1s1/2 wave function (solid red lines) is significant. Moreover, the phase shifts induced
by the p1/2 interaction can also play a role [166]. To discriminate the impact of the node
from the phase shifts on the breakup cross sections, I follow two different approaches. The
first is to remove the 1/2− state with phase-equivalent transformations of the potential
through supersymmetry [168, 169, 170]. These transformations conserve the phase shifts
while eliminating the bound state, hence the node at small r in the p1/2 wave function as
seen in Fig. 5.4.2 (dash-dotted blue lines).
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The construction of a phase-equivalent potential where the nlj bound state is removed,
can be done by applying two subsequent transformations [168, 169]: the first removes the
bound state nlj leaving the rest of the bound spectrum unchanged but modifies the phase
shift in the lj partial wave; the second restores the initial lj phase shift. After these two
transformations, the new potential in the lj partial wave reads [169]

V lj(2)
cn (r) = V lj

cn(r)− ~2

µcn

d2

dr2 ln
∫ r

0
dr′ [unlj(r′)]2, (5.4.2)

where unlj is the radial wave function of the removed bound state obtained with the initial
potential V lj

cn. These transformations affect the new lj scattering wave functions at short
distances, their radial parts read [169]

u
(2)
klj(r) = uklj(r)− unlj(r)

∫ r
0 dr

′ unlj(r′)uklj(r′)∫ r
0 dr

′ [unlj(r′)]2
(5.4.3)

where uklj and u(2)
klj are the radial part of the scattering wave functions before and after

the supersymmetric transformations, respectively.
The corresponding energy distribution (dash-dotted blue line), displayed in Fig. 5.4.2(c),

lies between the plane-wave and the distorted-wave cases below 1 MeV whereas, at larger
energies, it tends to the plane-wave computations and overestimates it above 4 MeV.
The discrepancy between the distorted-wave case and the supersymmetric case can be
explained by the fact that the transformations are applied to a loosely-bound state and
thus affect the asymptotics of the p1/2 waves, i.e., above 5 fm [see Eq. (5.4.3)]. Similarly
to the energy distribution, the parallel-momentum cross sections in Fig. 5.4.2(d) show
that the supersymmetric case lies between the plane-wave and the distorted-wave cases.

The second approach is to keep the zero at short distances in the p1/2 wave function,
and thus the 1/2− state, but have a nil p1/2 phase shift. To do so, I use plane waves to
describe the p1/2 continuum, and orthogonalize them to the 0p1/2 wave function. The
orthogonalization of continuum wave functions in the lj wave to a nlj bound state read

uopw
klj (r) = krjl(kr)− unlj(r)

∫ +∞

0
dr′ unlj(r′)kr′jl(kr′) (5.4.4)

where “opw” stands for orthogonalized-plane waves, krjl(kr) is the radial wave function
of a plane wave [δlj = 0 in Eq. (2.3.8)] and jl is a spherical Bessel function of the first
kind [92]. Fig. 5.4.2 shows that these orthogonalized plane waves (dotted brown lines)
exhibit a node in the p1/2 wave around 6.5 fm at E = 0.3 MeV and 4 fm at E = 2 MeV
while keeping a nil phase shift. These nodes are located in the asymptotics of the p1/2
waves because the 0p1/2 state is loosely-bound and the p1/2 waves are modified at large
r [see Eq. (5.4.4)].

The energy distribution computed with the orthogonalized plane-waves (dotted brown
line) plotted in Fig. 5.4.2(c) is closer at the peak to the p1/2 distorted-wave case than the
supersymmetric case. This can be explained by the fact that the orthogonalized plane
waves are closer to the distorted waves at both energies than to the plane waves. The
orthogonalized plane-wave computation overestimates the distorted-wave calculation below
0.7 MeV while it underestimates it at larger energies. Since these two contributions tend
to compensate each other when they are integrated, the parallel-momentum distribution
seems to be on top of the supersymmetric case at the peak and lies between the plane-wave
and the distorted-wave cases.
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Even if the parallel-momentum distributions obtained with the two additional de-
scriptions of the continuum, i.e. the p1/2 waves obtained with the supersymmetric
transformations and the p1/2 orthogonalized plane waves, are similar at the peak, their
total cross sections differ noticeably. In Table 5.4, the diffractive breakup cross sections
obtained with the supersymmetric transformations is similar to the plane-wave case.
This is due to the compensation of the high-energy, i.e. above 4 MeV, and low-energy
contributions. However, the total diffractive breakup cross section obtained with the
orthogonalized-plane waves is reduced by 1.9 mb compared to the plane-wave case, which
corresponds to a relative diminution of 1.7%. This reduction is similar to the one observed
in the distorted-wave case and seems also to be transferred to the inelastic scattering
observable, which is 2.1 mb. Because both distorted waves and the orthogonalized planes
include the 1/2− bound state, this analysis is therefore consistent with the hypothesis of
conservation of the probability flux within one partial-wave.

The same study performed within the DEA, where the adiabatic approximation is not
considered (see Sec. 2.3.3.3), leads to identical results. Moreover, this conclusion remains
unchanged when the excited bound state is in the d wave, as would be the case for a
15C projectile, another well known one-neutron halo nucleus. Therefore, such reactions
at intermediate energies, where the dynamical effects are small, seems to conserve the
probability flux within a partial wave, simply shifting that flux from the inelastic to
the breakup channels. This effect has already been observed by Moro et al. in their
theoretical analysis of the Coulomb-breakup measurement of 11Be performed at RIKEN
[35]. Including the 1/2− bound excited state in the description of 11Be reduces the E1
strength to the continuum by an amount that is almost equal to the E1 strength for the
Coulomb excitation from the 1/2+ ground state to the 1/2− excited state [171].

Theoretically, this transfer from the breakup to the inelastic channel is a consequence
of the Hermicity of the 10Be-n Hamiltonian and the adiabatic treatment of the reaction.
Since the wave functions of the bound states φnljm and of the continuum φkljm form an
orthogonal basis in the subvectorial space defined by the partial wave ljm, the following
closure relation holds∑

n

|φnljm〉 〈φnljm|+
2
π

µcn
~2k

∫
dE |φkljm〉 〈φkljm| = 1ljm, (5.4.5)

where the sum runs over all the bound states in the partial wave ljm. At the usual
eikonal approximation, i.e., relying on the adiabatic approximation, the contribution to the
diffractive-breakup cross section of each partial wave σljbu is simply obtained by integrating
the corresponding contribution to the energy distribution. It reads [see Eqs. (A.42) and
(A.49)]

σljbu = 4µcn
~2k

1
2j0 + 1

∑
m0m

∫
dE

∫
b db

∣∣∣ 〈φkljm|eiχN eiχC |φn0l0j0m0〉
∣∣∣2 . (5.4.6)

By using the closure relation (5.4.5) into the breakup cross section per partial-wave (5.4.6),
we can write for any partial wave that does not include the ground state, i.e., lj 6= l0j0,

σljbu = 2π
2j0 + 1

∑
m0m

∫
b db

∫
dr
∣∣∣∣ lim
Z→+∞

ψ
(m0)
ljm (b, 0, Z, r)

∣∣∣∣2 −∑
n

σnljinel, (5.4.7)

where ψ(m0)
ljm (A.10) is the radial ljm contribution of the three-body wave function Ψeik(m0)

and σnljinel (5.4.1) is the contribution of the bound state nlj to the inelastic scattering cross
sections.
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The first term of (5.4.7) does not depend on the description of the continuum, nor on
the presence of excited states, the sum

σljsum = σljbu +
∑
n

σnljinel (5.4.8)

is therefore sensitive only to the ground-state wave function and the optical potentials.
This relation explains the transfer within each partial-wave of the flux from the breakup to
the inelastic-scattering channel when an additional bound state is included. Accordingly,
the sum of the total breakup and inelastic cross sections should be independent from
the choice of V p1/2

cn (see the last line of Table 5.4). The small differences are due to the
fact that the calculations have been performed with the CCE, which accounts for part of
the dynamics (see Sec. 2.3.3.5). The conservation of the sum of the inelastic-scattering
and diffractive-breakup flux cannot therefore be demonstrated because the operators
within the partial breakup amplitudes (A.50) depend on χC,(λ=1)

FO (2.3.44) and thus on E.
However, as mentioned above, the dynamical effects are small for this reaction, and thus
the conservation of the flux within a given partial wave is almost respected.

In conclusion, the presence of a loosely-bound excited state changes non-negligibly the
shape and magnitude of the c-n relative energy distribution for the diffractive breakup.
The parallel-momentum distributions of the remaining core are affected in a smaller extent,
i.e., less than 3% reduction at the peak. This reduction of the cross section is caused by
both the node at short distance in the continuum wave functions and the non-zero phase
shift introduced by the c-n interaction. The amplitude loss in the diffractive breakup
goes to the inelastic-scattering channel, as already seen in Coulomb-breakup calculations
by Moro et al. [171]. I have shown that this feature can be explained at the adiabatic
approximation by the conservation of probability flux shared between the inelastic and
breakup channels.

5.4.4 Resonances
I now investigate the influence of the resonant 10Be-n continuum on the breakup distri-
butions. As in the previous section, only the diffractive breakup is studied because at
the usual eikonal approximation the stripping cross section (5.2.22) does not depend on
the description of the continuum of the projectile. To do so, a resonance in the d5/2
partial-wave is included at Ed5/2 = 1.27 MeV with a width of Γd5/2 = 98 keV, close to the
experimental values of the 5/2+ resonance Eexp

5/2+ = 1.28 MeV and Γexp
5/2+ = 100 keV. This

approach goes beyond the NLO of the Halo-EFT expansion, since there is an interaction
in the d partial-wave [152]. To fully study the impact of the continuum, resonances at the
same energy with other widths are considered, i.e. Γd5/2 = 51 keV and Γd5/2 = 162 keV, and
at a higher energy Ed5/2 = 3 MeV with various widths Γd5/2 = 451 keV, Γd5/2 = 876 keV
and Γd5/2 = 1487 keV. To model these resonances, I vary the depths of the Gaussian
potential (5.3.1) in that sole d5/2 partial wave. The parameters of these potentials are
listed in Table 5.5.

Fig. 5.4.3(a) displays the d5/2 contribution to the diffractive-breakup cross section
for 11Be on 9Be at 60A MeV as a function of the 10Be-n relative energy. These energy
distributions are obtained with no interaction in the d5/2 (solid magenta line), with
a resonance at Ed5/2 = 1.27 MeV (dashed lines) and at Ed5/2 = 3 MeV (dotted lines)
characterized with different widths Γd5/2 (green, blue and brown lines). We can see that
the presence of a resonance causes a peak in the energy distribution at energy Ed5/2 with
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Ed5/2 Γd5/2 r0 V
d5/2

0 V
d5/2

2
[MeV] [keV] [fm] [MeV] [MeV]

1.27
51 1.2 330 -50
98 1.2 106.6 30
162 1.2 -231.8 100

3
451 1.2 199.35 0
876 1.2 4.7 50
1487 1.2 -19.9 150

Table 5.5: Depths of the Halo-EFT potential (5.3.1) used to simulate the 10Be-n
interaction in the d5/2 partial-wave. The depths are fit to the to reproduce
various d5/2 resonances at a energy Ed5/2 with a width Γd5/2.

Ed5/2 = 3 MeV Γ = 1.487 MeV
Ed5/2 = 3 MeV Γ = 0.876 MeV
Ed5/2 = 3 MeV Γ = 0.451 MeV

Ed5/2 = 1.27 MeV Γ = 0.162 MeV
Ed5/2 = 1.27 MeV Γ = 0.098 MeV
Ed5/2 = 1.27 MeV Γ = 0.051 MeV

d5/2 Plane Wave
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d
σ
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/d

E
[m

b
/M

eV
]

543210

100

10

1

0.1

0.01

(a)
kc‖ [fm−1]

d
σ
bu
/d

k
c‖

[b
fm

]

0.40.20-0.2-0.4

0.5

0.4

0.3

0.2

0.1

0

(b)

Figure 5.4.3: Influence of a d5/2 resonance on breakup observables for 11Be on 9Be
at 60A MeV. Panel (a) displays the d5/2 contribution to the energy distribution
and panel (b) the parallel-momentum of the remaining 10Be.

a width of the order of the resonance width Γd5/2, as seen in Refs. [35, 127] and explained
in Chapter 1. Moreover, these peaks are all followed by a depletion area resulting from
destructive interferences caused by the phase shift going over π/2. The width of this area
is proportional to the peak width: sharper resonances have a steeper drop and tends more
rapidly to the plane-wave computation after the resonance. When this distribution is
integrated, these two effects tend to compensate. The integrated breakup cross sections,
listed in Table 5.6, are similar for the different descriptions of the d5/2 continuum, even
within a partial-wave. This confirms the hypothesis of a conservation of the probability flux
within the d5/2 partial wave. The discrepancies are explained as before, the conservation
of the flux is not perfectly respected for the CCE, since this model includes part of
the projectile dynamics. The corresponding parallel-momentum distributions shown in
Fig. 5.4.3(b) are similar. This implies that the knockout observable is quite insensitive
to the description of the continuum: the presence (or absence) of a resonance does not
influence the parallel-momentum distribution for the diffractive breakup and therefore the
knockout cross sections.

In conclusion, the description of the continuum has a negligible influence on the
inclusive breakup observables. Contrary to the energy distributions, where the resonance
has a significant impact, a precise description of the continuum is not necessary in the
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d5/2 pw Res. Ed5/2 = 1.27 MeV Res. Ed5/2 = 3 MeV
Γd5/2 [keV] 51 98 162 451 876 1487
σtotal
bu [mb] 107.8 107.6 107.8 107.8 107.8 107.8 107.8
σ
d5/2
bu [mb] 16.9 16.8 16.9 16.9 17.0 17.0 17.0

Table 5.6: Influence of a d5/2 resonance on the total and the d5/2 contribution
to breakup cross sections of 11Be with 9Be at 60A MeV. Both the 1/2+ ground
state and the 1/2− excited state are considered, with either plane waves (pw) in
d5/2 or resonances at Ed5/2 = 1.27 MeV and Ed5/2 = 3 MeV with different widths
Γd5/2.

computation of the parallel-momentum distributions and total cross sections. Putting
simply plane waves to describe the continuum is therefore sufficient. Note that this
conclusion is not specific for one partial-wave, similar features are observed for p and
f resonances at different energies with various widths. I have also conducted the same
analysis with the DEA, which includes the dynamics of the projectile, and the conclusions
were identical. This independence on the description of the continuum suggests that
this observable can be used to extract other precise information pertaining to the initial
ground-state, such as its ANC (see Sec. 5.4.2).

5.5 Sensitivity to the optical potential
To extract reliable information from knockout observables, the sensitivity of the cross
sections to the choice of optical potentials needs to be assessed. To do so, I compare
the eikonal predictions to the experimental data of the one-neutron knockout of 11Be
with 9Be at 60A MeV, which was measured at National Superconducting Cyclotron
Laboratory [76, 77]. The experimental setup relies on two detectors: a spectrograph and a
Gamma-ray scintillator. The spectrograph detects 10Be residues after the reaction. As
some of these residues are in an excited state, the scintillator collects the Gamma-rays
emitted through their deexcitation. Combining these two measurements, the cross sections
of the one-neutron knockout of the projectile populating a given final state of the residue
can be extracted. The errors associated with the experimental procedure is evaluated to
be about 12% of the total knockout cross section [77]. They account for the uncertainties
in target thickness, incident particle rate, particle identification, and the spectrograph
acceptance. The experimental setup is presented in more details in Ref. [82]. I study here
only the one-neutron knockout reaction of 11Be where the 10Be residue is in its ground
state 0+.

The momentum distributions are shown in the laboratory system and thus are expressed
as a function of the parallel-momentum of the core in this frame pcT‖ = ~K ′cT‖ (5.2.19).
The distributions are centered around the initial momentum of the core picT‖, which is
computed in the relativistic regime through [44]

picT‖ = mcvγ, (5.5.1)

where v is the initial P -T velocity, γ = 1/(1 − v2/c2) is the relativistic factor with c
the speed of light in vacuum. For one-neutron knockout of 11Be with 9Be at 60A MeV,
picT‖ = 3.397 GeV/c. However, the experimental distribution is centered at 3.33 GeV/c.
This shift in momentum is due to the fact that the core slows down in the target. To
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Figure 5.5.1: Influence of the choice of optical potentials on the parallel-momentum
distribution of 10Be after the one-neutron knockout of 11Be with 9Be at 60A MeV.
The experimental data are the red points [76, 77].

compare with experimental data, the theoretical predictions are centered at 3.33 GeV/c.
The deflection of the remaining core after the knockout is small, only the angles up to 4◦
in the laboratory frame contribute significantly to the cross sections [76, 77]. The data are
thus measured up to 4◦. Moreover, because the deflection angle is small, the relativistic
effects can be accounted for by simply broadening the distributions by the relativistic
factor γ = 1.064 [77].

I use the Halo-EFT description of 11Be at NLO presented in Sec. 5.3. To analyse
the impact of the choice of optical potentials, two new optical potentials are considered.
Additionally to the 10Be-9Be interaction presented in Sec. 5.5, I consider the potential
developed in Ref. [157]. This potential has a Woods-Saxon shape (2.2.2)–(2.2.3) and is
adjusted to reproduce the elastic scattering of 9Be off 13C at 40 MeV. I rescale the radii of
the potential with the numbers of mass, i.e., with (91/3 + 101/3)(91/3 + 131/3) (second line of
Table 5.2). The Coulomb interaction is simulated by a potential generated by a uniformly
charged sphere of radius RC = 4.23 fm. Obviously, the energy range of this potential
is not well adapted for this collision, but it is the second most realistic potential that I
have found. I also consider an additional n-9Be interaction, which has been developed in
Ref. [158] and is fit to reproduce the total, the elastic, and the reaction cross sections of
a neutron with 9Be at energies between 1 and 100 MeV. It is also parametrized with a
Woods-Saxon shape (2.2.2)–(2.2.3). Its parameters at the beam energy considered here
are displayed in the fourth line of Table 5.2.

Fig. 5.5.1 shows how the choice of the optical potentials impacts the parallel-momentum
distribution of 10Be after the one-neutron knockout of 11Be with 9Be at 60A MeV. The
distribution (VcT PRC55 VnT JPG45, dashed green line) obtained with the set of potentials
that I have used initially in this Chapter (see first and third lines of Table. 5.2) has a peak
within the hypothetical3 error bars of the experimental cross section (red points). The
other 10Be-9Be interaction, denoted PRC87 (dash-dotted green and blue lines, second line
of Table 5.2), leads to cross sections with a higher peak and overestimates the experimental

3As I could not get access to the data, I have scanned the values of Ref. [77]. I have assumed that
the relative errors are constant and I have estimated them with the experimental error on the total cross
section which is about 15.27% [76, 77].
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VcT PRC55 PRC87 PRC55 PRC87 Exp.
VnT JPG45 JPG45 PRC89 PRC89

σko [mb] 192 203 204 215 203± 31

Table 5.7: Total one-neutron knockout cross section of 11Be with 9Be at 60A MeV.
The theoretical predictions obtained with different choices of projectile-target
optical potentials are compared to the experimental value [77].

peak. This indicates that the potential PRC55 is more absorptive than the one denoted
PRC87. This is not surprising since the imaginary depth of PRC55 is approximately five
times larger than the one of PRC87 (compare the two first lines of Table 5.2). Using
another n-9Be potential also influences the parallel-momentum distribution. We can see
that using the potential PRC89 (fourth line of Table 5.2) instead of the one denoted JPG45
leads to a distribution with a larger peak (the blue lines compared to the green lines).
This can be explained by the fact that the radius of the imaginary surface term of the
potential JPG45 is larger than the one of the potential PRC89 (compare the two last lines
of Table 5.2). Therefore, the predictions obtained with all four sets of potentials tend to
overestimate the peak of the experimental distribution.

The experimental and eikonal knockout cross sections are displayed in Table 5.7. These
cross sections are obtained by integrating the parallel-momentum distribution between
pcT‖ = 3.24 to 3.41 GeV/c. As expected, less absorptive potentials such as PRC87 and
PRC89 lead to larger knockout cross sections. We can also note that the agreement
between the theoretical predictions with the experimental data is good. Since these cross
sections are mostly sensitive to the ANC, the knockout data seems to agree well with the
ANC predicted with Calci et al. [51].

We can also see in Fig. 5.5.1 that none of the predictions reproduce the asymmetry
and the width of the experimental distribution. As explained in the Chapter 4, the shape
of the distribution is due to dynamical effects, which are not included at the usual eikonal
approximation. For the diffractive breakup contribution, dynamical models, such as CDCC,
the DEA and the S-DEA, predict an asymmetric parallel-momentum distribution. In
Ref. [77], the authors analyse how the shape of the CDCC distribution evolves with the
deflection angle of 14C after the diffractive breakup of 15C with 9Be at 54A MeV. Fig. 5.5.2
displays the Fig. 5 of Ref. [77]. This figure shows that the laboratory angles larger than
4◦ do not contribute significantly to the cross sections. Moreover, at forward angles, i.e.,
below 0.5◦, the CDCC (lines) and eikonal (solid circles) predictions are superimposed, and
both lead to a symmetric distribution with the same width. This is expected since the
eikonal approximation relies on a small-angles approximation (A.27). At larger angles,
the distribution becomes more asymmetric indicating that the dynamical effects play an
important role [77, 172]. The forward angles can thus be analysed by the usual eikonal
approximation while the larger angles should be compared with models including dynamical
effects in both the diffractive and stripping contributions.

In conclusion, my comparison of eikonal predictions obtained with different sets of
optical potentials to experimental data shows that the shape of the parallel-momentum
distributions is insensitive to the choice of the potentials. However, the magnitude of the
knockout observables are sensitive to both the c-T and n-T optical potentials, which have
thus to be chosen carefully. We have also seen that the eikonal model lacks asymmetry
due to its adiabatic approach. Since this asymmetry and thus the dynamical effects are
small at forward angles, the eikonal model might be more accurate if applied only at
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Figure 5.5.2: Evolution of the asymmetry of parallel-momentum distribution
for the diffractive breakup of 15C with 9Be at 54A MeV, as a function of the
maximum angle of detection of the 14C residue in the laboratory frame. The lines
are obtained with CDCC and the solid circles with the eikonal model at θ ≤ 0.5◦.
This figure is taken from Ref. [77].

these angles. Finally, for all these calculations, the parallel-momentum distributions are
integrated up to 51.3 MeV in the 10Be-n continuum (see Sec. 5.5), where other channels
than the elastic scattering one are open. Since the Halo-EFT description of 10Be-n is
only suited to describe the low-energy part of 10Be-n spectrum, the large energies in the
10Be-n continuum might therefore be better modelled by including an imaginary part that
simulates missing channels in the description of 11Be at these high continuum energies.

5.6 Summary and prospects
Knockout reactions are often used to probe experimentally the structure of halo nuclei.
These inclusive reactions are of particular interest since they have much higher statistics
than exclusive measurements. To reliably extract structure information, one needs to
know precisely the sensitivity of the reaction observables to the projectile description
and the choice of nuclear interactions. This study enables to pin down what nuclear-
structure information can be safely inferred from knockout data and it also provides
an idea of the uncertainties due to the choice of optical potentials. In the first part of
this Chapter, I have investigated how the ground-state wave function, the presence of
subthreshold excited states and resonances in the core-neutron continuum influence the
parallel-momentum distribution of the remaining core after the collision. I have also studied
the influence of these structure features on the relative core-neutron energy distribution
after the diffractive breakup of one-neutron halo nuclei. This analysis is performed for the
one-neutron knockout of 11Be with 9Be at 60A MeV.

By using a Halo-EFT description of 11Be at NLO [66, 152], I have generated ground-
state wave functions with very different inner parts but similar large-distance behaviour. I
have shown that the parallel-momentum distributions of both the diffractive breakup and
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stripping, are sensitive only to the asymptotics of the ground-state wave function. This
confirms the conclusions of Refs. [159, 160] for knockout and of Ref. [161] for diffractive
breakup: the inclusive breakup observables of one-neutron halo nuclei cannot be used to
probe the ground-state wave function below 4 fm. In particular, the spectroscopic factor of
such loosely-bound nuclei cannot be determined reliably from these observables. However,
information about the tail of the wave function, viz. the ANC, can be safely extracted.
This suggests that the good agreement between theory and experiments observed for
loosely-bound nuclei [26, 27] is rather due to a fair reproduction of the ANC in the
single-particle model of the projectile than a precise prediction of the spectroscopic factor.

The presence of an excited subthreshold state, such as the 1/2− excited state in 11Be,
reduces the breakup cross section. I have demonstrated that at the adiabatic approximation,
this reduction in the breakup amplitude is transferred to the inelastic channel, viz. to the
excitation of the projectile towards that subthreshold state. I have also shown that the
presence of a resonance in the continuum has a negligible impact on the parallel-momentum
distribution and the total cross section for one-neutron knockout reactions. Therefore, in
the theoretical analyses of these distributions, an accurate description of the core-neutron
resonant continuum is not needed. This strongly reduces the uncertainty related to the
projectile model in the study of such reactions. Knockout observables of loosely-bound
nuclei are therefore ideal to extract structure information pertaining to the asymptotics of
the ground-state wave function, such as the ANC. Similar conclusions are also obtained
for the one-neutron knockout 15C on 9Be at 54A MeV. This sensitivity analysis to the
projectile’s structure has been published in Refs. [30, 31].

Because optical potentials are needed to simulate the projectile-target interactions,
I have also estimated the sensitivity of knockout cross sections to the choice of optical
potentials. To do so, I have compared the eikonal predictions obtained with different sets of
optical potentials to experimental data [76, 77]. The magnitude of the knockout observables
are sensitive to the optical potentials, suggesting that the uncertainty introduced by their
choice should be assessed in theoretical analyses. This uncertainty quantification could
be done following a Bayesian approach, as it has been done for transfer reactions in
Refs. [173, 174]. Since knockout observables are integrated up to high energy in the
continuum, e.g. up to 51.3 MeV in the 10Be-n continuum, the absorption channels in the
c-n system might also influence the magnitude of the cross section. It would therefore
be also interesting to evaluate the impact of the absorption channels in the c-n system,
through the use of phenomenological optical potential to describe the scattering states.

The eikonal model misses the asymmetry of the experimental data, due to its adiabatic
approach. However, since this asymmetry and thus the dynamical effects are small at
forward angles [77, 172], the eikonal model might be accurate at these angles. A direct
prospect of this work would be to compare the eikonal cross sections calculated only for
these forward angles to the corresponding experimental data. For larger laboratory angles,
dynamical effects play a non-negligible role, and should be included within the reaction
model. It would therefore be also interesting to study a generalization of the DEA and
S-DEA to knockout reactions.

After quantifying the uncertainty due to the choice of interaction potentials, I could
extract an ANC for 11Be from the knockout cross section at forward angles and compare it
to the ab initio predictions of Calci et al. [51]. A similar comparison of the ANC extracted
from knockout data [76, 77] with the ab initio predictions could also be performed for
15C. Hopefully, this would confirm similar analyses performed recently for diffractive
breakup [66, 152] and transfer [175, 176]. In the future, a sensitivity analysis combining
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Halo-EFT and the eikonal reaction model could also be applied to the one- and two-
neutrons knockout of two-neutron halo nuclei, using the eikonal framework for three-body
projectiles [111, 144, 177, 178]
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In this thesis, I have focused on the improvement of the eikonal approximation for reactions
involving one-neutron halo nuclei. Because they are very short-lived, these nuclei are often
studied through reactions. The accuracy of the nuclear-structure information inferred from
reaction measurements depends strongly on the validity of the reaction model and the
quality of the description of the nucleus involved in the reaction. Improving the eikonal
approximation is motivated by its small numerical cost compared to the exact solution
provided by the Faddeev formalism or other state-of-the-art methods such as CDCC.
Thanks to its relatively low numerical cost, the eikonal approximation could be extended
to more complex descriptions of the nucleus while keeping a reasonable computational
time. However, since it assumes that the deflection of the projectile by the target is small
and relies on the adiabatic approximation, the eikonal model is restricted to beam energy
above 60A MeV. At lower energy, the eikonal approximation tends to overestimate the
elastic-scattering cross section at large angles and underestimate the breakup observables.

In the first part of this thesis, I have studied the extension of the eikonal model down
to 10A MeV, which is in the energy range of HIE-ISOLDE at CERN and ReA12 at
the upcoming FRIB. Because its extension has already been achieved by a semiclassical
correction for Coulomb dominated reactions [114, 115], I have studied nuclear corrections
to the eikonal model in order to enhance its accuracy for reactions on light targets. I have
analysed three different corrections to the eikonal approximation, i.e., Wallace’s [118, 119],
the semiclassical [121] and exact continued S-matrix [122, 123, 124] corrections, which follow
different approaches but all aim at improving the projectile-target nuclear deflection. I have
studied them systematically by first assessing their accuracy for simpler two-body problems
and then generalizing them to three-body collisions involving one-neutron halo nuclei.
My research has shown that all these corrections lead to elastic-scattering cross sections
closer to the reference calculations for two- and three-body collisions [20, 21, 22]. However,
only the semiclassical and exact continued S-matrix corrections improve significantly the
description of the elastic-scattering channel.

I have also extended the two corrections which reproduce accurately the elastic-
scattering observables to breakup reactions. I have shown that in the best case, the
eikonal description of the breakup channel is only slightly improved [22]. Their failure to
reproduce breakup cross sections has surprised me and pushed me to understand better
what lacks in the eikonal description of breakup reactions on light targets at low energies.
By comparing the predictions of the dynamical eikonal approximation (DEA) to the ones
of the usual eikonal model, I have noted that the dynamical effects play a small role at
these energies and can explain only a small part of the discrepancy between CDCC and
the eikonal cross sections. The adiabatic treatment therefore does not seem to be the most
significant issue of the eikonal model at low energies. Then, I have analysed the breakup
matrix elements of both CDCC and the eikonal approximation. CDCC accounts for more
couplings between the projectile-target angular momenta, and therefore models more
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transitions during the collision than the eikonal approximation. This is reflected in the
breakup observables computed by the eikonal model through too low a total cross section
and an incorrect distribution of the breakup strength between the core-neutron partial
waves. This suggests that the eikonal model lacks couplings between its “trajectories” at
different impact parameters.

From this observation, I have studied an alternative model, the Distorted-Wave Eikonal
Approximation (DWEA), which factorizes the asymptotic behaviour of a Coulomb wave
function instead of the usual plane wave. This model would simultaneously improve the
projectile-target Coulomb deflection and account for part of the couplings neglected in the
usual eikonal model. My hopes were that the DWEA would enhance both the accuracy
of the eikonal description of the elastic-scattering channel and the couplings between the
eikonal “trajectories” needed to reproduce the breakup cross sections. This model relies on
a change of variable within the calculation of the T -matrix. Unfortunately, the Jacobian
associated with this transformation varies along these new coordinates, and the eikonal
form and its numerical cost cannot be recovered in these variables. However, another
choice of coordinates or an efficient approximation of the T -matrix might exist. Further
studies could be performed to better understand the influence of this Jacobian on the
cross sections.

Despite the fact that I did not succeed to improve simultaneously the accuracy of the
eikonal approximation for both elastic-scattering and breakup observables at 10A MeV,
this work has pointed out what are the main flaws of the eikonal approximation at these
energies. The projectile-target deflection during the collision has to be improved in order
to ameliorate the eikonal description of the elastic-scattering channel and it seems that
the couplings between different eikonal “trajectories” should be better accounted for, in
order to reproduce the breakup channel. It would be interesting to quantify the effects
of these couplings on breakup observables. Nevertheless, one should keep in mind that
the main advantage of the eikonal approximation is its numerical cost, and an efficient
correction should preserve this strong point.

The second goal of this thesis is to include dynamical effects within the usual eikonal
approximation, while keeping its numerical efficiency. This is motivated by the incom-
patibility of the adiabatic approximation with the Coulomb interaction, which causes a
Coulomb divergence in the eikonal calculations [23, 24, 112]. Since it does not rely on an
adiabatic approach, the DEA does not have this issue but is computationally expensive.
We have developed with Daniel Baye a simplification to the DEA at first order (S-DEA),
which has a numerical cost comparable to the usual eikonal approximation. This model
leads to accurate energy distributions for both nuclear- and Coulomb-dominated breakup
of halo nuclei. These encouraging results have pushed us to study the accuracy of the
S-DEA for parallel-momentum distributions after the dissociation.

We have compared the accuracy of the S-DEA with the Coulomb-corrected eikonal ap-
proximation [24, 112] (CCE) for both observables. They lead to similar energy distributions
but different parallel-momentum cross sections. Compared to the usual eikonal approxima-
tion which misses the asymmetry of the data, the S-DEA improves it for both nuclear- and
Coulomb-dominated breakups while the CCE only enhances it for Coulomb-dominated
reactions. This can easily be explained by the fact that the S-DEA includes dynamical
effects in all transitions due to both nuclear and Coulomb interactions, while the CCE
treats dynamically only direct E1 transitions. Unfortunately, the asymmetry caused by
direct E1 transition, dominant for one-neutron halo nuclei, is correctly reproduced by the
CCE but underestimated by the S-DEA. Our analysis has shown that this underestimation
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is due to interferences between higher-order E1 transitions, which all include dynamical
effects at first order [25].

Because the S-DEA accounts for part of the dynamical effects while keeping the small
numerical cost of the eikonal approximation, it would be interesting to extend it to
three-body projectiles. Such a model could be used to study the Coulomb breakup of
two-neutron halo nuclei such as 6He, 11Li and 22C. This study would require to calculate
the three-body breakup states of the projectile as well as extending the S-DEA to four-body
reactions. Then, since there are still discrepancies with the DEA, especially in the shape of
the parallel-momentum distributions, it would also be interesting to study the next-order
approximations of the DEA.

My third and last goal in this thesis is to understand what nuclear-structure information
are probed within knockout reactions of one-neutron halo nuclei. The motivation of
this study is twofold. The first is to understand why the theoretical predictions and
the experimental data agree so well for the one-neutron removal of one-neutron halo
nuclei [26, 27]. The second is to pin down what can safely be extracted from knockout
cross sections of halo nuclei. With different Halo-EFT descriptions of the projectile, I have
determined that knockout cross sections of one-neutron halo nuclei scale with the square
of the ANC of the ground-state wave function [30, 31]. Moreover, they are insensitive to
its inner part, especially to its norm. It is therefore unclear how accurate the spectroscopic
factors extracted from knockout measurements of loosely-bound nuclei are. The good
agreement between the theoretical predictions and the experimental data for these nuclei
observed by Gade and collaborators [26, 27] seems to be explained by a fair reproduction
of the ANC in the single-particle model of the projectile rather than by a precise prediction
of the spectroscopic factors.

I have also demonstrated that, in an adiabatic model, the flux is conserved within each
core-neutron partial wave: the presence of a subthreshold excited state induces a drop of
the diffractive-breakup cross section, which is exactly transferred to the inelastic-scattering
channel. On the contrary, the presence of a resonance in the projectile continuum does not
influence significantly knockout cross sections. This independence to the description of
the continuum suggests that precise estimates of the ground-state ANC could be inferred
from such observables [30, 31]. The direct prospect of this work would be to extract
ANCs for loosely-bound nuclei, such as 11Be and 15C, for which experimental data are
available [76, 77]. Because the optical potentials simulating the projectile-target interactions
impact the cross sections, it would be useful to quantify the uncertainty associated with
these potentials, as it has been done for transfer reactions in Refs. [173, 174]. Moreover,
the ANC should be inferred from only forward-angles data, in order to minimize the errors
caused by the lack of dynamics within the usual eikonal approximation [77, 172]. The
extracted ANCs of 11Be and 15C could then be compared to the ab initio predictions
of Calci et al. [51] and recent analyses performed for diffractive breakup [66, 152] and
transfer [175, 176].

Finally, it would be interesting to conduct a similar sensitivity analysis of one-neutron
removal of more proton-rich nuclei. My hopes are that such a study might help under-
standing why the agreement between knockout data and theoretical predictions worsens
when the binding energy increases. It could also indicate what can be safely extracted
from such experimental data. For the knockout of more-bound nucleon, dynamical effects
might play an even bigger role, it would hence also be interesting to study a generalization
of the DEA and S-DEA to knockout reactions. This might improve the analysis of the
data at large laboratory angles. As a long-term prospect, a sensitivity analysis could be
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conducted for both two-neutrons and one-proton knockout, which are also often used to
probe exotic nuclei.

In conclusion, different improvements of the eikonal model have been studied in this
thesis. My analysis suggests that the flaws of the eikonal model at 10A MeV cannot be
tackled by a simple correction of the deflection of the projectile by the target [20, 21, 22].
More elaborate corrections might extend the validity of the eikonal approximation down to
10A MeV. However, because the main advantage of the eikonal model is its small numerical
cost, it might not be worth to develop them if they are expensive from a computational
viewpoint. I have also shown that dynamical effects can be included at first order, without
loosing much of the numerical efficiency of the eikonal approximation [25]. This study
constitutes only a first step, since the main goal would be to apply this model to collisions
involving more complex projectiles, that other state-of-the-art method cannot describe.
Finally, as many nuclear scientists before me, I have used the eikonal model to analyse
knockout reactions [30, 31]. This work has emphasized what information can be safely
probed from knockout reactions of one-neutron halo nuclei and also what are the limits of
the reaction model in these analyses. In particular, uncertainties arise from the choice of
the optical potentials and the adiabatic treatment of the eikonal model. In my opinion,
these two issues should be investigated more deeply in the future.
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Appendix A

Derivation of the DEA, eikonal and
CCE cross sections

I present here the derivation of the cross sections for elastic scattering, diffractive breakup
and inelastic scattering within the DEA. From these expressions, the forms of the eikonal
and CCE cross sections are deduced. This appendix summarizes the results developed in
the PhD thesis of Goldstein [97].

As in Chapter 2, all three fragments, i.e. the core, the neutron and the target, are
considered structureless and only the spin of the neutron is considered. In this Appendix,
I drop the superscript DEA of the wave function in this section, i.e., Ψ̂DEA is denoted Ψ̂.

A.1 Elastic-scattering cross sections
The elastic-scattering T -matrix for the elastic scattering of one-neutron halo nucleus in
the direction K ′ ≡ (K,Ω) is given by Eq. (2.3.14), which reads [97]

Tfi(Ω) =
〈
eiK

′Rφn0l0j0m′0

∣∣∣∣VcT + VnT

∣∣∣∣Ψ(m0)
〉
. (A.1)

By inserting the eikonal factorization (2.3.30) and using the fact that φn0l0j0m′0
is a

eigenstate of the internal Hamiltonian (2.3.1), this matrix element becomes [97]

Tfi(Ω) =
〈
eiK

′Rφn0l0j0m′0

∣∣∣∣eiKZ (hcn − En0l0j0 + VcT + VnT )
∣∣∣∣Ψ̂(m0)

〉
, (A.2)

where we recognize the right-hand side of the DEA equation (2.3.31), from which we can
deduce [97]

Tfi(Ω) =
〈
eiK

′Rφn0l0j0m′0

∣∣∣∣eiKZ ∂

∂Z

∣∣∣∣Ψ̂(m0)
〉
. (A.3)

The T -matrix element can be written in terms of transferred momentum ~q = ~(K ′ −
KẐ) as [97]

Tfi(Ω) =
∫
db e−iq⊥b

∫ +∞

−∞
dZ e−iqZZ

∂

∂Z

〈
φn0l0j0m′0

∣∣∣Ψ̂(m0)
〉

(A.4)

where q⊥ and qZ are respectively the transverse and longitudinal components of q. The
energy conservation imposes |K ′| = K and thus q = 2K sin (θ/2).
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As in the usual eikonal approximation (see Sec. 2.1.2), the transferred momentum is
assumed purely transverse q ≈ q⊥ and the phase e−iqZZ is neglected. This approximation

holds if this phase oscillates slowly in the range ∆Z where the
∂

∂Z

〈
φn0l0j0m′0

∣∣∣Ψ̂(m0)
〉
takes

significant values, i.e., if
2π
|qZ |

> ∆Z. (A.5)

This is the case if θ is small enough

θ <

√
4π

K∆Z , (A.6)

where the small-angles approximation qZ = 2K sin2 (θ/2) ≈ Kθ2/2 is used.
When e−iqZZ is neglected, the T -matrix element becomes [97]

Tfi(Ω) ≈
∫
dR e−iqb ∂

∂Z

〈
φn0l0j0m′0

∣∣∣Ψ̂(m0)
〉

(A.7)

=
∫
db e−iqb

[〈
φn0l0j0m′0

∣∣∣Ψ̂(m0)
〉]Z→+∞

Z→−∞
. (A.8)

In Ref. [97], Goldstein defines the elastic-scattering amplitude as

S
(m0)
0m′0

(b) =
[〈
φn0l0j0m′0

∣∣∣Ψ̂(m0)
〉]Z→+∞

Z→−∞
. (A.9)

By defining the radial ljm contribution of the DEA wave function as

ψ
(m0)
ljm (b, φ, Z, r) = r

∑
ν

(lIm− νν|jm)
∫
dΩr Y

m−ν∗
l (Ωr)

〈
Iν
∣∣∣Ψ̂(m0)(b, φ, Z, r)

〉
(A.10)

and using the symmetry along the z-axis of the DEA solution, Goldstein shows that the
elastic-scattering amplitude can be written as [97]

S
(m0)
0m′0

(b) = ei(m0−m′0)φS
(m0)
0m′0

(b) (A.11)

where S
(m0)
0m′0

(b) = lim
Z→+∞

∫ +∞

0
dr un0l0j0(r)ψ(m0)

l0j0m′0
(b, 0, Z, r)− δm0m′0

, (A.12)

where un0l0j0 is the radial wave function of the ground state (2.3.7).
With these notations Eq. (A.8) reads [97]

Tfi(Ω) =
∫
db e−iqbei(m0−m′0)φS

(m0)
0m′0

(b) (A.13)

where qb = qb cos(φ− ϕ) and ϕ is the azimuthal angle of q ≡ (q⊥, ϕ, qZ). After integrating
over the azimuthal angle {using Eq. (9.1.21) of Ref. [92]}, the matrix element becomes [97]

Tfi(Ω) = 2πi~ve
i(m0−m′0)ϕ

i|m0−m′0|

∫ +∞

0
b db J|m0−m′0|(qb)S

(m0)
0m′0

(b), (A.14)

where Jn is a Bessel function of order n [92].
The elastic-scattering cross sections has to account for the initial and final projections

of the orbital angular momentum m0 and m′0. Since the beam is usually not polarized,
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the cross section is just averaged over m0 and sums over all possible final projections m′0.
Using Eq. (2.1.7), the elastic-scattering cross section of one-neutron halo nucleus reads [97]

dσel

dΩ = 1
(2π)2

(
µ

~2

)2 1
2j0 + 1

∑
m0m′0

|Tfi(Ω)|2 (A.15)

= K2 1
2j0 + 1

∑
m0m′0

∣∣∣∣∫ +∞

0
b db J|m0−m′0|(qb)S

(m0)
0m′0

(b)
∣∣∣∣2 . (A.16)

As mentioned in Sec. 2.3.3.3, contrary to a semiclassical model the DEA accounts for part
of the interferences between neighbouring bs.

In the usual eikonal model, the cross sections have the same form. Since the asymptotic
form of the eikonal solution is known (2.3.34), the elastic-scattering amplitude at the
eikonal model reads [97, 107]

S
(m0)
0m′0

(b) =
〈
φn0l0j0m′0

∣∣∣eiχcT eiχnT ∣∣∣φn0l0j0m0

〉
− δm0m′0

. (A.17)

In the case of the elastic scattering, the CCE cross section is exactly the eikonal one since
the Coulomb correction is zero for this channel.

A.2 Diffractive-breakup cross sections
The T -matrix element for the diffractive breakup is given by Eq. (2.3.15), that I rewrite
here for convenience [97]

Tfi(K ′,k) =
〈
eiK

′Rφ
(−)
kν

∣∣∣∣VcT + VnT

∣∣∣∣Ψ(m0)
〉
, (A.18)

where K ′ ≡ (K ′,Ω) is the final wave vector between the target and center-of-mass of P ,
φ

(−)
kν (2.3.16) is a c-n incoming stationary scattering state characterized by wave vector k

and the spin projection ν. Using the eikonal factorization (2.3.30) and the fact that this
scattering state is an eigenstate of the internal Hamiltonian with an eigenvalue E, the
T -matrix can be written as [97]

Tfi(K ′,k) =
〈
eiK

′Rφ
(−)
kν

∣∣∣∣eiKZ (hcn − E + VcT + VnT )
∣∣∣∣Ψ̂(m0)

〉
(A.19)

=
〈
eiK

′Rφ
(−)
kν

∣∣∣∣eiKZ (En0l0j0 − E + hcn − En0l0j0 + VcT + VnT )
∣∣∣∣Ψ̂(m0)

〉
(A.20)

where we recognize the right-hand side of the DEA equation (2.3.31). By inserting the
DEA equation, the matrix element becomes [97]

Tfi(K ′,k) = i~v
〈
eiK

′Rφ
(−)
kν

∣∣∣∣eiKZ
(
∂

∂Z
+ i

E − En0l0j0

~v

)∣∣∣∣Ψ̂(m0)
〉

(A.21)

= i~v
∫
dR e−iqRe−i

E−En0l0j0
~v Z ∂

∂Z

(
ei
E−En0l0j0

~v Z
〈
φ

(−)
kν

∣∣∣Ψ̂(m0)
〉)

,(A.22)

where ~q = ~(K ′ −KẐ) is the transferred momentum.
The energy conservation imposes

~2K2

2µ + En0l0j0 = ~2K ′2

2µ + E (A.23)
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and
q2

2K + E − En0l0j0

~v
+ qZ = 0. (A.24)

With this relation, the breakup matrix element reads [97]

Tfi(K ′,k) = i~v
∫
dR e−iq⊥bei

q2Z
2K

∂

∂Z

(
ei
E−En0l0j0

~v Z
〈
φ

(−)
kν

∣∣∣Ψ̂(m0)
〉)

, (A.25)

where q⊥ is the transverse component of q.
Assuming that the transfer of energy is small, i.e., K ′ ≈ K, the norm of the transferred

momentum can be approximated by [97]

q ≈ 2K sin
(
θ

2

)
. (A.26)

Moreover, as in the elastic scattering, the small-angles approximation (A.6) is made. Hence,
the transferred momentum is assumed to be purely transverse q ≈ q⊥ and the factor ei q

2Z
2K

is neglected. This simplifies the breakup matrix element into [97]

Tfi(K ′,k) ≈ i~v
∫
dR e−iqb ∂

∂Z

(
ei
E−En0l0j0

~v Z
〈
φ

(−)
kν

∣∣∣Ψ̂(m0)
〉)

. (A.27)

Since the projectile is initially in its ground state, which is orthogonal to the scattering
states, the matrix element becomes [97]

Tfi(K ′,k) = i~v lim
Z→+∞

ei
E−En0l0j0

~v Z
∫
db e−iqb

〈
φ

(−)
kν

∣∣∣Ψ̂(m0)
〉
. (A.28)

The phase (E − En0l0j0)Z/~v is dropped because it has no physical meaning and does not
influence the cross sections.

In Ref. [97], Goldstein defines the breakup amplitude as

S
(m0)
kν (b) =

[〈
φ

(−)
kν

∣∣∣Ψ̂(m0)
〉]
Z→+∞

. (A.29)

With the definition of the scattering state (2.3.16) and using the symmetry of the DEA
wave function (A.11), it reads [97]

S
(m0)
kν (b) = 4π

k

∑
ljm

(lIm− νν|jm)Y m−ν
l (Ωk)ei(m0−m)φS

(m0)
kljm(b) (A.30)

where the partial breakup amplitude is given by [97]

S
(m0)
kljm(b) = lim

Z→+∞
ei[δlj(k)−lπ/2]

∫ +∞

0
dr uklj(r)ψ(m0)

ljm (b, 0, Z, r), (A.31)

uklj is the radial wave function of the scattering state (2.3.2) and ψ
(m0)
ljm is defined in

Eq. (A.10). With these definitions and after integrating over the azimuthal angle {using
Eq. (9.1.21) of Ref [92]}, the breakup matrix element (A.28) reads [97]

Tfi(K ′,k) = i8π2~v
k

∑
ljm

(lIm− νν|jm)Y m−ν
l (Ωk)

ei(m0−m)ϕ

i|m−m0|

∫ +∞

0
b db J|m−m0|(qb)S

(m0)
kljm(b).

(A.32)
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Because experimentally, the beam is usually not polarized, the diffractive breakup
cross section is averaged on m0 and sums over all possible final spin projections of the
neutron ν. The cross section as a function of the deflection angle Ω of the center-of-mass
of P and the c-n final wave vector k (2.3.17) thus reads [97]

dσbu

dkdΩ = 1
(2π)5

µK ′

~3v

1
2j0 + 1

∑
m0ν

|Tfi(K ′,k)|2 (A.33)

= 2
π

K ′K

k2
1

2j0 + 1
∑
m0ν

∣∣∣∣∣∑
ljm

(lIm− νν|jm)Y m−ν
l (Ωk)

e−imϕ

i|m−m0|

×
∫ +∞

0
b db J|m−m0|(qb)S

(m0)
kljm(b)

∣∣∣∣∣
2

. (A.34)

In this thesis, I analyse the energy and parallel-momentum distributions of the diffractive
breakup of one-neutron halo nucleus.

The energy distribution can be obtained by integrating the cross section (A.34) over Ω
and Ωk [97]

dσbu

dE
= µcnk

~2

∫
dΩ

∫
dΩk

dσbu

dkdΩ (A.35)

= 2
π

µcn
~2k

K ′K
1

2j0 + 1
∑
m0ν

∑
ljm

∑
l′j′m′

(lIm− νν|jm)(l′Im′ − νν|j′m′) e
−imϕ

i|m−m0|
eim

′ϕ

(−i)|m′−m0|

×
∫
dΩ

∫ +∞

0
b db J|m−m0|(qb)S

(m0)
kljm(b)

∫ +∞

0
b′ db′ J|m′−m0|(qb′)S

(m0)∗
kl′j′m′(b′)

×
∫
dΩkY

m−ν
l (Ωk)Y m′−ν∗

l′ (Ωk)︸ ︷︷ ︸
=δll′δmm′

(A.36)

= 2
π

µcn
~2k

K ′K
1

2j0 + 1
∑
m0

∑
ljm

∑
j′

∫ +∞

0
b db S

(m0)
kljm(b)

∫ +∞

0
b′ db′ S

(m0)∗
klj′m (b′)

×
∫
dΩ J|m−m0|(qb)J|m−m0|(qb′)

∑
ν

(lIm− νν|jm)(lIm− νν|j′m)︸ ︷︷ ︸
=δjj′

(A.37)

= 2
π

µcn
~2k

K ′K
1

2j0 + 1
∑
m0

∑
ljm

∫ +∞

0
b db S

(m0)
kljm(b)

∫ +∞

0
b′ db′ S

(m0)∗
kljm (b′)

×
∫
dΩ J|m−m0|(qb)J|m−m0|(qb′). (A.38)

Here, the orthogonality relations of the spherical harmonics and of Clebsch-Gordan are
used [44].

Using the approximation of q (A.26), the integration over θ becomes [97]∫
dΩ =

∫ 2π

0
dφ
∫ π

0
sin θ dθ (A.39)

≈ 1
K2

∫ 2π

0
dφ
∫ 2K

0
q dq. (A.40)

For most of the values of b, we have K � 1/b and the maximal value of the integration
2K can approximated by +∞. In the DEA, this approximation is made for all bs, which
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enables us to use the property [179]∫ +∞

0
q dq Jm(qb)Jm(qb′) = 1

b
δ(b− b′). (A.41)

After integrating over Ω, the energy distribution of breakup reads [97]

dσbu

dE
= 4µcn

~2k

1
2j0 + 1

∑
m0

∑
ljm

∫ +∞

0
b db

∣∣∣S(m0)
kljm(b)

∣∣∣2 . (A.42)

The parallel-momentum distribution is obtained by integrating Eq. (A.34) over k⊥ and Ω

dσbu

dk‖
=

∫
dk⊥

∫
dΩ

dσbu

dkdΩ (A.43)

= 2K ′K
πk2

1
2j0 + 1

∑
m0ν

∑
ljm

∑
l′j′m′

(lIm− νν|jm)(l′Im′ − νν|j′m′) e
−imϕ

i|m−m0|
eim

′ϕ

(−i)|m′−m0|

×
∫
dk⊥Y

m−ν
l (Ωk)Y m′−ν∗

l′ (Ωk)
∫ +∞

0
b db S

(m0)
kljm(b)

∫ +∞

0
b′ db′ S

(m0)∗
kl′j′m′(b′)

×
∫
dΩ J|m−m0|(qb)J|m′−m0|(qb′). (A.44)

With the relation dk⊥ = k⊥dk⊥dφk and the property [179]∫ 2π

0
dφk Y

m−ν
l (Ωk)Y m′−ν∗

l′ (Ωk) = 2πδmm′Y m−ν
l (θk, 0)Y m−ν∗

l′ (θk, 0), (A.45)

Eq. (A.44) becomes [97]

dσbu

dk‖
= 4K ′K

k2
1

2j0 + 1
∑
mm0ν

∑
lj

∑
l′j′

(lIm− νν|jm)(l′Im− νν|j′m)

×
∫ +∞

0
k⊥ dk⊥ Y

m−ν
l (θk, 0)Y m−ν∗

l′ (θk, 0)
∫ +∞

0
b db S

(m0)
kljm(b)

∫ +∞

0
b′ db′ S

(m0)∗
kl′j′m(b′)

×
∫
dΩ J|m−m0|(qb)J|m−m0|(qb′). (A.46)

By approximating the integration in Ω with Eq. (A.40) and using the property (A.41),
the parallel-momentum cross section reads [97]

dσbu

dk‖
= 8π
k2

1
2j0 + 1

∑
mm0ν

∫ +∞

0
b db

∫ +∞

0
k⊥ dk⊥

∣∣∣∣∣∣
∑
lj

(lIm− νν|jm)Y m−ν
l (θk, 0)S(m0)

kljm(b)
∣∣∣∣∣∣
2

,

(A.47)
where tan θk = k⊥/k‖.

Since the momentum k is related to k⊥ through k2 = k2
⊥ + k2

‖, the cross section can be
written as [97]

dσbu

dk‖
= 8π
k2

1
2j0 + 1

∑
mm0ν

∫ +∞

0
b db

∫ +∞

|k‖|

dk

k

∣∣∣∣∣∣
∑
lj

(lIm− νν|jm)Y m−ν
l (θk, 0)S(m0)

kljm(b)
∣∣∣∣∣∣
2

.

(A.48)
This observable sums coherently the contributions of each partial-wave and is thus sensitive
to their interferences.

117



APPENDIX A

At the usual eikonal model and the CCE, the cross sections have a similar form. By
using the asymptotic behaviour of the eikonal wave function (2.3.34) into Eq. (A.31), the
eikonal partial-wave breakup amplitude S(m0)

kljm reads [107, 112]

S
(m0)
kljm(b) = ei[δlj(k)−lπ/2] 〈φkljm|eiχcT eiχnT |φn0l0j0m0〉 . (A.49)

The CCE amplitude can be derived similarly except that it inserts the correction (2.3.41).
Its partial-breakup amplitude reads [112]

S
(m0)
kljm(b) = ei[δlj(k)−lπ/2]eiχ

C
PT (b) 〈φkljm|

[
eiχ

C − iχC + iχ
C,(λ=1)
FO

]
eiχ

N |φn0l0j0m0〉 . (A.50)

A.3 Inelastic-scattering cross section
The inelastic scattering corresponds to the excitation of the projectile to a bound state
nlj of energy Enlj, and is deflected by the target in a direction K ′ ≡ (K ′,Ω). The energy
conservation imposes that [97]

~2K2

2µ + En0l0j0 = ~2K ′2

2µ + Enlj. (A.51)

I do not present here the derivation of the inelastic observables, as its derivation is similar
to the elastic-scattering cross section [97]. The cross section for the inelastic scattering of
the projectile excited to a bound state nlj and deflected by the target to Ω reads [97]

dσnljinel
dΩ = KK ′

1
2j0 + 1

∑
m0m

∣∣∣∣∫ +∞

0
b db J|m−m0|(qb)S

(m0)
nljm(b)

∣∣∣∣2 . (A.52)

where the inelastic-scattering amplitude is given by [97]

S
(m0)
nljm(b) = lim

Z→+∞

∫ +∞

0
dr unlj(r)ψ(m0)

ljm (b, 0, Z, r), (A.53)

unlj is the radial wave function of the bound state nlj (2.3.7) and ψ
(m0)
ljm (A.10) is the

radial ljm partial-wave contribution to the DEA wave function Ψ̂(m0).
To compute the inelastic-scattering cross section of an excited state nlj, Eq. (A.52) is

integrated over the solid angle Ω

σnljinel = KK ′
1

2j0 + 1
∑
m0m

∫ +∞

0
b db S

(m0)
nljm(b)

∫ +∞

0
b′ db′ S

(m0)∗
nljm (b′)∫

dΩ J|m0−m|(qb)J|m0−m|(qb′) (A.54)

≈ 2π
2j0 + 1

∑
m0m

∫ +∞

0
b db

∣∣∣S(m0)
nljm(b)

∣∣∣2 . (A.55)

Here the approximations (A.26) and (A.40) and the orthogonality of the Bessel func-
tion (A.41) are used.

The total inelastic-scattering cross section sums over the inelastic-scattering channels

σinel =
∑
nlj

σnljinel. (A.56)
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The eikonal cross sections are calculated similarly except for the inelastic-scattering
amplitude S(m0)

nljm (A.53). As for the elastic scattering, the asymptotic form of the eikonal
solution (2.3.34) is known. Therefore, the inelastic-scattering amplitude at the eikonal
model reads

S
(m0)
nljm(b) = 〈φnljm|eiχcT eiχnT |φn0l0j0m0〉 . (A.57)

The CCE amplitude is similar except that it inserts the correction (2.3.41). Its inelastic-
scattering amplitude reads [112]

S
(m0)
nljm(b) = eiχ

C
PT (b) 〈φnljm|

[
eiχ

C − iχC + iχ
C,(λ=1)
FO

]
eiχ

N |φn0l0j0m0〉 . (A.58)
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Appendix B

Coulomb first-order-perturbation
approximation

To derive the dipole and quadrupole contributions to the Coulomb first-order-perturbation
approximation, the difference of Coulomb potentials appearing in Eq. (2.3.42) is expanded
onto the spherical harmonics in the vectorial space defined by r (see Complement EX of
Ref. [44])

ZTZP e
2

4πε0

( 1
RcT

− 1
R

)
= ZTZP e

2

4πε0

 1∣∣∣R− mn
mP

r
∣∣∣ − 1

R

 (B.1)

= ZPZT e
2

4πε0

+∞∑
λ=0

4π
2λ+ 1

min
(
R, mn

mP
r
)λ

max
(
R, mn

mP
r
)λ+1

+λ∑
µ=−λ

Y µ∗
λ (Ωr)Y µ

λ (Ω)

−ZPZT e
2

4πε0R
(B.2)

where ZP = Zc for neutron halo nuclei. Here I use the relations (2.3.10)–(2.3.11) between
the coordinates RcT , R ≡ (R,Ω) and r ≡ (r,Ωr).

We now use the far field approximation, which holds if the projectile-target relative dis-
tance is larger than the core-fragment distance. The expansion (B.2) can be approximated
as [44]

ZTZP e
2

4πε0

( 1
RcT

− 1
R

)
≈
∞∑
λ=1

(−1)λ
ZTZ

(λ)
effe

2

4πε0

4π
2λ+ 1

λ∑
µ=−λ

rλY µ∗
λ (Ωr)

Y µ
λ (Ω)
Rλ+1 (B.3)

with the effective charge defined as

Z
(λ)
eff =

(
−mn

mP

)λ
Zc. (B.4)

The dipole contribution to the first-order Coulomb term can be obtained by inserting
the expansion (B.3) into Eq. (2.3.42) and taking λ = 1

χ
C,(λ=1)
FO (E, b, r) = 1

~v

∫ +∞

−∞
dZ ei

ωZ
v
ZTZ

(1)
effe

2

4πε0

4π
3

1∑
µ=−1

rY µ∗
1 (Ωr)

Y µ
1 (Ω)
R2 . (B.5)
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Since the first-order perturbation theory considers straight-line trajectories, this integral
can be computed analytically with Eq. (15) of Ref. [180]

∫ +∞

−∞
dZ ei

ωZ
v
Y µ
λ (Ω)
Rλ+1 =

√
2λ+ 1

4π 2 iλ+µ√
(λ+ µ)!(λ− µ)!

(
ω

v

)λ
K|µ|

(
ωb

v

)
, (B.6)

where K|µ| are modified Bessel functions [92].
We thus find
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v
b
)
z
]
, (B.8)

where (x, y, z) are the Cartesian coordinates of r.
The quadrupole contribution to the first-order Coulomb term can be obtained similarly

with λ = 2

χ
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FO (E, b, r) = − 1
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Appendix C

CDCC input for 11Be-12C collision at
10A MeV

I give here the input file of FRESCO [14], I have used to obtain fully converged CDCC
results for the breakup and elastic scattering of 11Be with 12C at 10A MeV, presented
in Chapter 3. This program developed by Ian Thompson solves the coupled-channel
equations (2.3.28). The program as well as its user guide can be found on the website
www.fresco.org.uk. I also briefly explain how this input is structured.

The first part of the input &CDCC gives the numerical details: the parameters used
by the Numerov algorithm (hcm, rmatch, rasym, accrcy, absend, cutr), the energy of the
collision (elab), the parameters of the total angular momentum mesh (jbord and jump),
the parameters of the angular mesh (thmax and thinc), the desired output files (smats
and xstabl), the interactions (ncoul), the couplings considered (reor) and the order of the
highest multipole of the nuclear and Coulomb interactions (q).

The second part of the input &NUCLEUS provides the description of the nuclei: their
charge, mass, spin, parity, binding energy (be), the number of node (n), the orbital (l)
and total (j) angular quantum numbers of the ground-state radial wave function.

The third part &BIN details the discretization of the continuum into bins. Each bin
is characterized by the total spin and parity of the state, the orbital (l) and total (j)
angular momenta, its energy which is defined by intervals taken between the minimum
energy (start) and maximum energy with a certain step which has an equal size in energy
(energy=T) or in momentum (energy=F).

The fourth part, called &POTENTIAL, corresponds to the optical potentials of both
fragments with the target and the effective potential used to describe the projectile
structure. The variable a1 specifies the number mass with which the radii have to be
scaled with, and the other variables the parameters of the interaction, given in Sec. 3.2.

user
CDCC 11Be+12C 10MeV/nucleon ; N+C

&CDCC
hcm=0.01 rmatch= -60 rasym=1000 accrcy=0.001 absend=-50
elab=110
jbord= 0 200 500 20000
jump= 1 10 50
thmax=180 thinc=0.01 cutr=-20
smats=4 xstabl=1
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ncoul=0 reor=0 q=6/

&NUCLEUS part=’Proj’ name=’11Be’ charge=4 mass=11 spin=0 parity=+1
be=0.50323 n=2 l=0 j=0/

&NUCLEUS part=’Core’ name=’10Be’ charge=4 mass=10 /
&NUCLEUS part=’Valence’ name=’neutron’ charge=0 mass=1 spin=0 /
&NUCLEUS part=’Target’ name=’12C’ charge=6 mass=12 spin=0 /

&BIN spin=0 parity=+1 start=0.001 step=0.15 end=0.15 energy=T l=0 j=0 /
&BIN spin=0 parity=+1 start=0.15 step=0.15 end=2.5 energy=F l=0 j=0 /
&BIN spin=0 parity=+1 start=2.5 step=3 end=10 energy=F l=0 j=0 /
&BIN spin=1 parity=-1 start=0.001 step=0.15 end=0.15 energy=T l=1 j=1 /
&BIN spin=1 parity=-1 start=0.15 step=0.2 end=4 energy=F l=1 j=1 /
&BIN spin=1 parity=-1 start=4 step=3 end=10 energy=F l=1 j=1 /
&BIN spin=2 parity=+1 start=0.001 step=0.15 end=0.15 energy=F l=2 j=2 /
&BIN spin=2 parity=+1 start=0.15 step=0.2 end=1 energy=F l=2 j=2 /
&BIN spin=2 parity=+1 start=1 step=0.02 end=1.5 energy=F l=2 j=2 /
&BIN spin=2 parity=+1 start=1.5 step=0.2 end=4.5 energy=F l=2 j=2 /
&BIN spin=2 parity=+1 start=4.5 step=3 end=10 energy=F l=2 j=2 /
&BIN spin=3 parity=-1 start=0.001 step=0.15 end=0.15 energy=T l=3 j=3 /
&BIN spin=3 parity=-1 start=0.15 step=0.4 end=5 energy=F l=3 j=3 /
&BIN spin=3 parity=-1 start=5 step=3 end=10 energy=F l=3 j=3 /
&BIN spin=4 parity=+1 start=0.001 step=0.15 end=0.15 energy=T l=4 j=4 /
&BIN spin=4 parity=+1 start=0.15 step=0.4 end=4 energy=F l=4 j=4 /
&BIN spin=4 parity=+1 start=3 step=3 end=10 energy=F l=4 j=4 /
&BIN spin=5 parity=-1 start=0.001 step=0.15 end=0.15 energy=T l=5 j=5 /
&BIN spin=5 parity=-1 start=0.15 step=0.4 end=4 energy=F l=5 j=5 /
&BIN spin=5 parity=-1 start=4 step=3 end=10 energy=F l=5 j=5 /
&BIN spin=6 parity=+1 start=0.001 step=0.15 end=0.15 energy=T l=6 j=6 /
&BIN spin=6 parity=+1 start=0.15 step=0.5 end=5 energy=F l=6 j=6 /
&BIN spin=6 parity=+1 start=5 step=4 end=10 energy=F l=6 j=6 /
&BIN /

&POTENTIAL part=’Proj’ /
&POTENTIAL part=’Core’ a1=1 rc=5.777 v=250 vr0=3.053 a=0.788

w=247.9 wr0=2.982 aw=0.709 /
&POTENTIAL part=’Valence’ a1=1 v=46.9395 vr0=2.5798 a=0.676

w=1.8256 wr0=2.5798 aw=0.676 wd=7.158 wdr0=2.9903 awd=0.5426 /
&POTENTIAL part=’Gs’ a1=1 v=62.98 vr0=2.585 a=0.6 /
&POTENTIAL part=’Bi’ l=2 a1=1 v=69.15 vr0=2.585 a=0.6 /
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Coulomb and nuclear contributions
to the diffractive breakup of 11Be on
12C at 10A MeV

In this appendix, I analyse separately the nuclear and Coulomb contribution to the diffrac-
tive breakup of 11Be on 12C at 10A MeV with the potentials presented in Sec. 3.2. To do so,
I compare in Fig. D.1 CDCC calculations considering both Coulomb and nuclear potentials
(solid red line) and separately the nuclear and the Coulomb interactions. Compared to the
full calculation, the pure nuclear breakup (dashed green line) underestimates the energy
distribution below 1 MeV, suggesting that the Coulomb interaction influences strongly
these energies. This is confirmed by the pure Coulomb contribution (dash-dotted blue
line), which reproduces well the full calculation below 0.2 MeV and underestimates it at
larger energy. Moreover, the pure Coulomb breakup is dominated by E1 transitions and
therefore does not populate the d resonance, as explained in Chapter 1.

To understand better the reaction mechanisms which are at stake here, we can now
look at the contributions of the dominating partial waves in Fig. D.2. The panels (a),
(b) and (c) correspond respectively to the breakup distribution in s, p and d wave. The
pure nuclear contribution (dashed green lines) lies close to the full calculation (solid red
lines) in the s and d wave, suggesting that the breakup in these partial-waves are due
mainly to nuclear-induced transitions. However, the p wave is underestimated at energies
below 1 MeV. This is expected since at low energies, this partial-wave is populated mostly
by E1 transitions from the ground state. On the contrary, the pure Coulomb calculation
(dash-dotted blue lines) does not have significant s and d wave contributions, because these
partial waves cannot be reached directly by E1 transitions. This figure also shows that
the p-wave contribution due to the pure Coulomb interaction is larger than the one due to
the pure nuclear interaction up to 1 MeV. At larger energies, the nuclear contribution to
the p wave dominates.

Finally, these figures illustrate also the interferences between the Coulomb and nuclear
interactions. We can see that the full calculations is not simply given by the sum of the
cross sections obtained with each interaction. This justifies the need to have a reaction
model that treats both interactions simultaneously.
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Figure D.1: Comparison of the full calculations of the diffractive breakup of 11Be
on 12C at 10A MeV with its pure nuclear and Coulomb contributions.
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Figure D.2: (a) s-, (b) p- and (c) d-wave contributions to the full calculations,
the pure nuclear and Coulomb contributions to diffractive breakup of 11Be on
12C at 10A MeV.
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Appendix E

Sensitivity of the corrections to the
optical potentials

In this appendix, I evaluate the sensitivity of the exact continued S-matrix and the complex
semiclassical corrections to the choice of the optical potentials. As in Chapter 3, this study
is made considering a 11Be impinging on 12C at 20A MeV and 10A MeV. To assess the
sensitivity of the corrections to the projectile-target interactions, I consider two sets of
optical potentials: the one presented in Sec. 3.2 and the one used in Ref. [122], in which
the authors study the exact continued S-matrix correction.

The interaction potentials chosen in Ref. [122] are detailed here. The 10Be-12C interac-
tion is simulated by a Wood-Saxon potential (2.2.2)–(2.2.3) with parameters which are
consistent with data for the 10Be-12C elastic scattering at 59.4A MeV [133, 134]. These pa-
rameters are listed in the two first lines of Table E.1. The Coulomb interaction is simulated
by a potential generated by a uniformly charged sphere (2.2.4) of radius RC = 5.333 fm.
The n-12C interaction is modelled by the Wood-Saxon potential (2.2.2)–(2.2.3) developed
by Becchetti and Greenlees in Ref. [143]. This global potential is fit to elastic-scattering
data of a nucleon off a nucleus with A > 40 at an energy E < 50 MeV. As in Ref. [122, 181],
I take the parameters consistent with 58 MeV, which are displayed in the two last lines of
Table E.1. For both potentials, I neglect any energy dependence.

10Be-12C VR = −123 MeV RR = 3.33 fm aR = 0.8 fm [133]
WI = −65 MeV RI = 3.47 fm aI = 0.8 fm

n-12C VR = −37.4 MeV RR = 2.7473 fm aR = 0.75 fm [143, 181]
WI = −10 MeV RI = 2.9762 fm aI = 0.6 fm

Table E.1: Optical potentials used to simulate the projectile-target interaction for
the elastic scattering of 11Be off 12C at 20AMeV and 10A MeV. These potentials
have a Wood-Saxon form (2.2.2)–(2.2.3) and are the same as the ones used in
Ref. [122].

Fig. E.1 shows the elastic-scattering cross sections of 11Be off 12C at [(a) and (b)]
20A MeV and [(c) and (d)] 10A MeV, obtained with (a) and (c) the set of optical potentials
listed in Table 3.1 and with (b) and (d) the potentials listed in Table E.1. As in Chapter 3, I
take CDCC calculations (solid red lines) as reference. At both energies, CDCC predictions
are similar for both choices of optical potentials. The eikonal approximation (dashed green
lines) behave similarly for both sets of potentials: it overestimates the cross sections at
large angles, dampens the magnitude oscillations and is less accurate at 10A MeV than
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Figure E.1: Influence of the choice of optical potentials on the complex semiclas-
sical and the exact continued S-matrix corrections. Rutherford-normalized cross
sections for the elastic scattering of 11Be off 12C at [(a) and (b)] 20A MeV and
[(c) and (d)] 10A MeV as a function of the scattering angle θ. The panels (a) and
(c) are obtained with the optical potentials listed in Table 3.1 and the panels (b)
and (d) with the ones listed in Table E.1.

at 20A MeV. This figure also shows that DEA (small dashed magenta lines) stays close
to the eikonal approximation, confirming that the dynamical effects are small at these
energies and are not much influenced by the choice of interactions.

Fig. E.1 also displays the elastic-scattering cross sections obtained with the exact
continued S-matrix correction (EC, dash-dotted-dotted black lines) for the two sets of
potentials. We can see that in all cases this correction improves the accuracy of the eikonal
approximation, as it lies closer to CDCC predictions. Moreover, it behaves similarly for
both sets of optical potentials; it improves the oscillation pattern but underestimates
CDCC at large angles. This correction seems therefore to be insensitive to the choice
of the projectile-target interactions. Since this correction does not reproduce breakup
cross sections, I have not investigated more deeply the sensitivity of this correction to the
optical potentials.

As already observed in Sec. 3.4, the complex semiclassical corrections applied to the
eikonal approximation (3.4.12)–(3.4.13) (dash-dotted blue lines) and to the DEA (3.4.15)–
(3.4.16) (dotted orange lines) give similar results at both energies in Fig. E.1. This
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Figure E.2: Rutherford-normalized cross sections for the elastic scattering of 11Be
off 12C (a) at 20A MeV and (b) at 10A MeV as a function of the scattering angle θ,
obtained with the potentials presented in Sec. 3.2 except that the n-12C potential
has a surface imaginary depth four times larger. These results are published in
Ref. [21].

observation is robust to the choice of interactions. At both energies, they underestimate
CDCC cross sections at large angles, but they are more accurate at 10A MeV, as already
seen in Sec. 3.4. However, the elastic-scattering cross sections analysed in Ref. [21] obtained
with an unrealistic n-12C interaction does not lead to the same conclusions. In that article,
I have used the same potentials as in Sec. 3.2 except that the n-12C interaction has a
imaginary surface depth four times larger. I have made this error by accounting twice the
factor 4 in the surface term (2.2.2). This potential simulates therefore more absorption
from the n-12C elastic channel. The elastic-scattering cross sections of 11Be off 12C at
(a) 20A MeV and (b) 10A MeV, obtained with this unrealistic potential, are displayed in
Fig. E.2. As expected, the cross sections have a smaller magnitude than in the previous
case, since the n-12C potential is more absorptive. The discrepancies between the eikonal
and CDCC results are similar for the two previous optical potentials. Nonetheless, the
complex semiclassical correction behaves differently in this case: it overestimates CDCC
cross sections and is more accurate at 20AMeV than at 10AMeV. This analysis emphasizes
that the semiclassical correction is sensitive to the choice of optical potentials. However,
because for all interactions discussed in this appendix, this correction fails to reproduce
the breakup cross sections, I have also not studied more deeply this sensitivity.
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List of contributions to conferences,
workshops and seminars

List of contributions to conferences and workshops

• July 2019: Oral communication at the 27th International Nuclear Physics Conference
(INPC 2019), Glasgow (UK). Title: Sensitivity of one-neutron knockout of halo nuclei
to the their nuclear structure.

• January 2019: Poster contribution at the 57th International Winter Meeting on
Nuclear Physics, Bormio (Italy). Title: Peripherality in inclusive nuclear breakup of
halo nuclei.

• June 2018: Oral communication at the International Summer School on Nuclear
Physics, La Rábida (Spain). Title: Adiabatic correction to the eikonal approximation.

• June 2018: Oral communication at the Direct Reactions with Exotic Beams (DREB
2018), Matsue (Japan). Title: Corrections to the eikonal description of elastic
scattering and breakup of halo nuclei.

• March 2018: Oral communication at the Recent advances and challenges in the
description of nuclear reactions at the limit of stability (ECT* workshop), Trento
(Italy). Title: Low-energy corrections to the eikonal description of elastic scattering
and breakup of halo nuclei.

• February 2017: Oral communication at the Unraveling the complexity of nuclear
systems: single-particle and collective aspects through the looking glass (ECT*
workshop), Trento (Italy). Title: Extension of the eikonal approximation to low
energies.

• January 2017: Poster contribution at the 55th International Winter Meeting on
Nuclear Physics, Bormio (Italy). Title: Study of corrections to the eikonal approxi-
mation.
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External seminars

• December 2019: Seminar of National Superconducting Cyclotron Laboratory, Michi-
gan State University (USA). Title: Study of the eikonal approximation to model
exotic reactions.

• November 2019: Seminar of Nuclear Data & Theory Group, Lawrence Livermore
National Laboratory (USA). Title: Study of the eikonal approximation to model
exotic reactions.

• May 2019: Seminar of the Institut für Kernphysik, Johannes Gutenberg-Universität
Mainz (Germany). Title: What nuclear-structure information can be inferred from
inclusive measurements of breakup of halo nuclei?.
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