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The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in
a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as
the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide
an analog quantum algorithm that, given a Markov chain, allows us to sample from its stationary distribution in
a time that scales as the sum of the square root of the classical mixing time and the square root of the classical
hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian
evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum
mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged
sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution
that is close to this limiting distribution. Recently, we provided an upper bound on the quantum mixing time for
Erdős-Rényi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our
findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools
used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic,
and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide
numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple
graphs to any ergodic, reversible, Markov chain.
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I. INTRODUCTION

Markov chain-based algorithms are applied in a plethora of
fields ranging from statistical physics [1] and combinatorial
optimization [2] to network science [3] and form the basis
of Markov chain Monte Carlo–based methods [4]. In many
of these applications, the underlying task is often to sample
from the so-called steady state (also known as the stationary
distribution) of the associated Markov chain.

One way to sample from a stationary distribution is by mix-
ing. The Markov chain, which is represented by a stochastic
matrix P is applied repeatedly to some initial distribution.
The resultant random walk reaches a final distribution that
is close to a stationary distribution of P, irrespective of the
initial distribution. For most applications, the Markov chain is
ergodic, implying that it has a unique stationary distribution
and, reversible, i.e., it satisfies detailed balance. (We refer
the reader to Sec. II for details on the definitions of these
terms related to Markov chains.) Henceforth, unless stated
otherwise, we shall restrict our attention to ergodic, reversible
Markov chains. For a given Markov chain P, the minimum
time after which the distribution is ε close to the stationary
distribution is known as the mixing time of the random walk
on P. It is well known that the mixing time is related to the
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spectral gap of P. For an ergodic, Markov chain with spectral
gap �, the mixing time is in Õ(1/�) [5].

The stationary distribution, by definition, is the limiting
distribution of the resultant random walk on P, i.e., once
the stationary state is reached, the random walk ceases to
evolve. This implies that, as t → ∞, Pt applied to any initial
distribution converges to the stationary distribution. Thus the
classical mixing time is also the time required to sample from
the limiting distribution of the underlying random walk.

In the context of quantum algorithms, there arise two
notions of mixing and hence of mixing time. First, it is natural
to consider whether, given a Markov chain P, a quantum
algorithm can allow us to prepare a coherent encoding of the
stationary distribution of P. We shall refer to this problem as
QSSamp. Measuring the output state of such an algorithm
would enable us to sample from the (classical) stationary
state of P. Preparing such a coherent encoding also has other
applications which we discuss later.

The other notion of mixing arises from considering the
limiting distribution of the underlying quantum walk itself.
As quantum evolutions are unitary and hence distance pre-
serving, there is no inherent limiting stationary distribution
for quantum walks. However, it turns out that one can define a
limiting distribution of the quantum walk in a time-averaged
sense.

Starting from some initial state, one can obtain the prob-
ability that the walker is in some final state after a time t
which is picked uniformly at random in the interval [0, T ].
This gives a time-averaged probability distribution at any time
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T and also a limiting probability distribution as T → ∞.
The problem of sampling from this time-averaged limiting
distribution of a quantum walk gives rise to another notion
of mixing and we shall refer to this problem as QLSamp. The
mixing time of a quantum walk is then defined as the time
after which the time-averaged probability distribution is close
to the limiting probability distribution, i.e., the time required
to solve QLSamp.

In this article, we deal with both QSSamp and QLSamp
problems. We provide a purely analog quantum algorithm to
solve the QSSamp problem while, for the QLSamp problem,
we expand and extend upon the results of Ref. [6], where we
prove an upper bound for the quantum mixing time for almost
all graphs.

Aharonov and Ta-Shma [7] demonstrated that the existence
of an efficient quantum algorithm for QSSamp would imply
that problems in the complexity class statistical zero knowl-
edge (SZK) such as graph isomorphism would be solvable
in polynomial-time using a quantum computer (BQP), i.e.,
SZK ⊆ BQP. This would be a surprising result as such a
generic QSSamp algorithm would be oblivious to the specific
structure of the underlying problem. For example, consider
the problem of graph isomorphism [8] (deciding whether two
graphs are isomorphic to each other). Given graphs G1 and
G2, a quantum algorithm for mixing could be used to prepare
states that are a uniform superposition of all graphs that are
isomorphic to them. If these states are equal, then G1 and G2

are isomorphic. A simple SWAP test could then be used in
conjunction with a quantum algorithm for QSSamp to solve
graph isomorphism. Thus generic quantum algorithms for
QSSamp are unlikely to be efficient.

Having said that, there do exist quantum algorithms that
solve this problem [9–11], some of which have even been
instrumental in obtaining speedups for quantum machine
learning [12–14]. Richter [15] conjectured that one could con-
struct a quantum algorithm for this problem that has a running
time that is in Õ(1/

√
�), yielding a quadratic speedup over

its classical counterpart. Developing quantum algorithms that
match this conjectured bound have been challenging. Most
of the existing quantum algorithms are based on Szegedy’s
framework for discrete-time quantum walks [16].

The key idea that encompasses all existing algorithms for
QSSamp is to make use of the so-called quantum spatial
search algorithm [17]. Given an ergodic, reversible Markov
chain P with a set of marked nodes, a spatial search algorithm
finds an element from this marked set. Classically, this task
requires a time known as the hitting time of the corresponding
random walk on P. It has been shown that a discrete-time
quantum walk-based quantum algorithm for spatial search can
accomplish this task quadratically faster (up to logarithmic
factors) [18,19]. Such quantum algorithms start from the
coherent encoding of the stationary state of P (it inherently
assumes that this state can be prepared efficiently) and end
up in a state that has a constant overlap with an element
from the marked set. Thus, intuitively, quantum spatial search
algorithms can be run in reverse to obtain quantum mixing
algorithms. However, simply obtaining a constant overlap
with the stationary state is not enough and these mixing algo-
rithms require the use of quantum phase estimation [20] and
quantum amplitude amplification [21] to solve the QSSamp

problem. Recently, Apers and Sarlette provided a quantum
algorithm that can quadratically fast forward the dynamics of
Markov chains which can also be used to solve the QSSamp
problem [22]. The running time of these algorithms scale
as the square root of the hitting time of the corresponding
quantum walk on the underlying Markov chain.

To the best of our knowledge, there does not exist any
analog quantum algorithm for solving the QSSamp problem.
In this framework, key algorithmic primitives such as quan-
tum phase estimation and quantum amplitude amplification
are missing as they are inherently discrete time. In order
to construct an analog quantum algorithm for QSSamp we
assume that, given an ergodic, reversible Markov chain P, we
have access to a time-independent Hamiltonian that encodes
the connectivity of P. This Hamiltonian, defined in Sec. IV,
corresponds to a quantum walk on the edges of P. Further-
more, it has been recently used to design continuous-time
quantum walk-based quantum algorithms for spatial search
that can find a single marked node on any ergodic, reversible
Markov chain in square root of the hitting time [23]. We use
the time evolution of this Hamiltonian as the key primitive
to our algorithm. The second key primitive is to use von
Neumann measurements [24] for quantum state generation.
Childs et al. used a sequence of such von Neumann measure-
ments as an alternative to adiabatic quantum computation and
for solving combinatorial search algorithms [25]. In Sec. III
we demonstrate that this scheme can be used to prepare
eigenstates of Hamiltonians.

We show (Sec. V) that these two primitives allow us to
develop a continuous-time quantum walk based algorithm for
spatial search. This algorithm differs from the one developed
in Ref. [23] which makes use of quantum phase randomiza-
tion [26]. It provides an alternative scheme by which one
can find an element in a marked set of states of any ergodic,
reversible Markov chain in square root of the extended hitting
time. Although this algorithm has the same running time as
that of Ref. [23], it provides useful intuition about how to build
an analog quantum algorithm for QSSamp.

Our quantum algorithm for mixing, explained in detail in
Sec. VI, avoids the need for amplitude amplification by mak-
ing use of the framework of interpolated Markov chains and
switching between two different values of the interpolation
parameter. The running time scales as the sum of the square
root of the classical mixing time and the square root of the
hitting time.

We also discuss the problem of QLSamp on generic
graphs. The limiting distribution of quantum walks can be
quite different from that obtained from a quantum algorithm
for solving QSSamp. Unlike its classical counterpart, for
QLSamp, the limiting distribution is dependent on the ini-
tial state of the quantum walk. Moreover, instead of being
dependent on the spectral gap �, the quantum mixing time
depends on all eigenvalue gaps of the underlying Hamiltonian.
Aharonov et al. [27] were the first to study this problem. They
showed that a discrete-time quantum walk on the cycle graph
mixes faster than its classical counterpart. Since then several
works have considered the mixing time of both continuous
and discrete-time quantum walks on specific graphs [28–33].
The upper bound for the mixing time of quantum walks has
been proven to be slower than its classical counterpart for
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some graphs, while a quadratic speedup has been obtained for
others.

Recently, we proved an upper bound for the mixing time
of quantum walks for almost all graphs [6]. This implies that
the fraction of graphs of n nodes, for which our upper bound
holds, goes to 1 as n goes to infinity or, equivalently, if a graph
is picked uniformly at random from the set of all graphs, our
result provides an upper bound on the quantum mixing time
almost surely, i.e., with probability 1 − o(1). Throughout the
article, we shall use the phrase almost all graphs to signify
precisely this.

We proved this by obtaining the mixing time for quantum
walks on Erdős-Rényi random graphs: graphs of n nodes such
that the probability of an edge existing between any two nodes
is p, typically denoted as G(n, p). Here, we expand upon the
results of [6]. In particular, our goal is to offer an intuitive
explanation of our proof techniques with an emphasis on the
several recently developed random matrix theory tools that
were used to derive the aforementioned results. We also cor-
roborate our analytical findings numerically and also extend
the notion of QLSamp to any ergodic, reversible Markov
chain. In fact, our numerical findings confirm the fact that
the mixing time for quantum walks on G(n, p) is in Õ(n3/2)
for dense random graphs (constant p). Additionally they also
show that the limiting probability distribution is close to the
uniform distribution.

This article is organized as follows. In Sec. II, we explain
some basic concepts and quantities related to Markov chains
that we shall use in subsequent sections. In Sec. III we show
how von Neumann measurements can be used for preparing
eigenstates of Hamiltonians. In Sec. IV, we define a Hamilto-
nian corresponding to a quantum walk on the edges of any
ergodic, reversible Markov chain. In Sec. V, we make use
of von Neumann measurements and Hamiltonian evolution to
provide a quantum algorithm for spatial search. This provides
an intuitive understanding of our analog quantum algorithm
for solving QSSamp, which we describe in Sec. VI. Next, in
Sec. VII, we deal with solving the QLSamp problem. Finally,
we conclude with a brief discussion and summary in Sec. VIII.

II. PRELIMINARIES

In this section we state some basic definitions about
Markov chains which we shall use subsequently.

A. Basics of Markov chains

A Markov chain on a discrete state space X , such that
|X | = n, can be described by a n×n stochastic matrix P [34].
Each entry pxy of this matrix P represents the probability of
transitioning from state x to state y. Any distribution over the
state space of the Markov chain is represented by a stochastic
row vector.

A Markov chain is irreducible if any state can be reached
from any other state in a finite number of steps. Any irre-
ducible Markov chain is aperiodic if there exists no integer
greater than one that divides the length of every directed cycle
of the graph. A Markov chain is ergodic if it is both irreducible
and aperiodic. By the Perron-Frobenius Theorem, any ergodic
Markov chain P has a unique stationary state π such that

πP = π . The stationary state π is a stochastic row vector and
has support on all the elements of X . Let us denote it as

π = (π1 π2 · · · πn), (1)

such that
∑n

j=1 π j = 1. Starting from any initial probability
distribution μ over the state space X , the repeated application
of P leads to convergence to the stationary distribution π , i.e.,
limt→∞ μPt = π . This is known as the mixing of a Markov
chain. It follows from the Perron-Frobenius theorem that,
other than π , all eigenvectors have eigenvalues of absolute
value strictly less than 1. Thus π is the unique eigenvector
with eigenvalue 1 and all other eigenvalues lie between −1
and 1. Throughout the paper we shall be working with the
Markov chain corresponding to the lazy walk, i.e., we shall
map P �→ (I + P)/2. This transformation ensures that all the
eigenvalues of P lie between 0 and 1. This transformation will
not affect our results other than by a factor of two, which is
irrelevant in the asymptotic limit. Throughout the article, we
shall denote the gap between the two highest eigenvalues of P
(the spectral gap) by �.

Let px,y denote the (x, y)th entry of the ergodic Markov
chain P with stationary state π . Then the (x, y)th entry of the
time-reversed Markov chain of P, denoted by P∗, is

p∗
x,y = py,x

πy

πx
.

We shall concern ourselves with ergodic Markov chains that
are also reversible, i.e., Markov chains for which P = P∗. Any
reversible P satisfies the detailed balance condition

πx pxy = πy pyx, ∀(x, y) ∈ X.

This can also be rewritten as

diag(π )P = PT diag(π ),

where diag(π ) is a diagonal matrix with the jth diagonal entry
being π j . In other words, the reversibility criterion implies that
the matrix diag(π )P is symmetric. Henceforth we shall only
deal with reversible (and hence ergodic) Markov chains.

Interpolated Markov chains. Let us assume that a subset
of the elements of the state space of the Markov chain P is
marked. Let M ⊂ X denote the set of marked elements. Given
any P, we define P′ as the absorbing Markov chain obtained
from P by replacing all the outgoing edges from M to X by
self-loops. If we re-arrange the elements of X such that the
unmarked elements U := X\M appear first, then we can write

P =
[

PUU PUM

PMU PMM

]
, P′ =

[
PUU PUM

0 I

]
, (2)

where PUU and PMM are square matrices of size (n − |M|) ×
(n − |M|) and |M|×|M|, respectively. On the other hand,
PUM and PMU are matrices of size (n − |M|)×|M| and |M| ×
(n − |M|), respectively. Then the interpolated Markov chain
is defined as

P(s) = (1 − s)P + sP′, (3)

where s ∈ [0, 1]. The interpolated Markov chain thus has a
block structure

P =
[

PUU PUM

(1 − s)PMU (1 − s)PMM + sI

]
. (4)
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Clearly, P(0) = P and P(1) = P′. Notice that if P is ergodic,
so is P(s) for s ∈ [0, 1). This is because any edge in P is also
an edge of P(s) and so the properties of irreducibility and
aperiodicity are preserved. However, when s = 1, P(s) has
outgoing edges from M replaced by self-loops and as such
the states in U are not accessible from M, implying that P(1)
is not ergodic. The spectral gap of P(s) is denoted by �(s).

Now we shall see how the stationary state of P is related to
that of P(s). Since X = U ∪ M, the stationary state π can be
written as

π = (πU πM ), (5)

where πU and πM are row vectors of length n − |M| and |M|,
respectively. As mentioned previously, P′ is not ergodic and
does not have a unique stationary state. In fact, any state
having support over only the marked set is a stationary state
of P′.

On the other hand, P(s) is ergodic for s ∈ [0, 1). Let pM =∑
x∈M πx be the probability of obtaining a marked element

in the stationary state of P. Then it is easy to verify that the
unique stationary state of P(s) is

π (s) = 1

1 − s(1 − pM )
[(1 − s)πU πM]. (6)

Discriminant matrix. We denote by

D(P(s)) =
√

P(s) ◦ P(s)T (7)

the symmetric matrix whose (x, y)th entry is Dxy(P(s)) =√
pxy(s)pyx(s). Here ◦ indicates the Hadamard product.
For any s ∈ [0, 1) as P(s) is reversible, the detailed-balance

condition is satisfied. So, each entry of D(P(s)) can be ex-
pressed as

Dxy(P(s)) = √
pxy(s)pyx(s) (8)

= pxy(s)

√
πx(s)

πy(s)
. (9)

This leads us to the following fact.
Fact 1. For any ergodic, reversible Markov chain P, we

have that for s ∈ [0, 1)

D(P(s)) = diag(
√

π (s))P(s)diag(
√

π (s))−1,

where
√

π (s) is a row vector with its jth entry being
√

π j (s).
From Fact 1, it follows that D(P(s)) is similar to P(s), i.e.,

they have the same set of eigenvalues [35].
Let the spectral decomposition of D(P(s)) be

D(P(s)) =
n∑

i=1

λi(s)|vi(s)〉〈vi(s)|, (10)

where |vi(s)〉 is an eigenvector of D(P(s)) with eigenvalue
λi(s). Furthermore, λn(s) = 1 > λn−1(s) � · · · � λ1(s).

Fact 2. For s ∈ [0, 1), the eigenstate of D(P(s)) with
eigenvalue 1 is given by

|vn(s)〉 =
√

π (s)T ,

where
√

π (s) is a row vector with its jth entry being
√

π j (s).

Algorithm 1. Spatial search by random walk.

1. Sample a vertex x ∈ X from the stationary state π of P.
2. Check if x ∈ M.
3. If x is marked, output x.
4. Otherwise update x according to P and go to step 2.

This fact follows from the reversibility condition stated in
Fact 1, i.e., for s ∈ [0, 1) we have

D(P(s))
√

π (s)T = diag(
√

π (s))P(s)diag(
√

π (s))−1
√

π (s)T

(11)

=
√

π (s)T . (12)

The 1 eigenvector of D(P(s)), |vn(s)〉, can also be expressed
in a different form.

Proposition 3. The eigenstate of eigenvalue 1 of D(P(s))
can be expressed as

|vn(s)〉 =
√

(1 − s)(1 − pM )

1 − s(1 − pM )
|U 〉 +

√
pM

1 − s(1 − pM )
|M〉,

(13)
where |U 〉 and |M〉 are defined as

|U 〉 = 1√
1 − pM

∑
x/∈M

√
πx|x〉, (14)

|M〉 = 1√
pM

∑
x∈M

√
πx|x〉. (15)

This follows directly from Fact 2.

B. Some quantities related to Markov chains:
Hitting and mixing times

In this subsection, we define certain quantities related to
Markov chains which we shall use in subsequent sections for
our analysis.

Spatial search problem and hitting time. Consider a graph
G(X, E ) with |X | = n vertices and |E | = e edges. Consider
a subset M ⊂ X of vertices that are marked. Then the spatial
search problem involves finding any of the marked vertices
in M. This problem can be solved by both classical random
walks and quantum walks.

Given an ergodic, reversible Markov chain P with a sta-
tionary state π , the random walk based algorithm to solve
the spatial search problem is described in Algorithm 1. The
hitting time of P with respect to M is the expected number
of times step 4 of Algorithm 1 is executed. Let us denote this
by HT (P, M ). Thus the random walk based algorithm finds
a marked vertex in time O(HT (P, M )). Note that the random
walk algorithm stops as soon as a marked element is reached.
Thus this is equivalent to applying an absorbing Markov chain
P′ that is obtained by replacing all the outgoing edges from the
marked vertices of P by self-loops. From this we can define
HT (P, M ).

Hitting time of a Markov chain. The hitting time of any
Markov chain P with respect to a set of marked elements M
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can be expressed as

HT (P, M ) =
n−m∑
j=1

|〈v′
j |U 〉|2

1 − λ′
j

, (16)

where λ′
j and |v′

j〉 are the eigenvalues and eigenvectors of the
matrix D(P′) and

|U 〉 = 1√
1 − pM

∑
x �=M

√
πx|x〉,

where pM is the probability of sampling a marked vertex from
the stationary state of P.

Interpolated hitting time and extended hitting time. For any
interpolated Markov chain P(s), in Refs. [18,23], the authors
define a quantity known as the interpolated hitting time in the
context of spatial search which will also be useful here for
subsequent analysis. This is defined as

HT (s) =
n−1∑
j=1

|〈v j (s)|U 〉|2
1 − λ j (s)

. (17)

There is a relationship between the spectral gap of the Markov
chain and HT (s) since

HT (s) � 1

�(s)

n−1∑
j=1

|〈v j (s)|U 〉|2. (18)

For the spatial search algorithm, we shall find that the quantity
of interest is the extended hitting time. The extended hitting
time of P with respect to a set M of marked elements is given
by

HT +(P, M ) = lim
s→1

HT (s), (19)

Clearly, for |M| = 1, we have that HT +(P, M ) = HT (P, M ).
Krovi et al. proved an explicit relationship between HT (s)
and HT +(P, M ) [18]. They showed that

HT (s) = p2
M

[1 − s(1 − pM )]2
HT +(P, M ). (20)

Combining Eqs. (18) and (20), we have

HT +(P, M )� 1

�(s)
· (1 − s(1 − pM ))2

p2
M

n−1∑
j=1

|〈v j (s)|U 〉|2 (21)

Mixing time of a Markov chain. Given a reversible Markov
chain P, any initial probability distribution over the state space
converges to the stationary distribution π , i.e., limt→∞ μ = π ,
for any initial distribution μ. Given P and an initial state μ,
the mixing time of a classical random walk is defined as the
minimum time Tmix such that ∀t � Tmix and we have that

1
2‖μPt − π‖1 � ε,

for some ε ∈ (0, 1), where 1
2‖.‖1 is the total variation distance.

That is, Tmix is the minimum time required for the Markov
chain to converge to a distribution that is ε close to the
stationary distribution which implies that [36]

Tmix � 1

�
log

(
1

επmin

)
, (22)

where � is the spectral gap of P and πmin = minx πx.

Thus, given an ergodic, reversible Markov chain P with
stationary state π and spectral gap �, one can sample from
a distribution that is ε close to π in time Õ(1/�). Next
we discuss how one can use von Neumann measurements to
prepare eigenstates of Hamiltonians, a tool which will help us
provide an analog quantum algorithm for solving QSSamp.

III. QUANTUM STATE GENERATION
BY VON NEUMANN MEASUREMENTS

In this section, we make use of von Neumann measure-
ments to prepare eigenstates of a Hamiltonian. The goal would
be to use this technique to prepare the eigenstate of the
quantum walk Hamiltonian (encoding an ergodic reversible
Markov chain P) that corresponds to a coherent encoding of
the stationary distribution of P.

In this framework, in order to measure any observable
Ô, the system of interest is coupled to a pointer, which is
simply a free particle in one dimension. If H represents the
Hamiltonian of the system and p̂ the momentum operator
corresponding to the pointer, then the total Hamiltonian corre-
sponding to the coupling between the system and the pointer
is given by

H̃ = H + p̂2

2m
+ g Ô ⊗ p̂, (23)

where m is the mass of the free particle and g is the interaction
strength between the observable and the pointer. Since we
are interested in measuring the energy of the system, we
have Ô = H . We consider the particle as “massive,” thereby
enabling us to neglect the free Hamiltonian of the particle.
Furthermore, we assume that we are working with units such
that the interaction strength g = 1. These imply that

H̃ = H ⊗ p̂. (24)

It is well known that the momentum operator, p̂ = −i d
dx , is a

generator of translation in the position of the particle. In other
words, the operator e−ix0 p̂ applied to a wave packet whose
wave function is ψ (x) results in

e−ix0 p̂ψ (x) = e−x0
d
dx ψ (x) (25)

=
(

I − x0
d

dx
+ · · ·

)
ψ (x) (26)

= ψ (x − x0). (27)

Thus the wave packet is translated in position by x0. Now
consider that the system Hamiltonian H has eigenvalues

λn = 0 < λn−1 < � � λn−2 � · · · λ1 � 1,

such that H |v j〉 = λ j |v j〉. Furthermore, suppose that we ini-
tialize the pointer to a state |x = 0〉, a wave packet centered
around 0. Then,

e−iH̃t |v j〉|x = 0〉 = |v j〉|x = λ jt〉. (28)

That is, the wave packet is translated in position by λ jt
and, as such, measuring the displacement of the pointer reg-
ister can in principle reveal information about the eigenstate
of H in the first register. By linearity, for any initial state
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|ψ0〉 = ∑n
j=1 α j |v j〉, we have

e−iH̃t |ψ0〉|x = 0〉 = e−iH p̂t
n∑

j=1

|ψ0〉|x = 0〉 (29)

=
n∑

j=1

α j |v j〉|x = λ jt〉. (30)

In order to implement this on a quantum computer, we assume
that the pointer register is of l qubits. The choice of l is crucial
as it determines the precision up to which the position of the
pointer is obtained. In fact, if we measure the position of the
pointer with a high enough precision to resolve all eigenvalue
gaps, (λi − λ j )t , a measurement of the position of the pointer
results in a measurement of the system Hamiltonian H .

For our purposes, we shall show how this formalism can
be used to prepare the 0 eigenstate of H , i.e., |vn〉, in a purely
analog fashion. To that end, we formally state the following
via Lemma 4 and Corollary 5.

Lemma 4. Let H be a Hamiltonian with eigenvalues λn =
0 < � < λn−1 � · · · λ1 � 1 such that H |v j〉 = λ j |v j〉. Let p̂
represent the momentum operator corresponding to a free
particle in one dimension with its mass large enough so that
its free Hamiltonian can be neglected and so that it can be
represented in l qubits as

p̂ =
2l −1∑
q=0

q

2l
|q〉〈q|,

where

l = �log2(1/�)� + 1. (31)

Furthermore let

|ψ0〉 =
n∑

j=1

α j |v j〉.

Then, starting from the state |ψ0〉|x = 0〉 and evolving for a
time

τ = 2π

�
,

according to the Hamiltonian H̃ = H ⊗ p̂, results in a state

|ψ̃〉 = αn|vn〉|0〉 +
n−1∑
k=1

αk|vk〉(γk|0〉 + 
k|
k〉),

where |γk| < 1/2, |
k| >
√

3/2, and 〈
k〉0 = 0 for 1 � k �
n − 1.

Proof. If |q〉 represents the momentum eigenstates, then the
momentum operator is represented by

p̂ =
2l −1∑
q=0

q

2l
|q〉〈q|. (32)

Note that the position and momentum states are equivalent
up to a Fourier transform and so the localized wave packet
centered at x = 0 is completely delocalized in the momentum

basis. That is,

|x = 0〉 = 1√
2l

2l −1∑
q=0

|q〉. (33)

Therefore,

e−i(H⊗ p̂)τ |ψ0〉|x = 0〉 = e−i(H⊗ p̂)τ |ψ0〉
⎛⎝ 1√

2l

2l −1∑
q=0

|q〉
⎞⎠ (34)

=
n∑

k=1

αk|vk〉
⎛⎝ 1√

2l

2l −1∑
q=0

e
−iλk τq

2l |q〉
⎞⎠.

(35)

Since we ultimately want to read off the position of the pointer
variable, we reexpress the pointer register in the position basis
to obtain

e−i(H⊗ p̂)τ |ψ0〉|x = 0〉

=
n∑

k=1

αk|vk〉
⎛⎝ 1

2l

2l −1∑
x=0

2l −1∑
q=0

e
i(x−λk τ )q

2l |x〉
⎞⎠. (36)

The pointer register has a measure of the displacement of
the wave packet which was initially centered at x = 0. In
fact, as shown previously, the shift will be proportional to the
eigenvalue corresponding to the eigenstate in the first register
(expressed in l qubits). That is, we will have states of the form
|v j〉|λ jτ 〉. We are interested in preparing the 0-eigenstate |vn〉.
We first observe that the amplitude of obtaining |0〉 in the
pointer register when the first register is in the state |vn〉|0〉
is one, i.e.,

e−iτ (H⊗ p̂)|vn〉|0〉 �→ |vn〉|0〉.
On the other hand, for any other eigenstate |vk〉, the amplitude
corresponding to measuring |0〉 in the second register is

1

2l

∣∣∣∣∣∣
2l −1∑
q=0

e
i(x−λk τ )q

2l

∣∣∣∣∣∣ = 1

2l

∣∣∣∣∣∣
2l −1∑
q=0

e
−iλk τq

2l

∣∣∣∣∣∣ (37)

= 1

2l

∣∣∣∣ 1 − e−iλkτ

1 − e−iλkτ/2l

∣∣∣∣ (38)

= 1

2l

∣∣∣∣ 1 − e−i2πλk/�

1 − e−i2πλk/(2l �)

∣∣∣∣, (39)

where the last line follows from the fact that τ = 2π/�. Let
z = 2πλk

2l �
. Then, we find that

0 � z � 2π

2l�
� π, (40)

where we have used the fact that l � log2(1/�) + 1 and
so 2l� � 2. Now we use the following facts: for z ∈
[−π, π ], | sin(z/2)| � |z|/π , which gives us that |1 − e−iz| =
2| sin(z/2)| � 2|z|/π . Also, observe that |1 − e−i2πλk/�| � 2.

So, combining these two, we obtain that

1

2l

∣∣∣∣ 1 − e−i2πλk/�

1 − e−i2πλk/(2l �)

∣∣∣∣ � �

2|λk| < 1/2, (41)
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where the last expression follows from the fact that |λk| >

�,∀1 � k � n − 1. This immediately implies that the ampli-
tude of the pointer register to be in a state different from |0〉
when the first register is in |vk〉 is at least

√
3/2. In other

words, in such a scenario the state of the pointer register,
denoted by |
k〉, will have at least one nonzero qubit, ensuring
that 〈
k〉0 = 0.

Thus, after the time evolution for a time τ = 2π/�, the
state of the system and the pointer is given by

|ψ̃〉= αn|vn〉|0〉+
n−1∑
k=1

αkγk|vk〉|0〉 +
n−1∑
k=1

αk
k|vk〉|
k〉, (42)

where ∀k ∈ [1, n − 1], we have |γk| < 1/2, |
k| >
√

3/2, and
〈
k〉0 = 0. �

We shall use this lemma to derive the following corollary.
Corollary 5. Let ε′ = ε|αn|2, where ε ∈ (0, 1) and sup-

pose that the pointer register contains

m = l�log2(1/ε′)� (43)

qubits initialized in the state |x = 0〉⊗m.
Then repeating the Hamiltonian evolution of Lemma 4 a

total of �log(1/ε′)� times using a fresh block of l-pointer
qubits each time, followed by postselecting on the pointer
register to be in |0〉⊗m, results in a quantum state |φ〉 such
that

‖|vn〉 − |φ〉‖2 � �(ε),

in time

T = �

(
1

�|αn|2 log

(
1

ε|αn|2
))

. (44)

Proof. After the application of e−i(H⊗ p̂)τ a total of
�log(1/ε′)� times using l blocks of qubits in the pointer
register each time, observe that, for any k �= n, the amplitude
for observing |0〉⊗m in the pointer register when there is |vk〉
in the first register is bounded by

|εk| = |γk|�log2(1/ε′ )� �
(

1

2

)�log2(1/ε′ )�
� ε′. (45)

This implies that the resulting state after this procedure is
given by

|ψ f 〉 = αn|vn〉|0〉⊗m +
n−1∑
k=1

εkαk|vk〉|0〉⊗m

+
n−1∑
k=1

αkδk|vk〉
∣∣
(m)

k

〉
, (46)

where 0 � εk � ε′ and
√

1 − ε′2 � δk � 1. This takes time
2π�log(1/ε′)�/�.

The state in Eq. (46) can be rewritten as

|ψ f 〉 = αn(|vn〉 + |err〉)|0〉⊗m +
n−1∑
k=1

αkδk|vk〉
∣∣
(m)

k

〉
, (47)

where the (unnormalized) state

|err〉 =
n−1∑
k=1

εkαk

αn
|vk〉.

This implies that postselecting on obtaining |0〉⊗m in the
pointer register we obtain the state

|φ〉 = |vn〉 + |err〉, (48)

with probability |αn|2, such that

‖|vn〉 − |φ〉‖2 = ‖|err〉‖2 =
n−1∑
k=1

∣∣∣∣εkαk

αn

∣∣∣∣2 � ε′2

|αn|2 = ε2. (49)

The entire protocol takes time

T = �

(
1

�|αn|2 log

(
1

|αn|2ε
))

.

�
Thus Lemma 4 and Corollary 5 can be used to prepare the

eigenstate |vn〉. Note that it would have been possible to use
quantum amplitude amplification to reduce quadratically the
dependency on |αn|. However, we are interested in developing
analog algorithms, assuming that we have access to a time-
independent Hamiltonian. Provided that the cost of preparing
the initial state |ψ0〉 is small, the cost of the algorithm is the
total time of Hamiltonian evolution. Moreover, our protocol
(Sec. VI) to prepare the stationary state of any reversible
Markov chain ensures that |αn| = �(1), thereby resulting
in at most a constant slowdown with respect to amplitude
amplification.

IV. HAMILTONIAN FOR QUANTUM WALK
ON ANY REVERSIBLE MARKOV CHAIN

Given any ergodic, reversible Markov chain, we shall make
use of the Hamiltonian introduced by Somma and Ortiz [26]
and subsequently used in Refs. [23,37]. We recall the Hamil-
tonian and its spectral properties here for completeness and it
will be used in our quantum algorithm for QSSamp.

A. Defining the Hamiltonian

Let pxy(s) denote the (x, y)th entry of P(s) and let E be the
set of edges of P(s). Furthermore, let H = span{|x〉 : x ∈ X }.
Then one can define a unitary V (s) ∈ H × H such that, for all
x ∈ X ,

V (s)|x, 0〉 =
∑
y∈X

√
pxy(s)|x, y〉, (50)

where the state |0〉 represents a fixed reference state in H. Let
us also define the swap operator

S|x, y〉 =
{|y, x〉, if (x, y) ∈ E ,
|x, y〉, otherwise.

Observe that 〈x, 0|V (s)†SV (s)〉y, 0 = √
pyx(s)pxy(s) =

Dxy(P(s)). Then, if �0 = I ⊗ |0〉〈0|, we have

V †(s)SV (s)�0|y, 0〉 =
∑
x∈X

√
pyx(s)pxy(s)|x, 0〉 + |�〉⊥,

(51)
so that �0|�〉⊥ = 0. We define the search Hamiltonian as

H (s) = i[V (s)†SV (s),�0]. (52)

In Ref. [23], we have shown that H (s), in a rotated basis,
corresponds to a quantum walk on the edges of P(s). That is,
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the rotated Hamiltonian

H (s) = V (s)H (s)V (s)† (53)

= i[S,V �0V
†] (54)

corresponds to a quantum walk on the edges of P(s). If the
walker is localized in a directed edge from node x to node
y, i.e., |x, y〉, then the walker can move to a superposition
of outgoing edges from node y of the form |y, .〉. Note that
our algorithms (see Algorithm 2 and Algorithm 3) could be
implemented using the Hamiltonian H (s) instead of H (s). In
such a case, we need to apply the same rotation to the initial
state of the algorithm and the final state of the algorithm.
However, subsequently we shall be working with H (s) as it
simplifies the analysis considerably. In the next subsection,
we will characterize the spectrum of H (s).

B. Spectrum of H (s)

As discussed in Sec. II A, the spectrum of H (s) is related
to that of D(P(s)) and, in particular, the state |vn(s), 0〉 is an
eigenstate of H (s) with eigenvalue zero. The spectrum of H (s)
has been explicitly described in Ref. [37] and we mention it
here for completeness. The total Hilbert space of H (s) can be
divided into the following set of invariant subspaces.

For 1 � k � n − 1,

Bk (s) = span{|vk (s), 0〉,V (s)†SV (s)|vk (s), 0〉}, (55)

Bn(s) = span{|vn(s), 0〉}, (56)

B⊥(s) = (⊕n
k=1Bk )⊥. (57)

Now, observe that

�0V (s)†SV (s)|vn(s), 0〉 = |vn(s), 0〉, (58)

V (s)†SV (s)�0|vn(s), 0〉 = |vn(s), 0〉. (59)

This implies

H (s)|vn(s), 0〉 = 0, (60)

i.e., |vn(s), 0〉 is an eigenstate with eigenvalue 0.
On the other hand, note that, for 1 � k � n − 1, the eigen-

states and eigenvalues of H (s) in Bk (s) are

|�±
k (s)〉 = |vk (s), 0〉 ± i|vk (s), 0〉⊥√

2
, (61)

E±
k (s) = ±

√
1 − λk (s)2, (62)

where |vk (s), 0〉⊥ is a quantum state that is in Bk (s) such
that �0|vk (s), 0〉⊥ = 0. Thus, if the underlying Markov chain
has a spectral gap �(s), then in this subspace H (s) has a
quadratically amplified spectral gap given by

|En(s) − E±
n−1(s)| =

√
1 − λ2

n−1(s) = �[
√

�(s)]. (63)

Now, there are n2 eigenvalues of H (s) out of which 2n − 1
belong to Bk (s) ∪ Bn(s). The remaining (n − 1)2 eigenvalues
are 0 and belong to B⊥(s) which is the orthogonal complement
of the union of the invariant subspaces. We need not worry
about this subspace as we start from a state that has no support
on B⊥(s), which is an invariant subspace of H (s). Thus,

throughout the evolution under H (s), our dynamics will be
restricted to Bk (s) ∪ Bn(s).

V. SPATIAL SEARCH BY CONTINUOUS-TIME QUANTUM
WALK USING VON NEUMANN MEASUREMENTS

We first show how to make use of the state-generation
scheme described in Sec. III to provide a continuous-time
quantum walk based algorithm to solve the spatial search
problem. This algorithm will provide an intuitive understand-
ing of our analog quantum algorithm for QSSamp.

Suppose we are given an ergodic, reversible Markov chain
P with the marked set denoted by M ⊂ X . The spatial search
algorithm on P involves finding a node within this marked set
and is often tackled by the formalism of random walks. We
have seen previously in Sec. II B that the expected number of
steps taken by the walker to find a node within this marked set
is known as the hitting time of P with respect to M. Quantum
walks provide a natural framework to tackle this problem.
A natural question to ask is whether a quantum walk can
offer any speedup over its classical counterpart in order to
solve the spatial search problem. Here, we concentrate on
the continuous-time quantum walk framework to tackle this
problem.

The spatial search algorithm by continuous-time quantum
walk on P involves evolving a time-independent Hamiltonian
(which encodes the connectivity of P), starting from some
initial state, for some time, and then measuring in the basis
spanned by the states of P.

Childs and Goldstone [38] introduced the first continuous-
time quantum walk-based algorithm to tackle the spatial
search problem for simple, unweighted graphs. They showed
that this algorithm, defined as a quantum walk on the nodes
of the underlying graph, could find a marked node in O(

√
n)

time for certain graphs with n nodes such as the complete
graph, hybercube, and d-dimensional lattices with d > 4. This
offered a quadratic speedup over classical random walks for
the spatial search problem on these graphs. When d = 4,
the running time of the Childs and Goldstone algorithm is
O(

√
n log n), offering a less than quadratic speedup, whereas

there is no substantial speedup for d < 4. Since then, a
plethora of results have been published exhibiting an O(

√
n)

running time on certain specific graphs each requiring an
ad hoc analysis [39–47]. Recently, in Ref. [48], the authors
provided the necessary and sufficient conditions for this al-
gorithm to be optimal under very general conditions on the
spectrum of the quantum walk Hamiltonian. They showed that
attaining a generic quadratic speedup is impossible using this
algorithm.

In Ref. [23], the authors provided a different spatial search
algorithm by continuous-time quantum walk which finds a
marked element on any ergodic, reversible Markov chain in
square root of the extended hitting time, thereby matching
the running time of best known algorithms in the DTQW
framework in the case of where a single node is marked, i.e.,
|M| = 1 [18,19]. Given any P, their algorithm made use of the
framework of interpolating quantum walks

P(s) = (1 − s)P + sP′,
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Algorithm 2. Spatial search by continuous-time quantum walk.

Let ε ∈ (0, 1) and τ = 2π/
√

�(s∗).
1. Prepare the state |ψ0〉 = |vn(0), 0〉 |x = 0〉⊗�log2(2/ε)�.
2. Evolve according to H (s∗) ⊗ p̂ for time τ starting

from the state |ψ0〉.
3. Repeat the Hamiltonian evolution in step 2, m(s∗) times, using

a fresh block of l (s∗)-qubits in the pointer register each time.
4. Measure in the basis of the state-space of the Markov

chain in the first register.

where P′ is the absorbing Markov chain such that any state
having support only over the marked vertices is its stationary
state. In fact, they used the Somma-Ortiz Hamiltonian H (s)
(described in Sec. IV) to define quantum walk on the edges
of P(s). The underlying technique is to use a procedure called
quantum phase randomization to (approximately) prepare a
(mixed) state that has a constant overlap with the 0 eigenstate
of H (s). For some specific value of s, this eigenstate has a
constant overlap with the marked subspace M. This required
measurement at a time chosen uniformly at random between
[0,

√
HT +(P, M )], where HT +(P, M ) is the extended hitting

time, defined in Eq. (19).
In this section, we provide an alternative spatial search

algorithm (Algorithm 2) by continuous-time quantum walk
that finds an element from a marked set M in time that scales
as the square root of the extended hitting time. Algorithm 2 is
similar in spirit to that of Ref. [23] in that both make use of
the Somma-Ortiz Hamiltonian H (s) defined in Eq. (52).

However, motivated by the problem of quantum state
generation using von Neumann measurements, Algorithm 2
prepares the 0 eigenstate of H (s) by coupling this Hamiltonian
to a free particle in one dimension. Unlike the algorithm of
Ref. [23], we evolve the Hamiltonian for a fixed time before
making a measurement.

Note that the spectral gap of H (s) is quadratically less than
that of P(s). That is, if the discriminant matrix D(P(s)) has a
spectral gap of �(s) = |1 − λn−1(s)|, then the spectral gap of
H (s) is

√
1 − λn−1(s)2 = �(

√
�(s)).

Furthermore, for

s = s∗ = 1 − pM/(1 − pM ), (64)

the 0-eigenstate |vn(s∗)〉 can be written as

|vn(s∗)〉 = |U 〉 + |M〉√
2

, (65)

where |U 〉 and |M〉 are as defined in Proposition 3. Thus it has
a constant overlap with both |U 〉 and |M〉. Consider the initial
state

|vn(0)〉 =
√

1 − pM |U 〉 + √
pM |M〉. (66)

Then from Lemma 4 and Corollary 5, we choose

l (s∗) = �log2[1/�(s∗)]� + 1 (67)

and

m(s∗) = l (s∗)�log2(1/ε′)�, (68)

such that the time evolution of the Hamiltonian H̃ (s∗) =
H (s∗) ⊗ p̂, starting from the state

|ψ0〉 = |vn(0)〉|x = 0〉⊗�log2(2/ε)�,

prepares a state that in ε-close |vn(s∗)〉 with probability

|αn|2 = |〈vn(0)|vn(s∗)〉|2 ≈ 1

2
. (69)

in time

T = �

(
1√

�(s∗)
log

1

ε

)
.

We prove in Lemma 6 that �(s∗) is upper bounded by
HT +(P, M ). Furthermore, as |vn(s∗)〉 has a constant overlap
with |M〉, Algorithm 2 finds a marked node with a constant
probability in time

T = �

(√
HT +(P, M ) log

1

ε

)
.

Now we formally state Algorithm 2 and prove its correctness
in Lemma 6.

Lemma 6. Algorithm 2 outputs a marked node with proba-
bility at least 1/4 − ε in time

T = �(
√

HT +(P, M ) log(1/ε)).

Proof. We shall make use of Lemma 4 and Corollary 5.
Observe that, for s = s∗ = 1 − pM/(1 − pM ), the 0 eigenstate
of H (s∗) is simply

|vn(s∗)〉 = |U 〉 + |M〉√
2

, (70)

where |U 〉 and |M〉 are as defined in Proposition 3. Also, the
initial state in the first register is

|vn(0)〉 =
√

1 − pM |U 〉 + √
pM |M〉. (71)

Let αn be the overlap of |vn(s∗)〉 with |vn(0)〉. Then,

|αn|2 = 1
2 +

√
pM (1 − pM ). (72)

Clearly |αn|2 � 1/2. Also note that |〈vn(s∗)〉M|2 = 1/2. Con-
sider the measurement operator

M = �X ⊗ |0〉〈0| ⊗ |0〉〈0|, (73)

where �X is a projection on the states of the Markov chain.
Thus, from Lemma 4 and Corollary 5, we have that after
executing steps 2 and 3, conditioned on having |0〉⊗n in the
second register and |0〉⊗m in the pointer register, we end up in
a state such that, when measured using the operator M, we
obtain a marked element with probability at least 1/4 − ε.

The total time required to execute steps 2 and 3 is

T = �

(
1√

�(s∗)
log(1/ε)

)
.

Now we use the relationship between �(s∗) and HT +(P, M )
defined in Eq. (21) for s = s∗.

Observe that, for any 1 � k � n − 1, |〈v j (s∗)|vn(s∗)〉| = 0.
Using this and the expression for |vn(s∗)〉 in Eq. (65) we have
that 〈vk (s∗)|U 〉 = −〈vk (s∗)|M〉. Substituting this for s = s∗,
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we can conclude that

HT +(P, M ) � 4

�(s∗)

n−1∑
k=1

|〈vk (s∗)|M〉|2 (74)

� 4

�(s∗)
(1 − |〈vn(s∗)|M〉|2) (75)

� 2

�(s∗)
(76)

⇒ 1

�(s∗)
� HT +(P, M )

2
. (77)

Thus we obtain that

T = �(
√

HT +(P, M ) log(1/ε)).

�
Algorithm 2 can be thought of as an analog version of

the quantum spatial search algorithm by Krovi et al. [18].
Although this algorithm requires m(s∗) additional ancillary
qubits unlike the algorithm of Ref. [23], it will help create an
intuitive understanding of our algorithm for solving QSSamp,
discussed in Sec. VI. In fact, the cost of preparing the ini-
tial state of the spatial search algorithm corresponds to the
QSSamp problem.

In Ref. [23], it was shown that H (s) can be simulated
by using only query access to the discrete-time quantum
walk unitary W (s) introduced in Ref. [18]. This connection
would allow us to quantify the running time of our quantum
algorithm in terms of basic Markov chain operations.

To that end, given a Markov chain P, let us define the
following oracular operations.

(i) Check (M): cost of checking whether a given node is
marked. We denote this by C.

(ii) Update (P): cost of applying one step of the walk P,
which we denote by U .

(iii) Setup (P): the cost of preparing the initial state |vn(0)〉,
denoted by S .

As from Refs. [18,19], the cost of implementing W (s), and,
consequently, the cost of evolving H (s) for constant time, is
in O(C + U ); the running time of Algorithm 2 is

T = O(S +
√

HT +(P, M )(U + C)). (78)

The QSSamp problem helps quantify the cost S and, intu-
itively, a quantum algorithm for this problem can be obtained
by running the spatial search algorithm in reverse.

VI. ANALOG QUANTUM ALGORITHM TO PREPARE
COHERENT ENCODING OF THE STATIONARY

STATE OF A MARKOV CHAIN

In this section we describe our algorithm which, given
a reversible Markov chain P with stationary state π =
(π1, . . . , πn), prepares a state that is ε close to the state

|π〉 =
∑
x∈X

√
πx|x〉. (79)

A measurement in the basis spanned by the states of the
Markov chain will allow us to sample from π , thereby solving
the QSSamp problem. From Fact 2 and Proposition 3, we have

that

|π〉 = |vn(0)〉. (80)

Thus this is simply the highest eigenstate of the discriminant
matrix D(P) or, equivalently, the 0 eigenstate of H (0). There-
fore, given P, the problem of preparing |π〉 boils down to the
state-generation problem just as in the case of spatial search.

Following Lemma 4 and Corollary 5, one can think of an
algorithm to prepare |vn(0)〉 as follows.

Starting from some initial localized state | j, 0〉 where
( j ∈ X ), one can evolve according to the Hamiltonian H (0) ⊗
p̂ for a time that scales as Õ(1/

√
�) to prepare |vn(0)〉 with

probability |〈vn(0)| j〉|2 � η. Then by using �(1/
√

η) rounds
of (fixed-point) amplitude amplification [49], one can prepare
|vn(0)〉.

However, amplitude amplification is a discrete quantum
algorithm and to the best of our knowledge it has no analog
counterpart. As such, while constructing an analog quantum
algorithm for this problem we cannot make use of amplitude
amplification. We shall switch the value of s to get around the
need for amplitude amplification.

Consider the scenario where, given P, one marks a single
state j, i.e., all the outgoing edges from j are replaced with
self-loops. We denote the absorbing Markov chain corre-
sponding to this P′

j . Then the resulting interpolated Markov
chain is

P(s) = (1 − s)P + sP′
j . (81)

If the entry of the stationary state of P corresponding to the
marked element is π j , then we find that pM = π j and so for

s = s∗ = 1 − π j/(1 − π j ), (82)

and from Eq. (13) we have that

|vn(s∗)〉 = 1√
2

⎛⎝ 1√
1 − π j

∑
x �= j

√
πx|x〉 + | j〉

⎞⎠. (83)

Thus the state | j〉 has a constant overlap with |vn(s∗)〉. Also
observe that the initial state of Algorithm 2 contained |vn(0)〉
in the first register and our state-generation scheme resulted
in the preparation of a state that has a constant overlap of
|〈vn(s∗)|vn(0)〉| = �(1) with |vn(s∗)〉.

For our algorithm, we assume that. for any j ∈ X , the
state | j, 0〉 is easy to prepare. The idea of the algorithm (see
Algorithm 3) is to invoke Lemma 4 and Corollary 5 twice.
At the first stage, we set s = s∗ = 1 − π j/(1 − π j ) and then,
starting from the state | j, 0〉, we prepare a state that is close to
|vn(s∗)〉. At the second stage, we set s = 0 and, starting from
the state obtained in stage 1, we prepare the state |vn(0)〉 =
|π〉. By this two stage procedure, we can avoid the need to
use amplitude amplification. We formally state the algorithm
in Algorithm 3 and prove its correctness in Lemma 7.

Lemma 7. Algorithm 3 outputs a quantum state |φ f 〉 such
that

‖|φ f 〉 − |π〉‖ � O(ε),

in time

T = �

(
1√

�(s∗)
+ 1√

�

)
.
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Algorithm 3. Quantum algorithm to the prepare stationary state
of any reversible Markov chain.

Let ε ∈ (0, 1) and τ (s) = 2π/�(s).
1. Set s = s∗ = 1 − π j/(1 − π j ):

(a) Evolve according to H (s∗) ⊗ p̂ for time τ (s∗)
starting from the state | j, 0〉 |x = 0〉⊗�log2(4/ε)�.

(b) Repeat the Hamiltonian evolution in step (a) �log2(4/ε)�
times, using a fresh block of l (s∗)-qubits in the
pointer register each time.

(c) Post-select on obtaining |0〉m(s∗ ) in the pointer register
Let the state obtained after step 1 be |ψ (1)

f 〉.
2. Reinitialize the pointer register.
3. Set s = 0:

(a) Repeat steps 1(a)-1(c), starting from the state
|ψ (1)

f 〉 |x = 0〉�log2(4/ε)�

4. Output the state of the first register.

Proof. First note that the 0 eigenstate of H (s) is given by
Eq. (13) and so, for s∗ = 1 − π j/(1 − π j ), we have that

|vn(s∗)〉 = 1√
2

⎛⎝ 1√
1 − π j

∑
x �= j

√
πx|x〉 + | j〉

⎞⎠. (84)

Thus, on starting from the state | j, 0〉, we have that αn =
1/

√
2. Following Lemma 4 and Corollary 5, this implies that,

at the end of step 1, we will prepare a state |ψ (1)
f 〉 that is ε/2

close to |vn(s∗)〉 in a time τ (s∗)�log2(4/ε)�.
Note that 〈vn(s∗)|vn(0)〉 � 1/

√
2. So for this second stage,

s = 0 and αn � 1/
√

2. The total time taken in the second stage
is τ (0)�log2(4/ε)� and we output a state that is ε close to
|vn(0)〉 = |π〉.

Clearly, the total time taken is

T = �{(τ (s∗) + τ (0)) log(1/ε)} (85)

= �

((
1√

�(s∗)
+ 1√

�

)
log(1/ε)

)
. (86)

For a single marked node, HT +(P, M ) is the same as the
average hitting time HT (P, { j}). So from Eq. (77), we have
that 1/�(s∗) = �[HT (P, { j})]. From Eq. (22), we have that
the classical mixing time is in �(1/

√
�). These two facts

imply that the running time of our algorithm is actually the
sum of the square root of the classical hitting time and the
square root of the classical mixing time, i.e.,

T = �̃(
√

HT (P, { j}) + √
Tmix).

�
Note that, in general, the hitting time is at least as large as

the mixing time of an ergodic, reversible Markov chain. Thus
the running time is in fact

T = �(
√

HT (P, { j}) log(1/ε)). (87)

Furthermore, as mentioned in the previous section, the
QSSamp problem helps quantify the setup cost S of the spatial
search problem [see Eq. (78)]. As such, Algorithm 3 implies
that the setup cost of Algorithm 2 is given by Eq. (87).

VII. TIME-AVERAGED QUANTUM MIXING: LIMITING
DISTRIBUTION AND MIXING TIME

Now we shall deal with the QLSamp problem and the
notion of mixing time that arises from this problem. For
any ergodic, reversible Markov chain P, we have seen from
Sec. II B that it is possible to sample from its distribution at
T → ∞ (limiting distribution) after a time Tmix = Õ(1/�),
known as the mixing time of P, where � is the spectral
gap of P. In fact, any initial distribution converges to the
stationary distribution π after Tmix applications of P. In a strict
sense, such a limiting distribution is absent for quantum walks
as the underlying dynamics is unitary and, hence, distance
preserving.

However, one can define the mixing of quantum walks on a
graph in a time-averaged sense: the probability that the walker
is at some node f after some time t , picked uniformly at
random in the interval [0, T ] [27]. This gives a time-averaged
probability distribution at any time t and also a limiting
probability distribution as T → ∞. The mixing time of a
quantum walk on any ergodic, reversible Markov chain P is
the time after which the time-averaged probability distribution
is ε close to the limiting probability distribution.

Consider any ergodic, reversible Markov chain P with
|X | = n. Given P, suppose HP denotes the underlying Hamil-
tonian corresponding to a quantum walk on P. We require that
the eigenvalues of HP lie between −1 and 1, i.e., ‖HP‖ = 1.
Let the spectral decomposition of HP = ∑

i λi|vi〉〈vi|, where
|vi〉 is the eigenstate corresponding to the eigenvalue λi, i ∈
{1, 2, . . . , n}. Furthermore, suppose that the initial state of the
walker is |ψ0〉.

Consequently, the state of the walker after a time t is
governed by the Schrödinger equation, i.e.,

|ψ (t )〉 = e−iHPt |ψ0〉. (88)

In order to define a limiting distribution for quantum walks,
one obtains a Césaro average of the probability distribution,
i.e., one evolves for a time t chosen uniformly at random
between 0 and T followed by a measurement. The average
probability that the state of the walker is some localized node
| f 〉 is given by

Pf (T ) = 1

T

∫ T

0
dt |〈 f |e−iHPt |ψ0〉|2. (89)

Thus, as T → ∞, this leads to a limiting probability distribu-
tion, i.e.,

Pf (T → ∞) = lim
T →∞

Pf (T ) =
∑
λi=λl

〈vl | f 〉〈 f |vi〉〈vi|ψ0〉〈ψ0|vl〉,

(90)

where the sum is over all pairs of degenerate eigenvalues.
So, if HP has a simple spectrum, i.e., all its eigenvalues are
distinct, then the sum is over all its eigenvalues.

In order to calculate how fast the instantaneous time-
averaged distribution of the quantum walk converges to
this limiting distribution, we need to bound the quantity
‖Pf (T → ∞) − Pf (T )‖1.

In fact, it is easy to verify that they are ε close, i.e.,

‖Pf (T → ∞) − Pf (T )‖1 � ε,
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as long as

T = �

⎛⎝1

ε

∑
λi �=λl

|〈vi|ψ0〉| · |〈ψ0|vl〉|
|λl − λi|

⎞⎠. (91)

This naturally leads to the following upper bound on the
quantum mixing time:

Tmix = O

⎛⎝1

ε

∑
λi �=λl

|〈vi|ψ0〉| · |〈ψ0|vl〉|
|λl − λi|

⎞⎠. (92)

There do exist differences between the quantum and clas-
sical limiting distributions. For example, in the quantum case,
the limiting distribution is dependent on the initial state of
the quantum walk. Also, unlike classical random walks, the
quantum mixing time depends on all the eigenvalue gaps of
HP as opposed to only the spectral gap.

Ignoring the numerator in the right-hand side of Eq. (92),
we need to evaluate the following quantity in order to upper
bound Tmix:

� =
∑
λi �=λl

1

|λl − λi| . (93)

As such we intend to obtain the best possible bounds for
this quantity. To this end, let us define �min as the minimum
eigenvalue gap of HP, over all pairs of distinct eigenvalues,
i.e.,

�min = min
i, j,λi �=λ j

{|λi − λ j |, such that i �= j}. (94)

Note that this is different from the spectral gap �, which is
the difference between the two highest eigenvalues of HP. We
prove the following.

Lemma 8. If � and �min are defined as in Eqs. (93) and
(94), then

1

�min
� � � Õ

(
n

�min

)
. (95)

Proof. The lower bound is straightforward by noting that
∃i, l such that |λl − λi| = �min.

For the upper bound, we have that

� � 1

�min

∑
l �=i

1

|λl − λi| , (96)

where we have used the fact that, for any λi �= λl , |λl − λi| �
|l − i|�min. This implies that if |l − i| = r, we obtain

� � 1

�min

n−1∑
r=1

∑
l,i:|l−i|=r

1

r
(97)

� 1

�min
(n − 1)

(
1 + 1

2
+ · · · + 1

n − 1

)
(98)

� n log n

�min
= Õ

(
n

�min

)
. (99)

�
The upper bound on � obtained in Lemma 8 leads directly

to an upper bound on the quantum mixing time Tmix. This can

FIG. 1. Erdős-Rényi random graph G(50, 0.2).

be seen from the fact that the numerator in Eq. (92) is less than
one and so

Tmix = Õ(n/�min), (100)

for any HP.
All prior works hitherto have analyzed the QLSamp prob-

lem for simple, unweighted graphs. Given a graph G(V, E ) of
|V | = n nodes and |E | edges, the underlying quantum walk
is defined on the nodes of the graph with the corresponding
Hamiltonian being the (normalized) adjacency of the graph.
That is, HP = AG/‖AG‖, where AG is an n × n matrix such
that each entry

ai j =
{

1, (i, j) ∈ E ,

0, otherwise,
(101)

and ‖AG‖ is the spectral norm of AG.
In this section, we elaborate on the results of Ref. [6] and

provide numerical evidence to back up our analytical bounds.
In particular, we focus on the random matrix theory aspects
of our proof, elaborating on the underlying concepts. Finally,
by defining a quantum walk on the edges as in Sec. IV A,
we extend the notion of QLSamp to any ergodic, reversible
Markov chain.

A. Erdös-Renyi random graphs

Let us consider a graph G with a set of vertices V =
{1, . . . , n}. We restrict ourselves to simple graphs, i.e., un-
weighted graphs which do not contain self-loops or multiple
edges connecting the same pair of vertices. The maximum
number of edges that a simple graph G can have is N = (n

2

)
.

Thus there are
(N

M

)
graphs of M edges and the total number

of (labeled) graphs is
∑N

M=0

(N
M

) = 2N [50]. We consider the
random graph model G(n, p), a graph with n vertices where
we have an edge between any two vertices with probability
p, independent of all the other edges [51–53] (see Fig. 1).
In this model, a graph G0 with M edges appears with proba-
bility P{G(n, p) = G0} = pM (1 − p)N−M . In particular, if we
consider the case p = 1/2, each of the 2N graphs appears
with equal probability P = 2−N . We shall refer to random
graphs having a constant p as a dense random graph. On the
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other hand, random graphs for which p = o(1), i.e., when
p decreases with n, shall be referred to as sparse random
graphs.

In their seminal papers, Erdős and Rényi introduced this
model of random graphs and studied the probability of a
random graph to possess a certain property Q [51,52]. For ex-
ample, they investigated properties such as the connectedness
of the graph, the probability that a certain subgraph is present,
etc. They stated that almost all graphs have a property Q if
the probability that a random graph G(n, p) has Q goes to 1
as n → ∞. Equivalently, it can be stated that G(n, p) almost
surely has property Q, i.e., property Q holds with probability
1 − o(1).

Interestingly, certain properties of random graphs arise
suddenly for a certain critical probability p = pc, where this
probability depends typically on n. More precisely, if p(n)
grows faster than pc(n), the probability that the random graph
has property Q goes to 1 in the asymptotic limit, whereas if
it grows slower than pc(n) it goes to 0. For example, when
p > log(n)/n the graph is almost surely connected, whereas
if p < log(n)/n the graph has almost surely isolated nodes.

Here we shall concern ourselves with random graphs above
the percolation threshold and calculate an upper bound on
the quantum mixing time for quantum walks on such graphs.
Observe that for a random graph, G(n, p), its adjacency ma-
trix, which we denote as AG(n,p), is an n×n symmetric matrix
with each nondiagonal entry being 1 with probability p and
0 with probability 1 − p. All diagonal entries of AG(n,p) are
0. Thus AG(n,p) is a discrete random matrix and knowledge
of its eigenvalues and eigenvectors is crucial to obtaining the
quantum mixing time.

Finally, from the aforementioned discussion, obtaining the
quantum mixing time for G(n, p) can be interpreted as holding
for almost all graphs.

B. Random matrices: Spectral properties of AG(n,p)

Here we look at the eigenvalues and eigenvectors of the
random matrix AG(n,p).

As mentioned earlier, the Hamiltonian corresponding to the
quantum walk on G(n, p) is simply the normalized adjacency
matrix of G(n, p). The highest eigenvalue of AG(n,p) converges
to a Gaussian distribution with mean np and standard devi-
ation

√
p(1 − p), as n → ∞. This fact was first shown in

Ref. [54] for constant p and was later improved for sparse
random graphs [p = o(1)] in Ref. [55]. In fact, as we shall
show shortly it suffices to consider the matrix

ĀG(n,p) = AG(n,p)

np
(102)

as the quantum walk Hamiltonian.
Let the eigenvalues of ĀG(n,p) be λn > λn−1 � · · · λ1, such

that |vi〉 is the eigenvector corresponding to the eigenvalue λi,
i ∈ {1, 2, . . . , n}, i.e., ĀG(n,p)|vi〉 = λi|vi〉. Then we have that
for p � log8(n)/n,

λn = 1 +
√

1 − p

np
o(1) + o

(
1

n
√

p

)
, (103)

with probability 1 − o(1), which implies that ‖ĀG(n,p)‖ ≈ 1
[6,55].

It can also be shown that, for the same range of p, the
second highest eigenvalue λn−1 can be upper bounded as

λn−1 � 6√
np

+ O

(
log(n)

(np)3/4

)
, (104)

with probability 1 − o(1) [6,54,56]. This immediately implies
that the spectral gap of ĀG(n,p), � = Õ(1). Consequently, a
classical random walk on G(n, p) mixes quite fast—in Õ(1)
time.

However, it is clear from the expression for T G(n,p)
mix in

Eq. (92) that the knowledge of all eigenvalue gaps are crucial
in obtaining the quantum mixing time. As such we require the
knowledge of the spacings between all the eigenvalues of the
random matrix ĀG(n,p).

Semicircle law. It is well known that, as np → ∞, the spec-
tral density of the bulk of the spectrum of AG(n,p) converges to
the well-known semicircle distribution given by

ρsc(λ) =
{√

4np(1−p)−λ2

2πnp(1−p) if |λ| < 2
√

np(1 − p),

0 otherwise.
(105)

This implies that �(n) eigenvalues of AG(n,p) lie within
[−R, R], where

R = 2
√

np(1 − p) (106)

is the radius of the semicircle. On applying the appropriate
normalization, we find that the spectral density of ĀG(n,p)

converges to a semicircle of radius

R̄ = 2

√
1 − p

np
.

The fraction of eigenvalues of ĀG(n,p) lying in some spectral
window I ∈ [−R, R] converges to the area of the semicircle
within I as np → ∞. However, the semicircle law provides
only a macroscopic description of the eigenvalues of ĀG(n,p),
i.e., the aforementioned result holds only when |I| � 1.
However, in order to obtain the quantum mixing time, we
need information about all eigenvalue gaps including con-
secutive gaps where |I| ∼ 1/n, which renders the semicircle
law useless. As a result, for our purposes we need to look
at mesoscopic and microscopic statistics of eigenvalues of
ĀG(n,p).

However, for subsequent analysis, we shall require two
results that can be obtained from the semicircle law itself
which we state now. Note that there are �(n) eigenvalues
with a radius of R̄. This directly gives information about the
average eigenvalue gap of ĀG(n,p) given by

�̄ = �

(
1

n3/2√p

)
. (107)

Also, from the semicircle law itself, one can define the
so-called classical eigenvalue locations of ĀG(n,p). For each
1 � i � n − 1, we can define the classical location γi as the
solution to the following equation:∫ γi

−∞
ρsc(x) dx = i

n
. (108)
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Thus the position of the ith classical location is obtained
by filling up i/n area of the semicircle. From this condition
one obtains that for i � n/2, r � n − 2i, and some universal
constant c > 0

γi+r − γi � c
r

n7/6i1/3√p
. (109)

An identical estimate holds for the other half of the spectrum
by symmetry.

Eigenvalue rigidity criterion. The semicircle law was
shown to hold for smaller spectral windows in Refs. [55,57].
An immediate consequence of this fact is that the every
eigenvalue (with the exception of λn) of ĀG(n,p) is located close
to their classical eigenvalue positions. Formally, they showed
that for n−1/3 � p � 1 − n−1/3 and any ε � 0 the eigenvalues
of barAG(n,p) satisfy

|λi − γi| �
nε
(
n−2/3α

−1/3
i + n−1−φ

)
(pn)1/2

(110)

with probability 1 − o(1), where

φ := log p

log n
, αi := max{i, n − i}.

Eigenvalue rigidity does reveal information about eigenvalue
gaps of ĀG(n,p). Note that for any r � 1 one obtains

λi+r − λr = (λi+r − γi+r ) + (γr − λr ) + (γi+r − γr ). (111)

As a result, whenever |γi+r − γr | scales larger than
|λi+r − γi+r | + |λr − γr |, eigenvalue rigidity kicks in and an
accurate estimate of λi+r − λi is given by the difference
between their classical eigenvalue locations, γi+r − γi. That
is, there exists some r = r�(i), such that for all r � r�(i),

λi+r − λr ≈ (γi+r − γr ).

From Eq. (109) and Eq. (110), we obtain that

r�(i) = nε max
{
1, n2/3α

1/3
i n−1−φ

}
� nε−log p/ log n. (112)

As such we cannot exploit eigenvalue rigidity to estimate
gaps of the form |λl − λi| as long as |l − i| � r�(i). Thus
eigenvalue rigidity does not provide information about the
smallest eigenvalue gaps (for a pictorial representation of this
fact, see Fig. 2) and reveals eigenvalue statistics of ĀG(n,p) at
a mesoscopic scale. Thus in order to obtain information about
consecutive eigenvalue gaps of ĀG(n,p), we shall need to go to
a microscopic scale.

Microscopic eigenvalue statistics of ĀG(n,p). At the mi-
croscopic scale, results are notoriously difficult to obtain.
Tao and Vu [58] showed that ĀG(n,p) has a simple spectrum
for dense graphs, resolving a long-standing conjecture due
to Babai [59]. Recently, this was resolved also for sparse
graphs [60]. We state their results formally.

Fact 9. There exists a constant C > 0 such that for
C log6(n)

n � p � 1 − C log6(n)
n , ĀG(n,p) has a simple spectrum

with probability 1 − o(1).
The fact that every eigenvalue gap is nonzero implies that

the expression for ĀG(n,p), the double sum � in Eq. (93), can

FIG. 2. Pictorial representation of eigenvalue rigidity: the actual
eigenvalue locations of adjacency matrices of Erdős-Rényi random
graphs, λi (denoted by solid strokes) are close to their classical
eigenvalue positions, γi (denoted by dashed strokes), as predicted
by the semicircle law. Although eigenvalue rigidity provides infor-
mation about eigenvalue value gaps that are far away, it does not
provide any information about the smallest eigenvalue gaps (such
as consecutive eigenvalue gaps). As a result the eigenvalue rigidity
criterion provides information about eigenvalues at a mesoscopic
scale and information about the smallest gaps are obtained from
eigenvalue statistics at a microscopic scale.

now be rewritten as

� =
n−1∑
i=1

1

|λi+1 − λi|︸ ︷︷ ︸
�1

+
n−2∑
i=1

1

|λi+2 − λi|︸ ︷︷ ︸
�2

+ · · · (113)

=
n−1∑
r=1

�r =
n−1∑
r=1

n−r∑
i=1

1

|λi+r − λi| , (114)

while the limiting probability distribution is

Pf (T → ∞) = lim
T →∞

Pf (T ) =
n∑

i=1

|〈 f |vi〉〈vi|ψ0〉|2. (115)

Furthermore, Nguyen, Tao, and Vu [61] proved that all the
eigenvalue gaps of ĀG(n,p) for dense random graphs are not
only nonzero, but also separated. This was improved for the
case of sparse random graphs by Lopatto and Luh [62]. In
fact they asked the following question: how likely is it for any
eigenvalue gap δi = λi+1 − λi to be less than some δ times the
average gap �̄? They proved that there exists a constant C > 0
such that for n−1/3 � p � 1 − n−1/3

sup
1�i�n−1

P

(
δi �

δ

n3/2√p

)
� Cδ log n, (116)

for all δ � n−C .
Applying a union bound to this gives a lower bound on

the minimum eigenvalue gap �min [defined in Eq. (94)] for
ĀG(n,p). We prove that here.

Lemma 10. Lower bound on �min: for p � n−1/3,

�min � 1

n5/2+o(1)√p
, (117)

with probability 1 − o(1).
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Proof. Let Ai be the event that δi � δ
n3/2√p . Then, using the

union bound and Eq. (116), we obtain

P

(⋃
i

Ai

)
�

∑
i

P (Ai ) � C n δ log n. (118)

This implies that the probability that at least one of the gaps
is less than δ

n3/2√p is upper bounded by the right-hand side of
Eq. (118). By choosing

δ = 1

n1+o(1)
,

we have that

P

(⋃
i

Ai

)
� o(1), (119)

i.e., with probability 1 − o(1), no δi is less than 1
n5/2+o(1)√p . This

in turn implies that

�min � 1

n5/2+o(1)√p
, (120)

with probability 1 − o(1). �
We are now equipped with the random matrix theory

results and, in the next subsection, we derive a tight upper
bound on the double sum �, defined in Eq. (114).

C. Upper bound on �

As mentioned previously, in order to obtain the quantum
mixing time, we first obtain bounds for the double sum �.
Recall that we can obtain lower and upper bounds for � as

1

�min
� � � Õ

(
n

�min

)
.

In this subsection, our goal is to obtain an upper bound for �

that is as close as possible to its lower bound. To that end, our
strategy would be to make use of the results on the eigenvalue
statistics of ĀG(n,p) at macroscopic, mesoscopic, and micro-
scopic levels. In particular, in order to evaluate λi+r − λi, for
r < r�(i), we shall make use of the tail bounds on consecutive
eigenvalue gaps in Eq. (116). On the other hand, for r > r�(i),
the eigenvalue rigidity criterion [see Eq. (110)] kicks in and
we can replace λi+r − λi with γi+r − γi.

Upper bound on �1. We first obtain an upper bound on the
sum of the inverse of consecutive eigenvalue gaps, i.e.,

�1 =
n∑

i=1

1

λi+1 − λi
. (121)

In the Supplemental Material of Ref. [6], we have explicitly
derived an upper bound for �. We restate the result here.

Lemma 11 (Upper bound on �1 [6]).

�1 =
n−1∑
i=1

1

λi+1 − λi
� n5/2+o(1)√p, (122)

with probability 1 − o(1).
The key idea is that we count the number of consecutive

eigenvalue gaps (δi) lying within an interval of 1/ log n times
the average gap and find that a high fraction of the δi’s lie

within this window around the average gap. For a detailed
derivation, we refer the readers to Ref. [6].

Now we can derive an upper bound on � by combining
mesoscopic and microscopic eigenvalue statistics of ĀG(n,p) at
different scales of r. In particular, we use the upper bound on
�1 along with the eigenvalue rigidity condition. We state the
upper bound on � that we obtained in Ref. [6].

Lemma 12 (Upper bound on � [6]). For p � n−1/3, the
eigenvalues of ĀG(n,p) satisfy

� =
n−1∑
i=1

n−i∑
r=1

1

|λi+r − λi| � n5/2− log p
log n +o(1)√p, (123)

with probability 1 − o(1).
We provide an intuition of the proof techniques and we

refer the reader to the Supplemental Material of Ref. [6] for
details. We first split � into two different parts:

� =
r�(i)∑
r=1

�r +
n−1∑

r=r�(i)+1

�r . (124)

For the first sum in the right-hand side of Eq. (124), we are
dealing with small eigenvalue gaps and hence we make use
of the microscopic eigenvalue statistics, namely the upper
bound on �1, i.e., we replace this sum with with the upper
bound r�(i).�1. On the other hand, for the second double sum,
eigenvalue rigidity provides kicks in and the gaps between
the classical eigenvalue locations (γi+r − γi ) and is a better
estimate of λi+r − λi than the tail bounds. In fact, an upper
bound is obtained by replacing each eigenvalue gap λi+r − λi

with the lower bound from Eq. (109).
Observe that, for dense random graphs, the upper bound on

� is quite close to its lower bound of 1/�min. Having obtained
this bound, we shall now upper bound the quantum mixing
time for G(n, p).

D. Mixing of continuous-time quantum walks on G(n, p)

Here, we shall obtain the (i) limiting distribution of the
quantum walk and the time after which the quantum walk
converges (in a time-averaged sense) to this distribution—the
quantum mixing time.

In order to obtain both these results, we make use of
the fact that all the eigenvectors of ĀG(n,p) are completely
delocalized. In fact, it was conjectured in Ref. [63] that, for
dense random graphs, the eigenstates of ĀG(n,p) are completely
delocalized. This implies that, when any of its eigenvectors
|vi〉 are expressed in the basis of the nodes of the underlying
graph, the absolute value of each entry is at most n−1/2 (up to
logarithmic factors). Erdős et al. [55] answered this optimally
even for sparse p and the results therein were subsequently
extended for any p above the percolation threshold recently by
He et al. [64]. This implies that, as long as p � ω(log(n)/n),
for all j ∈ {1, . . . , n}

‖|v j〉‖∞ � n−1/2+o(1), (125)

with probability 1 − o( 1
n ).

To the expression for the limiting probability distribution
in Eq. (90), we substitute the delocalization of eigenvectors
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from Eq. (125) to obtain

Pf (T → ∞) =
n∑

i=1

|〈 f |vi〉〈vi|ψ0〉|2 (126)

� Õ(1/n)
n∑

i=1

|〈vi|ψ0〉|2 (127)

� Õ(1/n), (128)

independent of |ψ0〉, i.e., the limiting distribution converges
to a (nearly) uniform distribution.

Observe that the upper bound on � already provides an
upper bound on the quantum mixing time. However, we can
improve the bound further if we assume that the quantum walk
commences from an easy to prepare initial state. By this we
mean that the initial state |ψ0〉 is a superposition over at most
a polylog(n) number of nodes. In fact, generally it is assumed
that the initial state is localized at some node of the underlying
graph, i.e., |ψ0〉 = |l〉, which is standard.

If the quantum walk commences from an easy to prepare
state,

|ψ0〉 =
q∑

k=1

ck|k〉,

where q is in O(polylog(n)), we can use Eq. (125) to obtain

T G(n,p)
mix = O

(
1

ε

n−1∑
i=1

n−i∑
r=1

|〈vi|ψ0〉| · |〈ψ0|vi+r〉|
|λi+r − λi|

)
(129)

= O

(
1

n1−o(1)ε

n−1∑
i=1

n−i∑
r=1

∑q
l=1 |cl |

∑q
m=1 |c∗

m|
|λi+r − λi|

)
(130)

= Õ
(

1

ε

�

n

)
= Õ

(
1

ε
n3/2− log p

log n +o(1)√p

)
, (131)

with probability 1 − o(1).
Thus for n−1/3 � p � 1 − n−1/3

T G(n,p)
mix = Õ(n3/2−log p/ log n√p/ε), (132)

for p � n−1/3.
Observe that for dense Erdős-Rényi random graphs,

T G(n,p) = Õ
(

n3/2

ε

)
. (133)

Also, as p decreases the upper bound on the mixing time
increases. Unfortunately, for sparser random graphs, i.e., for
p = logD(n)/n, such that D > 8, we cannot make use of
eigenvalue rigidity. However, simply using Lemma 11 along
with the observation that

n−r−1∑
i=1

1

|λi+r − λi| �
n−1∑
i=1

1

|λi+1 − λi| ,

for 2 � r � n − 1, gives us a weaker upper bound for the
quantum mixing time in such regimes of sparsity. We obtain
that

T G(n,p)
mix = O

(
n5/2+o(1)√p

ε

)
. (134)

FIG. 3. Limiting probability distribution is close to the uniform
distribution for a quantum walk on G(n, p). The figure shows that
the instantaneous time-averaged probability distribution (thick blue
line) for a quantum walk on G(50, 0.5) remains close to the uniform
distribution (horizontal dashed black) after a long enough time.

In fact, the breakdown of rigidity estimates in [55] is not an
artifact of the proof. For extremely sparse graphs, the optimal
rigidity estimates that hold in dense graphs are known to break
down [65].

Note that there exist weaker forms of rigidity of sparse
graphs when p � n−1/3, which may lead to modest improve-
ments of the exponent of n in the mixing time. However, we
have not expended too much effort optimizing the exponent as
we are fundamentally limited by the smallest gap, �min [see
lower bound of Eq. (120)] for which the bounds in [62] are
still quite far from the conjectured behavior. Obtaining the
conjectured smallest gap behavior appears to be a difficult
problem in random matrix theory.

Finally, we numerically verify the analytical results ob-
tained. Figure 3 shows that, for G(50, 0.5), the instantaneous
time-averaged probability distribution [Pf (t )] converges to a
distribution that is close to the uniform distribution (hori-
zontal dashed black line), while in Fig. 4 we plot DP(t ) =
‖Pf (t ) − Pf (t → ∞)‖1 with time and the inset plot depicts
the exponent for the quantum mixing time [DP(t ) � ε] for
random graphs of various sizes and p = 0.5. The numerical
results conform with the analytically obtained upper bound
for the quantum mixing time in Eq. (133).

E. Mixing time for continuous-time quantum walks
on any ergodic, reversible Markov chain

Our results thus far have provided an upper bound on
the quantum mixing time for almost all simple unweighted
graphs. Now we address the quantum mixing time for any
ergodic, reversible Markov chain P. Any symmetric matrix
that captures the local connectivity of P can be used as a
Hamiltonian for performing a CTQW on P. As P need not
be symmetric in general, one cannot consider a quantum walk
on P directly. Given any such Markov chain P, one can define
the Hamiltonian H = i[V †SV,�0] as stated in Sec. IV (for
s = 0). In this section we consider the limiting distribution of
a continuous-time quantum walk under H , on the edges of P.
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FIG. 4. Time for the instantaneous time-averaged probability
distribution at any time t , denoted by Pf (t ) to be ε close to
the limiting probability distribution, Pf (t → ∞), for Erdős-Rényi
random graphs G(n, p). The y axis denotes the distance between
these two distributions (as measured in one norm), i.e., DP(t ) =
‖Pf (t ) − Pf (t → ∞)‖1, while the x axis denotes time. We plot DP(t )
for random graphs of 40 nodes (dotted green), 60 nodes (dot-dashed
blue), 80 nodes (solid red), and 100 nodes (dashed pink), with
p = 0.5. The dotted horizontal line (dashed black) corresponds to
ε = 0.1, which helps indicate the time after which DP(t ) � ε for
the aforementioned instances. The inset plot shows the exponent c,
where nc corresponds to the minimum time after which DP(t ) � 0.1
(quantum mixing time) for G(10, 0.5), G(20, 0.5), . . . , G(100, 0.5).
The quantum mixing time is thus upper bounded by n3/2, which
matches with our analytical predictions.

Here, we shall explore whether any generic speedup is ob-
tained for the QLSamp problem. Note that the time evolution
of some initial state |ψ (0), 0〉, under the action of H , is given
by

|ψ (t )〉 = 〈vn|ψ0〉|vn, 0〉 +
n−1∑

j=1,σ=±
e−itEσ

j
〈v j |ψ0〉√

2

∣∣�σ
j

〉
.

(135)

The limiting probability distribution (note that now we are
projecting on obtaining |0〉 in the second register) is given by

Pf (T ) = 1

T

∫ T

0
dt |〈 f , 0|e−iHt |ψ0, 0〉|2.

This implies

Pf (T → ∞) = 1

2

∑
λi=λl

〈vl | f 〉〈 f |vi〉〈vi|ψ0〉〈ψ0|vl〉. (136)

Also, the upper bound on the quantum mixing time is given
by

T P
mix = O

⎛⎝1

ε

∑
i �=l

|〈Ei|ψ0〉| · |〈ψ0|El〉|
|Ei − El |

⎞⎠, (137)

where recall from Eq. (61) in Sec. IV B that Ej =
√

1 − λ2
j .

Now the generic upper bound on the quantum mixing time
T P

mix is upper bounded by the double sum � and as such

T P
mix � � =

∑
i �=l

1

|Ei − El | � Õ
(

n

�̃min

)
, (138)

where �̃min is the minimum eigenvalue gap of the Hamilto-
nian H . We now need bound �̃min in terms of the minimum
eigenvalue gap of P, �min. To that end we have the following
lemma.

Lemma 13. Suppose P is an ergodic, reversible Markov
chain with eigenvalues λn = 1 > λn−1 � · · · λ1 � 0. Suppose
� is the spectral gap of P and the minimum of all gaps
between distinct eigenvalues of P is �min. Then the minimum
eigenvalue gap of the Hamiltonian H = i[V †SV,�0]. �̃min is
bounded as

�(λ2�min) � �̃min � �

(
�min√

�

)
.

Proof. We know that for H , in the relevant subspace, each
eigenvalue of P, λ j , maps to ±

√
1 − λ2

j . Thus if δ j = |λ j+1 −
λ j |, then we have

δ̃ j = ∣∣√1 − λ2
j+1 −

√
1 − λ2

j

∣∣ (139)

= ∣∣√1 − λ2
j+1 −

√
1 − (λ j+1 − δ j )2

∣∣ (140)

=
√

1 − λ2
j+1

∣∣∣∣∣∣1 −
√√√√1 + 2δ jλ j+1

1 − λ2
j+1

− δ2
j

1 − λ2
j+1

∣∣∣∣∣∣. (141)

We are concerned with the minimum eigenvalue gap �̃min.
Without loss of generality, we assume that P has a simple
spectrum (consequently, so does H) and, for some 1 � j �
n − 1, the eigenvalue gap is minimum for two consecutive
distinct eigenvalues λ j and λ j+1. That is, for some value of
j, δ j = �min and henceforth we consider that value of j.
Observe that, in such a case, the second term inside the square
root is

2δ jλ j+1

1 − λ2
j+1

= 2�minλ j+1

1 − λ2
j+1

<
2�min

�
< 1. (142)

So expanding Eq. (141) according to Taylor series, we have

�̃min = 2�minλ j+1√
1 − λ2

j+1

+ �

⎛⎝ �2
min√

1 − λ2
j+1

⎞⎠ (143)

= �

⎛⎝ �minλ j+1√
1 − λ2

j+1

⎞⎠. (144)

This expression implies that the minimum eigenvalue gap of
P is mapped to the minimum eigenvalue gap of H multiplied
by the ratio of the corresponding eigenvalues of P and H .
The upper and lower bounds follow from observing that, for

all 1 � j � n − 1,
√

1 − λ2
j+1 � �(

√
�) and λ j+1 = �(λ2),

respectively. �
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FIG. 5. Comparison of the gaps between eigenvalues of a
Markov chain P and the corresponding Hamiltonian H defined in
Sec. IV. The eigenvalues of P lie between 0 and 1. Any such
eigenvalue λ of P is mapped to the eigenvalue pair ±√

1 − λ2 in
the relevant subspace of H . As a result the spectral gap, �, of P
is mapped to �(

√
�) for H . However, this is not the case for all

eigenvalue gaps. In fact, the minimum over all eigenvalue gaps of
P, �min, is mapped to �̃min, such that �̃min > �min if �min appears
between two eigenvalues that are close to λn−1. On the other hand,
�̃min > �min if it appears between two eigenvalues that are close to
λ2. This has been elucidated in Sec. VII E.

So from Lemma 13, we have that for any ergodic, re-
versible Markov chain P

T P
mix = O

(
1

ε

n

λ2�min

)
. (145)

Let us now consider that P is a symmetric, i.e., P = PT .
Then the underlying quantum walk can also be performed on
P itself. Assuming that the eigenvalues of P are ordered, for
a continuous-time quantum walk on H , from Eq. (138) and
Lemma 13, we observe that the upper bound for the quantum
mixing time may be faster or slower than a quantum walk
performed on P depending on where the minimum eigenvalue
gap appears (see Fig. 5 for a pictorial representation).

If �min happens to be between two eigenvalues that are
close to λn−1, �̃min ≈ �min/

√
� and hence the upper bound

on the quantum mixing time is in Õ(n
√

�/�min), which is
faster than the bound in Eq. (100). On the other hand, if �min

is in the vicinity of λ2, the upper bound on the quantum mixing
time is given by Eq. (145).

For generic ergodic, reversible Markov chains, however,
this comparison is inapplicable as P may not be symmetric
and cannot be used as a CTQW Hamiltonian.

This is in contrast to the QSSamp problem, where using
H offers a generic quadratic speedup over using P as the
Hamiltonian in Algorithm 3. This shows a fundamental differ-
ence between the two different notions of mixing for quantum
algorithms as elucidated by QSSamp and QLSamp problems.

VIII. DISCUSSION

In this article we have discussed the two notions of
quantum mixing and designed analog quantum algorithms to
tackle these problems. First, using Hamiltonian evolution and
von Neumann measurements, we have presented an analog

quantum algorithm that, given an ergodic, reversible Markov
chain, outputs a coherent encoding of its stationary state. The
running time of our algorithm matches that of its discrete-time
counterparts. Secondly, we have also discussed the problem of
sampling from the limiting distribution of a (time-averaged)
continuous-time quantum walk. We have offered an intuitive
explanation of the tools used in Ref. [6] to derive upper
bounds on the mixing time for random graphs. We have
also backed up the analytical results therein with numerical
simulations and extended the time-averaged notion of mixing
to any ergodic, reversible Markov chain.

Our results could pave the way for further research. For
example, quantum state generation using von Neumann mea-
surements can be used to develop novel analog quantum algo-
rithms. Note that our methods could be used to obtain other
analog quantum algorithms for solving the QSSamp problem.
One could reverse the spatial search algorithm by Childs and
Goldstone [38,48] and use von Neumann measurements to
prepare a coherent encoding of the highest eigenstate of the
underlying Hamiltonian. In the case of state-transitive graphs,
this will allow for uniform sampling.

It would be interesting to explore whether, using our
framework, one can construct an analog quantum algorithm to
fast forward the dynamics of any ergodic, reversible Markov
chain much like the results of Apers and Sarlette in discrete
time [22]. The challenge is that most of the underlying
techniques that enable this, such as the recently developed
techniques in the context of quantum simulation [66–68],
are absent in continuous time. However, the fact that the
Hamiltonian defining our continuous-time quantum walk can
be efficiently simulated using query access to the unitary
defining the discrete-time quantum walk of Ref. [18] might
offer useful insights towards designing such algorithms.

Our algorithm can also be used to prepare stationary
states of slowly evolving Markov chains, i.e., given a se-
quence of Markov chains {P1, . . . , Pn}, such that there is
a significant overlap between the stationary distributions of
any two consecutive Markov chains, meaning |〈π j+1|π j〉| is
large [7,10,13]. Given that one can prepare |π1〉 efficiently,
the task is to prepare |πn〉. Such situations arise in a host of
approximation algorithms for counting as has been pointed
out in Ref. [7]. Our algorithm will provide a quadratic speedup
over that of Ref. [7] as, given any Pj , the spectral gap of
the Hamiltonian defined in Sec. IV is amplified quadratically
over the corresponding discriminant matrix, which acts as the
Hamiltonian for the approach in [7].

For the problem of time-averaged mixing, it would be inter-
esting to explore the possibility of obtaining better bounds on
the quantum mixing time for any ergodic, reversible Markov
chain. Furthermore, this notion of quantum mixing is closely
related to the problem of equilibration of isolated quantum
systems, a widely studied problem in quantum statistical
mechanics [69]. As a result, our results can help obtain better
upper bounds for the equilibration times of isolated quantum
systems defined by random Hamiltonians.
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polylogarithmic factors, i.e., Õ( f (n)) = O( f (n)polylog( f (n)))
and �̃( f (n)) = �( f (n)polylog( f (n))).

[6] S. Chakraborty, K. Luh, and J. Roland, How Fast Do Quantum
Walks Mix? Phys. Rev. Lett. 124, 050501 (2020).

[7] D. Aharonov and A. Ta-Shma, Adiabatic quantum state gen-
eration and statistical zero knowledge, in Proceedings of the
Thirty-fifth Annual ACM Symposium on Theory of Computing
(ACM Press, New York, 2003), pp. 20–29.

[8] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Com-
puter Algorithms (Pearson Education India, London, 1974).

[9] P. C. Richter, Quantum speedup of classical mixing processes,
Phys. Rev. A 76, 042306 (2007).

[10] P. Wocjan and A. Abeyesinghe, Speedup via quantum sampling,
Phys. Rev. A 78, 042336 (2008).

[11] V. Dunjko and H. J. Briegel, Quantum mixing of Markov chains
for special distributions, New J. Phys. 17, 073004 (2015).

[12] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado,
and H. J. Briegel, Quantum Speedup for Active Learning
Agents, Phys. Rev. X 4, 031002 (2014).

[13] D. Orsucci, H. J. Briegel, and V. Dunjko, Faster quantum mix-
ing for slowly evolving sequences of Markov chains, Quantum
2, 105 (2018).

[14] V. Dunjko and H. J. Briegel, Machine learning & artificial in-
telligence in the quantum domain: A review of recent progress,
Rep. Prog. Phys. 81, 074001 (2018).

[15] P. C. Richter, Almost uniform sampling via quantum walks,
New J. Phys. 9, 72 (2007).

[16] M. Szegedy, Quantum speed-up of Markov chain based algo-
rithms, in Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, 2004 (IEEE, New York,
2004), pp. 32–41.

[17] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via
quantum walk, SIAM J. Comput. 40, 142 (2011).

[18] H. Krovi, F. Magniez, M. Ozols, and J. Roland, Quantum walks
can find a marked element on any graph, Algorithmica 74, 851
(2016).

[19] A. Ambainis, A. Gilyén, S. Jeffery, and M. Kokainis, Quadratic
speedup for finding marked vertices by quantum walks, in
Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC) (ACM Press, New York, 2020),
pp. 412–424.

[20] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum
algorithms revisited, Proc. R. Soc. London Ser. A 454, 339
(1998).

[21] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum
amplitude amplification and estimation, Contemp. Math. 305,
53 (2002).

[22] S. Apers and A. Sarlette, Quantum fast-forwarding: Markov
chains and graph property testing, Quantum Inf. Comput. 19,
181 (2019).

[23] S. Chakraborty, L. Novo, and J. Roland, Finding a marked node
on any graph by continuous time quantum walk [Phys. Rev. A
(to be published)], arXiv:1807.05957.

[24] J. Von Neumann, Mathematical Foundations of Quan-
tum Mechanics (Princeton University Press, Princeton, NJ,
1955).

[25] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann,
and A. J. Landahl, Quantum search by measurement, Phys. Rev.
A 66, 032314 (2002).

[26] R. D. Somma and G. Ortiz, Quantum approach to classi-
cal thermodynamics and optimization, in Quantum Quench-
ing, Annealing and Computation (Springer, New York, 2010),
pp. 1–20.

[27] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quan-
tum walks on graphs, in Proceedings of the Thirty-third An-
nual ACM Symposium on Theory of Computing (ACM Press,
New York, 2001), pp. 50–59.

[28] A. Ahmadi, R. Belk, C. Tamon, and C. Wendler, On mixing
in continuous-time quantum walks on some circulant graphs,
Quantum Inf. Comput. 3, 611 (2003).

[29] V. Kendon and B. Tregenna, Decoherence can be useful in
quantum walks, Phys. Rev. A 67, 042315 (2003).

[30] L. Fedichkin, D. Solenov, and C. Tamon, Mixing and deco-
herence in continuous-time quantum walks on cycles, Quantum
Inf. Comput. 6, 3 (2006).

[31] F. L. Marquezino, R. Portugal, G. Abal, and R. Donangelo,
Mixing times in quantum walks on the hypercube, Phys. Rev.
A 77, 042312 (2008).

[32] F. L. Marquezino, R. Portugal, and G. Abal, Mixing times in
quantum walks on two-dimensional grids, Phys. Rev. A 82,
042341 (2010).

[33] M. Kieferova and D. Nagaj, Quantum walks on necklaces and
mixing, Int. J. Quantum Inf. 10, 1250025 (2012).

[34] J. R. Norris, Markov Chains, Number 2 (Cambridge University
Press, Cambridge, UK, 1998).

[35] Note that, throughout this paper, we shall be dealing with values
of s ∈ [0, 1) and so the properties of D(P(1)) are not relevant
here.

[36] D. J. Aldous, Some inequalities for reversible Markov chains,
J. London Math. Soc. 2, 564 (1982).

[37] H. Krovi, M. Ozols, and J. Roland, Adiabatic condition and
the quantum hitting time of Markov chains, Phys. Rev. A 82,
022333 (2010).

[38] A. M. Childs and J. Goldstone, Spatial search by quantum walk,
Phys. Rev. A 70, 022314 (2004).

022423-19

https://doi.org/10.1063/1.4823159
https://doi.org/10.1103/PhysRevLett.124.050501
https://doi.org/10.1103/PhysRevA.76.042306
https://doi.org/10.1103/PhysRevA.78.042336
https://doi.org/10.1088/1367-2630/17/7/073004
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.22331/q-2018-11-09-105
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1088/1367-2630/9/3/072
https://doi.org/10.1137/090745854
https://doi.org/10.1007/s00453-015-9979-8
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1090/conm/305/05215
http://arxiv.org/abs/arXiv:1807.05957
https://doi.org/10.1103/PhysRevA.66.032314
https://doi.org/10.1103/PhysRevA.67.042315
https://doi.org/10.1103/PhysRevA.77.042312
https://doi.org/10.1103/PhysRevA.82.042341
https://doi.org/10.1142/S0219749912500256
https://doi.org/10.1112/jlms/s2-25.3.564
https://doi.org/10.1103/PhysRevA.82.022333
https://doi.org/10.1103/PhysRevA.70.022314


CHAKRABORTY, LUH, AND ROLAND PHYSICAL REVIEW A 102, 022423 (2020)

[39] J. Janmark, D. A. Meyer, and T. G. Wong, Global Symmetry
is Unnecessary for Fast Quantum Search, Phys. Rev. Lett. 112,
210502 (2014).

[40] I. Foulger, S. Gnutzmann, and G. Tanner, Quantum Search on
Graphene Lattices, Phys. Rev. Lett. 112, 070504 (2014).

[41] A. M. Childs and Y. Ge, Spatial search by continuous-time
quantum walks on crystal lattices, Phys. Rev. A 89, 052337
(2014).

[42] D. A. Meyer and T. G. Wong, Connectivity is a Poor Indi-
cator of Fast Quantum Search, Phys. Rev. Lett. 114, 110503
(2015).

[43] L. Novo, S. Chakraborty, M. Mohseni, H. Neven, and Y.
Omar, Systematic dimensionality reduction for quantum walks:
Optimal spatial search and transport on non-regular graphs,
Sci. Rep. 5, 13304 (2015).

[44] P. Philipp, L. Tarrataca, and S. Boettcher, Continuous-time
quantum search on balanced trees, Phys. Rev. A 93, 032305
(2016).

[45] T. G. Wong, Quantum walk search on Johnson graphs, J. Phys.
A: Math. Theor. 49, 195303 (2016).

[46] S. Chakraborty, L. Novo, A. Ambainis, and Y. Omar, Spatial
Search by Quantum Walk is Optimal for Almost All Graphs,
Phys. Rev. Lett. 116, 100501 (2016).

[47] S. Chakraborty, L. Novo, S. Di Giorgio, and Y. Omar, Opti-
mal Quantum Spatial Search on Random Temporal Networks,
Phys. Rev. Lett. 119, 220503 (2017).

[48] S. Chakraborty, L. Novo, and J. Roland, On the opti-
mality of spatial search by continuous-time quantum walk,
arXiv:2004.12686.

[49] T. J. Yoder, G. H. Low, and I. L. Chuang, Fixed-Point Quantum
Search with an Optimal Number of Queries, Phys. Rev. Lett.
113, 210501 (2014).

[50] F. Harary and E. M. Palmer, Graphical Enumeration (Elsevier,
Amsterdam, 2014).
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[52] P. Erdős and A. Rényi, On the evolution of random graphs,
Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).

[53] B. Bollobás, Random Graphs (Springer, New York, 1998).
[54] Z. Füredi and J. Komlós, The eigenvalues of random symmetric

matrices, Combinatorica 1, 233 (1981).
[55] L. Erdös et al., Spectral statistics of Erdős–Rényi graphs I:
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