Development and Validation of a Prognostic Score for Overall Survival Integrating Baseline Metabolically Active Tumor Volume measured by 18F-FDG PET/CT and Clinical Factors for Metastatic Colorectal Cancer Patients

Woff E1, Hendilisz A2, Salvatore L3, Marmorino F4, Falcone A4, Genovese D5, Giorgetti A3, Critch G3, Ameye I5, Paesmans M5, Guiot T1, Levillain H1, Flamen P1

1 Nuclear Medicine Department, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium.
2 Medical Oncology Department, Institut Jules Bordet - Université Libre de Bruxelles (ULB), Brussels, Belgium.
3 Nuclear Medicine Department, Fondazione Poliambulanza Università Agostino Gemelli IRCCS, Rome, Italy.
4 Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy.
5 Nuclear Medicine Department, Fondazione Sacra Famiglia “Sorrentino Monasterio”, Pisa, Italy.

Aim

This study aimed to develop and validate a prognostic score integrating baseline metabolically active tumor volume (MATV) and clinical factors in metastatic colorectal cancer (mCRC) patients.

Material and Methods

Material

- Development cohort: 160 unresectable chemorefractory mCRC patients enrolled in two prospective trials aiming to define an unlikely benefit from sorafenib/regorafenib (EudraCT numbers: 2010-023695-91 and 2012-005655-16).
- Validation cohort: 127 unresectable mCRC patients treated with chemotherapy and bevacizumab as first-line therapy enrolled in a prospective trial aiming to evaluate metabolic response parameters as predictors of outcome.
- 277 standardized baseline $[^{18}$F]fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) scans were performed and analyzed.

Methods

- Target lesions delineation was performed using a PERCIST-based threshold.
- MATV was defined as the sum of metabolically active volumes of all target lesions.
- Baseline MATV biomarker has been demonstrated to have a high prognostic value both in the development and external validation cohorts, independently of patients’ treatment.
- A prognostic score for OS combining baseline MATV and clinical factors allowed to identify two risk groups of mCRC patients with significantly different mOS, in both the development and validation cohorts.
- MATV and the prognostic score for OS should provide a firm basis for risk stratification, in clinical practice and research trials.

Statistical analyses

- Optimal MATV cutoff for overall survival (OS) prediction was determined from the development cohort by the method of Williams.
- Multivariate analyses were done for OS including MATV and clinical variables (age, gender, BMI, ECOG PS, number of years between diagnosis and inclusion in the trial, presence of KRAS mutation).
- A prognostic score to predict OS was generated based on the parameters’ weights using Cox proportional hazards model.

Results

Fig 1: OS according to baseline MATV with a cutoff of 100 cm3 in the development (A) and validation cohorts (B).

Fig 2: OS according to the prognostic score including baseline MATV and three clinical variables (ref. table 1) in the development (C) and validation cohorts (D).

Table 1: Prognostic score developed based on the combination of the independent predictors for OS retained in the multivariate analysis.

Conclusions

- Baseline MATV biomarker has been demonstrated to have a high prognostic value both in the development and external validation cohorts, independently of patients’ treatment.
- A prognostic score for OS combining baseline MATV and clinical factors allowed to identify two risk groups of mCRC patients with significantly different mOS, in both the development and validation cohorts.
- MATV and the prognostic score for OS should provide a firm basis for risk stratification, in clinical practice and research trials.

References

Contact: erwin.woff@bordet.be